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A number of recent experimental measurements suggest the possibility of a breakdown of lepton (l)
universality in exclusive b → clνl semileptonic meson decays. We analyze the full differential decay rates
for several such processes, and show how to extract combinations of the underlying helicity amplitudes that
are completely independent of ml. Ratios of these combinations for different l (as well as some
combinations for a single value of l) therefore equal unity in the standard model and provide stringent tests
of lepton universality. Furthermore, the extractions assume the form of weighted integrals over the
differential decay rates and therefore are useful even in situations where data in some regions of allowed
phase space may be sparse.
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I. INTRODUCTION

The standard model (SM) has historically worked
extremely well, but many compelling reasons lead one
to expect the existence of beyond-standard-model (BSM)
physics. Besides gravity, neutrino oscillation is the only
confirmed BSM physics, and certainly provides significant
information. But it is important to seek out additional
regimes in which the SM fails, both for its own discovery
potential and to test our understanding of processes that
have traditionally been well understood in the SM.
One of the most prominent and intriguing experimental

tensions with the SM at present appears in the semileptonic
decays of B mesons and of Bc mesons, i.e., B → Dlνl,
B → D�lνl, and Bc → J=ψlνl, where l is a generic
charged lepton. The tension arises when comparing the
ratio RðHÞ of total l ¼ τ to total l ¼ μ, e decay rates,
where H is the daughter hadron. The HFLAV averages [1]
of the experimental values for the B decays are RðDÞ ¼
0.407ð39Þð24Þ [2–4] and RðD�Þ ¼ 0.304ð13Þð7Þ [2–8]. At
present, only LHCb has measured the value of RðJ=ΨÞ ¼
0.71ð17Þð18Þ [9]. These values are compared with results
of SM calculations: the value RðDÞ ¼ 0.300ð8Þ [10] is an
average of lattice QCD results [11,12], which can be
combined with measured form factors to reduce the

uncertainty, leading to RðDÞ ¼ 0.299ð3Þ [13]. Using only
the experimental form factors from Belle [14], RðD�Þ ¼
0.252ð3Þ was computed in Ref. [15]. With the preliminary
Bþ
c → J=Ψ lattice QCD results of Ref. [16], a 95% con-

fidence level region of 0.20 ≤ RðJ=ψÞ ≤ 0.39 can be
obtained [17]. The discrepancies with the SM predictions
are 2.3σ, 3.5σ, and 1.3σ, respectively. Moreover, the
HFLAV combined analysis of RðDÞ and RðD�Þ yields a
4.1σ discrepancy [1]. Recent RðD�Þ results from LHCb [8]
and Belle [18] suggest a value more consistent with theory,
but at present are unincorporated into the global fit.
Of course, this tension could be due to statistical

fluctuations and/or some subtle systematic experimental
bias. If, however, these results are early signals of BSM
physics, then a natural explanation could be a breakdown of
lepton universality, i.e., some process by which the τ and ντ
couple to the decaying B or Bc meson differently than do a
μ and νμ. Accordingly, it is useful to construct more
experimental tests of lepton universality, beyond just
RðHÞ. The value of such tests lies in their utility to isolate
where the apparent violation of the SM arises.
In principle, obtaining more sensitive tests is straightfor-

ward. B-meson decays depend upon the 4-momentum and
spin state of l and the decay products of the final hadrons.
The process is thus characterized by a differential decay
rate expressed in terms of many variables (angles, momen-
tum transfers, etc.). In the absence of BSM physics, the
entire differential decay rate is predicted by the SM. If these
predictions are known with sufficient precision, a direct
comparison to the τ and μ rates from experimental data
serves as a test of the SM, allowing one to see precisely
where the SM breaks down.
There are, however, two major practical difficulties in

implementing such a scheme. The first is the requirement of
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a full prediction from the SM. While to good approxima-
tion one can ignore higher-order electroweak effects in
semileptonic decays, a SM prediction requires knowledge
of several transition form factors of the B (Bc) to the Dð�Þ
(J=ψ). These form factors involve strong interactions,
preventing perturbative calculations, but they are amend-
able to lattice QCD. At present, only the B → D form
factors have been computed with a complete treatment of
uncertainties [11,12]. Partial results exist for B → D�
[19–23] and Bþ

c → J=ψ [16], but do not cover the entire
allowed range of momentum transfer or have control of
their systematics. Even with these limited results, combined
constraints on RðHÞ can be made by the application of
dispersive relations and heavy quark symmetries [17,24].
While ignorance of the form factors yields a degree of

uncertainty in the prediction of RðHÞ, the estimates of these
uncertainties have relatively mild consequences for this
ratio—provided the form-factor determinations can be
trusted. The same cannot be said of the differential decay
rates, with all of their parametric dependences.
With sufficient data, one might hope to extract the form

factors directly and then check for self-consistency with the
SM. For example, one could extract the form factors from
the μ channel and then use these to predict the differential
decay rate for the τ channel. A comparison of the predicted
differential decay rate with the experimental one would
then probe the SM. However, this approach is difficult
because it requires a considerable amount of reliable data to
implement. To be successful, one would need to extract the
differential decay rate above experimental background
with reasonable accuracy over all allowed ranges of all
kinematic variables.
In this paper we propose a number of tests of the SM that

are particularly sensitive to lepton universality violations in
b → c semileptonic meson decays. These tests directly
probe lepton universality, while having the virtue of being
form-factor independent. Moreover, it is likely that some of
the proposed tests can be implemented with relatively
sparse data. The basic method is to consider the ratio of the
τ to μ channels of particular weighted integrals of the
differential decay rates. These ratios equal unity in the SM
(up to subleading electroweak corrections), and their
deviation from unity constitutes a measure of the violation
of lepton universality. The robustness of these tests lies in
the choice of weight functions: although the hadronic form
factors may be unknown, their momentum transfer (q2)
dependence is identical for the τ and μ channels.
The tests probe universality for the following basic

reason: in the SM these decays are dominated by the decay
of the B (Bc) meson into a Dð�Þ (J=ψ) via the emission of a
virtual W, which subsequently decays into the charged
lepton l and neutrino νl. The processes in which the final
lepton is a τ or μ are distinguished only by the kinematics
associated with the different ml. However, these kinemati-
cal differences lead to different weightings of the various

form factors, even at the same value of q2. If instead, one
takes special kinematically weighted averages over the
differential decay rates, then lepton universality of the SM
requires that these averages are equal.
In addition to testing for violations of lepton universality,

we construct other SM tests that do not require knowledge
of the form factors. These tests are ratios of weighted
integrals of the differential decay rate, but can be performed
using a single type of lepton l.
This work is by no means the first attempt to overcome

the difficulties of extracting useful information from the full
differential decay rates. Prior works [25–31] with different
aims (e.g., to study the effect of form-factor parametriza-
tions, generalized BSM studies, and effects of the polari-
zation of the D�) have tackled similar problems. In
particular, the use of helicity amplitudes (which are
particular linear combinations of form factors) were
employed in many of these works, as well as in the present
paper. Moreover, the “trigonometric moments” of Ref. [26]
are closely related but not identical to the weight integrals
used here.
This paper is organized as follows. Section II describes a

set of possible experimental tests of lepton universality and
other aspects of the SM for B → Dlνl and B → D�lνl.
The derivation of these tests depends upon the connection
of the differential decay rate to the helicity amplitudes,
which are described in detail in Sec. III. Section IV contains
the tests for violations of lepton universality in Bc →
J=ψlνl and their derivation in terms of helicity amplitudes.
Section V contains closing remarks.

II. STANDARD MODEL TESTS
IN B → Dlνl AND B → D�lνl

Consider first the semileptonic decay process
P → Vlνl, where P is a pseudoscalar meson decaying
to a vector meson V, which subsequently decays into a
pseudoscalar meson pair P1P2 (e.g., B → D�lνl,
D� → Dπ). The differential rate for such decays depends
upon the momentum transfer q2 to the lνl pair and three
angles: θV , the polar angle characterizing the direction of
P1 (measured in the V rest frame) with respect to the
direction of V (measured in the P rest frame); θl, the polar
angle characterizing the direction of the lepton l (measured
in the W� [virtual W] rest frame) with respect to the
direction of W� (measured in the P rest frame); and χ, the
azimuthal angle between the VP1P2 plane and the W�lν
plane. The angles are shown in Fig. 1, and agree with those
defined in Ref. [32]. A detailed description of how these
angles compare with other conventions in the literature
appears in the following section.
One defines the full fourfold differential decay rate for

this process as dΓðP→Vlνl;V→P1P2Þ
dq2d cos θVd cos θldχ

. We frequently integrate

over the three distinct angles, and therefore introduce the
collective symbol
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XV
l ≡ fcos θl; cos θV; χg; ð1Þ

and define the integral measure over XV
l and the full

derivative with respect to XV
l as

Z
dXV

l ≡
Z þ1

−1
d cos θl

Z þ1

−1
d cos θV

Z
2π

0

dχ;

d
dXV

l
≡ d

d cos θVd cos θldχ
; ð2Þ

respectively. Thus, the full differential cross section
dΓðP→Vlνl;V→P1P2Þ
dq2d cos θVd cos θldχ

can be denoted by
dΓV

l
dq2dXV

l
, and the total

cross section by

ΓV
l ¼

Z ðMP−MVÞ2

m2
l

dq2
Z

dXV
l

dΓV
l

dq2dXV
l

; ð3Þ

where q2 is integrated over all kinematically allowed
momentum transfers, from the hadronic maximum-recoil
point q2 ¼ m2

l (at which the l is produced at rest in the
W� rest frame) to the hadronic zero-recoil point q2 ¼
ðMP −MVÞ2 (at which the V is produced at rest in the P
rest frame).
Alternatively, consider a process in which the final-state

hadron is a weakly decaying pseudoscalar P0 (e.g.,
B → Dlνl. The kinematics is simpler because the P0 is
a (pseudo)scalar without strong decay modes. The kin-
ematical variables are similar to those above (upon sub-
stituting V → P0), but only the angle θl remains, and the

full differential decay rate is given by dΓðP→P0lνlÞ
dq2d cos θl

. For later

compactness, let us define XP0
l ≡ fcos θlg. The total cross

section is then

ΓP0
l ¼

Z ðMP−MP0 Þ2

m2
l

dq2
Z

dXP0
l

dΓP0
l

dq2dXP0
l

: ð4Þ

One can trivially generalize Eqs. (3)–(4) to weighted
cross sections ΓH

l;i, where H ¼ V; P0, by integrating with a
weight function Wiðq2; m2

l ; X
H
l Þ:

ΓH
l;i ≡

Z ðMP−MHÞ2

m2
τ

dq2
Z

dXH
lWiðm2

l; q
2; XH

l Þ
dΓH

l

dq2dXH
l
:

ð5Þ

Note that the q2 bounds include only the allowable
kinematic regime for τ decays, independent of the lepton
channel considered. By excluding the range m2

μ ≤ q2 <
m2

τ , one ensures that the same range of phase space is
sampled in all channels.
With these definitions, one can construct ratios from

different combinations of l and Wi. The simplest of these,
RH
i , are generalizations of the standard RðHÞ:

RH
i ≡ ΓH

τ;i

ΓH
μ;i
: ð6Þ

Note that q2 ≥ m2
τ means the RH

i with Wi ¼ 1 are not the
ratios RðHÞ typically used in the literature, which are
instead defined as ratios of the full decay widths to these
lepton channels.
One has considerable freedom in choosingWi, but not all

choices are useful. For our purpose of removing form-
factor and leptonic-mass dependences, we initially restrict
to forms in which q2 and m2

l only appear in the ratio

ε≡m2
l

q2
; ð7Þ

which always obeys ε ≤ 1 in the allowed range for q2.
While ε strictly depends uponml, we forgo an index l on ε
unless confusion would arise.
For decays P → P0 (e.g., B → Dlνl), one finds three

Wiðm2
l ; q

2; XV
l Þ≡Wiðε; XV

l Þ that remove the form-factor
dependences (their derivation appears below, in Sec. III,
and they can be recognized in Table II):

Waðε; XP0
l Þ ¼

5ð−3cos2θl þ 1Þ
2ð1 − εÞ3 ;

Wbðε; XP0
l Þ ¼ −

cos θl
εð1 − εÞ2 ;

Wcðε; XP0
l Þ ¼

5cos2θl − 1

εð1 − εÞ2 : ð8Þ

Similarly, for decays to V (e.g., B → D�lνl, D� → Dπ),
we construct form-factor-independent SM tests by

FIG. 1. Angle conventions for semileptonic decays of the form
P → Vlνl, V → P1P2, where P is a pseudoscalar meson, V is a
vector meson, and P1, P2 (l̃

−, l̃þ) are decay products of V. In the
first relevant case described in the text, the decay chain is
B → D�lνl,D� → Dπ. In the case B → J=ψlνl, the labels V →
l̃−l̃þ represent J=ψ → μ−μþ.

TESTS OF THE STANDARD MODEL IN … PHYS. REV. D 98, 034022 (2018)

034022-3



choosing Wiðm2
l; q

2; XV
l Þ ¼ Wiðε; XV

l Þ to be any of the
eight forms (cf. Table I):

W1ðε; XV
l Þ ¼

ð5 cos2 θl − 1Þð−5 cos2 θV þ 3Þ
2ð1 − εÞ2 ;

W2ðε; XV
l Þ ¼

5ð−3 cos2 θl þ 1Þð5 cos2 θV − 1Þ
4ð1 − εÞ3 ;

W3ðε; XV
l Þ ¼

cos θlð−5 cos2 θV þ 3Þ
ð1 − εÞ2 ;

W4ðε; XV
l Þ ¼

25ðsin 2θl sin 2θV cos χÞ
4ð1 − εÞ3 ;

W5ðε; XV
l Þ ¼ −

2 cos 2χ
ð1 − εÞ3 ;

W6ðε; XV
l Þ ¼ −

cos θlð5 cos2 θV − 1Þ
2εð1 − εÞ2 ;

W7ðε; XV
l Þ ¼

ð5 cos2 θl − 1Þð5 cos2 θV − 1Þ
2εð1 − εÞ2 ;

W8ðε; XV
l Þ ¼

ð−5 cos2 θl þ 2Þð−5 cos2 θV þ 3Þ
εð1 − εÞ2 : ð9Þ

With these choices of Wi, by construction the SM
predicts that the ratios defined in Eq. (6) satisfy

RH
i ¼ 1þOðαÞ; ð10Þ

where OðαÞ indicates leading-order electroweak correc-
tions not included in our analysis, the same level currently
neglected in RðHÞ calculations. The prediction of Eq. (10)
for each i can be viewed as a test of lepton universality:

universality violations imply RðHÞ generically differs
from unity.
At this stage, the angular and ε factors appearing in

Eqs. (8)–(9) seem quite arbitrary, and it may seem unclear
how they remove the form-factor dependence or should
yield Rh

i ¼ 1 in the SM. In fact, the reason for both is quite
simple. In Sec. III, the differential cross sections are written
in terms of helicity amplitudes (which are linear combi-
nations of the transition form factors). It is shown below
that, when any Wi given above is integrated over the
differential cross sections, one obtains a particular quad-
ratic form of the helicity amplitudes, e.g.,

1

G0

Z
dXV

lW1ðε; XV
l Þ

dΓV
l

dq2dXV
l

¼ jHþðq2Þj2 þ jH−ðq2Þj2;

ð11Þ

where Hþ and H− are two helicity amplitudes defined in
Sec. III, and G0 is a combination of overall fundamental
constants and known functions of q2 (but not m2

l).
1

Furthermore, the Wi are designed to remove the kinematic
dependences on ε such that, for fixed q2, the weighted
differential cross section after angular integration depends
upon a fixed combination of helicity amplitudes, indepen-
dent of lepton flavor. Therefore, ΓV

l;i are integrals only of
these special combinations, so that, e.g., Eq. (11) yields

RV
1 ¼ ΓV

τ;1

ΓV
μ;1

¼
R ðMP−MV Þ2
m2

τ
dq2ðjHþðq2Þj2 þ jH−ðq2Þj2ÞR ðMP−MV Þ2

m2
τ

dq2ðjHþðq2Þj2 þ jH−ðq2Þj2Þ
;

ð12Þ

which is manifestly unity in the SM, regardless of whether
one can determine the helicity amplitudes. While one could
compare different lepton channels at the weighted differ-
ential cross-section level, such an analysis may be difficult
because the data are sparse in some bins, or the exper-
imental analysis may not be straightforward for extracting
them. Instead, by integrating in q2, one can perform these
calculations on any data set that can produce RðHÞ, with
improved sampling statistics and reduced background for
realistic experimental situations.
One should note that while Wa, Wc, W1, W2, W7, and

W8 depend upon helicity-amplitude combinations appear-
ing in the total decay rates [see Eqs. (26) and (32)],Wb and
W3–6 do not. Therefore, to explain the existing RðHÞ
tensions with BSM physics, these weights are particularly
important for the immediate analysis. But tests based upon
Wb and W3–6 are interesting in their own right, as they
probe other aspects of possible SM violations. These tests

TABLE I. Weight functions w0ðθl; θV; χÞ integrated against the
full fourfold differential width (20) for processes P →
Vlνl; V → P1P2 in the manner described in Eq. (25). They
apply to cases where V decays to a state of total spin-projection
zero along the decay axis.

w0ðθl; θV; χÞ Extracted helicity amplitude
1
2
ð5 cos2 θl − 1Þð−5 cos2 θV þ 3Þ jHþj2 þ jH−j2

5
4
ð−3cos2θl þ 1Þð5cos2θV − 1Þ jH0j2ð1 − εÞ
−η cos θlð−5 cos2 θV þ 3Þ jHþj2 − jH−j2
25
4
sin 2θl sin 2θV cos χ ð1 − εÞReðHþ þH−ÞH�

0

−2 cos 2χ ð1 − εÞReHþH�
−

− 1
2
cos θlð5 cos2 θV − 1Þ εReH0H�

t

1
2
ð5 cos2 θl − 1Þð5 cos2 θV − 1Þ εðjH0j2 þ jHtj2Þ

ð−5 cos2 θl þ 2Þð−5 cos2 θV þ 3Þ εðjHþj2 þ jH−j2Þ
− 20

3π sin 2θV cos χ Re½ηðHþ −H−ÞH�
0

−εðHþ þH−ÞH�
t �

1To be precise, G0 is the coefficient
dΓ0

dq2
of Eq. (24) below, with

the factor ð1 − εÞ2 removed.
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can also be applied to B̄ (b → cl−ν̄l) decays, using
precisely the same Wi except for an overall sign change
in W3; but this sign is innocuous in RH

i .
One is not restricted just to the weight functions Wa;b;c

and W1−8 discussed above. Clearly, any (possibly q2-
dependent) linear combinations of Wa;b;c or W1–8 also
yield valid weight functions W for which the SM pre-
dictions of Eq. (10) hold:

Wðm2
l; q

2; XH
l Þ≡

X
j

fjðq2ÞWjðε; XH
l Þ; ð13Þ

where j is the set of allowedweight functions for theH decay
channel (either a, b, c for H ¼ P0, or 1–8 for H ¼ V), and
fjðq2Þ are functions of q2 that are independent of lepton
flavor. One would be mistaken to presume that these linear
combinations provide no new information. First, the func-
tions f can be chosen to emphasize different q2 regions, as
opposed to using an unweighted q2 integral. When using
experimental results, it may be advantageous to choose f to
reduce the experimental uncertainties in the ratios by
choosing linear combinations of weight functions or their
coefficients in Eq. (13) that minimize the contribution from
kinematical regions with larger uncertainties, e.g., close to
theq2minimumvalue ofm2

τ . Second, even forf constant, the
ratio of averages using Eq. (13) would include terms
containing ratios of the form Wj=Wk where j ≠ k, which
are absent from ratios containing a singleweight function. In
short, the ratio of sums differs from the sum of ratios.
As a very trivial example of the reach of this analysis,

consider BSMcorrections toP → Hlνl that appear only for
l ¼ τ, and that simply multiplicatively alter the V − A
current for that channel by a factor 1þ δ. Then each and
every one of the ratios RH

i would be measured to equal
ð1þ δÞ2 ≠ 1. Of course, we make no assertions about what
sort of BSMphysicswould produce such a striking pattern of
corrections. More typically in the literature (e.g., Ref. [25]),
tensor currents are proposed as the vehicle for BSM
corrections, and they produce angular distributions mani-
festly different from those arising from V − A currents. An
exhaustive study of the many possibilities is beyond the
scope of this paper, but the method should be clear.
It is straightforward to test these relations experimen-

tally. Consider an idealized experimental situation: one has
an arbitrarily large amount of data in a complete set of NH
decay events, of which NHl are semileptonic decay events
in the l ¼ μ, τ channels; the momentum transfer and the
angles are measured to arbitrary accuracy; and for each
such event j with precisely determined kinematics, one can
determine two probabilities to arbitrary accuracy: the
probability Pb

j that an event with kinematics j, which
has been identified as a possible P → H decay, is actually a
background event (rather than being a true decay, which has
probability P̄b

j ¼ 1 − Pb
j ), and the probability Pd

j is

measured and correctly identified (i.e., the total efficiency
for detection and identification is known).
In such a case, the statistical average of ratios RH

i can be
determined experimentally by

hRH
i i ¼

PNHτ
j¼1

P̄b
j

Pd
j
Wiðm2

τ ; q2j ; X
H
τ;jÞ

PNHμ

j0¼1

P̄b
j0

Pd
j0
Wiðm2

μ; q2j0 ; X
H
μ;j0 ÞΘðq2j0 −m2

τÞ
; ð14Þ

where the brackets indicate a statistical average for the
quantity, and the index j (j0) indicates a particular decay
event in the l ¼ τ (l ¼ μ) channel. Θ denotes a Heaviside
step function that ensures the sums cover the same
kinematic region in q2. Equation (14) represents a pure
counting experiment: since the events in both the numerator
and denominator are sampled probabilistically, they effec-
tively map out the τ and μ differential decay-width
distributions; by weighting each event with the appropriate
functionWi, one develops an approximation to the relations
of Eq. (10).
A few comments about the experimental implementation

of Eq. (14) are in order. First, one can in principle obtain
reliable estimates of RH

i (for at least some choices of the
weight functions Wi) with far less data than is needed to
extract the form factors. In particular, one does not need the
full angular dependence of the data at identical values ofq2 to
obtain well-converged sums in Eq. (14). In this sense, the
situation is similar to the extraction of RðHÞ in
Refs. [2–9,18].
Second, while theoretically RH

i do not depend upon
knowledge of the form factors, the experimental extractions
of the ratios can depend upon the form factors, to the extent
that they are used in the determination of Pb

j;j0 and Pd
j;j0

[which is a potential major concern, as the experimental
uncertainty on RðJ=ΨÞ is dominated by form-factor uncer-
tainties used to discriminate backgrounds [9] ].
Third, throughout our analysis we assume that the τ can

be fully reconstructed. In practice, such detailed informa-
tion might not be accessible, in which case one could either
generalize the technique presented here by including the
angular dependences from the τ decay products, or restrict
to a set of Wi that can be reliably extracted. The latter
approach was considered in Ref. [33], where the authors
studied the restricted set of useful observables when only
limited information can be extracted from the final states of
τ decays.
Fourth, in principle an infinite number of RH

i exist, due to
the arbitrary linear combinations and coefficient q2 depend-
ences allowed by Eq. (13). One thus obtains an infinite
number of tests of the SM. One can exploit this freedom in
two complementary ways. First, if one believes that the
discrepancies are hints of a particular BSM model, one can
choose Wi to maximize sensitivity to those particular
violations. Alternately, one may exploit the freedom in
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choosing Wi to reduce the experimental uncertainties by
choosing linear combinations in Eq. (13) that minimize the
contribution from kinematical regions with larger uncer-
tainties, e.g., the limit ε → 1 (q2 → m2

l) where fewer events
should occur, and therefore which are very sensitive to
statistical fluctuations.
In this context, it is worth noting that all Wi have a

coefficient as ε → 1 (q2 → m2
l) at least as singular as

ð1 − εÞ−2, which compensates for a factor of ð1 − εÞ2 in
the total cross section arising from phase space and helicity
suppression constraints. In Eq. (6), these factors cancel and
yield finite results.However, in an experimental situation, the
data in this region can become particularly sensitive to
statistical fluctuations since there should be fewer events
in the τ channel.2 To remove this sensitivity, one may exploit
the freedom in choosing the functions f in Eq. (13) to ensure
that they go to zero as q2 → m2

τ , and thereby suppress large
fluctuations. This freedom is particularly important for Wa,
W2, W4, and W5, which scale as ð1 − εÞ−3.
Similarly, Wb, Wc, W6, W7, and W8 contain overall

factors of 1=ε. For the μ channel, this factor is always
quite large—at least 280. These factors arise in helicity-
suppressed helicity amplitudes in the differential cross
section. It will therefore likely be difficult to extract these
amplitudes accurately, since statistical or systematic errors
can swamp the data. Thus, the most robust tests of the SM
avoid reliance on these Wi. However, BSM models could
enhance these amplitudes such that deviations from the SM
predictions might be large enough to tease out using linear
combinations containing these weight functions.
We identify another class of SM tests for P → V that is

not sensitive to violations of lepton universality, but rather
probes other aspects of the SM while remaining indepen-
dent of the form factors. This class of tests also depends
upon ratios of two weight functions, but only a single
lepton flavor. These tests reflect the nature of the weight
functions W1 and W8, which have two distinct angular
dependences, and yet yield the same the helicity amplitude
combinations as in Eq. (11):

RV
l;nd≡

R ðMP−MV Þ2
m2

l
dq2

R
dXV

lWnðml;q2;XV
l Þ dΓV

l
dq2dXV

lR ðMP−MV Þ2
m2

l
dq2

R
dXV

lWdðml;q2;XV
l Þ dΓV

l
dq2dXV

l

; ð15Þ

with the weight functions Wn;d defined by

Wiðm2
l; q

2; XV
l Þ

¼ hðq2Þ½cos2ϕiðq2ÞW1ðε; XlÞ þ sin2ϕiðq2ÞW8ðε; XlÞ�;
ð16Þ

where hðq2Þ and ϕiðq2Þ are specified functions of q2. The
SM prediction is again RV

l;nd ¼ 1þOðαÞ for both l ¼ μ, τ,
and any choice of hðq2Þ, ϕnðq2Þ, and ϕdðq2Þ.
Since this test depends uponW8, which has a coefficient

1=ε that is large over much of the kinematic region, a useful
test will likely select functions ϕðq2Þ that deemphasize the
region where ε is especially small. Note that, since the
ratios RV

l;nd refer to a single species of lepton l, the
integrations in both the numerator and denominator extend
to ε ¼ 1, unlike RH

i , which is restricted to q2 ≥ m2
τ .

Having shown how to construct tests of the SM from the
weight functions Wi, in the next section we demonstrate
how theseWi arise naturally in association with the helicity
amplitudes appearing in the decay rates.

III. HELICITY AMPLITUDES

A. The decays P → Vlνl;V → P1P2

The form factors for the transition of a pseudoscalar
meson P (mass M, momentum p) to a vector meson V
(mass m, momentum p0, polarization vector ϵ) are defined
as [34]

hVðp0; ϵÞjVμjPðpÞi ¼ igðq2Þϵμαβγϵ�αp0
βpγ;

hVðp0; ϵÞjAμjPðpÞi ¼ fðq2Þϵ�μ þ ðϵ� · pÞ½aþðq2Þðpþ p0Þμ
þa−ðq2Þðp − p0Þμ�; ð17Þ

where the momentum transfer is given by q2 ≡ ðp − p0Þ2.
The first calculations of the complete differential decay
rates of the semileptonic process P → Vlν, V → P1P2

including finite charged-lepton mass effects appeared in
Refs. [35,36]. The helicity amplitudes defined in the classic
review Ref. [32] and still commonly used (e.g., by the Belle
Collaboration [37]) are given by

H�ðq2Þ ¼ −HKS
� ¼ −f �MpVg;

H0ðq2Þ ¼ −HKS
0 ¼ −

1ffiffiffiffiffi
q2

p F 1

¼ −
1

2m
ffiffiffiffiffi
q2

p ½ðM2 −m2 − q2Þf þ 4M2p2
Vaþ�;

Ht ¼ −HKS
t ¼ −

MpVffiffiffiffiffi
q2

p F 2

¼ −
MpV

m
ffiffiffiffiffi
q2

p ½f þ ðM2 −m2Þaþ þ q2a−�: ð18Þ

Here, pV is the momentum magnitude of the V (or virtual
W) in the center-of-momentum frame of P:

pV ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2 − ðM þmÞ2�½q2 − ðM −mÞ2�

4M2

r
: ð19Þ2Owing to the cutoff q2 ≥ m2

τ in Eq. (6), the factor ð1 − εÞ−2 in
the μ channel is always within 1% of unity.
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The subscript on H gives the W� helicity: �1 and 0 for
JW� ¼ 1, t (timelike) for JW� ¼ 0. The superscript
KS indicates the notation of Ref. [35],3 and the
combinations F 1;2 are those defined in Ref. [34]. The
precise number of independent helicity amplitudes for
semileptonic processes is most easily computed by

considering the crossed process with all hadrons in
the initial state and all leptons in the final state, and
then imposing assumed conservation laws (e.g., CP
conservation) on the system [38,39].
The full fourfold differential cross section for the semi-

leptonic decay PðQq̄Þ → Vðq0q̄Þlνl, V → P1P2, reads

dΓðP→Vlνl;V→P1P2Þ
dq2dcosθVdcosθldχ

¼ 3

8ð4πÞ4G
2
FjVq0Qj2

pVq2ð1−εÞ2
M2

BðV→P1P2Þ

×
�
½ð1−ηcosθlÞ2þεsin2θl�sin2θV jHþðq2Þj2þ½ð1þηcosθlÞ2þεsin2θl�sin2θV jH−ðq2Þj2

þ4ðsin2θlþεcos2θlÞcos2θV jH0ðq2Þj2−2ηsinθlsin2θV cosχf½1−ð1−εÞηcosθl�ReHþH�
0ðq2Þ

−½1þð1−εÞηcosθl�ReH−H�
0ðq2Þg−2sin2θlsin2θV cos2χð1−εÞReHþH�

−ðq2Þ

þ4ε

�
cos2θV jHtðq2Þj2−2cosθlcos2θVReH0H�

t ðq2Þþsinθlsin2θV cosχ
1

2
ReðHþþH−ÞH�

t ðq2Þ
��

;

ð20Þ

where q2 is the momentum transfer (or equivalently, the
invariant squared mass of theW�), and η ¼ �1 corresponds
to processes with lepton pairs l−ν̄l and lþνl, respectively
(i.e., twice the neutrino helicity).
This expression is equivalent to Eq. (22) in Ref. [35] if

one replaces θKS ¼ π − θl. In a conventional calculation,
the angular factors emerge from choosing a helicity basis of
polarization vectors ϵ for V and ϵW for W�, and the lepton
4-momenta pl and pν. More generally, they are Wigner
rotation matrices connecting various helicity states; adapt-
ing from Ref. [40], one may write

dΓðP → Vlνl; V → P1P2Þ
dq2d cos θVd cos θldχ

¼ G2
FjVq0Qj2q2ð1 − εÞ2BðV → P1P2Þ

M2ð4πÞ4

×
X
κ¼η;0

����
X
λ¼0;�1
J¼0;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p ð−1ÞJHJ
λ;κd

J
λ;κðθlÞd1λ;0ðθVÞeiλχ

����
2

:

ð21Þ

Unlike in Ref. [40], the V spin in this expression is
fixed to 1, and the W� spin J is no longer limited just
to 1, but is also allowed to assume the (J ¼ 0) timelike
polarization ϵμW ¼ qμ=

ffiffiffiffiffi
q2

p
. When qμ ¼ pμ

l þ pμ
ν is con-

tracted with the lepton bilinear, e.g., ūðplÞγμvLðpνÞ or

v̄RðpνÞγμuðplÞ in the case η ¼ þ1, use of the Dirac
equation produces an overall coefficient of ml=

ffiffiffiffiffi
q2

p
in

the amplitude. The total lepton helicity κ in the W� rest
frame is given by κ ¼ λl þ η=2 and equals η for the spin-
nonflip transition (right-handed ν̄ and left-handed l− for
η ¼ þ1, left-handed ν and right-handed lþ for η ¼ −1)
and 0 for the spin-flip transition (opposite helicities for l).
The spin-nonflip transition gives the leading-order ampli-
tude in the V − A theory, which in theW� rest frame gives a
contribution to the rate proportional to 2plðEl þ plÞ ¼
q2 −m2

l, while the spin-flip contribution is proportional to
2plðEl − plÞ ¼ ðq2 −m2

lÞðm2
l=q

2Þ. The lepton mass
parameter ε thus appears in four places in the differential
rate: (i) in the quasi-two-body phase space factor pl ∝
q2 −m2

l in W� → lν; (ii) in the factor pl common to both
spin-nonflip and spin-flip transitions in V − A theory;
(iii) in the additional suppression of spin-flip transitions
in the V − A theory; and (iv) in the coupling of a timelike
W� in any vectorlike theory. A pedagogical review of these
points appears in Ref. [41].
The amplitudes HJ

λ;κ in Eq. (21) incorporate the non-
perturbative physics in terms of helicity amplitudes (and
ultimately, form factors), while the Wigner rotation matri-
cesDJ

m0;mðα; β; γÞ ¼ e−im
0αdJm0;mðβÞe−imγ encapsulate all the

nontrivial angular correlations. Only one azimuthal angle χ
is required to describe the decay, which is that of the D� →
Dπ decay plane with respect to the W� → lν decay plane
(Fig. 1). The factor ð−1ÞJ represents the sign difference in
the norm between timelike and spacelike W� polarizations.
The sums are further restricted by the factor dJλ;κ when J¼0

to have λ ¼ κ ¼ 0. Last, note the great simplification due to

3Although Ref. [32] does not define Ht, it is natural to
extrapolate from Ref. [35], using the same relative sign as for
H�;0.
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the decay of the spin-1 V to spinless particles P1;2: only the
matrices d1λ;0 are needed to describe the angular dependence
for that subprocess.
The precise definitions of the angles are depicted in

Fig. 1 and agree with those in Ref. [32]: starting with the
rest frame of the spinless P, the V −W� decay axis is
identified with the z axis, i.e., pV ¼ þẑ. Then the helicity
λ≡ λV ¼ λW� . Boosting into the W� rest frame, one finds
the l and ν back to back, and defines θl as the polar angle
of l with respect to the W� direction as measured in the P
rest frame. Similarly, boosting into the V rest frame, one
finds P1 and P2 back to back, and defines θV as the polar
angle of P1 (which we take as the heavier of P1;2, such asD
inD� → Dπ) with respect to the V direction as measured in
the P rest frame. Finally, we take χ as the azimuthal angle
of the VP1P2 plane with respect to the W�lν plane; to be
precise, Refs. [32,37] actually exhibited χ as the clockwise
rotation of the VP1P2 plane with respect to theW�lν plane,
as viewed with respect to the axis pV ¼ þẑ, which explains
the relative sign of the phase in Eq. (21) compared to that in
the conventional notation given above.4

Once the amplitudes H1
λ;jκj¼1

¼ Hλ, H1
λ;0 ¼

ffiffiffiffiffiffiffi
ε=2

p
Hλ,

and H0
0;0 ¼

ffiffiffiffiffiffiffiffiffiffi
3ε=2

p
Ht are inserted and all CP-violating

terms (those proportional to the imaginary parts of inter-
ference terms, ImHiH�

j , and hence proportional to sin χ) are
neglected, one obtains Eq. (20). Retaining CP violation
modifies Eq. (20) in such a way that, for each term
of the form cosðnχÞReHiH�

j , where n ¼ 1 or 2 and
i ≠ j, one introduces an additional term of the form
� sinðnχÞReHiH�

j , in which the sign depends upon the
particular amplitudes Hi;j. Such effects appear in the
analysis of Ref. [40] and are relevant to studies such as
in Ref. [42].
The question now becomes whether one can extract

independently the helicity amplitude combination
ReHiH�

j from each term in Eq. (20), and indeed, since
most of the ε-suppressed terms also carry distinct angular
dependence, the combinations εReHiH�

j as well. Of the 15
such terms in Eq. (20), some are clearly linearly depen-
dent; e.g., there is no way to extract the difference between
εjHþj2 and εjH−j2, nor ReHþH�

− independently of
εReHþH�

−. This linear dependence arises partly through
the restrictive form of the V − A interaction and
partly through the simplicity of the helicity structures
appearing in V → P1P2. As for the remaining terms, one
might think to use the orthonormality of D matrices, first
reducing pairs of the matrices via the Clebsch-Gordan
series

Dj
mkðα; β; γÞDj0

m0k0 ðα; β; γÞ

¼
Xjþj0

J¼jj−j0j
hjmj0m0jJðmþm0Þihjkj0k0jJðkþ k0Þi

×DJ
ðmþm0Þðkþk0Þðα; β; γÞ: ð22Þ

While this method identifies the linearly dependent terms,
a much simpler approach is available for Eq. (20): by
inspection, one first separates terms with χ dependence
into the sets 1, cos χ, and cos 2χ, which are clearly
independent by Fourier analysis. Of these, the cos 2χ
term in Eq. (20) is unique, while the only independent
structures multiplying cos χ are clearly sin θl sin 2θV
and sin 2θl sin 2θV . Of the χ-independent terms, the
independent θl structures are cos θl, cos2 θl, and
sin2 θl. The corresponding independent θV structures
can always be reduced to the set cos2 θV and sin2 θV ,
so that Eq. (20) contains six linearly independent χ-
independent terms. In total, exactly nine structures in
Eq. (20) are independent.
One can further extract the coefficient of each angular

structure using orthogonality almost by inspection; e.g., a
term proportional to sin θl sin 2θV cos χ is most easily
separated from all other structures present simply by
integrating with the weight function

Z þ1

−1
d cos θl sin θl

Z þ1

−1
d cos θV sin 2θV

Z
2π

0

dχ cos χ:

ð23Þ

Defining an overall differential width coefficient,

dΓ0

dq2
≡G2

FjVq0Qj2
96π3

pVq2ð1 − εÞ2
M2

BðV → P1P2Þ; ð24Þ

which is 64π=9 times the coefficient in the first line of
Eq. (20), one extracts helicity amplitude combinations by
performing the integrals

�
dΓ0

dq2

	
−1 Z þ1

−1
d cos θl

Z þ1

−1
d cos θV

Z
2π

0

dχw0ðθl; θV; χÞ

×
dΓ

dq2d cos θVd cos θldχ
; ð25Þ

the required weight functions w0ðθl; θV; χÞ and the nine
independent simple combinations of helicity amplitudes
that can be extracted are listed in Table I. The full
differential width dΓ=dq2 is of course obtained simply
by setting w0 ¼ 1, and reads

4Strictly speaking, this χ differs from the one (χKS) used in
Ref. [35] by χ ¼ −χKS. Furthermore, a reanalysis of χDey used in
Ref. [40] shows that χ ¼ π þ χDey: to obtain Eq. (20), the factor
eiλχ in Eq. (21) must be replaced with eiλðπþχÞ.
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dΓ
dq2

¼ dΓ0

dq2

��
1þ ε

2

	
ðjHþj2 þ jH−j2 þ jH0j2Þ

þ 3

2
εjHtj2

�
: ð26Þ

The results of this analysis identify several interesting
features. First, the squared amplitudes jH�j2 are the only
ones that can be extracted independently of the lepton mass
correction ε; indeed, Ht is always accompanied by a factor
ε, and its mixing with H0 prevents an ε-independent
determination of jH0j2. Perhaps most interesting from
the point of view of lepton universality studies is that
the ratio of the eighth line of Table I to the first, whose
integrals differ only in the θl weighting, gives a unique
determination of the lepton mass parameter ε. To be
explicit, first integrate to obtain

dΓ1

dq2dcosθl
≡
Z þ1

−1
dcosθVð−5cos2θV þ3Þ

×
Z

2π

0

dχ
dΓ

dq2dcosθVdcosθldχ
; ð27Þ

which is not the same as dΓ=dq2d cos θl, due to the
presence of the extra θV-dependent term. Then one finds

ε ¼
Rþ1
−1 d cos θl

1
2
ð5cos2θl − 1Þ dΓ1

dq2d cos θlRþ1
−1 d cos θlð−5cos2θl þ 2Þ dΓ1

dq2d cos θl

: ð28Þ

The same relations have been used to a rather different
effect in Eqs. (15)–(16).

B. The decays P → P0lνl
The much simpler class of decays P → P0lνl, where P0

like P is also a pseudoscalar meson, is presented here,
following the more complicated class P → Vlνl,
V → P1P2, because the relevant partial-wave expressions
can be deduced almost immediately from the previous case.
One notes that since theP0 is spinless, theW� can couple only
through its helicity-0 states: the J ¼ 1 component that
couples to the helicity amplitude H0, and the J ¼ 0 compo-
nent that couples to the helicity amplitudeHt. To be specific,
the form factors for the transition of a pseudoscalar mesonP
(massM,momentump) to a pseudoscalarmesonP0 (massm,
momentum p0) are defined as [34]

hP0ðp0ÞjVμjPðpÞi ¼ fþðq2Þðpþ p0Þμ þ f−ðq2Þqμ: ð29Þ

Then the helicity amplitudes are given by [35]

H0 ¼
2MpVffiffiffiffiffi

q2
p fþ;

Ht ¼
1ffiffiffiffiffi
q2

p f0 ¼
1ffiffiffiffiffi
q2

p ½ðM2 −m2Þfþ þ q2f−�; ð30Þ

where the combination f0 was defined in Ref. [34].
Note particularly that the same names H0, Ht are used
here for the helicity amplitudes of P → P0lνl as for
P → Vlνl, V → P1P2, even though they refer to distinct
hadronic quantities in the two cases. The label V in the
momentum pV defined in Eq. (19) now refers to P0 in this
subsection.
The full differential rate for P → P0lνl depends

only upon two variables, namely, q2 and θl, where
θl is defined precisely as in Fig. 1. One may obtain the
differential rate simply by taking the expression in Eq. (20)
and setting Hþ ¼ 0, H− ¼ 0, BðV → P1P2Þ ¼ 1, and
integrating over the full ranges of d cos θV and dχ.5

One obtains

dΓðP → P0lνlÞ
dq2d cos θl

¼ 1

128π3
G2

FjVq0Qj2
pVq2ð1 − εÞ2

M2

× ½ðsin2θl þ εcos2θlÞjH0ðq2Þj2
− 2ε cos θlReH0H�

t ðq2Þ þ εjHtðq2Þj2�:
ð31Þ

Clearly, being able to use the same names H0, Ht for both
P → P0lνl and P → Vlνl, V → P1P2 in the reduction of
Eq. (20) means that the helicity amplitudes must have the
correct relative normalization. One may also integrate over
the full range of θl to obtain

dΓ
dq2

¼ dΓ0

dq2

��
1þ ε

2

	
jH0j2 þ

3

2
εjHtj2

�
; ð32Þ

which precisely matches Eq. (26) after setting Hþ ¼ 0,
H− ¼ 0 (again indicating the proper relative normalization
between these H0, Ht helicity amplitudes and the ones of
the same names for the case P → V). The overall differ-
ential width coefficient in Eq. (32),

dΓ0

dq2
≡ 1

96π3
G2

FjVq0Qj2
pVq2ð1 − εÞ2

M2
; ð33Þ

assumes the same form as in Eq. (24), except that
now BðV → P1P2Þ ¼ 1.

5Strictly speaking, in Eq. (21) one replaces
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2·1þ1

p
d10;0×

ðcosθVÞ¼
ffiffiffi
3

p
cosθV with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 · 0þ 1

p
d00;0ðcos θVÞ ¼ 1; integrating

over d cos θV in either case then givesþ2.
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The particular weight functions w0ðθlÞ analogous to
those in Table I are defined as ones that extract simple
helicity amplitude combinations when performing integrals
analogous to those in Eq. (25):

�
dΓ0

dq2

	
−1Z þ1

−1
dcosθlw0ðθlÞ

dΓ
dq2dcosθl

: ð34Þ

The required weight functions w0ðθlÞ and the three
independent simple combinations of helicity amplitudes
that can be extracted are listed in Table II. One notes that
these combinations are precisely the subset of those in
Table I depending only upon H0 and Ht (although, again,
they refer here to P → P0 and not P → V transitions).

IV. Bc → J=ψlνl

The corresponding results for P → Vl0ν, V → l−lþ can
be obtained in an analogous way. Gone is the simplification

of the previous case, in which the spinless P1 and P2 both
have zero helicity. However, in the physically relevant case
of Bc → J=ψlν, J=ψ → l̃−l̃þ, the J=ψ is too light to
decay to τþτ−, while for l̃ ¼ μ (the experimentally favored
channel for the reconstruction of a J=ψ), one has
ðmμ=mJ=ψÞ2 ¼ 1.16 × 10−3: the outgoing μ pair are almost
pure helicity eigenstates, a restriction that reduces the
angular analysis to be almost as straightforward as in the
previous section. We thus ignore mμ in the decay of J=ψ
but retain ml from the semileptonic decay.
The expansion of Eq. (21) holds for this

new case, with the notational substitution of P → Vlν,
V → l̃−l̃þ. The “0” subscript in Eq. (21) is replaced by
σ ≡ λ̃l− − λ̃lþ . One immediately notes that the two σ ¼ 0

cases of l̃−
Ll̃

þ
L and l̃−

Rl̃
þ
R give results algebraically

identical to Eq. (20), upon substituting BðV → P1P2Þ
with BðV → l̃−l̃þÞ, and the results of Table I apply
equally well for the two σ ¼ 0 cases. Note the identi-
fication of P1 → l̃−, as in Fig. 1, for the purpose of
defining scattering angles.
The opposite-helicity (σ ¼∓ 1) combinations are

more complicated because the rotation matrices
on the V → l̃−l̃þ side are nontrivial. In analogue to
Eq. (20), and restricting for simplicity to the case
νl → ν̄l, one finds

dΓðP → Vlν̄l; V → l̃−
Ll̃

þ
R Þ

dq2d cos θVd cos θldχ
¼ 3G2

FjVq0Qj2
8ð4πÞ4

pVq2ð1 − εÞ2
M2

BðV → l̃−
Ll̃

þ
R Þ
�
8sin2

θl
2

�
sin2

θl
2
þ εcos2

θl
2

	
sin4

θV
2
jHþðq2Þj2

þ 8cos2
θl
2

�
cos2

θl
2
þ εsin2

θl
2

	
cos4

θV
2
jH−ðq2Þj2 þ 2ðsin2θl þ εcos2θlÞsin2θV jH0ðq2Þj2

− 8 sin θl sin θV cos χ

��
sin2

θl
2
þ ε

2
cos θl

	
sin2

θV
2
ReHþH�

0ðq2Þ

þ
�
cos2

θl
2
−
ε

2
cos θl

	
cos2

θV
2
ReH−H�

0ðq2Þ
�

þ sin2θlsin2θV cos 2χð1 − εÞReHþH�
−ðq2Þ þ 2εsin2θV ½jHtðq2Þj2 − 2 cos θlReHtH�

0ðq2Þ�

þ 4ε sin θl sin θV cos χ

�
sin2

θV
2
ReHþH�

t ðq2Þ − cos2
θV
2
ReH−H�

t ðq2Þ
��

: ð35Þ

The corresponding expression for ν̄l → νl is obtained
by exchanging sin2ðθl=2Þ ↔ cos2ðθl=2Þ throughout
Eq. (35), with the insertion of an additional sign on these
coefficients in the ReH�H�

0 terms.6 The corresponding

expression for l̃−
Ll̃

þ
R → l̃−

Rl̃
þ
L is obtained by exchanging

sin2ðθl=2Þ ↔ cos2ðθl=2Þ, as well as sin θV → − sin θV ,
throughout Eq. (35).7 One can then derive simple weight
functions analogous to those used in Table I to obtain the
results for l̃−

Ll̃
þ
R and l̃−

Rl̃
þ
L given in Table III.

TABLE II. Weight functions w0ðθlÞ integrated against the full
twofold differential width of Eq. (31) for processes P → P0lνl in
the manner described in Eq. (34).

w0ðθlÞ Extracted helicity amplitude

5
2
ð−3 cos2 θl þ 1Þ jH0j2ð1 − εÞ

− cos θl εReH0H�
t

5 cos2 θl − 1 εðjH0j2 þ jHtj2Þ

6This result is the effect of d1λ;þ1ðθlÞ → d1λ;−1ðθlÞ in the
relevant terms, which effectively takes θl → θl þ π; had we
retained CP-violating terms, one would find from the phase in the
full rotation matrix that sin χ → − sin χ as well.

7This result is the effect of d1λ;þ1ðθVÞ ↔ d1λ;−1ðθVÞ in the
relevant terms, which effectively takes θV → θV þ π.
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From Table III, one immediately notes that additional
combinations of helicity amplitudes can be extracted from
the data independently of the lepton mass parameter ε.
While Table I shows that 9 of the 16 possible combinations8

ReHiH�
j , εReHiH�

j can be isolated using appropriate
weight functions w0ðθl; θV; χÞ, Table I shows that 12
combinations can be isolated when one has complete
polarization information on the l̃� pair. Seven of the 12
combinations in Table III also appear verbatim in Table I; in
addition, the new combination εðjHþj2 − jH−j2Þ appears,
and the two remaining combinations in Table I appear as
linear combinations of the four entries of Table III with wσ

proportional to cos χ. That is to say, the entries of Table I do
not provide access to any combinations independent of
those in Table III.
That four linear combinations of helicity amplitude

combinations remain inaccessible even in the case in which
the polarization state of the V is well probed via access to
the l̃� helicities once again points to the restrictiveness
of the underlying V − A interaction. Nevertheless, the

redundancy of some amplitude combinations provides a
precise handle on probing non-SM effects. For example,
access to the amplitude combination εðjHþj2 − jH−j2Þ, in
addition to the combination ðjHþj2 − jH−j2Þ, provides
another very clean determination of ε, completely analo-
gous to but separate from that of Eqs. (27)–(28), or tests
analogous to those in Eqs. (15)–(16).

V. CONCLUSIONS

In this paper we have constructed robust tests of generic
lepton-universality violations in semileptonic decays that
are independent of knowledge of the transition form factors
between hadronic states, particularly for a pseudoscalar
meson (such as B or Bc) decaying to a hadron H (such as
D� or D or J=ψ). Starting from the fully differential cross
section decomposed into the helicity basis, one can con-
struct weight functions that project onto specific combi-
nations, labeled by i, of helicity amplitudes. Integrating the
differential cross section in different lepton channels
against these weight functions and taking their ratios
RH
i , the entire form-factor dependence is eliminated, and

the standard model predicts unity for these ratios. We
furthermore found an infinite class of such relations,
based upon how one chooses to weight combinations
corresponding to the various amplitudes i, and we also
found analogous relations even within processes of a single
lepton flavor.
The occurrence RH

i ≠ 1 for some ratio i does not
necessarily imply lepton-universality violation, but it does
require BSM of some form that acts differently for different
final-state leptons. If one attributes the current tension in
the measured ratios RðHÞ to BSM, our tests provide a
deeper level of information. Either at least one of the RH

i
must differ from unity, thereby suggesting the structure of
the BSM physics based upon which helicity combination
exhibits this signal; or else no nonunity RH

i is found, in
which case the BSM must reside in the q2 ≤ m2

τ muon data
(i.e., the nonuniversal portion of the lepton phase space).
In that scenario, other muonic tests like Eq. (15)—a
single-lepton flavor test that uses the entire phase
space—or ðg − 2Þμ can provide constraints.
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TABLE III. Weight functions wσðθl;θV;χÞ integrated against
the full fourfold differential width (35) for processes P→
Vlν̄;V→ l̃−

Ll̃
þ
R in the manner described in Eq. (25) (with

w0→wσ). They apply in cases where the V decays to (massless)
leptons with total spin projection σ¼∓1 (which correspond to
l̃−
Ll̃

þ
R and l̃−

Rl̃
þ
L , respectively) along the decay axis.

wσðθl;θV;χÞ Extracted helicity amplitude

ð−5cos2θlþ1Þð−5cos2θVþ1Þ jHþj2þjH−j2
5
2
ð−3cos2θlþ1Þð−5cos2θVþ2Þ jH0j2ð1−εÞ

þ2ηcosθlð−5cos2θVþ1Þ jHþj2−jH−j2
−20

3πsin2θlðσþ4cosθVÞcosχ ð1−εÞReðHþH�
0Þ

þ20
3πsin2θlðσ−4cosθVÞcosχ ð1−εÞReðH−H�

0Þ
4cos2χ ð1−εÞReHþH�

−

−cosθlð−5cos2θVþ2Þ εReH0H�
t

−ð−5cos2θlþ1Þð−5cos2θVþ2Þ εðjH0j2þjHtj2Þ
−2ð−5cos2θlþ2Þð−5cos2θVþ1Þ εðjHþj2þjH−j2Þ

þ4σð−5cos2θlþ2ÞcosθV εðjHþj2−jH−j2Þ
þ 8

3πð1þ5ηcosθlÞðσþ4cosθVÞcosχ εRe½HþðηH�
0−H�

t Þ�
þ 8

3πð1−5ηcosθlÞðσ−4cosθVÞcosχ εRe½H−ðηH�
0þH�

t Þ�

8Again, Ht only appears with coefficient ε.
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