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Abstract. A formula for the first Chern class of the Verlinde bundle over
the moduli space of smooth genus g curves is given. A finite-dimensional

argument is presented in rank 2 using geometric symmetries obtained from
strange duality, relative Serre duality, and Wirtinger duality together with the

projective flatness of the Hitchin connection. A derivation using conformal-

block methods is presented in higher rank. An expression for the first Chern
class over the compact moduli space of curves is obtained.
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1. Introduction

1.1. The slopes of the Verlinde complexes. LetMg be the moduli space

of nonsingular curves of genus g ≥ 2. Over Mg, we consider the relative moduli
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space of rank r slope-semistable bundles of degree r(g − 1),

ν : Ug(r, r(g − 1))→Mg .

The moduli space comes equipped with a canonical universal theta bundle corre-

sponding to the divisorial locus

Θr = {(C,E) : h0(E) 6= 0}.

Pushing forward the pluritheta series, we obtain a canonical Verlinde complex 1

Vr,k = Rν?
(
Θk
r

)
over Mg. For k ≥ 1, Vr,k is a vector bundle.

The Verlinde bundles are known to be projectively flat [Hi]. Therefore, their

Chern characters satisfy the identity

(1.1) ch(Vr,k) = rank Vr,k · exp

(
c1(Vr,k)

rank Vr,k

)
.

The rank of Vr,k is given by the well-known Verlinde formula, see [B]. We are

interested here in calculating the slope

µ(Vr,k) =
c1(Vr,k)

rank Vr,k
∈ H2(Mg,Q).

Since the Picard rank of Mg is 1, we can express the slope in the form

µ(Vr,k) = sr,k λ

where λ ∈ H2(Mg,Q) is the first Chern class of the Hodge bundle. We seek to

determine the rational numbers sr,k ∈ Q. By Grothendieck-Riemann-Roch for the

push-forward defining the Verlinde bundle, sr,k is in fact a rational function in k.

Main Formula. The Verlinde slope is

(1.2) µ(Vr,k) =
r(k2 − 1)

2(k + r)
λ .

The volume of the moduli space UC(r, r(g − 1)) of bundles over a fixed curve

with respect to the symplectic form induced by the canonical theta divisor is known

to be given in terms of the irreducible representations χ of the group SUr :

volr =

∫
UC(r,r(g−1))

exp(Θ) = cr ·
∑
χ

(
1

dimχ

)2g−2

for the constant

cr = (2π)−r(r−1)(g−1)(1! 2! · · · (r − 1)!)−(g−1).

1To avoid technical difficulties, it will be convenient to use the coarse moduli schemes of
semistable vector bundles throughout most of the paper. Nonetheless, working over the moduli

stack yields an equivalent definition of the Verlinde complexes, see Proposition 8.4 of [BL].
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Taking the k → ∞ asymptotics in formula (1.2) and using (1.1), we obtain as a

consequence an expression for the cohomological push-forward:

ν? (exp(Θ)) = volr · exp
(r

2
λ
)
.

This is a higher rank generalization of an equality over the relative Jacobian ob-

served in [vdG].

In Part I of this paper, we are concerned with a finite-dimensional geometric

proof of the Main Formula. In Part II, we give a derivation via conformal blocks.

We also extend the formula over the boundary of the moduli space. Let us now

detail the discussion.

For the finite dimensional argument, we note four basic symmetries of the

geometry:

(i) Relative level-rank duality for the moduli space of bundles over Mg will

be shown to give the identity

sr,k + sk,r =
kr − 1

2
.

(ii) Relative duality along the the fibers of SUg(r,O)→Mg leads to

sr,k + sr,−k−2r = −2r2.

(iii) The initial conditions in rank 1, and in level 0 are

µ(V1,k) =
k − 1

2
, µ(Vr,0) = −1

2
.

(iv) The projective flatness of the Verlinde bundle.

The four features of the geometry will be shown to determine the Verlinde slopes

completely in the rank 2 case, proving:

Theorem 1.1. The Verlinde bundle V2,k has slope

µ(V2,k) =
k2 − 1

k + 2
λ .

In arbitrary rank, the symmetries entirely determine the slopes in the Main

Formula (1.2) under one additional assumption. This assumption concerns the

roots of the Verlinde polynomial

vg(k) = χ(SUC(r,O),Θk)

giving the SUr Verlinde numbers at level k. Specifically, with the exception of the

root k = −r which should have multiplicity exactly (r − 1)(g − 1), all the other

roots of vg(k) should have multiplicity less than g−2. Numerical evidence suggests

this is true.
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Over a fixed curve C, the moduli spaces of bundles with fixed determinant

SUC(2r,OC) and SUC(2r, ωrC) are isomorphic. Relatively overMg such an isomor-

phism does not hold. Letting Θ denote the canonical theta divisor in

ν : SUg(2r, ωr)→Mg ,

we may investigate the slope of

W2r,k = Rν?(Θ
k) .

The following statement is equivalent to Main Formula (1.2) via Proposition 3.5 of

Section 3.5. As will be clear in the proof, the equivalence of the two statements

corresponds geometrically to the relative version of Wirtinger’s duality for level 2

theta functions.

Theorem 1.2. The Verlinde bundle W2r,k has slope

µ(W2r,k) =
k(2rk + 1)

2(k + 2r)
λ .

In Part II, we deduce the Main Formula from a representation-theoretic per-

spective by connecting results in the conformal-block literature. In particular, es-

sential to the derivation are the main statements in [T]. There, an action of a

suitable Atiyah algebra, an analogue of a sheaf of differential operators, is used to

describe the projectively flat WZW connection. Next, results of Laszlo [L] identify

conformal blocks and the bundles of theta functions aside from a normalization

ambiguity. An integrality argument fixes the variation over moduli of the results

of [L], yielding the main slope formula. This is explained in Section 5.

Finally, in the last section, we consider the extension of the Verlinde bundle

over the compact moduli space Mg via conformal blocks. The Hitchin connection

is known to acquire regular singularities along the boundary [TUY]. The formulas

for the first Chern classes of the bundles of conformal blocks are given in Theorem

6.1 of Section 6. They specialize to the genus 0 expressions of [F] in the simplified

form of [Mu].

Related work. In genus 0, the conformal block bundles have been studied in

recent years in connection to the nef cone of the moduli space M0,n, see [AGS],

[AGSS], [F], [Fe], [GG], [Sw]. In higher genus, the conformal block bundles

have been considered in [S] in order to study certain representations arising from

Lefschetz pencils. The method of [S] is to use Segal’s loop-group results. In rank

2, our formulas correct Proposition 4.2 of [S].
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There are at least two perspectives on the study of the higher Chern classes

of the Verlinde bundle. A first approach is pursued in [FMP] by carrying out the

Thaddeus wall crossings relatively over the moduli space of pointed curves Mg,1.

Projective flatness then yields nontrivial relations in the tautological ring R?(Mg,1).

Whether these relations always lie in the Faber-Zagier set [PP] is an open question.

A different point of view is taken in [MOPPZ]. By the fusion rules, the

Chern character of the Verlinde bundle defines a semisimple CohFT. The Givental-

Teleman theory provides a classification of the CohFT up to the action of the

Givental group. The CohFT is uniquely determined by the projective flatness

condition and the first Chern class calculation. The outcome is an explicit formula

for the higher Chern classes extending the result of Theorem 6.1 below. However,

since the projective flatness is used as input, no nontrivial relations in R?(Mg,1)

are immediately obtained.

1.2. Acknowlegements. We thank Carel Faber for the related computations

in [FMP] and Ivan Smith for correspondence concerning [S]. Our research was fur-

thered during the Conference on Algebraic Geometry in July 2013 at the University

of Amsterdam. We thank the organizers for the very pleasant environment.

Part I: Finite-dimensional methods

2. Jacobian geometry

In this section, we record useful aspects of the geometry of relative Jacobians

over the moduli space of curves. The results will be used to derive the slope

identities of Section 3.

Let Mg,1 be the moduli space of nonsingular 1-pointed genus g ≥ 2 curves,

and let

π : C →Mg,1, σ :Mg,1 → C

be the universal curve and the tautological section respectively. We set ḡ = g−1 for

convenience. The following line bundle will play an important role in subsequent

calculations:

L →Mg,1, L = (det Rπ?OC(ḡσ))
−1
.

An elementary Grothendieck-Riemann-Roch computation applied to the morphism

π yields

c1(L) = −λ+

(
g

2

)
Ψ,

where

Ψ ∈ H2(Mg,1,Q)
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is the cotangent class.

Consider p : J →Mg,1 the relative Jacobian of degree 0 line bundles. We let

Θ̂→ J

be the line bundle associated to the divisor

(2.1) {(C, p, L) with H0(C,L(ḡ p)) 6= 0},

and let

θ = c1(Θ̂)

be the corresponding divisor class. We show

Lemma 2.1. p?
(
enθ
)

= nge
nλ
2 .

Proof. Since the pushforward sheaf p?(Θ̂) has rank 1 and a nowhere-vanishing

section obtained from the divisor (2.1), we see that

p?

(
Θ̂
)

= OMg,1
.

The relative tangent bundle of

p : J →Mg,1

is the pullback of the dual Hodge bundle E∨ →Mg,1, with Todd genus

ToddE∨ = e−
λ
2 ,

see [vdG]. Hence, Grothendieck-Riemann-Roch yields

p?(e
θ) = e

λ
2 .

The Lemma follows immediately. �

Via Grothendieck-Riemann-Roch for p?

(
Θ̂k
)

, we obtain the following corollary

of Lemma 2.1.

Corollary 2.2. We have

s1,k =
k − 1

2
.

We will later require the following result obtained as a consequence of Wirtinger

duality. Let (−1)?θ denote the pull-back of θ by the involution −1 in the fibers of

p.

Lemma 2.3. p?
(
en(θ+(−1)?θ)

)
= (2n)ge2n c1(L).
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Proof. We begin by recalling the classical Wirtinger duality for level 2 theta

functions. For a principally polarized abelian variety (A, Θ̂), we consider the map

µ : A×A→ A×A

given by

µ(a, b) = (a+ b, a− b).

We calculate the pullback line bundle

(2.2) µ?(Θ̂ � Θ̂) = Θ̂2 � (Θ̂⊗ (−1)?Θ̂).

The unique section of Θ̂ � Θ̂ gives a natural section of the bundle (2.2), inducing

by Künneth decomposition an isomorphism

H0(A, Θ̂2)∨ → H0(A, Θ̂⊗ (−1)?Θ̂),

see [M].

We carry out the same construction for the relative Jacobian

J →Mg,1.

Concretely, we let

µ : J ×Mg,1
J → J ×Mg,1

J

be relative version of the map above. The fiberwise identity (2.2) needs to be

corrected by a line bundle twist from Mg,1:

(2.3) µ?(Θ̂ � Θ̂) = Θ̂2 �
(

Θ̂⊗ (−1)?Θ̂
)
⊗ T .

We determine

T = L−2

by constructing a section

s :Mg,1 → J ×Mg,1 J ,

for instance

s(C, p) = (OC ,OC).

Pullback of (2.3) by s then gives the identity

L2 = L2 ⊗ L2 ⊗ T

yielding the expression for T claimed above. Pushing forward (2.3) to Mg,1 we

obtain the relative Wirtinger isomorphism(
p?(Θ̂

2)
)∨ ∼= p?

(
Θ̂⊗ (−1)?Θ̂

)
⊗ L−2.
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We calculate the Chern characters of both bundles via Grothendieck-Riemann-

Roch. We find (
p?(e

2θ)e−
λ
2

)∨
= p?(e

θ+(−1)?θ) · e−λ2 · e−2c1(L).

We have already seen that

p?(e
2θ) = 2geλ,

hence the above identity becomes

p?(e
θ+(−1)?θ) = 2ge2c1(L).

The formula in the Lemma follows immediately. �

3. Slope identities

3.1. Notation. In the course of the argument, we will consider the following

spaces of bundles over the moduli space Mg,1 of pointed genus g curves:

SUg,1(r,O) = SUg(r,O)×Mg
Mg,1, Ug,1(r, rḡ) = Ug(r, rḡ)×Mg

Mg,1.

To keep the notation simple, we will use ν to denote all bundle-forgetting maps from

the relative moduli spaces of bundles to the space of (possibly pointed) nonsingular

curves.

Over the relative moduli space Ug,1(r, rḡ) there is a natural determinant line

bundle

Θr → Ug,1(r, rḡ),

endowed with a canonical section vanishing on the locus

θr = {E → C with H0(C, E) 6= 0}.

We construct analogous theta bundles for the moduli space of bundles with

trivial determinant, and decorate them with the superscript “+” for clarity. Specif-

ically, we consider the determinant line bundle and corresponding divisor

Θ+
r → SUg,1(r,O), θ+

r = {(C, p, E → C) with H0(C, E(ḡp)) 6= 0}.

Pushforward yields an associated Verlinde bundle

V+
r,k = Rν?

((
Θ+
r

)k)→Mg,1.

This bundle is however not defined over the unpointed moduli space Mg.

While the first Chern class of Vr,k is necessarily a multiple of λ, the first Chern

class of V+
r,k is a combination of λ and the cotangent class

Ψ ∈ H2(Mg,1,Q).
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3.2. Strange duality. Using a relative version of the level-rank duality over

moduli spaces of bundles on a smooth curve, we first prove the following slope

symmetry.

Proposition 3.1. For any positive integers k and r, we have

sk,r + sr,k =
kr − 1

2
.

Proof. Let

τ : SUg,1(r,O) ×Mg,1
Ug,1(k, kḡ) −→ Ug,1(kr, krḡ)

be the tensor product map,

τ(E,F ) = E ⊗ F.

Over each fixed pointed curve (C, p) ∈ Mg,1 we have, as explained for instance in

[B],

(3.1) τ?Θkr '
(
Θ+
r

)k
� Θr

k on SUC(r,O)× UC(k, kḡ).

The natural divisor

τ?θkr = {(E, F ) with H0(E ⊗ F ) 6= 0}

induces the strange duality map, defined up to multiplication by scalars,

(3.2) H0
(
SUC(r,O), (Θ+

r )k
)∨ −→ H0 (UC(k, kḡ),Θr

k) .

This map is known to be an isomorphism [Bel], [MO], [P].

Relatively over Mg,1 we write, using the fixed-curve pullback identity (3.1),

(3.3) τ?Θkr '
(
Θ+
r

)k
� Θr

k ⊗ ν?T on SUg,1(r,O) ×Mg,1
Ug,1(k, kḡ),

for a line bundle twist

T →Mg,1.

We will determine

T = Lkr, so that c1(T ) = kr

(
λ−

(
g

2

)
Ψ

)
.

To show this, we pull back (3.3) via the section

s :Mg,1 → SUg,1(r,O) ×Mg,1 Ug,1(k, kḡ), s(C, p) = (O⊕rC , OC(ḡp)⊕k),

obtaining

Lkr ' Lkr ⊗ Lkr ⊗ T ,

hence the claimed expression for T .

Pushing forward (3.3) now, we note, as a consequence of (3.2), the isomorphism

of Verlinde vector bundles over Mg,1,(
V+
r,k

)∨
' Vk,r ⊗ T .
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We conclude

−µ
(
V+
r,k

)
= µ (Vk,r) + c1(T ),

hence

−µ
(
V+
r,k

)
= µ (Vk,r) + kr

(
λ−

(
g

2

)
Ψ

)
.

The equation, alongside the following Lemma, allows us to conclude Proposition

3.1. �

Lemma 3.2. We have

µ (Vr,k) = µ
(
V+
r,k

)
+
kr − 1

2
λ− krc1(L)

= µ
(
V+
r,k

)
+

3kr − 1

2
λ− kr

(
g

2

)
Ψ.

Proof. To relate µ
(
V+
r,k

)
and µ (Vr,k) we use a slightly twisted version of the tensor

product map τ in the case k = 1. More precisely we have the following diagram,

where the top part is a fiber square

SUg,1(r,O)×Mg,1
J t //

q̄

��

Ug(r, rḡ)

q

��
J r //

p

((RRRRRRRRRRRRRRRR J

p

��
Mg,1

.

Here, as in the previous section, we write

p : J →Mg,1

for the relative Jacobian of degree 0 line bundles, while r denotes multiplication by

r on J . Furthermore, for a pointed curve (C, p),

t(E,L) = E ⊗ L(ḡp), q(E) = det(E(−ḡp)).

Finally, q̄ is the projection onto J . The pullback equation (3.3) now reads

t?Θr ' Θ+
r � Θ̂r ⊗ L−r,

where, keeping with the previous notation, Θ̂→ J is the theta line bundle associ-

ated with the divisor

θ := {(C, p, L→ C) with H0(C,L(ḡp)) 6= 0}.

Using the pullback identity and the Cartesian diagram, we conclude

(3.4) r?q?(Θ
k
r ) = q̄?

((
Θ+
r

)k
� Θ̂kr ⊗ L−kr

)
= p?V+

r,k ⊗ Θ̂kr ⊗ L−kr on J .
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We are however interested in calculating

chVr,k = ch ν?Θ
k
r = ch p?(q?Θ

k
r ).

We have recorded in Lemma 2.1 the Todd genus of the the relative tangent bundle

of

p : J →Mg,1

to be

ToddE∨ = e−
λ
2 .

Grothendieck-Riemann-Roch then gives

chVr,k = e−
λ
2 p?(ch (q?Θ

k
r )).

We further write, on J ,

ch (q?Θ
k
r ) =

1

r2g
r?ch (q?Θ

k
r ) =

1

r2g
ch (r?q?Θ

k
r ) =

1

r2g
ekrθ−krc1(L) p?chV+

r,k,

where (3.4) was used. We obtain

chVr,k =
1

r2g
e−

λ
2 e−krc1(L)

(
p?e

krθ
)

chV+
r,k on Mg,1.

The final p-pushforward in the identity above was calculated in Lemma 2.1. Sub-

stituting, we obtain

chVr,k =
kg

rg
e

(kr−1)λ
2 e−krc1(L) chV+

r,k on Mg,1.

Therefore,

µ (Vr,k) = µ
(
V+
r,k

)
+
kr − 1

2
λ− krc1(L),

which is the assertion of Lemma 3.2. �

3.3. Relative Serre duality. We will presently deduce another identity sat-

isfied by the numbers sr,k using relative Serre duality for the forgetful morphism

ν : SUg,1(r,O)→Mg,1 .

Proposition 3.3. We have

sr,k + sr,−k−2r = −2r2 .

Proof. By relative duality, we have

V+
r,k = Rν?

((
Θ+
r

)k) ∼= Rν?

((
Θ+
r

)−k ⊗ ων)∨ [(r2 − 1)(g − 1)] .

We determine the relative dualizing sheaf of the morphism ν. As explained in

Theorem E of [DN], the fibers of the morphism

ν : SUg,1(r,O)→Mg,1
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are Gorenstein, hence the relative dualizing sheaf is a line bundle. Furthermore,

along the fibers of ν, the canonical bundle equals (Θ+
r )
−2r

. Thus, up to a line

bundle twist T →Mg,1, we have

(3.5) ων =
(
Θ+
r

)−2r ⊗ ν?T .

The twist T will be found via a Chern class calculation to be

c1(T ) = −(r2 + 1)λ+ 2r2

(
g

2

)
Ψ.

Since(
V+
r,k

)∨ ∼= Rν?((Θ
+
r )−k ⊗ ων)[(r2 − 1)(g − 1)] = V+

r,−k−2r ⊗ T [(r2 − 1)(g − 1)],

we obtain taking slopes that

−µ(V+
r,k) = µ(V+

r,−k−2r) +

(
−(r2 + 1)λ+ 2r2

(
g

2

)
Ψ

)
.

The proof is concluded using Lemma 3.2.

To determine the twist T , we begin by restricting (3.5) to the smooth stable

locus of the moduli space of bundles

ν : SUsg,1(r,O)→Mg,1.

There, the relative dualizing sheaf is the dual determinant of the relative tangent

bundle. By Corollary 4.3 of [DN], adapted to the relative situation, the Picard

group of the coarse moduli space and the Picard group of the moduli stack are

naturally isomorphic. We therefore consider (3.5) over the moduli stack of stable

bundles. (We do not introduce separate notation for the stack, for simplicity.) Let

E → SUsg,1(r,O)×Mg,1
C

denote the universal vector bundle of rank r over the stable part of the moduli

stack. We write

π : SUsg,1(r,O)×Mg,1
C → SUsg,1(r,O)

for the natural projection. Clearly,

Θ+
r = (det Rπ?(E ⊗ OC(ḡσ)))−1.

The relative dualizing sheaf of the morphism ν is expressed as

ων = Rπ?Hom(E , E)(0) = Rπ?Hom(E , E)−Rπ?O.

We therefore have

c1(ων) = c1(Rπ?Hom(E , E))− λ.
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Using ω for the relative dualizing sheaf along the fibers of π, we calculate

c1(ων) + 2rc1(Θ+
r ) = c1 (Rπ?EndE)− λ− 2rc1 (Rπ?(E ⊗ OC(ḡσ)))

= π?

[(
1− ω

2
+
ω2

12

)(
r2 + ((r − 1)c1(E)2 − 2rc2(E)

)]
(2)

− λ

− 2rπ?

[(
1− ω

2
+
ω2

12

)(
r + c1(E) +

1

2
c1(E)2 − c2(E)

)
(1 + ḡσ − ḡ2

2
σΨ)

]
(2)

= −(r2 + 1)λ+ 2r2

(
g

2

)
Ψ + π?(rω · c1(E)− 2rḡ σ · c1(E)− c1(E)2).

Since the determinant of E is trivial on the fibers of π, we may write

det E = π?A

for a line bundle A → SUsg,1(r,O) with first Chern class

α = c1(A).

We calculate

π?(rω · c1(E)− 2rḡ σ · c1(E)− c1(E)2) = 2rḡα− 2rḡα− π?(α2) = 0,

and conclude

ν?c1(T ) = c1(ων) + 2rc1(Θ+
r ) = −(r2 + 1)λ+ 2r2

(
g

2

)
Ψ.

This equality holds in the Picard group of the stable locus of the moduli stack

and of the coarse moduli space. Since the strictly semistables have codimension at

least 2, the equality extends to the entire coarse space SUg,1(r,O). Finally, pushing

forward to Mg,1, we find the expression for the twist T claimed above. �

3.4. Initial conditions. The next calculation plays a basic role in our argu-

ment.

Lemma 3.4. We have

sr,0 = −1

2
.

Proof. Since the Verlinde number for k = 0 over the moduli space UC(r, rḡ)

is zero, the slope appears to have poles if computed directly. Instead, we carry out

the calculation via the fixed determinant moduli space. The trivial bundle has no

higher cohomology along the fibers of

ν : SUg,1( r,O)→Mg,1

by Kodaira vanishing. To apply the vanishing theorem, we use that the fibers of ν

have rational singularities, and the expression of the dualizing sheaf of Proposition

3.3. Hence,

ν? (O) = OMg,1
.
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Therefore

µ(V+
r,0) = 0

which then immediately implies sr,0 = − 1
2 by Lemma 3.2. �

3.5. Pluricanonical determinant. We have already investigated moduli spaces

of bundles with trivial determinant. Here, we assume that the determinant is of

degree equal to rank times g and is a multiple of the canonical bundle. The con-

ditions require the rank to be even. Thus, we are concerned with the slopes of the

complexes

W2r,k = Rν?
(
Θk

2r

)
,

where

ν : SUg(2r, ωr)→Mg.

The following slope identity is similar to that of Lemma 3.2:

Proposition 3.5. We have

µ(W2r,k) = µ(V2r,k) +
λ

2
.

In particular, via Theorem 1.1, we have

µ(W2,k) =
k(2k + 1)

2(k + 2)
λ .

Proof. Just as in the proof of Lemma 3.2, we relate µ (W2r,k) and µ (V2r,k)

via the tensor product map t:

SUg,1(2r, ωr)×Mg,1 J
t //

q̄

��

Ug(2r, 2rḡ)

q

��
J 2r //

p

))SSSSSSSSSSSSSSSSSS J

p

��
Mg,1

.

We keep the same notation as in Lemma 3.2, letting

p : J →Mg,1

denote the relative Jacobian of degree 0 line bundles, and writing 2r for the multi-

plication by 2r on J . Furthermore, for a pointed curve (C, p),

t(E,L) = E ⊗ L, q(E) = detE ⊗ ω−rC

Finally, q̄ is the projection onto J . Recall that Θ̂ denotes the theta line bundle on

the relative Jacobian associated with the divisor

θ := {(C, p, L) with H0(C,L(ḡp)) 6= 0}.
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It is clear that (−1)?Θ̂ has the associated divisor

(−1)?θ = {(C, p, L) with H0(C,L⊗ ωC(−ḡp)) 6= 0}.

For a fixed pointed curve (C, p), we have the fiberwise identity

t?Θ2r = Θ2r �
(

Θ̂⊗ (−1)?Θ̂
)r

on SUC(2r, ωr)× JC . Relatively over Mg,1, the same equation holds true up to a

twist T →Mg,1:

t?Θ2r ' Θ2r �
(

Θ̂⊗ (−1)?Θ̂
)r
⊗ T .

We claim that

T = L−2r.

Indeed, the twist can be found in the usual way, using a suitable section

s :Mg,1 → SUg,1(2r, ωr)×Mg,1
J ,

for instance

s(C, p) = (ωrC(−ḡp)⊕r ⊕OC(ḡp)⊕r,OC).

Pulling back by s, we obtain the identity

(L ⊗M)
r

= (L ⊗M)
r ⊗ (L ⊗M)

r ⊗ T

where

L = det (Rπ?(OC(ḡσ)))
−1
, M = det (Rπ? (ωC(−ḡσ)))

−1
.

In fact, by relative duality, M∼= L, so we conclude

T = L−2r.

Using the pullback identity and the Cartesian diagram, we find that over J we

have

(2r)?q?Θ
k
2r = q̄?

(
Θk

2r �
(

Θ̂⊗ (−1)?Θ̂
)kr
⊗ L−2kr

)
(3.6)

= p?W2r,k ⊗
(

Θ̂⊗ (−1)?Θ̂
)kr
⊗ L−2kr

Next, we calculate

chV2r,k = ch ν?Θ
k
2r = ch p?(q?Θ

k
2r)

via Grothendieck-Riemann-Roch:

chV2r,k = e−
λ
2 p?(ch (q?Θ

k
2r)).

We further evaluate, on J ,

ch (q?Θ
k
2r) =

1

(2r)2g
(2r)?ch (q?Θ

k
2r) =

1

(2r)2g
ch ((2r)?q?Θ

k
r )

=
1

(2r)2g
ekr(θ+(−1)?θ)−2krc1(L) p?chW2r,k,
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where (3.6) was used. We obtain

chV2r,k =
1

(2r)2g
e−

λ
2 e−2krc1(L)

(
p?e

kr(θ+(−1)?θ)
)

chW2r,k on Mg,1.

The p-pushforward in the identity above is given by Lemma 2.3. Substituting, we

find

chV2r,k =

(
k

2r

)g
e−

λ
2 chW2r,k,

and taking slopes it follows that

µ(V2r,k) = µ(W2r,k)− λ

2
.

�

4. Projective flatness and the rank two case

4.1. Projective flatness. By the Grothendieck-Riemann-Roch theorem for

singular varieties due to Baum-Fulton-MacPherson [BFM], the Chern character

of Vr,k is a polynomial in k with entries in the cohomology classes of Mg. (Al-

ternatively, we may transfer the calculation to a smooth moduli space of degree 1

bundles using a Hecke modification at a point as in [BS], and then invoke the usual

Grothendieck-Riemann-Roch theorem.) Taking account of the projective flatness

identity (1.1),

ch(Vr,k) = rank Vr,k · exp (sr,kλ) ,

we therefore write

chi(Vr,k) =

r2ḡ+i+1∑
j=0

kjαi,j = (rank Vr,k)
sir,k
i!

λi for i ≥ 0, αi,j ∈ H2i(Mg).

As the Vandermonde determinant is nonzero, for each i we can express αi,j in terms

of λi. Since λg−2 6= 0, we deduce that

(rank Vr,k) sir,k , 0 ≤ i ≤ g − 2,

is a polynomial in k of degree r2ḡ + i + 1, with coefficients that may depend on r

and g. The following is now immediate:

(i) For each r we can write

sr,k =
ar(k)

br(k)

as quotient of polynomials of minimal degree, with

deg ar(k)− deg br(k) ≤ 1.

Setting vg,r(k) = rank Vr,k, we also have

br(k)g−2 divides vg,r(k)
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as polynomials in Q[k].

In addition, the following properties of the function sr,k have been established in

the previous sections:

(ii) s1,k = k−1
2 , sr,0 = − 1

2 ,

(iii) sr,k + sk,r = kr−1
2 for all k, r ≥ 1,

(iv) sr,k + sr,−k−2r = −2r2 for all r ≥ 1 and all k.

Clearly, the function

sr,k =
r(k2 − 1)

2(k + r)

of formula (1.2) satisfies symmetries (ii)-(iv). Therefore, the shift

s′r,k = sr,k −
r(k2 − 1)

2(k + r)

satisfies properties similar to (i)-(iv):

(i)′ s′r,k is a rational function of k,

(ii)′ s′1,k = 0 for all k, and s′r,0 = 0 for all r ≥ 1,

(iii)′ s′r,k + s′k,r = 0 for r, k ≥ 1,

(iv)′ s′r,k + s′r,−k−2r = 0 for all r ≥ 1 and all k.

4.2. The rank two analysis. To prove Theorem 1.1, we now show that

s′2,k = 0 for all k. Of course, s′2,0 = 0 by (ii)′. Also by (ii)′, we know that s′1,2 = 0,

hence by (iii)′ we find

s′2,1 = 0.

Similarly,

s′2,2 = 0

also by (iii)′. Using (iv)′, we obtain that

s′2,0 = s′2,1 = s′2,2 = s′2,−4 = s′2,−5 = s′2,−6 = 0.

Finally, we make use of the projective flatness of V2,k. The Verlinde formula reads

[B]

vg,2(k) = kg
(
k + 2

2

)g−1
k+1∑
j=1

1

sin2g−2 jπ
k+2

 .

The polynomial vg,2(k) admits k = 0 as a root of order g and k = −2 as a root of

order (g − 1). Indeed, it was shown by Zagier that

v̂g(k + 2) =

k+1∑
j=1

(
1

sin jπ
k+2

)2g−2
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is a polynomial in k + 2 such that

v̂g(0) < 0,

see Remark 1 on page 4 of [Z].

Let us write

b2(k) = (k + 2)mknB(k)

for a polynomial B which does not have 0 and −2 as roots. By property (i) above,

we obtain

m ≤ g − 1

g − 2
=⇒ m ≤ 1.

Similarly

n ≤ g

g − 2
=⇒ n ≤ 1

unless g = 3, 4. Also, B(k)g−2 divides the Verlinde polynomial v̂g(k+ 2) which has

degree 4g − 3− (g − 1)− g = 2g − 2. Thus

(g − 2) degB ≤ 2g − 2 =⇒ degB ≤ 2

except possibly when g = 3, 4. In conclusion

s′2,k =
a2(k)

B(k)(k + 2)mkn
− k2 − 1

k + 2
=

A(k)

B(k)(k + 2)k

for a polynomial

A(k) = a2(k)(k + 2)1−mk1−n − (k2 − 1)B(k).

Since

lim
k→∞

s2,k

k
<∞ =⇒ lim

k→∞

s′2,k
k

<∞,

we must have

degA− degB ≤ 3.

Since

degB ≤ 2 =⇒ degA ≤ 5.

Furthermore, we have already observed that

A(−6) = A(−5) = A(−4) = A(0) = A(1) = A(2) = 0.

This implies A = 0 hence s′2,k = 0 as claimed.

The cases g = 3 and g = 4 have to be considered separately. First, when g = 4

we obtain

m ≤ 1, n ≤ 2

and B(k)2 divides the polynomial v̂4(k+ 2). By direct calculation via the Verlinde

formula we find

v̂4(x) =
2x6 + 21x4 + 168x2 − 191

945
.
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This implies B = 1, and thus

s′2,k =
A(k)

k2(k + 2)

with

degA ≤ 4.

Since A = 0 for 6 different values, it follows as before that A = 0 hence s′2,k = 0.

When g = 3, the Verlinde flatness does not give us useful information. In this

case, one possible argument is via relative Thaddeus flips, for which we refer the

reader to the preprint [FMP]. Along these lines, although we do not explicitly

show the details here, the genus 3 slope formula was in fact checked by direct

calculation. �

Part II: Representation-theoretic methods

5. The slope of the Verlinde bundles via conformal blocks

We derive here the Main Formula (1.2) using results in the extensive literature

on conformal blocks. In particular, the central statement of [T] is used in an essen-

tial way. The derivation is by direct comparison of the bundle V+
r,k of generalized

theta functions with the bundle of covacua

Br,k →Mg,1

defined using the representation theory of the affine Lie algebra ŝlr. Over pointed

curves (C, p), the fibers of the dual bundle B∨r,k give the spaces of generalized theta

functions

H0(SUC(r,O),
(
Θ+
r

)k
).

Globally, the identification B∨r,k ' V+
r,k will be shown below to hold only up to a

twist. The explicit identification of the twist and formula (1.2) will be deduced

together.

5.1. The bundles of covacua. For a self-contained presentation, we start by

reviewing briefly the definition of Br,k. Fix a smooth pointed curve (C, p), and write

K for the field of fractions of the completed local ring O = ÔC,p. For notational

simplicity, we set

g = slr,

and write (|) for the suitably normalized Killing form. The loop algebra is the

central extension

L̂g = g⊗K ⊕ C · c
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of g⊗K, endowed with the bracket

[X ⊗ f, Y ⊗ g] = [X,Y ]⊗ fg + (X|Y ) · Res (g df) · c.

Two natural subalgebras of the loop algebra L̂g play a role:

L̂+g = g⊗O ⊕ C · c ↪→ L̂g

and

LC g = g⊗OC(C − p) ↪→ L̂g.

For each positive integer k, we consider the basic representation Hk of L̂g at

level k, defined as follows. The one-dimensional vector space C is viewed as a

module over the universal enveloping algebra U(L̂+g) where the center c acts as

multiplication by k, and g acts trivially. We set

Vk = U(L̂g)⊗
U(L̂+g)

C.

There is a unique maximal L̂g-invariant submodule

V ′k ↪→ Vk.

The basic representation is the quotient

Hk = Vk/V
′
k.

The finite-dimensional space of covacua for (C, p), dual to the space of conformal

blocks, is given in turn as a quotient

Br,k = Hk/LCg Hk.

When the pointed curve varies, the loop algebra as well as its two natural subalge-

bras relativize overMg,1. The above constructions then give rise to the finite-rank

vector bundle

Br,k →Mg,1,

endowed with the projectively flat WZW connection.

5.2. Atiyah algebras. The key theorem in [T] uses the language of Atiyah

algebras to describe the WZW connection on the bundles Br,k. We review this now,

and refer the reader to [Lo] for a different account.

An Atiyah algebra over a smooth base S is a Lie algebra which sits in an

extension

0→ OS
i→ A π→ TS → 0.

If L→ S is a line bundle, then the sheaf of first order differential operators acting

on L is an Atiyah algebra

AL = Diff1(L),
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via the symbol exact sequence.

We also need an analogue of the sheaf of differential operators acting on tensor

powers Lc for all rational numbers c, even though these line bundles don’t actually

make sense. To this end, if A is an Atiyah algebra and c ∈ Q, then cA is by

definition the Atiyah algebra

cA = (OS ⊕A)/(c, 1)OS

sitting canonically in an exact sequence

0→ OS → cA → TS → 0.

The sum of two Atiyah algebras A and B is given by

A+ B = A×TS B/(iA(f),−iB(f)) for f ∈ OS .

When c is a positive integer, cA coincides with the sum A+ . . .+A, but cA is more

generally defined for all c ∈ Q. In particular, cAL makes sense for any c ∈ Q and

any line bundle L→ S.

An action of an Atiyah algebra A on a vector bundle V is understood to enjoy

the following properties

(i) each section a of A acts as a first order differential operator on V with

symbol given by π(a)⊗ 1V ;

(ii) the image of 1 ∈ OS i.e. i(1) acts on V via the identity.

It is immediate that the action of an Atiyah algebra on V is tantamount to a

projectively flat connection in V. Furthermore, if two Atiyah algebras A and B act

on vector bundles V and W respectively, then the sum A+ B acts on V ⊗W via

(a, b) · v ⊗ w = av ⊗ w + v ⊗ bw.

We will make use of the following:

Lemma 5.1. Let c ∈ Q be a rational number and L→ S be a line bundle. If the

Atiyah algebra cAL acts on a vector bundle V, then the slope µ(V) = detV/rankV
is determined by

µ(V) = cL .

Proof. Replacing the pair (V, L) by a suitable tensor power we reduce to the

case c ∈ Z via the observation preceding the Lemma. Then, we induct on c, adding

one copy of the Atiyah algebra of L at a time. The base case c = 0 corresponds to

a flat connection in V. Indeed, the Atiyah algebra of OS splits as OS ⊕ TS and an
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action of this algebra of V is equivalent to differential operators ∇X for X ∈ TS ,

such that

[∇X ,∇Y ] = ∇[X,Y ],

hence to a flat connection. �

Consider the rational number

c =
k(r2 − 1)

r + k
,

which is the charge of the Virasoro algebra acting on the basic level k representation

Hk of L̂g. The representation Hk entered the construction of the bundles of covacua

Br,k. The main result of [T] is the fact that the Atiyah algebra

c

2
AL

acts on the bundle of covacua Br,k where AL is the Atiyah algebra associated to

the determinant of the Hodge bundle

L = detE.

By Lemma 5.1, we deduce the slope

µ(Br,k) =
k(r2 − 1)

2(r + k)
λ.

In fact, by the proof of Lemma 5.1, the bundle

B2(r+k)
r,k ⊗ L−k(r2−1)

is flat.

5.3. Identifications and the slope calculation. We now explain how the

above calculation implies the Main Formula (1.2) via the results of Section 5.7 of

[L].

Crucially, Laszlo proves that the projectivization of B∨r,k coincides with the

projectivization of the bundle V+
r,k coming from geometry. In fact, Laszlo shows

that for a suitable line bundle Lr over

SUg,1(r,O)→Mg,1

we have

B∨r,k = π?(Lkr ),

where fiberwise, over a fixed pointed curve, Lkr coincides with the usual theta bundle

(Θ+
r )
k
. Hence,

Lkr =
(
Θ+
r

)k ⊗ Tr,k
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for some line for some line bundle twist Tr,k →Mg,1 over the moduli stack. At the

heart of this identification is the double quotient construction of the moduli space

of bundles over a curve

SUC(r,O) = LCG\ L̂G /L̂+G

with the theta bundle Θ+
r being obtained by descent of a natural line bundle Qr

from the affine Grassmannian

Qr → L̂G /L̂+G.

Here L̂G and L̂+G are the central extensions of the corresponding loop groups.

The construction is then carried out relatively over Mg,1, such that Qkr descends

to the line bundle

Lkr → SUg,1(r,O).

It follows from here that fiberwise Lkr coincides with the usual theta bundle (Θ+
r )
k
.

Collecting the above facts, we find that

B∨r,k = V+
r,k ⊗ Tr,k.

Therefore

−µ(Br,k) = µ(V+
r,k) + c1(Tr,k).

Using Lemma 3.2 we conclude that

−k(r2 − 1)

2(r + k)
λ = µ(Vr,k)− kr − 1

2
λ+ krc1(L) + c1(Tr,k).

Simplifying, this yields

µ(Vr,k) =
r(k2 − 1)

2(r + k)
λ− c1(Tr,k)− krc1(L).

Now, the left hand side is a multiple of λ, namely sr,kλ. The right hand side must

be a multiple of λ as well. With

s′r,k = sr,k −
r(k2 − 1)

2(r + k)
.

we find that

s′r,kλ = −c1(Tr,k)− krc1(L).

This implies that s′r,k must be an integer by comparison with the right hand side,

because the Picard group of Mg is generated over Z by λ for g ≥ 2, see [AC2].

The fact that s′r,k ∈ Z is enough to prove

s′r,k = 0,

which is what we need.
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Indeed, as explained in Section 4.1, Grothendieck-Riemann-Roch for the push-

forwards giving the Verlinde numbers shows that

lim
k→∞

s′r,k
k

<∞.

Writing

s′r,k = ar(k)/br(k)

with deg ar(k) ≤ deg br(k) + 1, we see by direct calculation that

lim
k→∞

s′r,k+1 − 2s′r,k + s′r,k−1 = 0.

Since the expression in the limit is an integer, it must equal zero. By induction, it

follows that

s′r,k = Ark +Br

for constants Ar, Br that may depend on the rank and the genus. Since

s′r,0 = s′r,−2r = 0

by the initial condition in Lemma 3.4 and by Proposition 3.3, it follows that Ar =

Br = 0 hence s′r,k = 0.

As a consequence, we have now also determined the twist Tr,k = L−kr. There-

fore, the bundle of conformal blocks is expressed geometrically as

B∨r,k = V+
r,k ⊗ L

−kr.

We remark furthermore that the latter bundle descends to Mg. To see this, one

checks that

(Θ+
r )k ⊗ L−kr

restricts trivially over the fibers of SUg,1(r,O) → SUg(r,O). This is a straightfor-

ward verification.

6. Extensions over the boundary

The methods of [T] can be used to find the first Chern class of the bundle of

conformal blocks over the compactification Mg. The resulting formula is stated in

Theorem 6.1 below. In particular the first Chern class contains nonzero boundary

contributions, contrary to a claim of [S].

In genus 0, formulas for the Chern classes of the bundle of conformal blocks

were given in [F], and have been recently brought to simpler form in [Mu]. In

higher genus, the expressions we obtain using [T] specialize to the simpler formulas

of [Mu].
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As it is necessary to consider parabolics, we begin with some terminology on

partitions. We denote by Pr,k the set of Young diagrams with at most r rows and

at most k columns. Enumerating the lengths of the rows, we write a diagram µ as

µ = (µ1, . . . , µr), k ≥ µ1 ≥ · · · ≥ µr ≥ 0.

The partition µ is viewed as labeling the irreducible representation of the group

SU(r) with highest weight µ, which we denote by Vµ. Two partitions which differ

by the augmentation of the rows by a common number of boxes yield isomorphic

representations. We will identify such partitions in Pr,k, writing ∼ for the equiva-

lence relation. There is a natural involution

Pr,k 3 µ 7→ µ? ∈ Pr,k

where µ? is the diagram whose row lengths are

k ≥ k − µr ≥ . . . ≥ k − µ1 ≥ 0.

Further, to allow for an arbitrary number of markings, we consider multipartitions

µ = (µ1, . . . , µn)

whose members belong to Pr,k/ ∼. Finally, for a single partition µ, we write

wµ = − 1

2(r + k)

 r∑
i=1

µ2
i −

1

r

(
r∑
i=1

µi

)2

+

r∑
i=1

(r − 2i+ 1)µi


for the suitably normalized action of the Casimir element on the representation Vµ.

In this setup, we let

Bg,µ →Mg,n

be the bundle of covacua, obtained analogously to the construction of Section 5.1

using representations of highest weight µ, see [T]. To simplify notation, we do

not indicate dependence on r, k and n explicitly: these can be read off from the

multipartition µ. We set

vg(µ) = rank Bg,µ

to be the parabolic Verlinde number.

We determine the first Chern class c1(Bg,µ) over Mg,n in terms of the natural

generators:

λ,Ψ1, . . . ,Ψn

and the boundary divisors. To fix notation, we write as usual:

• δirr for the class of the divisor corresponding to irreducible nodal curves;
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• δh,A for the boundary divisor corresponding to reducible nodal curves,

with one component having genus h and containing the markings of the

set A.

Note that each subset A ⊂ {1, 2, . . . , n} determines a splitting

µ
A
∪ µ

Ac

of the multipartition µ corresponding to the markings in A and in its complement

Ac. Finally, we define the coefficients

cirr =
∑

ν∈Pr,k/∼

wν ·
vg−1(µ, ν, ν?)

vg(µ)

and

ch,A =
∑

ν∈Pr,k/∼

wν ·
vh(µ

A
, ν) · vg−h(µ

Ac
, ν?)

vg(µ)
.

Theorem 6.1. OverMg,n the slope of the bundle of covacua is

(6.1) slope(Bg,µ) =
k(r2 − 1)

2(r + k)
λ+

n∑
i=1

wµiΨi − cirrδirr −
∑
h,A

ch,Aδh,A.

In the formula, the repetition δh,A = δg−h,Ac is not allowed, so that each divisor

appears only once.

Proof. The formula written above is correct over the open stratum Mg,n.

Indeed, the main theorem of [T], used in the presence of parabolics, shows that the

bundle of covacua

Bg,µ →Mg,n

admits an action of the Atiyah algebra

k(r2 − 1)

2(r + k)
AL +

n∑
i=1

wµiALi .

As before

L = detE

is the determinant of the Hodge bundle and the Li denote the cotangent lines over

Mg,n. Therefore, by Lemma 5.1, we have

slope(Bg,µ) =
k(r2 − 1)

2(r + k)
λ+

n∑
i=1

wµiΨi

over Mg,n.
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It remains to confirm that the boundary corrections take the form stated above.

Since the derivation is identical for all boundary divisors, let us only find the coef-

ficient of δirr. To this end, observe the natural map

ξ :Mg−1,n+2 →Mg,n

whose image is contained in the divisor δirr. The map is obtained by gluing together

the last two markings which we denote • and ?. We pull back (6.1) under ξ. For

the left hand side, we use the fusion rules of [TUY]:

ξ?Bg,µ =
⊕

ν∈Pr,k/∼

Bg−1,µ,ν,ν? .

Thus, the left hand side becomes∑
ν∈Pr,k/∼

vg−1(µ, ν, ν?)

vg(µ)
· slope(Bg−1,µ,ν,ν?)

=
∑

ν∈Pr,k/∼

vg−1(µ, ν, ν?)

vg(µ)
·

(
k(r2 − 1)

2(r + k)
λ+

n∑
i=1

wµiΨi + wνΨ• + wν?Ψ?

)

=
k(r2 − 1)

2(r + k)
λ+

n∑
i=1

wµiΨi +
∑

ν∈Pr,k/∼

vg−1(µ, ν, ν?)

vg(µ)
· (wνΨ• + wν?Ψ?) .

The fusion rules have been used in the third line to compare the ranks of the

Verlinde bundles. For the right hand side, we record the following well-known

formulas [AC1]:

(i) ξ?λ = λ;

(ii) ξ?Ψi = Ψi for 1 ≤ i ≤ n;

(iii) ξ?δirr = −Ψ• −Ψ?;

(iv) ξ?δh,A = 0.

These yield the following expression for the right hand side of (6.1):

k(r2 − 1)

2(r + k)
λ+

n∑
i=1

wµiΨi − cirr(−Ψ• −Ψ?).

For g − 1 ≥ 2, Ψ? and Ψ• are independent in the Picard group of Mg−1,n+2, see

[AC2], hence we can identify their coefficient cirr uniquely to the formula claimed

above. The case of the other boundary corrections is entirely similar. �

Remark 6.2. The low genus case g ≤ 2 not covered by the above argument

can be established by the following approach. Once a correct formula for the Chern

class has been proposed, a proof can be obtained by induction on the genus and

number of markings. Indeed, with some diligent bookkeeping, it can be seen that

the expression of the Theorem restricts to the boundary divisors compatibly with
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the fusion rules in [TUY]. To finish the argument, we invoke the Hodge theoretic

result of Arbarello-Cornalba [AC1] stating the boundary restriction map

H2(Mg,n)→ H2(Mg−1,n+2)
⊕
h,A

H2(Mh,A∪{•} ×Mg−h,Ac∪{?})

is injective, with the exception of the particular values (g, n) = (0, 4), (0, 5), (1, 1),

(1, 2), which may be checked by hand.

In fact, the slope expression of the Theorem is certainly correct in the first

three cases by [F], [Mu]. When (g, n) = (1, 2), we already know from [T] that the

slope takes the form

slope(Bµ1,µ2) =
k(r2 − 1)

2(r + k)
λ+ wµ1Ψ1 + wµ2Ψ2 − cirrδirr − c∆,

where δirr and ∆ are the two boundary divisors inM1,2. The coefficients cirr and c

are determined uniquely in the form stated in the Theorem by restricting Bµ1,µ2
to

the two boundary divisors δirr and ∆ (and not only to their interiors as was done

above) via the fusion rules. The verification is not difficult for the particular case

(1, 2).
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