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Abstract. Modern superscalar, out-of-order microprocessors dominate large scale server
computing. Monitoring their activity, during program execution, has become complicated due
to the complexity of the microarchitectures and their IO interactions. Recent processors have
thousands of performance monitoring events. These are required to actually provide coverage for
all of the complex interactions and performance issues that can occur. Knowing which data to
collect and how to interpret the results has become an unreasonable burden for code developers
whose tasks are already hard enough. It becomes the task of the analysis tool developer to
bridge this gap. To address this issue, a generic decomposition of how a microprocessor is
using the consumed cycles allows code developers to quickly understand which of the myriad
of microarchitectural complexities they are battling, without requiring a detailed knowledge
of the microarchitecture. When this approach is intrinsically integrated into a performance
data analysis tool, it enables software developers to take advantage of the microarchitectural
methodology that has only been available to experts. The Generic Optimization Data Analyzer
(GOoDA) project integrates this expertise into a profiling tool in order to lower the required
expertise of the user and, being designed from the ground up with large-scale object-oriented
applications in mind, it will be particularly useful for large HENP codebases

1. Introduction

The ATLAS experiment at the CERN LHC has produced tens of Petabytes of data over the
last few years which are actively analyzed by a community of more than 2000 physicists using
software developed by about 200 developers. Given the healthy competition among analysis
groups both within and without ATLAS, e�cient use of available computing resources has a
direct impact on ATLAS physics reach. ATLAS main performance optimization challenges
are to keep under control both the memory footprint of ATLAS applications, and the CPU
usage: current ATLAS computing model requires ATLAS applications to use less than 2GB of
memory/core, and for every percentage increase in required CPU resources, ATLAS computing
procurement and operation costs increase by approximately $100K/year.

ATLAS has a large C++ codebase: more than 4M lines of code, organized in 4000+ libraries.
The OO design and implementation of ATLAS code has traditionally focused more on flexibility
than optimal performance. Preliminary performance studies [1] have shown that more than
30% of CPU utilization comes from function call overhead and from L1 Instruction cache
latency. Unfortunately none of the tools ATLAS tried, commercial or otherwise, provided
the combination of scalability, usability, and detailed analysis needed by ATLAS developers
to analyze and monitor performance issues of their large-scale OO C++ applications.
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2. Cycle Accounting Methodology

Performance analysis and software optimization is about minimizing the cycle count, so in
order to present the assorted measurements of incompatibilities of code and data with the
microprocessor architecture in a sensible manner all such performance issues must be presented
in the same units, cycles. If one considers the spectrum of such issues, even though there might
easily be hundreds of di↵erent possible problems on a given processor they can be grouped
into roughly a dozen classes that are independent of the microarchitecture. These classes can
be organized as a cycle accounting tree. Not all classes will be applicable on all processors,
for instance Simultaneous Multithreading (SMT) collisions cannot occur on processors without
SMT. Furthermore, on the vast majority of processors, most of the classes cannot be measured
in any sort of reliable and accurate manner and evaluated in terms of cycles. If a critical issue
cannot be expressed as a cost in cycles then in reality it has not been measured in a useful
manner and the user should find a platform where it can be measured and not pretend that a
misleading measurement is actually useful.

The usual manner used for evaluating the cost of an issue is by running a customized
benchmark that serializes the cost of a single issue and also validates that the processor has an
event that counts the occurrences of the issue. The penalty is then evaluated as the di↵erence of
the cycles/iteration with the issue minus the cycles/iteration for the kernel when the issue does
not occur. The event must also be validated to show it does not count anything else. Under such
circumstances the cost of the issue during the execution of a program can then be evaluated as
the product of the penalty times the occurrence count. This is e↵ectively serializing execution
and thus overcounts the cost as it does not consider temporally overlapping penalties. For some
performance bottlenecks it is possible to define an upper limit for the cost of a sum of related
issues and thereby allow a correction for overlapping penalties.

This generic performance metric based approach can be applied for workload characterizations
with counting mode data collection or using profile data collected with periodic interrupt based
sampling. In counting mode it can be done more accurately since the fluctuations of profiling
and the precision of the location of the interrupts do not apply. This also means that di↵erences
and ratios of performance events can be used, which are usually inaccurate when done at the
level of instruction pointer values associated with profiled data.

The generic decomposition is best explained by figure 1, as it is self explanatory for the most
part. The branches of the graph are computed with whatever techniques are supported by a
given microarchitecture. The techniques frequently change dramatically from one generation to
the next as the coverage of the branches improves and new techniques are developed.

The Intel Westmere-EP processors are used as an example as the branch coverage is fairly
good. As an illustration of how a branch is evaluated we consider the load latency one as
evaluated on a WSM-EP processor. The penalties considered are the extra cycles that a code
must wait for load instructions to deliver data to the functional units. On a dual socket system
with three cache levels and a Non Uniform Memory Architecture (NUMA) there are a significant
number of individual issues with di↵erent costs. There are further the costs associated with
Data Translation Lookaside Bu↵er (DTLB) translations and those associated with loads blocked
from being able to forward previously stored data residing in store bu↵ers. The penalties were
evaluated with specific kernels as discussed above and are processor frequency dependent (both
core and uncore frequency).

6 ⇤ mem_load_retired:l2_hit
52 ⇤ mem_load_retired:l3_unshared_hit
85 ⇤ (mem_load_retired:other_core_l2_hit_hitm� mem_uncore_retired:local_hitm)
95 ⇤ mem_uncore_retired:local_hitm
250 ⇤ mem_uncore_retired:local_dram_and_remote_cache_hit
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Figure 1. Cycle Accounting Tree

450 ⇤ mem_uncore_retired:remote_dram
450 ⇤ mem_uncore_retired:remote_hitm
250 ⇤ mem_uncore_retired:other_llc_miss
7 ⇤ (dtlb_load_misses:stlb_hit+ dtlb_load_misses:walk_completed)+
dtlb_load_misses:walk_cycles

8 ⇤ load_block_overlap_store

Small load latency penalties can be hidden by the combination of out-of-order execution and
good compilation. So the terms associated with

6 ⇤ mem_load_retired:l2_hit
7 ⇤ dtlb_load_misses:stlb_hit

can usually be ignored.

3. Architecture

GOoDA is conceptually composed of 4 main components: the perf events Linux subsystem, the
perf tool, a performance data analyzer and a web based visualizer. The former is a performance
monitoring interface that was introduced into the Linux kernel in 2009. The goal was to provide
a unified interface to access not only the hardware performance counters, but also kernel software
counters and tracepoints.
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To demonstrate the capabilities of the perf events interface, a monitoring tool, called perf
has been developed. Unlike other tools, it has been included in the kernel source tree very early
on as a way to avoid breakages while the interface kept evolving. The authors have contributed
to both of the former projects by fixing bugs and adding several features needed by GOoDA.

The analyzer reads a collected data file from perf, accumulates the statistics per processes,
functions, assembly and source lines and generates the various callgraphs and control flow graphs.
The web based visualizer is able to read the generated spreadsheets and graph files in order to
represent them in a browser.

The following subsections go into the details of the roles of the various subsystem.

3.1. Perf events

Since 2009, perf events has been is constant development. First available on X86 hardware, it
was rapidly ported to PowerPC, ARM, MIPS, SPARC, and Alpha.

The design of perf event [2] is radically di↵erent from any other existing interfaces. First,
this is system call interface, i.e., not a device driver. Second, it exposes a high level abstraction
known as an event. Tools manipulate events not counters or registers. Events can count processor
cycles, the number of context switches, the number of times a function is called and so on and are
encoded as 64-bit integers. The kernel manages the events uniformly regardless of their source,
whether processor hardware counters or kernel software counters. Events are manipulated via
file descriptors which are obtained via the new perf event open() system call. Operations on
events then use the regular file interface. To read an event, tools use the read() system call, to
start/stop, they use ioctl(), to destroy an event, they call close().

In the past, monitoring interfaces have always exposed the raw hardware. For instance, in
perfmon2 [3], tools had to program hardware registers. In OProfile [4], tools had to program
counters exposed via a dedicated filesystem. Perf events hides all the hardware details, including
the number of physical counters, the counter constraints on events, the layout of the counter
config registers. Users can monitor more events than there are counters. The kernel can time-
multiplex events automatically. Similarly, it is possible to share the hardware counters between
multiple tools at the same time.

Perf events exports generic hardware events to count common metrics such as elapsed cycles,
the number of instruction retired. Internally, those events are then mapped onto the actual
hardware events for the host processor. Although this approach makes developing generic
tools easier, it has problems when it comes to interpreting and comparing results. By nature,
hardware events are closely tied to the micro-architecture of each processor. Comparing counts
between processors may not always be easy because of subtle di↵erences. For instance, on
Intel SandyBridge processor, the generic cycles event is mapped to a hardware event which is
influenced by the Turbo mode. As such the conversion from cycles to time is not possible unlike
on some older processors. Fortunately, to allow power-users to measure all the hardware events,
it is possible to pass their raw encodings to the kernel.

The kernel o↵ers two modes of measurement: per-thread and per-cpu. In per-thread mode,
events are attached to a thread. They are saved and restored when the thread context
switches. In per-cpu mode, any thread running on the monitored logical CPU is included
in the measurement. To measure one event across a multi-processor system, it is necessary to
program the event on each of the processors. Creating per-cpu events require root privileges for
obvious security reasons.

Perf event also supports a profiling mode where you collect samples during the execution of
a program. The sampling period is always expressed as a number of occurrences of an event and
not time. All events are counted as 64-bit integers by the interface. However, hardware counters
have a fixed width, usually around 40 bits. It is possible to cause an interrupt when the counter
wraps around. The mechanism is used for sampling and also for emulating a 64-bit counter
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when not available. If the sampling period is P cycles, then the counter is programmed to -P.
The interface supports two modes for the period: fixed and rate. In fixed mode, the period is
set by tools and does not change. In rate mode, tools specify a target sampling rate in Hertz
and the kernel dynamically adjusts the period at each timer tick to try and achieve the rate.
The actual period can be saved in each sample to enable normalization of the samples later on.
It should be noted that on Intel X86 processors, perf events uses the Non-Maskable Interrupt
(NMI) vector for counter overflows. Thus it is possible to capture samples inside Linux kernel
critical sections where interrupts are disabled, thereby minimizing the number of potential blind
spots. To prevent against malicious use of the sampling mechanism to flood the kernel with
interrupts, perf events enforces a maximum interrupt rate per CPU per second. Sampling may
therefore be throttled and unthrottled dynamically by the kernel.

Samples are saved into a kernel bu↵er which is made visible to tools via the mmap() system
call. By default, there is one sampling bu↵er per event instance. However, it is possible to
force all samples into the bu↵er of a single event. Along with samples the kernel captures
enough meta-data to allow o✏ine analysis and in particular correlation of sampled addresses to
actual modules and functions. As such, fork(), exit(), mmap() are recorded in the bu↵er. Event
throttling events are also recorded in the bu↵er.

Model specific hardware features are also supported by perf events. For instance, starting
with Intel Core, the Precise Event-Based Sampling (PEBS) facility is supported and abstracted
as precise sampling mode. It provides a way to collect instruction addresses with a controlled
skid unlike regular interrupt-based sampling. Similarly, Last Branch Record (LBR) is supported
since kernel v3.3 for Intel Core processors and later. It is abstracted as the branch stack sampling
feature. It allows sampling the last N consecutive taken branches that led to an instruction.
For each branch, the source and target addresses are captured. This is a very useful feature for
statistical basic block profiling and function call counts.

Perf events can also be used by developers interested in collecting kernel traces. As alluded
to earlier, the interface provides access to the same set of tracepoints as the ftrace interface. It
is therefore possible to count the number of times the kernel executes through a tracepoint but
it is also possible to collect a trace via the sampling mechanism by simply using a period of one
event.

The development of perf events is far from over. Many hardware features are still
unsupported, such as AMD Instruction-Based Sampling (IBS), Intel uncore PMU on Nehalem
and later processors. But support for those features is being worked on actively by hardware
vendors and developers around the world.

3.2. Perf tool

Perf [5] is a command line tool which allows counting and sampling. It follow the git design
model with a major command, perf, and sub-commands: list, stat, record, report, annotate.
The tool is used to collect data and also analyze them. It has an extensible modular design
which makes adding new sub-command relatively easy.

For counting mode, the perf stat command is used. It is possible to measure any of the
generic events or raw hardware events. Perf stat also works in system-wide mode and can show
a per-cpu break or aggregated view of the counts. To collect samples, the perf record command
is used. This generated a binary output file called perf.data which can then be analyze by the
perf report command for a function-level view or perf annotate for an instruction-level view.
Both commands can be run with a text-based UI.

It is possible to sample on many events at the same time. However, the current perf
report command only displays profiles per event and not the samples side-by-side to help locate
correlations between events.

Sampling in system-wide mode is also possible. The data from all CPUs are aggregated into
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a single perf.data file. Yet each sample includes the CPU number, thus it is still posssible to
generate per-cpu profiles.

The perf record tool is used by the GOoDA collection scripts to collects samples into a
perf.data file. That file is then parsed directly by GOoDA to generate its output spreadsheets.

3.3. Analyzer

The analysis of the interrupt records in the perf.data file is done in a two phase process. The
raw records are processed creating a hierarchical tree of of structures that represents the module
memory maps per Process Identifier (PID). PIDs with the same binary path are merged to refer
to a single principal process, which is defined as the first PID of the set that gets a sample
record. Only the principal process has a tree of module structures where the sample data is
accumulated by Relative Virtual Address (RVA). Module structures are created when the first
sample is bound to a particular memory map (mmap) record. All mmap structures with the
same path, for a family of PIDs defined by having the same principal process, will then have
pointers to that module. This completes the merging process.

All structures have a sample data array that accumulates sample counts per core and the
totals. The module structures have a linked list of RVA structures (also accessible through
dynamic hash lookup) and these thus represent the sample distributions per instruction pointer.
Once the raw data has been stored into the memory model, the linked lists of RVA structures
are sorted into increasing order based on RVA. The modules structure address ranges are then
divided into function ranges using a popen call to readelf [6]. The functions are sorted into
increasing address order and the RVA sample data is then accumulated into sample structures
for each function.

The process and module structures/process are sorted into descending order by total sample
count. A global linked list of all functions with samples is created and it is also sorted into
descending order based on total samples. These two operations define the process/module
tables and the hotspot function tables.

The hottest N functions (N = 20 by default, set by input argument) are then processed. The
address ranges are disassembled. The branch instructions are identified and the list of all branch
instructions and targets are used to break the disassembly into basic blocks. Each basic block
has a sample structure which accumulates the data from all the instructions in the basic block.
The debug information for each assembly address is walked to find the two ends of the inlining
chain. For each function a principal source file is identified (allowing for the debug information
to be imperfect) and every assembly line has a principal source file line associated with it. Each
source file sample line has a sample structure which accumulates the data from all the assembly
lines that point to it. This enables the creation of the lined source and assembly tables. The
basic block information is used to make a Control Flow Graph using graphviz [7].

Intel Sandybridge processors have a LBR mechanism that is su�ciently sophisticated to
create a Call Graph with hardware based data that can be collected with perf. The LBR is
filtered to capture only near return branches, thus 16 samples are collected per interrupt vastly
reducing the impact of data collection shadowing. The LBR data is processed using each sample
in two directions to identify the sources and targets of function calls. The data is stored in linked
list structures inside the RVA structures. The data is aggregated per function and sorted by
decreasing branch sample count. The top 10 sources and targets for each function are added to
the function spreadsheet as expandable rows. A Call Graph is created with graphviz, based on
the hottest 50 functions and their sources and targets except for the sources of hot leaf functions
that have more than 50 sources. There is no point in drowning the graph in calls to memset
and memcpy.

The tables that are created have control structures to enable the expandable cycle accounting
display. Each table has a row containing an encoding defining every columns position in the
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multi-level cycle accounting tree. There are also rows containing the event names, sampling
periods, penalties, multiplexing corrections and whether a column can be displayed in cycles.
Thus once the table is created there is no need to go back to the raw data. The architecture
dependent cycle accounting is encoded in a template table that is used to drive the evaluation
of derived data columns like the branch and sub-branch cycle count values for each table row.
Thus a single set of functions appears to be capable of handling almost any architecture that
supports real measurements of the generic cycle accounting metrics.

3.4. Visualizer

To display the spreadsheets generated by the analyzer, a web based GUI was developed. The
choice of using a web based GUI came from to the need to share a report with more people in an
easy way without installing additional applications. We liked the approach taken by callgrind
and kcachegrind [8] where each tool has a specific purpose and the responsibility of generating
and presenting the data are separated.

With the advent of e�cient Just in Time (JIT) engines for Javascript, entire client-side
applications based only on the latest HyperText Markup Language 5 (HTML5) web standards
became a reality. By HTML5 we refer not only to the markup language and the basic Document
Object Model (DOM) scripting API that comes with it, but also the related technologies like
Cascading Style Sheets (CSS) 3 and Scalable Vector Graphics (SVG). The main drawback
of using these technologies is that the browser vendors not always adhere completely to the
standards, so implementing the same functionality on di↵erent platforms might become tricky.
The situation has clearly improved in recent years and HTML5 fixed some of the incompatibilities
between di↵erent browsers. Di↵erent browsers running on di↵erent operating systems can cause
further incompatibilities: even something as simple as picking a consistent set of fonts available
on each possible configuration of the main operating systems can become not trivial.

The logic behind the visualizer is very simple, it starts by loading the desired spreadsheets
using Asynchronous Javascript and XML (Ajax) from the local disk or a web server1. Once
a report is selected, the spreadsheets corresponding to the hot functions and hot processes
are downloaded in parallel. As soon as a downlod is completed the visualizer proceeds to
fill the corresponding grid with the downloaded data. To have a completely stand-alone
javascript application without any kind of server side interaction, the visualizer requires that the
spreadsheets belonging to the reports are pregenerated. In future releases we might explore the
possibility to dynamically interact through a webserver with the GOoDA analyzer to generate
spreadsheets on the fly. For now, since the analyzer and the visualizer are completely decoupled,
a user interested only in viewing some reports can do it on any platform he desires, provided
a recent HTML5 compliant browser is installed. To allow the browser to handle tables with
hundred of thousands of rows, the internal nodes of the DOM that belong to the tables are
dynamically generated only for the currently visible part, and a fraction of the neighboring view
of the whole grid. This simple mechanism allows to achieve smooth scrolling without having
to create an HTML table with the full size of the grid. This technique also brings a significant
reduction of memory usage. The visualizer can be deployed either on a web server or directly
be opened through a browser from the local disk.

4. An Use Case

GOoDA has been used to assess performance issues of Athena, the ATLAS analysis software.
Perf data collection ran on a dual socket server containing Intel(R) Xeon(R) X5650 CPUs which

1 at the time of this writing some browsers like Chrome apply some restrictions on file system access via Ajax,
but these can be disabled through a browser option.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052072 doi:10.1088/1742-6596/396/5/052072

7



are based on the Westmere architecture. The machine, running with Hyper-Threading enabled,
features 24 virtual cores and 48 GBs of memory.

An optimized x86 64 build of the Athena (17.2.2) software package was selected for the
analysis. During the recording, all CPUs were utilized by 32 instances of Athena processes, each
doing full o✏ine reconstruction of the collisions recorded by the ATLAS detector. The recording
was started at the beginning of the collision events processing and stopped after the last event
was processed in order to remove the e↵ects of software initialization and finalization. The total
sampling time is of the order of 30 minutes. The recorded perf.data file was then processed by
the GOoDA-analyzer and displayed by the GOoDA-visualizer.

Figure 2. Hotspots View

Figure 2 shows the main display of the report generated by the analyzer. The top part of
the window displays the event distributions per process, and when expanded, the statistics for
each of the modules. The bottom part shows the hottest functions in the selected process. As
it can be seen from the figure, memory allocation and de-allocation, Track Extrapolation in
the Transition Radiation Tracker (TRT) and Runge-Kutta propagation are listed as the hottest
operations in Athena.

Figure 3 shows the details of the TRT Track Extrapolation code. The bottom part of the
window shows the Control Flow Graph of the function. The colors of the boxes represent the
hotness of the block: the darker the box, the more samples were collected in it. The top part of
the window displays the disassembly of the object file and the relative source code that generated
it.
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Figure 3. TRT Track Extrapolation

Figure 4. Runge-Kutta Propagation

A glance to the disassembly reveals that the function is dominated by the Load Latency and
Bandwidth Saturation branches of the cycle tree. Expanding the Load Latency branch shows
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that there are many remote dram accesses which are expensive on NUMA architectures. Remote
dram access issues can be mitigated by pinning the application to a socket. Further investigation
reveals that the cache misses are caused by memory allocated dynamically in a scattered manner.
Allocating the objects in a consecutive manner is expected to alleviate the problem. Also,
modifying the data structure in order to take the access pattern into consideration, might further
improve the situation.

Figure 4 shows that the Runge-Kutta Propagation code used in the TRT is a↵ected by
instructions with high latency. The code block causing the issue is composed of several expensive
arithmetic operations such as divisions and square roots. A redesign of the algorithm as well as
the usage of vectorization could significantly speedup the code.

5. Conclusions

Thanks to GOoDA’s novel approach of cycle accounting, the cycles spent by a process can be
divided in categories which highlight the main bottlenecks in HPC and Enterprise applications.

The development of the tool, which was released under an open source license [9], is far from
over at the time of this writing, yet it is already fully usable to improve the performance of
HENP applications. For instance:

• callgraphs can be used to locate functions with high callcounts and consequently force
inlining

• functions dominated by high load latency signal ine�ciencies in the usage of the memory
hierarchy and suggest the use of alternative data structures

• vectorization opportunities are highlighted by locating functions dominated by high latency
instructions
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