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Summary

The AdS/CFT correspondence has given rise to new tools that enable both perturbative

and non-perturbative calculations of unseen precision in four-dimensional quantum field

theories. The topic of this thesis is the spectral problem of the AdS5/CFT4 correspondence

in the planar limit, which from the point of view of the CFT, N = 4 super Yang-Mills

theory, amounts to determining the spectrum of anomalous dimensions of single-trace

operators.

There is substantial evidence that the spectral problem is integrable in the planar limit.

This surprising asset makes the problem exactly solvable, and allows the application of

sophisticated techniques to reformulate it. The Quantum Spectral Curve formulates the

problem in terms of a relatively simple Riemann-Hilbert problem. To produce physical

results from the Quantum Spectral Curve, one needs to solve it explicitly. There is one

solution for each symmetry multiplet of single-trace operators. The main goal of this

thesis is the development of efficient algorithms to find perturbative solutions for arbitrary

multiplets. The two main steps of this process are, first, to find leading solutions and,

second, to generate perturbative corrections.

To classify symmetry multiplets of single-trace operators, the relevant aspects of rep-

resentation theory of non-compact super Lie algebras is revisited. It is argued that a

generalisation of Young diagrams provides a convenient classification and leads to an in-

tuitive way to count the multiplets.

The leading solution to the Quantum Spectral Curve is traditionally found by solving

Bethe equations. These equations are hard to solve in practice, and the number of solutions

exceeds the expectation from representation theory. To overcome these issues, a stronger

criterion on the solutions is formulated, and an efficient algorithm to enforce this criterion

is introduced. The result is a conceptually simple algorithm that is not only significantly

more efficient than the solution of Bethe equations, but also yields exactly the expected

number of solutions.

The perturbative corrections to the leading solutions are controlled by the analytic

structure imposed by the Quantum Spectral Curve. Different strategies to recursively

generate these corrections are discussed, and the ultimate approach is argued to be a con-

cise algorithm to solve the Pµ-system for general states. This opens the door to a vast

range of new spectral data, including 10-loop anomalous dimensions for a variety of mul-

tiplets. This data is furthermore used to reconstruct the six- and seven-loop contributions

to the anomalous dimension of twist-2 operators with arbitrary spin.

Finally, an attempt to apply the Quantum Spectral Curve on the operatorial level is

initiated. In particular, a general strategy to evaluate matrix elements of Q-operators for

non-compact super spin chains is outlined.
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Introduction

Quantum field theory is by far the most successful framework for describing the nature

of elementary particles. The guiding principle for model building within this framework

is symmetry. The fundamental objects in the theory, the fields, represent this symmetry

choice. This starting point is however obscured by the quantum mechanical nature of

the interactions between the fields. In consequence, quantum field theory is mainly a

perturbative tool: we have to start from the limit of no interactions, and then gradually

turn on the coupling. Many fundamental questions, such as the confining properties of

quarks, cannot be described in this way. Furthermore, perturbative quantum field theory

is an immensely complicated procedure. Not only do the combinatorics grow so rapidly

that supercomputers quickly come to terms. One also has to go through the tedious

mathematical procedures of regularisation and renormalisation for each individual process

contributing to the result under study. In contrast, the results of these lengthy calculations

often turn out to be strikingly simple. Sometimes just simple integer numbers. One

naturally starts to wonder whether there is a simpler structure behind.

There exists a quantum field theory in four spacetime dimensions where such under-

lying mathematical structures have been discovered. Again, symmetry was the guiding

principle that led theoretical physicists towards it: the theory has the maximal amount of

supersymmetry that can be put into a four-dimensional quantum field theory. The math-

ematical structures appearing in this theory allow not only efficient perturbation theory,

but also give rise to non-perturbative tools allowing explicit results at any interaction

strength.

This thesis is a contribution to the effort of understanding the appearance and use

of these structures. It is devoted to the use of a particular structure as a super-efficient

perturbative tool. Before explaining the precise goals that are pursued, we take a brief

look at the theory that is under investigation.

The remarkable features of N = 4 super Yang-Mills theory

N = 4 super Yang-Mills theory [8], or N = 4 SYM for short, is a theory with many

particular properties. On one hand, these properties mean that the theory is certainly not

1



2 Introduction

an adequate description of Nature, but on the other hand, they make the theory easier

to analyse. It is of course important to ask to what degree the found structures have a

generalisation in more realistic theories or if they are specific to N = 4 SYM. In this thesis

we are not that ambitious: the goal is simply to demonstrate that there is something about

this theory that is worth trying to generalise.

Yang-Mills theory is the type of quantum field theory on which the Standard Model

of particle physics is built. It is based on the invariance of physical observables under

local transformations belonging to a Lie group, in our case SU(N). “N = 4” refers to the

amount of supersymmetry, and this is the maximal amount in a four-dimensional theory

with fields of spin no higher than one. This has profound consequences.

Superconformal symmetry

The field content in N = 4 SYM is six real scalars, four Weyl fermions, and a single

gauge boson, all transforming in the adjoint representation of the SU(N) gauge group,

and forming one big N = 4 supermultiplet. The Lagrangian of the theory is invariant

under conformal transformations, which is not unusual. It is however unusual that the

conformal invariance is not spoiled by quantum corrections. The single coupling constant

appearing in the theory, gYM, is not subject to renormalisation, i.e. the β-function is zero

[9]. The generators of conformal symmetry combine with the supersymmetry generators

to the larger superconformal algebra, which is isomorphic to the graded super Lie algebra

psu(2, 2|4), including also the additional bosonic R-symmetry.

Correlation functions are the basic objects to study in quantum field theory, and

conformal symmetry constrains the structure of these functions significantly, see e.g. [10].

The key object to study in a conformal field theory is the spectrum of the dilatation

operator D, i.e. the generator of dilatations xµ → c xµ. This eigenproblem reads

DO(0) = ∆O(0) , (1)

where O(x) is a local operator and ∆ is its conformal dimension. In general, all quantities

in this equation are subject to quantum corrections and acquire a dependence on the

coupling g. The coupling-dependent part of the conformal dimension is referred to as the

anomalous dimension γ,

∆(g) = ∆0 + γ(g) , (2)

where ∆0 ≡ ∆(0) is referred to as the classical dimension. The conformal dimensions

completely determine two-point functions, which for scalar operators with suitable nor-

malisation are given by

〈Oi(x1)Oj(x2)〉 =
δij

|x1 − x2|2∆i
. (3)
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Together with the structure constants Cijk, the conformal dimensions also determine three-

point functions to be

〈Oi(x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1 |x1 − x3|∆1+∆3−∆2
. (4)

Higher-point functions are, in principle, also given by the conformal data {∆i, Cijk}
through operator product expansions.

Importantly, as the anomalous part of the dilatation operator commutes with the gen-

erators of the superconformal algebra, all operators related by symmetry transformations

have the same anomalous dimension, see e.g. [11].

The AdS/CFT correspondence

According to the conjectured AdS/CFT correspondence [12], N = 4 SYM and type IIB su-

perstring theory on AdS5×S5 are equivalent theories. In particular, local gauge-invariant

operators in N = 4 SYM correspond to string states, and the conformal dimensions of the

former are dual to the energies of the latter. The first hint of an equivalence is seen by

matching the symmetries: the isometries of AdS5 and S5 fit with the bosonic subalgebras

su(2, 2) and su(4) of the superconformal symmetry.

One of the reasons why the AdS/CFT correspondence is exciting is that in certain

limits it relates strongly coupled gauge theory to weakly coupled string theory or simply

supergravity. This opens the door to non-perturbative studies of quantum field theory.

Integrability in the planar limit

In this thesis, we will consider the AdS/CFT correspondence in the ’t Hooft limit where

the coupling gYM is sent to zero, while the rank N of the SU(N) gauge group is sent

to infinity. The product λ = g2
YMN is kept finite. We will usually redefine this ’t Hooft

coupling by

g ≡
√
λ

4π
. (5)

The limit N → ∞ suppresses non-planar interactions, and it is thus called the planar

limit. In this limit, the theory displays yet another remarkable property: there is strong

evidence that at least certain aspects of the theory become integrable. Integrability is the

presence of an infinite set of conserved charges, and in some sense this makes the theory

exactly solvable.

The first sign of integrability was the discovery that the one-loop correction to the di-

latation operator of N = 4 SYM acts like the Hamiltonian of an integrable spin chain [13].

This initiated more than a decade of intense study, which, using additional information

from the AdS/CFT correspondence, has led to a beautiful mathematical structure that is



4 Introduction

believed to encode the spectrum of anomalous dimensions at any value of the coupling:

the Quantum Spectral Curve [14, 15].

The Quantum Spectral Curve as a perturbative tool

The Quantum Spectral Curve (QSC) is a unique discovery in the study of four-dimensional

quantum field theories: it is a rather simple mathematical structure that can be solved

to obtain explicit results at any value of the coupling. With such a framework at hand,

we should understand how to exploit it – both to demonstrate its power, but also to

test its scope and validity. The main goal of this thesis is to master this framework as a

perturbative tool.

We first need to understand the objects under study: local gauge-invariant operators

built by a single trace over fundamental fields. These objects have already been studied

thoroughly in the literature, but we need to rephrase their classification in a language

relevant for the QSC. Solving the QSC perturbatively has two main steps: finding the

leading solution and perturbing around it. The problem of finding the leading solution is

equivalent to solving Bethe equations for a certain type of spin chain. Again, the literature

contains several approaches to doing this, but none which have the practical power that we

are looking for. This thesis presents a new approach to this task, and the result is a method

that is useful not only for the QSC, but for spin chains in more generality. Perturbative

corrections can be generated through a recursive procedure repeating a small set of closed

operations. However, the complexity of the appearing expressions grows rapidly, and the

presented algorithms are the result of several cycles of implementation and optimisation.

The final result is an automatisation of the procedure that gives access to a much wider

range of explicit data than in previous studies.

The philosophy of the thesis is that new insights often appear through explicit com-

putations. The enhanced data accessibility opens the possibility to look for patterns in

the results that may hide even deeper structures. One such structure is the analytic con-

tinuation of the anomalous dimension of twist-2 operators, and we exploit the new data

to add two new perturbative orders to this result. Finally, we initiate the study of what

the QSC tells us about the whole eigenproblem of the dilatation operator, and not just

the eigenvalues. In particular, the framework has the potential to produce perturbative

corrections to Q-operators, which are so far only understood at the leading order. This

could shed light on the still mysterious nature of AdS/CFT integrability, and how it fits

into the framework of the algebraic Bethe ansatz.
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Structure of the thesis

In an attempt to make a distinction between review and original work, the thesis has two

main parts. The connection between the chapters is summarised in figure 1.

Part I: The spectral problem in AdS/CFT integrability is mainly a review and

contains four chapters:

1 Single-trace operators in N = 4 SYM revisits the representation theory relevant

for classifying symmetry multiplets of single-trace operators in N = 4 SYM. It

contains a few new ideas, in particular the concept of extended Young diagrams,

which have been presented in [5].

2 Spin chains and integrability introduces the key concepts of integrability – co-

ordinate and algebraic Bethe ansatz – in a simple setting, the Heisenberg spin chain.

The generalisation to models with higher rank symmetry is briefly discussed.

3 AdS/CFT integrability gives a brief review of the appearance of integrability in

the spectral problem of the AdS/CFT correspondence. The basic ideas behind the

techniques to bootstrap the spectrum by assuming integrability – the asymptotic

and thermodynamic Bethe ansatz – are summarised.

4 Quantum Spectral Curve presents the QSC in an axiomatic form and discusses

all technical details that are needed for using it as a perturbative tool.

Part II: The explicit spectrum presents the original research on which the thesis is

based, and it also contains four chapters:

5 The 1-loop Q-system is based on [4] and [5] and explains a new powerful method

to solve Bethe equations for rational spin chains, of which the leading solution to

the QSC is a special example.

6 Perturbative algorithms is based on [1] and the yet unpublished work [7]. It

explains first a strategy to solve the QSC perturbatively for multiplets belonging

?
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to the sl(2) subsector and then a completely general algorithm, before presenting a

sample of results.

7 Twist-2 operators is based on [2] and [3] and summarises how the produced data

can be used to reconstruct six- and seven-loop contributions to the analytically

continued anomalous dimension for the infinite series of twist-2 operators.

8 QSC with Q-operators? is based on [6] and outlines a general strategy to evaluate

matrix elements of Q-operators for non-compact super spin chains. This provides a

starting point for using the QSC on the operatorial level.



Part I

The spectral problem in AdS/CFT

integrability
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Chapter 1

Single-trace operators in N = 4

SYM

The goal of this thesis is to study anomalous dimension of local gauge-invariant operators

made out of the fundamental fields in N = 4 SYM. The fields are all in the adjoint

representation of the SU(N) gauge symmetry, but as we ensure gauge-invariance by tracing

over the colour indices, the colour structure is completely absent in our treatment. The

fields constitute a representation of the global symmetry of the theory, generated by the

superconformal algebra, which is isomorphic to the graded super Lie algebra psu(2, 2|4).

Composite local operators with several field insertions can then be thought of as tensor

products, and they will form more general irreducible representations of the symmetry.

All operators within such a multiplet have the same anomalous dimension γ(g), and we

can restrict our attention to single-trace operators, since they do not mix with operators

containing multiple traces in the planar limit, see e.g. [11].

To classify the multiplets of single-trace operators, this chapter reviews the relevant

aspects of representation theory of graded super Lie algebras before specialising to the

case of N = 4 SYM. The goal is to find a convenient way to classify the multiplets and

understand the multiplet content of N = 4 SYM quantitatively.

1.1 Representations of graded super Lie algebras

In the following we will consider graded super Lie algebras that are real forms of gl(N+

M |K) and their unitary representations. The treatment will be informal, and the notation

will not distinguish abstract Lie algebra generators from their realisation as explicit endo-

morphisms of representation modules. Likewise, we will always understand the abstract

Lie algebra bracket as an (anti-)commutator.

8



1.1. Representations of graded super Lie algebras 9

1.1.1 Definitions

Let us start by introducing the basic nomenclature. The generators, Emn, of gl(N+M |K)

satisfy the (anti-)commutation relation

EmnEkl − (−1)(pm+pn)(pk+pl)EklEmn = δnkEml − (−1)(pm+pn)(pk+pl)δmlEkn , (1.1)

where m = 1, ..., N+M+K. We introduce two gradings, pm and cm, taking the values

m 1, ..., N N+1, ..., N+M N+M+1, ..., N+M+K

pm 0 0 1

cm 1 0 0 . (1.2)

The real form u(N,M |K) is obtained by imposing the conjugation property

E†mn = (−1)cm+cnEnm . (1.3)

Note that we will use the non-standard notation u(N, |K) when M = 0.

su(N,M |K) is the subalgebra of super-traceless elements in u(N,M |K). The projec-

tive subalgebra psu(N,M |K) can effectively be defined by furthermore imposing that the

central charge vanishes,

C =
∑
n

Enn = 0 . (1.4)

Representations

By a representation of a Lie algebra, we will refer to a vector space on which the generators

act linearly. The map from the abstract generators to linear transformations on the vector

space should preserve the (anti-)commutation relation defining the Lie algebra, e.g. (1.1)

for gl(N +M |K). If the vector space is finite-dimensional, then the generators can be

represented by square matrices. The dimension of the representation is the dimension of

the vector space.

An irreducible representation, or just irrep, is a representation that has no non-trivial

invariant subspaces. For finite-dimensional representations, this means that the indi-

vidual generators cannot simultaneously be written in a block-diagonal form. We will

interchangeably refer to irreducible representations as multiplets.

Fundamental weights

Each vector, or state, |Ω〉, can be characterised by its eigenvalues of the diagonal generators

Enn. For gl(N |K) we will denote these numbers by νi and λa according to

Eii|Ω〉 = νi|Ω〉 i = 1, ..., N (1.5a)

E(N+a)(N+a)|Ω〉 = λa|Ω〉 a = 1, ...,K . (1.5b)
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Figure 1.1: Depiction of the grading as a path on a lattice. The n’th segment is vertical if pn=1 and

horizontal if pn = 0. The nodes correspond to those of the Dynkin diagram associated

to the Lie algebra. A cross inside the n’th node denotes a change in the p-grading [16],

i.e. that pn 6= pn+1, while a double circle denotes a change in the c-grading. Dynkin

diagrams as paths on a two-dimensional lattice came into use after [17]. The shown

path is denoted by 121̂2̂3̂4̂345̂... in the notation introduced below.

Highest weight states

The irreducible representations that we want to consider are of highest weight type, which

means that they contain a highest weight state (HWS), which we can define as the state

that is annihilated by all generators above the diagonal,

Emn|HWS〉 = 0 for m < n . (1.6)

The fundamental weights of the HWS then characterise the whole multiplet.

Gradings

One has the freedom to relabel the indices of the generators. With the above definition, it

simply corresponds to (possibly) changing the HWS within multiplets. We can shuffle the

indices, and thus the values of pn and cn, as we want. For gl(N+M |K), it is convenient

to depict the choice of p-grading as a path on an (N+M)×K lattice and associate it to a

Dynkin diagram, see figure 1.1.

To denote the order in the p-grading, we will follow [15] and use a sequence of numbers

either with or without a hat. A number without a hat signifies p = 0, while a number

with a hat signifies p = 1. The number itself denotes the number of preceding indices with

that value of p. For example, 11̂2̂2343̂... means that p1 = 0, p2 = 1, etc. Note that one

could just as well use the values of pn themselves, e.g. 0110001..., but we will nonetheless

use the slightly redundant notation for clarity.

All changes in grading can be built from exchanges of two neighbouring indices. Ex-

changes that permute labels with the same p- and c-grading only change the HWS up to a

relabelling of indices, while exchanges that permute indices with the same p- but different

c-grading simply obscure the definition of the HWS. We will thus mainly be concerned

with permutations of indices with different p-grading.
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Consider the exchange of the order of two indices m and n with different p-grading, i.e.

pm + pn = 1. For the gl(1|1) subalgebra formed by the generators with these two indices,

this corresponds to the change(
Emm Emn

Enm Enn

)
↔

(
Enn Enm

Emn Emm

)
. (1.7)

Emn and Enm are fermionic in the sense that they are related by an anti-commutation

relation (1.1). The procedure (1.7) is referred to as fermionic duality transformation

[18]. Consider a HWS, denoted |Ω〉, with respect to the first grading in (1.7). It satisfies

Emn|Ω〉 = 0. As E2
nm = 0, we can maximally act once with Enm on |Ω〉. Denote the

weights of the state by Ekk|Ω〉 = ek|Ω〉. The case where Enm|Ω〉 = 0 occurs only when

em + en = 0 (one e is a λ, one is a ν). Indeed,

EmnEnm|Ω〉 = {Emn, Enm}|Ω〉 = (Emm + Enn)|Ω〉 = (em + en)|Ω〉 . (1.8)

Long representations. When em + en 6= 0 the HWS is Enm|Ω〉 with respect to the

second grading. The weights of this new HWS can be changed in two ways. If pm = 1,

we can denote the weights of the state |Ω〉 by emm = λ and enn = ν. The new HWS

Enm|Ω〉 will then have the weights emm = λ+1 and enn = ν−1. All other weights remain

unchanged. On the other hand, if pm = 0, the new HWS will have the weights λ− 1 and

ν + 1, while the rest are unchanged.

Short representations. If em+en = 0 then EmnEnm|Ω〉 = 0, which implies Enm|Ω〉 = 0

since otherwise the representation would be reducible indecomposable which is impossible

for a unitary representation. Therefore |Ω〉 is the HWS for both choices of grading, so λ

and ν remain unchanged under the duality transformation. The effect of fermionic duality

transformations is summarised in figure 1.2.

↔λ

ν

λ− 1 + δλ,−ν

ν + 1− δλ,−ν

yhi×
yhi×

Figure 1.2: Fermionic duality transformation. When λ+ ν = 0, the weights are unchanged.

1.1.2 Unitarity constraints

We wish to consider unitary representations, meaning that all states have positive norm,

〈Ω|Ω〉 > 0. Consider a HWS, |Ω〉, and again denote its weights by Ekk|Ω〉 = ek|Ω〉. For



12 Chapter 1. Single-trace operators in N = 4 SYM

any two indices m < n we have

〈Ω|[Emn, Enm}|Ω〉 = 〈Ω|(Emm − (−1)(pm+pn)2
Enn)|Ω〉 = (em − (−1)pm+pnen)〈Ω|Ω〉 ,(1.9)

i.e. the inner product is given in terms of the weights. At the same time Emn|Ω〉 = 0 and

E†mn = (−1)cm+cnEnm, so

〈Ω|[Emn, Enm}|Ω〉 = 〈Ω|EmnEnm|Ω〉 = (−1)cm+cn〈Ω|EmnE†mn|Ω〉 . (1.10)

Unitarity demands that the inner products 〈Ω|Ω〉 and 〈Ω|EmnE†mn|Ω〉 are positive real

numbers, which by combining (1.9) and (1.10) means that

(−1)cm+cn
(
em − (−1)pm+pnen

)
≥ 0 . (1.11)

For u(N,M |K) this means that the weights (1.5) must satisfy

λa − λa+1 ≥ 0 (1.12a)

νN+j ≥ νN+j+1 ≥ νk ≥ νk+1 (1.12b)

λa + νk ≤ 0 (1.12c)

λa + νN+j ≥ 0 , (1.12d)

where j = 1, ...,M and k = 1, ..., N . These constraints should be satisfied by all members

of a multiplet. Note that if (1.12a) and (1.12b) hold, then

λ1 + ν1 ≤ 0 (1.13a)

λK + νN+M ≥ 0 (1.13b)

ensure that (1.12c) and (1.12d) are satisfied. Note that the saturation of (1.12c) and

(1.12d) corresponds exactly to the case where shortening happens. We will refer to (1.13)

as shortening conditions in the following.

1.1.3 Oscillator formalism

We want to study unitary representations with integer weights, and then it is convenient

to parametrise the generators in terms of Jordan-Schwinger oscillators,

Emn = χ̄mχn . (1.14)

The usage of such oscillators in superconformal algebras goes back to [19], and they have

featured heavily in the study of the AdS/CFT spectrum, see e.g. [20, 21].

Let us return to the nicely ordered gradings (1.2). Three different oscillator represen-

tations of gl(n),

Eα̇β̇ = −bα̇b†
β̇
, [bα̇,b

†
β̇
] = δα̇β̇ , α̇, β̇ ∈ {1, ..., N} , (1.15a)

E(N+α)(N+β) = a†αaβ , [aα,a
†
β] = δαβ , α, β ∈ {1, ...,M} , (1.15b)

E(N+M+a)(N+M+b) = f †afb , {fa, f †b } = δab , a, b ∈ {1, ...,K} , (1.15c)
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can be used to parametrise the bosonic generators of u(N,M |K). In the notation (1.14)

this corresponds to χ̄m = {−bα̇,a
†
α, f
†
a} and χm = {b†α̇,aα, fa}. The fermionic generators

are then parametrised by other bilinear combinations of the oscillators a, b and f . The

full set of generators are

Emn =


−bα̇b†

β̇
−bα̇aβ −bα̇fb

a†αb†
β̇

a†αaβ a†αfb

f †ab
†
β̇

f †aaβ f †afb

 . (1.16)

In terms of oscillators, the central charge (1.4) is

C = −N − nb + nf + na , (1.17)

where n are number operators, e.g. nfa ≡ f †afa, and nf ≡
∑K

a=1 nfa .

States

To construct representations we define a Fock vacuum |0〉 by

aα|0〉 = bα̇|0〉 = fa|0〉 = 0 . (1.18)

Each irreducible representation has a fixed central charge (1.17). Specifying this central

charge, we can construct the space of states of that type. Note that unless C = −N , the

Fock vacuum |0〉 does not belong to the vector space. When both N 6= 0 and M 6= 0,

generators of the type a†b† are present. These generators are bosonic and can be applied

an unlimited number of times without annihilating a state. This makes the representa-

tions infinite-dimensional, reflecting the non-compact nature of unitary representations of

u(N,M |K). When either N = 0 or M = 0, all generators can only act a finite num-

ber of times on a state before annihilating it, corresponding to the compact nature of

u(M |K) ∼= u(M, |K).

As a simple example, consider u(1|1), i.e. N = 0 and M = K = 1, with C = 2. The

possible states are then f †1a†1|0〉 and (a†1)2|0〉, and they are related by the action of a†1f1

and its conjugate, so these states form a two-dimensional representation.

Tensor products

We can now consider tensor products of Jordan-Schwinger type representations. Through-

out the thesis, our interest will be tensor products of L representations of the same type.

Tensor product representations are in general not irreducible.

As an example, consider the tensor product representation of two C = 2 representations

of u(1|1) as considered above. The corresponding vector space is four-dimensional and

spanned by the states

f †1a†1|0〉 ⊗ f †1a†1|0〉 f †1a†1|0〉 ⊗ (a†1)2|0〉 (a†1)2|0〉 ⊗ f †1a†1|0〉 (a†1)2|0〉 ⊗ (a†1)2|0〉 . (1.19)
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The symmetry acts on a tensor product via the chain rule, but one should be careful with

signs due to the fermionic oscillators. The tensor product space (1.19) splits into two

irreps, both of dimension two:

f †1a†1|0〉
⊗2 
 f †1a†1|0〉 ⊗ (a†1)2|0〉 − (a†1)2|0〉 ⊗ f †1a†1|0〉 (1.20)

f †1a†1|0〉 ⊗ (a†1)2|0〉+ (a†1)2|0〉 ⊗ f †1a†1|0〉 
 (a†1)2|0〉⊗2 ,

where the arrows denote the action of the off-diagonal generators a†1f1 and its conjugate.

In terms of oscillator number operators, the total central charge for a tensor product

state is

Ctotal = LC = −N L− nb + nf + na . (1.21)

We will often characterise multiplets by the oscillator content of their HWS, using the

notation n = [nbα̇ |nfa |naα ]. Note that this only makes sense if the grading is specified,

since the HWS changes under the fermionic duality transformations. In the example

(1.20), the multiplets can be denoted by two numbers n = [nf1 |na1 ]. In the grading 11̂,

where the HWS is annihilated by E12 = a†1f1, the two multiplets are then denoted n = [1|3]

and n = [0|4], respectively. In the grading 1̂1, where E12 = f †1a1, they are instead denoted

n = [2|2] and n = [1|3].

We will now introduce a tool from representation theory that allows a classification of

irreps in which the ambiguity related to the choice of grading is absent.

1.2 Young diagrams

Young diagrams were first introduced in representation theory of finite groups, where they

can be used to construct representations of the symmetric group SN . Due to the Schur-

Weyl duality [22] they simultaneously classify irreducible representations of both SN and

gl(N).

The following treatment of Young diagrams as a classification of irreducible represen-

tations of gl-type algebras will be rather informal, and we will only introduce the concepts

necessary for our applications. A more complete treatment can be found in most modern

books on representation theory, see e.g. [23]. For simplicity, we begin with the compact

case.

1.2.1 Compact Young diagrams

As discussed, unitary representations of u(M |K) are finite-dimensional. They can be

characterised by the (M+K)-partition {ν1, ..., νM |λ1, ..., λK} given by the fundamental

weights of the HWS in the chosen grading. For representations of Jordan-Schwinger type,
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Figure 1.3: Definition of compact Young diagram in terms of a grading and a partition {ν|λ}. Note

that we use the “French notation” for Young diagrams.

these weights are equivalent to the oscillator numbers naα and nfa . As discussed above, the

grading defines a two-dimensional path. The Young diagram is constructed by drawing νj

boxes above the j’th horizontal line, and λa boxes to the right of the a’th vertical line, see

figure 1.3. From this definition it is clear that a representation of u(M |K) is characterised

by a Young diagram that fits within an L-shaped hook of the form shown in figure 1.4.

Unitarity constraints

Notice that due to the nature of the fermionic duality transformations, the Young diagram

is independent of the chosen path. The unitarity constraints (1.12) should hold no matter

which grading is chosen. This means that the Young diagrams have to be shaped as a

ladder, i.e. the width of the rows have to decrease or remain the same as one goes from

below.

Shortening has a very natural interpretation on the level of Young diagrams. A repre-

sentation is short if it does not touch the point (M,K) at the corner of the L-hook. See

figure 1.4 for an example.

Young diagrams as algebra-independent objects

We can just as well describe a Young diagram entirely by the width of its rows, i.e. by a

partition λ′ = {λ′1, ..., λ′H} where H is the height of the first column in the diagram, see

figure 1.5. It is clearly not necessary to specify an algebra in order to define the Young

-� {M
6

?

{K
Figure 1.4: L-hook for u(M |K) with M = 4 and K = 3. The Young diagram specifies a short

representation of u(4|3) since it does not touch the point (4, 3).
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λ′H
λ′H−1

λ′2
λ′1

Figure 1.5: Young diagram as a partition λ′ = {λ′1, ..., λ′H}.

diagram. In fact, a diagram characterises an irreducible representation of any u(M |K)

algebra for which it fits inside the corresponding L-hook.

Tensor products and trivial extension

The discussion so far has been for abstract representations. If we want to interpret the

vector spaces of the representations as tensor products, we need to specify another number:

the length L of the tensor product or, equivalently, the central charge C for the individual

components in the tensor product. The length and central charge are related to the weights

by

LC =
M∑
k=1

νk +
K∑
k=1

λk =
H∑
k=1

λ′k . (1.22)

Let us restrict to the Jordan-Schwinger type representations. As the oscillators fa

are fermionic, they can act only once on the vacuum |0〉. This means that the allowed

representations for the individual components in a tensor product are given by Young

diagrams with a single column whose height equals the central charge, see figure 1.6.

C

Figure 1.6: The representation at each site in the tensor product is given by the central charge C.

Consider a tensor product where each component is a u(M |K) representation with cen-

tral charge C. By introducing an additional oscillator f0 and redefining our Fock vacuum

as |0〉 = f †0
˜|0〉, we can think of this as a tensor product of u(M |K+1) representations with

central charge C+1. We embed the original u(M |K) representation in a larger u(M |K+1)

representation. The corresponding Young diagram obtains an additional row of length L

at the bottom and the partition becomes {ν1, ..., νM |L, λ1, ..., λK}. Alternatively, we can

extend the algebra to u(M |K+1) by adding an extra weight with value 0 corresponding

to the partition {ν1, ..., νM |λ1, ..., λK , 0}. This corresponds to extending the algebra by an

oscillator fK+1, but without modifying the u(M |K) subspace or the central charge. The

Young diagram is then unchanged. We can do arbitrarily many of these extensions, and
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Figure 1.7: Extension of a compact Young diagram. The extension depends on the specification

of a central charge C, which defines the length through (1.22). The orange path cor-

responds to the original grading, while the blue path is the extension. The extension

can be arbitrarily big and will have weights {ν1, ..., νM |L, ..., L, λ1, ..., λK , 0, ..., 0}. In

the depicted example, the u(3|2) partition {4, 2, 0|4, 2}11̂22̂3 is interpreted as a tensor

product with central charge C = 2 and thus length L = 6. We call the grey part the

trivial extension.

we will refer to this process as trivial extensions. The process is depicted in figure 1.7, and

it will play a key role in the following.

1.2.2 Non-compact Young diagrams

Young diagrams are a standard tool in the analysis of compact representations. In the

AdS/CFT integrability context, non-compact representations have previously been classi-

fied by diagrams within a T-hook [24, 25, 26]. In the yet unpublished work on classifications

of unitary representations of u(N,M |K) [27], a generalisation of Young diagrams to the

non-compact case will be introduced. As a special case of that approach, we now define

Young diagrams for a restricted class of irreducible representations. In particular, we want

to consider representations that are realised as tensor products of Jordan-Schwinger type

representations with integer weights. It is convenient to characterise these representations

by the oscillator numbers na, nb and nf rather than their fundamental weights ν and λ.

We will discuss the ambiguity in using the fundamental weights after defining non-compact

Young diagrams in terms of Jordan-Schwinger oscillators.

Definition in terms of Jordan-Schwinger oscillators

An irreducible representation of u(N,M |K) is characterised by a Young diagram within

a grid of the form shown in figure 1.8, which we will refer to as a χ-hook. Figure 1.8 also

shows the definition of the Young diagram in terms of the oscillator numbers. Note that

it is necessary to specify the central charge C, or, equivalently, the length L. Again, C

and L are related through (1.21).

To draw the diagram, the starting point is the Dynkin path, cf. figure 1.1, which

consists of N+M+K segments. For the first N horizontal segments, draw nbα̇ boxes below
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Figure 1.8: Young diagram corresponding to the oscillator numbers na, nf , nb with respect to a

given grading and a specified central charge C that defines L through (1.21). The ex-

ample here corresponds to an u(2, 3|3) representation with n11̂232̂43̂5 = [2, 4|6, 4, 2|5, 3, 2]

and C = 0. Consequently, L = 8.

the α̇’th segment. For the last M horizontal segments, draw naα above the (N + α)’th

segment. For the a’th vertical segments, draw nfa boxes to the right and L−nfa boxes to

the left.

It is important to note that the above prescription is not valid in all gradings if the

representation in question is short. For long representations, the Young diagram touches

the start- and end-point of the Dynkin path, which we denote (0, 0) and (N +M,K). For

short representations, the prescription always yields the correct diagram if one chooses the

path

1 2 ... (N−1)N 1̂ 2̂ ... K̂−1 K̂ (N+1) (N+2) ... (N+M) ,

corresponding to ordering the oscillators such that all b oscillators come before all f

oscillators followed by all a oscillators, i.e. u(N, |K|M).

Why the fundamental weights are ambiguous

The above definition of Young diagrams depends on the N+M+K oscillator numbers,

but also on the central charge C, or, equivalently, the length L.

Why not use the fundamental weights λ and ν? In the following, our focus will be on

projective algebras of pu-type, where the central charge is zero. The issue is that when

C = 0, the length L drops out of (1.22), so the weights do not determine L. In contrast,

we get L for free through (1.21) by using oscillator numbers. We will see examples of this

in the N = 4 SYM context below.
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t
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tt

Figure 1.9: Extension of a Young diagram that was originally defined for u(2, 2|4) and C = 0

(n121̂2̂3̂4̂34 = [2, 3|7, 6, 4, 3|2, 1]). The non-trivial extension is marked in blue, while the

trivial extension is marked in grey. The trivial part continues infinitely in the vertical

direction without any horizontal shifts. The central point is marked with a black circle.

The two red points correspond to the algebra u(9), and the shaded boxes show the

corresponding u(9) Young diagram with C = 5. The two green points correspond to

the algebra u(2, 4|5) with C = 1. As one of the points is outside the diagram, the

corresponding multiplet is short.

Extension and map to u(N ′)

In analogy with the compact case, we would like to think of the non-compact Young

diagram as independent of the algebra. Similarly to the compact discussion, we can

embed a representation in representations of algebras of higher rank, by extending the set

of oscillators and through redefinitions of the Fock vacuum and central charge.

In this procedure, we first extend all rows to have length L. In the upper part of the

diagram, we extend the rows towards the left, and in the lower part towards the right.

We call this the non-trivial extension. Above and below this diagram, we place an infinite

column of rows that are completely aligned with central vertical line in the diagram. In

the upper part, this infinite column is on the left side, while it is on the right side in the

lower part. We call this the trivial extension. See figure 1.9.

The diagram now corresponds to an irreducible representation of any u(N,M |K) alge-

bra for which it fits inside the χ-hook. An algebra is specified by choosing two points on

the Z2 lattice such that the extended Young diagram is between them and that the right

point is not lower than the left point. The relative position of these points to one another

and to the central vertical line specify the algebra, and the Young diagram then defines

an irrep of this algebra. If both points are on the boundary of the extended diagram then

this representation is a long multiplet, otherwise it is a short multiplet.

We interpret the irrep defined by a Young diagram as a subspace of a tensor product of

L copies of a simpler representation with a given central charge. The point on the central
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vertical line where the number of boxes that are placed to the left and below the point

equals the number of boxes to the right and above the point defines the central charge for

each component in the tensor product. For u(N,M |K) this point is (N,C+N), since the

equality of the number of boxes southwest and northeast of the point,

nb +

N+C∑
a=1

(L− nfa) = na +

K∑
a=N+C+1

nfa , (1.23)

is identical to the central charge constraint (1.21), and we refer to it as the central point

or simply center of the diagram. Later, we will also refer to it as the momentum-carrying

node. Note further that the central vertical line splits the diagram into two halves that are

shaped as extended compact diagrams. We call them the left and right compact diagrams.

This gives a way to map u(N,M |K) representations to u(N ′) representations, which we

will now exploit.

1.3 Characters and counting

Having introduced a way to classify representations, either through the specification of

a partition or a Young diagram plus a central charge, we are ready to study the decom-

position of tensor product representations into irreps. Representation theory provides a

convenient tool in terms of characters.

Character theory for compact representations is described in most textbooks on repre-

sentation theory, see e.g. [23]. The generalisation to supersymmetry and non-compactness

is less well-studied, and the author is unaware of a treatment combining both features. As

proposed in [5], we will use the concept of extended Young diagrams to map u(N,M |K)

representations to representations of u(N ′), and thus circumvent the complications arising

from supersymmetry and non-compactness. The trade-off is that the rank N ′ is un-

bounded.

1.3.1 gl(N) characters

The character of an irrep of gl(N) with weights λ = {λ1, ..., λN} is given by the Schur

polynomial

χλ =
det1≤i,j≤N x

λj+N−j
i

det1≤i,j≤N x
N−j
i

≡ Wλ

∆V
, (1.24)

where the denominator ∆V =
∏
i<j(xi − xj) is the Vandermonde determinant.

We are particularly interested in tensor products of such irreps. A tensor product

representation is reducible, and it can be written as a direct sum of irreps,

λ⊗ λ̃ =
⊕
i

λi . (1.25)
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The character of the tensor product representation is simply the product of the characters

of its factors, i.e. χλ⊗L = χLλ . At the same time, the character of a reducible representation

is a sum of characters of irreps:

χreducible =
∑
λ

cλ χλ , (1.26)

and the integer multiplicities cλ are uniquely determined. In the case of the L’th tensor

product of an irrep λ, we get

χLλ =
∑
λ′

cλ′χλ′ . (1.27)

Actually, the polynomial Wλ = ∆V · χλ is more convenient to work with. For a given

representation λ, Wλ will contain a term of the kind

xλ1+N−1
1 xλ2+N−2

2 · · ·xλN−1+1
N−1 xλNN , (1.28)

which we will call the dominant term. The advantage of W compared to χ is that the

dominant terms are unique to Wλ, i.e. they do not appear in Wλ′ if λ 6= λ′. We can then

effectively decompose into irreps by reading off the coefficient of the dominant terms in

the expression

∆V · χreducible =
∑
λ

cλWλ . (1.29)

1.3.2 Polya theory

The tensor product character (1.27) can be seen as a sum of all the states in the spectrum

with length L. In the next section, we will want to interpret single-trace operators in

N = 4 SYM as tensor product states. The trace is cyclic, which means that tensor

product states that are related by cyclic permutations, i.e. by the cyclic group ZL, are

considered to be equivalent. This effectively reduces the size of the vector space of states.

The above analysis does not take this property into account.

The Polya theorem [28]1 provides a way to account for equivalence relations between

tensor product states, in our case cyclic permutations. According to the Polya theorem,

the tensor product character (1.27) should be replaced by the reduced sum of states ZL

given by

ZL =
∑
d|L

φ(d)

L
χ1(xd1, ..., x

d
N )

L
d . (1.30)

Here d|L denotes all divisors of L, while φ(d) is the Euler totient function given by the

number of integers between 1 and d that are mutually prime with d. χ1 is the character

of the representation that each component of the tensor product is in.

1See [29] for a detailed explanation relevant for our purposes.
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The practical usage of characters is demonstrated in appendix A.2, both in simple

examples and to understand the multiplet content in N = 4 SYM, towards which we now

turn our focus.

1.4 The N = 4 SYM spectrum

Our goal is to classify the symmetry multiplets formed by single-trace operators in N = 4

SYM. Such a classification was first done in [30] and further investigations made in [31].

The superconformal algebra is isomorphic to psu(2, 2|4). The generators of the symme-

try can be realised as differential operators on the fundamental fields that constitute local

operators, and as such, they act via the chain rule. This fits well with the action of ab-

stract symmetry generators on a tensor product, and thus we can interpret the composite

operators as tensor products.

At zero coupling, i.e. g → 0, the symmetry is in fact enhanced to pu(2, 2|4)⊕u(1), where

the extra u(1) corresponds to the fixed length L. This section reviews how multiplets of

single-trace operators are affected by this transition in symmetry induced by turning on

the coupling.

1.4.1 Field interpretation of states

The states satisfying the central charge constraint C = 0 and their interpretation in terms

of fields in N = 4 SYM are summarised in table 1.1. The fields correspond to an infinite-

dimensional representation reflecting the possibility of acting with an arbitrary number

of covariant derivatives on each field. The corresponding pu(2, 2|4) Young diagram is

depicted in figure 1.10. The fields are assigned a classical conformal dimension, ∆0, given

Field interpretation Content ∆0 Components

scalar Φab f †af
†
b |0〉 1 6

fermion
Ψaα f †aa

†
α |0〉 3

2 8

Ψ̄aα̇ εabcdf
†
b f
†
c f
†
db
†
α̇ |0〉

3
2 8

field strength
Fαβ a†αa†β |0〉 2 3

F̄α̇β̇ f †1 f †2 f †3 f †4b†α̇b†
β̇
|0〉 2 3

covariant derivative Dαα̇ a†αb†α̇ 1 4

Table 1.1: States satisfying the central charge constraint. Note that Φab = −Φba, i.e. there are

six independent scalars. We denote them by Z ≡ f†1 f
†
2 |0〉, X ≡ f†1 f

†
3 |0〉, Y ≡ f†1 f

†
4 |0〉,

Ȳ ≡ f†2 f
†
3 |0〉, X̄ ≡ f†2 f

†
4 |0〉, Z̄ ≡ f†3 f

†
4 |0〉. Note also that Fαβ = Fβα and F̄α̇β̇ = F̄β̇α̇. A

state can contain one of the fundamental fields and an unlimited number of covariant

derivatives.
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t

Figure 1.10: (left) The χ-hook and the Young diagram corresponding to the single-field representa-

tion in N = 4 SYM. The central point is marked. (right) The extended Young diagram

corresponding to the single-field representation.

by

∆0 =
nf
2

+ na . (1.31)

Composite operators made of L fields are interpreted as tensor products of L vectors

from the above representation. As an example, consider the L = 3 state

Tr[Z D12Ψ11 F12 ] = f †1 f †2 |0〉 ⊗ (a†1)2b†2f
†
1 |0〉 ⊗ a†1a

†
2|0〉 . (1.32)

For simplicity, we will often leave out the Tr[...] symbol. Cyclicity of the trace means that

two states are equivalent if they are related by cyclic permutations, e.g. ZX = XZ. As

fermions anti-commute, this also means that some states involving fermions vanish, e.g.

ΨaαΨaα = −ΨaαΨaα = 0. The central charge constraint for a tensor product state is

na − nb + nf = 2L , (1.33)

and this defines L through the oscillator numbers.

pu(2, 2|4) Young diagrams

The Young diagrams of the irreps of pu(2, 2|4) are drawn within the χ-hook shown in

figure 1.10. We will refer to the point (2, 2) as the central point. It splits the diagram into

four quadrants. The central charge constraint C = 0 manifests itself as the demand that

the number of boxes in the upper-right and lower-left quadrants must be equal, see figure

1.11. Furthermore, the left and right half of the diagram should be of ladder shape [27].

The unitarity constraints (1.12) only demands this for the four middle rows, but it turns

out that diagrams which are not of ladder-shape correspond to operators that are set to

zero by the equations of motions. An example is the diagram on the right in figure 1.11

(nyp = [1, 1|1, 1, 1, 1|1, 1] in the notation introduced below), which corresponds to a HWS

of the form εabcdΦab�Φcd. The equations of motion are realised in the oscillator language

as � = εαβεα̇β̇Dαα̇Dββ̇ = det
1≤α,α̇≤2

a†αb†α̇ = 0, and consequently this operator vanishes.
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t t

Figure 1.11: (left) An example of a pu(2, 2|4) diagram having the same number of boxes in the lower-

left and upper-right quadrant. (right) A Young diagram that is not ladder-shaped and

allowed by the pu(2, 2|4) unitarity constraints (1.12), but corresponds to an operator

that is zero due to the equations of motion.

1.4.2 Quantum numbers and finite g

At zero coupling, the multiplets of operators are representations of pu(2, 2|4) ⊕ u(1). As

such, we need eight numbers to classify the representations. As mentioned, we will prefer

to use the oscillator numbers to classify representations. We will do this in the notation

ngrading = [nb1 , nb2 |nf1 , nf2 , nf3 , nf4 |na1 , na2 ] , (1.34)

where the oscillator numbers are those of the HWS with respect to the specified grading.

Our preferred choice of grading will be 121̂2̂3̂4̂34, also known as the compact beauty grading

[32], for which we will use the symbol yp as a short-hand notation referring to its Dynkin

path. This choice is convenient since it minimises the classical conformal dimension (1.31).

Turning on g

The above use of Jordan-Schwinger oscillators is only an adequate description of N = 4

SYM at g = 0. The Jordan-Schwinger-type representations have integer weights, and this

is no longer true when g 6= 0. Understanding the nature of the representations formed by

single-trace operators at finite coupling is still an unsolved, and very interesting, problem.

The global symmetry of N = 4 SYM has the two bosonic subalgebras su(4) and

su(2, 2). The su(4) part corresponds to the R-symmetry and is related to the S5 part of

the dual geometry. The corresponding weights λa do not run with the coupling and remain

integers at any coupling. The su(2, 2) part, related to the conformal symmetry and the

AdS5 part of the dual geometry, is not as simple. The conformal symmetry includes the

dilatation operator, and as it is renormalised, the weights of this part of the symmetry,

νi, run with the coupling since they contain the anomalous dimension. The behaviour is

νi = νi|g=0 +
γ

2
{−1,−1, 1, 1}i . (1.35)
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nyp L Field content example λa νj

[1, 1|2, 2, 2, 2|1, 1] 4 Ψ11Ψ12Ψ̄11Ψ̄12 {2, 2, 2, 2} {−5,−5, 1, 1}
[0, 0|2, 2, 2, 2|1, 1] 5 Ψ11Ψ12Z̄X̄ Ȳ {2, 2, 2, 2} {−5,−5, 1, 1}
[1, 1|3, 3, 3, 3|0, 0] 5 Ψ̄11Ψ̄12ZXY {3, 3, 3, 3} {−6,−6, 0, 0}

Table 1.2: Three types of operators with differing oscillator content and length that have the same

psu(2, 2|4) quantum numbers: λa − λa+1 = {0, 0, 0} and νj − νj+1 = {0,−6, 0}.

At finite coupling, the multiplets organise themselves in representations of psu(2, 2|4).

Such representations are characterised by just six numbers. A choice is the differences

of the fundamental weights λa − λa+1 and νj − νj+1. Note that the weights {λ, ν} and

{λ+ Λ, ν − Λ} define isomorphic irreps of psu(2, 2|4).

The relation between oscillator numbers and other conventionally used parametrisa-

tions of the psu(2, 2|4) quantum numbers are given in appendix A.1. Despite the obscured

interpretation at finite coupling, we will prefer to label multiplets by the HWS oscilla-

tor content (1.34) that they flow towards as g → 0, since this classification contains the

complete information, and since our main objective is perturbative calculations.

Length mixing

At finite coupling, the notion of a length breaks down. In general, the eigenstates of the

dilatation operator is a mix of any operator with the same psu(2, 2|4) quantum numbers

[33]. On the level of level of oscillators, the length can be changed by two transformations

that leave the differences λa − λa+1 and νj − νj+1 invariant:

{L, nbα̇} ↔ {L−1, nbα̇+1} , (1.36a)

{L, nfa , naα} ↔ {L−1, nfa−1, naα+1} (1.36b)

Note that (1.36a) leaves λ and ν invariant, while (1.36b) takes λa ↔ λa−1 and νi ↔ νi+1.

An example of operators related by these transformations and consequently able to mix

at higher loops is given in table 1.2.

1.4.3 Shortening and joining

As discussed, shortening happens whenever λa + νj = 0. At g = 0 this happens for all

multiplets that correspond to diagrams not touching the edges of the χ-hook. This means

that some fermionic duality transformations do not alter the HWS.

At g 6= 0 the situation is different. Generically, the shortening conditions are not

satisfied due to the running of νj . In consequence, all unprotected multiplets of operators

should be long representations of the symmetry with distinct highest weight states for all
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70 possible Dynkin paths on the 4|4 lattice. The only explanation of this phenomenon is

that the short pu(2, 2|4)⊕ u(1) multiplets must combine into larger psu(2, 2|4) multiplets.

Protected operators: the BMN vacuum

There is one type of multiplet that is not subject to joining: the multiplets containing the

states TrZL. The oscillator numbers are

nyp = [0, 0|L,L, 0, 0|0, 0] . (1.37)

Due to the fact that they are annihilated by half the supercharges, these operators are

protected from quantum corrections and have vanishing anomalous dimension, see e.g.

[11].

Shortening conditions

The non-trivial unitarity bounds are

λ1 + ν1 ≤ 0 , (1.38a)

λ4 + ν4 ≥ 0 . (1.38b)

These bounds must be satisfied by any member of a multiplet. For this, we need to require

that (1.38a) holds for gradings of the type {11̂}..., and that (1.38b) holds for gradings of

the type ...{44̂}. Here the notation {ab} means that a and b can be in either order.

Shortening happens when one or both bounds are saturated, i.e. when

λ1 + ν1 = nf1 − L− nb1 = 0 , (1.39a)

λ4 + ν4 = nf4 + na2 = 0 , (1.39b)

which we refer to as shortening conditions. On the level of oscillators, the condition

(1.39a) can only happen if nf1 = L and nb1 = 0. Similarly, (1.39b) implies nf4 = na2 =

0. Shortenings rule out the possibility of the length-changing replacements (1.36). In

particular, (1.39a) rules out (1.36a) and (1.39b) rules out (1.36b).

Joining

Let us take a short multiplet and reconsider what happens during fermionic duality trans-

formations that leave the HWS unchanged.

Consider a multiplet subject to the shortening (1.39a). The oscillator content in a

grading of the type 11̂... must be of the form

[0, nb2 |L, •, •, •|•, •]L11̂...
, (1.40a)
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1...4 1̂...4 1...4̂ 1̂...4̂

Figure 1.12: Example of four different Young diagrams for short multiplets that join into one at

finite coupling. The changes with respect to the diagram on the left are highlighted.

where the length and grading is specified in super- and subscript. If the multiplet was

long, the effect of the duality transformation to the 1̂1... grading would be {λ1, ν1} →
{λ1 + 1, ν1 − 1}, which seems to give the inadmissible oscillator content [1, nb2 |L +

1, •, •, •|•, 0]L
1̂1...

. However, this can be cured by the length-changing replacement (1.36a).

The resulting oscillator numbers are

[0, nb2 − 1|L+ 1, •, •, •|•, •]L+1
1̂1...

. (1.40b)

This is how joining works: short pu(2, 2|4)⊕u(1) multiplets of different lengths join into one

psu(2, 2|4) multiplet. A similar treatment reveals that multiplets subject to the shortening

(1.39b) combine as

[•, •|•, •, •, 0|na1 , 0]L
...4̂4

, (1.41a)

[•, •| •+1, •+ 1, •+ 1, 0|na1 − 1, 0]L+1
...44̂

. (1.41b)

If both shortenings (1.39) happen, the four multiplets

[0, •|L, •, •, 0|•, 0]L1...4 ,

[0, • − 1|L+ 1, •, •, 0|•, 0]L+1
1̂...4

,

[0, •|L+ 1, •+ 1, •+ 1, 0| • −1, 0]L+1
1...4̂

,

[0, • − 1|L+ 2, •+ 1, •+ 1, 0| • −1, 0]L+2
1̂...4̂

, (1.42)

join into one.

In table 1.3 we give examples of the different members of the short Konishi multiplet.

We also display the joining on the level of Young diagrams in figure 1.12. Note that two

identical Young diagrams can appear in different types of long multiplets as they can

describe the HWS in different gradings.

Stronger shortenings

We could also encounter an operator with nf1 = L and nb1 = nb2 = 0, which would satisfy

also the shortening λ1 + ν2 = 0. To make the joining (1.40) possible, it would have to
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Grading n Possible field content L ∆0 Young diagram

1

{ 21̂2̂3̂4̂3 }
4

[0, 0|1, 1, 1, 1|0, 0] ZZ̄, XX̄ , YȲ
2

2

1̂22̂3̂4̂3 [0, 1|2, 1, 1, 1|0, 0] ZΨ̄2,2, X Ψ̄32, YΨ̄42
5
2

1̂2̂233̂4̂ [0, 2|2, 2, 0, 0|2, 0] D2
12Z2 4

1̂

{ 122̂3̂4̂3 }
4

[0, 0|3, 1, 1, 1|0, 0] ZXY
3

3

122̂33̂4̂ [0, 0|3, 1, 0, 0|2, 0] ZΨ2
11 4

2̂3̂4̂123 [3, 3|3, 3, 3, 3|0, 0] F̄3
12, F̄11F̄12F̄21 6

1

{ 21̂2̂3̂34 }
4̂

[0, 0|2, 2, 2, 0|0, 0] ZXȲ
3

3

1̂2̂23̂34 [0, 2|3, 3, 2, 0|0, 0] ZΨ̄2
42 4

2341̂2̂3̂ [0, 0|0, 0, 0, 0|3, 3] F3
12, F11F12F21 6

1̂

{ 122̂3̂34 }
4̂

[0, 0|4, 2, 2, 0|0, 0] Z2X 2 4

2̂12343̂ [1, 1|4, 4, 0, 0|1, 1] D11D22Z4, D12D21Z4 4 6

2̂3̂1234 [2, 2|4, 4, 4, 0|0, 0] Ψ̄2
41Ψ̄2

42 6

Table 1.3: Selected components of the Konishi multiplet, which splits into four short multiplets at

g = 0.

be a HWS in the grading 1̂12... at finite coupling. Similarly, the case nf1 = nf2 = L and

nb1 = 0 implies the 11̂2̂... grading. If (1.39b) is supplemented by na2 = 0 it implies the

grading ...344̂, and if supplemented by nf3 = 0 it implies ...3̂4̂4 at finite coupling.

There is one scenario that the joining mechanism cannot handle: if both nb2 = 0 in

the {11̂2}... gradings and nf2 = L in the {11̂2̂}... gradings. The only multiplets in the

N = 4 spectrum with this property are the protected BMN vacua discussed above which

remain short at finite coupling.

1.4.4 Sectors

Shortening is crucial in understanding the appearance of closed sectors of operators. By

a closed sector, we refer to operators with restricted field content that do not mix with

operators with different field content, i.e. the eigenstates of the dilatation operator will be

a linear combination of single-trace operators of only this kind at any coupling. This is the

case when the psu(2, 2|4) quantum numbers, i.e. the six numbers λa−λa+1 and νj − νj+1,

can only be used to construct certain fields.

In a closed sector, some oscillators are passive in the sense that they are either saturated

(e.g. nf1 = L) or not excited at all (e.g. nf4 = 0), while some oscillators are excited and form

a set of non-trivial raising operators. Furthermore, the length-changing transformations

(1.36a) and (1.36b) do not excite the passive oscillators.

The six different possibilities of shortening are summarised in table 1.4. All closed

sectors can be understood in terms of combinations of these shortenings. For example,
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Rank 1 2 3 4 5 6

su(2)
�� ��
su(1|1)
�� ��
su(1, |1)
�� ��
su(1, 1)
�� ��

su(1|2)
�� ��
su(1, |2)
�� ��
su(1, 1|1)b

�� ��
su(1, 1|1)a

�� ��
psu(1, 1|2)
�� ��

su(2|3)
�� ��
su(2, |3)
�� ��
su(1, 2|2)
�� ��
su(2, 1|2)
�� ��

su(1, 2|3)
�� ��

su(2, 1|3)
�� ��

psu(2, 2|4)
�� ��

Figure 1.13: Closed sectors. lcompact lnon-compact.

the su(1, 1) = sl(2) sector combines the fourth and sixth type: [0, •|L,L, 0, 0|•, 0], while

the su(2, 1|3) sector is of the second type: [•, •|•, •, •, 0|•, 0]. All closed sectors are listed

in table 1.5. The rank of the sector is one lower than the number of active oscillators. The

sectors of low rank are subsectors of those of higher rank, and the relationship between

sectors is summarised in figure 1.13.

Note that in sectors where only one of the shortening conditions (1.39) is satisfied, one

of the length changing transformations (1.36) is allowed and results in an operator with

the same psu(2, 2|4) quantum numbers, but with a different length. As discussed, this

means that at higher loops the eigenstates of the dilatation operator can mix operators of

different length.

Figure 1.14 shows the Young diagrams for multiplets containing operators in the sl(2)

and su(2) sectors. Note that the multiplets nyp = [0, 0|L − 1, L − 1, 1, 1|0, 0] contain

operators from all sectors.

[nb|nf |na] Grading

[0, •|L, •, •, •|•, •] {11̂}...
[•, •|•, •, •, 0|•, 0] ...{44̂}
[0, 0|L, •, •, •|•, •] 1̂12...

[0, •|L,L, •, •|•, •] 11̂2̂...

[•, •|•, •, •, 0|0, 0] ...344̂

[•, •|•, •, 0, 0|•, 0] ...3̂4̂4

Table 1.4: Types of shortening and resulting grading for the state that remains a HWS at finite

coupling. Brackets {} denote interchangeable gradings.

1.4.5 Counting multiplets

In the AdS5/CFT4 context the counting of multiplets was done in [29, 34] by engineering

so(N) characters to account for supersymmetry and non-compactness. As proposed in

[5], we will take another approach. In section 1.2.2, we saw how to map a non-compact

representation to an u(N) representation via the extended Young diagram. All pu(2, 2|4)
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sl(2) su(2)

L− 1

L− 1

L− 1

L− 1

S
−

2

S
−

2

L− 3

L−M − 1

M − 1

M − 1

L−M − 1

L− 3

Figure 1.14: Young diagrams (of yp HWS) for multiplets containing sl(2), DS12ZL, and su(2),

ZL−MXM , operators.

diagrams can in fact be seen as representations of u(4+nypb2
+nypa1

) with central charge C =

2+nypb2
. We can exploit this to apply the tools of section 1.3 to count the multiplets in N =

4 SYM. An important point is that it is possible to make a cut-off in the classical dimension

given by (1.31). To account for all multiplets up to a maximal classical dimension ∆yp0,max

of the HWS in the yp grading, it is sufficient to consider u(2∆yp0,max) representations where

the tensor product components are in representations with central charge C = ∆yp0,max, cf.

(1.30). Details of such calculations are given in appendix A.2. Table 1.6 gives an overview

of the multiplets with ∆yp0 ≤ 5.5. See appendix A.3 for a list of all multiplets with ∆yp0 ≤ 8.

Subconclusion

In this chapter, we have seen how to construct and classify Jordan-Schwinger type rep-

resentations of u(N,M |K) in terms of oscillators and Young diagrams. By introducing

the idea of extended Young diagrams, we have seen how to use standard Schur polynomi-

als to decompose tensor products of non-compact representations into irreps, also taking

cyclic equivalence into account. We then applied this framework to the global symmetry

of N = 4 SYM in the limit g → 0. We saw how its representations quite magically glue

together at finite coupling to form long psu(2, 2|4) multiplets.

With a clear picture of the content of multiplets of single-trace operators in N = 4

SYM, we are ready to start our search for the anomalous dimensions that characterise

each of these multiplets. The dilatation operator, of which the anomalous dimensions are

eigenvalues, turns out to have the remarkable property that it acts like the Hamiltonian of

an integrable system. Integrable models have a rich underlying mathematical structure,

which can be formulated in terms of a Q-system, and these structures will be the topic

of the next chapter. For now, the introduction of extended Young diagrams gave us an

intuitive way to classify and count irreps. Their true usefulness will be revealed in chapter

5, where they will serve as skeletons for Q-systems.
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Rank Sector Field content [nb|nf |na] Grading(s)

1

su(1, 1) DS
12ZL [ 0 , S |L , L , 0 , 0 |S , 0 ] 11̂2̂233̂4̂4

su(1, |1) ZL−N Ψ̄N
42 [ 0 , N |L , L , N , 0 | 0 , 0 ] 11̂2̂[23̂]344̂

su(1|1) ZL−NΨN
11 [ 0 , 0 |L , L−N , 0 , 0 |N , 0 ] 1̂12[32̂]3̂4̂4

su(2) ZL−MXM [ 0 , 0 |L , L−M , M , 0 | 0 , 0 ] 1̂122̂3̂344̂

2

su(1, 1|1)a DS
12ZL−NΨN

11 [ 0, S |L , L−N , 0 , 0 |S+N, 0 ] {11̂}[232̂]3̂4̂4

su(1, 1|1)b DS
12ZL−N Ψ̄N

42 [ 0, S+N |L , L , N , 0 |S, 0 ] 11̂2̂[233̂]{44̂}
su(1, |2) ZL−M−NXM Ψ̄N

42 [ 0, N |L,L−M,M+N, 0 | 0, 0 ] {11̂}[22̂3̂]344̂

su(1|2) ZL−M−NXMΨN
11 [ 0, 0 |L,L−M−N,M, 0 |N, 0 ] 1̂12[32̂3̂]{44̂}

3 psu(1, 1|2)
DS

12ZL−M−N1−N2+S

XM+SΨN1−S
11 Ψ̄N2−S

42

[ 0 , N2 |L , L−M−N1 ,

M+N2 , 0 |N1 , 0 ]
{11̂}[232̂3̂]{44̂}

4

su(2, 1|2)
DS1

11D
S2
12ZL−N1−N2+n

ΨN1−n
11 ΨN2−n

21 Fn
11

[S1 , S2 |L−N2 , L−N1 ,

0 , 0 |N1+N2+S1+S2 , 0 ]
[1231̂2̂]3̂4̂4

su(2, |3)
ZL−M1−M2−N1−N2

XM1ȲM2Ψ̄N1
42 Ψ̄N2

41

[N2 , N1 |L−M2 , L−M1 ,

M1+M2+N1+N2 , 0 | 0 , 0 ]
[121̂2̂3̂]344̂

su(1, 2|2)
DS1

12D
S2
22ZL−N1−N2+n

Ψ̄N1−n
42 Ψ̄N2−n

32 F̄n
22

[ 0 , S1+S2+N1+N2 |L , L ,
N1 , N2 |S1 , S2 ]

11̂2̂[2343̂4̂]

su(2|3)
ZL−M1−M2−N1−N2

XM1YM2ΨN1
11 ΨN2

12

[ 0, 0 |L,L−M1−M2−N1−N2 ,

M1 , M2 |N1 , N2 ]
1̂12[342̂3̂4̂]

5

su(1, 2|3)
D•12D•22X •Y•Z•

Ψ•11Ψ•12Ψ̄•42Ψ̄•32Ψ̄•22F̄•22
[0, •|L, •, •, •|•, •] [1231̂2̂3̂]{44̂}

su(2, 1|3)
D•11D•12X •Ȳ•Z•

Ψ̄•42Ψ̄•41Ψ•11Ψ•21Ψ•31F•11
[•, •|•, •, •, 0|•, 0] {11̂}[2342̂3̂4̂]

Table 1.5: Closed sectors. Passive oscillators are marked in grey. A bracket [ ] denotes duality

transformations that shuffle active oscillators and change the HWS within the sector

while preserving the length. A bracket {} denotes a duality transformation that shuffles

passive oscillators and changes the HWS within the sector while changing L. Note that

the field content in the psu(1, 1|2), su(2, 1|2), su(1, 2|2), su(2, 1|3) and su(1, 2|3) sectors is

not completely fixed by the oscillator numbers, but they can still be considered sectors

as only a restricted field content can appear.
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∆yp
0 L [nb |nf |na ]yp S1 S2 Sector Multiplicity

2 2-4 [0, 0|1, 1, 1, 1|0, 0] 4 4 all 1

3 3-5 [0, 0|2, 2, 1, 1|0, 0] 4 4 all 1

4

4-6 [0, 0|3, 3, 1, 1|0, 0] 4 4 all 2

3-5 [0, 1|2, 2, 1, 1|1, 0] 4 4 sl(2) 2

2-4 [0, 2|1, 1, 1, 1|2, 0] 4 4 sl(2) 1

4-6 [0, 0|3, 2, 2, 1|0, 0] 4 4 su(2) 1

3-4
[0, 0|1, 1, 1, 1|2, 0] 8 4 su(2, 1|2) 1

[0, 2|2, 2, 2, 2|0, 0] 4 8 su(1, 2|2) 1

4 [0, 0|2, 2, 2, 2|0, 0] 8 8 psu(2, 2|4) 2

5

5-7 [0, 0|4, 4, 1, 1|0, 0] 4 4 all 2

4-6 [0, 1|3, 3, 1, 1|1, 0] 4 4 sl(2) 2

3-5 [0, 2|2, 2, 1, 1|2, 0] 4 4 sl(2) 1

5-7 [0, 0|4, 3, 2, 1|0, 0] 4 4 su(2) 2

4-6
[0, 0|3, 1, 1, 1|2, 0]

4 4
su(1|1) 1

[0, 2|3, 3, 3, 1|0, 0] su(1, |1) 1

4-6 [0, 1|3, 2, 2, 1|1, 0] 4 4 psu(1, 1|2) 4

5-6
[0, 0|3, 3, 3, 1|0, 0] 8 4 su(2, |3) 2

[0, 0|4, 2, 2, 2|0, 0] 4 8 su(2|3) 2

4-5
[0, 0|2, 2, 1, 1|2, 0] 8 4 su(2, 1|2) 2

[0, 2|3, 3, 2, 2|0, 0] 4 8 su(1, 2|2) 2

5 [0, 0|3, 3, 2, 2|0, 0] 8 8 psu(2, 2|4) 4

4 [0, 1|2, 2, 2, 2|1, 0] 8 8 psu(2, 2|4) 2

11
2

5-7
[0, 0|4, 3, 1, 1|1, 0]

4 4
su(1|1) 2

[0, 1|4, 4, 2, 1|0, 0] su(1, |1) 2

4-6
[0, 1|3, 2, 1, 1|2, 0]

4 4
su(1, 1|1)a 2

[0, 2|3, 3, 2, 1|1, 0] su(1, 1|1)b 2

3-5
[0, 2|2, 1, 1, 1|3, 0]

4 4
su(1, 1|1)a 2

[0, 3|2, 2, 2, 1|2, 0] su(1, 1|1)b 2

5-6
[0, 0|3, 3, 2, 1|1, 0] 8 4 su(2, 1|3) 4

[0, 1|4, 3, 2, 2|0, 0] 4 8 su(1, 2|3) 4

4-5
[0, 1|2, 2, 2, 1|2, 0] 8 4 su(2, 1|3) 4

[0, 2|3, 2, 2, 2|1, 0] 4 8 su(1, 2|3) 4

5
[0, 0|3, 2, 2, 2|1, 0]

8 8 psu(2, 2|4)
4

[0, 1|3, 3, 3, 2|0, 0] 4

Table 1.6: All unprotected multiplets for which ∆yp
0 ≤ 11

2
. The columns S1 and S2 denote whether

the two shortening conditions (1.38a) and (1.38b), are saturated, respectively.



Chapter 2

Spin chains and integrability

We call a model quantum integrable if it falls within the framework of Bethe ansatz tech-

niques, where the Yang-Baxter equation is the basic prerequisite. This chapter gives

a practical and informal review of these frameworks, and the discussion will progress

through explicit examples. To avoid getting lost in tedious notation, we will introduce the

techniques in a model with su(2) symmetry, the Heisenberg spin chain, and comment on

the generalisation to higher rank symmetry at the end of the chapter. The main goal is

to introduce the concept of a Q-system, which plays a central role throughout the thesis.

2.1 The Heisenberg spin chain and coordinate Bethe ansatz

The Heisenberg spin chain is not only a convenient toy model on which the tools of

integrability can be demonstrated, it also describes the one-loop spectrum of the su(2)

sector in N = 4 SYM.

2.1.1 The closed Heisenberg spin chain

Consider a one-dimensional model of L spins, which are all in the same representation of

some Lie algebra, with periodic boundary conditions, see figure 2.1. In the Heisenberg spin

chain, these spins belong to the two-dimensional fundamental representation of su(2), and

we denote the states spin up ↑ and spin down ↓. The model is specified by the Hamiltonian

H =
L∑
k=1

(I− Pk,k+1) , (2.1)

where Pi,j is the permutation operator that interchanges the spins at position i and j. As

the chain is closed, we identify the k’th and the (L+ k)’th site, i.e. PL,L+1 = PL,1. Notice

that the Hamiltonian only contains interactions between neighbouring spins.

Through the permutation operator, we can define a shift operator U that shifts all

33
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Figure 2.1: A closed Heisenberg spin chain.

spins by one site towards the left:

U = PL−1,L · · ·P2,3P1,2 . (2.2)

For example, U · ↑↑↓ = ↑↓↑. By using the properties Pi,j = Pj,i and Pi,jPj,k = Pi,kPi,j , one

can show that the shift operator commutes with the Hamiltonian (2.1).

We can furthermore define a spin-flip operator, S↑, that flips a down spin to an up

spin and annihilates the state if it acts on an up spin. It acts via the chain rule, e.g.

S↑ · ↓↑↓ = ↑↑↓+ 0 + ↓↑↑ . (2.3)

We can define the opposite spin-flip operator S↓ similarly1. The spin-flip operators also

commute with H.

The Hamiltonian acts linearly on the vector space of spin chain configurations. It

only relates spin chain configurations with the same length, and the same number of up

and down spins. We call these subspaces magnon blocks. We denote the length of the

chain by L, and the number of down spins (magnons) by M . The Hamiltonian can be

represented by a matrix that is block diagonal on each magnon block. We are interested

in its eigenstates and eigenvalues.

Example: L = 3, M = 1

As an example, consider chains of length three. There are eight spin chain configurations

forming four magnon blocks:

↑↑↑ ↑↑↓ ↑↓↑ ↓↑↑ ↑↓↓ ↓↑↓ ↓↓↑ ↓↓↓

Let us consider the magnon block corresponding to M = 1 and denote the spin chain

configurations by the vectors

↑↑↓ ≡


1

0

0

 , ↑↓↑ ≡


0

1

0

 , ↓↑↑ ≡


0

0

1

 . (2.4)

1In terms of the Jordan-Schwinger oscillators introduced in section 1.1.3 our states are ↑ = a†1|0〉 and

↓ = a†2|0〉. A spin chain configuration is a tensor product, e.g. ↓↑↓ = a†2|0〉 ⊗ a†1|0〉 ⊗ a†2|0〉. The spin-flip

operators on a single site are the symmetry generators S↑ = a†1a2 and S↓ = a†2a1. On tensor products they

act like S↑ = a†1a2 ⊗ 1⊗L−1 + 1⊗ a†1a2 ⊗ 1⊗L−2 + ...+ 1⊗L−1 ⊗ a†1a2.



2.1. The Heisenberg spin chain and coordinate Bethe ansatz 35

On this subspace the Hamiltonian is

H =


2 -1 -1

-1 2 -1

-1 -1 2

 . (2.5)

This matrix can easily be diagonalised yielding the eigenvalues and -states (Hψ = Eψ)

E0 = 0 ψ0 =


1

1

1

 = ↑↑↓+ ↑↓↑+ ↓↑↑

E± = 3 span{ψ+, ψ−} = span{


-1

1

0

 ,


-1

0

1

} . (2.6)

The shift operator is

U =


0 0 1

1 0 0

0 1 0

 , (2.7)

with eigenvalues and -vectors2 (Uφ = υφ)

υ0 = 1 φ0 =


1

1

1

 = ↑↑↓+ ↑↓↑+ ↓↑↑ (2.8)

υ± =
−1± i

√
3

2
= e±

2iπ
3 φ± =


e∓

2iπ
3

e±
2iπ
3

1

 = e∓
2iπ
3 ↑↑↓+ e±

2iπ
3 ↑↓↑+ ↓↑↑ .

We thus have a set of non-degenerate eigenvectors, ψ0 = φ0 and φ± that are simultaneous

eigenstates of the Hamiltonian and the shift operator.

The whole space of length-three states form irreps of the su(2) symmetry, for which the

spin-flip operators play the role of raising and lowering operators. One multiplet is four-

dimensional while the other two are two-dimensional3, see figure 2.2. As H commutes with

the spin-flip operators, we know that all states within a multiplet have the same energy.

We learned another lesson here: the Hamiltonian has simple, rational-valued entries,

while its eigenvalues are more general algebraic numbers arising from the diagonalisation.

2The trained representation theorist might notice that U is just a representation of the permutation

(12...L) belonging to the cyclic group ZL. Its eigenvalues are simply the character of the one-dimensional

irreps formed by the corresponding eigenstate on the group element (12...L).

3On the level of Young diagrams, this is the statement
⊗3 = ⊕ 2 which is easily verified

using characters.
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↑↑↑ ↑↑↓+ ↑↓↑+ ↓↑↑ ↑↓↓+ ↓↑↓+ ↓↓↑ ↓↓↓

e∓
2iπ
3 ↑↑↓+ e±

2iπ
3 ↑↓↑+ ↓↑↑ e±

iπ
3 ↓↓↑+ e∓

iπ
3 ↓↑↓ − ↑↓↓


 
 





Figure 2.2: The su(2) irreps formed by length-three spin chains.

2.1.2 The coordinate Bethe ansatz

We can proceed as above to find the energy spectrum of the Heisenberg spin chain. How-

ever, the matrices quickly grow in size, and the diagonalisation soon becomes practically

impossible. A more sophisticated technique, the coordinate Bethe ansatz, was proposed

by Hans Bethe in 1931 [35].

Ansatz for the eigenstates

Consider a spin chain of length L with M magnons. Bethe’s approach is to write a plane-

wave ansatz for the eigenfunctions of the Hamiltonian:

Ψ(p1, p2, ..., pM ) =
∑
σ∈SM

Aσ ψ(pσ(1), pσ(2), . . . , pσ(M)) , (2.9)

where the sum is over all M ! permutations in the permutation group SM , and where ψ is

the plane wave

ψ(p1, p2, ..., pM ) =
∑

1≤k1<k2<...<kM≤L
ei

∑M
j=1 pjkjφk1,...,kM , (2.10)

with φk1,...,kM being the spin chain configuration with magnons at the sites kj , e.g. φ2,5 =

↑↓↑↑↓ for L = 5. We can always choose a normalisation such that AId = 1.

Periodicity of the chain is realised as the equivalence between labelling the last site in

the chain as 0 or L, i.e.

φk1,...,kM−1,L = φ0,k1,...,kM−1
. (2.11)

One magnon

For a single magnon, M = 1, the ansatz (2.9) is quite simple:

Ψ(p) = eipφ1 + e2ipφ2 + . . .+ eLipφL . (2.12)

Periodicity (2.11) means that we could have replaced the last term by e0·ipφ0. This results

in a quantisation condition,

eipL = 1 . (2.13)
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We can interpret p as a momentum of the magnon. Indeed, applying the shift operator is

a discrete analog of a translation, and on the one-magnon state it gives

U Ψ(p) = eip Ψ(p) , (2.14)

by using the quantisation (2.13).

Applying the Hamiltonian to the wavefunction (2.12) reveals that it is exactly an

eigenstate when the momentum quantisation (2.13) is satisfied. Its eigenvalue is given by

H Ψ(p) =
(
2− 2 cos(p)

)
Ψ(p) . (2.15)

Two magnons

For more magnons, we need to fix the amplitudes Aσ. Consider the case of two magnons.

The plane wave ψ(p1, p2) is not an eigenstate of H, but it turns out that the choice4

A(12) = −1− 2eip2 + ei(p1+p2)

1− 2eip1 + ei(p1+p2)
(2.16)

takes care of the off-diagonal terms and ensures that Ψ(p1, p2) is an eigenstate with eigen-

value E(p1) +E(p2), where E(p) ≡ 2− 2 cos(p) as in (2.15). At this stage, it is convenient

to make a change of variables from p to a rapidity u defined through

u =
1

2
cot
(p

2

)
⇔ eip =

u+ i

2

u− i

2

. (2.17)

In terms of u the amplitude A(12) takes a simple form. In fact, we will rename it S12 ≡ A(12)

and let it define a function Sab, through

Sab =
ua − ub − i

ua − ub + i
. (2.18)

Note the property SabSba = 1. We will refer to S as a scattering matrix or S-matrix.

Imposing periodicity (2.11) on the wavefunction Ψ(p1, p2) leads to the constraints

eip1L = S12 , eip2L = S21 . (2.19)

M magnons

Any element of the symmetric group SM can be split into elementary permutations of

neighbouring labels, e.g. (123) = [13][12]. For arbitrary magnon number, the amplitudes

in (2.9) turn out to have the factorised form

Aσ = A[a1b1][a2b2]...[anbn] =

n∏
j=1

Sajbj . (2.20)

4We here use the standard cycle notation to label permutations, see e.g. [23], where a permutation(
1 2 ... n

σ(1) σ(2) ... σ(n)

)
is written in terms of its closed cycles e.g.

(
1 2 3 4 5 6

3 6 4 1 5 2

)
= (134)(26).
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The energies of the states are simply E =
∑M

j=1E(pj). An important point here is that

the decomposition of a permutation into elementary permutations is ambiguous. The first

appearance arises in the three-magnon wavefunction, where A(13) can be written in two

ways, since (13) = [12][13][23] = [23][13][12]. In order for the amplitudes (2.20) in the

Bethe wavefunction to be unambiguous, Sab must satisfy the Yang-Baxter equation,

S12S13S23 = S23S13S12 , (2.21)

and (2.18) trivially does.

Periodicity of the wavefunction (2.9) in general leads to M constraints of the form

eipjL =
M∏

k=1, k 6=j
Skj , (2.22)

which in terms of u read (
uj + i

2

uj − i

2

)L
= −

M∏
k=1

uj − uk + i

uj − uk − i
. (2.23)

These are the famous su(2) Bethe equations. In practice, these algebraic equations are

rather hard to solve, but for now we will accept them as a beautiful solution to the spectral

problem of the Heisenberg spin chain. The Bethe roots uj determine the momentum and

energy eigenvalues through

eiptotal =
M∑
j=1

uj + i

2

uj − i

2

, E =
M∑
j=1

2− 2 cos(pj) =
M∑
j=1

1

u2
j + 1

4

. (2.24)

Example: L = 3, M = 1

Consider again the example L = 3 and M = 1. There is just one Bethe equation (2.23)

on a single root, (u + i

2)3 = (u − i

2)3. This quadratic equation has the two solutions

u = ± 1
2
√

3
, both corresponding to E = 3 via (2.24). This matches two of the eigenstates

(2.8) but what happened to the eigenstate with E = 0? Recall that this state was part

of a four-dimensional multiplet, and that it was not a HWS (the corresponding HWS is

either ↑↑↑ or ↓↓↓ depending on definition). It is clear from (2.24) that E = 0 corresponds

to u = ∞. This is a general feature of descendants: their Bethe roots diverge. A regular

solution will appear only in the Bethe equations where M correspond to the HWS in the

multiplet.

2.2 Algebraic Bethe ansatz

We have seen how to reduce the problem of finding the energy spectrum of the Heisenberg

spin chain to solving a set of algebraic equations, but why do we call it integrable? The
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Heisenberg spin chain belongs to a family of models that fit into the framework of the

quantum inverse scattering method or algebraic Bethe ansatz. The classic reference on this

topic is [36]. A clear and basic review is given in [37]. The review [38] gives a nice overview

with emphasis on the aspects relevant to the discussion here.

The algebraic Bethe ansatz deals with models where the configuration space is a tensor

product, H = H1⊗· · ·⊗HL. For the Heisenberg spin chain, each site is a two-dimensional

vector space Hj = C2, so a spin chain of length L corresponds to H = (C2)⊗L. We will

refer to this vector space as physical space. In addition, we will introduce a number of

auxiliary spaces, Aj . The algebraic Bethe ansatz involves a variety of operators that act

on these spaces, see table 2.1.

Name Symbol Acts (non-trivially) in

Transfer matrix T H
Monodromy matrix Mj H⊗Aj

R-matrix Rjk Aj ⊗Ak
Lax operator Lj,k Hj ⊗Ak

Table 2.1: Overview of operators in the algebraic Bethe ansatz.

The transfer and monodromy matrix

The key feature of an integrable model is an infinite set of commuting operators On,

including the Hamiltonian. The idea of the algebraic Bethe ansatz is to package these

operators into a generating function, the transfer matrix,

T (u) = e
∑∞
n=0

(u− i
2 )n

n!
On , On =

dn

dun
ln T (u)

∣∣∣∣
u= i

2

. (2.25)

The transfer matrix is a function of a spectral parameter u, and it acts on the whole

physical space H.

The transfer matrix is related to a monodromy matrix that likewise acts in the whole

physical space, but also in one auxiliary space. The transfer matrix is the trace of the

monodromy matrix over this auxiliary space:

T (u) = TrAjMj(u) . (2.26)

The R-matrix and the Yang-Baxter equation

From the definition of the transfer matrix, it is a requirement that it commutes with itself

at arbitrary values of the spectral parameter, i.e.

[T (u), T (v)] = 0 . (2.27)
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Consider now the tensor product of the physical space and a number of auxiliary spaces,

H⊗A1 ⊗A2 ⊗A3 ⊗ · · · . Due to the cyclicity of the trace, we should then have

TrA1⊗A2 (M1(u)M2(v)) = TrA1⊗A2 (M2(v)M1(u)) (2.28)

which is true if the arguments of the traces are related by a similarity transformation in

the auxiliary spaces A1 ⊗A2 given by some invertible matrix R12:

R12(u, v)M1(u)M2(v) =M2(v)M1(u)R12(u, v) . (2.29)

This R-matrix should have some nice properties. If we try to use R to relate the product

M1(u)M2(v)M3(w) to M3(w)M2(v)M1(u), we see that there are two ways to do it5.

A sufficient condition for the equivalence of the two possibilities is that R satisfies the

Yang-Baxter equation

R23(v, w)R13(v, w)R12(u, v) = R12(u, v)R13(v, w)R23(v, w) . (2.30)

It is possible to choose R such that

R12(u, v)R21(v, u) = 1 . (2.31)

We will look at R-matrices with these properties.

The R-matrix as the building block

The R-matrix is the fundamental object in the algebraic Bethe ansatz, and it encodes the

information about the model.

For simplicity6, let the auxiliary space be A = C2. On A the monodromy matrix is

then a 2×2 matrix which we can write as

M(u) ≡

(
A(u) B(u)

C(u) D(u)

)
, (2.32)

where A, B, C and D are operators acting on H. By (2.26) the transfer matrix is T (u) =

A(u) +D(u).

The R-matrix is a 4×4 matrix on A⊗2. We can now start looking for solutions that

satisfy (2.30). The structure of the R-matrix can be constrained by the symmetry which

5In the same way that we had two ways to decompose the permutation (13) in section 2.1.2.
6We could equally well have chosen a different representation in the auxiliary space. This would lead

to a different transfer matrix, but generating the same information about the model. It turns out that

the family of such transfer matrices satisfy a set of functional relations referred to as a T-system. We will

encounter this system in chapter 3.
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we want it to respect. For instance, if we want to preserve the magnon number and not

give a preference to one type of spin, then the most general ansatz for R has the form

Rjk(u, v) =


α(u, v) 0 0 0

0 β(u, v) γ(u, v) 0

0 γ(u, v) β(u, v) 0

0 0 0 α(u, v)

 , (2.33)

on the basis ei = {↑↑, ↑↓, ↓↑, ↓↓}i. If we plug such an ansatz into (2.31) and (2.30) we get

constraints on its entries. Likewise, the relation (2.29) would result in bilinear relations

between A, B, C and D with the entries of R as coefficients.

Eigenstates of the transfer matrix and Bethe equations

Our goal is to study the eigenstates of T = A + D. Assume that H contains a state |0〉
that is annihilated by C and is a simultaneous eigenstate of A and D, i.e.

A(u)|0〉 = a(u)|0〉 , D(u)|0〉 = d(u)|0〉 , C(u)|0〉 = 0 . (2.34)

Acting with B creates further states M∏
j=1

B(uj)

 |0〉 ≡ |u1, u2, . . . , uM 〉 . (2.35)

We would like these states to also be eigenstates of T = A + D. If we act on the states

by A and D, we can use the bilinear relations derived from (2.29) to commute A and D

through the B’s. This will produce cross-terms different from (2.35) unless the eigenvalues

a(u) and d(u) satisfy very particular constraints that are strongly dependent on the entries

of the R-matrix. These are a generalised version of Bethe equations.

2.2.1 The Heisenberg spin chain

To go any further, we need to specify the R-matrix and also the monodromy matrix.

We will now axiomatically state these constructions for the Heisenberg spin chain and

demonstrate that they reproduce the wanted model.

The R-matrix, R(u, v) = R(u− v), acting on Aj ⊗Ak is given by

Rjk(u) = u Ijk + iPjk = u

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+ i

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (2.36)

where Pjk permutes the two auxiliary spaces. Recall the construction of su(2) generators

in terms of two Jordan-Schwinger oscillators a1 and a2 in section 1.1.3. Each space C2 is
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spanned by a†1|0〉 and a†2|0〉. We can write the R-matrix (2.36) as

Rjk(u) = u+ i

(
a†1,ja1,ja

†
1,ka1,k + a†1,ja2,ja

†
2,ka1,k + a†2,ja1,ja

†
1,ka2,k + a†2,ja2,ja

†
2,ka2,k

)
,

(2.37)

where the extra subscript denotes which space the oscillator acts in. We can also write

this as a 2× 2 matrix on one of the spaces7

Rjk(u) =

(
u+ ia†1,ja1,j ia†2,ja1,j

ia†1,ja2,j u+ ia†2,ja2,j

)
(k)

= (j ↔ k) . (2.38)

Note that this can be written even more compactly as e.g. (Rjk)ab = u 1ab + iE†ab,j , where

Eab are the u(2) generators as in (1.16).

The monodromy matrix is constructed via the introduction of a Lax matrix Lj,k that,

up to a shift u → u − i

2 , is really just the R-matrix acting on one physical space Hj and

one auxiliary space Ak,

Lj,k(u) =

(
u− i

2 + ia†1,ja1,j ia†2,ja1,j

ia†1,ja2,j u− i

2 + ia†2,ja2,j

)
(k)

. (2.39)

A monodromy matrix satisfying (2.29) can then be built as

Mj(u) = L1,j(u)L2,j(u) · · · LL−1,j(u)LL,j(u) . (2.40)

As argued above, the transfer matrix constructed from (2.36) and (2.40) generates an

infinite family of commuting operators, cf. (2.25), of which the shift operator (2.2) and

the Hamiltonian (2.1) can be constructed as linear combinations. The shift operator is

U ∝ T ( i

2) , (2.41)

and the Hamiltonian is

H ∝ L I− i
d

du
ln T (u)

∣∣∣∣
u= i

2

= L I− i T (u)−1 d

du
T (u)

∣∣∣∣
u= i

2

. (2.42)

The derivation is elementary, but a bit tedious unless one uses a graphical notation, and we

refer to [36] for the details. Instead we demonstrate the construction on a simple example.

Example: L = 3, M = 1

For length three, i.e. H = (C2)⊗3, the transfer matrix is

T (u) = TrAk(Mk) = TrAk(L1,kL2,kL3,k)

= 〈0|a1,kMk a†1,k|0〉+ 〈0|a2,kMk a†2,k|0〉 . (2.43)

7We use basis vectors

(
1

0

)
k

= a†1,k|0〉k and

(
0

1

)
k

= a†2,k|0〉k.
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Explicitly, the transfer matrix is

T (u) =
(

1 0
) ∏
j∈{3,2,1}

(
u− i

2 + ina1,j ia†2,ja1,j

ia†1,ja2,j u− i

2 + ina2,j

)(
1

0

)

+
(

0 1
) ∏
j∈{3,2,1}

(
u− i

2 + ina1,j ia†2,ja1,j

ia†1,ja2,j u+ i

2 − ina2,j

)(
0

1

)

= 2u3 − 3iu2 − 3

2
u+

i

4
+

(
iu2 + u− i

4

) 2∑
α=1

3∑
j=1

naα,j (2.44)

−
(
u− i

2

) 2∑
α=1

∑
1≤j<k≤3

naα,jnaα,k −
(
u− i

2

) 3∑
j, k=1

j 6=k

a†1,ja2,ja
†
2,ka1,k

−i

2∑
α=1

naα,1naα,2naα,3 − i

2∑
α=1

∑
σ∈Z3

naα,σ(1)
a†α,σ(2)aᾱ,σ(2)a

†
ᾱ,σ(3)aα,σ(3) ,

where ᾱ means the complement, e.g. 1̄ = 2. Note that it is a polynomial of degree L = 3

in u. On the subspace
1

0

0

 = ↑↑↓ = a†1,1a
†
1,2a

†
2,3|0〉

⊗3


0

1

0

 = ↑↓↑


0

0

1

 = ↓↑↑ (2.45)

the transfer matrix is

T (u) =


2u3 + u

2 −u+ i

2 −u− i

2

−u− i

2 2u3 + u
2 −u+ i

2

−u+ i

2 −u− i

2 2u3 + u
2

 . (2.46)

Around u = i

2 it behaves like

T (u+ i

2) = −

0 0 i

i 0 0

0 i 0

+ u

-1 -1 -1

-1 -1 -1

-1 -1 -1

+O(u2) , (2.47)

and through (2.41) and (2.42) we get

U = i T ( i

2) =

0 0 1

1 0 0

0 1 0

 (2.48)

H = L I− iT -1( i

2)T ′( i

2) = 3

1 0 0

0 1 0

0 0 1

− i

0 i 0

0 0 i

i 0 0

-1 -1 -1

-1 -1 -1

-1 -1 -1

 =

 2 -1 -1

-1 2 -1

-1 -1 2

 ,

which coincides with the Hamiltonian (2.5) and shift operator (2.7).
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2.3 Q-operators

We have now seen three ways of finding the spectrum of the Heisenberg spin chain, each

one going one layer deeper in the underlying mathematical structure. We will now try to

go even a step further. The idea is roughly to factorise the Lax operator (2.39) and use the

factors as building blocks for transfer matrix-like objects called Q-operators. Q-operators

were first introduced for the eight-vertex model [39], and only recently constructed for the

Heisenberg spin chain [40]. In constrast to the eight-vertex model, the construction of

Q-operators for the Heisenberg spin chain requires the introduction of a regulator.

2.3.1 Introducing a twist

We can introduce a twist, which is a parameter that breaks the off-diagonal symmetries, cf.

(1.16), of the spin chain model. In the Heisenberg spin chain, we can do this by modifying

the periodicity condition (2.11) to

φk1,...,kM−1,L = x2 φ0,k1,...,kM−1
. (2.49)

where x = eiΦ is a pure phase. In turn, this modifies the Bethe equations (2.23) to(
uj + i

2

uj − i

2

)L
= − 1

x2

M∏
k=1

uj − uk + i

uj − uk − i
. (2.50)

In contrast to the untwisted case, all eigenstates will appear as regular solutions of these

equations. We have broken the symmetry, so there are no descendants. For L = 3 and

M = 1 we now have a cubic equation with solutions

u = − i

2
+

i

1− e
2πin

3 x
1
3

, n = 0, 1, 2 . (2.51)

Note that in the limit x→ 1 we recover the roots u = ± 1
2
√

3
and u→∞.

In the algebraic Bethe ansatz set-up, the twist appears in the monodromy matrix (2.40)

which is modified to

Mj(u) =

(
x 0

0 1
x

)
j

L1,j(u)L2,j(u) · · · LL−1,j(u)LL,j(u) . (2.52)

2.3.2 The construction

The construction of Q-operators for the Heisenberg spin chain [40] is analogous to the

construction of transfer matrices. The Q-operators are built from Lax operators that are

in some sense factorisations of the Lax operators of a generalised version of the transfer

matrix, see [40]. The important difference is that for the Q-operators, the auxiliary space

is infinite-dimensional. An overview of the operators appearing in the construction is given

in table 2.2.
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Name Symbol Acts in

Q-operator QJ H
Lax operator L(j)

J Hj ⊗A

Table 2.2: Overview of operators in the Q-operator construction.

The auxiliary space

The auxiliary space is not a representation of the su(2) symmetry algebra, as it was the

case for transfer matrices, but instead a Fock space generated by a set of oscillators ξaā

with a 6= ā ∈ {1, 2} satisfying the algebra

[ξaā, ξ̄bb̄] = δabδāb̄ . (2.53)

ξ̄aā and ξaā form a set of raising and lowering operators acting in a separate space Aaā
with vacuum ξaā|0〉aā = 0. The auxiliary space is formed by a tensor product of these

individual oscillator spaces,

〈k1, k2| ≡
1√
k1!k2!

12〈0|ξk1
12 ⊗ 21〈0|ξk2

21 , |k1, k2〉 ≡
1√
k1!k2!

ξ̄k1
12 |0〉12 ⊗ ξ̄k2

21 |0〉21 . (2.54)

A trace over this space is then formally the sum

TrA(f) =

∞∑
k1,k2=0

〈k1, k2|f |k1, k2〉 . (2.55)

As we will see below, the twist is needed in order to make such sums convergent. We

denote number operators on the individual spaces |0〉aā by Naā ≡ ξ̄aāξaā.

Lax operators

We introduce a set of Lax operators labelled by a set J ⊂ {1, 2}, i.e. four in total: L∅,
L{1}, L{2} and L{1,2}. With a particular choice of normalisation, they can be written as

[40]

LJ(u) = e
∑
j∈J,j̄∈J̄ ξ̄jj̄a

†
j̄
aj
[
iu− |J |2

]∑
j̄∈J̄ naj̄

e−
∑
j∈J,j̄∈J̄ ξjj̄a

†
jaj̄ , (2.56)

where the oscillators a act in the physical space which is in the fundamental representa-

tion of su(2), |J | is the numbers of elements in the set J , and where we introduced the

Pochhammer symbol

[n]m = n(n+ 1) · · · (n+m− 1) =
Γ(n+m)

Γ(n)
. (2.57)
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Using that na1 + na2 = C = 1 for the fundamental representation of su(2), the four

explicit Lax operators are

L∅ = u (2.58a)

L{1} = eξ̄12a
†
2a1
[
iu− 1

2

]
na2

e−ξ12a
†
1a2 (2.58b)

L{2} = eξ̄21a
†
1a2
[
iu− 1

2

]
na1

e−ξ21a
†
2a1 (2.58c)

L{1,2} = 1 . (2.58d)

Constructing the Q-operators

The Q-operators are defined by [40]

QJ(u) =

∏
j∈J

x−iu
j

 T̂rA

(
L(1)
J · · · L

(L)
J

)
, (2.59)

where x1 = x and x2 = 1
x , L(j)

J acts on Hj , and where T̂rA denotes the normalised trace

T̂rA (f) =
TrA

(
x2N12x−2N21f

)
TrA (x2N12x−2N21)

. (2.60)

The normalisation is

TrA
(
x2N12x−2N21

)
=

∞∑
k1=0

x2 k1

∞∑
k2=0

x−2 k2 =
1

1− x2

1

1− x−2
=

1

2− x2 − x−2
. (2.61)

Note that we have to regularise the sums by setting x = eiΦ−ε such that |x| < 1, see the

discussion in [41].

Functional relations

It can be shown [40] that the Q-operators satisfy the QQ-relation8

Q∅(u)Q{1,2}(u) ∝ Q{1}(u+ i

2)Q{2}(u− i

2)−Q{1}(u− i

2)Q{2}(u+ i

2) . (2.62)

They can furthermore be used to construct the transfer matrix, defined as the trace of the

twisted monodromy matrix (2.52) over A = C2, through

T (u) ∝ Q{1}(u+ i)Q{2}(u− i)−Q{1}(u− i)Q{2}(u+ i) , (2.63)

and as a consequence, they satisfy the Baxter equation [39],

T (u)Q{j}(u) =
(
u+ i

2

)LQ{j}(u− i) +
(
u− i

2

)LQ{j}(u+ i) . (2.64)

8Note that we could equally well have defined power-like Q-operators without the exponential prefactor

in (2.59). The QQ-relation (2.62) would then be modified by factors of the twist-parameter x.
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Q-operators and Bethe roots

From the above construction, it is clear that, up to an overall exponential prefactor, the

Q-operators are polynomial in u. Denote an eigenvalue of a Q-operator QJ by QJ . The

zeros of these polynomials turn out to coincide with Bethe roots, i.e. the solutions of the

Bethe equations (2.50). More concretely,

Q{1}(u) ∝ x−iu
M∏
j=1

(u− uj) , (2.65)

while also Q{2} ∝ x+iu
∏L−M
j=1 (u− vj), where vj is another set of roots of a Bethe equation

(2.50) with x → 1
x . The Bethe equation (2.50) can be derived by considering the QQ-

relation (2.62) at zeros of Q{1}. Let us see that this is indeed the case in our usual

example.

2.3.3 Example: L = 3, M = 1

We want to evaluate the matrix elements of Q-operators on the subspace of states with

L = 3 and M = 1. So we have to evaluate the trace over the auxiliary space and consider

the action on our basis in the physical space. But we can in fact do it in the reverse order,

since the Lax operators all act on different factors of the physical space.

Magnon block matrix elements of Lax operators

As before, each physical space is a two-dimensional representation formed by
(

1
0

)
j

=

a†1|0〉j = |↑〉 and
(

0
1

)
j

= a†2|0〉j = |↓〉. On this basis, the Lax operators (2.58) act as

L(j)
∅ =

(
iu 0

0 iu

)
j

L(j)
{1} =

(
1 −ξ12

ξ̄12 iu− 1
2 −N12

)
j

L(j)
{2} =

(
iu− 1

2 −N21 ξ̄21

−ξ21 1

)
j

L(j)
{1,2} =

(
1 0

0 1

)
j

. (2.66)

Note that the exponentials, e.g. e−ξ21a
†
2a1 =

∑∞
n=0

1
n!(−ξ21a

†
2a1)n, immediately truncate

due to the compactness of the space.

Tracing over the auxiliary space

Next, we have to evaluate the trace over the auxiliary space. We again work in the basis

(2.45). We first pick the relevant terms from (2.66) and then take the trace, e.g.

〈↑↓↑|QJ |↑↑↓〉 =

∏
j∈J

x−iu
j

 T̂rA

(
〈↑|L(1)

J |↑〉〈↓|L
(2)
J |↑〉〈↑|L

(3)
J |↓〉

)
. (2.67)
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We thus immediately get

Q∅ =


-iu3 0 0

0 -iu3 0

0 0 -iu3

 , Q{1,2} =


1 0 0

0 1 0

0 0 1

 . (2.68)

For the two non-trivial Q-operators, we have e.g.

〈↑↓↑|Q{2}|↑↑↓〉 = xiu T̂rA

(
(iu− 1

2 −N21)(-ξ21)ξ̄21

)
= xiu T̂rA

(
N2

21 + (3
2 − iu)N21 − iu+ 1

2

)
. (2.69)

Consequently, we have to evaluate terms of the kind T̂rA(Nk
ab) which will contain a sum

of the form
∞∑
j=0

x2jjk = Φ(x2,−k, 0) =

∑k
j=0

〈
k
j

〉
x2(j+1)

(1− x2)k+1
,

〈
k

j

〉
=

j+1∑
n=0

(−1)n
(
k + 1

n

)
(j − n+ 1)k ,

(2.70)

where we again had to regularise by setting |x| < 1, and Φ is the Hurwitz-Lerch transcen-

dent.
〈
k
j

〉
are the Eulerian numbers. Resultingly,

T̂rA(Nk
ab) =

∑k
j=0

〈
k
j

〉 (
xa
xb

)j+1

(
1− xa

xb

)k , (2.71)

so (2.69) evaluates to

〈↑↓↑|Q{2}|↑↑↓〉 = xiu
(

ix2

1− x2
u+

x2(3 + x2)

2(x2 − 1)2

)
. (2.72)

We can proceed in this way for each matrix element to obtain

Q{1} = x−iu


iu− 1

2 + x2

x2−1
1

x2−1
1

x2−1
x2

x2−1
iu− 1

2 + x2

x2−1
1

x2−1
x2

x2−1
x2

x2−1
iu− 1

2 + x2

x2−1

 , (2.73)

Q{2} = xiu


-u2 + i

x2+1
x2−1

u+ 1+6x2+x4

4(x2−1)2
i

x2−1
u+ 1+3x2)

2(x2−1)2
ix2

1−x2u+ x2(3+x2)
2(x2−1)2

i

x2−1
u+ 3+x2)

2(x2−1)2 -u2 + i
x2+1
x2−1

u+ 1+6x2+x4

4(x2−1)2
i

x2−1
u+ 1+3x2)

2(x2−1)2

ix2

1−x2u+ x2(1+3x2)
2(x2−1)2

ix2

1−x2u+ x2(3+x2)
2(x2−1)2 -u2 + i

x2+1
x2−1

u+ 1+6x2+x4

4(x2−1)2

 .

Functional relations and Bethe roots

We can plug (2.73) into (2.62) and see that indeed

Q{1}(u+ i

2)Q{2}(u− i

2)−Q{1}(u− i

2)Q{2}(u+ i

2) ∝ u3I3×3 . (2.74)

We can also diagonalise the Q-operators. The eigenvalues, which we in general refer to as

Q-functions, of Q{1} turn out to be

Q{1} = x−iu

(
iu+

1

2
+

1

e
2πin

3 x
1
3 − 1

)
, n = 0, 1, 2 , (2.75)

which fits nicely with the Bethe roots (2.51).
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Removing the twist

What if we are interested in the model with no twist? From the explicit Q-operators

(2.73) it is obvious that the limit x → 1 is not regular. However for some quantities the

limit is completely smooth. For example, two of the eigenvalues (2.75) become simply

Q = iu± i

2
√

3
. It is easy to check that the Baxter TQ-equation (2.64) is satisfied by these

eigenvalues, where T is replaced by the corresponding eigenvalue of (2.46).

The quantities that do diverge are related to symmetries that are being restored.

First of all, Q-functions that correspond to eigenstates that become descendants when the

symmetry is restored will diverge. For eigenstates that remain highest weight states, only

one of the Q-functions has a smooth limit. One can indeed see from the QQ-relation (2.62)

that as the exponential prefactors disappear in the x → 1 limit, the leading polynomial

power on the right hand side vanishes. To balance this, the polynomial degree of the other

Q-function must increase.

On the eigenvalue level, we can deal with this by normalising before taking the un-

twisting limit [42]. For the L = 3, M = 1 example, one of the eigenstates corresponds to

Q-functions with untwisting limits

−i lim
x→1

Q{1} = 2i lim
x→1

(x− 1)Q{2} = u− 1

2
√

3
≡ Q1 . (2.76)

What happens is that both Q-functions tend to the same value, which would make the right

hand side of the QQ-relation (2.62) vanish. We can instead consider a linear combination

where this leading term vanishes. Let us first set x = 1 + ε and examine the expansion of

the Q-functions in ε, which in our case yields

−iQ{1} = Q1 + q2ε+ q3ε
2 +O(ε3)

2i(x− 1)Q{2} = Q1 + (q2 + cQ1) ε+ q̃3ε
2 +O(ε3) , (2.77)

where q2 is a quadratic polynomial, q3 and q̃3 are distinct cubic polynomials, and c =
1
2 −

2i√
3
. We can then construct a linear combination which does not untwist to Q1:

Q2 = lim
x→1

i
(
1 + (x− 1)c+ (x− 1)2d

)
Q{1} + 2i(x− 1)Q{2}

(x− 1)2

= q̃3 − q3 − cq2 − dQ1 (2.78)

= 2u3 +
√

3u2 +
1√
3

+ d̃ Q1 (2.79)

where we made the freedom to add Q1 explicit by including the term containing the

constant d. From the construction, it is clear that Q1 and Q2 will satisfy a QQ-relation

identical to (2.74):

Q+
1 Q
−
2 −Q

+
1 Q
−
2 ∝ u3 ≡ Q∅Q12 . (2.80)
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s s s s s⊗ = ⊕ ⊕ ⊕ · · ·

Figure 2.3: The tensor product of two single-field representations is the direct sum of all possible

length-2 representations. We denote the latter by Vj , j = 0, 1, 2, ..., where j is the

number of boxes above and to the right of the central node in the diagram.

In conclusion, the Q-operators are obscured by the restoration of symmetry caused by

the removal of the twist. However, their eigenvalues live on unaffected in the untwisted

theory, and satisfy the same functional relations.

2.4 Generalisation to higher rank symmetry

The above discussion served to introduce some of the important concepts in integrable

models. This was done by considering models with compact rank one symmetry, in order

to not get lost in technicalities. We will soon direct our focus towards models with higher

rank symmetry, so it is appropriate to have a brief look at the generalisations of the above

story to non-compact super algebras of higher rank.

2.4.1 The XXX spin chain

The Heisenberg spin chain is based on a Hilbert space formed by tensor products of

fundamental representations of su(2). It belongs to a more general family of integrable spin

chains that we will refer to as XXX or rational spin chains, where the Hilbert space is the

tensor product of more general representations of a given Lie algebra. The name rational

refers to the specific structure of the universal R-matrix which, when being evaluated

on compact representations becomes a rational function of the spectral parameter. Note

however that it is not a rational function for non-compact representations.

We restrict to the case of homogeneous chains where the Hamiltonian can be written as

a sum of nearest-neighbour interactions. When the spin chain is not in the fundamental

representation of su(2), there are other possible interactions than simple permutations.

The Hamiltonian of the XXX spin chain with psu(2, 2|4) symmetry can be written very

compactly in terms of projectors. All nodes in the chain are in the non-compact single-field

representation described in chapter 1. The tensor product of two such representations is

the infinite direct sum of all length-2 representations, see figure 2.3. We denote these

representations by Vj . The projector Pk,k+1(j) considers two neighbouring nodes and
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projects9 this subchain to the representation Vj . The XXX Hamiltonian then has the

form [32]

H =

L∑
k=1

∞∑
j=0

h(j)Pk,k+1(j) , (2.81)

where h(j) =
∑j

n=1
1
n are the harmonic numbers. A more practically useful, but maybe

less aesthetic, representation of the Hamiltonian is given in terms of Jordan-Schwinger

oscillators by the so-called harmonic action, see [32].

2.4.2 Nested Bethe equations

One can carry out a generalised version of the Bethe ansatz techniques for the higher rank

cases. This results in nested Bethe equations satisfied by different types of Bethe roots.

The Bethe equations for the gl(N) case were formulated in [43], the gl(N |K) version was

introduced in [44], and further studies were done in [18, 45] to include arbitrary choices of

representations at each spin chain node.

The obtained Bethe equations depend on the Dynkin diagram that corresponds to the

grading of the Lie algebra in question, cf. figure 1.1. For gl(N |K) there will be N +K − 1

sets of equations on N +K − 1 sets of Bethe roots. Let us label these roots by u
(a)
j where

a = 1, ..., N +K − 1 denotes the node in the Dynkin diagram. For simplicity, let us write

down the u(N |K) Bethe equations. If a is a bosonic node, i.e. if pa = pa+1, the roots u
(a)
j

satisfy the equations

ma∏
k=1

u
(a)
j − u

(a)
k + i

u
(a)
j − u

(a)
k − i

ma−1∏
k=1

u
(a)
j − u

(a−1)
k − i

2

u
(a)
j − u

(a−1)
k + i

2

ma+1∏
k=1

u
(a)
j − u

(a+1)
k − i

2

u
(a)
j − u

(a+1)
k + i

2

= −1 , (2.82a)

while if a is a fermionic node, pa 6= pa+1, they satisfy

ma−1∏
k=1

u
(a)
j − u

(a−1)
k + i

2

u
(a)
j − u

(a−1)
k − i

2

ma+1∏
k=1

u
(a)
j − u

(a+1)
k − i

2

u
(a)
j − u

(a+1)
k + i

2

= 1 . (2.82b)

The number of roots ma are related to the weights of the representation. The roots u
(0)
j

and u
(N+K)
j are fixed trivial roots. The non-compact case is similar, but certain equations

9A simple way to understand how projectors work in practice is to consider the tensor product of two

fundamental representations of su(2), which decomposes into a three-dimensional {↑↑, ↑↓ + ↓↑, ↓↓} and

a one-dimensional irrep {↑↓ − ↓↑}. Denote the projectors to these representations by P{1,1} and P{2},

respectively. On the basis {↑↑, ↑↓+ ↓↑, ↓↓, ↑↓ − ↓↑}, the projectors have the form

P{1,1} =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , P{1,1} =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

One needs to understand the precise vector spaces of the irreps to use the projectors in practice.
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will contain additional factors of u
(a)±L
j . We return to these equations and their explicit

solution in chapter 5.

The energy and momentum are encoded in the Bethe roots at the momentum carrying

node through (2.24). For u(N,M |K) and central charge C, this node is identified as the

one at the central point of the corresponding Young diagram, see the discussion in section

1.2 and the later discussion in chapter 5. In the yp grading, this is the node a = 2N + C.

2.4.3 Q-operators

The algebraic Bethe ansatz has a natural generalisation to higher rank symmetry. In order

to have a cleaner notation, we introduce a redefined spectral parameter z through

z ≡ iu− 1
2 . (2.83)

The Q-operator construction for rational spin chains has been developed recently in [40,

41, 46, 47, 48]. The Lax operators that are building blocks for u(N,M |K) Q-operators

can be written as [47, 49]

LJ(z) = e
∑

(-1)
pj+pjpj̄ ξ̄jj̄χ̄j̄χj

[
z + 1− C

2
−
∑

(-1)pj

2

]
∑

χ̄j̄χj̄

e−
∑

(-1)
pj+pj̄+pjpj̄ ξjj̄χ̄jχj̄ ,

(2.84)

where the sums are over the indices j ∈ J and j̄ ∈ J̄ , and pj is the p-grading (1.2). The

physical space oscillators are given by χ̄ = {-bα̇,a†α, f †a} and χ = {b†α̇,aα, fa} as in (1.14),

and the oscillators ξ act in an auxiliary space of the same kind as discussed in section

2.3.2. We will allow the subscript of the Pochhammer symbol to take negative values and

in that case define it through

[k]−n =
Γ(k − n)

Γ(k)
=

1

[k − n]n
=

(-1)n

[1− k]n
. (2.85)

Note that for J = ∅, the Lax operator is simply

L∅(z) =

[
z + 1− C

2

]
C

=

|C|∏
j=1

(
z − |C|

2
+ j

)sign(C)

∝

|C|−1
2∏

j=
1−|C|

2

(u+ ij)sign(C) , (2.86)

and also that for the full set J = ∅̄ we always have L∅̄ = 1.

The Q-operators are defined by

QJ(z) =

∏
j∈J

x
(-1)pj+1z
j

 ŝtrA

(
L(1)
J · · · L

(L)
J

)
. (2.87)

where ŝtr is a normalised supertrace defined by

ŝtrA (f) =

strA

(∏N+M+K
j,k=1,j 6=k

(
xj
xk

)Njk

f

)
strA

(∏N+M+K
j,k=1,j 6=k

(
xj
xk

)Njk
) . (2.88)
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Note that the twists should satisfy
∏N+M+K
j=1 xj = 1.

The gl(N |K) Q-system

One can show [46] that the gl(N |K) Q-operators will satisfy two types of QQ-relations

depending on the p-grading:

QJ∪{i,j}(z)QJ(z) ∝ QJ∪{i}(z+ 1
2)QJ∪{j}(z− 1

2)−QJ∪{i}(z− 1
2)QJ∪{j}(z+ 1

2) pi = pj

QJ∪{i}(z)QJ∪{j}(z) ∝ QJ∪{i,j}(z+ 1
2)QJ(z− 1

2)−QJ∪{i,j}(z− 1
2)QJ(z+ 1

2) pi 6= pj

(2.89)

It is possible to introduce a notation that makes the p-grading more transparent. One can

label the Q-operators by two separate ordered multi-indices, QA|J , where A and J keep

track of indices with p = 0 and p = 1, respectively.

Matrix elements of non-compact Q-operators

We can try to proceed along the same lines as in the su(2) case to evaluate matrix elements

of the Q-operators on magnon blocks. However, for non-compact algebras we quickly face

a new challenge: when evaluating matrix elements of the Lax operators, i.e. when taking

inner products of states in the physical space, the exponential terms in the Lax operators

(2.84) do not truncate.

This is evident already for sl(2), corresponding to χ = {b†,a} and χ̄ = {−b,a}, where

L{2} takes the form

L{2} = e−ξ̄21ab [z + 1]−1−nb
e−ξ21a†b† . (2.90)

If we try to evaluate a matrix element, we see that there are infinitely terms that contribute

because (a†b†)n never annihilates the state in question. For higher rank, there can even

be more than one of these non-compact directions, so evaluating matrix elements would

involve multiple infinite sums. In the N = 4 SYM field interpretation of section 1.4.1

this corresponds to the possibility of acting an arbitrary number of times with covariant

derivatives.

Prior to [6] this feature has not been studied in detail, and we will present a way to

overcome this challenge in chapter 8. The seemingly non-truncating Lax operator matrix

elements will in fact turn out to be rational expressions in both z and the auxiliary space

oscillators ξ.

Subconclusion

In this chapter, we introduced the notion of integrable models as those that fall under the

framework of the Algebraic Bethe Ansatz. This framework provides a systematic way of
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constructing the infinite family of conserved quantities in such models.

The deepest structure we reached was the system of Q-operators. However, we had

to introduce a regulating twist in order to construct these quantities. On the operatorial

level, the removal of the twist obscures the Q-operators, but we saw that their eigenvalues

remain well-defined quantities that satisfy the same functional relations as the operators.

The Q-system will play a key role for us. For now, and throughout the main part of thesis,

we will focus our attention on the eigenvalue level. Only in the chapter 8 will we return

to the operatorial formalism.

It is now time to see how integrable models appear in four-dimensional quantum field

theory, more precisely in the planar limit of the AdS/CFT correspondence. After quite a

detour, this will again lead us to a Q-system.



Chapter 3

AdS/CFT integrability

The AdS5/CFT4 correspondence has two sides: on one hand the four-dimensional quantum

field theory N = 4 SYM, and on the other Type IIB string theory on AdS5 × S5. This

chapter gives a brief review of the appearance of integrability in the spectral problem

within the two sides of the AdS/CFT correspondence in the planar limit.

By assuming that the spectral problem is integrable at any coupling, one can derive

beautiful mathematical structures that characterise the spectrum. We give a summary

of the ideas behind the asymptotic and thermodynamic Bethe ansatz which capture the

asymptotic and exact spectrum, respectively.

No attempt is made to give a full account of these rich topics, and this chapter is

at best a historical and superficial overview of the progress that eventually led to the

Quantum Spectral Curve, which is described in detail in chapter 4. For a thorough review

of AdS/CFT integrability and a complete list of references see [50].

3.1 Integrability in N = 4 super Yang-Mills theory

Integrability was first discovered on the gauge theory side of the correspondence. The

following is a brief summary of the appearance of integrable structures in perturbative

N = 4 SYM.

3.1.1 The one-loop dilatation operator

The study of AdS/CFT integrability was initiated by the discovery [13] that the first

perturbative correction to the dilatation operator in planar N = 4 SYM behaves as the

Hamiltonian of an integrable spin chain when acting on single-trace operators. Similar

phenomena had previously been observed in QCD [51, 52, 53]. The single-trace operators

can be interpreted as closed spin chain configurations. We saw in the previous chapters

how both composite operators and spin chain configurations have natural interpretations

as tensor product spaces.

55
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Figure 3.1: Field contractions that contribute to the two-point correlation function of composite lo-

cal operators in the planar limit. The horizontal lines represent the composite operators,

with the nodes corresponding to single fields. The vertical lines correspond to contrac-

tions. The left diagram contributes at tree level while the right diagram contributes at

one-loop.

As mentioned, the two-point correlation function in a conformal field theory is given

by

〈O(x)O(y)〉 =
1

|x− y|2∆
. (3.1)

At tree level, the conformal dimension ∆ is simply the bare dimension ∆0. Due to quantum

corrections, the operators are however subject to renormalisation, and only particular

linear combinations of single-trace operators have a well-defined anomalous dimension.

We can characterise this mixing by a renormalisation factor Z acting on the bare operators

O0,

Oiren = Zij O
j
0 . (3.2)

Z depends on the coupling constant g and a UV cutoff scale Λ, and it is related to the

anomalous part of the dilatation operator, which we denote by Γ, through

Γ =
dZ

d ln Λ
Z−1 . (3.3)

In [13] a diagrammatic computation of planar contributions to the two-point correlation

function (3.1), see figure 3.1, revealed that the one-loop contribution to Γ takes the form

of a spin chain Hamiltonian with nearest-neighbour interactions. The argument was made

for the so(6), or su(4), subspace of operators formed by the scalar fields, which in the

language of chapter 1 are the states Φab ≡ f †af
†
b |0〉. Importantly, it was shown that this

Hamiltonian belongs to a family of commuting operators generated from the algebraic

Bethe ansatz starting from a rational R-matrix solving the Yang-Baxter equation.

An expression for the one-loop dilatation operator of the full theory was derived in

[20]. It was argued that it likewise corresponds to an integrable spin chain with psu(2, 2|4)

symmetry in [32], again by demonstrating its origins from a rational R-matrix in the

algebraic Bethe ansatz framework.

3.1.2 The dilatation operator at higher loops

With the discovery of one-loop integrability, it was natural to look for similar structures at

higher loop orders. In [54] the two-loop dilatation operator in the su(2) sector was derived.
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It was argued to correspond to an integrable spin chain Hamiltonian in the planar limit,

up to higher-order terms, by also considering corrections to other conserved charges in

the integrable one-loop spin chain. It was then conjectured that to any loop order and in

all sectors the dilatation operator coincides with an integrable spin chain Hamiltonian in

the planar limit. At the n’th loop, a node in this spin chain interacts with its n nearest

neighbouring sites. At a given loop order, the charges of the model commute up to the

considered order in g. For example, the two-loop dilatation operator in the su(2) sector

corresponds to a spin chain Hamiltonian of the form H = g2H1 + g4H2, where H1 is the

Hamiltonian of the Heisenberg spin chain (2.1) and H2 has the form [54]

H2 ∝
L∑
k=1

(−4 I + 6Pk,k+1 − Pk,k+1Pk+1,k+2 − Pk+1,k+2Pk,k+1) . (3.4)

A three-loop computation of the dilatation operator in the su(2) sector was carried out

in [55], the length-mixing su(2|3) sector dilatation operator was studied in [33], and the

two-loop dilatation operator in the non-compact psu(1, 1|2) sector was studied in [56].

However, the explicit structure of the full psu(2, 2|4) two-loop dilatation operator is still

unknown.

3.1.3 Explicit results from perturbative QFT calculations

Perturbative quantum field theory calculations quickly become enormously complicated.

For the Konishi multiplet, the simplest multiplet not protected from quantum corrections,

the four-loop anomalous dimension has been determined from Feynman diagram-based

calculations in [57], while the five-loop result was obtained with the help of other arguments

in [58]. The result is

γ = 12g2 − 48g4 + 336g6 + g8
(
− 2496 + 576 ζ3 − 1440 ζ5

)
+g10

(
15168 + 6912 ζ3 − 5184 ζ2

3 − 8640 ζ5 + 30240 ζ7

)
, (3.5)

and the fact that it coincides with the results coming from the integrability-assuming

techniques described in the following is a very important and non-trivial check of the

integrability of the spectral problem.

3.2 Integrability in type IIB string theory

In this section we briefly discuss the appearance of integrability on the string theory side of

the AdS/CFT correspondence. Strings are one-dimensional objects in space, which means

that in spacetime, they span a two-dimensional surface, the worldsheet. Sigma models live

on these worldsheets, and for Type IIB String theory on AdS5 × S5 the corresponding

sigma model [59] turns out to be integrable, in the sense that one can construct infinitely
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Figure 3.2: Schematic depiction of the AdS/CFT spectral curve, an eight-sheeted Riemann surface

formed by the quasi-momenta. The blue lines denote branch cuts connecting the sheets.

many conserved charges at the classical level [60]. The spectrum of string energies is nicely

characterised by the elegant framework of spectral curves.

3.2.1 The spectral curve

The use of spectral curves in the AdS/CFT context was first proposed in [61] and subse-

quently developed in [62]. A nice review is given in [63].

For an integrable sigma model, the equations of motion can be reformulated as a

flatness condition on a so-called Lax connection,

∂αLβ − ∂βLα − [Lα,Lβ] = 0 (3.6)

where α and β are worldsheet coordinates. The Lax connection L(u) takes values in the

Lie algebra associated to the symmetry group of the sigma model. It is a function of

a spectral parameter u and (3.6) should hold for any value of this parameter. One can

construct a monodromy matrix taking values in the corresponding Lie group through the

path-ordered exponential

M(u) = Pexp

(∫ 2π

0
dσLσ(u)

)
, (3.7)

where σ is the compact spacelike direction on the worldsheet. The eigenvalues λi of the

monodromy matrix satisfy the characteristic equation

det(M− λ) = 0 . (3.8)

They are usually parametrised by a set of quasi-momenta pi through λi ≡ ei pi .
In the AdS/CFT case, the quasi-momenta solving the characteristic equation form an

eight-sheeted Riemann surface in the spectral parameter. The quasi-momenta are usually

denoted p̂i and p̃a to mark their relation to the AdS5 and S5 parts of the symmetry. See
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figure 3.2 for a schematic illustration. This Riemann surface is what is referred to as

the spectral curve. Explicit solutions to this spectral curve have asymptotics specified by

the weights of the global symmetry, including the string energy. The spectral curve thus

provides a convenient approach to solving the classical equations of motion in order to

obtain the classical string energies. Note that it is also possible to consider fluctuations

around the classical solutions, and in this way obtain the first perturbative quantum

corrections to the string energies, see e.g. [64].

As explained in [15], the Quantum Spectral Curve, towards which we will soon turn

our attention, can be thought of as a quantisation of the classical spectral curve described

here.

3.3 The asymptotic Bethe ansatz

With the clear hints of integrability of the spectral problem in the planar limit of the

AdS/CFT correspondence, it is tempting to ask what we can achieve by assuming inte-

grability at any value of the coupling g. The asymptotic Bethe ansatz refers to a technique

which makes this assumption and considers the limit of infinitely long operators.

3.3.1 The S-matrix

The key quantity to understand is the S-matrix of the integrable model [65]. In section

2.1.2 we encountered the S-matrix for the Heisenberg spin chain, and in this section we

review how to bootstrap the analog of this quantity for the exact AdS/CFT spectrum. It

turns out that it is possible to fix the S-matrix by imposing integrability and by requiring

that it has certain symmetries.

The idea is to consider the protected operator Tr(ZL) as a vacuum and study other

field insertions as excitations. We consider operators of the type

Tr(ZZ...ZΦ1Z...ZΦ2Z...ZΦMZ...Z) , (3.9)

where Φi denote fields different from Z. We can denote the position of the field Φi in the

composite operator by ni. We will consider the limit of very long operators, but also with

a large separation between the excitations, i.e. 1� |ni − nj | < L.

S-matrix bootstrap

Consider a theory in one spatial dimension, where only 2 → 2 scattering processes are

possible. Each excitation in the theory can be characterised by a momentum pi. For

the theory to be integrable, it should have an infinite number of conserved charges Qn,

with momentum and energy usually corresponding to n = 1, 2. For all charges to be
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t

Figure 3.3: The Young diagram for the multiplet containing Tr(Z4) and an example of a Dynkin

path that goes through the central node of the diagram. Any Dynkin path that goes

through the central node corresponds to a grading where Tr(ZL) is the highest weight

state, but duality transformations that move the path from the central node will result

in a different highest weight state. In this way we see that the operator Tr(ZL) is

invariant under two copies of su(2|2), but not under the full psu(2, 2|4) symmetry.

conserved in scattering processes, the only thing that can happen in such a process is that

the momenta are exchanged, see [66] for a nice discussion.

Consider two excitations characterised by momenta p1 and p2. We can describe a

scattering process between the two by an S-matrix S(p1, p2). Each excitation corresponds

to a vector belonging to the representation V that the fields are in. In that sense the

S-matrix acts in the tensor product of two such representations, S : V ⊗ V → V ⊗ V.

As a basic example, consider V to be the two-dimensional fundamental representation of

su(2). Then S would act in the direct sum of a singlet and a triplet. We can denote this

by {1} ⊗ {1} = {2} ⊕ {1, 1} according to the partitions λ = {λ1, λ2, ...} specifying the

representations in question. As S should commute with the symmetry of the theory, it

should act similarly on vectors within the same irreducible representation, and it should

thus have the form

S(p1, p2) = f1(p1, p2)P{2} + f2(p1, p2)P{1,1} = σ(p1, p2)
(
P{2} + f(p1, p2)P{1,1}

)
(3.10)

where Pλ is the projector onto the representation λ. The function σ is referred to as the

dressing factor. The function f is usually determined from the constraint that S satisfies

the Yang-Baxter equation. The dressing factor is in general not fixed by the continuous

symmetries of the problem, but rather by discrete symmetries as proposed in [65] for

relativistic theories. This leads to so-called crossing equations that fix the dressing factor.

The AdS/CFT S-matrix

The S-matrix bootstrap was first applied to the AdS/CFT spectrum in [67]. An important

point is that the BMN vacuum Tr(ZL) is not invariant under the full psu(2, 2|4) symmetry,

but only under two copies of su(2|2) [21]. See figure 3.3 for a sketchy argument on the level

of Young diagrams. Consequently, the S-matrix factorises into a tensor product of two
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su(2|2) S-matrices. Importantly, the su(2|2) symmetry is extended by two central charges

and its action is described by a non-trivial co-product [68, 69, 70].

The fundamental representation of su(2|2) is four-dimensional, and the tensor product

of two such representations is thus 16 dimensional. For the centrally extended symmetry

that appears in the AdS/CFT context, this tensor product representation turns out to

also be irreducible, which means that the S-matrix is fixed up to the dressing factor, cf.

(3.10), and automatically satisfies the Yang-Baxter equation.

One can study the action of the symmetry generators on plane wave states with a

single excitation,

|Φ(p)〉 ≡
L∑
n=1

ei p n Tr(Z...Z Φ︸︷︷︸
pos.n

Z...Z) , (3.11)

and it turns out that the actions are given in terms of two parameters: the momentum

p and another parameter that can be identified with the coupling constant g by compar-

ison to other data [71]. In particular, the standard su(2|2) central charge, which can be

identified with the magnon energy through E = 2C − 1, is given by

C =
1

2

√
1 + 16g2 sin2

(p
2

)
. (3.12)

Expanding this expression in the coupling, we see that the g2 contribution to the energy

matches that of the XXX spin chain (2.24). It turns out to be convenient to parametrise

the momentum as eip = x+

x− , where x is related to a spectral parameter u through the

Zhukowsky map

x+
1

x
=
u

g
, x± = x(u± i

2). (3.13)

We will often encounter the Zhukowsky variable x in this thesis, and it is discussed in

more detail in appendix A.4.1. Note that we always choose the branch |x(u)| > 1. In the

limit g → 0 the parameter u corresponds to the rapidity of the XXX spin chain discussed

in chapter 2. In terms of the Zhukowsky variable x, the energy of the one-magnon state

(3.11) takes the form

E(p) = 2ig

(
1

x+
− 1

x−

)
. (3.14)

The structure of the su(2|2) S-matrix is determined up to a dressing factor by requiring

that it commutes with the symmetry generators. The structure is rather complicated, and

we refer to [68] for the details. The question of determining the dressing factor by using

crossing symmetry was first addressed in [72]. The strong coupling expansion of the

dressing factor was found in [73] and its exact structure proposed in [74]. The solution to

the crossing equation and its analytic properties were investigated further in [75]. A nice

review of the dressing factor problem is given in [76].
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3.3.2 Asymptotic Bethe equations

With the S-matrix at hand, one can use the coordinate Bethe ansatz philosophy described

in section 2.1.2 to derive periodicity constraints on the values of the magnon momenta

pi for the energy eigenstates. In fact, a proposal for these asymptotic Bethe equations

was made already before the precise S-matrix was known [77]. After understanding the

S-matrix, it was derived more rigorously by using the the coordinate Bethe ansatz in [69].

The resulting asymptotic Bethe equations are so beautiful that it is worth repeating

them, despite the fact that we will not use them much in this thesis. In the non-compact

ABA grading, 11̂2̂233̂4̂4, see figure 3.4, they take the form [77]

1 =

K2∏
j=1

u1,k − u2,j − i

2

u1,k − u2,j + i

2

K4∏
j=1

1− 1
2x1,kx

−
4,j

1− 1
2x1,kx

+
4,j

(3.15a)

−1 =

K2∏
j=1

u2,k − u2,j + i

u2,k − u2,j − i

K1∏
j=1

u2,k − u1,j − i

2

u2,k − u1,j + i

2

K3∏
j=1

u2,k − u3,j − i

2

u2,k − u3,j + i

2

(3.15b)

1 =

K2∏
j=1

u3,k − u2,j − i

2

u3,k − u2,j + i

2

K4∏
j=1

x3,k − x−4,j
x3,k − x+

4,j

(3.15c)

−1 =

(
x−4,k

x+
4,k

)L K4∏
j=1

x−4,k − x
+
4,j

x+
4,k − x

−
4,j

1− 1
2x+

4,kx
−
4,j

1− 1
2x−4,kx

+
4,j

σ2 (u4,k, u4,j) (3.15d)

×
K1∏
j=1

1− 1
2x+

4,kx1,j

1− 1
2x−4,kx1,j

K7∏
j=1

1− 1
2x+

4,kx7,j

1− 1
2x−4,kx7,j

K3∏
j=1

x+
4,k − x3,j

x−4,k − x3,j

K5∏
j=1

x+
4,k − x5,j

x−4,k − x5,j

1 =

K6∏
j=1

u5,k − u6,j − i

2

u5,k − u6,j + i

2

K4∏
j=1

x5,k − x−4,j
x5,k − x+

4,j

(3.15e)

−1 =

K6∏
j=1

u6,k − u6,j + i

u6,k − u6,j − i

K7∏
j=1

u6,k − u7,j − i

2

u6,k − u7,j + i

2

K5∏
j=1

u6,k − u5,j − i

2

u6,k − u5,j + i

2

(3.15f)

1 =

K6∏
j=1

u7,k − u6,j − i

2

u7,k − u6,j + i

2

K4∏
j=1

1− 1
2x7,kx

−
4,j

1− 1
2x7,kx

+
4,j

, (3.15g)

and the form of the dressing factor σ can be found in [74]. Cyclicity of single-trace

operators means that they correspond to spin chain configurations that are translationally

invariant, and this imposes the additional zero-momentum condition

K4∏
j=1

x+
4,k

x−4,k
= 1 . (3.16)

The number of roots Kn are given in terms of the weights of the representation in question,

and the correspondence will be made precise in chapter 5. The anomalous dimension is
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Figure 3.4: The Dynkin path, cf. figure 1.1, corresponding to the grading 11̂2̂233̂4̂4 in which the

asymptotic Bethe equations (3.15) are written.

identified with the energy (3.14) and is given by

γABA(g) = 2 i g

K4∑
k=1

(
1

x+
4,k

− 1

x−4,k

)
. (3.17)

Perturbative solution

For comparison with the perturbative frameworks that will be described in chapter 6, it

is worth mentioning how the asymptotic Bethe equations are solved perturbatively. The

strategy is to expand the Bethe roots in g2 according to

un,k(g) = u
(1)
n,k + g2u

(2)
n,k + g4u

(3)
n,k + . . . (3.18)

The Zhukowsky variable should be reexpressed in terms of u and expanded in g yielding

x =
u

g
− g

u
− g3

u3
− 2g5

u5
+O(g7) . (3.19)

Generically, the dressing factor is trivial until the fourth order, i.e. σ2 = 1 +O(g6), where

it will start to contribute [74]. This contribution contains transcendental numbers, more

precisely ζ-values, which we will also encounter later in the thesis.

Finding the leading solutions turns out to be rather hard in practice, and moreover

the equations allow additional solutions that are not in correspondence with single-trace

operators or spin chain states. Curing these issues is the topic of chapter 5. Once the lead-

ing solution is known, generating perturbative solutions is quite simple. One simply takes

the contribution to the equation at a given order, plugs in the lower-order contributions

to the roots, and demands that the equations hold.

A nice property of the asymptotic Bethe equations is that only a subset of the equations

are needed when considering sectors where some nodes are not excited. For example, in the

sl(2) sector it is sufficient to consider only the central equation (3.15d), and the problem

can be formulated as simply as

−
(
x+
k

x−k

)L
=

S∏
j=1

x−k − x
+
j

x+
k − x

−
j

1− 1
x+
k x
−
j

1− 1
x−k x

+
j

σ2(uk, uj),

S∏
k=1

x+
k

x−k
= 1 , (3.20)
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where we made the identification uk = u4,k and S = K4. We will use this equation in

chapter 7, where will need to generate a large number of explicit results.

The asymptotic Bethe equations give an exact description of the AdS/CFT spectrum

for loop orders lower than the length of the spin chain L. It does not account for the

self-interactions that occur when the range of the interactions wraps all the way around

the closed chain. Note that for sl(2) operators, the result is actually exact up to L+1 loops

since these operators belong to multiplets containing operators that have a length increased

by two. This feature means that, for any multiplet, the asymptotic Bethe equations are

exact up to at least three loops. For the Konishi multiplet, the four-loop result is

∆L=S=2 = 4 + 12g2 − 48g4 + 336g6 + g8(−2820− 288ζ3) +O(g10) , (3.21)

and we see that the first three orders match the field theory result (3.5), while the fourth

does not. We now turn towards frameworks that capture also these finite-size corrections.

3.3.3 Lüscher corrections

A way to capture the finite-size effects as corrections to the asymptotic result is given by

so-called Lüscher formulae, which is a method to describe the exponentially suppressed

finite-size correction to the energy of a single particle on a large cylinder in a relativistic

QFT [78]. The effect stems from virtual particles travelling around the cylinder. The

corrections are again related to the S-matrix of the theory.

Wrapping corrections were first discussed in [79] for the AdS/CFT case. Lüscher

formulae were used to calculate the four-loop [80] and five-loop [81] anomalous dimension

of the Konishi multiplet in agreement with the result (3.5). Twist-2 operators were also

considered more generally at four [82] and five loops [83]. Impressively, the six- and

seven-loop results for the Konishi multiplet, i.e. all single-wrapping contributions, were

derived in [84]. Even though Lüscher formulae for double-wrapping effects can potentially

be obtained [85], it is desirable to find a framework that does not make the distinction

between contributions from wrapping and short-range effects. We now turn towards such

a framework.

3.4 The thermodynamic Bethe ansatz

The asymptotic Bethe ansatz is a powerful and convenient tool, but one should of course

strive to describe the finite-size spectrum in a more complete way. This was achieved

by using the thermodynamic Bethe ansatz philosophy, originally developed in [86]. The

method [87] provides an ingenious trick to determine the ground state energy of an inte-

grable theory in finite volume from its infinite volume S-matrix, but also excited states

can be studied via analytic continuation [88]. See [89, 90] for nice reviews of the approach.
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Figure 3.5: The mirror trick: (left) the original theory, (right) the mirror theory.

The TBA approach

Consider a theory in one compact spatial dimension plus a timelike dimension, i.e. a

cylinder, which we can parametrise by two coordinates (σ, τ). The main trick in the TBA

is to do a double Wick rotation by introducing new coordinates (σ̃, τ̃) through τ = iσ̃ and

σ = iτ̃ .

To study the ground state energy in the original theory in a finite volume L, we consider

its partition function which in the zero-temperature limit, β → ∞, is dominated by the

ground state,

Z(β, L) =
∑
n

e−β En(L) β→∞−−−→ e−β E0(L) . (3.22)

By doing a single Wick rotation, t = iσ̃, we get an Euclidean theory on a torus where the

direction parametrised by σ̃ has circumference R = β. Doing the second Wick rotation

σ = iτ̃ puts the theory on a cylinder of circumference R, see figure 3.5. The partition

function of this mirror theory is then

Z̃(L,R) =
∑
n

e−L Ẽn(R) . (3.23)

The partition functions (3.22) and (3.23) should be equivalent descriptions of the same

system. The zero-temperature limit in the original theory, R→∞, corresponds to infinite

volume, but finite temperature 1
L in the mirror theory. This is why the trick is nice: we

know how to describe the theory in infinite volume.

Energy Ẽ and momentum p̃ in the mirror theory are related to the original theory

through E = ip̃ and p = iẼ. The dispersion relation in the mirror theory is then an

inversion of that in the original theory, e.g. (3.12) turns into

Ẽ = 2 arcsinh

(√
p̃2 + 1

4g

)
. (3.24)

At large R, the mirror theory partition function is dominated by finite-density states,

and we can describe such solutions by a density, ρa(p̃) ≡ ∆Na
∆p̃ , where ∆Na is the number

of particles of type a with momenta between p̃ and p̃+ ∆p̃. The total energy of a state is

then

Ẽ(p̃) =
∑
a

∫
dp̃ ρa(p̃) Ẽa(p̃) . (3.25)
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The asymptotic Bethe ansatz equations of the mirror model for a finite number of

excitations are schematically of the form

1 = eip̃kR
∏
j 6=k
S(p̃k, p̃j) . (3.26)

Taking the logarithm of this equation in the thermodynamic limit yields an equation of

the kind

p̃a − i

∑
b

∫
dp̃′ ρb(p̃

′) logSab(p̃a, p̃′) =
2πna
R

, (3.27)

where na labels the possible modes of the particles of type a. By introducing a hole

density ρ̄a ≡ ∆N̄a
∆p̃ that counts the modes that are not excited, we see that we should have

dna
dp̃ = ρa + ρ̄a. The different ways to organise the excitations in the modes of the system

leads to an entropy factor in the mirror model partition function (3.23) that we are trying

to calculate in order to find the ground state energy of the original model through (3.22).

In the thermodynamic limit, the mirror model partition function is an integral that can be

estimated by a saddle-point approximation. The result of this procedure is a minimising

equation on the ratio Ya ≡ ρ̄a
ρa

that have the schematic form [89]

log Ya(u) = L Ẽa(u)−
∑
b

∫
du′

2π
Kba(u

′, u) log(1 + Yb) , (3.28)

where K is related to the S-matrix through Kab(u, u
′) = −i∂u logSab(u, u′), and we made

the usual coordinate change to a spectral parameter u(p̃). This type of equation is what

is referred to as TBA equations: non-linear integral equations on a set of functions Y

depending on a spectral parameter. The solution to these equations gives the information

needed to determine the ground state energy in the original theory, but also the excited

states through a sophisticated procedure of analytic continuation [88].

The TBA for AdS5/CFT4

The applicability of the TBA approach to the AdS5/CFT4 integrable system was first

discussed in [79]. The asymptotic Bethe ansatz for the mirror model was described in [91],

and a classification of its bound states, the so-called string hypothesis in [92]. The TBA

procedure outlined above was performed in [93, 94, 95, 96] leading to the AdS5/CFT4

TBA equations.

The AdS5/CFT4 TBA equations relate an infinite zoo of Y -functions corresponding to

the different types of excitations in the theory. Unlike the asymptotic Bethe ansatz, their

solutions determine the exact spectrum at any value of the coupling. However, they are

far less transparent and much harder to solve in practice.
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Figure 3.6: The infinite lattice where the Y- and T-functions can be classified. The Y-functions live

on the nodes marked by circles, while the T-system lives on the full T-hook.

Explicit results

Precise TBA equations for excitations in the sl(2) sector were found in [95, 97] and used

for the first numerical studies of the exact anomalous dimension of the Konishi multiplet

at finite coupling in [98, 99] and a larger variety of operators in [100]. Exact perturbative

results have been obtained up to the fifth loop order for the Konishi operator [101]. The

fact that the same result was reached from pure quantum field theoretic calculations

questions the usefulness of the integrability-approach as a perturbative tool, but as we

will now review, the TBA equations were soon reformulated into much more powerful

frameworks yielding results that are unimaginable to ever be reached from perturbative

quantum field theory.

3.5 From TBA to QSC

The TBA equations are coupled non-linear integral equations on an infinite set of Y-

functions, and they are far from the beauty and transparency of the asymptotic Bethe

equations (3.15). We here briefly summarise how the TBA equations were reformulated

into a form that is both beautiful and extremely powerful in explicit computations.

Y-system

It was anticipated [93] that the Y-functions can be packaged into a Y-system with a single

functional relation between the Y-functions, before being derived in [94, 95, 96]. This

functional relation has the form

Y +
a,sY

−
a,s =

(1 + Ya,s+1)(1 + Ya,s−1)

(1 + 1
Ya−1,s

)(1 + 1
Ya+1,s

)
, (3.29)

and the infinite set of Y-functions can be depicted on a T-hook, see figure 3.6. The

functional relation (3.29) does not contain the full information of the TBA equations.

They have to be supplemented by constraints on the analytic structure of the Y-functions,

as investigated in [96, 102, 97, 103].

A nice feature of the Y-system is that it is universal: its structure is determined solely

by the psu(2, 2|4) symmetry of the theory. All multiplets of single-trace operators are
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solutions to the same equations. The difference lies in the asymptotical behaviour and

analytic structure of the functions.

T-system

It was also clear from the beginning [93] that the set of Y-functions can be reparametrised

by an infinite set of T-functions1 through

Ya,s =
Ta,s+1Ta,s−1

Ta+1,sTa−1,s
, (3.30)

which then satisfy the Hirota equation [104]

T+
a,sT

−
a,s = Ta+1,sTa−1,s + Ta,s+1Ta,s−1 . (3.31)

FiNLIE

The Y-system, and likewise the T-system, contain an infinite set of functions. Inspired

by the methods [105], it is possible to reformulate the problem in terms of a finite set of

nonlinear integral equations, the FiNLIE [106]. See also [107] for a similar development.

The FiNLIE was used first for a 6-loop calculation of the Konishi anomalous dimension

[108], and then for an impressive 8-loop calculation [109], the first example of a double-

wrapping result.

Quantum Spectral Curve

It was soon pointed out [24, 110] that T-functions have a convenient parametrisation

in terms of Q-functions. Indeed, it was observed that the solutions to the T-system

can be built from just eight independent Q-functions. It also became clear [106] that

these Q-functions should have rather simple analytic properties. Mastering these analytic

properties finally led to a beautiful reformulation of the problem: the Quantum Spectral

Curve [14, 15].

To briefly summarise the derivation in [15], the T-system is defined up to a certain

gauge symmetry, and in a particular choice of gauge, where the T-functions can be denoted

Ta,s, it is possible to make the parametrisation

T0,s =

{
P

[+s]
1 P

[−s]
2 −P

[+s]
2 P

[−s]
1 s ≥ 1

P4[+s]P3[−s] −P3[+s]P4[−s] s ≤ −1
. (3.32)

The functions P have only a single branch cut on a certain Riemann-sheet. In a different

gauge, Ta,s, related to the first by Ta,s = (−1)a·sTa,s(T
[a+s]
0,0 )

a
2
−1, the function T

1
2
0,1 ≡ µ12

1The T-functions are believed to be eigenvalues of transfer matrices, cf. section 2.2, with rectangular

representations in the auxiliary space. The precise nature of these transfer matrices, and the R-matrix

from which they are constructed, is however not known.
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Figure 3.7: Perturbative computations of the Konishi anomalous dimension in planar N=4 SYM.

has the nice property of being i-periodic on a certain Riemann-sheet. Together, the five

functions P1, P2, P3, P4 and µ12 contain the information needed to reconstruct the whole

T-system via the Hirota equation (3.31). However, control of their analytic continuation

is required. By introducing additional functions P3, P4, P1, P2 and five extra µab, a very

compact closed system of equations on these functions and their analytic continuations is

formed. This Pµ-system is self-contained, but a natural consequence of the system is a

similar Qω-system and the larger psu(2, 2|4) Q-system. These systems will be introduced

in detail in chapter 4.

Subconclusion

This chapter gave a rough summary of how integrability appears in the planar AdS5/CFT4

spectral problem, and how the assumption of integrability can be used to bootstrap the

spectrum. The key object to understand was the S-matrix which, through various adap-

tions of integrability techniques, captures the spectral information. The end-product is

the Quantum Spectral Curve, a relatively comprehensible Riemann-Hilbert problem de-

termining the spectrum, whose explicit solution is the main goal of this thesis. The QSC

is of course not guaranteed to be the final and most elegant solution to the problem, but

the fact that it has survived more than four years without signs of further simplifications

signals that some sort of a fixed point has been reached. With such a formulation at

hand, it is time to understand its applications and scope in complete generality. The

second part of this thesis is devoted to exploring its power as a perturbative tool. To sum

up the developments reviewed in this chapter, and to anticipate the power of the QSC,

the chronological development in the computation of the Konishi anomalous dimension is

depicted in figure 3.7.



Chapter 4

Quantum Spectral Curve

This chapter presents all technical details about the QSC [14, 15] that will be needed in

the second part of the thesis. We first state the fundamental structures of the QSC in an

axiomatic form, before using this as a foundation to derive a number of practically useful

relations. We then discuss the properties of the QSC at weak coupling, and this discus-

sion will be the foundation of the explicit solution methods described in later chapters.

Afterwards, a brief summary of the applications and generalisations of the QSC is given.

The treatment is rather technical, and the bored reader is encouraged to continue to

the next chapters, where the usefulness of the various relations should become more clear.

The intention is to collect the details here in order to make the later presentation of the

applications lighter.

4.1 The Quantum Spectral Curve

The basic structure in the QSC is an algebraic Q-system, which we already encountered in

chapter 2 in the context of the algebraic Bethe ansatz. The new feature compared to the

spin chain Q-system is that the QSC specifies a more complicated analytic structure of the

Q-functions which are multi-valued functions of the spectral parameter u. The spin chain

Q-system corresponds to the g = 0 limit of the QSC. Again, each solution to the system is

characterised by a set of quantum numbers that dictate the asymptotic behaviour of the

Q-functions at large values of the spectral parameter.

The analytic continuation of the Q-functions can be described in terms of a set of

auxiliary functions, µ and ω, with very particular analytic properties. Together with a

small subset of the Q-functions, these auxiliary variables form two closed sets of equations,

the Pµ- and Qω-systems, which are self-contained formulations of the essential information

in the QSC. In this section, which is essentially a summary of the statements presented in

the original paper [15], we consider these structures in more detail.

70
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Figure 4.1: The gl(4|4) Q-system.

4.1.1 The Q-system

In accordance with the psu(2, 2|4) symmetry of the theory, the QSC is based on a gl(4|4)

Q-system, consisting of 28 = 256 functions of the spectral parameter, u. We can label

these functions as

QA|I = Qa1a2...|i1i2... = −Qa2a1...|i1i2... = −Qa1a2...|i2i1... , (4.1)

with A and I denoting between zero and four separately antisymmetric indices that can

take the values ak, ik ∈ {1, 2, 3, 4}. Throughout the thesis we will use the notations

Q = Q(u) , Q[n] ≡ Q
(
u+ i

2n
)
, Q± ≡ Q[±1] . (4.2)

QQ-relations

The Q-functions are related through difference equations of the kind

QA|IQAab|I = Q+
Aa|IQ

−
Ab|I −Q

−
Aa|IQ

+
Ab|I (4.3a)

QA|IQA|Iij = Q+
A|IiQ

−
A|Ij −Q

−
A|IiQ

+
A|Ij (4.3b)

QAa|IQA|Ii = Q+
Aa|IiQ

−
A|I −Q

−
Aa|IiQ

+
A|I . (4.3c)

We can depict the Q-system on a 4×4 lattice, where the Q-functions live at the node

corresponding to its number of indices of the two kinds, see figure 4.1. On a vertical or

horizontal segment of this lattice, the Q-functions then satisfy (4.3a) or (4.3b), which we

refer to as bosonic QQ-relations. On a square segment, the Q-functions satisfy (4.3c),

which we call fermionic QQ-relations, as they only appear for superalgebras. See figure

4.2.
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Figure 4.2: The three types of QQ-relations (4.3). According to their colouring, the depicted Q-

functions satisfy the QQ-relation QQ = Q+Q− −Q−Q+.

Hodge dual

It is convenient to introduce the notion of a Hodge dual Q-system defined through

QA|I ≡ (−1)|A
′||I|εA

′AεI
′IQA′|I′ , (4.4)

where QA|I satisfy QQ-relations identical to (4.3). |A| denotes the number of indices in

the multi-index A and ε1234 = 1. Note that no sum over the multi-indices A′ and I ′ is

implied in (4.4).

4.1.2 Large u asymptotics

As we will see in the discussion of the symmetries of the QSC below in section 4.1.5, it is

always possible, and very convenient, to set

Q∅|∅ = Q1234|1234 = 1 . (4.5)

The asymptotic behaviour of the Q-functions at large real u can be stated through the

behaviour of the eight single-indexed Q-functions:

Qa|∅ ' Aau
−λ̂a (4.6a)

Q∅|i ' Biu
−ν̂i−1 , (4.6b)

where A and B are constant prefactors chosen such that the QQ-relations have the form

(4.3). The numbers λ̂a and ν̂i can be related to the fundamental gl(4|4) weights λa and

νi, cf. sections 1.1.1 and 1.4.2, in a specific grading, 1̂12̂23̂34̂4, see figure 4.3, through

λ̂a = λ1̂12̂23̂34̂4
a + Λ (4.7a)

ν̂i = ν 1̂12̂23̂34̂4
i − Λ , (4.7b)

where Λ is an arbitrary shift corresponding to the fact that the actual psu(2, 2|4) quantum

numbers are the differences λa − λa+1. We discuss this symmetry in section 4.1.5 below.

Notice that the central charge constraint translates to

4∑
a=1

λ̂a +
4∑
i=1

ν̂i = 0 , (4.8)
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Figure 4.3: Up to an overall shift, λ+Λ and ν−Λ, the fundamental weights in the grading 1̂12̂23̂34̂4

(or equivalently 1̂12̂23̂34̂4) correspond to λ̂ and ν̂ that dictate the large u asymptotics

of the QSC solutions.

and is unaffected by the value of Λ.

Through the QQ-relations, the asymptotic structure (4.6) along with the general fea-

ture (4.5) dictates the asymptotic behaviour of all other Q-functions. We discuss this in

more detail in section 4.2.4 below. Note that the asymptotics is where the anomalous

dimension γ, through the numbers ν̂i, enters the QSC.

4.1.3 Analytic structure

The Q-functions are multivalued functions of the spectral parameter u. The fundamental

properties of the analytic structure of the Q-system can be captured in the structure of

the single-indexed Q-functions, which we denote by

Pa ≡ Qa|∅ Pa ≡ Qa|∅ Qi ≡ Q∅|i Qi ≡ Q∅|i . (4.9)

For P there exists a Riemann sheet in u where the functions have only a single branch

cut between u = −2g and u = +2g. For Q there exists a Riemann sheet where the

functions have only the same two branch points, but instead of being connected by a

short branch cut, infinite cuts are placed on the real axis from these points to u = ±∞.

These Riemann sheets are depicted in figure 4.4. The position of branch points is the only

explicit appearance of the coupling constant g in the QSC.

From these basic features, we can use the QQ-relations (4.3) to investigate the analytic

structure of other Q-functions. To use the QQ-relations, we have to choose the same type

of cuts for all Q-functions. For example, Qab|∅ = P+
a P−b − P−a P+

b should have two short

cuts shifted away from the real axis by ± i

2 . To generate Q-functions with both types of

indices, i.e. a QA|J with J 6= ∅, ∅̄, from P, is however not as simple. As we will see below,

one can for example derive a relation such as

Q+
a|i −Q

−
a|i = −PaP

bQ±b|i (4.10)

from the basic QQ-relations. A sum over indices that appear in both upper- and lower-case

in an expression is always implied unless otherwise stated, e.g. PbQ±b|i ≡
∑4

b=1 PbQ±b|i. A
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u u

P Qs s s s

Figure 4.4: The defining Riemann sheet for the single-indexed Q-functions. The black dots corre-

spond to branch points at u = ±2g. The blue lines are branch cuts. The gray line is

the real axis, Im (u) = 0.

solution to (4.10) can formally be constructed as the infinite product

Qa|i = (δa1
a + P+

a Pa1+)(δa2
a1

+ P[3]
a1

Pa2[3]) · · · (4.11)

which would generate an infinite ladder of short branch cuts in the lower half-plane between

−i(1
2 + N+)± 2g. However, one could equally well construct Qa|i as

Qa|i = (δa1
a −P−a Pa1−)(δa2

a1
−P[−3]

a1
Pa2[−3]) · · · (4.12)

resulting in cuts in the upper half-plane. Whether to have analyticity in the upper or lower

half-plane is simply a choice. We will always choose analyticity in the upper half-plane.

Through the QQ-relations it can be seen that such a semi-infinite ladder of short cuts

appear in all QA|I with I 6= ∅, ∅̄. For the functions Q, this corresponds to choosing to keep

the upper half-plane in figure 4.4 on the first Riemann sheet, while replacing the lower

half-plane by the analytic continuation through the long cut. See figure 4.5.

In general, for a generic Q-function QA|I we denote the value on the first sheet, where

it is analytic in the upper half-plane, by QA|I , and its value on the second sheet, arising

from analytic continuation through a branch cut on the real axis, by Q̃A|I .

u u

Q Q̃s ss s
s s

s ss ss s
Figure 4.5: The first (left) and second (right) Riemann sheet of QA|I , I 6= ∅, ∅̄, with short cuts (up

to a shift of i

2
depending on the total number of indices). The functions Q have this

structure. The upper half-plane on the first sheet and the lower half-plane on the second

sheet correspond to the defining sheet for Q with long cuts in figure 4.4.

We could argue in the same way that P develops a semi-infinite ladder of long cuts on

its first sheet. Translating this to short cuts, we see that on the second sheet, P has an

infinite ladder of cuts in both the upper and lower half-plane, see figure 4.6.
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Figure 4.6: The first (left) and second (right) Riemann sheet of P with short cuts.

Importantly, from the definition of the QSC, all branch cuts are of squareroot type, i.e.
˜̃
f = f , and all functions are required to be regular everywhere, i.e. have no singularities.

We will almost always describe the QSC functions in terms of short cuts, and it will always

be stated explicitly if long cuts are considered.

4.1.4 The Pµ- and Qω-systems

We now know where the branch points are, but we also need to know how to analytically

continue through the cuts. The QSC describes the analytic continuation of P and Q

through their cuts on the real axis in terms of a set of auxiliary functions µ and ω. These

functions are in turn closely related to the central Q-functions, Qab|ij .

Construction of µ and ω

Introduce four times six functions, µab, µ
ab, ωij and ωij , all antisymmetric in their indices.

All these functions have infinite ladders of branch points at u = iZ ± 2g irrespective of

the chosen type of cuts. With short cuts, the first sheet of µab can be defined as a linear

combination of the six functions Q−ab|ij with i-periodic coefficients, ωij = ωij[2]:

µab =
1

2
ωijQ−ab|ij . (4.13a)

Similarly, the first sheet of µab is given by,

µab =
1

2
ωijQ

ab|ij− . (4.13b)

Had we instead chosen to work with long cuts, the roles would be reversed: ω would be

linear combinations of Q−ab|ij with i-periodic coefficients µ. The fact that µ are periodic

with long cuts translates into the following relation for the analytic continuation of µ with

short cuts:

µ̃ = µ[2] . (4.14)

A visual argument is given in figure 4.7.
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µ µ̃ µ µ̃

s ss s
s ss s
s s

s ss s
s ss s
s s

s ss s
s ss s
s s

s ss s
s ss s
s s

Figure 4.7: The first and second sheet of µ with (left) short and (right) long cuts. The colours

correspond to strips with the same value.

Analytic continuation of P and Q

The functions µ dictate the analytic continuation of P via the relations

P̃a = µabP
b P̃a = µabPb . (4.15)

Similarly, ω governs the analytic continuation of Q via

Q̃i = ωijQ
j Q̃i = ωijQj . (4.16)

The Pµ-system

The eight functions P and the 12 functions µ form a self-contained Riemann-Hilbert

problem from which the rest of the structure in the QSC, the Q-system and a similar

system formed by Q and ω, can be derived, see [15].

As we saw in (4.13), the functions µab are linear combinations of the central Q-

functions, Qab|ij , with i-periodic coefficients, and they thus satisfy the same difference

equations as these Q-functions. In particular they satisfy a set of six coupled first order

difference equations,

µab − µ
[2]
ab = PbP

cµ[1±1]
ac −PaP

cµ
[1±1]
bc (4.17)

to which Qab|ij are the complete set of solutions. The equation can also be phrased as

µab − µ
[2]
ab = P̃aPb −PaP̃b , (4.18a)

and similarly we get

µab − µab[2] = −P̃aPb + PaP̃b . (4.18b)

Together with (4.15) and the specified analytic structure, we call this the Pµ-system.

We could have derived a similar self-contained Qω-system, but as we will not need it

in our applications, we leave it out and refer to the original papers for the details.
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Asymptotics of µ and ω

For solutions of the QSC that correspond to cyclic single-trace operators, the functions

ω can have at most constant asymptotics at large u. We often refer to such solutions as

physical. This important restriction is the one that singles out the solutions of the QSC

that we wish to consider in this thesis.

As it has been discussed in e.g. [111, 112], unphysical solutions, by which we mean

solutions not corresponding to single-trace operators, require a modification of the asymp-

totics of ω to include exponential behaviour, e.g. ω ∼ e2πu at u → ∞. This is due to the

regularity constraint (4.55) discussed below.

4.1.5 Symmetries

The QSC has a large amount of symmetry. We here use the terminology of the original

paper [15] and denote the freedom to do spectral parameter dependent rescalings by gauge

symmetry (note that it has no relation to the SU(N) gauge symmetry of N = 4 SYM),

and the possibility to shuffle the basis of Q-functions through linear combinations by

H-symmetry.

Gauge symmetry

The QQ-relations are invariant under transformations of the kind

QA|I →
f [|A|−|I|+k]

f [−|A|+|I|−k]
QA|I , (4.19)

where f is formally an arbitrary function of the spectral parameter, and k is an integer.

However only two such rescalings are independent, e.g. k = 0, 1. For example a k = 2

rescaling can be written as

g[N+2]

g[−N−2]
=

(
g[N+1]

g[−N−1]

)+(
g[N+1]

g[−N−1]

)−
g[−N ]

g[N ]
=

(g+)[N+1]

(g+)[−N−1]

(g−)[N+1]

(g−)[−N−1]

(g−1)[N ]

(g−1)[−N ]
. (4.20)

We choose to demand Q∅|∅ = Q1234|1234 = 1 which removes the freedom to do k = 1

transformations and leaves only those of the type k = 0. If we want to preserve the branch

cut structure of the Q-functions described above, the only remaining gauge symmetry

corresponds to the freedom to do rescalings involving the Zhukowsky variable x of the

kind

QA|I →

|I|−|A|
2∏

k=
|A|−|I|

2

(x[k])sign(|A|−|I|)ΛQA|I . (4.21)

For the one-indexed Q-functions this means

Qa|∅ → xΛQa|∅, Q∅|j → x−ΛQ∅|j . (4.22)
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and since x ' u
g + O( 1

u) at large u, this exactly corresponds to the ambiguity in the

asymptotic powers λ̂ and ν̂ in (4.7).

H-symmetry

The QQ-relations are likewise invariant under transformations of the kind

QA|I → (H [|A|−|I|]) BA (Ĥ [|A|−|I|]) JI QB|J , |A| = |B|, |I| = |J |, (4.23)

where H B
A = H b1

a1
H b2
a2
. . . and Ĥ J

I = Ĥ j1
i1
Ĥ j2
i2
. . ., and where H b

a and Ĥ j
i are 4×4 matrices

that i-periodically depend on u and have unit determinants detH = det Ĥ = 1 in order

to keep Q1234|1234 = 1.

This symmetry means that we can add and subtract Q-functions with the same types

of indices. If we want to maintain analyticity in the upper half-plane and power-like

asymptotics then H and Ĥ must be constant matrices. We can use this symmetry to

ensure that Q-functions related by the H-symmetry have distinct asymptotic behaviour

at u→∞, and this fixes a large amount of the symmetry. This choice was in fact already

implicit in the asymptotic behaviour described in section 4.1.2. Likewise, we can rescale

the constant prefactors A and B (4.6) as long we keep the product A1A2A3A4B1B2B3B4

fixed to maintain Q1234|1234 = 1.

Relations between solutions

Some solutions of the QSC are related by simple relabelings. Sometimes these relabelings

map a solution to itself, which means that the solution has additional symmetries. There

are two cases:

• As the QSC equations are invariant under the parity transformation u↔ −u, then if

{QA|I(u)} is a solution to the Q-system, {QA|I(−u)} will be as well. In some cases,

the two Q-systems will be identical, and we call such states parity invariant. In the

spin chain picture, the transformation u→ −u corresponds to a reflection.

• Similarly, the Hodge dual (4.4) of {QA|I}, which we denote by {QFA|I} ≡ {Q
A|I}

will also be a solution, though in general to a Q-system with different asymptotical

behaviour. However, for some states the two sets of Q-functions are identical, and

we call these Hodge invariant. Hodge invariance can occur when the left and right

half of the Young diagram corresponding to the quantum numbers at zero coupling

are of the same shape, i.e. if in the yp grading

nf1 = L− nf4 nf2 = L− nf3 nb1 = na2 nb2 = na1 . (4.24)

This is also referred to as left/right symmetry. When a state is left/right symmetric

(4.24), it implies that either {QA|I(u)} = {QFA|I(u)} or {QA|I(u)} = {QFA|I(−u)}, or

both in the case of parity invariance.
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{QA|I(u)}

{QFA|I(u)}

{QA|I(−u)}

{QFA|I(−u)}

↔

↔
l l

Figure 4.8: All solutions come in sets related by parity and Hodge transformation. In some cases,

one or all of these transformations map a solution to itself.

An overview of the related solutions is given in figure 4.8.

4.2 Important relations

In this section we collect a number of convenient formulas that follow from the fundamental

relations of the QSC given above.

4.2.1 The full Q-system from Qa|∅ and Q∅|i

Clearly the knowledge of all 256 Q-functions is not essential. In fact, we just need to know

eight of them, for example Qa|∅ and Q∅|i, to generate the rest.

Qa|j from Qa|∅ and Q∅|j

To generate Qa|j from Qa|∅ and Q∅|j one has to solve the first order difference equations

Q+
a|i −Q

−
a|i = PaQi . (4.25)

The solution can formally be written as

Qa|i = −Ψ
(
P+
a Q+

i

)
, (4.26)

where Ψ is the inverse of the difference operation ∇,

Ψ(∇(f)) = f + P , ∇(f) ≡ f − f [2] , (4.27)

where P is an i-periodic function. In (4.26) this i-periodic ambiguity should be a constant

to preserve upper half-plane analyticity and power-like asymptotics. The Ψ-operation

plays an important role throughout the thesis, and it is discussed in detail in appendix

C.1.
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The rest

It follows from the QQ-relations that all other Q-functions can be generated from of Qa|∅,

Q∅|j and Qa|j via determinant formulas of the kind

Qa1,...,am|j1,...,jn =



εk1,...,kn
∏m
r=1Q

[•]
ar|jkr

∏n−m
s=1 Q

[n−m+1−2s]
∅|jkm+s

m < n

εk1,...,km
∏m
r=1Qakr |jr m = n

εk1,...,km
∏n
r=1Q

[•]
akr |jr

∏m−n
s=1 Q

[m−n+1−2s]
akn+s

|∅ m > n

, (4.28)

where • can take any value in −|m−n|,−|m−n|+2, . . . , |m−n|−2, |m−n|. The arbitrary

constants introduced in (4.26) can be fixed via the demand Q1234|1234 = 1.

4.2.2 Relations between QA|I and QB|J

A number of nice relations between the lower- and upper-indexed Q-functions follow di-

rectly from the QQ-relations and the property Q∅|∅ = Q1234|1234 = 1.

One can derive the very useful relations

Pa = −QiQ±a|i Pa = QiQ
a|i± Qi = −PaQ±a|i Qi = PaQ

a|i± . (4.29)

The single-indexed Q-functions satisfy

PaP
a = QiQ

i = 0 . (4.30)

Furthermore,

Qa|iQ
a|j = −δji Qa|iQ

b|i = −δba , (4.31)

which implies

Qab|ijQ
ab|kl = 2(δki δ

l
j − δliδkj ) . (4.32)

4.2.3 Coupled difference equations on QA|I in terms of P

Using the relations (4.29), one can formulate coupled sets of first order difference equations

on Q-functions with a given type of indices, where P play the role as coefficients. Such

equations play a key role in the perturbative algorithms described in chapter 4.

For example, one can combine (4.25) and (4.29) to see that Qa|i are solutions to a set

of four coupled first-order difference equations

Q−a|i −Q
+
a|i = PaP

bQ±b|i . (4.33)

Each value of i labels a particular solution. Likewise, Qab|ij are the solutions of the six

coupled first-order equations

Q−ab|ij −Q
+
ab|ij = −PaP

cQ±bc|ij + PbP
cQ±ac|ij . (4.34)

As discussed, µab solve these equations as well.
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Disentangled higher-order equations

One can start from the coupled first order equations and disentangle them into higher-order

difference equations. For example, (4.33) could be turned into a decoupled fourth-order

equation on Qa|i. For the interested reader, this rather bulky equation is given in appendix

A.4.3. We could similarly write a sixth-order equation on Qab|ij . However, as we will see

in chapter 6, we will have more use of the simpler coupled first-order equations, and only

use the decoupled higher-order equations in special cases where we can lower their degree.

4.2.4 Asymptotic behaviour

We now take a closer look at the implications of the asymptotic behaviour of the single-

indexed Q-functions at large u described in section 4.1.2.

The QQ-relations imply that an arbitrary Q-function has the asymptotics [42]

QA|I '
∏
a∈A

Aau
−λ̂a

∏
i∈I

Biu
−ν̂i−1

∏
a<b∈A(-i) λ̂a−λ̂bu

∏
i<j∈I(-i)

ν̂i−ν̂j
u∏

a∈A
∏
i∈I(-i)

λ̂a+ν̂i
u

. (4.35)

Importantly, using (4.8), the behaviour of Q∅|∅ = Q1234|1234 turns out to be

Q1234|1234 '
4∏

a=1

Aa

4∏
j=1

Bj

∏
1≤a<b≤4(λ̂a − λ̂b)

∏
1≤i<j≤4(ν̂i − ν̂j)∏4

a=1

∏4
i=1(λ̂a + ν̂i)

, (4.36)

and thus the constant prefactors A and B should satisfy

4∏
a=1

Aa

4∏
j=1

Bj =

∏4
a=1

∏4
i=1(λ̂a + ν̂i)∏

1≤a<b≤4(λ̂a − λ̂b)
∏

1≤i<j≤4(ν̂i − ν̂j)
, (4.37)

in order to have Q1234|1234 = 1.

From (4.35), we also get the asymptotic behaviour of Pa and Qi. We will denote their

prefactors by Aa and Bi, i.e.

Pa ' Aauλ̂a−1 Qi ' Biuν̂i , (4.38)

which can then be seen to satisfy the relations

AaA
a = i

∏
j λ̂a + ν̂j∏

b 6=a λ̂a − λ̂b
(4.39a)

BjB
j = i

∏
a ν̂j + λ̂a∏
k 6=j ν̂j − ν̂k

, (4.39b)

where no sums are implied on the left hand sides.
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λ̂ and ν̂ in terms of nyp

As we will prefer to label solutions by their oscillator content of their HWS in the yp

grading at g = 0, we here give the relation between these numbers and λ̂ and ν̂:

λ̂a = nypfa + {2, 1, 0,−1}a + Λ ≡ λ0
a + Λ (4.40a)

ν̂i = {−Lyp − nypbα̇ , n
yp
aα}i + {−1,−2, 1, 0}i − Λ ≡ ν0

i − Λ . (4.40b)

Recall that the weights λ̂ remain fixed at any g while ν̂ correspond to AdS5 charges, which

include the conformal dimension ∆ = ∆0 + γ, so they will run with the coupling,

ν̂i = ν̂i|g=0 +
γ

2
{−1,−1, 1, 1}i . (4.41)

Note that λ̂a > λ̂a+1 and ν̂i > ν̂i+1, while λ̂a + ν̂i = 0 can only happen at the unitarity

bound.

4.2.5 Analytic continuation in the Pµ-system

Doing analytic continuations of the equations of the Pµ-system leads to useful relations.

First note that from a contraction of (4.18) with Pb, it follows that (µab−µ
[2]
ab )P

b = 0, i.e.

µabP
b = µ

[2]
abP

b . (4.42)

By doing an analytic continuation of (4.15) we get

Pa = µ
[2]
ab P̃

b = µabP̃
b , (4.43)

which is a quite powerful constraint as it relates the value on a sheet with a single branch

cut to a bilinear combination of functions with infinite ladders of cuts.

4.2.6 Properties of µ

It is worth investigating the properties of the auxiliary functions µ in more detail. These

functions will play a key role in the weak coupling techniques described in chapter 6.

Analytic continuation on the real axis

The fact that all branch cuts are of square-root type means that with short cuts the

combinations

µ+ µ̃ = µ+ µ[2] µ− µ̃√
u2 − 4g2

=
µ− µ[2]√
u2 − 4g2

(4.44)

have a trivial monodromy when crossing the branch cut on the real axis.
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Consequences of long cut periodicity

The fact that with long cuts µ is an i-periodic function on its first sheet is a strong

constraint. Away from the long cuts we have µ(u) = µ(u+ i) and also all derivatives must

coincide. If we translate this to short cuts, cf. figure 4.7, then only the strip 0 ≤ Im (u) ≤ 1

is transferred from the first sheet with long cuts to the first sheet with short cuts. On

the first sheet with short cuts the function is subject to a remnant of the i-periodicity:

the function should behave similarly when approaching the branch cut between ±2g from

above and the branch cut between i± 2g from below, i.e.

dn

dnu
µ(u)

∣∣∣∣
u→c+i0+

=
dn

dnu
µ(u)

∣∣∣∣
u→c+i1−

, −2g < c < 2g , n = 0, 1, 2, . . . (4.45)

As we will see in the next section, this gives us an important constraint on the behaviour

of µ at u = 0 and u = i at weak coupling.

The Pfaffian and the relation between µab and µab

Since P̃a = µabP
b = µabµ

bcP̃c we can conclude that µab and µab are mutually inverses, i.e.

µabµ
bc = δca . (4.46)

We define the Pfaffian of µab through

Pf(µ•) ≡
1

8
εabcdµabµcd = µ12µ34 − µ13µ24 + µ14µ23 . (4.47)

One can see, by writing out the explicit possibilities, that

εabcdµcdµbe = −2δae Pf(µ•) . (4.48)

We can then combine (4.48) and (4.46) to see that µab and µcd are related through

µab = −1

2
εabcdµcd

1

Pf(µ•)
. (4.49)

By using (4.17) and (4.30) we can infer that Pf(µ•) is i-periodic:

Pf(µ•) = (1 + PaP
a) Pf(µ

[2]
• ) = Pf(µ

[2]
• ) , (4.50)

and since Pf(µ•) = Pf(µ
[2]
• ) = Pf(µ̃•), it has no branch points. As it has power-like

asymptotics, it must then be a constant, and it can be controlled by the freedom to fix

the normalisations Aa.

4.2.7 P and the Zhukowsky map

A key property in the solution methods of the QSC is the simple structure of P. It has

integer power-like asymptotics at any value of g, and it has only a single short cut on the

first Riemann sheet.
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Figure 4.9: For P, the first two Riemann sheets in u (left) gets mapped to a single sheet in x (right).

The grey circle on the x-sheet is the unit circle, and the branch points on the real axis

in u correspond to the points x = ±1.

To really exploit these features, one can make a change of variables from the spectral

parameter u to the Zhukowsky variable x(u) (3.13). We discuss the properties of the

Zhukowsky variable in more detail in appendix A.4.1. The important property is that for

P, the first two Riemann sheets in u get mapped to a single Riemann sheet in x. The

first sheet, P(u), is mapped outside the unit circle, |x| > 1, while the second sheet, P̃(u),

is mapped to the inside of the unit circle, |x| < 1, see figure 4.9 and 4.10. The branch cut

on the real axis is resolved and it is mapped to the unit circle in the x-plane.

We can write P(x) as a power expansion around x = ∞. As x behaves like x ∼ u
g

Figure 4.10: Plot showing the position of the points x(u = iZ±2g) for g = 20. For g → 0 all branch

points converge towards x = 0.
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at large x, P(x) should have power-like large x asymptotics, Pa(x) ∼ x−λ̂a and Pa(x) ∼
xλ̂a−1. Then the power expansion of P should have the form

Pa(x) =

∞∑
k=λ̂a

ca,k
xk

Pa(x) =
∞∑

k=−λ̂a+1

ca,k

xk
, (4.51)

where c are g-dependent coefficients. The behaviour of c in g is restricted by the values of

the prefactors A, cf. section 4.2.4. This expansion should converge until the first branch

points are reached in the x-plane, i.e. for |x| > |x(i+ 2g)|. This means that the expansion

is convergent everywhere on the first u-sheet, P(u), and in a finite region around the

branch cut on the real axis on the second u-sheet, P̃(u).

Crossing the unit circle in the x-plane corresponds to crossing the short branch cut in

x(u). Since we restrict x to be the solution of (3.13) with |x| > 1, then this corresponds

to the replacement x→ 1
x in (4.51).

4.3 The QSC at weak coupling

The main goal of this thesis is the perturbative weak coupling solution of the QSC. We

thus need a systematic understanding of the QSC in the limit g → 0.

Considering the analytic structure of the QSC functions, we see that, as depicted in

figure 4.11, the branch points at in−2g and in+2g collide at in. The branch cuts vanish,

and the functions develop the possibility of having poles at these points instead.

Our basic assumption is that for solutions corresponding to multiplets of single-trace

operators, any function in the QSC can be written as a power expansion in g2, i.e.

f(u, g) =
∞∑
j=1

f (j)(u)g2(j−1) = f (1)(u) + f (2)(u)g2 + f (3)(u)g4 + . . . . (4.52)

Note that some functions may come with overall factors of g, and that such prefactors can

usually be modified through the symmetry transformations mentioned in section 4.1.5.

For solutions of the QSC corresponding to single-trace operators, the conformal dimen-

sion follows the pattern (4.52), and at g = 0 it has the classical value (1.31). This means

→

u u

s ss ss ss ss s

ss
ss
s

Figure 4.11: As g → 0 the branch points at in ± g collide at in. The branch cuts disappear, and

leave behind possible singularities.
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that at the leading order, all functions have integer power-like asymptotics at u→∞, and

the boundary conditions of the QSC coincides with those of a rational spin chain.

4.3.1 Properties of µ

The functions µ have important properties at weak coupling, which play a key role in the

applications in the next chapters.

µ at u = 0

As discussed, the combinations µ + µ[2] and µ−µ[2]√
u2−4g

have no branch points on the real

axis. As singularities at weak coupling only arise from colliding branch points, these

combinations should be regular at u = 0 at any order of the weak coupling expansion.

This turns out to be a strong constraint.

Polynomiality at the leading order

To satisfy both of the above regularity conditions, we see that µ cannot have poles at

neither u = 0 or u = i at the leading order. Furthermore, µ satisfy relations of the type

(4.17), which schematically have the form

µ− µ[2] = (µP)P−P(µP) = (µ[2]P)P−P(µ[2]P) , (4.53)

and we can use these relations to make replacements of the kind

µ[n] = µ[n+2] + ((µP)P−P(µP))[n] (4.54a)

µ[n] = µ[n−2] +
(

(µP[−2])P[−2] −P[−2](µP[−2])
)[n]

. (4.54b)

Using the first one to replace µ[2] in the combination µ + µ[2], and recalling that P can

only be singular at u = 0, we see that µ[4] has to be regular at u = 0, i.e. µ is regular

at u = 2i. This argument can be applied recursively to argue that µ has no poles at iN.

Furthermore, the second replacement can be used to argue that µ has no poles at −iN. In

conclusion, µ are completely regular functions at the leading order with integer power-like

asymptotics. Thus they are polynomials.

This observation also implies that, at the leading order, P̃ can only have poles at u = 0

and have integer power-like asymptotics.

The zero-momentum condition

As µ are regular everywhere at the leading order, the constraint (4.45) turns into the

requirement

lim
u→0

µ(1)(u+ i)

µ(1)(u)
= 1 . (4.55)
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Maximal order of poles in perturbative expansion

The perturbative expansion of µ is

gnµ = µ(1) + µ(2)g2 + µ(3)g4 + . . . , (4.56)

where n is some number. The regularity of µ+ µ[2] tells us that the poles of µ and µ[2] at

u = 0 must be identical. For µ−µ[2]√
u2−4g

to also be regular, the maximal order of the poles at

u = 0 is restricted. Perturbatively, this quantity looks like

gn
µ− µ[2]√
u2 − 4g

=
µ(1) − µ(1)[2]

u
+ g2

(
µ(2) − µ(2)[2]

u
+ 2

µ(1) − µ(1)[2]

u3

)
(4.57)

+g4

(
µ(3) − µ(3)[2]

u
+ 2

µ(2) − µ(2)[2]

u3
+ 6

µ(1) − µ(1)[2]

u5

)
+O(g6) .

As µ(1) − µ(1)[2] ∼ u, the maximal pole in µ(2) is u−1. Then the maximal pole in µ(3) is

u−3, and recursively we then see that µ(n) has the maximal pole u−2n+3 at u = 0. The

same holds for µ(n)[2].

4.3.2 Structure of ω

The functions ω are i-periodic and have at most constant asymptotics at u → ∞ for

physical solutions. They are only allowed to have poles at u = iZ. A general ansatz for

such i-periodic functions is given by

ω = ω{0} +

∞∑
k=1

ω{j}Pj , (4.58)

where ω{j} are g-dependent constants and Pj are i-periodic functions containing an infinite

sum of poles of power j,

Pj(u) =
∞∑

k=−∞

1

(u+ ik)j
. (4.59)

We discuss these functions and their relation to hyperbolic functions in appendix B.3.1.

Truncation of the ansatz

As µab = 1
2ω

ijQ−ab|ij , the restricted pole structure of µ(n) constrains the allowed terms in

the ansatz for ω(n). The functions Qab|ij are analytic in the upper half-plane, so Q+
ab|ij

cannot have poles at u = 0. Using (4.32), we can invert (4.13) to get the relation ωij =
1
2µ

abQ−ab|ij = 1
2µ

ab[2]Q+
ab|ij . At the perturbative order n, the constraints on the maximal

pole order in µ(n)[2] discussed in section 4.3.1 means that the sum (4.58) is truncated at

the term ω{2n−3}.
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For µ to be polynomial at the leading order, ω must be constant at the leading order,

i.e. ω(1) = ω
(1)
{0}. Note also that, according to (4.35), Qab|34 have negative power-like large

u-asymptotics, u−λ̂a−λ̂b−ν̂3−ν̂4 , due to the unitarity constraints, so they must be non-

polynomial and unable to contribute to µ
(1)
ab , i.e. ω34(1) = 0. It is then possible to use the

H j
i symmetry to rotate the Q-system such that only ω12 is nonzero at the leading order.

Note that, generically, Q
(1)
ab|12 is the only polynomial subset of Q

(1)
ab|ij (an argument will

be given in chapter 5), and then this follows automatically. Note furthermore that when

µ
(1)
ab ∝ Q

(1)−
ab|12, the requirement (4.55) is the well-known zero-momentum condition

lim
u→0

Q
(1)
ab|12(u+ i

2)

Q
(1)
ab|12(u− i

2)
= 1 . (4.60)

4.3.3 Structure of P

The parametrisation of P in terms of the Zhukowsky variable and its expansion around

x =∞ discussed in section 4.2.7 gives us a lot of information about the structure of P(u)

and P̃(u) in the weak coupling limit. This information will be crucial in the perturbative

solution methods of chapter 6. We now analyse this structure in more detail.

Explicit ansatz

Let us analyse the g-dependence of the coefficients c in the ansatz (4.51) more carefully.

Assuming that the asymptotic behaviour (4.6) is valid at g = 0, it follows from the

constraints (4.39) that the products AaA
a (no sum over a) are regular in g. These products

are generically O(g0), except in the case of shortening, where A1A
1 = O(g2) if (1.39a) is

satisfied, and A4A
4 = O(g2) if (1.39b) is satisfied. This means that we can always choose

to fix the freedom in A such that all Pa(u) and Pa(u) are regular in g with the possibility

of some of them being O(g2) due to shortening. In the case (1.39a) we set P1 = O(g2)

and in the case (1.39b) we set P4 = O(g2). We can then write a more precise version of

(4.51):

Pa(x) =
1

(gx)λ0
a+Λ

∞∑
k=0

ca,k
(gx)k

(4.61a)

Pa(x) =
1

(gx)−λ0
a+1−Λ

∞∑
k=0

ca,k

(gx)k
, (4.61b)

where λ0
a is symmetry-independent and was defined in (4.40), and Λ corresponds to the

symmetry (4.22). The constants c are here strictly regular in g, and we assume that they

can be written as expansions in g2:

c =
∞∑
j=0

c(j+1)g2j . (4.62)
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The leading coefficient should match the choice of A, i.e. ca,0 = Aa and ca,0 = Aa.

Restricting to |x| > 1, the expansion that describes the value on the second sheet P̃(u)

is obtained through the replacement x→ 1
x in (4.61). This gives

P̃a(x) =

(
x

g

)λ0
a+Λ ∞∑

k=0

ca,k

(
x

g

)k
(4.63a)

P̃a(x) =

(
x

g

)−λ0
a+1−Λ ∞∑

k=0

ca,k
(
x

g

)k
. (4.63b)

The expansion is convergent in a finite region around u = 0. As discussed in section

4.3.1, µab are polynomials at the leading order of maximal degree −λ0
a−λ0

b − ν0
1 − ν0

2 (the

strongest asymptotics among Qab|ij). Since P̃(u) are given by (4.15), the ansatz (4.63)

must be exact at the leading order, and the leading contributions P̃(1)(u) have power-like

asymptotics of maximal degree u−λ
0
a−ν0

1−ν0
2−1+Λ for P̃

(1)
a (u) and uλ

0
a+ν0

3+ν0
4−Λ for P̃a

(1)(u).

Due to the behaviour x ∼ u
g +O(g), this puts strong constraints on the scaling in g of the

constants c. Denote the last terms contributing to the leading order in the sums (4.63) by

k = Ma and k = Ma, respectively. Denote the g-scaling of the corresponding c-coefficients

by ca,k ∼ g2(Ma−Na) and ca,k ∼ g2(Ma−Na) where Na ≤Ma and Na ≤Ma. Then we must

demand

c
(j)
a,k = 0 if

{
j ≤ k −Na ∧ Na < k ≤Ma

j ≤ k −Na + 1 ∧ k > Ma

, (4.64)

and so the leading order of P̃a(u) has the form

P̃(1)
a (u) =

(
u

g2

)λ0
a+Λ

g−2Na

Ma∑
k=Na

c
(1+k−Na)
a,k uk , (4.65)

and similarly for P̃a.

Revised ansatz

The above considerations make it appropriate to rephrase the ansatz (4.61) by introducing

a new set of constants c and d that are again regular in g:

Pa = (gx)−λ
0
a−Na−Λ

(
Na∑
k=0

da,k (gx)k +

∞∑
k=1

ca,k

(g
x

)k)
, (4.66a)

Pa = (gx)λ
0
a−Na−1+Λ

(
Na∑
k=0

da,k (gx)k +
∞∑
k=1

ca,k
(g
x

)k)
. (4.66b)

This ansatz makes it more transparent which terms are suppressed by factors of g in P(u)

and P̃(u), respectively. The question is what the numbers Na and Na are. From the

maximal asymptotic power of P̃(1)(u), they have an upper bound,

Na ≤ −2λ0
a − ν0

1 − ν0
2 − 1 (4.67a)

Na ≤ 2λ0
a + ν0

3 + ν0
4 − 1 . (4.67b)



90 Chapter 4. Quantum Spectral Curve

The lower bound is N ≥ −1, where N = −1 can only happen in the case of shortening,

since it implies that the corresponding P(u) vanishes at the leading order.

Scaling considerations

From the ansatz (4.66), it is clear that Na and Na control the scaling of P̃ in g, i.e.

P̃a(u) ∼ g−2(λ0
a+Na+Λ) and P̃a(u) ∼ g−2(−λ0

a+1+Na−Λ). From the construction of µ (4.13),

it is natural that all µab have the same g-scaling. Through the construction of P̃ (4.15),

it is then natural that all P̃a(u) likewise scale with g in the same way. Similarly, P̃a(u)

should all have the same g-scaling. This implies that

Na = −λ0
a + C• , Na = λ0

a − 1 + C• , (4.68)

where C are universal constants independent of the index a, that govern the g-scaling:

P̃a(u) ∼ g−2(C•+Λ) and P̃a(u) ∼ g−2(C•−Λ).

Universal choice for C

Assume there is a universal choice for the numbers C• and C•. We will now try to

argue that there is only one such choice. First note that for each solution to the QSC,

there should be a Hodge dual solution, which is identical to the original solution up to a

relabelling of upper and lower indices. On the level of quantum numbers, the Hodge dual

solution corresponds to rotating the Young diagram by an angle of π, which results in the

quantum numbers λ0,F
a = Lyp − λ0

5−a + 1. Since the solutions should be identical up to

relabelling, we should have NFa = N5−a. The first equation in (4.68) then gives

C• = λ0,F
a +NFa = Lyp − λ0

a + 1 +Na = Lyp + C• ⇒ Lyp = C• − C• . (4.69)

The next consideration is that the maximal value of λ0
a is λ0

1 = Lyp + δ, where δ = 1 only

in the case of the shortening (1.39a). The lower bound on Na then requires that C• ≥ Lyp

to accommodate this case. Similarly, the upper bound on Na (4.67b) turns into C• ≤ 0

to accommodate all cases. Combining these two universal bounds with (4.69), we see that

C• = Lyp , C• = 0 , (4.70)

is a universal choice that is consistent with the bounds on N and the existence of an

equivalent Hodge dual solution.
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Final ansatz

Under the above assumptions, we arrive at a precise ansatz for the functions P:

Pa = (gx)−L
yp−Λ

Lyp−λ0
a∑

k=0

da,k (gx)k +
∞∑
k=1

ca,k

(g
x

)k
Pa = (gx)Λ

λ0
a−1∑
k=0

da,k (gx)k +

∞∑
k=1

ca,k
(g
x

)k
(4.71)

where the weights λ0
a are defined as

λ0
a = nypfa + {2, 1, 0,−1}a , (4.72)

and where all coefficients c and d have a regular expansion in g2,

c =

∞∑
j=0

c(j+1)g2j , d =

∞∑
j=0

d(j+1)g2j . (4.73)

The leading coefficient in gx should be identified with the corresponding prefactor A, which

is constrained by (4.39).

The ansatz (4.71) is natural from the point of view of gradings of the type 1...4, where

the length is always Lyp. It inherently sets P1(u) = O(g2) and P4(u) = O(g2) in the case

of shortenings. In the next chapter we will indeed see that this is natural for the gradings

1...4.

While the the ansatz (4.71) was not derived in complete rigour, it turns out to be

consistent with the leading solutions of the QSC that are discussed in chapter 5. Further-

more, it adequately governs the perturbative corrections generated through the algorithms

described in chapter 6.

4.4 Applications and generalisations

The practical power of the QSC has been demonstrated in many applications. Further-

more, the QSC has been generalised to accommodate various deformations. A similar

construction has likewise been found in the planar limit of the AdS4/CFT3 correspon-

dence. We here summarise these developments.

4.4.1 Near-BPS solution

In [111] a near-BPS solution of the Pµ-system as an expansion in a small sl(2) spin S was

given. The first two corrections, proportional to S and S2 were calculated. The result is

valid at any coupling, and it allowed to make a new prediction for the third order correction

in the strong coupling expansion of the Konishi operator, as well as new predictions about

the strong coupling limit of the BFKL regime.
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4.4.2 Weak coupling

In [1], an iterative algorithm to solve the Pµ-system as a perturbative expansion in the

coupling g for any operator in the sl(2) sector was presented. The obtained results include

10-loop results for the anomalous dimension of a variety of sl(2) operators. Subsequently,

this method has been used to provide enough data points to reconstruct the six- [2] and

seven-loop [3] anomalous dimension of twist-2 operators for arbitrary spin, S. Twist-2

operators correspond to highest weight states of the kind DS12Z2 in the 11̂2̂233̂4̂4 grading,

which corresponds to the quantum numbers

nyp = [0, S−2|1, 1, 1, 1|S−2, 0] . (4.74)

A general Q-system based method to solve the QSC perturbatively was first proposed in

[113], while a general method to solve Pµ-system will be presented in [7].

The perturbative solution methods of the QSC are the topic of chapter 6. The re-

construction of the analytic structure of the anomalous dimension of twist-2 operators for

arbitrary spin is the topic of chapter 7.

4.4.3 Numerics

A generic algorithm to solve the QSC numerically at any coupling was given in [114].

The method was demonstrated on twist-2 operators in the sl(2) sector. The method

increases its precision through an iterative procedure that quickly reaches more than 20

digits precision. The method also allows to explore the BFKL regime numerically, and

in general to explore the solutions of the QSC at general complex values of the coupling

and quantum numbers. The algorithm was implemented in C++ in [115], allowing an even

higher precision which made it possible to make stronger predictions about the strong

coupling behaviour of the anomalous dimension of the Konishi operator.

4.4.4 The BFKL limit

The BFKL regime corresponds to an analytic continuation of the QSC for twist-2 operators

to spins around S = −1. It is a double scaling limit where we set S ≡ −1 + w and make

take the limit

g → 0, w → 0 , with Λ =
g2

w
fixed . (4.75)

The main complication compared to the standard weak coupling expansion is that the

conformal dimension does not behave as ∆ = ∆0 +O(g2). In [112] the Pµ-system in this

limit was solved to the first two orders in g2 allowing to reproduce the leading order BFKL

Pomeron eigenvalue. In [113] a Q-system based solution method was used to find a range

of solutions as expansions around fixed ∆ and use this data to reconstruct the first three

contributions to the Pomeron eigenvalue.
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4.4.5 Deformations

As we saw in chapter 2, integrable models can be deformed by twists while still preserving

integrability. A twist can be introduced in the QSC in a similar way, which was done in

[42]. Such twists can also be understood on the level of the N = 4 SYM Lagrangian.

The twisted QSC was recently studied in an interesting double scaling limit [116]. Very

recently, the QSC was also derived for the η-deformed version of AdS5/CFT4 [117].

In [118] it was also understood how to study the cusp anomalous dimension by mod-

ifying the asymptotic behaviour and analytic properties of the QSC solutions. This con-

struction was used to investigate the quark-antiquark potential in [119].

As we will return to the twisted QSC in chapter 8, we here briefly summarise its new

features compared to the untwisted model.

New features in the twisted QSC

Introducing a general diagonal twist in the QSC leaves all relations and the analytic

structure invariant, and the only modification is in the large u asymptotics of the involved

functions1. In the fully twisted case [42], the asymptotics are

Pa ' Aa x
iu
a u−λ̌a Pa ' Aa x−iu

a uλ̌a Qj ' Bj y
−iu
j u−ν̌j Qj ' Bj yiuj uν̌j , (4.76)

where λ̌a = nfa + Λ and ν̌j = {−L − nbα̇ , naα} − Λ and there is no need to specify

a grading as all fermionic symmetry is broken. Resultingly, some operators that are

supersymmetry descendants in the untwisted theory become highest weight states. Apart

from the treatment in [42] of the BMN vacuum, which is no longer protected, no explicit

results for physical operators in the twisted theory have been presented yet.

4.4.6 AdS4/CFT3

In analogy to the AdS5/CFT4 case, a QSC [120] has been constructed for the planar limit

of the AdS4/CFT3 duality. The Pµ-system is strikingly similar to that of AdS5/CFT4: the

equations are the same, but the analytic structure of the functions P and µ is exchanged.

On the level of the Q-system, the systems are less alike.

In [121] the near-BPS solution was studied and a conjecture was made for the exact

structure of the interpolating function. A similar conjecture for the ABJ model was given

in [122]. The Pµ-system was solved perturbatively in [123] for states in an sl(2)-like

sector. Six non-trivial orders, corresponding to 12 loops in ABJM theory, was reached for

a number of operators.

1One can alternatively consider power-like Q-functions at the cost of having modified QQ-relations.
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Subconclusion

In this chapter, the Quantum Spectral Curve was introduced in an axiomatic form, which

we then used to derive a number of properties, first at arbitrary coupling and then in

the weak coupling limit. A brief summary of the applications and generalisations of the

QSC was given. The scope of its applications demonstrates that the QSC is an incredibly

powerful tool.

This chapter concludes the first part of the thesis, which has aimed at introducing the

integrable structures that appear in the spectral problem in the AdS5/CFT4 correspon-

dence. The second part of the thesis is devoted to exploiting these structures to obtain

explicit perturbative results. The analysis of the weak coupling properties of the QSC in

section 4.3 lays the foundation for these calculations.
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The explicit spectrum
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Chapter 5

The 1-loop Q-system

We first encountered the notion of Q-systems in chapter 2, where they were formed by

spin chain Q-operators. The Q-system reappeared in chapter 4 as a clever reformulation

of the TBA equations. In both cases, the size and functional relations of the Q-system

are dictated solely by the symmetry. The difference lies in the boundary conditions: the

asymptotic behaviour and the analytic properties.

The g → 0 limit of the AdS/CFT Q-system is exactly the Q-system of a rational spin

chain. The first step in solving the QSC perturbatively is to solve this system, and the

goal of this chapter is to do that efficiently. To accomplish this, we will think of Q-systems

in an unconventional way. Recall the concept of Young diagrams introduced in chapter 1.

They were used to classify irreducible representations of Lie algebras. But the concept of

extended Young diagrams allowed us to think of representations as algebra-independent.

In this chapter, we will advocate the idea that, at least when dealing with representations

of Jordan-Schwinger-type, Q-systems can be constructed on Young diagrams, and that

they are not sensitive to the precise Lie algebra rank. The Lie algebra-based Q-systems,

see figure 5.1, are in fact just special cases of more general Q-systems living on infinitely

extended Young diagrams. This idea will allow us to develop powerful tools to find explicit

solutions to the Q-systems, and thus indirectly solve Bethe equations.

Our goal is to explicitly calculate Bethe roots uj or, equivalently, coefficients in Baxter

polynomials c(k),

Q ≡
M∏
j=1

(u− uj) = uM +

M−1∑
k=0

c(k)uk . (5.1)

Since Bethe equations, cf. (2.23) and (2.82), are algebraic equations, and likewise since

the Q-functions should arise from diagonalisation of polynomial Q-operators with rational

coefficients, it is clear that uj and c(k) are algebraic numbers, i.e. of the type

q0 + q1θ + q2θ
2 + . . . qK−1θ

K−1 , (5.2)

96
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Figure 5.1: Traditionally, see e.g. [124, 17, 125, 26, 42], Q-systems are constructed from the rank of

a given Lie algebra, here gl(2) (left), gl(2|1) (middle), and gl(2|2) (right).

where qi are rational numbers and θ is a root of a degree-K polynomial equation with

integer coefficients.

The momentum-carrying Q-function, placed at the central node of the Young diagram,

determines the spectrum, i.e. the spin chain energies or the 1-loop anomalous dimensions

γ1, through

γ1 = 2E = 2i ∂u log
Q+

Q−

∣∣∣∣
u=0

, (5.3)

which is simply a reformulation of the formula (2.24).

5.1 Traditional methods

So why not just solve Bethe equations? Let us take a look at some of the diseases of Bethe

equations and related statements of the problem. We will exemplify the discussion on the

su(2) irreps with weights {λ1, λ2} = {L−M,M} = {3, 2}. The 32 possible L = 5 spin

chain configurations are of the form

1× ↑↑↑↑↑ 5× ↑↑↑↑↓ 10× ↑↑↑↓↓ 10× ↑↑↓↓↓ 5× ↑↓↓↓↓ 1× ↓↓↓↓↓

and they form one irrep with highest weight M = 0, four with M = 1, and five with

M = 2. Thus, we should expect five solutions to the su(2) Bethe equations with L = 5

and M = 2.

Bethe equations

We saw the su(2) Bethe equations in (2.23). In our example, there are two equations:(
u1 + i

2

u1 − i

2

)5

=
u1 − u2 + i

u1 − u2 − i
,

(
u2 + i

2

u2 − i

2

)5

=
u2 − u1 + i

u2 − u1 − i
. (5.4)

By eliminating u2, we are left with polynomial equation in u1 of degree 29. Only 21 of

the 29 solutions are distinct, and we should also remove solutions related by relabelling
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u1 ↔ u2. This leaves 11 solutions which are most nicely expressed as the polynomials

Q = (u− u1)(u− u2),

u2 , u2 ± 1

4
, u2 ±1 u

√
5±2 2

√
5 +

5

4
±2

√
5

2
, u2 ±1 u

√
10±2 2

√
5

6
+

1

6
±2

√
5

12
. (5.5)

This is six more than we were hoping for. But which correspond to our spin chain states?

Baxter equations

An often preferred alternative to Bethe equations are Baxter equations, which we saw for

su(2) in (2.64). In our example, the Baxter equation reads

TQ = (u+ i

2)5Q[−2] + (u− i

2)5Q[+2] , T =
5∑
j=0

d(j)uj , Q = u2 + c(1)u+ c(0) , (5.6)

and by imposing that each order in u vanishes separately, the coefficients d(j) and c(j) are

uniquely fixed. This gives six solutions for Q,

u2 ± 1

4
, u2 ±1 u

√
10±2 2

√
5

6
+

1

6
±2

√
5

12
, (5.7)

which are a subset of the solutions to the Bethe equations (5.5). It is still one too many.

What is the problem?

Why do we get too many solutions? Let us recall the Q-operator construction for su(2).

It consisted of two non-trivial Q-operators Q{1} and Q{2}, that both, up to an overall

exponential prefactor, were polynomials in u. But so far we have only discussed one Q-

function. What about the other one? The key to understanding the excess of solutions

to Bethe and Baxter equations lies in the polynomiality of this second solution. Neither

of these approaches guarantee this. In general, these methods only ensure that a single

Q-function at each node of the chosen Dynkin path is polynomial. For example, in the

gl(2|2) Q-system in figure 5.1 this is only five out of the 16 Q-functions.

In our concrete example, we can take our solutions and plug them into the basic

QQ-relation,

u5 = Q+
1 Q
−
2 −Q

−
1 Q

+
2 (5.8)

and see whether it can be satisfied by a polynomial ansatz for Q2. For our six solutions

to the Baxter equations (5.7) it turns out that Q1 = u2 + 1
4 is the imposter which does

not allow a polynomial Q2.

This solution, Q = u2 + 1
4 = (u+ i

2)(u− i

2), is an example of what is called exceptional

solutions which have roots that are separated by i. They are clearly a bit problematic

from the point of view of the Bethe and Baxter equations. In general such solutions can
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both be good solutions that are part of fully polynomial Q-systems and, as we just saw,

bad solutions that are not.

For spin chains in compact representations, we can sum up the mathematical problem

we are trying to solve in the conjectured one-to-one correspondence

spin chain eigenstates ↔ polynomial solutions to Q-system (5.9)

In the non-compact case, the whole Q-system is no longer polynomial, but one can for-

mulate a similar criteria as we will see in section 5.3.

How do we get around it?

We want to have a method that gives us all the right solutions and nothing else. The

question is how to ensure the polynomiality of the full Q-system.

• We could of course just solve Bethe or Baxter equations, plug the solutions into QQ-

relations, and see which ones allow the other Q’s to be polynomial. But neither Bethe

equations or the Baxter equations are particularly convenient to solve in practice, in

particular not in the nested case. In fact one quickly realises that, using a symbolical

programming language such as Mathematica, solutions are only found for the most

simple quantum numbers.

• Similarly, one could just diagonalise the spin chain Hamiltonian, but again, when

the matrices become large, this rarely works in practice. In any case, this only gives

us the energy and not the separate Bethe roots.

• We could also take the QQ-relations as our starting point and put in arbitrary

polynomial ansätze. In the su(N) case, this is in fact rather successful because

the Q-functions with all but one index satisfy determinant relations of the kind

Q∅ = det1≤a,k≤N

(
Q

[−N−1+2k]
ā

)
and the polynomiality of the remaining Q-functions

follow from determinant formulas similar to (4.28). The supersymmetric case is

less nice, and in the non-compact case not all Q-functions are polynomials, so this

strategy is obscured.

• It should be noted that the issues can be overcome by introducing twists, see e.g.

[126]. However, the price is that the practical solution of the equations becomes

even harder.

• Remarkable results can be obtained from the homotopy continuation method pre-

sented in [127] for su(2) Bethe equations, but this is mainly a numerical tool, and

we look for analytic solutions.
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Figure 5.2: Q-system on the Young diagram corresponding to the partition λ = {3, 2}. It contains

all Q-functions belonging to the gl(2|2) and gl(3|1) (and subalgebras thereof) Q-systems.

In conclusion, there are techniques available on the market, but they really only give access

to the very simplest results, and they require a case-by-case study. Our ambition is to

explicitly solve the QSC for a substantial number of states from any sector, and with the

outlined techniques this is simply not feasible. The hunt for a more practical way to find

the spectrum was the main motivation for the reformulation of the problem that we will

now present.

5.2 Q-systems on compact Young diagrams

For clarity, we first discuss our approach for compact u(N |K) representations.

Q-systems on Young diagrams

We have already seen a clear connection between Q-systems and representation theory.

The u(N |K) Q-system can be thought of as living on an N×K square lattice, see e.g.

figure 4.1. This square lattice can be identified with the corner piece of the N |K L-hook,

cf. figure 1.4. The Young diagram lives on this L-hook, but it may extend outside the

N×K square into the “wings” of the L-hook. On the other hand, for short representations,

the Young diagram does not cover the full N ×K square.

Denote each node in a given compact Young diagram by its position (a, s), where

(0, 0) corresponds to the lower left corner. A Q-system can be built on the Young diagram

by placing a set of Q-functions {Qb1,...,ba|i1,...,is} at the node (a, s). The sets contain Q-

functions with indices bn and im that correspond to any possible u(N |K) Q-system where

the representation is long. An example is given in figure 5.2. The Q-functions satisfy the

QQ-relations (4.3) as depicted in figure 4.2.
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x0 x0
x1 x0 x0 x0
x4 x2 x1 x0 x0
x8 x5 x3 x1 x0

Figure 5.3: The polynomial degree of the distinguished Q-function at a given node equals the num-

ber of boxes above and to the right of the node. For a spin chain in the fundamental

representation C = 1, the eights roots in Q0,0 are trivial, and in the homogeneous case

Q0,0 = uL = u8. For C = 2 and homogeneity, we would instead have L = 4 and the

boundary conditions Q0,0 = (u+ i

2
)4(u− i

2
)4 and Q1,0 = u4.

Distinguished Q-functions

The set of Q-functions on the Young diagram is in general quite large, but a small subset of

them turns out to be of special interest. These distinguished Q-functions Qa,s are defined

as the polynomials QA|J of the lowest degree among all Q-functions for which the number

of indices are |A| = a and |J | = s. We can always label the Q-functions such that

Qa,s ≡ Q12...(a−1)a|12...(s−1)s . (5.10)

There is one distinguished Q-function at each node in the Young diagram, and they are

related solely by fermionic QQ-relations (4.3c),

Qa+1,sQa,s+1 ∝ Q+
a+1,s+1 Q

−
a,s −Q−a+1,s+1 Q

+
a,s .

(5.11)

s
s

s
s

s
s+ −

− +

∝ −· · ·

We use ∝ to denote equality up to an overall normalisation, and such normalisations are

irrelevant to us.

Degree of distinguished Q-functions

The Young diagram provides an intuitive way to find the degree of the distinguished Q-

functions: simply count the number of boxes above and to the right of the corresponding

node, see figure 5.3. More explicitly, the degree Ma,s of Qa,s is

Ma,s = L−
a∑
b=1

λb −
s∑
t=1

λTt + a s , (5.12)

where λ = {λ1, λ2, . . .} is the partition defining the diagram and λT denotes the transposed

diagram.
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Qā|∅̄

Q∅̄|j̄

ss

Figure 5.4: Separation of Young diagram into an N ×M rectangle, upper wing and right wing.

Boundary conditions

It is clear that all Q-functions on the upper-right boundary of the diagram are trivial,

Q ∝ 1. Furthermore, some roots on the left boundary of the diagram are fixed. For

central charge C, the functions Qa,0 with a = 0, . . . C − 1 contain trivial roots. We can in

general write the distinguished Q-functions as

Qa,s = fa,s qa,s , (5.13)

where qa,s are polynomials with non-trivial roots, and where, for homogeneous spin chains,

the factors fa,s have the form

fa,s(u) =

{∏C−1−a
k=−C+1+a

(
u− i k

2

)L
if s = 0 ∧ a < C

1 otherwise
. (5.14)

Note that by power counting Q0,0 is always completely trivial, q0,0 = 1. Inhomogeneities

are easily incorporated by modifying the factors fa,s.

5.2.1 Distinguished Q-functions and polynomiality of the full Q-system

We now want to make a bold statement: if all the distinguished Q-functions on the Young

diagram are polynomials, then the full Q-system is guaranteed to be polynomial. This

would allow us to ensure polynomiality much easier. Let us try to prove this statement.

Proof

Consider an arbitrary Young diagram and assume that all distinguished Q-functions are

polynomial. The diagram can be decomposed, in several ways, into an N×M rectangle

that touches the boundary of the diagram and two wings above and to the right of the

rectangle, see figure 5.4.

On the N ×M rectangle, the Q-function in the upper right corner is Q1...N |1...M ≡
Q∅̄|∅̄ ≡ QN,M = 1. Let us assume that Qā|∅̄ and Q∅̄|j̄ are polynomials for all a, j. Then
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Figure 5.5: Relations between Q-functions in the upper wing.

any Qā|j̄ is a polynomial as well, since it satisfies the QQ-relation

Qā|∅̄Q∅̄|j̄ ∝ Q
+
ā|j̄ −Q

−
ā|j̄ , (5.15)

and thus is given by

Qā|j̄ ∝ Ψ+(Qā|∅̄Q∅̄|j̄) , (5.16)

which is a polynomial, cf. the discussion of the Ψ-operation in appendix C.1. In this proof,

an overall shift of the spectral parameter u is of no importance, hence in the following

we will arbitrarily replace Ψ± with Ψ in order to avoid bulky expressions. In analogy to

(4.28), all other Q-functions in the gl(N |M) Q-system specified by the rectangle are given

in terms of determinants of Qā|∅̄, Q∅̄|j̄ , and Qā|j̄ . This means that if Qā|∅̄ and Q∅̄|j̄ are

polynomial, then all other Q-functions in the gl(N |M) Q-system will be.

We will now see how the polynomiality of Qā|∅̄ and Q∅̄|j̄ follows from the polynomiality

of the distinguished Q-functions in the wings. As the two wings behave identically, it is

sufficient to make the argument in one wing. We here focus on the upper wing to show

that Q∅̄|j̄ are polynomial. Denote the height of the outermost right column in the wing

by K. Noting that Q∅̄|∅̄ ∝ Q∅̄(N+1)|∅̄ ∝ 1, we can generate Q∅̄|j̄ purely in terms of Q∅̄(N+1)|j̄

through (5.11):

Q∅̄(N+1)|j̄ ∝ Q−∅̄|j̄ −Q
+
∅̄|j̄ ⇒ Q∅̄|j̄ ∝ Ψ

(
Q∅̄(N+1)|j̄

)
, (5.17)

which is again a polynomial. We can continue in this way until we reach the end of the

column:

Q∅̄|j̄ ∝ ΨK
(
Q←(N+K)|j̄

)
, (5.18)

where the notation (← n) ≡ (12...n) is used.
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To continue, note that Q←(N+K)|M̄ ∝ 1 as it is on the boundary of the diagram. To-

gether with Q←(N+K)|j̄ , j 6=M , it forms a bosonic QQ-relation (4.3b) with Q←(N+K)|∅̄ ∝ 1

and Q←(N+K)|jM :

Q←(N+K)|jM ∝ Q−←(N+K)|j̄ −Q
+
←(N+K)|j̄ ⇒ Q∅̄|j̄ ∝ ΨK+1

(
Q←(N+K)|jM

)
. (5.19)

For j=M−1, the argument of ΨK+1 is a distinguished Q-function, and we have thus proven

that Q∅̄|(M−1)
is polynomial. For j≤M−2, we have rewritten Q∅̄|j̄ in terms of a multiple

of polynomiality preserving Ψ-operations on Q←(N+K)|jM . See figure 5.5 for an overview.

We can now consider what is left of the second column from the right (denote the height

by K2) in exactly the same way as we treated the first. By exactly the same argument

as above, we find that Q∅̄|(M−2)
is polynomial, while the rest are related by Ψ-operations

to Q←(N+K2)|j(M−1)M
. By recursion, we then see that all Q∅̄|j̄ are related to distinguished

Q-functions by multiple Ψ-operations, so if all distinguished Q-functions are polynomial,

then it follows that all Q-functions in the gl(N |M) Q-system are polynomial as well.

Finally recall that the N×M rectangle can be chosen arbitrarily as long as it touches

the boundary of the Young diagram, so we can prove the polynomiality of any Q-function

in this way. In conclusion,

all Q on Young diagram polynomial ⇒ full Q-system polynomial (5.20)

5.2.2 Finding distinguished Q-functions

We have reduced the task of finding polynomial Q-systems to that of finding polynomial

distinguished Q-functions. The question is how to do this efficiently in practice. We here

propose an algorithm that exactly imposes this polynomiality requirement and finds the

distinguished Q-functions analytically. It is based on polynomial division.

Step 1: Make ansatz on a path

The starting point is the Young diagram of the representation in question, see figure 5.3

for an example. Choose a path form the point (0, 0) to any point on the upper-right

boundary. On this path, make a generic ansatz for the non-trivial polynomial parts of the

distinguished Q-functions (5.13),

qa,s = uMa,s +

Ma,s−1∑
k=0

c(k)
a,s u

k , (5.21)

where Ma,s is the degree of qa,s. As discussed below, it is often preferable to choose a path

that minimises the total number of roots.
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Step 2: Generate all Q

Starting from the Q on the chosen path, now generate the remaining Q from the QQ-

relation (5.11):

qa,s ∝
1

fa,s

Q+
a±1,sQ

−
a,s∓1 −Q−a±1,sQ

+
a,s∓1

Qa±1,s∓1
. (5.22)

The unknown Q-function is a ratio of two polynomials, but it is required to be a polynomial

itself, and thus it should be the quotient of the polynomial division of the numerator by

the denominator,

qa,s ∝ Quotient[ Q+
a±1,sQ

−
a,s∓1 −Q−a±1,sQ

+
a,s∓1 , fa,sQa±1,s∓1 ] (5.23)

The remainder of this polynomial division1 should vanish, but it is not necessary to impose

this yet.

In this way all distinguished Q-functions are generated in terms of the c
(k)
a,s that were

introduced on the path. All the remainders of the polynomial divisions are collected.

Step 3: Solve constraints

After all Q’s are generated, we have gathered a set of constraints of the kind

0 = Remainder[ Q+
a±1,sQ

−
a,s∓1 −Q−a±1,sQ

+
a,s∓1 , fa,sQa±1,s∓1 ] . (5.24)

Simultaneously imposing these constraints2 is equivalent to demanding polynomiality of

all distinguished Q-functions. These algebraic equations completely fix the original ansatz

{c(k)
a,s}, and have a finite set of solutions.

As we discuss below, the number of solutions to these equations turn out to be in

exact one-to-one correspondence to the multiplicity of the irreps of the type specified by

the Young diagram in the tensor product specified by the central charge. Furthermore,

the method is significantly faster than any of the traditional methods.

Example

Let us demonstrate the method on the same example as in our discussion of Bethe and

Baxter equations: the partition λ = {3, 2} and central charge C = 1, see figure 5.6.

We can, for example, choose the path 1̂12̂, on which the ansatz for the Q is

Q0,0 ∝ u5 , Q1,0 ∝ u2 + c
(1)
1,0 u+ c

(0)
1,0 , Q1,1 ∝ u+ c

(0)
1,1 , Q2,1 ∝ 1 . (5.25)

1The Mathematica-functions PolynomialQuotient and PolynomialRemainder nicely implement these

operations.
2This can be done by standard routines in most symbolical programming languages, e.g. the

Mathematica-function Solve.
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Figure 5.6: The solution method for the Young diagram λ = {3, 2}. The yellow path shows a

possible choice of path where a generic ansatz is made, and the upper-right boundary

is marked in blue. The arrows point towards Q-functions that are generated recursively

through (5.11).

To generate Q2,0 we use (5.11):

Q2,0 ∝
Q+

2,1Q
−
1,0 −Q−2,1Q

+
1,0

Q1,1
∝

(
u2 + c

(1)
1,0u+ c

(0)
1,0

)−
−
(
u2 + c

(1)
1,0u+ c

(0)
1,0

)+

u+ d

∝ −2i + i
2c

(0)
1,1 − c

(1)
1,0

u+ c
(0)
1,1

(5.26)

Since Q2,0 should be polynomial, the second term must vanish. Store this constraint,

2c
(0)
1,1 − c

(1)
1,0 = 0, and set Q2,0 ∝ −2i ∝ 1.

We can continue in this way to generate Q0,1, Q1,2, Q0,2 and Q0,3. Solving the combined

sets of constraints gives the solutions{
c

(0)
1,0 = −1

4
, c

(1)
1,0 = c

(0)
1,1 = 0

}
,

{
c

(0)
1,0 =

1

6
±2

√
5

12
, c

(1)
1,0 = 2c

(0)
1,1 = ±1

√
10±2 2

√
5

6

}
, (5.27)

and we see that Q1,0 (5.25) then matches the five good solutions to the su(2) Bethe

equations (5.5).

5.2.3 Comments on the method

A few comments about the performance of the algorithm and possible improvements of

the method are in place.

Performance

The practical advantage of the method compared to the conventional analytical methods is

clearly demonstrated in our very simple Mathematica-implementation3 which is available

in the ancillary files of [4] at arxiv.org. In this file, we also discuss how the computation

time is correlated with the number of Bethe roots on the chosen path and the total number

of solutions to the system. As an example of the power of the algorithm, see table 5.1

3The implementation is for fundamental spin chains, but the generalisation is straightforward.
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which lists the computation times for finding any L = 12 solution for the fundamental

su(2) spin chain.

M 0 1 2 3 4 5 6

Solutions 1 11 54 154 275 297 132

Time (s) 0.01 0.10 0.96 4.65 39 24 18

Table 5.1: Computation time on a single core of a 3.2 GHz desktop for all L = 12 solutions for the

fundamental su(2) case.

We stress that in the vast amount of examples that we have investigated, the method

always finds exactly the number of solutions expected from representation theory.

An even stronger statement?

One can wonder whether there is a more minimal version of (5.20) that ensures poly-

nomiality of the full Q-system. Indeed, in all explicit examples we have investigated, it

seems to be enough to require polynomiality of all Qa,s on the maximal quadratic square

that fits inside the Young diagram. In other words, the Qa,s with 0 ≤ a, s ≤ Nmin, where

u(Nmin|Nmin) corresponds to the smallest possible symmetric L-hook that accommodates

the Young diagram. However, we have not been able to prove this conjecture, as we

did not find a way to rule out the possibility of exceptional solutions that could lead to

non-polynomiality.

Even if this conjecture holds, imposing polynomiality of the full Young diagram Q-

system often leads to a significantly faster solution in practice, compared to only imposing

polynomiality on the Nmin ×Nmin square. It seems as if the Young diagram disentangles

the equations and makes the solution easier for symbolical programming languages.

5.3 Q-systems on non-compact Young diagrams

Let us now turn towards the non-compact case, which is our real goal. Q-systems can just

as well be built on non-compact Young diagrams, and it is natural to include the infinite

extension in the discussion. In fact, all compact Young diagrams have a non-compact

extension, so we can simply see this as a generalisation of the above method. Let us

discuss the additional features in the non-compact case.

5.3.1 Structure of the Q-functions

We can build a Q-system on an extended Young diagram in analogy to the compact case.

The set of Q-functions are those that belong to any u(N,M |K) χ-hook where the diagram
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Figure 5.7: The Q-system on the central part of a non-compact diagram in terms of the sets (5.29).

The central node is marked in blue.

corresponds to a long representation. This set is of course infinite, but we can often focus

on the set living on the non-trivial extension of the diagram, cf. figure 1.9.

Notation

To label the Q-functions in a convenient way, we introduce a new notation:

QA,B|I,J (5.28)

where A, B, I and J are antisymmetric multi-indices containing positive integer numbers.

We will classify the Q-functions in sets

{Q}m|n =
{
QA,B|I,J | m = |B| − |A| , n = |J | − |I|

}
. (5.29)

Denote the central node in the Young diagram by (0, 0). The Q-functions {Q}m|n then

live at the point (n,m) in the diagram, see figure 5.7. The Q-functions on the diagram

are again related through QQ-relations following the pictorial rule described in figure 4.2.

For example,

Qa,∅|∅,∅Q∅,b|∅,∅ ∝ Q+
∅,∅|∅,∅Q

−
a,b|∅,∅ −Q

−
∅,∅|∅,∅Q

+
a,b|∅,∅ , (5.30)

where Qa,∅|∅,∅ ∈ {Q}-1|0, Q∅,b|∅,∅ ∈ {Q}1|0 and Q∅,∅|∅,∅, Qa,b|∅,∅ ∈ {Q}0|0.

Rational and non-rational Q-functions

As discussed in section 1.2.2, a non-compact Young diagram can be split into a left and

a right half that are both equivalent to compact Young diagrams. We can define two
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Figure 5.8: The value of fa,s in the central part of a diagram. The central node is marked with a

black circle.

separate Q-systems that live on these two parts: QA,B|I,∅ on the left half and QA,B|∅,J

on the right half. These two subsets are both rational. In fact, one can use symmetry

transformations of the kind (4.21) to make them polynomial, but not simultaneously.

The Q-functions for which both I 6= ∅ and J 6= ∅ are in general non-rational. These

Q-functions are allowed to have poles at u = iZ, and they can be written in terms of

rational functions in u and Hurwitz η-functions,

ηk(u) ≡
∞∑
n=0

1

(u+ in)k
. (5.31)

We will see below, in section 5.4.3, how these functions appear when the non-rational

Q-functions are generated from the rational ones by solving finite-difference QQ-relations.

Distinguished Q-functions

There is a single distinguished Q-function at each node in the Young diagram,

Qa,s ≡


Q∅,12...a|∅,12...s a ≥ 0, s ≥ 0

Q12...(−a),∅|∅,12...s a < 0, s ≥ 0

Q∅,12...a|12...(−s),∅ a ≥ 0, s < 0

Q12...(−a),∅|12...(−s),∅ a < 0, s < 0

, (5.32)

and they relate via fermionic QQ-relations (5.11). Importantly, all Q are rational, and

have the following structure:
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• Asymptotic power

To find the asymptotic power at large u of a given Qa,s, one should start from a

point on the left boundary of the diagram that is below the point (s, a). Denote this

point (s0, a0). Then choose a path from (s0, a0) to the point (s, a) and add all the

weights, λ and ν, that are encountered on the way. The asymptotics of Qa,s is given

by

Qa,s ' u(s0−a0)L−
∑a
b=a0

λb−
∑s
j=s0

νj . (5.33)

• Full structure

The full structure of Qa,s is

Qa.s = fa,s qa,s , (5.34)

where qa,s is a polynomial, and where for homogeneous u(N,M |K) chains with

central charge C, the factors fa,s have the form

fa,s = φLa,s , (5.35)

with

φa,s(u) =

{∏|s−a|
k=−|s−a|

(
u− i k

2

)sign(s−a)
if s < 0 ∨ (s = 0 ∧ a < 0)

1 otherwise
. (5.36)

On the central part of the diagram, the factors fa,s are distributed as shown in figure

5.8. Note that this corresponds to a particular choice of the gauge symmetry of the

Q-system as discussed in section 4.1.5. The factors fa,s can be modified by using

symmetry transformations of the kind (4.21).

• Bethe roots

The degree of the polynomial qa,s can be found as the difference of the asymptotic

power (5.33) and the power coming from fa,s (5.35). Young diagrams provide an

intuitive way of counting Bethe roots, see figure 5.9. In the right half of the diagram,

the Bethe roots in each Q equals the number of boxes to the right and above its

position. In the left half of the diagram, the number of Bethe roots equals the

number of boxes below and to the left. On the central vertical line (Qa,0), the

counting towards the right should be used above the central point (Q0,0), while the

counting towards the left should be used below the central point.
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Figure 5.9: Number of Bethe roots in the distinguished Q-functions. To the right of the green line,

the number of roots equals the boxes to the right and above the location. To the left

of the green line, the number of roots equals the boxes below and to the left of the

location. The path from the left to the right boundary with the minimal number of

roots is highlighted.

Requirements on “good” solutions

For compact representations, a good solution corresponded to a fully polynomial Q-system.

We clearly have to adjust this criterion for non-compact representations. On the other

hand, we know that we can map non-compact representations to compact ones via the

extended Young diagram. We know that solving the Q-system on a compact Young

diagram gives exactly the right number of solutions, and the number of solutions does not

depend on the algebra, but simply on the Young diagram. So polynomiality in one of the

two halves of the diagram must be enough to pick out exactly the right solutions, and

they must all be good, since otherwise we would have too few.

In conclusion, polynomiality of qa,s in (5.34) for all distinguished Q-functions should

be a necessary and sufficient condition for a solution of the Q-system to correspond to a

physical spin chain multiplet.

5.3.2 Generalised solution algorithm

Polynomiality of the distinguished Q-functions on a non-compact diagram can be imposed

similarly to the compact case. It is enough to consider the non-trivial part of the diagram,

i.e. to forget about the infinite vertical wings that are aligned completely with the central

vertical line. As discussed above, it is even enough to only consider either the left or the

right half of the diagram. However, considering both halves of the diagram gives us more
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Figure 5.10: Example: generating all Q within the non-trivial part of a Young diagram from a

generic ansatz on a path that minimises the total number of Bethe roots. The Q’s at

the nodes encircled in yellow are set to 1 by default.

freedom. See figure 5.10 for a pictorial example.

We can choose any path from the left boundary to the right boundary of the diagram

and make a generic ansatz there. This freedom gives new possibilities to minimise the

total number of roots compared to the compact case. Note that the numbers of roots

grow monotonically in the trivial extensions, so the optimal path is always within the

non-trivial part of the diagram. Note also that in some cases there are paths without

any Bethe roots, and the Q-system is completely fixed without solving any equations. We

return to such solutions in chapter 7.

The method turns out to be very powerful compared to the traditional approaches,

and we discuss the obtained results for the pu(2, 2|4) case in the next section.

5.4 Leading solution to the Quantum Spectral Curve

We are now ready to face the problem that was the motivation behind the development

of the above method: the leading solution of the QSC, or, equivalently, the Q-system of

cyclic pu(2, 2|4) spin chain states.

There is one subtlety that has been lurking in the background, which we must now

deal with: the joining of short multiplets. These short multiplets correspond to solutions

on different Young diagrams, and thus with different structure. At finite coupling, there

should be just a single solution describing the long multiplet. How can this be? It turns

out that there is a delicate interplay between the symmetries of the Q-system and cyclicity,

in the form of the zero-momentum condition, that allows joining to be consistent on the

level of the psu(2, 2|4) Q-system.
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Notation

The notation (5.28) was convenient for general Young diagram Q-systems. However, we

would like to use a notation consistent with the gl(4|4) Q-system that appears in the QSC,

cf. figure 4.1. We thus redefine the central point to be (2, 2) and use the notation QA|J for

a general Q-function, such that e.g. Q2,2 = Q12|12 = Q∅,∅|∅,∅. Note also that we similarly

redefine the factor φa,s → φa−2,s−2 in (5.36).

5.4.1 Shortening and cyclicity

Shortening happens when the Young diagram does not touch the points (0, 0) or (4, 4).

Consequently, the points (1, 1) or (3, 3), respectively, are on the boundary of the diagram,

which in turn means that Q1,1 = Q1|1 ∝ 1 or Q3,3 = Q123|123 ∝ 1. Let us consider the first

case. Then the fermionic QQ-relation that relates Q1,1 and Q2,2 reads

Q+
2,2 −Q−2,2 = Q1,2 Q2,1 = q1,2 q2,1 . (5.37)

The zero-momentum condition and trivial roots

Solutions corresponding to cyclic states satisfy the zero-momentum condition,

lim
u→0

Q2,2

(
u+ i

2

)
Q2,2

(
u− i

2

) = 1 . (5.38)

This means that the left-hand side in (5.37) should vanish at u = 0, and consequently

either q1,2 or q2,1 has a root at u = 0. Likewise, if Q3,3 ∝ 1 then either q2,3 or q3,2 contains

a factor of u.

5.4.2 Back to the psu(2, 2|4) Q-system

To really understand the interplay between cyclicity and joining, we need to discuss the

transition from the Young diagram Q-system back to the psu(2, 2|4) Q-system, which is

the basic structure in the QSC. The psu(2, 2|4) Q-system will be the starting point for the

calculation of perturbative corrections in chapter 6.

In most cases, the Young diagram Q-system contains Q-functions not present in the

psu(2, 2|4) Q-system. For short representations, the opposite is also true. Importantly,

the psu(2, 2|4) Q-system contains the functions

Q∅|∅ = Q1234|1234 = 1 . (5.39)

Let us first try to understand how the distinguished Q-functions are transferred between

the two pictures. For long multiplets, there is no ambiguity. The psu(2, 2|4) Q-system

simply picks out the 25 functions Qa,s with 0 ≤ a, s ≤ 4. An example of such a long

diagram is given in figure 5.11.
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Figure 5.11: The Young diagram for the pu(2, 2|4) multiplets nyp = [0, 0|3, 2, 2, 2|1, 0]. The diagram

covers the whole 4× 4 square and thus the psu(2, 2|4) Q’s are identical to those on the

Young diagram.

Shortening and vanishing Q-functions

The transition is not as smooth for short representations. In the case where Q1,1 is on

the boundary of the diagram, corresponding to the shortening λ1 + ν1 = 0, the function

Q0,0 does not belong to the Young diagram Q-system. From the point of view of the

psu(2, 2|4) Q-system, this case corresponds to Q0,0 ∝ Q1,1 ∝ 1, and the fermionic QQ-

relation between these two Q-functions is then

Q1,0Q0,1 = 0 , (5.40)

which means that either Q1,0 or Q0,1 vanishes. If Q1,0 vanishes, then it follows from the

QQ-relations that also Q2,0 = Q3,0 = Q4,0 = 0. Likewise, if Q0,1 = 0 then Q0,s = 0 for

s = 1, 2, 3, 4.

To understand which of Q1,0 and Q0,1 is zero, recall the concept of nested Bethe

equations. They are effectively equations on the zeros of seven non-vanishing distinguished

Q-functions along a Dynkin path. Importantly, they depend on the length L. The Dynkin

path is that of the chosen grading, which defines the HWS. The HWS in a short multiplet

only remains a HWS in the long multiplet at finite coupling in a particular grading. We

should then choose to set the one of Q1,0 and Q0,1 that is not on the Dynkin path of this

grading to zero. A grading of the type 1... corresponds to Q1,0 = 0, and 1̂... corresponds

to Q0,1 = 0.

An analogous treatment of the shortening λ4 + ν4 = 0 shows that Q3,4 = 0 in the . . . 4

grading, and Q4,3 = 0 in the . . . 4̂ grading.

Agreement between short multiplets

Consider a representation with only the shortening λ1 + ν1 = 0. We then have to make

the choice of either transferring the 20 Qa,s with a ≥ 1 from the Young diagram Q-system

corresponding to the highest weight states in the 1̂ . . . gradings within the long multiplet,

or the 20 Qa,s with s ≥ 1 from the Young diagram corresponding to the 1 . . . highest

weight states. The situation is depicted in figure 5.12.
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Figure 5.12: Defining the psu(2, 2|4) Q-system for the case of a short representation. The two

diagrams on the left are a pair of short multiplets that join at finite coupling. The two

diagrams on the right are another such pair. On each diagram, the marked nodes are

the 20 distinguished Q-functions which are transferred from the Young diagram to the

psu(2, 2|4) Q-system. The Q’s that must coincide (up to symmetry rescalings) on both

Young diagrams are marked in blue. The Q’s that can be transferred to the psu(2, 2|4)

Q-system from only one of the diagrams are marked in red. The node that has a trivial

Bethe root is encircled; the position of this node determines the grading in which the

multiplet is going to join (note that the second and the third Young diagrams are

identical but the gradings are different).

In the perturbative solution of the QSC, setting Qa,0 or Q0,s to zero is simply a question

of a subset of the Q’s being suppressed by a factor of g2. This factor can be shuffled around

by the symmetries of the Q-system. This means that, up to symmetry transformations,

the 16 Qa,s with a, s ≥ 1 on the two Young diagrams have to agree. From the counting

of Bethe roots, cf. figure 5.9 this seems problematic: the degrees of the polynomials do

not agree. The only way for the Q-systems to be compatible is if some of qa,s on each of

the diagrams have trivial roots that can be absorbed into the factors fa,s, on which the

diagrams do not agree either, since L is different. Indeed, it follows from (1.40), that if a

multiplet in the grading 1... has length L, a compatible multiplet for joining should be of

length L+ 1 in the grading 1̂....

Concretely, the compatibility requirement is that

q1...
a,s = φa,s q

1̂...
a,s , a , s > 0 , (5.41a)

where φa,s is given in (5.36) up to the change of conventions φa,s → φa−2,s−2. This

clarifies the question of where to place the trivial roots that are a consequence of the

zero-momentum condition. We have q1...
1,2 = u q1̂...

1,2 , which implies that q1...
1,2 has a trivial

zero (i.e. u = 0). Also, from q1...
2,1 = u−1 q1̂...

2,1 , we see that q1̂...
2,1 has a trivial zero.

The analysis of the λ4 + ν4 = 0 shortening can be done in complete analogy. In that

case Qa,s with a, s < 4, and they should satisfy the compatibility constraint

q...4a,s = φ4−a,4−s q
...4̂
a,s , a , s < 4 . (5.41b)

Note that, while the Young diagram Q-systems corresponding to the gradings 1̂ . . . and

. . . 4̂ must contain several trivial roots, the Young diagram Q-systems corresponding to the

gradings 1 . . . and . . . 4 only have possible trivial roots in q1,2 or q3,2. Thus the compatibility

constraint is easy to impose in the yp grading.
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Recipe

To summarise, the transition between the Young diagram Q-system and the psu(2, 2|4)

Q-system follows the rules:

• Given a Q-system on a Young diagram, decide the grading according to:

λ1 + ν1 = 0 , q1,2 has root at u = 0 ⇒ 1... ,

λ1 + ν1 = 0 , q2,1 has root at u = 0 ⇒ 1̂... ,

λ4 + ν4 = 0 , q3,2 has root at u = 0 ⇒ ...4 ,

λ4 + ν4 = 0 , q2,3 has root at u = 0 ⇒ ...4̂ .

(5.42)

• Given the grading, choose which Qa,s should vanish in the psu(2, 2|4) Q-system:

1... ⇒ Qa>0,0 = 0 ,

1̂... ⇒ Q0,s>0 = 0 ,

...4 ⇒ Qa<4,4 = 0 ,

...4̂ ⇒ Q4,s<4 = 0 .

(5.43)

• Set Q0,0 = Q4,4 = 1.

• All other Qa,s should be the same as Qa,s on the Young diagram.

5.4.3 Generating the full Q-system

To obtain the full psu(2, 2|4) Q-system from the 25 Qa,s one needs to solve 12 first-order

difference equations. We will here focus on determining Qa|∅ and Q∅|j as the remaining

Q-functions are easily reconstructed from these using the relations in section 4.2.1.

Qa|∅ from Q

All four Qa|∅ belong to the left compact Young diagram and should thus be rational. Their

structure is

Qa|∅ =
qa|∅

uL
, qa|∅ =

pa|∅∑
k=0

cku
k . (5.44)

The asymptotic powers pa|∅ can be found from power counting in the QQ-relations and

are

p2|∅ = L− nypf2 − 1 , p3|∅ = L− nypf3 , p4|∅ = L− nypf4 + 1 . (5.45)

An easy way to find Qa|∅ is to simply fit polynomials in the determinant relations

QA|∅ = det
1≤a,j≤|A|

(
Q

[|A|+1−2j]
a|∅

)
. (5.46)

In practice, one can first fix Q2|∅ from Q12|∅ = Q2,0, then fix Q3|∅ from Q123|∅ = Q3,0, and

finally Q4|∅ from Q1234|∅ = Q4,0.
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Q∅|j from Q

Q∅|2 belongs to the left compact diagram and should be rational. Its structure is

Q∅|2 = uLq∅|2 q∅|2 =

p∅|2∑
k=0

cku
k , p∅|2 = nypb2

+ 1 , (5.47)

and it can be found by fitting a polynomial to

Q∅|12 = Q+
∅|1Q

−
∅|2 −Q

−
∅|1Q

+
∅|2 . (5.48)

Q∅|3 and Q∅|4 do not belong to the left or right compact diagram and are thus not

expected to be rational. The basic QQ-relation Q∅|3Q∅|312 = ... can be rewritten as

Q∅|3 = Q∅|2Ψ

(
Q∅|1Q∅|123

Q−∅|12Q
+
∅|12

)
−Q∅|1Ψ

(
Q∅|2Q∅|123

Q−∅|12Q
+
∅|12

)
. (5.49)

As we explain in appendix A.4.2, evaluating these Ψ-operations leads to poles only at iZ.

Also, the way we choose to define Ψ leads to poles only in the lower half-plane, Im (u) < 0,

and the results can be written in terms of η-functions (6.4).

Similarly the QQ-relation Q∅|4Q∅|412 = ... can be rewritten as

Q∅|4 = Q∅|2Ψ

(
Q∅|1Q∅|124

Q−∅|12Q
+
∅|12

)
−Q∅|1Ψ

(
Q∅|2Q∅|124

Q−∅|12Q
+
∅|12

)
. (5.50)

Q∅|124 belongs to the right compact Young diagram, i.e. it is rational, and it can be found

by fitting a polynomial to

Q∅|12Q∅|1234 = Q+
∅|123Q

−
∅|124 −Q

−
∅|123Q

+
∅|124 . (5.51)

The rest

As described in section 4.2.1, all other Q-functions follow from the eight functions Qa|∅

and Q∅|i. Note that, superficially, one introduces 16 constants by solving the first order

difference equations on Qa|i (4.25), but these can in practice be fixed by comparing the

re-generated values of the distinguished Q-functions with the known values.

5.4.4 Results

In table 5.2 and in appendix A.3 we mark the multiplets with ∆yp0 ≤ 8 for which we

were able to generate the Q-system in less than 15 minutes on a standard laptop with our

Mathematica-implementation of the algorithm described in this chapter. This Mathematica-

file is available in the ancillary files of [5] at arxiv.org. The algorithm also imposes the

joining criteria (5.41) and the zero-momentum condition (5.38), which ensure that only

cyclic states appear and that each long multiplet only appears once. The obtained results

include all 495 psu(2, 2|4) multiplets with ∆yp0 ≤ 13
2 . Even more results can be generated

by allowing longer runtimes and tailoring the algorithm to explicit examples.
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∆0 # diagrams solved total # solutions found

2 1 / 1 1 / 1

3 1 / 1 1 / 1

4 7 / 7 10 / 10

5 13 / 13 27 / 27

5.5 12 / 12 36 / 36

6 39 / 39 144 / 144

6.5 36 / 36 276 / 276

7 68 / 77 600 / 918

7.5 54 / 84 694 / 2204

8 107 / 180 1395 / 6918

Table 5.2: Leading solutions to the QSC found with the generic Mathematica-implementation of the

algorithm published with [5]. 15 minutes of computation time was allowed per diagram.

The explicit multiplet content is given in appendix A.3.

Subconclusion

In this chapter we provided a new way of thinking about Q-systems for rational spin chains.

The main idea is that the Q-system can be built on the Young diagram of the investigated

irrep. The conventional methods to determine the spectrum, through Bethe and Baxter

equations, do not guarantee the right structure of the full Q-system, and therefore these

methods are marred by unwanted solutions. We proved that a sufficient criteria for the

full Q-system to have the correct structure is that the distinguished Q-functions, of which

there is one at each node in the Young diagram, are polynomial, up to factors of (u+ in
2 )±L.

We provided an efficient way to impose this criterion based on polynomial division, which

makes it possible to obtain a far larger range of explicit analytic solutions than previously.

We now have access to the explicit analytic solutions to the Quantum Spectral Curve

for the first thousands of multiplets. The QSC is formulated in terms of a psu(2, 2|4)

Q-system, and the weights of the representations become non-integer at finite coupling

due to the anomalous dimension, which obscures the Young diagram philosophy presented

here. Thus we had to make the transition back to the psu(2, 2|4) Q-system to be able to

use our results as the seed for perturbative calculations in the QSC, which is the topic of

the next chapter. This transition taught us that the joining compatibility of Q-systems on

Young diagrams corresponding to short multiplets is provided by the presence of trivial

Bethe roots. These trivial roots are in turn guaranteed by the zero-momentum condition

that singles out the cyclic states.
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Perturbative algorithms

Most of what we have done so far has been building up to this point: using the Quantum

Spectral Curve to generate the explicit perturbative spectrum. Having understood how to

classify and find the leading solutions, we are ready to turn on the coupling g. This chapter

is devoted to the design of algorithms that efficiently generate perturbative corrections by

imposing the analytic constraints from the QSC.

We start with a subset of the spectrum: the sl(2) sector, where certain simplifications

make it possible to work with a very small set of functions. Afterwards, we discuss how

to design algorithms that are completely general. We will leave out some of the technical

details that can be found in [1, 7] and focus on the general idea behind the algorithms.

6.1 Generalities

Let us start by discussing the general features that the different perturbative solution

strategies have in common.

6.1.1 The key: all-loop ansatz for P

The cornerstone in the perturbative algorithms is the rational all-loop ansatz (4.71) for

the eight functions P that was analysed in sections 4.2.7 and 4.3.3. It allows us to write

an ansatz for P(u) in terms of a finite number of constants, c and d, at each perturbative

order. For example, if we expand the ansatz (4.71) for P4 for the Konishi multiplet,

nyp = [0, 0|1, 1, 1, 1|0, 0], around g = 0, we get

(gx)2+ΛP4(u) = d
(1)
4,0+u d

(1)
4,1+u2 d

(1)
4,2 + g2

(
c

(1)
4,1−d

(1)
4,1

u
+d

(2)
4,0−2d

(1)
4,2+u d

(2)
4,1+u2 d

(2)
4,2

)
+O(g4) .

(6.1)

Note that the coefficients of the leading power, u2 ·
∑∞

j=0 d
(j+1)
4,2 g2j , should match the

choice of A4, which is given in terms of the quantum numbers, including the anomalous

119
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dimension. The product of the prefactors A4 and A4 is fixed by (4.39), which for the

Konishi multiplet gives

A4A
4 = −iγ1g

2 − i

(
γ2 +

19

24
γ2

1

)
g4 − i

(
γ3 +

19

12
γ1γ2 +

1

6
γ3

1

)
g6 +O(g8) , (6.2)

and this shows how the perturbative anomalous dimension sneaks in through the ansatz.

We can use some of the leftover H-symmetry (4.23) to remove some terms in the ansatz.

For example, we can use the freedom to add P3 to P4 to set the coefficients d
(j)
4,1 to zero

in (6.1). In the end, we have a rather simple ansatz for P(u) at all orders in perturbation

theory.

The value on the second sheet, P̃(u), also plays a crucial role in the perturbative

algorithms. By making the replacement x→ 1
x in the ansatz for P (4.71), and replacing x

by the value |x(u)| > 1, we get an expansion that converges in a finite region around u = 0

on the sheet P̃(u). This time, the ansatz contains infinitely many unknown constants at

each perturbative order. For example, the ansatz for P̃4(u) for the Konishi multiplet is

(g
x

)2+Λ
P̃4(u) = d

(1)
4,0 +

∞∑
k=1

c
(1)
4,k u

k + g2

(
d

(2)
4,0 +

∞∑
k=1

c
(2)
4,k u

k −
∞∑
k=0

k c
(1)
4,k u

k−2 +
d

(1)
4,1

u

)
+O(g4) .

(6.3)

The perturbative algorithms will generate exact expressions for the functions P̃(n)(u). By

expanding the obtained expressions at u = 0 and comparing with the ansatz, e.g. (6.3),

all the coefficients {d(n)
a,k , c

(n)
a,k} will be fixed. Notice that this gives us knowledge about

higher-order terms in P(u). For example, the coefficient c
(1)
4,1 which first appears at the

order g2 in (6.1) can be determined from the order g0 in (6.3).

To summarise, the finite ansatz for P(n)(u) is our starting point for generating the

functions of the QSC at a given perturbative order n. From this ansatz, we can generate

all other functions in terms of a finite number of unknown constants. Finally, these

constants are fixed by requiring that the obtained values for P̃(n) are consistent with the

all-loop ansatz. The last step is an example of what we refer to as gluing: enforcing the

analytic requirements of the QSC by comparing the value of particular functions on two

different Riemann sheets at the point where the branch cut between them has collapsed.

6.1.2 The encountered basis of functions

Only a restricted class of functions appears in the perturbative solution of the QSC, and

all applied operations are closed with respect to these functions. This means that the

perturbative algorithms can be automatised and, in principle, run recursively to any loop

order. The main operation is the Ψ-operation that is applied in the solution of finite-

difference equations. This operation is discussed in detail in appendix C.1.
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We have already seen that the 1-loop Q-system can be expressed in terms of rational

functions in u and multiple Hurwitz η-functions,

ηk1,k2,...,kn(u) ≡
∑

0≤j1<...<jn<∞

1

(u+ ij1)k1 · · · (u+ ijn)kn
. (6.4)

The functions ω, µ and P̃ furthermore contain i-periodic functions of the kind

Pk ≡
∞∑

j=−∞

1

(u+ ij)k
. (6.5)

The properties of these functions are described in more detail in appendix B.3. The crucial

property is that the Ψ-operation is closed with respect to this set of functions. First, note

that applying Ψ to the i-periodic functions is completely trivial: Ψ(Pk · f) = PkΨ(f).

Applying the Ψ-operation to a polynomial simply returns another polynomial of one degree

higher, e.g.

Ψ(1 + 2u+ 6u2) = u+ (3 + i)u2 + 2iu3 ,

while the application to negative powers results in η-functions:

Ψ

(
1

uk

)
=

∞∑
n=0

1

(u+ in)k
≡ ηk .

The nice thing about η-functions is that applying Ψ to them simply produces more η-

functions, e.g.

Ψ

(
u2 + 3

u
η5

)
= − i

2
η3 +

1

2
η4 +

iu2 + u

2
η5 + 3η6 + 3η1,5 .

Note that since the η-functions satisfy stuffle-relations, one can always linearise a given

expression in these functions.

As explained above, we also need to power-expand the functions around u = 0. The

power expansion of η-functions introduces multiple zeta values (MZVs),

ζk1,...,kn =
∞∑

1≤j1<...<jn

1

jk1
1 · · · jnkn

,

which we describe in more detail in appendix B.1. For example,

η3,2 = − ζ2

u3
− 2iζ3

u2
+

3ζ4

u
+ i(4ζ5 − ζ3,2) + u (−5ζ6 + 2ζ3,3 + 3ζ4,2) +O(u2) . (6.6)

These numbers are interrelated by a high number of algebraic relations which means that

they can be expressed in terms of a very small basis. We define the transcendentality of

the ζ-values by the sum of their indices, and all MZVs with transcendentality less or equal

to 10 can, for example, be expressed in terms of

ζ1 , ζ2 , ζ3 , ζ5 , ζ7 , ζ2,6 , ζ9 , ζ2,8 . (6.7)

As will be clear from the algorithms described in this chapter, the function types described

here are everything that is encountered at any order of perturbation theory.
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6.1.3 Overview of algorithms

In the following three sections, we will present three strategies to solve the QSC pertur-

batively.

• The algorithm presented in section 6.2 solves the Pµ-system for solutions corre-

sponding to multiplets containing operators in the sl(2) sector. This algorithm has

the big advantage that it is automatically linear in η-functions, so there is no need

to linearise the intermediate results, which in practice is a rather time-consuming

process.

• In section 6.3, we present a general algorithm that determines all quantities of the

QSC, including the full Q-system. This method involves a large number of functions,

requires a significant amount of linearisation in η-functions, and it involves the full

H-symmetry of the QSC.

• There are tricks to overcome some of these issues, but the general strategy to solve

the Pµ-system presented in section 6.4 directly circumvents the issues by doing a

significant short-cut.

6.2 Pµ-system for the sl(2) sector

This section reviews the algorithm to solve the Pµ-system for the sl(2) sector, which was

presented in [1]. The sl(2) sector is specified by the quantum numbers

nyp = [0, S−2|L−1, L−1, 1, 1|S−2, 0] , (6.8)

which corresponds to a HWS of the kind DS12ZL in the grading 11̂2̂233̂4̂4.

6.2.1 Left/right symmetry

The sl(2) quantum numbers have the left/right symmetry (4.24), which means that all

quantities in the QSC with lower indices are equivalent to the Hodge dual quantities with

upper indices. For the Pµ-system, this concretely means that it is possible to fix parts of

the symmetry such that Pa and µab are directly related to Pa and µab through

Pa = χabPb , µab = χacχbdµcd , (6.9)

where

χab =


0 0 0 −1
0 0 +1 0
0 −1 0 0

+1 0 0 0

 . (6.10)
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Furthermore, µ14 = µ23 due to (6.9) and (4.49) with Pf(µ•) = 1, which leaves us with nine

functions in total: four Pa and five linearly independent µab. The following algorithm

explains how to determine these nine functions in a recursive procedure.

6.2.2 The structure of Pa

Due to the left/right symmetry, the relations between the constant prefactors of the P-

functions (4.39) turn into the relations

A1A4 =

(
(L− S + 2)2 −∆2

) (
(L+ S)2 −∆2

)
16iL(L+ 1)

, (6.11a)

A2A3 =

(
(L+ S − 2)2 −∆2

) (
(L− S)2 −∆2

)
16iL(L− 1)

. (6.11b)

When we plug the perturbative structure of the conformal dimension,

∆ = L+ S +

∞∑
j=1

γjg
2j , (6.12)

into (6.11), we get

A1A4 = −i
(S − 1)(L+ S)

2L
γ1 g

2 +O(g4) , (6.13a)

A2A3 = −iS
(L+ S − 1)

L− 1
+O(g2) . (6.13b)

We see that A1A4 = O(g2) and consequently either P1 or P4 should vanish at the leading

order. From the discussion of shortening in chapter 5 it is indeed natural that P1 ∝ Q1,0

vanishes, and we choose to fix the symmetry such that this is the case. Notice that the

anomalous dimension enters in the ansatz for P through the prefactors (6.13).

The ansatz for Pa (4.71), where we have set Λ = −L
2 to have (6.9), also reveals that

P2 has a quite simple structure as the expansion in positive powers of x is absent. The

vanishing of P1 and the fact that P2 is a pure power at the leading order,

P1 = O(g2) , P2 = u−
L
2 +O(g2) , (6.14)

are the two key properties that we exploit in the algorithm. The absence of these properties

for states outside the sl(2) sector explains why the method is not applicable there.

6.2.3 The Pµ equations

In the left/right symmetric case, the relations of the Pµ-system can be summarised in

three simple equations,

µab − µ̃ab = P̃aPb − P̃bPa , (6.15a)

P̃a = (µχ)a
b Pb , (6.15b)

µ̃ab = µ
[2]
ab , (6.15c)
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where (µχ)a
b = µacχ

cb. We will also make use of the property (4.42) which now reads

(µχ− µ[2]χ)a
b Pb = 0 . (6.16)

6.2.4 Baxter equation on µ12

By combining the equations (6.15) and using the property (6.16) one can derive a second

order difference equation on µ12 on the form

1

P2
2

µ12 −

P3

P2
− P

[2]
3

P
[2]
2

+
1

P2
2

+
1(

P
[2]
2

)2

µ
[2]
12 +

1(
P

[2]
2

)2 µ
[4]
12

=
P

[2]
1 P̃

[2]
2(

P
[2]
2

)2 −
P1P̃2

P2
2

+

(
P1

P2
− P

[2]
1

P
[2]
2

)
µ

[2]
14 . (6.17)

The important point here is that the right-hand side is proportional to P1, which means

that the n’th order contributions to P̃2 and µ14 are suppressed by a factor of g2 compared

to those of µ12. We have an all-loop ansatz for Pa, so at a given order the right hand side

is known up to a finite number of unknown constants. Likewise, all terms on the left-hand

side not containing the n’th contribution to µ12 are known. At order n, we can then write

the equation as

uLµ
(n)
12 −

(
p3 − p

[2]
3 + uL + (u+ i)L

)
µ

(n)[2]
12 + (u+ i)Lµ

(n)[4]
12 = U

(n)
12 , (6.18)

where U
(n)
12 is a source term known up to a finite number of constants. We used that

P
(1)
2 = u−

L
2 and defined p3 = u

L
2 P

(1)
3 which is a polynomial of degree L− 1.

The leading order

At the leading order, the source terms vanishes, U
(1)
12 = 0. Setting µ

(1)
12 ∝ Q−, the equation

is then simply the sl(2) Baxter equation,

T Q =
(
u+ i

2

)L
Q[2] +

(
u− i

2

)L
Q[−2] , (6.19)

where T (u) is a polynomial of degree L. This second-order difference equation has two

solutions, one of which is polynomial and one which is non-rational [128]. We will denote

the polynomial solution by Q1. Since the second solution is non-rational, and since the

roots of Q1 are known to be real which rules out the possibility of exceptional solutions,

there is no ambiguity in the solutions to the sl(2) Baxter equation. In fact, the Baxter

equation can be solved very efficiently in this particular example. There are in general

several solutions to the Baxter equation, and at this stage we choose a specific solution,

corresponding to choosing a specific eigenstate.
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With the polynomial solution Q1 at hand, we can construct the second solution Q2

by making the ansatz Q2 = Q1 f(u). Using (6.19) to write T in terms of Q1, this gives a

difference equation on f ,

(u+ i

2)LQ
[2]
1

(
f − f [2]

)
= (u− i

2)LQ
[−2]
1

(
f [−2] − f

)
. (6.20)

Upon multiplying by Q1, we can rewrite this equation using the difference operator ∇
(4.27),

∇
(

(u+ i

2)LQ1Q
[2]
1 ∇(f)

)
= 0 . (6.21)

The solution can be written as

Q2 = Q1f = Q1Ψ

(
1

(u+ i

2)LQ1Q
[2]
1

)
. (6.22)

Appendix A.4.2 explains how to evaluate such expressions, and the result has the form [1]

Q2 = q2 +Q1

L∑
k=1

rk η
+
k , (6.23)

where rk are constants, q2 is a polynomial of degree at most S − 1, and ηk is the Hurwitz

η-function (6.4). Notice that only poles at iZ are generated.

As discussed in section 4.3.1, µ is not allowed to contain poles at the leading order,

and we must then have µ
(1)
12 ∝ Q

−
1 .

Higher orders

At sub-leading orders, the source term U12 does not vanish. We then have to solve the

inhomogeneous version of the Baxter equation (6.18). As above, we can make the ansatz

µ
(n)
12 = Q−1 f

− and rewrite the equation as

∇
(

(u+ i

2)LQ1Q
[2]
1 ∇(f)

)
= Q[2]U

(n)+
12 . (6.24)

with solution [1]

µ
(n)
12 = Q−1 Ψ

Ψ
(
Q+

1 U
(n)
12

)
uLQ−1 Q

+
1

 = q−2 Ψ
(
Q+

1 U
(n)
12

)
+Q−1 Ψ

(
L∑
k=1

rk
uk

Ψ
(
Q+

1 U
(n)
12

)
− q+

2 U
(n)
12

)
.

(6.25)

The ambiguity in Ψ exactly corresponds to the freedom to add the two homogeneous

solutions Φ1Q
−
1 and Φ2Q

−
2 , with Φi being i-periodic coefficients, to the solution.
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Regularity at u = 0

The coefficients Φi should be consistent with the fact that µ have power-like asymptotics

and poles only at iZ. They can thus be written on the form

Φi = φi,0 +
∞∑
k=1

φi,kPk , (6.26)

where φi,k are constants and Pk are the i-periodic functions (4.59). The sum in general

truncates quickly.

Now recall that, as discussed in section 4.3.1, the combinations µ + µ[2] and µ+µ[2]√
u2−4g2

should be regular at u = 0. Writing these quantities as power expansions around u = 0

and demanding that all singular terms vanish fixes the coefficients φi,k. We discuss the

power expansion of the relevant functions in appendix B.3.

Status

We have now generated a solution for µ
(n)
12 that still contains a finite number of constants

stemming from the ansatz for Pa. At this point we can also determine the value of P̃
(n)
1

directly from (note that P̃
(n)
2 is suppressed)

µ12 − µ[2]
12 = P̃1P2 − P̃2P1 . (6.27)

This expression for P̃1 is valid everywhere on the Riemann sheet, but it should be consis-

tent with the ansatz close to u = 0. We can thus expand it at this point and match it to

the ansatz for P̃1. This fixes some of the free parameters in the functions.

Finally, µ13 can be found directly from (note again that µ14 is suppressed)

P̃1 = P3µ12 −P2µ13 + P1µ14 . (6.28)

6.2.5 First-order difference equation on P̃2

The next step in the algorithm is to consider a first order difference equation satisfied by

P̃2,

P̃2

P2
− P̃

[2]
2

P
[2]
2

=

(
P4

P2
− P

[2]
4

P
[2]
2

)
µ

[2]
12 +

(
P1

P2
− P

[2]
1

P
[2]
2

)
µ

[2]
24 , (6.29)

which can be derived from (6.15). The equation is solved by applying the Ψ-operation,

which again introduces an i-periodic function. By expanding the result at u = 0 and

matching it to the ansatz for P̃2, this ambiguity is fixed. This additionally fixes some of

the remaining free constants in our functions, including the anomalous dimension at the

given order, γn.
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Afterwards, µ14 = µ23 follows directly from e.g.

P̃2 = P4µ12 −P2µ23 + P1µ24 , (6.30)

while P̃3 follows directly from

P̃3 = P4µ13 −P3µ23 + P1µ34 . (6.31)

6.2.6 Baxter equation on µ24

The third, and final, difference equation to be solved is a second order equation on µ24:

1

P2
2

µ24 −

P3

P2
− P

[2]
3

P
[2]
2

+
1

P2
2

+
1(

P
[2]
2

)2

µ
[2]
24 +

1(
P

[2]
2

)2µ
[4]
24

=
P̃2P4

P2
2

− P̃
[2]
2 P

[2]
4(

P
[2]
2

)2 +

(
P

[2]
4

P
[2]
2

− P4

P2

)
µ

[2]
14 . (6.32)

The left hand side is exactly that of the Baxter equation on µ12 (6.17) and in fact the

right-hand side is the same up to the replacement P1 → −P4. In conclusion, this is simply

the inhomogeneous Baxter equation (6.18) with a different source term. The solution can

thus be constructed in exactly the same way as (6.25). Again, we impose regularity of

µ+ µ[2] and µ+µ[2]√
u2−4g2

at u = 0 to fix the periodic functions introduced.

What remains is to get P̃4 directly from

µ24 − µ[2]
24 = P̃2P4 − P̃4P2 , (6.33)

and µ34 from

P̃4 = P4 µ14 −P3 µ24 + P2 µ34 . (6.34)

Any left-over constant freedoms can be fixed by matching the expressions for P̃3 and P̃4

with their ansatz at u = 0.

6.2.7 Iterations

The above procedure can be applied recursively to fix the ansätze for Pa and generate the

perturbative corrections to P̃a and µab. The crucial feature behind the algorithm is the

all-loop ansatz for Pa. At each order, the three main steps are the solution of three finite

difference equations:

• Second-order equation on µ12

• First-order equation on P̃2

• Second-order equation on µ24
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Loop 1 Loop 2 Loop 3

Pa µ
(1)
12 P̃
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12 P̃
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1
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13
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14
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13
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Figure 6.1: Flow of the algorithm to solve the Pµ-system for operators in the sl(2) sector.

Each time a new value of P̃a is generated, its expansion at u = 0 is compared to the

all-loop ansatz. This fixes the unknown coefficients in the ansatz uniquely. The algorithm

is summarised in figure 6.1.

It is clear that the algorithm only introduces functions of the type described at the

beginning of the chapter. A nice feature of the algorithm is that since all the used relations

are linear in µ and P̃, the expressions are always linear in η-functions, i.e. it is not necessary

to linearise using stuffle relations. Furthermore, it is clear that the only place where non-

rational algebraic numbers can be introduced is in the solution of the Baxter equation

(6.19).

6.3 Solving the Q-system in general

In this section we describe a general method to solve the QSC in its full glory: the Q-

system and the functions µ and ω. Such a method was first described in [113]. The key

step in this algorithm is to solve 16 coupled first-order difference equations on Qa|i.

The starting point is again the ansatz for P, but as we wish to consider general states,

there is no way to identify Pa and Pa. Let us consider the n’th perturbative order and

assume that we know all functions at lower loop orders completely. The ansatz (4.71) then

gives us a rational ansatz for P
(n)
a and Pa

(n) with a finite number of unknown coefficients.

6.3.1 Difference equations on Qa|i

In chapter 4, we saw that the 16 functions Qa|i satisfy the coupled first-order difference

equations,

Q−a|i −Q
+
a|i = PaP

bQ+
b|i . (6.35)

As in the previous section, we can think of the equation at subleading orders as an inho-

mogeneous version of the equation at the leading order,

Q
(n)−
a|i −Q

(n)+
a|i = P(1)

a Pb
(1)Q

(n)+
b|i + U

(n)
a|i , (6.36)
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where we again refer to U
(n)
a|i as a source term. The solution has the simple form

Q
(n)
a|i = −Q(1)

a|jΨ
(
Q
b|j
(1)U

(n)+
b|i

)
(6.37)

which can easily be checked by plugging this expression into (6.36), but let us also provide

a direct derivation similar to the one given in [113].

Proof

We start by making the ansatz

Qa|j = (δkj + fkj )Q
(1)
a|k , (6.38)

where fkj (u) = O(g2) captures the contribution at subleading orders,

fkj =
∞∑
n=1

g2nf
k (n+1)
j . (6.39)

At O(g2n) the equation (6.36) looks like

f
j (n)−
i Q

(1)−
a|j − f

j (n)+
i Q

(1)+
a|j = P(1)

a Pb
(1)f

j (n)+
i Q

(1)+
b|j + U

(n)
a|i . (6.40)

Now use (6.35) to make the replacement Q
(1)+
a|j = Q

(1)−
a|j −P

(1)
a Pb

(1)Q
(1)+
b|j on the left-hand

side to get (
f
j (n)−
i − f j (n)+

i

)
Q

(1)−
a|j = U

(n)
i|a . (6.41)

Finally, contract this equation with Q
a|k−
(1) and use that Qa|iQ

a|j = −δji to obtain

f
j (n)+
i − f j (n)−

i = U
(n)
a|i Q

a|j−
(1) , (6.42)

which has the solution

f
j (n)
i = −Ψ

(
U

(n)+
a|i Q

a|j
(1)

)
, (6.43)

and this is exactly the statement (6.37).

6.3.2 Generating the Q-system

We now have the eight P and the 16 Qa|i at hand. We still have a bunch of unknown

coefficients from the P-ansatz, and the Ψ-operation in (6.37) introduces another 16 con-

stants to be fixed. Note that, in order to preserve the upper half-plane analyticity and

power-like asymptotics of Qa|i, more general i-periodic functions are not allowed.
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Figure 6.2: Overview of the algorithm to solve the Q-system.

This knowledge is sufficient to generate the remaining Q-system without solving any

more difference equations, cf. section 4.2. Everything else can be found from the determi-

nant formulas in section 4.2.1. The Q-functions of interest are

Qi = Q∅|i = −PaQ±a|i (6.44a)

Qab|ij =

∣∣∣∣∣Qa|i Qa|j

Qb|i Qb|j

∣∣∣∣∣ (6.44b)

Qabc|ijk =

∣∣∣∣∣∣∣∣
Qa|i Qa|j Qa|k

Qb|i Qb|j Qb|k

Qc|i Qc|j Qc|k

∣∣∣∣∣∣∣∣ (6.44c)

Qi = Q∅|i = PaQ
a|i± . (6.44d)

We are thus able to generate the full Q-system, still containing a set of unknown coef-

ficients. The 16 constants arising in the solution (6.37) can be controlled by fixing the

H-symmetry, which can for example be done by eliminating certain asymptotic powers

in the functions P and Q. However, to control the symmetry on the indices i, j etc.

in practice, this involves power expanding non-rational Q-functions at u = ∞, which is

possible, see e.g. [109], but computationally demanding.

6.3.3 Gluing

To fix the unknown constants in the Q-system, we need a way to enforce the analytic

requirements prescribed by the QSC. In particular, we need to consider the value of some

of the Q-functions on their second Riemann sheet and require that they are consistent with

the value on the first sheet at the point where the branch cut between them collapsed,

u = 0. This is illustrated in figure 6.3.
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Figure 6.3: At the point where the branch cuts between the first and second sheet collapsed, u = 0,

the functions still satisfy gluing conditions.

As discussed, a way to do this is by constructing P̃(n) through

P̃a = µabP
b P̃a = µabPb , (6.45)

and then impose that the expansion of P̃(n) around u=0 is consistent with the P-ansatz.

To do this, we first need to build the functions µ. We recall that these functions are linear

combination of the central Q-functions Qab|ij with ω as coefficients:

µab = 1
2ω

ijQ−ab|ij µab = −1
2ε
abcd µcd

Pf(µ•)
, (6.46)

and that the i-periodic functions ωij are of the form

ωij = ωij{0} +
∞∑
k=1

ωij{k}Pk , (6.47)

where Pk are the i-periodic functions (4.59) and where the sum truncates at each order

in perturbation theory. One can use the regularity at u = 0 of µ+µ[2] and µ−µ[2]√
u2−4g2

to fix

most of the constants ωij{k}.

Imposing the complete agreement between the obtained values of P̃(n) and the ansatz

(4.71) at u = 0 fixes all left-over degrees of freedom. We summarise the algorithm in figure

6.2.

6.3.4 Comments

The beauty of the outlined solution strategy is that it encompasses all parts of the QSC.

However, it is rather painful to implement in practice, for the following reasons:

• It includes a large number of functions: 8 P’s, 16 Qa|i, 36 Qab|ij , etc.

• The generation of e.g. Qab|ij as determinants of Qa|i results in large expressions

containing products of η-functions that needs to be linearised using stuffle relations.

• One has to control the full H-symmetry of the QSC, i.e. the parts acting on both

types of indices (a, b,.. and i, j,...). Controlling the symmetry on the indices i, j
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etc. is harder in practice because there are no rational functions on which to fix

it in a simple way. To do it by constraining asymptotic behaviour involves power

expansion at u =∞.

There are ways to get around some of these issues, at least in special cases. As proposed in

[113], one can instead perform the gluing by using relations between Q̃j and the complex

conjugation of Qk described in [15]. In fact, one can avoid the construction of ω and

µ completely in this way1. For left/right symmetric states, one can then get away with

treating only the lower left corner of the square in figure 6.2, i.e. the 24 functions Pa, Qi

and Qa|i. However, for generic states one also needs to treat the upper right corner, which

is another 24 functions. This is a large number of functions, and the practical nuisance of

the H j
i -symmetry is still present.

6.4 Solving the Pµ-system in general

In this section we present a conceptually very simple algorithm to solve the Pµ-system

for generic states. It is in some sense a hybrid of the two algorithms above.

Using only the Pµ-system has clear advantages: it includes only 14 functions: eight

P’s and six µ’s. The indices i, j, etc. are absent, which means that this part of the

H-symmetry is absent as well. Finally, the presented method is only mildly non-linear in

η-functions.

6.4.1 First-order equations on µab

The key equations in this approach are the coupled first-order difference equations on µab,

µab − µ
[2]
ab = −PaP

cµ
[1±1]
bc + PbP

cµ[1±1]
ac . (6.48)

The exact same equation is satisfied by Q−ab|ij . In fact, Q−ab|ij parametrise the six linearly

independent set of solutions to the equation, and µab is just a particular linear combination

of these with certain boundary conditions (that µ+µ[2] and µ−µ[2]√
u2−4g2

are regular at u = 0).

At the n’th perturbative order, we can again think of (6.48) as an inhomogeneous

version of the leading order equation,

µ
(n)
ab − µ

(n)[2]
ab = −P(1)

a Pc
(1)µ

(n)[2]
bc + P

(1)
b Pc

(1)µ
(n)[2]
ac + U

(n)
ab . (6.49)

Let us label the six sets of solutions to the homogeneous equation by

µ̂ab|k = Q
(1)−
ab|{12,13,14,23,24,34}k k = 1, . . . , 6 . (6.50)

1For unphysical solutions, this is a particularly nice property, because ω has a more complicated struc-

ture in this case. For physical solutions ω is easy to control, so this property is not a major advantage

here.
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The solution to (6.49) is then

µ
(n)
ab = µ̂ab|kΨ

(
µ̂cd|kU

(n)
cd

)
(6.51)

Proof

Qab|ij satisfy the equation

Q−ab|ij −Q
+
ab|ij =

(
δcaPbP

d − δcbPaP
d
)
Q±cd|ij , (6.52)

which at the n’th order can be formulated as

Q
(n)−
ab|ij −Q

(n)+
ab|ij =

(
δcaP

(1)
b Pd

(1) − δ
c
bP

(1)
a Pd

(1)

)
Q

(n)+
cd|ij + U

(n)
ab|ij . (6.53)

As in section 6.3.1, we make the ansatz Q−ab|ij =
(
δki δ

l
j + fklij

)
Q

(1)−
ab|kl with fklij (u)∼O(g2).

We plug this into (6.53) and replace Q
(1)+
ab|ij on the left hand side by using the homogeneous

equation. We then contract the equation with Q
ab|ij−
(1) using (4.32), and apply the Ψ-

operation. The result is

Q
(n)−
ab|ij = 1

4Q
(1)−
ab|klΨ

(
Q
cd|kl−
(1) U

(n)
cd|ij

)
. (6.54)

We can contract this expression with 1
2ω

ij , which turns the left hand side into µ
(n)
ab , while

on the right hand side, since ω is an i-periodic function insensitive to the Ψ-operation,

this means that the source is replaced by that of (6.49). Summing over the single index

k = 1, . . . 6 instead of two antisymmetric indices removes the remaining factor of 1
2 , and

we have (6.51).

Periodic functions and regularity

As µ can have poles in both the upper and lower half-plane, the periodic functions arising

from the Ψ-operation in (6.51) are of the form

Φi = φi,0 +
∞∑
k=1

φi,kPk , (6.55)

where Pk are again the i-periodic functions (4.59). The sum truncates at each perturbative

order and most of the coefficients φi,k can be fixed directly by imposing that µ+ µ[2] and
µ−µ[2]√
u2−4g2

are regular at u = 0.

6.4.2 Gluing

The gluing is exactly as in the other algorithms: construct P̃(n) through (6.45), power

expand around u = 0 and match each order in u with the ansatz (4.71).
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Figure 6.4: Overview of the algorithm to solve the Pµ-system for generic states.

In practice, power expansion is one of the most time-consuming steps in the algorithm.

The matching of powers can be truncated at some maximal power in u, which means that

the coefficients c
(n)
a,k present in the ansatz for P̃(n)(u) are only determined up to a certain

k. These coefficients are suppressed by a factor of g2k in P anyway. In general, the non-

trivial constraints in the gluing come from the singular parts of P̃. Due to the expansion

of the Zhukowsky variable x, the coefficients c
(n)
a,k start appearing in the singular terms at

subsequent orders. One should therefore be careful to fix all c
(n)
a,k that appear in singular

terms at the maximal perturbative order that one wants to reach. We refer to [1, 7] and

the related Mathematica-notebooks for the details on how to do this in a minimal way.

6.4.3 Comments on the method

The presented method only requires the determination of six functions µab by solving

difference equations. The knowledge of the 6×6 = 36 general solutions to these equations,

Q−ab|ij , is not necessary. The functions µab are identical to µab up to a factor of the Pfaffian,

see (4.49),

µab = −1

2
εabcdµcd

1

Pf(µ•)
. (6.56)

One has the freedom to set Pf(µ•) = 1, which is related to the choice of normalisations A,

but this is rather tricky to implement in practice. Instead the constant Pf(µ•) can simply

be included as a free parameter that is eventually fixed by the gluing.

The Pµ-based method described here is significantly simpler than the method de-

scribed in section 6.3. Only 14 functions are calculated: eight P (on both the first, P(u),

and second sheet, P̃(u)) and six µab. The only non-linearity in η-functions arises in the

expression (6.51), but it is only a mild non-linearity, because two of the three factors are

leading-order Q-functions with only simple η-functions. Finally, the H-symmetry only

needs to be controlled on the indices a, b, etc.

In conclusion, we have arrived at a method that fits our ambition: a simple algorithm

to solve the QSC perturbatively for general states.



6.5. Results 135

6.5 Results

In this section we take a look at the results that can be produced by the perturbative

algorithms. We present a sample of results obtained with Mathematica-implementations

of the algorithms in section 6.2 and 6.4. These results are representatives of calculations

that can be completed on a standard laptop. A much larger database of sl(2) results is

available in the ancillary files of [1] at arxiv.org, and a database for the general spectrum

will appear in [7].

Working with algebraic numbers

Before looking at specific results, let us make a comment about the practical solution.

In general, the leading solutions to the Q-system, cf. chapter 5, contain algebraic num-

bers, which in some cases are rather complicated. In practice, such numbers are hard

to work with analytically in a symbolical programming language such as Mathematica.

The algorithms rely on delicate cancellations between terms, and such cancellations are

often hidden when complicated algebraic numbers are present, at least without applying

time-consuming simplification procedures. In practice, we have not managed to handle

such numbers in a completely analytic way. Instead, the algorithm treats such solutions

by evaluating the coefficients in the leading solution numerically with a high precision.

The ζ-values generated from power expansions are kept symbolically, and we refer to this

procedure as semi-numerics.

In fact, another simple observation means that the semi-numerical results can be used

to reconstruct the analytic results. Consider a solution for which the anomalous dimension

can be written in terms of some algebraic number, θ, which is a root of some polynomial

with integer coefficients of degree k. Then there exists k multiplets with the same quantum

numbers for which the anomalous dimension is given in terms of the other roots of this alge-

braic equation. For example, there are three multiplets of the kind nyp = [0, 0|5, 3, 3, 1|0, 0],

and their one-loop anomalous dimension, which follows directly from the found Q2,2, are

γ1,j =
40

3
+ θj , θj = Root[27x3 − 1872x− 4160, j] , j = 1, 2, 3 , (6.57)

where
∑k

j=1 θj = 0. At a higher loop, the anomalous dimension should be of the form

γn,j = c0 + c1θj + c2θ
2
j , (6.58)

where ci are rational numbers. Calculating γn,j numerically for j = 1, 2, 3, we have three

equations (6.58) on three unknowns, ci. If the numerical precision is sufficient, the rational

numbers can easily be reconstructed e.g. with the Mathematica-function Rationalize.
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6.5.1 The sl(2) sector

The algorithm to solve the Pµ-system in the sl(2) sector described in section 6.2 allows

the calculation of a wide range of new results. The obtained results include analytic

10-loop results for a variety of multiplets for which the Q-system contains only rational

coefficients. As an example, we here show the 10-loop result for the Konishi multiplet,

nyp = [0, 0|1, 1, 1, 1|0, 0]:

γ = 12g2 − 48g4 + 336g6 + g8
(
− 2496 + 576 ζ3 − 1440 ζ5

)
(6.59)

+g10
(
15168 + 6912 ζ3 − 5184 ζ23 − 8640 ζ5 + 30240 ζ7

)
+g12

(
−7680− 262656 ζ3 − 20736 ζ23 + 112320 ζ5 + 155520 ζ3 ζ5 + 75600 ζ7 − 489888 ζ9

)
+g14

(
− 2135040 + 5230080 ζ3 − 421632 ζ23 + 124416 ζ33 − 229248 ζ5 + 411264 ζ3 ζ5

− 993600 ζ25 − 1254960 ζ7 − 1935360 ζ3 ζ7 − 835488 ζ9 + 7318080 ζ11
)

+g16
(

54408192− 83496960 ζ3 + 7934976 ζ23 + 1990656 ζ33 − 19678464 ζ5 − 4354560 ζ3 ζ5

− 3255552 ζ23 ζ5 + 2384640 ζ25 + 21868704 ζ7 − 6229440 ζ3 ζ7 + 22256640 ζ5 ζ7

+ 9327744 ζ9 + 23224320 ζ3 ζ9 + 65929248
5 ζ11 − 106007616 ζ13 − 684288

5 Z
(2)
11

)
+g18

(
− 1014549504 + 1140922368 ζ3 − 51259392 ζ23 − 20155392 ζ33 + 575354880 ζ5

− 14294016 ζ3 ζ5 − 26044416 ζ23 ζ5 + 55296000 ζ25 + 15759360 ζ3 ζ
2
5 − 223122816 ζ7

+ 34020864 ζ3 ζ7 + 22063104 ζ23 ζ7 − 92539584 ζ5 ζ7 − 113690304 ζ27 − 247093632 ζ9

+ 119470464 ζ3 ζ9 − 245099520 ζ5 ζ9 − 186204096
5 ζ11 − 278505216 ζ3 ζ11 − 253865664 ζ13

+ 1517836320 ζ15 + 15676416
5 Z

(2)
11 − 1306368Z

(2)
13 + 1306368Z

(3)
13

)
+g20

(
16445313024− 13069615104 ζ3 − 1509027840 ζ23 + 578949120 ζ33 − 14929920 ζ43

− 11247547392 ζ5 + 1213581312 ζ3 ζ5 + 1234206720 ζ23 ζ5 − 70170624 ζ33 ζ5 − 1390279680 ζ25

− 654842880 ζ3 ζ
2
5 + 6966252288

175 ζ35 + 377212032 ζ7 − 1610841600 ζ3 ζ7 + 154680192 ζ23 ζ7

+ 222341760 ζ5 ζ7 + 133788672 ζ3 ζ5 ζ7 + 868662144 ζ27 + 4915257984 ζ9 − 332646912 ζ3 ζ9

− 91072512 ζ23 ζ9 + 1099699200 ζ5 ζ9 + 2275620480 ζ7 ζ9 + 9793211904
5 ζ11

− 2334572928 ζ3 ζ11 + 2713772160 ζ5 ζ11 − 787483944
175 ζ13 + 3372969600 ζ3 ζ13

− 4308536566944
875 ζ15 − 21661960320 ζ17 + 752219136

5 Z
(2)
11 − 5070791808

175 Z
(2)
13

− 7159104
7 Z

(3)
13 + 2716063488

175 Z
(2)
15 − 17895168

25 Z
(3)
15 + 11943936 ζ3 Z

(2)
11

)
+O(g22) ,

where Z
(n)
a denote so-called single-valued multiple zeta-values [129] given in (B.9). These

numbers are special combinations of ζ-values, e.g. Z
(2)
13 = −ζ5,3,5 + 11 ζ5 ζ3,5 + 5 ζ5 ζ8, and

we discuss them further below.
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# of loops
runtime memory usage

sl(2) general general

5 4 s 40 s 20 MB

6 15 s 2 m 35 MB

7 1 m 4 m 70 MB

8 5 m 13 m 120 MB

9 27 m 52 m 340 MB

10 3.1 h 4.5 h 1.6 GB

Table 6.1: Runtime on a single 3.2 GHz core of a standard desktop for the calculation of the

anomalous dimension of the Konishi multiplet using the Mathematica-implementation

of the sl(2) algorithm described in section 6.2, which was published with [1], and with a

Mathematica-implementation of the general algorithm described in section 6.4, which will

be published with [7]. Note that the sl(2) code terminates after finding P̃2 at the given

loop, while the general code determines all functions in the Pµ-system at the given loop

and does not assume left/right symmetry. The general code is furthermore more suit-

able for parallelisation. The memory usage was measured by the Mathematica-function

MaxMemoryUsed.

A Mathematica-implementation of the algorithm, as well as an extensive database of

results, is available in the ancillary files of [1] at arxiv.org. It includes results for all 91

multiplets with L + S = ∆yp0 + 2 ≤ 10 up to at least eight loop orders. The code is in

general efficient for states with L + S ≤ 15. The Mathematica-code reaches 10 loops

for the Konishi solution in about three hours on a standard desktop, using about 2 GB

of memory. See table 6.1 for more details on the performance and a comparison with

the performance of a Mathematica-implementation of the general algorithm described in

section 6.4. Higher quantum numbers L and S naturally lead to longer runtimes and

higher memory consumption.

6.5.2 The su(2) sector

The compact su(2) sector is characterised by the quantum numbers

nyp = [0, 0|L−3, L−M−1,M−1, 1|0, 0] , (6.60)

corresponding to a 1̂122̂3̂344̂ HWS of the kind ZL−MXM . It contains a finite number of

multiplets with a given length L, and since the results up to the L’th loop are obtain-

able from the asymptotic Bethe equations, there is in practice only a limited amount of

additional data to gain by using the QSC.

One multiplet is however of particular interest: the so-called exceptional solution that

appears for the single multiplet of the kind nyp = [0, 0|3, 2, 2, 1|0, 0], for which the central
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Q-function is

Q2,2 = u3 +
u

4
=
(
u− i

2

)
u
(
u+ i

2

)
. (6.61)

Due the position of its Bethe roots, it requires extra care when solving the asymptotic

Bethe equations, and similarly when solving the TBA equations, which was done up to six

loops in [130]. However, from the point of view of the QSC this state requires no special

care, and the algorithm of section 6.4 handles it completely unproblematically. We here

present the 10-loop result:

γ = 12g2 − 36g4 + 252g6 − 2484g8 + g10 (28188− 288ζ3) (6.62)

+g12 (−339012 + 7776ζ3 + 12096ζ5 − 18144ζ9)

+g14
(
4214268− 39744ζ3 − 181440ζ5 + 57024ζ23 − 260064ζ7

−34560ζ3ζ5 − 60480ζ9 − 8640ζ25 − 96768ζ3ζ7 + 665280ζ11
)

+g16
(
− 53785620− 820800ζ3 − 699840ζ23 − 82944ζ33 + 1664064ζ5 − 1510272ζ3ζ5

−290304ζ23ζ5 + 250560ζ25 + 4257792ζ7 + 628992ζ3ζ7 + 1451520ζ5ζ7 + 4711968ζ9

+2903040ζ3ζ9 + 11144736
5 ζ11 − 16061760ζ13 − 124416

5 Z
(2)
11

)
+g18

(
702413532 + 25507872ζ3 − 2282688ζ23 − 1119744ζ33 − 248832ζ43 − 502848ζ5

+25653888ζ3ζ5 + 3836160ζ23ζ5 + 5987520ζ25 + 6635520ζ3ζ
2
5 − 45170784ζ7

+22037184ζ3ζ7 + 6676992ζ23ζ7 − 5766336ζ5ζ7 − 16027200ζ27 − 75035808ζ9

+10018944ζ3ζ9 − 38361600ζ5ζ9 − 79511328ζ11 − 58848768ζ3ζ11 − 273255552
5 ζ13

+324324000ζ15 + 311040Z
(2)
11 − 601344

5 Z
(2)
13 + 145152Z

(3)
13

)
+g20

(
−9354033252−461062368ζ3+198500544ζ23−2778624ζ33 +2239488ζ43−348634368ζ5

−201128832ζ3ζ5 + 50865408ζ23ζ5 + 14681088ζ33ζ5 − 187012800ζ25 − 51010560ζ3ζ
2
5

− 1310563584
35 ζ35 + 343359648ζ7 − 351993600ζ3ζ7 − 56909952ζ23ζ7 − 147334464ζ5ζ7

−221543424ζ3ζ5ζ7 + 29465856ζ27 + 911464704ζ9 − 312035328ζ3ζ9 − 107619840ζ23ζ9

+75755520ζ5ζ9 + 633225600ζ7ζ9 + 5846706576
5 ζ11 + 740306304

5 ζ3ζ11 + 745303680ζ5ζ11

+ 226451356776
175 ζ13 + 1017080064ζ3ζ13 + 96109333632

175 ζ15 − 5951088000ζ17 + 41036544
5 Z

(2)
11

+ 746496
5 Z

(2)
11 ζ3 + 406415232

175 Z
(2)
13 − 18719424

7 Z
(3)
13 + 30710016

35 Z
(2)
15 − 850176

5 Z
(3)
15

)
+O(g22) .

This result is special in the sense that the ζ-values stemming from the dressing factor are

delayed compared to other results. However, in the QSC, it is not immediately transparent

why this delay occurs.

In fact, this is just the first result in an infinite series of exceptional solutions. The same

solution (6.61) reappears for M = 3 and L = 6 + 2n with n ∈ N. Though also obtainable
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Lsu(2) γ1 γ2 γ3 γ4 γ5 γ6

6 12 -36 252 -2484 28188−288ζ3 −339012+7776ζ3+12096ζ5−18144ζ9

8 12 -36 264 -2592 28848 345024− 288ζ3

10 12 -36 264 -2580 28716 −344088

12 12 -36 264 -2580 28728 −344244

14 12 -36 264 -2580 28728 −344232

Table 6.2: Anomalous dimensions of the first states in the series of exceptional solutions.

from the asymptotic Bethe equations, we list the quite peculiar anomalous dimensions of

the operators in the series at the first perturbative orders in table 6.2. The delay in the

appearance of ζ-values is rather unique. All other investigated solutions follow a strict

pattern: ζ-values start appearing at O(g8), i.e. in γ4, and the appearing transcendentality

then steadily increases order by order.

6.5.3 Semi-short multiplets

After revisiting the two usual suspects, it is time to look at something more exotic. Let us

look at an example that only satisfies one of the two shortening conditions (1.39). This is

the case for the two multiplets with quantum numbers nyp = [0, 0|2, 2, 1, 1|2, 0] belonging

to the su(2, 1|2) sector, which are only subject to the shortening (1.39b). See figure 6.5

for the corresponding Young diagram. Note that there are two conjugate solutions with

quantum numbers nyp = [0, 2|3, 3, 2, 2|0, 0] in the su(1, 2|2) sector subject to the other

shortening (1.39a).

The two solutions have leading-order central Q-functions

Q2,2 ± = u4 + u2(−13
14 ∓

4
√

2
21 ) + 29

336 ±
√

2
21 . (6.63)

Though not impossible to treat solutions with only simple squareroots completely analyt-

[0, 0|1, 1, 1, 1|0, 0] [0, 0|3, 2, 2, 1|0, 0] [0, 0|2, 2, 1, 1|2, 0] [0, 4|2, 2, 2, 2|4, 0]

∆yp
0 = 2 ∆yp

0 = 4 ∆yp
0 = 5 ∆yp

0 = 8

t t t t

Figure 6.5: Young diagrams for the four considered examples of solutions (6.59), (6.62), (6.65) and

(6.67).
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ically, it is simpler to treat them semi-numerically. The semi-numerical results for the two

solutions have the form

γ+ = 18.82843g2−69.75305g4+479.03195g6+g8(−4096.90889−280.14214ζ3)+O(g10) (6.64)

γ− = 13.17157g2−49.24695g4+340.21805g6+g8(−2821.02861−251.85786ζ3)+O(g10) .

As a simpler example of the discussion above, the analytic result can be reconstructed by

studying the sum and difference of these solutions. The 9-loop result is

γ± = g2(16± 2
√

2) + g4
(
− 119

2 ∓
29
4

√
2
)

+ g6
(
3277
8 ± 3141

64

√
2
)

(6.65)

+g8
(
110687

32 ∓ 230959
512

√
2− (266± 10

√
2)ζ3

)
+g10

(
4208765

128 ± 95147579
16384

√
2 + (3670± 2726

√
2)ζ3 + (8540∓ 6140

√
2)ζ5 + (−5880± 2520

√
2)ζ7

)
+g12

(
− 173168415

512 ∓ 11585963899
131072

√
2 + (− 259641

8 ± 2288325
64

√
2)ζ3 + (−8553∓ 39669

√
2)ζ5

+(20736∓ 26424
√

2)ζ23 + (−218890± 131740
√

2)ζ7 + (−36000± 12240
√

2)ζ3ζ5

+(157248∓ 89712
√

2)ζ9
)

+g14
(

22048999927
6144 ± 8421552810475

6291456

√
2 + ( 1782313

24 ∓ 307985969
256

√
2)ζ3 + ( 7171273

12 ± 78905645
96

√
2)ζ5

+(145290∓ 76843
2

√
2)ζ23 + ( 445949

2 ± 10782779
48

√
2)ζ7 + (−1039360± 646010

√
2)ζ3ζ5

+(−70272± 16512
√

2)ζ33 + (421600∓158720
√

2)ζ25 + (689920∓406784
√

2)ζ3ζ7

+(4000472∓ 6841184
3

√
2)ζ9 + (−2971584±2091936

√
2)ζ11

)
+g16

(
− 300286892351

8192 ∓ 310312617444303
16777216

√
2 + (− 1815233191

384 ± 818789643655
49152

√
2)ζ3

+(− 129268663
48 ∓ 178955539

192

√
2)ζ5 + (− 8035131

2 ∓ 2954707
√

2)ζ23 + (− 29726453
8 ∓ 1480367983

192

√
2)ζ7

+(−1016480± 7081753
8

√
2)ζ3ζ5 + (−1271264± 205280

√
2)ζ33 + (− 46245709

9 ∓ 62018965
72

√
2)ζ9

+(14512736∓ 7343308
√

2)ζ3ζ7 + (10129460∓ 3934300
√

2)ζ25 + (− 965226764
15 ± 185149308

5

√
2)ζ11

+(2475872∓1311072
√

2)ζ23ζ5 + (−9609600±8433600
√

2)ζ3ζ9 + (−12633600±6878592
√

2)ζ5ζ7

+(49256064∓ 40868256
√

2)ζ13 + (− 520032
5 ∓ 190368

5

√
2)Z

(2)
11

)
+g18

(
10426829965853

32768 ± 235830866890042803
1073741824

√
2+
(
103506743759

384 ∓ 2744026791787
32768

√
2
)
ζ3

+
(
−276665471

6 ∓ 32420391253
768

√
2
)
ζ23 +

(
8840920

3 ±22175487
√

2
)
ζ33 +

(
735232∓943744

√
2
)
ζ43

+
(
−6273900189

64 ∓ 4291223737195
24576

√
2
)
ζ5+

(
381113863

6 ∓ 55154251
192

√
2
)
ζ3ζ5+

(
46556932∓457124

√
2
)
ζ23ζ5

+
(
−107227490

3 ± 31550065
3

√
2
)
ζ25 +

(
−25320320±22619520

√
2
)
ζ3ζ

2
5 +
(
14437075583

96 ± 2626144329215
12288

√
2
)
ζ7

+
(
46990300

3 ∓ 108785719
6

√
2
)
ζ3ζ7+

(
−22634752±22092672

√
2
)
ζ23ζ7+

(
−256729984±94803408

√
2
)
ζ5ζ7

+
(
89017600∓58788464

√
2
)
ζ27 +

(
1089393967

54 ± 2982598613
96

√
2
)
ζ9+

(
−1737826384

9 ± 770357488
9

√
2
)
ζ3ζ9

+
(
163920000∓124002240

√
2
)
ζ5ζ9+

(
470423502

5 ∓ 320613021
20

√
2
)
ζ11+

(
119243520∓145271808

√
2
)
ζ3ζ11

+
(
72811803608

75 ∓ 14575123306
25

√
2
)
ζ13+

(
−767566800±727927200

√
2
)
ζ15+

(
−29532132

5 ± 5078244
5

√
2
)
Z

(2)
11

+
(
−15966848

25 ∓ 3801792
25

√
2
)
Z

(2)
13 +

(
791168±178752

√
2
)
Z

(3)
13

)
+O(g20) .
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6.5.4 Long multiplets

Finally, let us take a look at an example of a multiplet that remains long at g = 0.

For obvious combinatorial reasons, the spectrum of N = 4 SYM is dominated by such

solutions, except at the lowest values of ∆yp0 . For example, of the 6918 multiplets with

∆yp0 = 8 only 348 multiplets have both shortenings at zero coupling, 1624 have a single

shortening, while 4946 of them are long.

Solutions for long multiplets containing only rational coefficients are very rare, but

they do appear after browsing through the solutions for a while. A neat example is one of

the 18 multiplets with nyp = [0, 4|2, 2, 2, 2|4, 0], see again figure 6.5 for the Young diagram,

with central Q-function

Q2,2 = u8 − 13

3
u6 +

41

24
u4 +

19

48
u2 +

841

2304
. (6.66)

The 8-loop result, corresponding to the first double-wrapping order, for this solution is

γ = 12g2 − 114
5 g4 + 81375909

702250 g6 + g8
(
− 76584649592643

98631012500 −
144
5 ζ3 − 288

5 ζ5

)
(6.67)

+g10
(

7557157119579028047
1385272570562500 + 5077548

6625 ζ3 − 71568
53 ζ5 − 5184

25 ζ2
3 + 18144

5 ζ7

)
+g12

(
− 154229918575800932044660827

3891230650710062500000 − 5509872145602
465240625 ζ3 − 281495043162

18609625 ζ5

−36464256
6625 ζ2

3 + 97515936
1325 ζ7 + 93312

5 ζ3ζ5 − 2884896
25 ζ9

)
+g14

(
41115911550973651065326107287189

136630836223057069531250000 + 147723346547996562
1306860915625 ζ3 − 8136755919612

465240625 ζ2
3

+124416
5 ζ3

3 + 227800256165730936
1306860915625 ζ5 + 487864512

1325 ζ3ζ5 − 1007424
5 ζ2

5

+21191283987174
93048125 ζ7 − 12386304

25 ζ3ζ7 − 2551539744
1325 ζ9 + 66394944

25 ζ11

)
+g16

(
− 22730186914498905243446426320435681497

9594900473764182707832031250000 − 3569464600430241216297321
3670972311990625000 ζ3

+8659804551029605422
32671522890625 ζ2

3 + 3265526016
6625 ζ3

3 − 53787653656926843535083
36709723119906250 ζ5 + 36588395264904

93048125 ζ3ζ5

−178391808
125 ζ2

3ζ5− 24948434592
6625 ζ2

5− 18579338632506856491
6534304578125 ζ7− 47046267072

6625 ζ3ζ7+ 200212992
25 ζ5ζ7

−301302404501904
93048125 ζ9 + 48190464

5 ζ3ζ9 + 1295628042816
33125 ζ11 − 260200512

5 ζ13 − 10513152
625 Z

(2)
11

)
+O(g18) .

Note that for long solutions the prefactor products AaA
a and BiB

i (4.39) are all O(g0),

which means that n-loop correction to the anomalous dimension γn only appears naturally

in these factors, and thus in the P-ansatz, at O(g2n) compared to O(g2(n−1)) in the case

of a shortening. This means that in the algorithm described in section 6.4, γn is not fixed

until the (n+1)’th iteration. More precisely, γn is fixed when imposing the regularity

constraints on µ at the (n+1)’th loop. As discussed in [14], it also possible to extract γn

from µ
(n)
12 by a careful analysis of its poles.
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Figure 6.6: (Left) conformal dimension for sl(2) Konishi operator: 10-loop perturbative power ex-

pansion (blue line), Padé approximant (red line) and numerical results [99] (dotted line).

(Right) the branch points at u = ±2g collide in the u-plane as g → i

4
.

6.5.5 Comments on the number fields

The described algorithms are completely recursive, and as discussed in section 6.1.2 only

a simple class of functions appear, under which the applied operations are closed. This

means that the only transcendental numbers that can appear in the anomalous dimensions

at any order in perturbation theory are multiple zeta-values. The only other irrational

numbers introduced by the algorithm are the algebraic numbers that arise when solving

the algebraic equations that fix the 1-loop Q-system.

By inspecting the data, we observe that only a subclass of multiple zeta-values appear:

zeta-values with a single odd index, and the single-valued multiple zeta-values [129]. It

has been argued [131] that only these special combinations of multiple zeta-values should

appear for a large class of Feynman diagrams. Our results can indeed be written in terms

of these values in all investigated examples. See appendix B.1 for the explicit structure of

the combinations Z
(n)
a .

6.5.6 Convergence and Padé approximants

By comparison with numerical results, see e.g. [99, 100, 114], it can be observed that the

found perturbative expansions converge up to g = 1
4 . This is not so surprising, since the

branch points at e.g. 2g and −2g + i collide at the value g = i

4 , see figure 6.6.

The convergence of the expansion can be improved by the construction of a Padé

approximant. In this procedure one introduces a new parameter w = (1 + 16g2)α and

turns the power expansion in w, γ(w) =
∑m+n

j=0 ajw
j , into a Padé approximant of the form

R(w) =

∑m
j=0 cjw

j

1 +
∑n

j=1 djw
j

(6.68)
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by ensuring that the first n + m derivatives match: R(0) = γ(0), R′(0) = γ′(0), ...,

R(n+m)(0) = γ(n+m)(0). For the states that are known to 10 loops, we find that the Padé

approximant with m = n = 5 converges up to g ≈ 0.7. With α = 1
4 we get the best match

with the numerical data with roughly a five-digit precision at g ≈ 0.4 and a three-digit

precision at g ≈ 0.7. Around g ≈ 1.0 the Padé approximant starts to diverge significantly

from the numerical results.

See figure 6.6 for a comparison of the Taylor expansion, Padé approximation and

numerical result for the Konishi multiplet.

Subconclusion

In this chapter we have seen how to solve the Quantum Spectral Curve perturbatively at

weak coupling. The starting point was the leading solutions found through the methods

of chapter 5, and the perturbative algorithms used the analytic structure of the QSC,

discussed in chapter 4, to recursively generate corrections. Our conclusion is that con-

sidering just the Pµ-system is the simplest way to do such calculations. In this way, the

calculations involve only a small set of functions that are relatively easy to control.

Together with the algorithm to solve the leading Q-system given in chapter 5, the

algorithm described in section 6.4 fulfils the main goal pursued in this thesis, which is to

automatise the weak coupling solution of the QSC for the general spectrum of single-trace

operators. The combined algorithm will appear as part of the publication [7]. In practice,

this opens the window to a dataset of results far beyond what has been studied before.

Certainly, explicit analytical results can automatically be generated for the more than

1000 multiplets with ∆yp0 ≤ 7 up to at least eight loops. Going further is simply a matter

of optimisation and computer power2.

The new data availability opens the possibility to look for patterns in the results. In

the next chapter, we take a look at a particular pattern satisfied by an infinite family of

multiplets that can be united by analytic continuation in a single quantum number.

2Note that to go beyond 10 loops using our publicly available Mathematica-notebooks, it is necessary

to update the files containing relations between ζ-values, which are used to write intermediate results in a

linearly independent basis. The currently used files, which are available with [1], contain all such relations

up to transcendentality 15, which is sufficient to go to 10 loops. Algorithms to produce such relations

are available in the Mathematica-files connected to [109], and going further is again simply a matter of

computer power. See also [132].



Chapter 7

Twist-2 operators

With the perturbative data at hand, it is natural to look for patterns in the result. In this

chapter we discuss infinite series of solutions for which it is possible to obtain a general

result that describes all multiplets within the series by analytic continuation in a single

quantum number. Due to particular number theoretical properties, it is possible to obtain

such results by extrapolation from results at fixed quantum numbers. The general result

can then be analytically continued to regimes such as the BFKL limit.

The discussion in this chapter gives a basic introduction to the analytic properties of

series of anomalous dimensions, before summarising the tricks and techniques that went

into the reconstruction of the analytic structure of the anomalous dimension of twist-

2 operators at six [2] and seven loops [3]. Many details about these rather technical

calculations are left out, and the interested reader is encouraged to consult the papers for

the complete story.

7.1 Series of solutions and patterns in the data

In this section, we discuss how series of related solutions appear in the QSC. We also

discuss some of the mathematical properties that these series of solutions possess. This

understanding will pave the way for reconstructions in the following sections.

7.1.1 Solution series

The spectrum contains solutions that are connected. This can be seen already at the level

of the 1-loop Q-system where the solutions for certain types of multiplets follow various

patterns. The Young diagram Q-system provides a new way to understand how some of

these families of solutions arise.

144
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Figure 7.1: Young diagram (for the short multiplet that remains HWS in the 1...4 grading) and

number of roots in the distinguished Q-functions for twist-2 operators (left), twist-3

operators (middle), and another series of length-3 operators (right). The central nodes

are encircled. Paths with no Bethe roots are marked in yellow. The green arrows show

how to generate the central Q-functions via trivial QQ-relations.

Twist-2 operators

The classical example is the twist-2 operators. They are usually referred to by their

11̂2̂233̂4̂4 HWS which has the form DS12Z2 and belongs to the sl(2) sector. In fact, these

multiplets contain all unprotected operators of length two in the N = 4 SYM spectrum.

They are described by the quantum numbers,

nyp = [0, S−2|1, 1, 1, 1|S−2, 0] . (7.1)

The corresponding Young diagram is shown in figure 7.1, which is the only allowed type

of Young diagram with length two. The Young diagram reveals a special property: there

exists a path from the left to the right boundary where no roots are encountered. In fact,

this means that the central Q-function is simply

Q2,2(S) ∝ ∇S
S∏
k=1

(
u+ i

2 − ik
)2
, (7.2)

where ∇ is the difference operator (4.27).

This result coincides with the well-known result [52, 133] that the sl(2) Baxter equation
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for L = 2, (
u+ i

2

)2
Q[2] +

(
u− i

2

)2
Q[−2] +

(
−2u2 + S(S + 1) + 1

2

)
Q = 0 , (7.3)

is solved by the hypergeometric function

Q(u) ∝ 3F2

(
−S, S + 1, 1

2 − iu

1, 1
; 1

)
, (7.4)

which for integer S are Hahn polynomials. These solutions only satisfy the zero-momentum

condition (5.38) for even S.

Twist-3 operators

Another series of operators that has been studied in the literature are the twist-3 operators.

They are likewise named after their sl(2) HWS of the form DS12Z3. Note that, unlike the

twist-2 operators, there is in general more than one HWS of this kind for a given S. The

typically studied series of twist-3 operators picks out only a single of these states.

For L = 3, the sl(2) Baxter equation is(
u+ i

2

)3
Q[2] +

(
u− i

2

)3
Q[−2] +

(
−2u3 +

(
S2 + 2S + 3

2

)
u+ t0

)
Q = 0 . (7.5)

and the typical series of twist-3 operators is singled out by assuming parity invariance

u↔ −u, which removes the arbitrary constant t0. In this case, the solution can again be

written as a hypergeometric function [134, 135]

Q(u) = 4F3

(
−S

2 ,
S
2 + 1, 1

2 + iu, 1
2 − iu

1, 1, 1
; 1

)
, (7.6)

which for even S is a polynomial that satisfies the zero-momentum condition. Note that

on the level of the Young diagram, it is not obvious how the twist-3 solution emerges, see

figure 7.1.

Another series

The extended Young diagrams provide a new intuition that can be used to search for

other series of operators. For example, we can ask whether there exists other families of

diagrams where there is a path without any roots.

The rightmost diagram in figure 7.1 is one such example. They correspond to

nyp = [S−2, S−2|1, 1, 1, 1|2S−2, 0] (7.7)

for S > 1. These multiplets have components in the su(2, 1|2) sector, and in the grading

1̂2̂1233̂4̂4 the HWS is of the kind DS11DS12Z3. The S = 1 state also exists, but it has an

extra shortening that changes the yp HWS to nyp = [0, 0|1, 1, 1, 1|0, 0], which is the Konishi
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S Q γ1 γ2 γ3 γ4

0 1 0 0 0 0

2 u2 − 1
12 12 -48 336 −2496 + 576ζ3 − 1440ζ5

4 u4 − 13
14u

2 + 27
560

50
3 -1850

27
241325

486 −8045275
2187 + 114500

81 ζ3 − 25000
9 ζ5

6
u6 − 155

44 u
4

+ 329
176u

2 − 375
4928

98
5 -91238

1125
300642097

506250 − 393946504469
91125000

+ 11736088
5625

ζ3 − 19208
5

ζ5

8
u8 − 133

15 u
6 + 5341

312 u
4

− 17807
2640 u

2 + 8575
36608

761
35 - 1389898611543500

180298033531853
272273400000

− 5685358151649447407
1200725694000000

+ 142906863577
54022500

ζ3 − 1158242
245

ζ5

Table 7.1: Central Q-functions, Q = Q2,2 = Q
(1)

12|12, and perturbative corrections to the anomalous

dimension, γ =
∑∞
j=1 γjg

2j , for the first states in the series of twist-2 operators.

multiplet. The case S = 0 corresponds to the protected length-three BMN vacuum. In

general, the states are not left/right symmetric. Note that there is an equivalent family

with nyp = [0, 2S − 2|2, 2, 2, 2|S − 2, S − 2] corresponding to a rotation of the diagram by

π.

Starting from the lower right corner of the non-trivial extension of the diagram, one

can trivially generate the central Q-function

Q2,2(S) ∝ ∇S
S∏
k=1

(
u+ i

2 − ik
)3
, (7.8)

as depicted in figure 7.1.

7.1.2 Properties of the perturbative anomalous dimension

For certain series of multiplets, there is evidence that the anomalous dimension can be

described as an analytic function of a continuous variable. This has led to conjectures of

certain number theoretical properties which we now review. Table 7.1 shows a sample of

explicit results for the first multiplets in the twist-2 series.

The anomalous dimension as a function of S

As we saw above, the series of solutions have central Q-functions that can be united in

a general solution with a free parameter S. Inserting the expression (7.4) for the central

Q-function of twist-2 operators in the energy formula (5.3), one obtains the one-loop

anomalous dimension

γ1 = 8 S1(S) . (7.9)

where S denotes the harmonic sum,

Sa(S) =
S∑
j=1

sign(a)j

j|a|
, Sa1,...,an(S) =

S∑
j=1

sign(a1)j

j|a1|
Sa2,...,an(j) , (7.10)
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which is described in more detail in appendix B.2. Thus it is possible to describe the

one-loop anomalous dimension of any twist-2 operator by a very compact expression.

This feature is not limited to the leading order. In [136], a general two-loop result

was obtained from direct field-theory calculations, and, based on the maximal transcen-

dentality principle, the result was extended to three-loops in [137]. As the integrability

techniques developed, it also became feasible to reconstruct the four- [82] and five-loop

[83] results, again assuming maximal transcendentality. In [138, 139], the solution to the

asymptotic Bethe ansatz equations for twist-2 operators was found as an analytic expres-

sion in S up to the fourth loop-order, providing a direct derivation not relying on maximal

transcendentality. Similar results have been obtained for twist-3 operators up to six loops

[135, 134, 140].

The explicit results depend on S only through harmonic sums. The 2-loop result for

twist-2 operators can be written as

γ2(S) = −16
(
S3 + S−3 − 2S−2,1 + 2S1

(
S2 + S−2

))
, (7.11)

where all harmonic sums have argument S, i.e. S ≡ S(S). The three-loop result is already

quite involved, and the four loop result takes up about a full page of space. As is also

apparent from table 7.1, the four loop result contains ζ-values, and we can split it in three

parts,

γ4(S) = γrat
4 (S) + γζ34 (S) ζ3 + γζ54 (S) ζ5 , (7.12)

where the parts γζi4 (S) turn out to be quite simple:

γζ34 (S) = −256 S1 (S3 − S−3 + 2S1S−2 + 2S−2,1) (7.13a)

γζ54 (S) = −640 S2
1 . (7.13b)

The principle of maximal transcendentality

Apart from the direct derivations mentioned above, which provides full results up to three

loops [138], the above results were based on the maximal transcendentality principle [141].

This principle states that all terms in the analytically continued anomalous dimension have

transcendentality 2k − 1 where k is the loop order. The anomalous dimension is given

in terms of products of ζ-values and harmonic sums. The transcendentality of harmonic

sums Sa1,...,an and ζ-values ζa1,...,an is defined as
∑n

j=1 |aj | and it is additive in products

of these numbers, e.g. S2,3ζ5 has transcendentality 10.

The alert reader may already have noticed this property in the above results. It explains

e.g. why the expression γζ54 is so simple: as it multiplies ζ5 with transcendentality 5 and the

four-loop anomalous dimension has transcendentality 7, it must be of transcendentality 2,

and the basis of such harmonic sums is very limited.
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The basis of harmonic sums with given transcendentality

So exactly how big is the basis of combinations of harmonic sums with a given transcen-

dentality? Naively, the bases of transcendentality 1 and 2 look like

B1 = {S1,S-1} (7.14)

B2 = {S2
1,S1S-1,S

2
-1,S2,S-2,S1,1,S1,-1,S-1,1,S-1,-1} . (7.15)

As discussed in appendix B.2, all these terms are not linearly independent. The basis of

harmonic sums of a given transcendentality k has the size 2 × 3k−1, and it is natural to

choose a linearised basis formed by all multi-indexed harmonic sums [142]. For example,

this reduces the basis of transcendentality 2 terms to

B2 = {S2,S-2,S1,1,S1,-1,S-1,1,S-1,-1} . (7.16)

However, as we will now see, there is a way to work with an even smaller basis by con-

sidering a different quantity than the anomalous dimension and by using another type of

sums.

Reciprocity

Consider the reciprocity function, P, related to the anomalous dimension through [143]

γ(S) = P
(
S + 1

2γ(S)
)
. (7.17)

A modified version of the maximal transcendentality principle states that the reciprocity

function satisfies a similar criterion where harmonic sums are replaced by binomial sums,

Sa1,...,an(N) = (−1)N
N∑
j=1

(−1)j
(
N

j

)(
N + j

j

)
Sa1,...,an(j) . (7.18)

Importantly, only binomial sums with positive indices should appear [83]. All expressions

of binomial sums with a given transcendentality can similarly to the harmonic sums be

written in a linearised basis [142], and thus the number of possible terms of transcenden-

tality k is 2k−1, which is a significant reduction compared to the basis of harmonic sums.

For example, the basis of terms with transcendentality 2 is simply {S2, S1,1}.

Conversion between γ and P

It should clearly be easier to reconstruct P than γ. However, we first need to understand

how to convert our results for γ to P. The reciprocity function has a perturbative structure

similar to that of the anomalous dimension,

P(S) =
∞∑
j=1

g2jPj(S) . (7.19)
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Expanding (7.17) in g2 gives

g2γ1 + g4γ2 +O(g6) = g2P1 + g4
(

1
2P
′
1γ1 + P2

)
+O(g6) , (7.20)

where all γ and P have the same argument S. We see that P1 = γ1, but for higher orders

we need to know how to take derivatives P ′j = d
dSPj . Analytic continuation and power

expansion of harmonic sums is discussed in appendix B.2.

7.1.3 Reconstruction from data points

The methods of chapter 6 gave us tools to generate results for arbitrary states, but with

fixed quantum numbers. We will now discuss how to use such results to reconstruct the

general result for series of solutions, assuming the principle of maximal transcendentality

and a basis of only harmonic sums. We will use the twist-2 operators (7.1) as an example.

Direct matching

We should be able to uniquely determine the result for general S if we have as many values

for fixed S as the size of the basis. For the twist-2 series, the data in table 7.1 should be

enough to get a few results. First of all, γ1 should be given in terms of B1:

γ1(S) = c1S1(S) + c-1S-1(S) . (7.21)

We thus need two1 values for fixed spin to fix ci. For S = 2, 4 we get{
12 = 3

2c1 − 1
2c-1 ,

50
3 = 25

12c1 − 7
12c-1

}
⇒ c1 = 8 , c-1 = 0 , (7.22)

so we should have γ1(S) = 8S1(S), and this indeed reproduces the values for S = 6, 8 in

table 7.1. We would need six points to reconstruct γζ54 of transcendentality 2, which is

two more point than in table 7.1 (note that the point S = 0 is no good). To reconstruct

γ2 directly we would need 18 points to match with B3. This is already a lot, so let us try

to reconstruct the reciprocity function instead.

Converting to the reciprocity

To reconstruct P2, which has transcendentality 3, we need only four data points. However,

we first need to convert our results at fixed values, γ2(S0) to P2(S0). From (7.20) we have

P2(S) = γ2(S)− 1
2P
′
1(S)γ1(S) = γ2(S)− 32S1(S)

(
ζ2 − S2(S)

)
, (7.23)

which gives

1In fact, since γ1 = P1, we know that it should be expressed only in terms of S1 = 1
2
S1. Note that the

constraints on the basis of P also puts constraints on the basis of γ.
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S 2 4 6 8 10

P2 12− 48ζ2
475
18 −

200
3 ζ2

16121
450 −

392
5 ζ2

7548787
176400 −

3044
35 ζ2

383492923
7938000 −

29524
315 ζ2

Note that P2 = Prat
2 + Pζ22 ζ2, with Pζ22 = −32S1. We should be able to fix Prat

2 by

matching the four values for S = 2, . . . , 8 with the ansatz

Prat
2 (S) = d3S3(S) + d2,1S2,1(S) + d1,2S1,2(S) + d1,1,1S1,1,1(S) , (7.24)

which results in

d3 = 0 , d2,1 = −8 , d1,2 = 8 , d1,1,1 = 0 . (7.25)

As a check, the result correctly reproduces the S = 10 value.

Converting back to γ2, we get

γ2 = P2 + 1
2P
′
1γ1 = Prat

2 − 32S1S2 = 16 (S3 + S-3 − 2S2,1 − 2S1,2 − 2S1,-2) , (7.26)

which is simply another way to write the well-known result (7.11). See appendix B.2 for

conversions between harmonic and binomial sums at fixed arguments.

Using less points than the basis size

In the reconstructions below, we will sometimes need to reconstruct results out of fewer

constraints than unknowns. The extra condition that makes this possible is the observation

that the variables we are trying to determine are integers, and in fact rather simple integers.

For example, we see that this is the case in e.g. (7.11) and (7.13). This means that we are

dealing with a case of the so-called integer linear programming problem, and the equation

satisfied by the coefficients d is a linear Diophantine equation. The Lenstra-Lenstra-Lovász

(LLL) algorithm [144] provides a method to look for solutions to such problems. We briefly

describe this method in appendix A.5 where we as an example reconstruct Prat
2 for the

twist-2 operators out of just three data points. We refer to [145] and references therein

for a more detailed explanation.

7.1.4 Checks from analytic continuation in S

The general results can be analytically continued to non-integer and negative S, see ap-

pendix B.2. Harmonic sums have poles at negative integers, and the anomalous dimension

has a very particular behaviour around such points.

For twist-2 operators, the behaviour of the anomalous dimension is known to behave

in certain ways around negative integer spin. The most well-known example is the BFKL

regime [146], S = −1, but also the behaviour in the double-logarithmic limit [147, 141],

S = −2, and the generalised double logarithmic limit S = −2n with n = 2, 3, . . . have been

studied [148].
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For example, in the double-logarithmic limit S = −2 + w, the anomalous dimension

should satisfy

γ · (2ω + γ) = −16g2 +O(g4) , (7.27)

and the right hand side is conjectured to be regular in w to all orders in g2 [135, 148].

This puts strong constraints on the left hand side as all poles in w must cancel.

Together with similar constraints coming from the BFKL and generalised double-

logarithmic limits, this provides a range of non-trivial checks of the results obtain through

reconstructions using data points at fixed positive S. The results described in the next

sections pass all these checks.

7.2 Twist-2 at six loops

The following is a summary of the strategy behind the reconstruction of the six-loop

anomalous dimension for twist-2 operators done in [2].

7.2.1 The structure of γ6

The six-loop correction to the anomalous dimension of twist-2 operators, i.e. the coefficient

of g12 in the perturbative expansion, takes the form

γ6 = γrat
6 + γζ36 ζ3 + γζ56 ζ5 + γ

ζ2
3

6 ζ2
3 + γζ76 ζ7 + γζ3ζ56 ζ3ζ5 + γ

ζ3
3

6 ζ3
3 + γζ96 ζ9 . (7.28)

The corresponding non-trivial terms in P6 and the size of the basis of binomial sums in

the ansatz for these terms are summarised in table 7.2. One can split each of the terms in

two contributions: one coming from the asymptotic Bethe ansatz, P6,ABA, and one coming

from wrapping corrections, P6,wrap. Importantly, from an analysis of Lüscher corrections

[83], it is known that the wrapping contribution has a much simpler structure than the

contribution from the asymptotic Bethe ansatz. This observation reduces the dimension

of the basis for the wrapping contributions significantly [2].

Contribution Prat
6 Pζ36 Pζ56 Pζ

2
3

6 Pζ76 Pζ3ζ56 Pζ
3
3

6 Pζ96

Transcendentality 11 8 6 5 4 3 2 2

Size of basis 1024 128 32 16 8 4 2 2

Table 7.2: The (non-trivial) contributions to P6, their transcendentality, and the size of the basis

of binomial sums in terms of which the general result should be expressed.

7.2.2 Data collection

To reconstruct the result, the contributions from the asymptotic Bethe ansatz and the

wrapping contribution were treated separately.
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Asymptotic Bethe ansatz

To fix the ansatz, we need 1024 values of γ6 at fixed S. The asymptotic Bethe ansatz

equations for the sl(2) sector (3.20) can be solved perturbatively very efficiently. However,

the analytical solution for S ∼ 1000 is out of reach in practice. Because the full range of

results is only needed for the reconstruction of γrat
6,ABA, one can ignore the dressing factor as

it does not contribute to the rational part. These equations can be solved numerically with

extremely high precision, which, as we explain below, is sufficient for our purposes. We

thus calculated γrat
6,ABA(S) numerically for S = 1, 2, . . . , 1024 with a 1000-digit precision.

We performed analytic calculations including the dressing factor for the first 40 values,

i.e. for S = 1, 2, . . . 40.

QSC

The solution of the QSC is more involved, and with the current methods available the

generation of six-loop results for S ∼ 1000 is far beyond reach. Using the method to solve

the Pµ-system in the sl(2) sector described in section 6.2, we calculated γ6(S) for the

first 40 even integer values of S, i.e. S = 2, 4, . . . , 80, which can be done automatically by

the Mathematica-notebook that was published with [1] without any modifications. As we

explain below, this is enough to reconstruct the wrapping contribution.

7.2.3 Reconstruction

For the contributions from the asymptotic Bethe ansatz we directly matched the ansätze

for the different contributions to the obtained results for P6,ABA, except for Pζ36,ABA. For

Prat
6,ABA, this determines the coefficients of the different binomial sums numerically. It

turns that these numbers are always extremely close to integers, so we can safely round

these numbers and thus obtain an exact result. For all other terms except Pζ36,ABA we did

the matching analytically, which for example yields

Pζ76,ABA = 3360(−2S4 − S1,3 + S2,2 + S1,2,1 + S2,1,1) . (7.29)

To reconstruct Pζ36,ABA, with a 128-dimensional basis, the LLL-algorithm was applied to

the first 39 values, which yields a result consistent with the M = 40 value.

For the wrapping corrections, all contributions except for Prat
6,wrap and Pζ36,wrap were

found by direct matching. For example, the wrapping contribution to Pζ76 is

Pζ76,wrap = 224S1

(
12S3

1 + 151S1S2 − 72S3 − 52S2,1

)
. (7.30)

The basis for the last two terms Prat
6,wrap and Pζ36,wrap can, based on the constraints from

Lüscher formulae [83], be reduced to 323 and 51 terms, respectively. Remarkably, using



154 Chapter 7. Twist-2 operators

only the first 35 data points, the LLL-algorithm2 is able to obtain a result by that is

consistent with the last five, M = 72, . . . , 80. We refer the interested reader to [2] for the

full result, which is rather bulky. The result passes all constraints from the BFKL and

double-logarithmic limits, which is a strong check of its validity.

7.3 Twist-2 at seven loops

This section summarises the strategy behind the reconstruction of the seven-loop anoma-

lous dimension of twist-2 operators carried out in [3].

7.3.1 The structure of γ7

The structure of γ7 is

γ7 = γrat
7 + γζ37 ζ3 + γζ57 ζ5 + γ

ζ2
3

7 ζ2
3 + γζ77 ζ7 + γζ3ζ57 ζ3ζ5

+γ
ζ3
3

7 ζ3
3 + γζ97 ζ9 + γζ3ζ77 ζ3ζ7 + γ

ζ2
5

7 ζ2
5 + γζ11

7 ζ11 . (7.31)

The corresponding non-trivial parts of P7 and the size of the basis of binomial sums in

the ansatz for these terms are summarised in table 7.3.

Contribution Prat
7 Pζ37 Pζ57 Pζ

2
3

7 Pζ77 Pζ3ζ57 Pζ
3
3

7 Pζ97 Pζ3ζ77 Pζ
2
5

7 Pζ11
7

Transcendentality 13 10 8 7 6 5 4 4 3 3 2

Size of basis 4096 512 128 64 32 16 8 8 4 4 2

Table 7.3: The contributions to P7 and the size of the basis of binomial sums.

7.3.2 Data collection

Contrary to the six-loop reconstruction, we chose to not make a subdivision in parts

coming from the asymptotic Bethe ansatz and wrapping corrections for all contributions,

except for the rational part.

Asymptotic Bethe ansatz

We calculated3 γrat
7,ABA numerically for the first 2700 integer values of S. Again, the dressing

factor was ignored in these computations as it does not contribute to the rational part.

2For the rational case, we made use of a C++ implementation of the fplll-4.0 version of the LLL-algorithm

[149].
3We gratefully acknowledge the North-German Supercomputing Alliance (HLRN) and Cluster of UNIX

Machines at Humboldt Universität zu Berlin (CLOU) for providing the resources to make these calculations

possible.
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S 2 4 6 8 10 20 30 40 50 60 70

full 1 2.1 3.3 4.8 7.0 27 113

rational and ζ3 0.55 1.3 1.8 2.7 3.7 11 26 51 87 132 201

rational 0.33 0.65 1.0 1.5 2.0 6.4 14 26 45 74 108

Table 7.4: Computation time normalised by the S = 2 computation time for the full result (120

seconds on a single 1.8GHz core of a standard laptop). To go beyond S ∼ 30 for the

full result, one needs to use high-performance clusters due to the memory usage. Note

that the reduced codes use significantly less memory than the full code which makes it

possible to go to much higher S before lack of memory becomes an issue.

Partial results from the QSC

To generate results for the complete γ7, we again used the Pµ-system algorithm specific

to the sl(2) sector, see section 6.2. However, this time it was necessary to optimise and

tailor the implementation to twist-2 operators to produce the needed results.

The computation time and memory usage grows with S, and this limits the results

that are within reach, even on high-performance computer clusters. To be able to generate

enough data, we exploited the fact that it is possible to work with only partial results.

Just as γ and P, we can split the functions of the Pµ-system into parts proportional to

different ζ-values, e.g.

Pa = Prational
a + ζ3P

ζ3
a + ζ5P

ζ5
a + ζ2

3P
ζ2
3
a + . . . (7.32)

All operations in the algorithm simply multiply these terms, so a term proportional to

ζ3 will never contribute to the part without ζ-value dependence, a term proportional to

ζ5 will never influence the ζ3 part, and so on. This means that it is possible to run the

algorithm with only parts of the results, and the obtained partial functions still satisfy

the analytical requirements imposed in the algorithm.

Exploiting this property, we used two modifications of the algorithm: one keeping only

the rational part of the results, and another keeping also the part proportional to ζ3.

Sample computation times for the different versions of the Mathematica-implementation

are given in Table 7.4. We computed the full γ7 for the 32 lowest even integer spins,

M = 2, 4, . . . , 64. For the next 25 values, M = 66, 68, . . . , 114, we computed γrat
7 + γζ37 ζ3.

Finally, we computed γrat
7 for another 88 values, M = 116, 118, . . . , 290.

7.3.3 Reconstruction

To reconstruct Prat
7,ABA, we had 2700 values at hand, but a 4096-dimensional basis. By

studying the lower-order results, it became clear that binomial sums of similar type, e.g.

Sb,a,a,a,a,c, Sa,b,a,a,a,c, ..., Sa,a,a,a,b,c, appear with identical coefficients. We used this as-

sumption to simplify the ansatz to less than 2700 terms, and indeed it was possible to find
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a result that fits the data and predicts the values not used in the construction. Note that

the LLL-algorithm is not applicable to this case simply because the dimension of the basis

is too large to handle in practice.

All results of transcendentality 6 or lower was reconstructed directly from the QSC

results, leaving only Pζ
2
3

7 , Pζ57 , Pζ37 and Prat
7,wrap. The 32 values were sufficient to construct

the first two using the LLL-algorithm, while 57 values were used for Pζ37 .

The final challenge is Prat
7,wrap for which a reduced ansatz of about 1400 binomial sums

can be made, while we have 145 available data points. Directly applying the LLL-algorithm

turned out not be fruitful in this case. Instead, we found a way to divide the reconstruction

even further. Using the relations discussed in appendix B.2, it is always possible to rewrite

S1,I where I is a multi-index as SI1 +S1SI2 +S2
1SI3 + . . ., where the first index in Ij , which

we will call i1, is not equal to 1. We can then write Prat
7,wrap as

Prat
7,wrap =

13∑
j=0

Sj1
∑

|I|=13−j
i1 6=1

c
(j)
I SI , (7.33)

where |I| is the sum of the indices in I. Assuming that c
(j)
I are integers, the combination

Prat
7,wrap −

∑
|I|=13−j
i1 6=1

c
(0)
I SI (7.34)

should be divisible by S1. In fact, the numerator of (7.34) should be divisible by the

numerator of S1. Denoting the numerator of (7.34) by

{Prat
7,wrap} −

∑
|I|=13−j
i1 6=1

c
(0)
I {SI} , (7.35)

where {} simply denotes multiplication by the common denominator, we can formulate

this as the equation(
{Prat

7,wrap} mod Num[S1]
)
−

∑
|I|=13−j
i1 6=1

c
(0)
I ({SI} mod Num[S1]) = d

(0)
S Num[S1] , (7.36)

where we consider the terms up their modulus with respect to the numerator of S1 to get

simpler numbers. We here introduced a new set of integers d
(0)
S . The basis is in this case

reduced to 62 binomial sums, i.e. 62 different c
(0)
I . If we consider our 145 data points,

we introduce 145 unknown integers d
(0)
S . This leaves us with 145 linear equations on 207

unknown integers, and the LLL-algorithm successfully finds a solution to this problem,

fixing {c(0)
I } in the ansatz (7.33). The next step is to determine {c(1)

I } by requiring that

Prat
7,wrap −

∑
|I|=13−j
i1 6=1

c
(0)
I SI − S1

∑
|I|=12−j
i1 6=1

c
(1)
I SI (7.37)
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is divisible by S2
1, and we successfully continue in this way until all c

(j)
I are fixed.

The full result obtained in this way again passes the very non-trivial checks from the

BFKL and double-logarithmic limits. The interested reader is referred to [3] and the

ancillary data files at arxiv.org for the, very bulky, explicit results.

Subconclusion

In this chapter we have demonstrated the power of the perturbative algorithms of chapter 6

by exploiting them to generate enough data to reconstruct the analytic structure of the six-

and seven-loop anomalous dimension of twist-2 operators. This required both optimisation

and high-performance computing, and it tested the performance of the methods.

The seven-loop result seems to be the end-station with the currently available tech-

niques. The data collection necessary for the seven-loop reconstruction already pushed the

methods to their limits and required a good amount of optimisation and tricks. In addition

to the huge basis for the eight-loop result, it also corresponds to double-wrapping, where

the intuition from Lüscher corrections used to reduce the basis is no longer available, at

least not immediately.

It poses an interesting question to study the analytic structure of other series than the

twist-operators in more detail. For example, it would be interesting to study the analytic

structure of the new series of length-3 operators described in section 7.1.1 and also that of

all length-3 operators in the sl(2) sector and not just the single series that has previously

been studied.

The solutions to the asymptotic Bethe equations for the twist-series are expressible in

terms of hypergeometric functions, not just at the leading order, see [138, 139]4. It would

be interesting to understand the connection in more detail, and whether it is possible to

solve the QSC perturbatively in terms of such functions, thus not relying on the principle

of maximal transcendentality and the other assumptions used in this chapter.

4The PhD thesis of Stefan Zieme contains even further attempts in this direction.



Chapter 8

QSC with Q-operators?

In addition to its elegance, the QSC has proven its worth as a practically useful formulation

of the AdS/CFT spectral problem. But can we get more information out of it? Let us

repeat the dilatation operator eigenproblem:

DO = ∆O . (8.1)

So far, the QSC has told us something about the eigenvalues ∆, but it is natural to wonder

if it also tells us something about the eigenstates and the dilatation operator itself. The

question is how the QSC lifts from the eigenvalue level to the operatorial level.

Where do we start? There is no known R-matrix for the AdS/CFT integrable system.

However, at the leading order the the R-matrix should be equivalent to that of the XXX

spin chain. In chapter 2, we discussed the operatorial formulation of the Q-system for this

model. Can we take this as an input and use the QSC to generate perturbative corrections

to the Q-operators, just as we did for the Q-functions?

First, we need to master the leading order. In chapter 2, we saw that in the non-

compact case the evaluation of explicit Q-operator matrix elements is not directly man-

ageable due to inner products in the infinite-dimensional physical spaces. This chapter

summarises the findings of [6], where this technicality was overcome by providing a general

prescription for the explicit evaluation of Q-operators for non-compact super spin chains.

We will then discuss the possibility of using this as an input for calculations of perturbative

corrections to Q-operators of the AdS5/CFT4 integrable system via the QSC.

8.1 Evaluating Q-operators for non-compact super spin chains

Let us recall the construction of Q-operators introduced in chapter 2. For u(N,M |K), the

Q-operators are labelled by a set J ⊂ {1, 2, . . . , N +M +K} and given by

QJ(z) =

∏
j∈J

x
(-1)pj+1z
j

 ŝtrA

(
L(1)
J · · · L

(L)
J

)
, (8.2)

158
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where the Lax operators are given by

LJ(z) = e
∑

(-1)
pj+pjpj̄ ξ̄jj̄χ̄j̄χj

[
z + 1− C

2
−
∑

(-1)pj

2

]
∑

χ̄j̄χj̄

e−
∑

(-1)
pj+pj̄+pjpj̄ ξjj̄χ̄jχj̄ .

(8.3)

The auxiliary space oscillators satisfy the algebra

ξaāξ̄bb̄ − (-1)(pa+pā)(pb+pb̄)ξ̄bb̄ξaā = δabδāb̄ , (8.4)

while Emn = χ̄mχn is the Jordan-Schwinger oscillator realisation of u(N,M |K), cf. (1.16).

It is clear from the construction that Q-operators act block-diagonally and only mixes

states with the same quantum numbers. Our goal is to evaluate Q-operators as explicit

matrices acting on these subspaces, which we refer to as magnon blocks.

Strategy

Our strategy to evaluate Q-operators can be split into four steps:

1 Understand which single-site vectors are present in the chosen magnon block.

2 Evaluate matrix elements of single-indexed Lax operators on this basis.

3 Evaluate single-indexed Q-operators by tracing over the infinite-dimensional auxil-

iary space.

4 Use QQ-relations to generate the full Q-system.

Step 1 is a simple combinatorial exercise. Step 2 turns out to be the hard part, and it

involves a significant amount of gymnastics with special functions. Step 3 is a somewhat

simpler exercise in evaluating infinite sums over a restricted set of functions. Step 4 is a

similar challenge, but one that we have already mastered: the Ψ-operation, only this time

on a slightly more general basis due to the twisting.

Magnon blocks

Let us say that we want to consider N = 4 SYM states with quantum numbers n =

[0, 1|2, 1, 1, 0|1, 0], which through C = 0 fixes the length to L = 2. Note that there is no

need to specify the grading as the symmetry is broken by the twists. There are six possible

ways to distribute the oscillators on a length-two tensor product:

(D12Z)X X (D12Z) (D12X )Z Z(D12X ) Ψ11Ψ̄42 Ψ̄42Ψ11 (8.5)

where e.g. (D12Z)X = a†1b
†
2f
†
1 f †2 |0〉⊗f †1 f †3 |0〉 and Ψ11Ψ̄42 = a†1f

†
1 |0〉⊗b†2f

†
1 f †2 f †3 |0〉. Note that

at this stage we are discussing spin chain configurations and not single-trace operators, so
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we do not impose cyclicity. We discuss cyclicity in section 8.2.1. The possible length-two

operators (8.5) contain six different single-field configurations:

Z D12Z X D12X Ψ11 Ψ̄42 (8.6)

Whereas (8.5) is the basis on which we want to evaluate the Q-operators, (8.6) is the space

on which we want to evaluate our Lax operators.

In general, it is a simple combinatorial exercise to decompose a set of oscillator numbers

into all possible states in the magnon block.

8.1.1 Matrix elements of sl(2) Lax operators

As discussed in chapter 2, we are facing the problem that the matrix elements of Lax

operators seem to involve infinite sums caused by the non-truncating exponentials. Let us

see how this can be overcome in the simplest example, sl(2). We consider the represen-

tation with C = −1, which is often referred to as spin −1
2 , though this restriction is not

important below. Again using the redefined spectral parameter z = iu− 1
2 , the four sl(2)

Lax operators are

L∅ =
[
z + 3

2

]
−1

= − 1

z + 1
2

(8.7a)

L{1} = eξ̄12a†b† [z + 1]na
eξ12ab (8.7b)

L{2} = e−ξ̄21ab [z + 1]−1−nb
e−ξ21a†b† (8.7c)

L{1,2} =
[
z + 1

2

]
0

= 1 . (8.7d)

The sl(2) Hilbert space has an orthonormal basis, 〈n|m〉 = δnm, of states |m〉 ≡ 1
m!(a

†b†)m|0〉.
Let us try to evaluate an arbitrary matrix element, 〈n|LJ |m〉, for the two non-trivial cases,

L{1} and L{2}.

The truncating Lax

Let us start with L{1}, for which the exponentials clearly truncate. In the following, we

use a number of identities for Pochhammer symbols which are summarised in appendix

B.4.1. Denoting ξ = ξ12, the inner product of L{1} with two arbitrary states is

〈n|L{1}|m〉 = 〈n|
∞∑
k1=0

(ξ̄a†b†)k1

k1!
[z + 1]na

∞∑
k2=0

(ξab)k2

k2!
|m〉

=

n∑
k1=0

m∑
k2=0

(
n

k1

)(
m

k2

)
ξ̄k1ξk2 [z + 1]m−k2δn−k1,m−k2 . (8.8)

At this stage we choose to write the auxiliary space oscillators according to

ξ̄aξb = ξ̄Θ(a−b)[N−mina,b + 1]mina,bξ
Θ(b−a)

= ξ̄Θ(a−b)(-1)mina,b [-N]mina,bξ
Θ(b−a) , (8.9)
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where Θ(a− b) ≡ maxa−b,0. We then get

〈n|L{1}|m〉 = ξ̄Θ(n−m)

minn,m∑
k=0

(-1)k
(

n

minn,m−k

)(
m

minn,m−k

)
[-N]k[z+1]minn,m−kξ

Θ(m−n) .

(8.10)

This is a nice expression for a general matrix element that is very easy to evaluate in

practice. However, let us note that we can also write it in terms of a hypergeometric

function:

〈n|L{1}|m〉 = ξ̄Θ(n−m)[z+1]minn,m

(
maxn,m
minn,m

)minn,m∑
k=0

[−N]k[−minm,n]k[−minm,n]k
[|m−n|+1]k[−z−minn,m]k

1k

k!
ξΘ(m−n)

= ξ̄Θ(n−m)[z+1]minn,m

(
maxn,m
minn,m

)
3F2

(
−N,−minm,n,−minm,n

|m−n|+1,−z−minn,m
; 1

)
ξΘ(m−n) .

(8.11)

Definitions and identities for hypergeometric functions are collected in appendix B.4.

The non-truncating Lax

We can proceed in the same way to rewrite a generic matrix element of L{2}. Denoting

ξ = ξ21, we get

〈n|L{2}|m〉 = 〈n|
∞∑
k1=0

(-ξ̄ab)k1

k1!
[z + 1]−1−nb

∞∑
k2=0

(-ξa†b†)k2

k2!
|m〉 (8.12)

= ξ̄Θ(m-n)
∞∑
k=0

(-1)n+m+k

(
maxn,m+k

n

)(
maxn,m+k

m

)
[-N]k[z+1]-1-maxn,m-k ξ

Θ(n-m)

= ξ̄Θ(m-n) (-1)minn,m+1

[z+1]maxn,m+1

(
maxn,m

minn,m

)minn,m∑
k=0

[-N]k[maxm,n+1]k[maxm,n+1]k
[|m−n|+1]k[−z+maxn,m+1]k

1k

k!
ξΘ(n-m)

= ξ̄Θ(m-n) (-1)minn,m+1

[z+1]maxn,m+1

(
maxn,m

minn,m

)
3F2

(
-N,maxm,n+1,maxm,n+1

|m−n|+1,−z+maxn,m+1
;1

)
ξΘ(n-m) .

We seem to have reached a dead end: an infinite sum that appears not to truncate.

However, after searching the textbooks on hypergeometric functions, one finds the relation

(B.48), which allows to replace the encountered hypergeometric function by one where the

sums do in fact truncate:

〈n|L{2}|m〉 = -ξ̄Θ(n-m)

(
maxn,m

minn,m

)
[z + 1]minn,m

[−z+N−minn,m]m+n+1
3F2

(
-N,−minm,n,−minm,n

|m−n|+1,−z−minn,m

;1

)
ξΘ(m-n)

= −
〈m|L{1}|n〉

[−z + N−minn,m]m+n+1
. (8.13)

We have not only succeeded in writing the matrix element of L{2} as a finite sum of

rational terms in z and N, we also see that it has a very simple relation to the matrix

element of L{1}.
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A more general approach

We reached our goal for sl(2), but we could have proceeded in a different way. Let us

consider the single-indexed gl(2) Lax operator more generally. We can in general rewrite

it as (nχ ≡ χ̄χ)

L{a} = eξ̄χ̄āχa [z + 1]nχā
e−ξχ̄aχā (8.14)

=
∞∑

m=−∞

1

|m|!
(
ξ̄χ̄āχa

)Θ(m)
[z + 1]nχā 3F2

(
−N,−nχā , nχa+1

|m|+1,−z−nχā
; 1

)
(-ξχ̄aχā)

Θ(−m) .

For a specific matrix element, only one term in the outer sum over m is nonzero. The

question is how to evaluate the hypergeometric function in general.

The only case where the hypergeometric function does not truncate immediately is

when the c-gradings are ca = 0 and cā = 1, i.e. nχa ≥ 0 and nχā ≤ −1. In this case we

can use the Euler integral transform (B.47) to rewrite the hypergeometric function:

3F2

(
-N, -nχā , nχa+1

|m|+ 1,−z−nχā
; 1

)
=

Γ(−z−nχā)

Γ(−nχā)Γ(−z)

∫ 1

0
dt t−nχā (1−t)−z−1

2F1

(
-N, nχa+1

|m|+1
; t

)
.

(8.15)

Next, we can do an Euler transform (B.46) on the 2F1:

2F1

(
−N, nχa + 1

|m|+ 1
; t

)
= (1− t)|m|+N−nχa

2F1

(
|m|+ 1−N, |m| − nχa

|m|+ 1
; t

)
. (8.16)

Due to the structure (8.14), we will always have |m| − nχa ≤ 0, so the hypergeometric

function on the right hand side is a truncating sum:

2F1

(
|m|+ 1−N, |m| − nχa

|m|+ 1
; t

)
=

nχa−|m|∑
k=0

[|m|+ 1 + N]k[|m| − nχa ]k
[|m|+ 1]k

tk

k!
. (8.17)

The integration over t is now more transparent, and by realising that it is simply a Beta-

function, cf. (B.44), we can see that it yields∫ 1

0
dt tk−nχā−1(1− t)−z−1+|m|+N−nχa =

Γ(k − nχā)Γ(−z + |m|+ N− nχa)

Γ(−z + k + |m|+ N− nχa − nχā)
. (8.18)

Putting all this together, we have achieved to rewrite (8.14) in terms of a finite sum over

Pochhammer symbols. This method might seem cumbersome, but it turns out to be

applicable more generally than the more direct strategy given for sl(2) above.

8.1.2 Matrix elements of single-indexed Lax operators for u(N,M |K)

When we increase the rank of the algebra, we may encounter more than one non-truncating

sum in the Lax operators. Furthermore, the exponential factors in the Lax operators (8.3)
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can contain a sum of oscillator combinations where the different terms can combine to one

overall term in several ways. For example, a two-indexed u(2, 2) Lax operator would be

L{1,3} = e−ξ12b2b
†
1+ξ14a

†
2b
†
1−ξ32b2a1+ξ34a

†
2a1 · · · , (8.19)

and we see that the power expansion of the exponential will produce e.g. the term b†1b2a1a
†
2

in multiple ways. This extra complication is however absent in the single-indexed Lax

operators, and we will focus on these. Note that the Lax operators with all but one index

have the same property.

To avoid overloading the reader with technical details, we will leave out the explicit

treatment of the general u(N,M |K) case and refer the interested reader to [6], where it

is discussed in detail. Let us simply sketch the strategy. One can rewrite a general Lax

operator similarly to (8.14), but this time there will be more than one summation in the

middle part. One of these sums can be expressed as a hypergeometric function, 3F2. The

arguments of this function will however contain the other summation variables, and though

we could apply the formula (B.48), it would not be very beneficial in this case. Instead,

an integral transform as in (8.15) can be used to disentangle the summation variables

and express the middle part as a generalised version of (8.15) where the integral is over

a product of 2F1’s. This integration can be carried out along the same lines as above to

yield a finite sum expression for the single-indexed Lax operators that is explicitly rational

in both the spectral parameter and the auxiliary space number operators.

In conclusion, we have a recipe to compute matrix elements of the single-indexed Lax

operators for arbitrary u(N,M |K).

8.1.3 Tracing over the auxiliary space

So far, so good: we have managed to write the matrix elements of Lax operators as rational

functions in z and the auxiliary space number operators Njk. To get the Q-operators we

need to evaluate supertraces over the auxiliary space,

ŝtrA (f) =

strA

(∏N+M+K
j,k=1,j 6=k

(
xj
xk

)Njk

f

)
strA

(∏N+M+K
j,k=1,j 6=k

(
xj
xk

)Njk
) . (8.20)

Recall the discussion of the structure of the representation in the auxiliary space in section

2.3.2. For u(N,M |K) the space is a tensor product of (N+M+K)(N+M+K−1) individual

oscillator spaces |0〉ab with a 6= b. The trace over each of these spaces corresponds to an

infinite sum
∑∞

Nab=0. We have to evaluate (N+M+K)(N+M+K−1) sums, though

many of them are trivial since the corresponding oscillator is absent in the Lax operator

in question.
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We start from a rational expression in the number operators, i.e. in principle two types

of terms:

Nk ,
1

(N + r)k
. (8.21)

We already discussed how to trace over a monomial expression in section 2.3.3, and

the supertrace is similar. The supertrace over negative powers will introduce a new type

of function, the Lerch transcendents, which are related to a twisted version of η-functions,

Φx
k(r) ≡

∞∑
j=0

xj

(r + j)k
= i

k ηxk(ir) . (8.22)

Subsequent sums will then, in addition to (8.21), be over terms of the kind

NkΦx
l (N + r) . (8.23)

As we explain in appendix C.2, where we summarise all explicit formulas needed to evaluate

normalised supertraces (8.20), the result of such a sum is simply a linear combination of

terms of the three types (8.21) and (8.23). This is in perfect agreement with what we

have seen in subsequent chapters: the Q-functions are all expressed in terms of rational

functions and η-functions in the spectral parameter.

8.1.4 The full Q-system from the lowest level

Having the single-indexed Q-operators at hand, we have reached the final step in our

strategy: using QQ-relations to get the rest.

To get Q{a,b} with pa 6= pb we need to solve the first order difference equation

Q{a}(z)Q{b}(z) ∝ Q{a,b}(z+ 1
2)Q∅(z− 1

2)−Q{a,b}(z− 1
2)Q∅(z+ 1

2) . (8.24)

In our current conventions (8.3), the structure of Q∅ is

Q∅ ∝ I
|C|∏
j=1

(
z − |C|

2
+ j

)sign(C)L

, (8.25)

but we can always use the symmetries of the Q-system, in particular the rescalings (4.21),

to set Q∅ = I. Then, as discussed in section 4.2.1, Q{a,b} with pa 6= pb takes the simple

form

Q{a,b}(z) ∝ Ψ
(
Q{a}(z + 1

2)Q{b}(z + 1
2)
)
, (8.26)

where Ψ (f(z)− f(z + 1)) = f(z). The action of Ψ on the twisted basis of functions is

discussed in appendix C.1.2, and it is a direct generalisation of the untwisted case.

We can generate the remaining Q-system via determinant formulas similar to those

those described in section 4.2.1. In fact, we can use exactly the same formulas (4.28) if we

are careful with the normalisation of the Q-operators. Generating the expected value of

Q∅̄ in this way is a very non-trivial check that a given set of single-indexed Q-operators

are indeed solutions of the Q-system.
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8.2 Q-operators in the Quantum Spectral Curve

The conclusion of the above section is that we are able to explicitly evaluate Q-operators for

the u(2, 2|4) spin chain, which should be related to the g → 0 limit of the QSC. As an exam-

ple, the explicit 1-indexed Q-operators for the quantum numbers n = [0, 0|L,L, 0, 0|0, 0],

corresponding to the BMN vacuum Tr(ZL), are given in [6]. The next step is to try to

apply the methods of chapter 6 to generate perturbative corrections to the obtained Q-

operators. The attempt to do this is work in progress, and this section simply lists a few

comments on the potential procedure. Below, we return to the QSC-language, labelling

the Q-operators/functions by QA|J/QA|J and using the spectral parameter u = −iz − i

2 .

8.2.1 The N = 4 SYM Hilbert space

The Q-operator construction described above is for spin-chain states. It does not equate

states that are related by cyclic permutations, i.e. ZX is a different state than XZ. In

N = 4 SYM, also in the twisted case [150], these states are identical, as they appear within

a trace, Tr[XZ] = Tr[ZX ]. Consequently, the spin chain Hilbert space is larger than that

of N = 4 SYM. The question is whether it is natural to work with Q-operators for the

full spin chain magnon blocks, or if one should project out the subspace corresponding to

cyclic states.

Physical operators in the twisted QSC

Recall that in the QSC all eigenvalues must satisfy the constraint

lim
u→0

µ
(1)
ab (u+ i)

µ
(1)
ab (u)

= 1 . (8.27)

The physical solutions are singled out by requiring that µ
(1)
ab ∝ Q

(1)−
ab|12 such that Q

(1)
ab|12

satisfy the zero-momentum condition

lim
u→0

Q
(1)
ab|12(u+ i

2)

Q
(1)
ab|12(u− i

2)
= 1 . (8.28)

However, for the fully twisted QSC [42], all states generically have nonzero momentum.

The fully twisted case includes eight twists that are usually denoted x1, x2, x3, x4, y1, y2,

y3, y4 subject to the constraints
∏4
a=1 xa =

∏4
i=1 yi = 1, so six independent twists in total.

The asymptotics of the single-indexed Q-functions Pa ≡ Qa|∅ and Qi ≡ Q∅|i are

Pa ' Aa x
iu
a u−λ̌a Pa ' Aa x−iu

a uλ̌a Qj ' Bj y
−iu
j u−ν̌j Qj ' Bj yiuj uν̌j , (8.29)

with λ̌a = nfa + Λ and ν̌j = {−L− nbα̇ , naα} − Λ.
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The simplest example of a solution is the BMN vacuum, Tr(ZL), for which the central

Q-operator (or Q-function, it is a 1×1 matrix) is simply a constant times an exponential

factor: Q12|12 ∝
(
x1x2
y1y2

)iu
. It is clear that it only satisfies (8.28) in the special case x1x2

y1y2
= 1.

More generally, the eigenvalues of Q(1)
ab|12 behave as

Q
(1)
ab|12

(
− i

2

)
= e

2iπm
L

(
x
nf1
1 x

nf2
2 x

nf3
3 x

nf4
4 y

na1
3 y

na2
4

y
L+nb1
1 y

L+nb2
2

) 1
L

Q
(1)
ab|12

(
i

2

)
. (8.30)

The root of unity e
2iπm
L wherem ∈ {1, 2, ..., L} is independent of the twist, and corresponds

to the shift eigenvalue of the state in the untwisted case. Again, (8.28) can only be satisfied

at special values of the twists.

The above discussion shows that it only makes sense to talk about physical solutions

to the QSC if the twists have very particular properties. For generic twists, none of the

eigenstates have nonzero total momentum, and they thus have no interpretation as cyclic

trace operators. There are two ways to proceed. We can keep the full spin chain Hilbert

space and try to apply the QSC. One immediate consequence is that the asymptotics of

the quantities ω, and thus µ, have to be modified to include exponential terms in order to

satisfy (8.27). As discussed in chapter 4, it is not completely understood how to constrain

such solutions. The alternative is to put extra constraints on the twists that ensure the

existence of physical states. We now discuss this possibility.

Special twists

To satisfy (8.28), the product of the two factors on the right hand side of (8.30) must

be 1. If we furthermore want to preserve the same Hilbert space of operators as in the

untwisted theory, they should separately be 1. Then the twists must have the additional

property

x
nf1
1 x

nf2
2 x

nf3
3 x

nf4
4 y

na1
3 y

na2
4

y
L+nb1
1 y

nb2
2

= 1 . (8.31)

The well-studied γ-deformation of N = 4 SYM [150] is exactly of this type. It corre-

sponds to yi = 1 and

x1 = Γ
nf4
−nf3

1 Γ
nf2
−nf4

2 Γ
nf2
−nf3

3 (8.32a)

x2 = Γ
nf3
−nf4

1 Γ
nf3
−nf1

2 Γ
nf4
−nf1

3 (8.32b)

x3 = Γ
nf1
−nf2

1 Γ
nf4
−nf2

2 Γ
nf1
−nf4

3 (8.32c)

x4 = Γ
nf2
−nf1

1 Γ
nf1
−nf3

2 Γ
nf3
−nf2

3 , (8.32d)

where Γi are phases. The twists (8.32) have the property x
nf1
1 x

nf2
2 x

nf3
3 x

nf4
4 = 1, which

ensures that (8.31) is always fulfilled.
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The regularity of Q-operators demands that in general all eight twists must differ. To

construct such a twist, one idea would be to twist the su(2, 2) part of the symmetry in

analogy to the γ-twist,

y1 = Ων3−ν4
1 Ων2−ν4

2 Ων2−ν3
3 (8.33a)

y2 = Ων4−ν3
1 Ων3−ν1

2 Ων4−ν1
3 (8.33b)

y3 = Ων2−ν1
1 Ων4−ν2

2 Ων1−ν4
3 (8.33c)

y4 = Ων1−ν2
1 Ων1−ν3

2 Ων3−ν2
3 , (8.33d)

with the property

yν1
1 yν2

2 yν3
3 yν4

4 =
y
na1+ γ

2
3 y

na2+ γ
2

4

y
L+nb1

+ γ
2

1 y
L+nb2

+ γ
2

2

= 1 . (8.34)

Note that the dependence on the weights νi introduces a coupling constant dependence in

the twists yi through the anomalous dimension γ.

In some sectors, including sl(2), the “double γ-twist” obtained by combining (8.32) and

(8.33) seems to work fine: all twists are different and (8.31) is guaranteed. However, for

some quantum numbers in other sectors, e.g. n = [0, 0|1, 1, 1, 1|0, 0], coinciding twists do

occur, so in the generic case a more general twist satisfying (8.31) should be constructed.

Projecting out the cyclic states

The reduced Hilbert space that we wish to consider is spanned by the states with eigenvalue

1 of the shift operator. Back in section 2.1.1, more precisely in (2.8), we saw how the shift

operator acted on the three-dimensional space of su(2) states with L = 3 and M = 1. Only

one of these states, ZZX +ZXZ +XZZ, has eigenvalue 1, so in this case we would keep

only this state and throw away the other two. This reduces the corresponding Q-operator

from a 3×3 to a 1×1 matrix.

It is plausible that the space spanned by the cyclic states is invariant under the action of

the higher-loop Q-operators as well. Indeed, a generalisation of the shift operator belongs

to the infinite family of commuting operators that can be generated from the Q-operators.

The point made in this section is that it might be favourable to consider special twists

which ensure that a subspace of the eigenstates of the Q-operators are cyclicly invariant,

and thus have an interpretation as single-trace operators. The strategy is then to to block-

diagonalise the leading Q-operator and pick out the zero-momentum block. This reduced

Q-operator should have a preferred role in the Quantum Spectral Curve with simpler

analytic properties. In particular, the quantities ω should have constant asymptotics

which makes them easier to control in practice.
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8.2.2 Perturbation theory with twists and matrices

There is no immediate reason why the general perturbative strategies to solve the QSC

presented in sections 6.3 and 6.4 should not be applicable to Q-operators as well. The

twists of course pose a new challenge, but this is a technical challenge rather than a

conceptual one. In particular, the Ψ-operation is easily generalised to the twisted algebra

of functions, see appendix C.1.2.

Ansatz for P

The key input that makes the perturbative algorithms possible is the control of the all-loop

structure of Qa|∅ ≡ Pa and Qa|∅ ≡ Pa. The natural generalisation of the ansatz for P

derived in section 4.3.3 to the fully twisted case is

Pa = x+iu
a (gx)−L−Λ

 ∞∑
k=1

ca,k

(g
x

)k
+

L−nfa∑
k=0

da,k (gx)k

 , (8.35a)

Pa = x−iua (gx)Λ

( ∞∑
k=1

ca,k
(g
x

)k
+

nfa∑
k=0

da,k (gx)k
)
, (8.35b)

with

c =
∞∑
j=0

c(j)g2j , d =
∞∑
j=0

d(j)g2j , (8.36)

being matrix-valued constants. Again, by expressing (8.35) in u and expanding in g, we

get a finite ansatz at any given loop order.

Applying the machinery

The next step is to generate the remaining Q-system by solving a set of coupled first-order

difference equations. Section 6.3 and 6.4 explained how to do this for either Qa|i or µab,

and the same formulas apply directly here. Once this is done, an expression for P̃ can be

obtained via the relations of the QSC. The crucial requirement is then that the expansions

of the obtained values for P̃ at u = 0 are consistent with the ansatz (8.35).

The application of this strategy is left for future work. The only conclusion of the

preliminary attempts is that the presence of six twist variables, some of them coupling-

dependent, quickly makes the expressions extremely bulky.

Subconclusion

In this final chapter, we initiated the quest to lift the Quantum Spectral Curve to the op-

eratorial level. We managed to get started: we have developed the technology to explicitly

generate the full 1-loop operatorial Q-system.
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The next step is to make the perturbative calculations work in practice. As this thesis

is being written, this is an ongoing endeavour, and a verdict on the success of the approach

would be premature. The technical complications of having six twist variables probably

means that the scope of the method is limited. Certainly, it seems unlikely that 10-loop

corrections to Q-operators can be generated in this way, but the generation of 2- and

3-loop corrections to Q-operators for a variety of simple magnon blocks should be realistic

first goals.

If the attempts turn out to be fruitful, it could shed light on the still quite mysterious

nature of AdS/CFT integrability. In particular, it would give hints on the structure of Q-

operators and transfer matrices at higher loops. It would also provide information about

perturbative corrections to the dilatation operator and its eigenstates.



Conclusion

This thesis has been devoted to the spectral problem in planar N = 4 super Yang-Mills

theory, and thus in the planar limit of the AdS5/CFT4 correspondence. The ambition

was to exploit a recently discovered framework, the Quantum Spectral Curve, to generate

explicit perturbative data of previously unseen precision and generality.

We started by classifying the objects in question: symmetry multiplets of single-trace

operators. We saw how to characterise these multiplets by Young diagrams, and how to

count them using characters.

The anomalous part of the dilatation operator appears to act on the basis of single-

trace operators like the Hamiltonian of an integrable model. To handle such objects,

we went on a journey into the mathematical structure underlying integrable models: the

Bethe ansätze. This framework encodes the information about the model in a Q-system,

to which each multiplet corresponds to a solution with particular boundary conditions.

The precise integrable model underlying the AdS/CFT spectrum is not known, but

assuming that integrability is an exact property, it is possible to use the large amount

of symmetry of the theory to capture the spectrum in a relatively simple mathematical

problem via the asymptotic and thermodynamic Bethe ansatz. This information can be

further condensed into the Quantum Spectral Curve.

The main result of this thesis are the algorithms to solve the QSC perturbatively

outlined in chapter 5 and 6. The algorithms demonstrate that the QSC is an extremely

powerful perturbative tool, both in depth and broadness. 10-loop results were reached,

and going further is in principle only a question of computer power. A by-product of this

effort is a new general way to solve Bethe equations for rational spin chains that is both

faster and cleaner than the traditional approaches. The generality of the algorithms allows

to explicitly study the full spectrum, in practice at least the first thousands of multiplets

in the infinite spectrum. The end-product of the main direction pursued in this thesis is

a database of results that will appear with the publication [7].

The obtained results open the possibility of spectral data mining. One well-known

pattern in the data is the maximal transcendentality structure of the analytically continued

anomalous dimension for twist-2 operators, and we managed to add two new loop orders

to this result. A quick inspection of the spectral data gives clear hints that there are many

170
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other similar structures waiting to be analysed.

The perturbative spectrum has so far been a central object in the study of AdS/CFT

integrability. This thesis stands on the shoulders of many great achievements to capture

the spectrum, and it is an attempt to conclude this long-standing effort by putting the

discoveries to work and demonstrating their practical power in full generality. With an

automatised solution algorithm that applies to all corners of the spectrum, we can finally

call the problem solved with more confidence.

The potential of the QSC is not only perturbative. Its non-perturbative abilities are

perhaps even more remarkable. It would be interesting to implement the numerical algo-

rithm [114] in complete generality and study the behaviour at quantum numbers where

multiple solutions to the equations exist. A systematic algorithm to solve the QSC ana-

lytically in the strong coupling limit is also still missing. Even perturbatively, it is still

not completely clear how to treat unphysical solutions to the equations. It is known that

exponentially growing asymptotic behaviour should be allowed, see e.g. [111], but a sys-

tematic understanding of how to completely constrain the solutions is still lacking. Such

an understanding would for example allow a study of the double-logarithmic limit. Hope-

fully, the explicit solutions in different regimes can provide the intuition needed to obtain

exact analytic results valid at any coupling, which would provide the ultimate solution to

the spectral problem.

The impressive control of the spectrum of anomalous dimensions is not the final des-

tination of AdS/CFT integrability. It is only the beginning. We need to fully understand

how to apply integrability to other quantities than the spectrum, such as structure con-

stants. We also need to understand the deeper nature of AdS/CFT integrability. We have

to prove that integrability is in fact an exact property of planar AdS/CFT, and we also

need to understand more deeply what the integrable model is itself.

Using the QSC to study perturbative corrections to Q-operators is one direction that

could give us new hints about the integrable model and how it fits into the algebraic Bethe

ansatz. This thesis outlined the initiation of this effort by providing an explicit strategy

to generate the leading Q-operators. It remains to be seen how much the QSC is willing

to reveal about higher orders, but surely there are lessons to be learned by attempting to

use it on the operatorial level.

For all these efforts to be worthwhile, we should of course attempt to generalise the

methods to more realistic theories. We should understand which properties are special to

N = 4 SYM and which are simpler versions of features common to more general theories.

If we get a better understanding of the nature of AdS/CFT integrability, we might be able

to answer these questions more precisely.

Many ambitious attempts are already being made to attack the open problems outlined

here. The study of three- [151] and four-point functions [152] is currently undergoing a
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revolution similar to the developments for two-point functions. An interesting attempt to

investigate what happens to the integrability structures in more general settings is being

made in the study of conformal defects in the AdS/CFT set-up [153]. Here, one-point

functions seem to display higher-loop integrability [154]. The study of a simple integrable

quantum field theory that appears in a double-scaling limit of γ-deformed N = 4 SYM

[155] could be the key to understanding how integrability can appear in four-dimensional

theories. Finally, the study of other integrable systems, in particular the AdS3/CFT2

correspondence where the integrability program is steadily progressing [156], can give us

a more general understanding of the phenomenon of AdS/CFT integrability.

One thing is for sure: AdS/CFT integrability has given rise to a hope for more powerful

tools to analyse quantum field theories. The explicit tools on which this thesis is based

hopefully encourage the search for similar structures in the physics of the real world.

Even if such a connection is never made, the author has thoroughly enjoyed exploring the

fascinating Riemann sheets of the Quantum Spectral Curve.
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Cavaglià, Frank Coronado, Burkhard Eden, Sergey Frolov, Kolya Gromov, Volodya Kaza-

kov, Rob Klabbers, Fedor Levkovich-Maslyuk, Pedro Liendo, Tristan McLoughlin, Alessan-

dro Sfondrini, Christoph Sieg, Grisha Sizov, Ryu Suzuki, Stijn van Tongeren, Pedro Vieira

and Stefan Zieme for enlightening discussions that helped shape my scientific understand-

ing.

I thank my friends, not least my housemates in Bridgewater Quay, for putting up with

me over the years. I am grateful and indebted to Carmen, Argia and Daniele for their

continuous support, especially during the last year where I was quite poor company.

Finally, I wish to thank my family for their unlimited support throughout all stages of

this process. Had the quality of this thesis been high enough, it would have been dedicated

to you.

1People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme

FP7/2007-2013/ under REA Grant Agreement No 317089 (GATIS).



Appendix A

Miscellanea

In this appendix we collect various technical details that supplement the main text.

A.1 Quantum number dictionary

We here provide a dictionary between the oscillator numbers n and often encountered

parametrisations of the quantum numbers in the literature.

S5 and AdS5 spins: J , S and ∆0

A typical notation for the quantum numbers, often used in the QSC context, are the

SO(6)×SO(2, 4) charges {J1, J2, J3|∆, S1, S2}. These are related to the oscillator numbers

through

J1 =
nf1 + nf2 − nf3 − nf4

2

J2 =
nf1 − nf2 + nf3 − nf4

2

J3 =
−nf1 + nf2 + nf3 − nf4

2

∆0 = L+
nb + na

2
=
nf
2

+ na

S1 =
−nb1 + nb2 + na1 − na2

2

S2 =
−nb1 + nb2 − na1 + na2

2
. (A.1)

At finite coupling these six numbers are enough to specify the representation, but they

do not give us a complete description of the multiplet at g = 0 (unless both shortenings

(1.39) happen).
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Dynkin labels

Another convention encountered in the literature, e.g. [34], is to use the so(4) Dynkin

labels [s1, s2] and so(6) labels [q1, p, q2], which are related to the oscillator numbers by

s1 = nb2 − nb1 , s2 = na1 − na2 ; q1 = nf1 − nf2 , p = nf2 − nf3 , q2 = nf3 − nf4 .

(A.2)

Additionally ∆0, L, and the hypercharge

B =
nb − na

2
(A.3)

are usually specified. The multiplet is completely described by the data [∆0; s1, s2; q1, p, q2]BL .

Sometimes, a parity label is also given to a state related to its eigenvalue under the par-

ity transformation Π|Φ1Φ2 · · ·ΦN 〉 = (−1)N |ΦNΦN−1 · · ·Φ1〉. This does not influence the

weights, but it is related to parity properties of the Q-system related to the multiplet.

A.2 Characters in practice

In this appendix, we demonstrate the usage of characters to decompose tensor product

representations into irreps, and how to account for equivalence relations in the vector

space. We start by a simple su(2) example before treating the lowest spectrum of N = 4

SYM. Finally we discuss how to practically treat cases of high rank.

A.2.1 Example: su(2), length 4

In N = 4 SYM, states containing only two types of scalars, e.g. Tr[ZXZZX ...] form a

closed subsector, i.e. the (all-loop) dilatation operator will have eigenstates that are linear

combinations of only such states. The states form multiplets (irreps) under the su(2)

symmetry (in N = 4 SYM an R-symmetry), which simply acts by flipping Z ↔ X .

For L = 4 we get two multiplets of trace-operators (a singlet and a five-dimensional

one):

Tr[ZZZZ] Tr[ZZZX ] 2 Tr[ZZXX ]+Tr[ZXZX ] Tr[ZXXX ] Tr[XXXX ]

Tr[ZZXX ]−Tr[ZXZX ]


 
 
 


(A.4)

Denote the number of Z’s and X ’s by L−M and M . Each multiplet can be characterised

by its highest weight state, which we can define as the one with the maximal numbers of

Z’s within the multiplet, i.e. M = 0 and M = 2 for the L = 4 multiplets above. These

multiplets thus correspond to the Young diagrams
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The character of an su(2) representation is the polynomial

χ{L−M,M} =

∣∣∣∣∣xL−M+1
1 xM1

xL−M+1
2 xM2

∣∣∣∣∣∣∣∣∣∣x1 1

x2 1

∣∣∣∣∣
, (A.5)

so for our examples we get

χ{4,0} = x4
1 + x3

1x2 + x2
1x

2
2 + x1x

3
2 + x4

2 (A.6)

χ{2,2} = x2
1x

2
2 . (A.7)

The su(2) irreps are sub-representations of the tensor product of L fundamental rep-

resentations. The fundamental representation is the single-field vector space

Z
X ↔ ↔ χ{1,0} = x1 + x2 .

The character of the tensor product representation is simply χL{1,0} and can be decomposed

into irreps by looking at the character, e.g. for L = 4 we have

χ4
{1,0} = (x1 + x2)4 = x4

1 + 4x3
1x2 + 6x2

1x
2
2 + 4x1x

3
2 + x4

2 = χ{4,0} + 3χ{3,1} + 2χ{2,2} ,(A.8)

which on the level of Young diagrams is the statement

⊗4
= ⊕ 3 ⊕ 2 .

In (A.4) we listed the multiplets of trace-operators with L = 4. There were only two

multiplets (a five- and a one-dimensional irrep), which does not fit with (A.8). Using

Polya theory, we instead get

Z4 =
φ(1)

4
χ{1,0}(x1, x2)4 +

φ(2)

4
χ{1,0}(x

2
1, x

2
2)2 +

φ(4)

4
χ{1,0}(x

4
1, x

4
2)

=
1

4
(x1 + x2)4 +

1

4
(x2

1 + x2
2)2 +

1

2
(x4

1 + x4
2)

= x4
1 + x3

1x2 + 2x2
1x

2
2 + x1x

3
2 + x4

2

= χ{4,0} + χ{2,2} . (A.9)

A.2.2 Example: all N = 4 SYM multiplets with ∆yp0 ≤ 4

To describe the spectrum up to ∆yp0 ≤ 4, we should consider u(8) representations with

central charge C = 4. The single-site representation has a character of the form

χ1(x1, ..., x8) = x1x2x3x4 + x1x2x3x5 + ... (A.10)
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and the Vandermonde determinant looks like

∆V = x3
1x

2
2x3 − x2

1x
3
2x3 ± ... (A.11)

The truncated sum of states is

Z =
φ(1)

2
χ1(xi)

2 +
φ(2)

2
χ1(x2

i ) +
φ(1)

3
χ1(xi)

3 +
φ(3)

3
χ1(x3

i ) (A.12)

+
φ(1)

4
χ1(xi)

4 +
φ(2)

4
χ1(x2

i )
2 +

φ(4)

4
χ1(x4

i ) .

It is straightforward, though already computationally demanding, to expand the product

∆V Z. The dominant terms in the expression corresponding to ∆0 ≤ 4 are

∆V Z|dominant,∆0≤4

x7
1x

6
2x

5
3x

4
4x

3
5x

2
6x7

= x2
1x

2
2x

2
3x

2
4 + x2

1x
2
2x

1
3x

1
4x

1
5x

1
6

+x3
1x

3
2x

3
3x

3
4 + x3

1x
3
2x

2
3x

2
4x

2
5 + x3

1x
3
2x

3
3x

1
4x

1
5x

1
6 + x3

1x
3
2x

2
3x

2
4x

1
5x

1
6

+x4
1x

4
2x

4
3x

4
4 + x4

1x
4
2x

4
3x

2
4x

2
5 + x4

1x
4
2x

3
3x

3
4x

2
5 + x4

1x
4
2x

4
3x

2
4x

1
5x

1
6

+x4
1x

4
2x

3
3x

2
4x

2
5x

1
6 + 2x3

1x
2
2x

2
3x

2
4x

1
5x

1
6x

1
7 + 2x4

1x
4
2x

2
3x

2
4x

2
5x

2
6

+2x4
1x

4
2x

3
3x

3
4x

1
5x

1
6 + x1

1x
1
2x

1
3x

1
4x

1
5x

1
6x

1
7x

1
8

+x2
1x

2
2x

2
3x

2
4x

2
5x

2
6 + x3

1x
3
2x

1
3x

1
4x

1
5x

1
6x

1
7x

1
8 . (A.13)

The dominant terms corresponding to protected chiral primaries are marked in grey, while

the short representations that make up the Konishi multiplet are marked in blue, and those

that make up the nyp = [0, 0|2, 2, 1, 1|0, 0] multiplet (containing the first twist-3 operator)

is marked in purple (one term with ∆0 = 5 is missing due to the truncation).

Combining short multiplets into long ones, shifting to oscillator number notation nyp,

and leaving out chiral primaries, the spectrum of unprotected multiplets with ∆yp0 ≤ 4 is

[0, 0|1, 1, 1, 1|0, 0] + [0, 0|2, 2, 1, 1|0, 0] + [0, 0|1, 1, 1, 1|2, 0]

+[0, 0|3, 2, 2, 1|0, 0] + [0, 2|1, 1, 1, 1|2, 0] + [0, 2|2, 2, 2, 2|0, 0]

+2 · [0, 0|2, 2, 2, 2|0, 0] + 2 · [0, 0|3, 3, 1, 1|0, 0] + 2 · [0, 1|2, 2, 1, 1|1, 0] . (A.14)

Note that for higher ∆max the su(2∆max) sum of states (1.30) will contain representations

that lie outside the spectrum of psu(2, 2|4), i.e. where the Young diagram does not fit

inside the psu(2, 2|4) χ-hook. These can simply be dropped from the sum.

A.2.3 Efficient computation of the sum of states for high rank

In this appendix we explain how the relevant terms in the sum of states

∆V Z =
∑
λ

cλWλ (A.15)

can be generated for high rank of the considered group.
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Step 1 List all possible dominant terms. These correspond to all strictly decreasing parti-

tions of ∆max · L+ ∆max(2∆max − 1) into 2∆max numbers, with the restriction that

the first number does not exceed L + 2∆max − 1 (for ∆max > 2 the last ∆max − 2

numbers satisfy a stronger upper bound).

Example: For ∆max = 2 and L = 2, the possible dominant terms (all allowed length-4

partitions of 10) are x4
1 x

3
2 x

2
3 x4, x5

1 x
4
2 x3, and x5

1 x
3
2 x

2
3.

Step 2 For each dominant term, list all possible contributions from ∆V and the correspond-

ing contribution from Z. No row in the contribution from Z can exceed L.

Example: The term x5
1 x

3
2 x

2
3 can arise from x3

1 x
2
2 x3 ·x2

1 x2 x3 and from x3
1 x2 x

2
3 ·x2

1 x
2
2.

Step 3 The terms from ∆V come with a factor of ±1. Each term in Z come with a coefficient

that can be found by counting the number of ways that the term can be constructed

from building blocks of the kind xdi1x
d
i2
· · ·xdi∆max

.

Example: x2
1x2x3 must stem from χ1(x1)2 and can come from x1x2 ·x1x3 and x1x3 ·

x1x2. Thus its coefficient in Z is 2. x2
1x

2
2 can stem from χ1(x1)2, and can only arise

as x1x2 · x1x2, but it can also stem from χ1(x2)1, again with coefficient 1. So its

coefficient in Z is also 2.

Step 4 For each dominant term add up all contributions to ∆V Z.

Example: The term x5
1 x

3
2 x

2
3 comes with a coefficient 2 · (−1) + 2 · 1 = 0 in ∆V Z.

An implementation of this algorithm can be found in the ancillary Mathematica-notebook

connected to [5].
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A.3 Multiplet content of N = 4 SYM

We here list all multiplets with ∆yp0 ≤ 8. Multiplets for which the corresponding Q-system

is not found by our Mathematica-implementation of the solution algorithm described in

section 5.3.2 within 15 minutes on a standard laptop are marked in grey.

∆yp
0 Multiplets

2 1 · [0, 0|1, 1, 1, 1|0, 0]

3 1 · [0, 0|2, 2, 1, 1|0, 0]

4
1 · [0, 0|1, 1, 1, 1|2, 0] 1 · [0, 0|3, 2, 2, 1|0, 0] 1 · [0, 2|1, 1, 1, 1|2, 0] 1 · [0, 2|2, 2, 2, 2|0, 0]

2 · [0, 0|2, 2, 2, 2|0, 0] 2 · [0, 0|3, 3, 1, 1|0, 0] 2 · [0, 1|2, 2, 1, 1|1, 0]

5

1 · [0, 0|3, 1, 1, 1|2, 0] 1 · [0, 2|2, 2, 1, 1|2, 0] 1 · [0, 2|3, 3, 3, 1|0, 0] 2 · [0, 0|2, 2, 1, 1|2, 0]

2 · [0, 0|3, 3, 3, 1|0, 0] 2 · [0, 0|4, 2, 2, 2|0, 0] 2 · [0, 0|4, 3, 2, 1|0, 0] 2 · [0, 0|4, 4, 1, 1|0, 0]

2 · [0, 1|2, 2, 2, 2|1, 0] 2 · [0, 1|3, 3, 1, 1|1, 0] 2 · [0, 2|3, 3, 2, 2|0, 0] 4 · [0, 0|3, 3, 2, 2|0, 0]

4 · [0, 1|3, 2, 2, 1|1, 0]

11
2

2 · [0, 0|4, 3, 1, 1|1, 0] 2 · [0, 1|3, 2, 1, 1|2, 0] 2 · [0, 1|4, 4, 2, 1|0, 0] 2 · [0, 2|2, 1, 1, 1|3, 0]

2 · [0, 2|3, 3, 2, 1|1, 0] 2 · [0, 3|2, 2, 2, 1|2, 0] 4 · [0, 0|3, 2, 2, 2|1, 0] 4 · [0, 0|3, 3, 2, 1|1, 0]

4 · [0, 1|2, 2, 2, 1|2, 0] 4 · [0, 1|3, 3, 3, 2|0, 0] 4 · [0, 1|4, 3, 2, 2|0, 0] 4 · [0, 2|3, 2, 2, 2|1, 0]

6

1 · [0, 0|1, 1, 1, 1|4, 0] 1 · [0, 0|4, 2, 1, 1|2, 0] 1 · [0, 2|1, 1, 1, 1|4, 0] 1 · [0, 2|4, 4, 3, 1|0, 0]

1 · [0, 4|1, 1, 1, 1|4, 0] 1 · [0, 4|2, 2, 2, 2|1, 1] 1 · [0, 4|2, 2, 2, 2|2, 0] 1 · [0, 4|3, 3, 3, 3|0, 0]

1 · [1, 1|1, 1, 1, 1|4, 0] 2 · [0, 0|2, 2, 2, 2|1, 1] 2 · [0, 2|2, 2, 2, 2|1, 1] 2 · [0, 2|3, 2, 2, 1|2, 0]

2 · [0, 3|2, 2, 1, 1|3, 0] 2 · [1, 1|2, 2, 2, 2|1, 1] 2 · [1, 1|2, 2, 2, 2|2, 0] 2 · [1, 1|3, 3, 3, 3|0, 0]

3 · [0, 0|2, 2, 2, 2|2, 0] 3 · [0, 0|4, 4, 3, 1|0, 0] 3 · [0, 0|5, 3, 2, 2|0, 0] 3 · [0, 0|5, 3, 3, 1|0, 0]

3 · [0, 0|5, 4, 2, 1|0, 0] 3 · [0, 0|5, 5, 1, 1|0, 0] 3 · [0, 2|3, 3, 3, 3|0, 0] 4 · [0, 0|3, 3, 1, 1|2, 0]

4 · [0, 1|2, 2, 1, 1|3, 0] 4 · [0, 1|3, 3, 3, 1|1, 0] 4 · [0, 1|4, 2, 2, 2|1, 0] 4 · [0, 1|4, 4, 1, 1|1, 0]

4 · [0, 2|4, 4, 2, 2|0, 0] 4 · [0, 3|3, 3, 2, 2|1, 0] 5 · [0, 0|3, 3, 3, 3|0, 0] 5 · [0, 2|3, 3, 1, 1|2, 0]

6 · [0, 0|3, 2, 2, 1|2, 0] 6 · [0, 2|4, 3, 3, 2|0, 0] 7 · [0, 2|2, 2, 2, 2|2, 0] 8 · [0, 1|4, 3, 2, 1|1, 0]

9 · [0, 0|4, 3, 3, 2|0, 0] 10 · [0, 0|4, 4, 2, 2|0, 0] 16 · [0, 1|3, 3, 2, 2|1, 0]

13
2

2 · [0, 0|2, 2, 2, 1|3, 0] 2 · [0, 0|5, 2, 2, 2|1, 0] 2 · [0, 0|5, 4, 1, 1|1, 0] 2 · [0, 1|2, 1, 1, 1|4, 0]

2 · [0, 1|4, 4, 4, 1|0, 0] 2 · [0, 1|5, 5, 2, 1|0, 0] 2 · [0, 3|3, 2, 2, 2|1, 1] 2 · [0, 3|4, 3, 3, 3|0, 0]

2 · [0, 4|3, 3, 3, 2|1, 0] 2 · [1, 1|2, 2, 2, 1|3, 0] 4 · [0, 0|3, 2, 1, 1|3, 0] 4 · [0, 0|5, 3, 2, 1|1, 0]

4 · [0, 1|4, 3, 1, 1|2, 0] 4 · [0, 1|5, 4, 3, 1|0, 0] 4 · [0, 2|3, 2, 1, 1|3, 0] 4 · [0, 2|4, 4, 2, 1|1, 0]

4 · [0, 3|3, 3, 2, 1|2, 0] 4 · [0, 3|4, 4, 3, 2|0, 0] 6 · [0, 1|4, 2, 2, 1|2, 0] 6 · [0, 2|2, 2, 2, 1|3, 0]

6 · [0, 2|4, 3, 3, 1|1, 0] 6 · [0, 3|3, 2, 2, 2|2, 0] 8 · [0, 1|3, 2, 2, 2|1, 1] 8 · [1, 1|3, 3, 3, 2|1, 0]

10 · [0, 0|4, 3, 3, 1|1, 0] 10 · [0, 0|4, 4, 2, 1|1, 0] 10 · [0, 1|5, 3, 3, 2|0, 0] 10 · [0, 1|5, 4, 2, 2|0, 0]

12 · [0, 0|3, 3, 3, 2|1, 0] 12 · [0, 1|4, 3, 3, 3|0, 0] 16 · [0, 1|3, 3, 2, 1|2, 0] 16 · [0, 2|4, 3, 2, 2|1, 0]

20 · [0, 1|3, 2, 2, 2|2, 0] 20 · [0, 2|3, 3, 3, 2|1, 0] 24 · [0, 0|4, 3, 2, 2|1, 0] 24 · [0, 1|4, 4, 3, 2|0, 0]

Table A.1: Spectrum of unprotected multiplets [nb|nf |na]yp with ∆yp
0 ≤ 13

2
. We find complete

agreement with the results in [34]. Our algorithm finds the Q-system for all these

multiplets in a matter of minutes.
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∆yp
0 Multiplets

7

2 · [0, 0|2, 2, 1, 1|4, 0] 2 · [0, 0|3, 1, 1, 1|4, 0] 2 · [0, 0|5, 2, 2, 1|2, 0] 2 · [0, 2|3, 1, 1, 1|4, 0]

2 · [0, 2|5, 4, 4, 1|0, 0] 2 · [0, 3|1, 1, 1, 1|5, 0] 2 · [0, 4|3, 3, 2, 2|1, 1] 2 · [0, 4|3, 3, 3, 1|2, 0]

2 · [0, 4|4, 4, 3, 3|0, 0] 2 · [0, 4|4, 4, 4, 2|0, 0] 2 · [0, 5|2, 2, 2, 2|3, 0] 2 · [1, 1|2, 2, 1, 1|4, 0]

3 · [0, 0|5, 3, 1, 1|2, 0] 3 · [0, 0|6, 6, 1, 1|0, 0] 3 · [0, 2|5, 5, 3, 1|0, 0] 3 · [0, 4|2, 2, 1, 1|4, 0]

3 · [1, 2|2, 2, 2, 2|2, 1] 4 · [0, 0|6, 4, 3, 1|0, 0] 4 · [0, 1|4, 2, 1, 1|3, 0] 4 · [0, 3|3, 3, 1, 1|3, 0]

4 · [0, 3|4, 4, 3, 1|1, 0] 5 · [0, 0|5, 4, 4, 1|0, 0] 5 · [0, 0|6, 3, 3, 2|0, 0] 6 · [0, 0|6, 5, 2, 1|0, 0]

6 · [0, 1|5, 5, 1, 1|1, 0] 6 · [0, 2|4, 2, 2, 2|1, 1] 6 · [0, 3|2, 2, 2, 2|2, 1] 6 · [1, 1|3, 3, 3, 1|2, 0]

6 · [1, 2|2, 2, 2, 2|3, 0] 7 · [0, 1|2, 2, 2, 2|2, 1] 7 · [0, 2|2, 2, 1, 1|4, 0] 7 · [0, 2|4, 4, 1, 1|2, 0]

7 · [0, 4|3, 3, 2, 2|2, 0] 7 · [1, 2|3, 3, 3, 3|1, 0] 8 · [0, 0|5, 5, 3, 1|0, 0] 8 · [0, 0|6, 4, 2, 2|0, 0]

8 · [0, 1|5, 3, 3, 1|1, 0] 8 · [1, 1|3, 3, 2, 2|1, 1] 9 · [0, 0|4, 2, 2, 2|1, 1] 9 · [1, 1|4, 4, 4, 2|0, 0]

10 · [0, 0|3, 3, 2, 2|1, 1] 10 · [0, 0|3, 3, 3, 1|2, 0] 10 · [0, 0|4, 4, 1, 1|2, 0] 10 · [0, 2|5, 3, 3, 3|0, 0]

10 · [0, 2|5, 5, 2, 2|0, 0] 10 · [0, 3|2, 2, 2, 2|3, 0] 10 · [0, 3|3, 2, 2, 1|3, 0] 10 · [1, 1|4, 4, 3, 3|0, 0]

12 · [0, 1|2, 2, 2, 2|3, 0] 12 · [0, 1|3, 3, 1, 1|3, 0] 12 · [0, 3|3, 3, 3, 3|1, 0] 12 · [0, 3|4, 4, 2, 2|1, 0]

14 · [0, 2|3, 3, 3, 1|2, 0] 14 · [0, 2|4, 2, 2, 2|2, 0] 15 · [0, 0|4, 4, 4, 2|0, 0] 15 · [0, 0|5, 3, 3, 3|0, 0]

16 · [0, 0|4, 2, 2, 2|2, 0] 16 · [0, 2|4, 4, 4, 2|0, 0] 18 · [0, 0|4, 4, 3, 3|0, 0] 18 · [0, 0|5, 5, 2, 2|0, 0]

18 · [0, 1|3, 2, 2, 1|3, 0] 18 · [0, 1|5, 4, 2, 1|1, 0] 18 · [0, 2|3, 3, 2, 2|1, 1] 18 · [0, 2|4, 3, 2, 1|2, 0]

18 · [0, 3|4, 3, 3, 2|1, 0] 18 · [1, 1|3, 3, 2, 2|2, 0] 22 · [0, 0|4, 3, 2, 1|2, 0] 22 · [0, 1|4, 4, 3, 1|1, 0]

22 · [0, 1|5, 3, 2, 2|1, 0] 22 · [0, 2|5, 4, 3, 2|0, 0] 23 · [0, 1|3, 3, 3, 3|1, 0] 24 · [0, 0|3, 3, 2, 2|2, 0]

24 · [0, 2|4, 4, 3, 3|0, 0] 42 · [0, 0|5, 4, 3, 2|0, 0] 43 · [0, 2|3, 3, 2, 2|2, 0] 52 · [0, 1|4, 4, 2, 2|1, 0]

74 · [0, 1|4, 3, 3, 2|1, 0]

15
2

2 · [0, 4|2, 1, 1, 1|5, 0] 2 · [0, 5|2, 2, 2, 1|4, 0] 2 · [0, 5|3, 3, 3, 2|1, 1] 2 · [1, 1|2, 1, 1, 1|5, 0]

4 · [0, 0|6, 5, 1, 1|1, 0] 4 · [0, 1|5, 2, 2, 2|1, 1] 4 · [0, 1|6, 6, 2, 1|0, 0] 4 · [0, 2|2, 1, 1, 1|5, 0]

4 · [0, 5|3, 3, 3, 2|2, 0] 4 · [1, 1|4, 4, 4, 1|1, 0] 6 · [0, 0|6, 3, 3, 1|1, 0] 6 · [0, 1|6, 4, 4, 1|0, 0]

6 · [0, 3|3, 2, 1, 1|4, 0] 6 · [0, 4|3, 3, 2, 1|3, 0] 7 · [0, 4|3, 2, 2, 2|2, 1] 7 · [1, 2|2, 2, 2, 1|4, 0]

8 · [0, 0|6, 3, 2, 2|1, 0] 8 · [0, 0|6, 4, 2, 1|1, 0] 8 · [0, 1|5, 5, 4, 1|0, 0] 8 · [0, 1|6, 5, 3, 1|0, 0]

10 · [0, 0|4, 4, 4, 1|1, 0] 10 · [0, 1|5, 4, 1, 1|2, 0] 10 · [0, 1|6, 3, 3, 3|0, 0] 10 · [0, 2|4, 2, 2, 1|3, 0]

10 · [0, 2|5, 5, 2, 1|1, 0] 10 · [0, 3|2, 2, 2, 1|4, 0] 10 · [0, 3|4, 3, 3, 1|2, 0] 10 · [0, 4|3, 2, 2, 2|3, 0]

11 · [0, 0|3, 2, 2, 2|2, 1] 11 · [0, 1|2, 2, 2, 1|4, 0] 11 · [0, 4|4, 3, 3, 3|1, 0] 11 · [1, 2|4, 4, 4, 3|0, 0]

12 · [0, 0|4, 3, 1, 1|3, 0] 12 · [0, 1|3, 2, 1, 1|4, 0] 12 · [0, 1|5, 2, 2, 2|2, 0] 12 · [0, 2|4, 3, 1, 1|3, 0]

12 · [0, 2|4, 4, 4, 1|1, 0] 12 · [0, 3|4, 4, 2, 1|2, 0] 12 · [0, 3|5, 5, 3, 2|0, 0] 12 · [0, 4|4, 4, 3, 2|1, 0]

14 · [0, 0|4, 2, 2, 1|3, 0] 14 · [0, 3|5, 4, 4, 2|0, 0] 14 · [1, 1|3, 2, 2, 2|2, 1] 14 · [1, 2|3, 3, 3, 2|1, 1]

16 · [0, 0|3, 3, 2, 1|3, 0] 16 · [0, 3|4, 3, 2, 2|1, 1] 16 · [0, 3|5, 4, 3, 3|0, 0] 16 · [1, 1|3, 3, 2, 1|3, 0]

18 · [0, 0|3, 2, 2, 2|3, 0] 18 · [0, 1|5, 3, 2, 1|2, 0] 18 · [0, 2|5, 4, 3, 1|1, 0] 18 · [0, 3|4, 4, 4, 3|0, 0]

20 · [0, 0|5, 5, 2, 1|1, 0] 20 · [0, 1|6, 5, 2, 2|0, 0] 20 · [0, 3|3, 3, 3, 2|1, 1] 20 · [1, 1|3, 2, 2, 2|3, 0]

31 · [0, 2|3, 2, 2, 2|2, 1] 31 · [1, 2|3, 3, 3, 2|2, 0] 38 · [0, 0|5, 4, 3, 1|1, 0] 38 · [0, 1|3, 3, 3, 2|1, 1]

38 · [0, 1|6, 4, 3, 2|0, 0] 38 · [0, 2|3, 3, 2, 1|3, 0] 38 · [0, 3|4, 3, 2, 2|2, 0] 38 · [1, 1|4, 3, 3, 3|1, 0]

43 · [0, 0|4, 3, 3, 3|1, 0] 43 · [0, 1|4, 4, 4, 3|0, 0] 48 · [0, 1|4, 3, 3, 1|2, 0] 48 · [0, 1|4, 4, 2, 1|2, 0]

48 · [0, 2|3, 2, 2, 2|3, 0] 48 · [0, 2|5, 3, 3, 2|1, 0] 48 · [0, 2|5, 4, 2, 2|1, 0] 48 · [0, 3|3, 3, 3, 2|2, 0]

52 · [0, 1|4, 3, 2, 2|1, 1] 52 · [1, 1|4, 4, 3, 2|1, 0] 72 · [0, 0|5, 3, 3, 2|1, 0] 72 · [0, 0|5, 4, 2, 2|1, 0]

72 · [0, 1|5, 4, 4, 2|0, 0] 72 · [0, 1|5, 5, 3, 2|0, 0] 77 · [0, 1|3, 3, 3, 2|2, 0] 77 · [0, 2|4, 3, 3, 3|1, 0]

80 · [0, 0|4, 4, 3, 2|1, 0] 80 · [0, 1|5, 4, 3, 3|0, 0] 120 · [0, 1|4, 3, 2, 2|2, 0] 120 · [0, 2|4, 4, 3, 2|1, 0]

Table A.2: Spectrum of unprotected multiplets [nb|nf |na]yp with ∆yp
0 = 7 and ∆yp

0 = 15
2

.
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∆yp
0 Multiplets

8

1 · [0, 0|1, 1, 1, 1|6, 0] 1 · [0, 0|5, 1, 1, 1|4, 0] 1 · [0, 4|1, 1, 1, 1|6, 0] 1 · [0, 4|5, 5, 5, 1|0, 0]

1 · [0, 6|1, 1, 1, 1|6, 0] 1 · [0, 6|2, 2, 2, 2|2, 2] 1 · [0, 6|2, 2, 2, 2|3, 1] 1 · [0, 6|2, 2, 2, 2|4, 0]

1 · [0, 6|3, 3, 3, 3|1, 1] 1 · [0, 6|4, 4, 4, 4|0, 0] 1 · [1, 1|1, 1, 1, 1|6, 0] 1 · [1, 3|1, 1, 1, 1|6, 0]

1 · [2, 2|1, 1, 1, 1|6, 0] 2 · [0, 2|1, 1, 1, 1|6, 0] 2 · [0, 3|3, 1, 1, 1|5, 0] 2 · [0, 5|2, 2, 1, 1|5, 0]

2 · [0, 5|3, 3, 3, 1|3, 0] 2 · [0, 6|3, 3, 3, 3|2, 0] 2 · [1, 3|2, 2, 2, 2|2, 2] 2 · [2, 2|2, 2, 2, 2|3, 1]

3 · [0, 0|6, 2, 2, 2|1, 1] 3 · [0, 0|6, 2, 2, 2|2, 0] 3 · [0, 2|5, 5, 5, 1|0, 0] 3 · [1, 1|5, 5, 5, 1|0, 0]

3 · [2, 2|2, 2, 2, 2|2, 2] 4 · [0, 0|7, 4, 4, 1|0, 0] 4 · [0, 0|7, 7, 1, 1|0, 0] 4 · [0, 1|3, 1, 1, 1|5, 0]

4 · [0, 5|4, 4, 4, 2|1, 0] 5 · [0, 0|2, 2, 2, 2|2, 2] 5 · [0, 0|2, 2, 2, 2|3, 1] 5 · [0, 0|6, 4, 1, 1|2, 0]

5 · [0, 2|6, 6, 3, 1|0, 0] 5 · [0, 4|2, 2, 2, 2|2, 2] 5 · [1, 1|2, 2, 2, 2|2, 2] 5 · [1, 3|4, 4, 4, 4|0, 0]

5 · [2, 2|2, 2, 2, 2|4, 0] 5 · [2, 2|3, 3, 3, 3|1, 1] 5 · [2, 2|4, 4, 4, 4|0, 0] 6 · [0, 0|5, 5, 5, 1|0, 0]

6 · [0, 0|7, 3, 3, 3|0, 0] 6 · [0, 5|3, 3, 2, 2|2, 1] 6 · [1, 2|2, 2, 1, 1|5, 0] 7 · [0, 0|2, 2, 2, 2|4, 0]

7 · [0, 0|4, 2, 1, 1|4, 0] 7 · [0, 0|7, 6, 2, 1|0, 0] 7 · [0, 4|4, 4, 4, 4|0, 0] 7 · [0, 4|5, 5, 4, 2|0, 0]

8 · [0, 0|6, 3, 2, 1|2, 0] 8 · [0, 1|2, 2, 1, 1|5, 0] 8 · [0, 1|6, 6, 1, 1|1, 0] 8 · [0, 2|4, 2, 1, 1|4, 0]

8 · [0, 2|6, 5, 4, 1|0, 0] 8 · [0, 4|3, 3, 1, 1|4, 0] 8 · [0, 4|4, 4, 3, 1|2, 0] 8 · [0, 5|4, 4, 3, 3|1, 0]

9 · [0, 4|3, 2, 2, 1|4, 0] 10 · [0, 0|3, 3, 1, 1|4, 0] 10 · [0, 0|7, 5, 3, 1|0, 0] 10 · [0, 1|5, 2, 2, 1|3, 0]

10 · [0, 1|5, 3, 1, 1|3, 0] 10 · [0, 2|2, 2, 2, 2|2, 2] 10 · [0, 3|2, 2, 1, 1|5, 0] 10 · [0, 3|5, 4, 4, 1|1, 0]

10 · [0, 3|5, 5, 3, 1|1, 0] 10 · [0, 4|2, 2, 2, 2|3, 1] 10 · [0, 4|4, 4, 2, 2|1, 1] 10 · [0, 4|5, 5, 3, 3|0, 0]

10 · [0, 5|3, 3, 2, 2|3, 0] 10 · [1, 1|3, 3, 1, 1|4, 0] 10 · [1, 3|2, 2, 2, 2|3, 1] 10 · [1, 3|2, 2, 2, 2|4, 0]

10 · [2, 2|3, 3, 3, 3|2, 0] 12 · [0, 2|5, 5, 1, 1|2, 0] 12 · [0, 3|4, 4, 1, 1|3, 0] 13 · [0, 0|3, 2, 2, 1|4, 0]

13 · [0, 4|5, 4, 4, 3|0, 0] 14 · [0, 0|6, 6, 3, 1|0, 0] 14 · [0, 0|7, 5, 2, 2|0, 0] 14 · [1, 1|2, 2, 2, 2|3, 1]

14 · [1, 3|3, 3, 3, 3|1, 1] 15 · [0, 0|5, 5, 1, 1|2, 0] 15 · [0, 2|6, 6, 2, 2|0, 0] 16 · [0, 4|3, 3, 3, 3|1, 1]

16 · [1, 1|2, 2, 2, 2|4, 0] 18 · [0, 0|6, 5, 4, 1|0, 0] 18 · [0, 0|7, 4, 3, 2|0, 0] 18 · [0, 3|4, 2, 2, 2|2, 1]

18 · [0, 4|2, 2, 2, 2|4, 0] 18 · [0, 4|4, 3, 3, 2|1, 1] 18 · [1, 1|3, 2, 2, 1|4, 0] 18 · [1, 2|3, 3, 3, 1|3, 0]

20 · [0, 0|3, 3, 3, 3|1, 1] 20 · [0, 0|4, 4, 4, 4|0, 0] 20 · [1, 1|4, 4, 4, 4|0, 0] 24 · [0, 2|2, 2, 2, 2|3, 1]

24 · [1, 3|3, 3, 3, 3|2, 0] 26 · [0, 2|3, 3, 1, 1|4, 0] 26 · [0, 4|4, 4, 2, 2|2, 0] 28 · [0, 1|4, 4, 1, 1|3, 0]

28 · [0, 3|5, 5, 2, 2|1, 0] 30 · [0, 1|6, 5, 2, 1|1, 0] 30 · [0, 2|2, 2, 2, 2|4, 0] 30 · [0, 3|3, 3, 3, 1|3, 0]

30 · [0, 3|4, 2, 2, 2|3, 0] 30 · [0, 4|3, 3, 3, 3|2, 0] 33 · [0, 0|3, 3, 3, 3|2, 0] 33 · [0, 2|4, 4, 4, 4|0, 0]

34 · [0, 0|6, 6, 2, 2|0, 0] 34 · [0, 2|5, 3, 2, 2|1, 1] 34 · [0, 3|4, 3, 2, 1|3, 0] 34 · [1, 1|4, 4, 3, 1|2, 0]

35 · [1, 1|3, 3, 3, 3|1, 1] 36 · [0, 1|6, 4, 3, 1|1, 0] 38 · [0, 2|5, 3, 3, 1|2, 0] 39 · [1, 1|4, 4, 2, 2|1, 1]

40 · [1, 2|3, 3, 2, 2|2, 1] 41 · [0, 2|3, 2, 2, 1|4, 0] 41 · [0, 4|4, 3, 3, 2|2, 0] 43 · [0, 0|4, 4, 2, 2|1, 1]

43 · [1, 1|5, 5, 3, 3|0, 0] 44 · [0, 1|3, 3, 3, 1|3, 0] 44 · [0, 3|5, 3, 3, 3|1, 0] 45 · [0, 0|5, 3, 2, 2|1, 1]

45 · [0, 2|5, 4, 2, 1|2, 0] 45 · [1, 1|5, 5, 4, 2|0, 0] 46 · [0, 0|5, 3, 3, 1|2, 0] 46 · [0, 2|6, 4, 4, 2|0, 0]

49 · [0, 0|4, 4, 3, 1|2, 0] 49 · [0, 2|6, 4, 3, 3|0, 0] 52 · [0, 1|5, 4, 4, 1|1, 0] 52 · [0, 1|6, 3, 3, 2|1, 0]

54 · [0, 1|4, 2, 2, 2|2, 1] 54 · [0, 2|3, 3, 3, 3|1, 1] 54 · [1, 1|3, 3, 3, 3|2, 0] 54 · [1, 1|4, 3, 3, 2|1, 1]

54 · [1, 2|4, 4, 4, 2|1, 0] 60 · [0, 0|4, 3, 3, 2|1, 1] 60 · [0, 1|5, 5, 3, 1|1, 0] 60 · [0, 1|6, 4, 2, 2|1, 0]

60 · [0, 3|3, 3, 2, 2|2, 1] 60 · [1, 1|5, 4, 4, 3|0, 0] 60 · [1, 2|3, 3, 2, 2|3, 0] 63 · [0, 0|5, 4, 2, 1|2, 0]

63 · [0, 2|6, 5, 3, 2|0, 0] 71 · [0, 0|5, 5, 3, 3|0, 0] 72 · [0, 2|4, 4, 2, 2|1, 1] 72 · [1, 1|4, 4, 2, 2|2, 0]

73 · [0, 2|4, 4, 3, 1|2, 0] 73 · [0, 2|5, 3, 2, 2|2, 0] 74 · [0, 1|4, 2, 2, 2|3, 0] 74 · [0, 3|4, 4, 4, 2|1, 0]

77 · [0, 0|5, 4, 4, 3|0, 0] 77 · [0, 0|5, 5, 4, 2|0, 0] 77 · [0, 0|6, 4, 3, 3|0, 0] 80 · [0, 1|3, 3, 2, 2|2, 1]

80 · [1, 2|4, 4, 3, 3|1, 0] 84 · [0, 0|6, 4, 4, 2|0, 0] 90 · [0, 0|4, 4, 2, 2|2, 0] 90 · [0, 2|5, 5, 3, 3|0, 0]

92 · [0, 3|3, 3, 2, 2|3, 0] 96 · [0, 0|5, 3, 2, 2|2, 0] 96 · [0, 1|4, 3, 2, 1|3, 0] 96 · [0, 2|5, 5, 4, 2|0, 0]

96 · [0, 3|5, 4, 3, 2|1, 0] 101 · [0, 2|3, 3, 3, 3|2, 0] 110 · [0, 1|3, 3, 2, 2|3, 0] 110 · [0, 3|4, 4, 3, 3|1, 0]

112 · [0, 0|6, 5, 3, 2|0, 0] 120 · [0, 0|4, 3, 3, 2|2, 0] 120 · [0, 2|5, 4, 4, 3|0, 0] 122 · [0, 2|4, 3, 3, 2|1, 1]

122 · [1, 1|4, 3, 3, 2|2, 0] 130 · [0, 1|5, 5, 2, 2|1, 0] 160 · [0, 1|4, 4, 4, 2|1, 0] 160 · [0, 1|5, 3, 3, 3|1, 0]

176 · [0, 2|4, 4, 2, 2|2, 0] 210 · [0, 1|4, 4, 3, 3|1, 0] 256 · [0, 2|4, 3, 3, 2|2, 0] 378 · [0, 1|5, 4, 3, 2|1, 0]

Table A.3: Spectrum of unprotected multiplets [nb|nf |na]yp with ∆yp
0 = 8.
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Figure A.1: Plot of |x(u)|. The axes are the real and imaginary values of u
2g

, placing the branch

points on the real axis at u
2g

= ±1.

A.4 QSC-related technicalities

A.4.1 The Zhukowsky variable

The Zhukowsky variable, x, is defined in terms of the spectral parameter u through

u

g
= x+

1

x
. (A.16)

This quadratic equation on x has the solutions

x =
u

2g
±

√
u2

4g2
− 1. (A.17)

The variable x(u) is multivalued with branch points at u = ±2g and lives on a two-sheeted

Riemann surface, see figure A.1. The two solutions (A.17) are related through x+ = 1
x−

.

We will make the choice to describe the function by a short branch cut between u = ±2g

and define the first sheet by the value of x(u) for which |x(u)| > 1. We will refer to this

value as x(u) and denote the value on the second sheet by x̃(u) = 1
x(u) such that |x̃(u)| < 1.

At large u, the values on the two sheets behave as x ∼ u
g and x̃ ∼ g

u .

A.4.2 Solving QQ-relations

Consider the standard QQ-relation

QabQ∅ = Q+
aQ
−
b −Q

−
aQ

+
b ⇒ Qb = QaΨ

(
Q+
abQ

+
∅

QaQ
[2]
a

)
(A.18)

and use that all Q-functions are allowed to have poles only at iZ (or i(1
2 + Z) for an even

number of indices). Then it should be that apparent poles coming from non-trivial zeros of
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Qa in the argument of Ψ cancel out. We are going to derive an expression which explicitly

accounts for this cancellation.

We consider only the case when all Q-functions on the right-hand side of (A.18) are

rational. If Qab involves Ψ-functions, an equivalent nested argument can be generated.

Rewrite the Q-functions as

QA =
qApA
rA

, (A.19)

where pA and rA are fused factors of u of the type
∏

(u+ in)k (or
∏

(u+ in+ i
2)k for |A|

even), where n ∈ Z, and qA contains no such factors. Then it is possible to uniquely split

the argument of the Ψ-summation in (A.18) as

Q+
abQ

+
∅

QaQ
[2]
a

=
q+
abq

+
∅

qaq
++
a

p+
abp

+
∅ rar

++
a

pap
++
a r+

abr
+
∅︸ ︷︷ ︸

P/R

=
A

qa
+

B

q++
a

+
C

R
+D , (A.20)

where R and P are polynomials, and where A and B are polynomials of lower degree than

qa, C is a polynomial of lower degree than R, and D is a polynomial of at most the total

asymptotic degree of the left-hand side. The polynomials A, B, C and D can be fixed by

simply matching coefficients of individual powers in

q+
abq

+
∅ P = Aq++

a R+BqaR+ Cqaq
++
a +Dqaq

++
a R . (A.21)

Now,

Qb = QaΨ

(
Q+
abQ

+
∅

QaQ
[2]
a

)
= Qa

(
A

qa
+ Ψ

(
A++ +B

q++
a

)
+ Ψ

(
C

R
+D

))
=

paA

ra
+QaΨ

(
A++ +B

q++
a

)
+QaΨ

(
C

R
+D

)
. (A.22)

In this expression, the only potential poles away from iZ arise from the second term. Then

it should be that A++ +B = 0, since A++ +B is of lower degree than qa and thus unable

to cancel the poles otherwise. Conclusion:

Qb =
paA

ra
+QaΨ

(
C

R
+D

)
. (A.23)

A.4.3 Fourth-order difference equation on Qa|i

We here give an example of a decoupled higher-order difference equation that follows from

the QQ-relations. A fourth-order difference equation on Q was given in [112]. Likewise,
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one could write a fourth order equation on Qa|i for fixed a. For example, for Q1|i we get

0 = − D−3

P
[−3]
1

Q
[−4]
1|i +Q

[−2]
1|i

(
D−1

P
[−1]
1

+
D−3

P
[−3]
1

+
P

[−1]
a Pa[−3]D−3

P
[−1]
1

)

+Q
[0]
1|i

(
− D−1

P
[−1]
1

− D1

P
[1]
1

− P
[−1]
a Pa[−3]D−3

P
[−1]
1

+
P

[1]
a Pa[3]D3

P
[1]
1

+D

)

+Q
[2]
1|i

(
D1

P
[1]
1

+
D3

P
[3]
1

− P
[1]
a Pa[3]D3

P
[1]
1

)
− D3

P
[3]
1

Q
[4]
1|i , (A.24)

where

D−3 ≡

∣∣∣∣∣∣∣∣
P2[−1] P3[−1] P4[−1]

P2[1] P3[1] P4[1]

P2[3] P3[3] P4[3]

∣∣∣∣∣∣∣∣ , D−1 ≡

∣∣∣∣∣∣∣∣
P2[−3] P3[−3] P4[−3]

P2[1] P3[1] P4[1]

P2[3] P3[3] P4[3]

∣∣∣∣∣∣∣∣ ,

D1 ≡

∣∣∣∣∣∣∣∣
P2[−3] P3[−3] P4[−3]

P2[−1] P3[−1] P4[−1]

P2[3] P3[3] P4[3]

∣∣∣∣∣∣∣∣ , D3 ≡

∣∣∣∣∣∣∣∣
P2[−3] P3[−3] P4[−3]

P2[−1] P3[−1] P4[−1]

P2[1] P3[1] P4[1]

∣∣∣∣∣∣∣∣ ,

D =

∣∣∣∣∣∣∣∣∣∣
P1[−3] P2[−3] P3[−3] P4[−3]

P1[−1] P2[−1] P3[−1] P4[−1]

P1[1] P2[1] P3[1] P4[1]

P1[3] P2[3] P3[3] P4[3]

∣∣∣∣∣∣∣∣∣∣
. (A.25)

Notice that, using Qi =
Q+

1|i−Q
−
1|i

P1
, the equation gives an expression for Q1|i in terms of P

and Qi,

Q1|i =

∣∣∣∣∣∣∣∣∣∣
P1[−3] P2[−3] P3[−3] P4[−3]

P1[−1] P2[−1] P3[−1] P4[−1]

P1[1] P2[1] P3[1] P4[1]

P1[3] P2[3] P3[3] P4[3]

∣∣∣∣∣∣∣∣∣∣

−1
∣∣∣∣∣∣∣∣∣∣
Q

[−3]
i P2[−3] P3[−3] P4[−3]

Q
[−1]
i P2[−1] P3[−1] P4[−1]

Q
[1]
i P2[1] P3[1] P4[1]

Q
[3]
i P2[3] P3[3] P4[3]

∣∣∣∣∣∣∣∣∣∣
(A.26)

−P[1]
a Pa[3]

∣∣∣∣∣∣∣∣
P2[−3] P3[−3] P4[−3]

P2[−1] P3[−1] P4[−1]

P2[1] P3[1] P4[1]

∣∣∣∣∣∣∣∣Q
[1]
i −P[−1]

a Pa[−3]

∣∣∣∣∣∣∣∣
P2[−1] P3[−1] P4[−1]

P2[1] P3[1] P4[1]

P2[3] P3[3] P4[3]

∣∣∣∣∣∣∣∣Q
[−1]
i


In this way one can avoid the constant ambiguity arising in (4.26).

A.5 The LLL-algorithm

We here describe how the LLL-algorithm [144] is applied to a very simple example, fol-

lowing the discussion in [145]. The basic idea behind the method is to find a vector in a

given basis that minimises the Euclidean length.

The contribution Prat
2 (S) to the reciprocity function P(S) for twist-2 operators has

transcendentality 3 and can thus be expressed in the four-dimensional basis of binomial

sums with transcendentality 3,

Prat
2 (S) = d3S3(S) + d2,1S2,1(S) + d1,2S1,2(S) + d1,1,1S1,1,1(S) . (A.27)
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We will try to obtain the four coefficients d from just three values of Prat
2 at S = 2, 4, 6.

This gives us an underdetermined system:

3

4
d3 +

9

4
d2,1 +

15

4
d1,2 +

21

4
d1,1,1 = 12 (A.28)

865

864
d3 +

2035

864
d2,1 +

4885

864
d1,2 +

11095

864
d1,1,1 =

475

18
(A.29)

39151

36000
d3 +

28567

12000
d2,1 +

246911

36000
d1,2 +

734461

36000
d1,1,1 =

16121

450
(A.30)

We can multiply these equations by the greatest appearing denominator, divide by the

greatest common divisor, and package them into a 3× 5 matrix,
1 3 5 7 −16

173 407 977 2219 −4560

799 1749 5039 14989 −26320

 . (A.31)

Next, we combine the transpose of this matrix multiplied by a very large number, e.g.

1010, with a 5× 5 identity matrix,

1 0 0 0 0 10000000000 1730000000000 7990000000000

0 1 0 0 0 30000000000 4070000000000 17490000000000

0 0 1 0 0 50000000000 9770000000000 50390000000000

0 0 0 1 0 70000000000 22190000000000 149890000000000

0 0 0 0 1 −160000000000 −45600000000000 −263200000000000


. (A.32)

The LLL-algorithm, which in Mathematica is implemented in the function LatticeReduce,

is now applied to this matrix. The result is

0 −8 8 0 1 0 0 0

38 −8 −1 1 1 0 0 0

5 −3 −2 −1 −1 −50000000000 310000000000 10000000000

8 −13 −8 −5 −5 −260000000000 −180000000000 −20000000000

−15 4 1 0 0 20000000000 100000000000 500000000000


.(A.33)

The rows with zeros in the last three columns correspond to possible solutions to our

underdetermined problem. They are ordered after the corresponding norm, so the upper

row is the likely candidate. Indeed the upper row translates to

−8S2,1 + 8S1,2 = Prat
2 , (A.34)

which matches the result found from direct matching in section 7.1.3.



Appendix B

Special functions

This appendix collects the definitions and relevant properties of the special functions that

arise in the perturbative treatment of the Quantum Spectral Curve. The sections about

ζ-values and η-functions are heavily based on section 2 of [109], and we refer to this paper

and references therein for a more complete discussion of the properties of these functions.

B.1 Zeta-values

Definition

The Euler-Zagier sums or multiple zeta values (MZV) are defined by the infinite sum

ζa1,...,ak =
∑

0<n1<...<nk<∞

1

na1
1 · · ·n

ak
k

. (B.1)

k is called the depth of the sum, while w =
∑k

i=1 ai is called transcendentality or weight.

A ζ-value is called irreducible if it cannot be written in terms of ζ-values of lower depth

or transcendentality.

B.1.1 Algebraic relations

ζ-values satisfy two important types of algebraic relations.

Stuffle relations

The stuffle product, ?, takes two ordered multi-indices and stuffles them in all possible

ways, i.e. combines them without altering the respective ordering, but possibly adding

indices from the two multi-indices. For example,

(a) ? (b) = {(a, b), (a+ b), (b, a)} (B.2)

(a1, a2) ? (b) = {(a1, a2, b), (a1, a2 + b), (a1, b, a2), (a1 + b, a2), (b, a1, a2)} .

187
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The ζ-values satisfy the stuffle algebra, ζAζB =
∑

C∈A?B ζC ≡ ζA ? ζB, where a capital

letter denotes a multi-index. For example, the product of two single-indexed ζ-values

satisfies

ζaζb = ζa ? ζb = ζa,b + ζb,a + ζa+b , (B.3)

which can be seen by spitting the summation on the left-hand side:
∑

n,m
1

namb
=
∑

n<m
1

namb
+∑

n>m
1

namb
+
∑

n=m
1

namb
.

Shuffle relations

The shuffle product, �, takes two ordered multi-indices and shuffles them in all possible

ways, i.e. combines them without altering the respective ordering. For example,

(a)� (b) = {(a, b), (b, a)} (B.4)

(a1, a2)� (b) = {(a1, a2, b), (a1, b, a2), (b, a1, a2)} .

The ζ-values satisfy shuffle relations. However, these relations are more transparent in a

different notation:

ζa,b,... = ζ̂1, 0, . . . , 0︸ ︷︷ ︸
a

,1, 0, . . . , 0︸ ︷︷ ︸
b

,1,0,... (B.5)

Then ζ̂A satisfy the shuffle algebra, ζ̂Aζ̂B =
∑

C∈A�B ζ̂C ≡ ζ̂A � ζ̂B. For example

ζ1ζ2 = ζ̂1ζ̂1,0 = ζ̂1 � ζ̂1,0 = 2ζ̂1,1,0 + ζ̂1,0,1 = 2ζ1,2 + ζ2,1 . (B.6)

The shuffle relations can be derived explicitly using the Feynman representation,

ζa1+1,a2+1,...,ak+1 =

∫ ∞
0

dµ1

∫ ∞
t1

dµ2 . . .

∫ ∞
tk−1

dµk (t1 − t2)a1 . . . (tk−1 − tk)ak−1takk , (B.7)

where dµi ≡ dti
ai!(eti−1)

. For example,

ζ1ζ2 =

∫ ∞
0

dµ1

∫ ∞
0

dµ2t2 (B.8)

=

∫ ∞
0

dµ1

∫ t1

0
dµ2t2 +

∫ ∞
0

dµ1

∫ ∞
t1

dµ2t2

=

∫ ∞
0

dµ2

∫ ∞
t2

dµ1t2 +

∫ ∞
0

dµ1

∫ ∞
t1

dµ2t2

=

∫ ∞
0

dµ2

∫ ∞
t2

dµ1(t2 − t1) +

∫ ∞
0

dµ2

∫ ∞
t2

dµ1t1 +

∫ ∞
0

dµ1

∫ ∞
t1

dµ2t2

= 2ζ1,2 + ζ2,1.
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Irreducible multiple zeta values

Since the stuffle and shuffle algebras provide two different ways to write a product of

ζ-values as a linear combination of other ζ-values with the same total transcendentality,

i.e. ζIζJ =
∑
cKIJζK =

∑
dKIJζK , we see that

∑
(cKIJ − dKIJ)ζK = 0, so all ζ-values are not

linearly independent.

The stuffle and shuffle relations can be combined to yield identities such as ζ1,2 = ζ3.

According to the diophantine conjecture [157], all possible algebraic relations between

ζ-values arise from the shuffle and stuffle algebras, which means that the total transcen-

dentality is always preserved in such relations.

A possible choice for the basis of the number field spanned by the ζ-values is to pick

the values with lowest depth and highest rightmost labels out of those that are linearly

dependent. Table B.1 lists this basis up to transcendentality 15.

w 1 2 3 5 7 8 9 10 11 12 13 14 15

MZV ζ1 ζ2 ζ3 ζ5 ζ7 ζ2,6 ζ9 ζ2,8
ζ11

ζ1,2,8

ζ2,10

ζ1,1,2,8

ζ13

ζ1,2,10

ζ1,3,9

ζ2,12

ζ4,10

ζ1,1,2,10

ζ15

ζ1,2,12

ζ1,3,11

ζ1,1,1,2,10

Table B.1: A possible basis of irreducible MZVs up to transcendentality w = 15. The ancillary files

of [1] at arxiv.org contains a file with explicit replacement rules to reduce an expression

to this basis.

Single-valued MZVs

The single-valued multiple zeta-values [129] are special combinations of MZVs that are

expected to appear in quantum field theory results. The ones appearing in the perturbative

results of chapter 6 are

Z
(2)
11 = −ζ3,5,3 + ζ3 ζ3,5 ,

Z
(2)
13 = −ζ5,3,5 + 11 ζ5 ζ3,5 + 5 ζ5 ζ8 ,

Z
(3)
13 = −ζ3,7,3 + ζ3 ζ3,7 + 12 ζ5 ζ3,5 + 6 ζ5 ζ8 ,

Z
(2)
15 = ζ3,7,5 − ζ5 ζ3,7 − 3 ζ5 ζ10 + 21 ζ9 ζ6 +

175

2
ζ11 ζ4 +

637

2
ζ13 ζ2 ,

Z
(3)
15 = −ζ3,9,3 + ζ3 ζ3,9 + 12 ζ5 ζ3,7 + 30 ζ7 ζ3,5 + 6 ζ5 ζ10 + 15 ζ7 ζ8 . (B.9)

B.1.2 Twisted generalisation

In the fully twisted QSC, a twisted generalisation of the MZVs appears:

ζx1,...,xk
a1,...,ak

≡
∑

1≤n1<...<nk<∞

xn1
1 · · · x

nk
k

na1
1 · · ·n

a2
k

. (B.10)
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B.2 Harmonic and binomial sums

This appendix discusses the harmonic and binomial sums that appear in the analytic struc-

ture of the anomalous dimension of solution series discussed in chapter 7. The following

discussion is heavily based on [142].

B.2.1 Harmonic sums, S

Definition

Harmonic sums are defined through

Sa(S) ≡
S∑
j=1

sign(a)j

j|a|
, Sa1,a2,...,an(S) ≡

S∑
j=1

sign(a1)j

j|a1|
Sa2,...,an(j) . (B.11)

The transcendentality of a harmonic sum Sa1,...,an is defined as w =
∑n

j=1 |aj |.

Algebraic relations and basis of given transcendentality

Harmonic sums satisfy algebraic relations similar to the stuffle relations, e.g.

SaSb = Sa,b + Sb,a − Ssign(ab)(|a|+|b|) , (B.12)

where the argument of the harmonic sums are the same. This type of relations allows

one to linearise products of harmonic sums. All multi-indexed harmonic sums of a given

transcendentality form a basis for any possible expression of that transcendentality.

An algorithm to generate the relations of the type (B.12), i.e. to write Sa1,a2,...,amSb1,b2,...,bn

in the linear basis, was given in [142] and can be summarised in the following way:

• Start from the expression S
(1)
a1,a2,...,amS

(2)
b1,b2,...,bn

S
(3)
∅ .

• Recursively move indices to S(3) via the replacement rule

S(1)
a1,a2,...,amS

(2)
b1,b2,...,bn

S(3)
c1,c2,...,ck

→ +S(1)
a1,a2,...,amS

(2)
b2,...,bn

S
(3)
c1,c2,...,ck,b1

(B.13)

+S(1)
a2,...,amS

(2)
b1,b2,...,bn

S(3)
c1,c2,...,ck,a1

−S(1)
a2,...,amS

(2)
b2,...,bn

S
(3)
c1,c2,...,ck,sign(a1b1)(|a1|+|b1|)

until either S(1) or S(2) runs out of indices.

• Replace bilinear terms via (i ∈ {1, 2})

S(i)
a1,a2,...,amS(3)

c1,c2,...,ck
→ Sc1,c2,...,ck,a1,a2,...,am . (B.14)

For example, to express the product S1S2 the procedure yields

S
(1)
1 S

(2)
2 S

(3)
∅ → S

(1)
1 S

(3)
2 + S

(2)
2 S

(3)
1 − S

(3)
3 → S1,2 + S2,1 − S3 , (B.15)

so S1S2 = S1,2 + S2,1 − S3.
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Analytic continuation

For simplicity, we here describe the case Sa>0. The generalisation to negative and multiple

indices can be done along the same lines. The analytic continuation to non-integer S is

obtained by the trick

Sa(S) =

S∑
j=1

1

ja
=

∞∑
j=1

(
1

ja
− 1

(j + S)a

)
= ζa −

∞∑
j=1

1

(j + S)a
. (B.16)

Derivatives

The derivative of a harmonic sum with respect to its argument can be found by considering

the analytic continuation (B.16):

d

dS
Sa(S) = a

∞∑
j=1

1

(j + S)a+1
= a

 ∞∑
j=1

1

ja+1
−

S∑
j=1

1

ja+1

 = a
(
ζa+1 − Sa+1(S)

)
. (B.17)

Power expansion

To more generally do a power expansion around a positive integer S0, we can again use

(B.16). For example,

Sa(S0 + w) = ζa −
∞∑
j=1

1

(j + S0 + w)a
(B.18)

= ζa −
∞∑
j=1

∞∑
k=0

(-1)k[a]k
k!(j + S0)a+k

wk

= ζa +
∞∑
k

(-1)k[a]k
k!

(Sa+k(S0)− ζa+k)w
k

= Sa(S0)− a (Sa+1(S0)− ζa+1)w +
a(a+1)

2
(Sa+2(S0)− ζa+2)w2 +O(w3) .

Behaviour at negative integer arguments

It is clear from (B.16) that S has poles at negative integer arguments. In the BFKL and

double logarithmic limits, we need to expand around such points. Consider the argument

S = S0 + w where S0 ∈ Z−. We then get
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Sa(S0 + w) = ζa −
−S0−1∑
j=1

1

(−j + w)a
− 1

wa
−
∞∑
j=1

1

(j + w)a
(B.19)

= ζa −
1

wa
−
−S0−1∑
j=1

∞∑
k=0

(-1)k[a]k
k!(-j)a+k

wk −
∞∑
j=1

∞∑
k=0

(-1)k[a]k
k!ja+k

wk

= ζa −
1

wa
−
∞∑
k=0

[a]k
k!

(
(-1)aSa+k(−S0 − 1) + (-1)kζa+k

)
wk

= − 1

wa
− (-1)aSa(−S0 − 1)− w a

(
(-1)aSa+1(−S0 − 1)− ζa+1

)
+O(w2) .

B.2.2 Binomial sums, S

Definition

The binomial sums are defined in terms of the harmonic sums (B.11) via

Sa1,...,an(N) = (−1)N
N∑
j=1

(−1)j
(
N

j

)(
N + j

j

)
Sa1,...,an(j) . (B.20)

Basis of given transcendentality

As for the harmonic sums, the binomial sums satisfy algebraic relations that make it

possible to write any term of a given transcendentality in a linearised basis.

Relations between harmonic and binomial sums with same argument

Binomial sums can be reexpressed in terms of harmonic sums with the same argument.

In practice, an easy way to find these relations is to simply match the sums at a large

enough set of fixed values. For the lowest transcendentalities, the relations are

S1 = 2S1 (B.21a)

S2 = −2S-2 (B.21b)

S1,1 = −2S2 + 4S1,1 (B.21c)

S3 = 2S-3 − 4S-2,1 (B.21d)

S2,1 = 2S3 (B.21e)

S1,2 = 2S-3 − 4S1,-2 (B.21f)

S1,1,1 = 2S3 − 4S1,2 − 4S2,1 + 8S1,1,1 . (B.21g)
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B.3 Eta-functions

In this appendix, we discuss the aspects of Hurwitz η-functions relevant for the perturba-

tive solution algorithms of the QSC. The section is simply a summary of the discussion in

[109], to which we refer for further details.

Definition

The multiple Hurwitz η-functions are defined as

ηk1,k2,...,kn(u) ≡
∞∑

0≤j1<...<jn

1

(u+ ij1)k1 · · · (u+ ijn)kn
. (B.22)

Note that they can be defined iteratively through

ηk,K ≡
∞∑
j=0

η
[2+2n]
K

(u+ ij)k
. (B.23)

It follows from the definition that the η-functions satisfy the relation

ηk,K − η
[2]
k,K =

η
[2]
K

uk
, (B.24)

which can be used to uniformise the shifts in expressions. The single-indexed η-functions

are related to the polygamma function, ψ(k), via

ηk(u) =
i
k

(k − 1)!
ψ(k−1)(−iu) . (B.25)

Algebraic relations

The η-functions satisfy stuffle relations the stuffle algebra ηJηK =
∑

I∈J?K ηI , e.g.

ηk1ηk2 = ηk1,k2 + ηk2,k1 + ηk1+k2 (B.26a)

ηk1ηk2,k3 = ηk1,k2,k3 + ηk2,k1,k3 + ηk2,k3,k1 + ηk1+k2,k3 + ηk2,k1+k3 . (B.26b)

The η-functions are linearly independent as they satisfy no other relations of this kind,

i.e. ∑
K

cKηK = 0 ⇒ cK = 0 . (B.27)

The stuffle-relations can be used to linearise any expression in η-functions.

Power expansion at u = 0

The power expansion of η-functions at u = 0 is one of the main operations in the per-

turbative algorithms described in chapter 6. The expansion contains MZVs, and for a

single-indexed η-function it has the structure

ηk =
1

uk
+ (-i)k

∞∑
j=0

i
j [k]j
j!

ujζk+j , (B.28)



194 Appendix B. Special functions

where [k]j is the Pochhammer symbol. In the multi-indexed case, the expansion is

ηk1,k2,k3,... =
1

uk1
(-i)k2+k3+...

∞∑
j2,j3,...=0

i
j2+j3+...[k2]j2 [k3]j3 · · ·

j2!j3! · · ·
uj2+j3+...ζk2+j2,k3+j3,...

+(-i)k1+k2+...
∞∑

j1,j2,...=0

i
j1+j2+...[k1]j1 [k2]j2 · · ·

j1!j2! · · ·
uj1+j2+...ζk1+j1,k2+j2,... . (B.29)

B.3.1 Periodic functions

To parametrise i-periodic functions with at most constant asymptotics and poles only at

iZ, we use the functions

Pk(u) ≡
∞∑

n=−∞

1

(u+ in)k
= ηk + η̄

[−2]
k . (B.30)

Relation to trigonometric functions

The i-periodic functions Pk are related to coth(πu) = cosh(πu)
sinh(πu) , through e.g.

P1 = π coth(πu)

P2 = π2
(
coth2(πu)− 1

)
P3 = π3

(
coth3(πu)− coth(πu)

)
. (B.31)

The equality for P1 follows from the observation that both expressions have matching

periodicity, poles and residues. All other relations can be derived by taking derivatives of

the first, using that d
duPk = −kPk+1. Note that Pk ∼ e−2πu at u→∞ for k > 1.

Power expansion at u = 0

The power expansion of Pk at u = 0 is

Pk =
1

uk
+ (-i)k

∞∑
j=0

i
j [k]j
j!

(
1− (−1)k+j

)
ζk+ju

j , (B.32)

which only contains the transcendental numbers ζ2n ∼ ζn2 ∼ π2n.

B.3.2 Twisted generalisation

In the fully twisted QSC, and in the Q-operators of non-compact spin chains, we encounter

a twisted generalisation of the η-functions:

ηx1,...,xn
a1,...,an(u) ≡

∑
0≤k1<...<kn≤∞

xk1
1 · · · xknn

(u+ ik1)a1 · · · (u+ ikn)an
. (B.33)

Note that the sum is only well-defined when the twists xi are phases. Products of twisted η-

functions again satisfy stuffle relations that always make it possible to linearise expressions,

e.g.

ηx1
a1
ηx2
a2

= ηx1x2
a1+a2

+ ηx1,x2
a1,a2

+ ηx2,x1
a2,a1

. (B.34)
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Generalised Lerch transcendents

When working with Q-operators, we prefer to make the change of variables z = iu − 1
2 .

This makes it natural to work with the generalised Lerch transcendents defined by

Φx1,x2,...,xn
a1,a2,...,an(z) =

∞∑
0≤k1<k2<...<kn

xk1
1 xk2

2 · · · xknn
(z + k1)a1(z + k2)a2 · · · (z + kn)an

. (B.35)

These functions are equivalent to the twisted η-functions (B.33),

Φx1,x2,...,xn
a1,a2,...,an(z) = i

nηx1,x2,...,xn
a1,a2,...,an(iz) , (B.36)

and they similarly satisfy stuffle relations, e.g.

Φx1
a1

Φx2
a2

= Φx1,x2
a1,a2

+ Φx1x2
a1+a2

+ Φx2,x1
a2,a1

. (B.37)

It follows from the definition (B.35) that the generalised Lerch transcendents satisfy the

identity

Φx,x1,...,xn
a,a1,...,an(z) =

x1 · · · xn
za

Φx1,...,xn
a1,...,an(z + 1) + xx1 · · · xnΦx,x1,...,xn

a,a1,...,an(z + 1) . (B.38)

Power expansion at z = 0

The power expansion of the generalised Lerch transcendents at z = 0 has the form

Φx
a =

1

za
+
∞∑
j=0

(−1)j [a]j
j!

ujζxa+j , (B.39)

Φx1,x2,...
a1,a2,... =

1

za1

∞∑
j2,j3,...=0

(−1)j2+j3+...[a2]j2 [a3]j3 · · ·
j2!j3! · · ·

uj2+j3+...ζx2,x3,...
a2+j2,a3+j3,...

+

∞∑
j1,j2,...=0

(−1)j1+j2+...[a1]j1 [a2]j2 · · ·
j1!j2! · · ·

uj1+j2+...ζx1,x2,...
a1+j1,a2+j2,...

.
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B.4 Pochhammer, Gamma, Beta and Hypergeometric func-

tions

This section collects a number of definitions and identities for Pochhammer symbols,

Gamma functions, Beta functions and Hypergeometric functions that are used in the

thesis. See e.g. [158] for more details.

B.4.1 Gamma functions and the rising Pochhammer symbol

For n ∈ N+ the Gamma function and the rising Pochhammer symbol satisfy

[z]n ≡ Γ(z + n)

Γ(z)
= z(z + 1) · · · (z + n− 1) (B.40a)

[z − n+ 1]n = (−1)n[−z]n (B.40b)

[z]−n ≡ Γ(z − n)

Γ(z)
=

1

[z − n]n
=

(−1)n

[1− z]n
(B.40c)

[z]n+m = [z]n[z + n]m . (B.40d)

One can do the following partial fraction decomposition:

1

[z]k
=

k−1∑
j=0

(-1)j

(z + j)j!(k − 1− j)!
. (B.41)

Appearance in oscillator products

For oscillators satisfying [a,a†] = aa† − a†a = 1 the following reorderings can be made:

(a†)kak =
Γ(Na + 1)

Γ(Na − k + 1)
= [Na − k + 1]k (B.42)

ak(a†)k =
Γ(Na + 1 + k)

Γ(Na + 1)
= [Na + 1]k . (B.43)

B.4.2 Beta function

For Re (x) > 0 and Re (y) > 0, the Beta function is defined by

B(x, y) =

∫ ∞
0

dt tx−1(1− t)y−1 =
Γ(x)Γ(y)

Γ(x+ y)
. (B.44)

B.4.3 Hypergeometric functions

The generalised Hypergeometric function is defined by

pFq

(
a1, ...ap

b1, ..., bq
; z

)
≡
∞∑
n=0

[a1]n · · · [ap]n
[b1]n · · · [bq]n

zn

n!
. (B.45)
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Euler transform

The function 2F1 satisfies the relation

2F1

(
a, b

c
; z

)
= (1− z)c−a−b 2F1

(
c− a, c− b

c
; z

)
. (B.46)

Euler integral transform

For c ∈ N+,

p+1Fq+1

(
a1, ...ap, c

b1, ..., bq, d
; z

)
=

Γ(d)

Γ(c)Γ(d− c)

∫ 1

0
dt tc−1(1− t)d−c−1

pFq

(
a1, ...ap

b1, ..., bq
; tz

)
.

(B.47)

Relation for 3F2

The function 3F2 satisfies the relation

3F2

(
a, b, c

d, e
; 1

)
=

Γ(e)Γ(d+ e− a− b− c)
Γ(e− a)Γ(d+ e− b− c)3F2

(
a, d− b, d− c
d, d+ e− b− c

; 1

)
. (B.48)
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Discrete calculus

This appendix collects the technical details related to solving finite-difference equations

and evaluating auxiliary space traces for Q-operators.

C.1 The Ψ-operation

The Ψ-operation plays a role in several chapters of the thesis, and it is one of the main

operations in the perturbative algorithms of chapter 6.

Definition

The Ψ operation is defined as the inverse of the difference operator ∇(f) = f − f [2], and

is unique up to the addition of an i-periodic function P, which needs to be fixed from

boundary conditions, i.e.

Ψ(f − f [2]) = f + P . (C.1)

It can be represented by the infinite sum Ψ(f) =
∑∞

k=0 f
[2k] when this sum is convergent.

In this appendix we explain how to compute the action of the Ψ-operator (C.1) on the

algebra of functions encountered in the perturbative solution of the QSC. It will be clear

that this class of functions is closed with respect to the action of Ψ.

C.1.1 Action on basis of functions appearing in the QSC

First note that any rational function of the form
∑
a bau

a∏
n,m(u+in)m can be rewritten as a sum

of a polynomial and shifted inverse powers,
∑
cau

a +
∑

n,m
dn,m

(u+in)m . The expressions

encountered in the perturbative solution of the QSC can then be split in four classes

of functions of the spectral parameter: monomials, shifted inverse powers, products of

monomials and η-functions, and products of inverse powers and η-functions. Note that

i-periodic functions Pa (B.30) are treated as constants by Ψ, i.e. Ψ(Pa f) = Pa Ψ(f).
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Monomials

Applying Ψ to a polynomial p(u) =
∑n

a=0 cau
a results in a polynomial of one order higher,

f(u) = Ψ(p(u)), found from solving the equation

f(u)− f(u+ i) = p(u) . (C.2)

In practice, one can compute and store only the action on monomials Ψ(ua).

Shifted inverse powers

By the definition of the η-function (B.22), the action of Ψ on a shifted inverse power is

Ψ

(
1

(u+ in)a

)
=

∞∑
m=0

1

(u+ in+ im)a
= η[2n]

a . (C.3)

For a ≥ 2 the sum is convergent, while for a = 1 we regularise the logarithmically divergent

sum by postulating that it is equal to η
[2n]
1 , which is defined as η1(u) ≡ iψ(−iu) [109],

where ψ is the digamma function.

Terms of the form η
(u+in)a

To handle products of η-functions and shifted inverse powers, we use the representation

Ψ(f) ≡
∞∑
n=0

f [2n] when the sum is convergent. Therefore

Ψ

(
η

[2n+2]
A

(u+ in)a

)
= η

[2n]
a,A . (C.4)

The logarithmically divergent sums are always regularised so as to satisfy (C.4).

When an expression of the kind Ψ

(
η

[2n]
A

(u+im)a

)
is encountered, the strategy is to shift

the η-function using the relation (B.24) until the produced terms have the form (C.4) or

the η-function runs out of indices.

Terms of the form uaη

Products of monomials and η-functions are handled using the relation

∇
(

Ψ(ua)η
[2n]
b,A

)
= uaη

[2n]
b,A + Ψ(ua)[2] 1

(u+ in)b
η

[2+2n]
A , (C.5)

which leads to

Ψ(uaη
[2n]
b,A ) = Ψ(ua)η

[2n]
b,A −Ψ

(
Ψ(ua)[2] 1

(u+ in)b
η

[2+2n]
A

)
. (C.6)

The last relation is applied repeatedly until the produced terms are products of shifted

inverse powers and η-functions, or the η-function runs out of indices.
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C.1.2 Action on twisted basis of functions

The action on the twisted basis of functions appearing in the Q-operator construction

proceeds in complete analogy with the untwisted case. We here give the action on the

basis of generalised Lerch transcendents and the redefined spectral parameter z = iu− 1
2 ,

on which we define Ψ through Ψ(f(z)− f(z + 1)) = f(z) +P. This means that Ψ can be

represented as Ψ(f(z)) =
∑∞

k=0 f(z + k) when the sum is convergent. The encountered

functions can be split into four classes exactly as above.

Monomials, xzza

For x 6= 1, Ψ(xzza) is another polynomial with an overall exponential factor of the form

p(z) = xz(caz
a + ...+ c0) satisfying the constraint p(z)− p(z + 1) = xzza. This constraint

fixes p(z) completely. In the case x = 1, the polynomial is of degree a+ 1 instead.

Shifted inverse powers

From the definition of the generalised Lerch transcendent (B.35) we have

Ψ

(
xz

(z +m)a

)
= xzΦx

a(z +m) . (C.7)

Terms of the form xzΦ
(z+m)a

Note that

Ψ

(
xzΦx1,x2,...,xn

a1,a2,...,an(z + 1)

za

)
= xzΦx,x1,x2,...,xn

a,a1,a2,...,an(z) . (C.8)

To evaluate Ψ

(
xzΦ

x1,x2,...,xn
a1,a2,...,an

(z+m)a

)
, use (B.38) to align the shifts and then use (C.8).

Terms of the form xzzaΦ

To evaluate products of monomials and generalised Lerch transcendents, one can, as in

(C.6), use the finite difference analog of partial integration,

Ψ
(
f
(
g − g[2]

))
= fg −Ψ

(
g[2]
(
f − f [2]

))
. (C.9)

To evaluate Ψ(xzzaΦx1,x2,...,xn
a1,a2,...,an), set f = (x1 · · · xn)zΦx1,x2,...,xn

a1,a2,...,an and g − g[2] =
(

x
x1···xn

)z
za.

This can be used recursively until no terms of this type are present.
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C.2 Evaluating auxiliary space traces

We encounter the following three expressions in the normalised supertraces (8.20). By

ŝtrab we refer to the normalised supertrace over the factor space in which the oscillator

ξab acts.

Monomials

Using the same argument as in section 2.3.3, the trace over a monomial is

ŝtrab Nk
ab =



∑k
n=0 〈kn〉

(
xa
xb

)n+1−δk,0(
1− xa

xb

)k bosonic

(
xa

xa−xb

)1−δk,0
fermionic

, (C.10)

where
〈
k
n

〉
are the Eulerian numbers defined by〈

k

n

〉
=

n+1∑
j=0

(−1)j
(
k + 1

j

)
(n− j + 1)k . (C.11)

Negative powers

From the definition of the Lerch transcendent (C.7), we have

ŝtrab
1

(Nab + r)`
=


xb−xa
xb

Φ
xa
xb
`−m(r) bosonic

1
xb−xa

(
xb
r`
− xa

(r+1)`

)
fermionic

. (C.12)

Monomial times Lerch transcendent

The trace over a product of a monomial and a Lerch transcendent is

ŝtrab Nk
abΦ

x
`(Nab + r)

=



xb−xa
xb

{
δk,0+

∑k
t=1 〈 kt−1〉

(
xa/xb

x

)t(
1− xa/xb

x

)k+1 Φx
`(r)−

1
x

∑k
s=0

(
k
s

) δs,k+
∑k−s
t=1 〈k−st−1〉

(
xa/xb

x

)t(
1− xa/xb

x

)k−s+1

×
[(∑s

j=0

(
s
j

)
(1− r)s−jΦxa/xb

`−j (r − 1)

)
− δs,0 1

(r−1)`

]}
bosonic

1
xb−xa

(
xbδk,0Φx

`(r)− xaΦ
x
`(r + 1)

)
fermionic

.

(C.13)

Proof To show this formula in the bosonic case, one can use a “partial summation”

trick. Denote f = f(j), f+ = f(j + 1), and ∆(f) ≡ f(j)− f(j + 1). Observe that

∆(fg) = f+∆(g) + g∆(f) . (C.14)
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Now sum over j to get (Σ =
∑∞

j=0)

Σ(g∆(f)) = fg|j=0 − Σ(f+∆(g)) . (C.15)

To evaluate the expression

∞∑
j=0

yjjkΦx
l (r + j) , (C.16)

identify g = xjΦx
l (r + j) and ∆(f) = ( yx)jjk. We then have ∆(g) = xj

(r+j)l
, and we need to

find f , which solves the equation

f(j)− f(j + 1) =
(y
x

)j
jk . (C.17)

The solution to this equation has the structure

f(j) =
(y
x

)j k∑
s=0

(−1)k+1−s(k
s

)
js

( yx − 1)k+1−s

(
δs,k +

k−s∑
t=1

〈
k − s
t− 1

〉(y
x

)t)
. (C.18)

Then

fg|j=0 = Φx
l (r)

(−1)k+1

( yx − 1)k+1

(
δk,0 +

k∑
t=1

〈
k

t− 1

〉(y
x

)t)
, (C.19)

and (C.16) evaluates to

Σ(f+∆(g)) =
y

x

∞∑
j=0

yj

(r + j)l

k∑
s=0

(−1)k+1−s(k
s

)
(j + 1)s

( yx − 1)k+1−s

(
δs,k +

k−s∑
t=1

〈
k − s
t− 1

〉(y
x

)t)
.

(C.20)
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