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Abstract. Free fermion constructions of the superconformal and Kac-Moody algebras
are discussed. Coset representations provide examples for the N = 1, ¢ < % discrete
series. They generalize the Kac-Todorov construction of the supercurrent which was valid
for N=1,¢> %, and differ by the terms mixing the SuperVirasoro and Kac-Moody
algebras. They thus provide a guide for searching for new forms for the lower and upper
components of the superfields in one-to-one correspondence with the untwisted states in
a twisted superconformal field theory, and may be useful in discussing the low energy
phenomenology of superstring theory.

1. Introduction

Conformal, superconformal and extended superconformal algebras play a
role in string theory. In this paper we investigate constructions of the super-
current generator F'(z) of the two N = 1 world sheet supersymmetric exten-
sions of the Virasoro algebra, i.e., the Ramond and Neveu-Schwarz sectors.
The critical dimension of this system (determined by the absence of negative
norm ghost states) is D = 10. Unitary representations of the N = 1 super-
conformal algebra with critical central charge ¢ = 15 are constructed from
the matter superfields. The superconformal BRST ghost system provides a
non-unitary representation of the N = 1 superVirasoro algebra (SVA) with
¢ = —15. Although the representation is non-unitary, the SVA generators
still satisfy the hermiticity conditions Lghostt = [8host  pehostt — pghost
addition, the superconformal ghost system also carries a representation of
the extended N = 2 world sheet algebra.[!]

The matter superconformal fields of conformal weight one-half close to
form a super Kac-Moody algebra (SKMA). The mixing between the SVA
and the SKMA differs depending on the particular construction of the su-
percurrent. The N = 1 algebra is given by operator products where the right
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hand side holds for |z| > |[{| up to terms regular as z — (.
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In component form we have

[Ln;Lm] = (Tl - m)Ln+m + i% n3 - n)én —m
[Ln7 Fm] = (g - m)Fn+m
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The super Kac-Moody algebra is
kéab ifabcTc(C)

PETE) = gt G o)
Ta(Z)db( ) - Z.f(a:c ()C)
& (2)d(z) = (;—_-”.C—) (3)

Here fabe fabe = Cybce; the level of the KMA is z = —2,% = %fz, where h is the
dual Coxeter number of the compact Lie algebra with structure constants

fabc~

Constructions of the matter supercurrent are given by the following.

1)The Kac-Todorov construction extends to a super Kac-Moody alge-
bra and has a mixing between the SVA and SKMA which reflects the fact
that the SKMA generators are conformal weight one- ha.lf superﬁelds The
Virasoro generators form a Sugawara construction and 3 < ¢ < _1Tm.z

2)The coset constructions have SVA generators Wthh are seen to be a
modification of the Kac-Todorov construction. This constructions also ex-
tends to a SKMA, but now the mixing between the SVA and the SKMA is
different from the Kac-Todorov case. The central charge satisfies 0 < ¢ <
dimg

23)Complex free fermions provide a construction similar to Kac-Todorov,

but now the supercurrent can carry automorphisms of groups other than

SU(2)8 in the presence of massless fermions. Here ¢ = d-’gﬂ.

<
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2. The Kac-Todorov construction

This construction provides the general free real fermion representations of '
the internal space SVA and SKMA algebras with the following mixing char-
acteristic of a weight one-half superfield.

L(2)T(C) = (Zi(?)z + (iT%CC)
L(2)d"(0) = ¢ du(g))z * (z_-ﬁ;)
F(2)T*(¢) = m(zd a—(%? ’ (‘j%‘o]
F(2)d*(¢) = \/%(Za_(%' Y

A realization is given by

v 1 osvar sas oy 1o dd*(2) , €
1) = R = 1 0w 16
W z

Ao

T%2) = =t fabcdb(z)dc(z)

e

Here 1 < a < ¢. This representation has level & = %iz =hand &= o
3

—1

bed®(2)d(2)d(2). 5
6\/%—£fb (2)d°(2)d(2) (5)

(2)T%(=

i.e. ¥ < & The most general realization is given by

1) = L)+ gy G = L) + 18,2

T%2) = T“(z) + ¢“(2)

E 1
F(z) = g F(2) + —==—=d%(2)¢"(2) (6)
R+ 3 ke 4 %
with level ¢ = h + 29 and ¢ = éi;—'m + z;gi:’ig = 3di2mg - i’d;mg‘, i.e. % <EL

¢ < 3™ The abelian SKMA is

1) =5 ey Ot L))
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T%(z) = ¢*(2) = 22-3 fursbl (27 (2)
F(z) = —-\/176—_(1—(1‘1(2)(1“(2), (7

Here foryforg = 2k%64 and ¢ = %(dimd“ + dimb[) > -233

3. Coset construction

We now modify the Kac-Todorov construction of the supercu.rent to be of
the general form

F(z) = AF(2) + Bd*(2)q*(). (8)
It follows that

L(2) = CL(2) + DL%,,(2) + ET*(2)*(2)

T%(z) = T%(2) + ¢°(2). (9)
Case 1: for E = 0, we regain the Kac-Todorov forms: a) minimal B = D =
0,A=C=1and b) maximal B = ——A = ———.

Vi et
z9 _ M

; where 4 =

_zd

Case2:for £ = =2k L
(x3+h)(z94+2R)

(= —Z h
cylzt42h) 7 T zed2h’ T T zi42h

e
B = Y_* __ the mixing between the SVA and SKMA is given by
V (@94+h)(z942h)

L(z)T*(() =0

L () =
. dds(¢ - e b e
y 29 ) d*(¢) L& ) —2h~ i fabeq(2)d(2)
294+ 2R22=0)?  (2-0)" (294 2h)ey,”  (2-0)
PT(C) =0
5
F(2)(0) = e e )0 () + he(Q)). (10)
(2= 0"\ (a3 + h)(as + 2h)
This representation has level z = h+ 2% and ¢ = di? (1- @m),

e 0<c< i%mg-. For g = SU(2) (so h = 2), we see this is just the discrete
series for unitary representations of the N =1 SVA (let ¢? = m):

3 8 3

7
=0 ) = Yy ()
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Case 2 is seen to be equivalent to the coset constructionf®l,

L(z) = LG(Z) - LH(Z) ( )+ LSu.g( )

: (1 ¢ [z 2)NET(2) =
*m[I(T (2) + ¢ ()T%(2) + ¢*(2))21T°(2)
=T%(2) + ¢"(2) (12)
ot Z
F(z) = —F(:) + () (z)

V(29 + h)(a7 + 2h) V(27 + R)(21 + 2R)

The coset here corresponds to G = SU(2)® SU(2) and H = SU(2).

4. Complex fermions

For complex fermions satisfying twisted boundary conditions fe(e*™iz) =
e f4(z), fo(e¥™z) = e7?™ f(z), the supercurrent construction general-
izes the Kac-Todorov expression to be given by

-1

F(z) = W fabch®(2)hP (2)he(2). (13)
2

The space-time fermi fields satisfy the periodicity condition h#*(e*"'z) =

Soh*(2) where 6, = F1 for R an NS fields respectively, so F(e2™2) = 6, F(z).

In a given sector, all the fermionic boundary conditions can be specified by

a matrix wi: so h*(e?™z) = wih(z) and

fdefwgwgwéf = 6o<fabc, (14)

i.e. Fwy is an automorphism M of the Lie algebra g with structure constants
fabe used to define the supercurrent in a Ramond (Neveu-Schwarz) sector.
The Virasoro generator is then given by

1) = P50 12 L0y iog(-a) (15)

where we are ultimately interested in the automorphisms w of g for which
the' coboundary term {str([tlog(-w)}?) = (i’gi?, , i.e. the automorphisms for
which the coboundary term takes its minimum value on the Ramond sector.
In D space-time dimensions, the mass operator is

m? = 4 222 4 Lin([log(~w)) (16)
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and the structure constants require dimg = 3(10 — D). So for massless
space-time fermions, m? = 0, the coboundary term realizes its minimum
value, and in D = 4, the dimension of ¢ is 18, where g is the algebra of the
structure constants occuring in the supercurrent (13). This mass formula is
tc be contrasted with that of the Kac-Todorov construction where massless
fermions require

1 D-2
2:-—— P di 2 17
m 2+ 15 + dimd , (1m)

sofor D = 4, g is U(1)8, which is the gauge group of the states in string mod-
els using the Kac-Todorov supercurrent construction necessary for sectors
with massless Ramond states.

In order to examine which gauge groups occur as the relevant internal
gauge symmetry of the spectrum of states for the complex fermion form of
the supercurrent given in (13), we investigate the SKMA (which mixes as a
weight one-half superfield) with this representation of the internal superVi-
rasoro algebra, ¢ = 9. The modified Cartan Weyl basis for the SKMA diago-
nalizes inner automorphisms. The fermions in this basis are h'(2),h%(2),
for 1 < i < rank(g) and a € roots(g), thus h' are real (R, NS) and
h%* = b~ are complex. The SKMA generators now form a twisted SKMA
where H'(e*"'2) = H'(z) and the step operators E%(z) = ™A F(e= 2 5),
So for inner automorphisms, the zero mode subalgebra which is the gauge
symmetry of the spectrum is U(1)7*"*(9), For outer automorphisms, one can
check for the relevant groups SU(3), SU(4) and SO(5) that the zero mode
subalgebra is again a product of U(1) factors.

5. Non-free fermion representations of the supercurrent

Not all known representations of the superconformal algebra can be ex-
pressed as free fermion constructions. In particular, the Waterson boson!®:
provides a representation for N = 2, ¢ = 1. The N = 1 subalgebra is gener-
ated by

L(z) = 5 1 a(2) - a(2) :

Il

t\'.)l:»—t

F(z) = f( eVIXE) Ly mVIXG) (18)

6. BRST superconformal ghost system

Non-unitary representations of the superVirasoro algebra are provided by
the BRST superconformal ghost system["7). The ghost superfields are B(z) =
B(z) +0b(z) and C(2) = ¢(2) + 87(z) with conformal spin hg = 2, h, = -1,
etc. The commutation relations on the Ramond sector are {bn,¢m} = 6n —m,
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[ﬁn,‘/m] = —bp,~m. The superVirasoro representcxtion has ¢ = —15, but the
generators still satlsfy the hermitian property FT ", and LT =L_,:

1() = ~2: bz )"c(z) LG Iy O
1 dﬂ(z)
L0
F(z)=:b(2)7(2) : =3 : B(= )dc(z) - El%(zz-—)c(z) : (19)

An alternative form for the supercurrent is given by Schwarz®l:

dc(z) iﬂ@ (
dz

F(2) = ~2:b(21(2) 45 2 B(5) 52 o(2): (20)

The ghost number current forms an abehan SKMA:

T(z) = — 1 b(2)e(2) : = : B(2)y(2) : +i (21)

The supercurrent in (19) can be identified as F't + F~ and can be used to
construct a second h = 2 supercurrent —F* + F~ as the upper component
of the superfield whose lower component is

H(z)=2:b(2)c(2) : +3 : B(2)1(2) : (22)
We find

PR+ P() = W) 43 () B 4 PO

co(z): (23)

The set L,G*,G~, H form an N = 2 superconformal algebra with ¢ = —15.

We include here for completeness, the unitarity restrictions on the cen-
tral for the N = 0,1,2 superVirasoro algebras/®!%, For N = 0, unitary
representations occur for all values of ¢ > 1 h > 0 and for discrete values
below 1 given by ¢ = 1 — m =0,1 R 1";), g, .., 1. The critical value
of the-central charge is ¢ = 26. The N = 1 system provides representations
of two supersymmetric extensions of the Virasoro algebra, i.e. the Ramond
and the Neveu-Schwarz. The critical dimension is D = 10. The only possible
unitary highest weight representations, i.e. representations generated from
a state |h), satisfy Lplh) = 0,n > 0; L0|h) = hlh); Fylh) = 0,n > 0; are
cha,racterized by (c,h) where either ¢ > 2, h > 0; or for the discrete values
0<e< 2 given by ¢ = —{ W] 0, 1”;), 1,.. % The critical value
of the central charge is ¢ = 15. For N = 2, the crrtxcal dimension is D = 2
complex or D = 4 real. Unitary representations occur for all values of ¢ > 3
and for discrete values below 3 given by ¢ = m =0,1,...,3. The critical
central charge is ¢ = 6.
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