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Abstract We show that the standard perfect fluid paradigm is not necessarily a
valid description of a curved space steady state gravitational source. Simply by
virtue of not being flat, curved space geometries have to possess intrinsic length
scales, and such length scales can affect the fluid structure. For modes of wave-
length of order or greater than such scales eikonalized geometrical optics can-
not apply and rays are not geodesic. A set of wave mode rays that would all
be geodesic in flat space (where there are no intrinsic length scales) and form
a flat space perfect fluid would not all remain geodesic or of the perfect fluid form
when the system is covariantized to curved space. Covariantizing thus entails not
only the replacing of flat space functions by covariant ones, but also the intro-
duction of intrinsic scales that were absent in flat space. In principle it is thus
unreliable to construct the curved space energy–momentum tensor as the covari-
ant generalization of a geodesic-based flat spacetime energy–momentum tensor.
By constructing the partition function as an incoherent average over a complete
set of modes of a scalar field propagating in a curved space background, we
show that for the specific case of a static, spherically symmetric geometry, the
steady state energy–momentum tensor that ensues will in general be of the form
Tµν = (ρ + p)UµUν + pgµν +πµν where the anisotropic πµν is a symmetric, trace-
less rank two tensor which obeys U µ πµν = 0. Such a πµν type term is absent for an
incoherently averaged steady state fluid in a spacetime where there are no intrinsic
length scales, and in principle would thus be missed in a covariantizing of a flat
spacetime Tµν . While the significance of such πµν type terms would need to be
evaluated on a case by case basis, through the use of kinetic theory we reassur-
ingly find that the effect of such πµν type terms is small for weak gravity stars
where perfect fluid sources are commonly used.
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1 Introduction

In gravitational theory it is standard to take the macroscopic energy–momentum
tensor of a steady state gravitational fluid source to be in the form of a perfect
fluid. At the microscopic level a steady state fluid consists of a set of particles or
waves whose contributions to the energy–momentum tensor are added incoher-
ently (equal a priori probability for individual microstates). A steady state fluid
thus consists of a set of particles that are only coupled to the background gravita-
tional field but not to each other, or a set of wave modes that are only coupled to the
background gravitational field but not to each other. As such, a steady state fluid is
thus a fluid whose partition function is diagonal in a complete basis of particles or
a complete basis of waves. In flat spacetime with metric ηµν = diag(−1,1,1,1)
the macroscopic energy–momentum tensor constructed as the partition function
average of the microscopic energy–momentum tensor of the basis states of such a
steady state fluid will have the perfect fluid form

Tµν(flat) = (ρ f + p f )UµUν + p f ηµν , (1)

where ρ f is the fluid energy density, p f is the fluid pressure, and U µ is a timelike
velocity vector that obeys ηµνU µUν = −1. It is conventional to covariantize this
expression in order to obtain the macroscopic energy–momentum tensor that is to
describe a steady state fluid in a curved geometry with general metric gµν . The
covariantization prescription is to replace all flat space tensors by curved space
ones and all flat space derivatives by covariant ones, so that a curved space perfect
fluid is to be described by (1) as written in a non-flat background, viz.

Tµν(curved) = (ρ f + p f )UµUν + p f gµν , (2)

where now gµνU µUν =−1, with no other terms with the requisite tensor structure
being deemed relevant. Remarkably, no dynamical justification for the appropri-
ateness of such a procedure appears to have been given in the literature, and its
use is simply taken as being self-evident.

In this paper we examine this covariantization prescription and find that there
are steady state curved space systems for which the covariantization prescription
does not necessarily hold or for which it is only approximate, i.e. there are curved
space cases in which the construction of the macroscopic energy–momentum ten-
sor starting from steady state microphysics can lead to departures from the per-
fect fluid form given in (2). Such cases are typically associated with curved space
geometries with symmetry lower than the maximally 4-symmetric flat space Minkowski
geometry. In particular, we find that the covariantization prescription does not
automatically hold in a situation where it is commonly used, namely in a static,
spherically symmetric system such as a star (a geometry that is only maximally
2-symmetric). Reassuringly though, we will find that for weak gravity stars the
departure from a perfect fluid form will be small, to thus justify the use of perfect
fluids in such cases.

To understand why there might even be a concern about the covariantization
prescription, we note that there is more to covariantization than merely replacing
flat space functions by their curved space generalizations. Specifically, since the
act of replacing a flat space geometry by a curved space one replaces constant
metric coefficients by spacetime dependent ones, the very act of covariantizing a
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geometry necessitates that a geometry that possesses no intrinsic lengths scales is
replaced by one that does (viz. the scale on which the metric coefficients vary).
Microscopic physics in curved space thus becomes sensitive to the presence of
these intrinsic length scales even though there had been no analogous sensitivity
in the associated flat spacetime limit. Modes of wavelength of order or greater
than such intrinsic scales cannot be described by eikonalized geometrical optics
and their associated rays cannot be the geodesic ones they would have been in the
absence of curvature. (In flat space where there are no intrinsic scales, modes of
any wavelength are geodesic.) Thus a set of modes that were all geodesic in flat
space and could all be described by geometric optics (the ingredient that actually
makes their macroscopic energy–momentum tensor be of the perfect fluid form in
the first place) could not all continue to obey geometric optics after covariantiza-
tion. The contribution to the curved space partition function of these long wave-
length modes would then necessarily lead to a macroscopic energy–momentum
tensor that is not of perfect fluid form. Since the covariantizing of a wave equation
would not cause modes to become coupled to each other if they had not already
been coupled in flat space, following covariantization a diagonal partition function
will remain diagonal, and will thus still describe a steady state system. The only
difference between the covariantized and flat space cases would be that the curved
space long wavelength modes would no longer be geodesic.

To be more specific, we recall that if, as for instance noted in [1] and [2], we
conveniently set S(x) = exp(iT (x)) in a typical wave equation such as the curved
space scalar field wave equation ∇µ ∇µ S(x) = 0 for a massless scalar field S(x),
we obtain

∇
µ T ∇µ T − i∇µ

∇µ T = 0. (3)

For wavelengths that are short with respect to the typical scale of the problem on
which the variation of the ∇µ ∇µ T term is important, (3) reduces to ∇µ T ∇µ T = 0,
to yield first ∇µ T ∇ν ∇µ T = 0, and then

∇
µ T ∇µ ∇ν T = 0 (4)

since ∇µ ∇ν T = ∇ν ∇µ T . Since normals to the wavefronts obey the eikonal rela-
tion

∇
µ T =

dxµ

dq
= kµ (5)

where q measures distance along the normal and kµ is the wave vector of the wave,
on noting that d/dq = (dxµ/dq)(∂/∂xµ), from (4) we thus obtain

kµ
∇µ kν =

d2xν

dq2 +Γ
ν

µλ

dxµ

dq
dxλ

dq
= 0. (6)

Recognizing (6) as the massless geodesic equation, we see that in the short
wavelength limit, rays move on geodesics. Moreover, exactly the same result can
be obtained (see e.g. [2]) for massive scalar fields as well, with it being a general
rule that short wavelength rays are geodesic. Now while the ∇µ ∇µ T term would
vanish identically for a plane wave eik·x with constant kµ propagating in flat space-
time, in a curved space this term would not automatically vanish, and thus long
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wavelength curved space wave modes would not be geodesic even though these
selfsame modes were geodesic in the absence of curvature. Thus in order to avoid
missing any explicit curvature-dependent effects when one goes from flat space to
curved space, one should covariantize not the flat space limit of (4), but rather one
should covariantize the flat space limit of the full (3) instead.1

As well as have an effect on wave modes, these same curved space consid-
erations can also effect particle motions. As for instance noted in [2; 3], neither
the equivalence principle nor general coordinate invariance prevents the presence
of explicit curvature-dependent terms in particle equations of motion even though
such terms would be absent in flat spacetime. Specifically, if we consider the point
particle action given in [2], viz.

IT =−mc
∫

dτ −κ

∫
dτRα

α , (7)

its variation with respect to the particle coordinate xλ leads to the equation of
motion

mc

(
d2xλ

dτ2 +Γ
λ

µν

dxµ

dτ

dxν

dτ

)
= −κRα

α

(
d2xλ

dτ2 +Γ
λ

µν

dxµ

dτ

dxν

dτ

)

−κRα

α;β

(
gλβ +

dxλ

dτ

dxβ

dτ

)
. (8)

Similarly for a particle with spin vector Sµ , Weinberg [3] considers the equation
of motion

mc

(
d2xλ

dτ2 +Γ
λ

µν

dxµ

dτ

dxν

dτ

)
=− f Rλ

µνκ

dxµ

dτ

dxν

dτ
Sκ , (9)

where f is a constant. Both (8) and (9) are general coordinate invariant equations
of motion, and in the absence of curvature both reduce to the standard flat space-
time geodesic equation

mc

(
d2xλ

dτ2 +Γ
λ

µν

dxµ

dτ

dxν

dτ

)
= 0 (10)

(as written here in a curvilinear coordinate system). Moreover, both (8) and (9)
obey the equivalence principle, since no matter how curved a space might be, at
any given point in the spacetime one is always able to find a coordinate system in

1 This is not all that can happen when one goes to curved space, since the wave equation of the
scalar field itself can change. For instance, general covariance does not forbid the presence in the
action of a direct coupling term (ξ/12)S2Rα

α between the scalar field and the Ricci scalar, with
the scalar field equation of motion then being modified into ∇µ ∇µ S +(ξ/6)SRα

α = 0 where ξ

is a constant.
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which the Christoffel symbol term can be made to vanish.2 Thus while one can
descend to the flat space (10) starting from the curved space equations such as (8)
or (9), covariantizing the flat spacetime (10) can never uncover the presence of any
curved space terms that are absent in flat spacetime. Thus for both waves and par-
ticles flat spacetime information is not a reliable guide for extracting curved space
information. However, as noted by Weinberg [3], if the scale on which particle
parameters (or analogously wave parameters) vary is much less than the scale on
which the spatial curvature varies, curvature-dependent terms will be negligible,
and curved space geodesic behavior for particles and waves will still result. It is
the purpose of this paper to explore what happens when such curvature-dependent
terms are not negligible, and to provide a general framework for determining how
important they might then potentially be.

While the above analysis applies to any individual particle mode or any indi-
vidual wave mode, for the fluid sources that are commonly used in astrophysics
and cosmology we need to calculate partition function averages by summing over
complete sets of such particles or waves. Since we can do the summation in any
basis in which the partition function is diagonal, for the purposes of this paper
we shall do the summation in a wave mode basis as the needed calculations then
prove to be very straightforward. Moreover, wave mode bases are of central rele-
vance in astrophysics and cosmology since white dwarf stars are stabilized by the
Pauli degeneracy of the quanta of the spin one-half Dirac field, and the cosmolog-
ical radiation era is described by the coupling of gravity to the cosmic black-body
radiation.

To understand the nature of the incoherent averaging that is required, it is
instructive to first consider a free Fermi gas in flat spacetime with its familiar
energy density and pressure

ρ =
1

π2h̄3

∫ kF

0
dkk2(k2 +m2)1/2, p =

1
3π2h̄3

∫ kF

0
dk

k4

(k2 +m2)1/2 , (11)

as summed incoherently over all the modes up to the Fermi momentum kF. For
such a Fermi gas the energy–momentum tensor has the form

Tµν(gas) = (ρ + p)UµUν + pηµν , (12)

where Uµ is unit length timelike vector and ηµν is the Minkowski metric. For a
free massive quantum-mechanical fermionic field in flat spacetime the energy–
momentum tensor of the field is given by

Tµν(field) = iψ̄γµ ∂ν ψ. (13)

2 The equivalence principle does not require that all effects associated with a gravitational
field can be removed at a given point by a coordinate transformation, as any Riemann ten-
sor dependent term can never be brought to zero by a coordinate transformation. Rather, the
content of the equivalence principle is that at any given point in a curved space the Christof-
fel symbol dependent contribution to the geodesic equation can be removed via a coordinate
transformation. Specifically, since the Christoffel symbols are not coordinate tensors, at any
given point they can be brought to zero via a general coordinate transformation. Similarly, the
quantity d2xλ /dτ2 is not a coordinate tensor either. It is only the specific linear combination
d2xλ /dτ2 +Γ λ

µν (dxµ/dτ)(dxν/dτ) with the two terms having this very specific relative weight
that is a coordinate tensor, to thus enforce the equality of the gravitational and inertial masses in
(8) and (9), even as these two equations contain Riemann tensor dependent terms.
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When this Tµν(field) is evaluated in a fermionic quantum state with momentum
kµ = (Ek, k̄) where Ek = (k̄2 + m2)1/2, up to irrelevant normalization factors one
obtains

Tµν(state) =
kµ kν

Ek
. (14)

Since this expression refers to one state alone, it is coherent. However, it is not
of the perfect fluid form, since for kµ = (Ek,0,0,k) for instance we find that
Tµν(state) evaluates to

Tµν(Ek,0,0,k) =

Ek 0 0 k
0 0 0 0
0 0 0 0
k 0 0 k2/Ek

 (15)

with the off-diagonal T03(Ek,0,0,k) not being zero. To eliminate this off-diagonal
term we now incoherently add the contribution of the mode propagating in the
negative z direction, to give

Tµν(Ek,0,0,k)+Tµν(Ek,0,0,−k) =

2Ek 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2k2/Ek

 . (16)

While now diagonal this is still not of the perfect fluid form as only the (3,3)
component of the pressure tensor is non-zero. To bring it to a perfect fluid form
we must add modes propagating in the ±x and ±y directions as well, with this six
state sum then yielding

Tµν(6 states) =


6Ek 0 0 0

0 2k2/Ek 0 0
0 0 2k2/Ek 0
0 0 0 2k2/Ek

 . (17)

Finally, when we sum over all directions and magnitudes of k̄ up to the Fermi
momentum, (11) and (12) are then recovered.

The essence of the above calculation is that we first evaluate matrix elements
of Tµν in individual states and then add the matrix elements, rather than first add
states and then evaluate the matrix elements. The summation over matrix elements
in individual states is incoherent, while the summation over states first is coherent
and generates interference cross-terms. Steady state systems in statistical mechan-
ical equilibrium are thus associated with the incoherent averaging procedure, and
so it is this particular averaging that we shall perform in curved space in order
to determine how such curved space sums might then look. To determine how
significant such curvature-dependent effects might be in any given gravitational
situation one would need to construct the macroscopic energy–momentum tensor
starting from microphysics in each individual case and see what ensues. In general
then, the required procedure is to first find a basis in which the partition function
is diagonal and from it then determine the macroscopic energy–momentum tensor
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as the partition function average of the microscopic energy–momentum tensor of
the basis states, and whatever form the ensuing macroscopic energy–momentum
tensor then takes, that is the macroscopic form one has to use. To actually show
that we do not always recover (2) in general, we only need to find one explicit
counterexample. We thus only need to find one appropriate choice of metric coef-
ficients for which one can do the incoherent partition function summation over an
infinite set of wave modes analytically and then fail to recover (2). It is precisely
such a calculation that we provide in this paper.

In the literature the notions of steady state fluid and perfect fluid are ordinarily
taken to be equivalent and are used interchangeably. However, since the results
of our work hinge on an in principle difference between the two concepts, it is
instructive to clarify what that difference is. For a fluid to be in a steady state we
understand only that we are able to find a basis in which the partition function of
the system is diagonal, with the basis states being decoupled from each other. As
such, this requirement is only a requirement on the structure of the basis states,
and in and of itself, it is not a requirement on the form of the energy–momentum
tensor, and it is not obliged to lead to the form for the energy–momentum given
in (2). However, in the literature it is the form given in (2) which is referred to
as the perfect fluid form, with any departures from this form (so-called imperfect
fluid terms) being thought to be caused by interactions between the basis states,
interactions that are associated with transport phenomena such as viscosity and
heat conduction. The point of our work here is that in curved spacetime, one can
obtain departures from the form given in (2) even when the basis modes are not in
interaction with each other at all, i.e. that after relaxation to steady state in curved
space one can obtain a form for the energy–momentum tensor different from that
given in (2). This situation is to be contrasted with the situation that obtains in
flat spacetime, since there it is the interactions associated with the non-vanishing
of the collision integral term in the kinetic theory Boltzmann equation that lead
to the viscosity and heat conduction dependent terms associated with fluids that
are not perfect. However, that wisdom does not carry over to curved space since
gravitational interactions are described not by a adding a gravitational scattering
contribution to the Boltzmann equation collision integral, but by treating gravity as
being due to curvature instead. As we explicitly show in this paper, after relaxing
to steady state in the presence of gravity, the energy–momentum tensor of a fluid
need not have the form given in (2).

In order to ascertain for which steady state systems a departure from the perfect
fluid form might be the most pronounced, it is instructive to analyze the geometric
structure of two of the most commonly encountered geometries in astrophysics,
the maximally 2-symmetric geometry associated with a static, spherically sym-
metric star, and the maximally 3-symmetric Robertson–Walker geometry associ-
ated with a homogeneous and isotropic cosmology. We do not consider systems
such as an accretion disk but the conclusions would be analogous.

For the case first of a star, we note that unlike the maximally 4-symmetric flat
spacetime geometry in which steady state fluids do have the form given in (1),
spherical systems have much lower (only maximally 2-symmetric) symmetry and
are only isotropic about a single point (the center of the system). Such a symmetry
only requires for any given tensor Aµν that its A θ

θ
and A φ

φ
components be equal,

and imposes no restriction on A r
r . A familiar example of this is the form of the
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Einstein tensor Gµν in the static, spherical geometry

ds2 =−B(r)dt2 +A(r)dr2 + r2dθ
2 + r2 sin2

θdφ
2, (18)

where the non-zero components of Gµν are given by

G00 = − B
r2 +

B
r2A

− BA′

rA2 ,

Grr =
A
r2 −

1
r2 −

B′

rB
, (19)

Gθθ =
Gφφ

sin2
θ

=−r2B′′

2AB
+

r2A′B′

4A2B
+

r2B′2

4AB2 −
rB′

2AB
+

rA′

2A2 .

As we see, there no relation of the form G r
r = G θ

θ
in (19), and not only that,

there could not be since the radial component of the Bianchi identity, viz. Grν
;ν =

∂rGrr +(A′/A+B′/2B+2/r)Grr − (r/A)Gθθ − (rsin2
θ/A)Gφφ +(B′/2A)G00 =

0, relates the radial derivative of Grr to Gθθ , to thereby force Grr to be a first-order
derivative function of r and Gθθ to be a second-order one.

This same problem is not evaded if one works in isotropic coordinates, where,
because of coordinate invariance, the metric can actually be brought to a form

ds2 =−H(ρ)dt2 + J(ρ)(dρ
2 +ρ

2dθ
2 +ρ

2 sin2
θdφ

2) (20)

that does have the generic perfect fluid form g ρ

ρ = g θ
θ

= g φ

φ
. Specifically, even

in this coordinate system the Einstein tensor

G00 =
2HJ′

ρJ2 − 3HJ′2

4J3 +
HJ′′

J2 ,

Gρρ = − J′

ρJ
− H ′J′

2HJ
− J′2

4J2 −
H ′

ρH
, (21)

Gθθ =
Gφφ

sin2
θ

=−ρ2J′′

2J
− ρJ′

2J
+

ρ2J′2

2J2 − ρH ′

2H
+

ρ2H ′2

4H2 − ρ2H ′′

2H

is still not of a perfect fluid form, and indeed must still not be since now the
Bianchi identity relates the radial derivative of Gρρ to Gθθ . Since the gravita-
tional equations of motion would relate gravitational tensors such as the Einstein
tensor to the energy–momentum tensor, even in isotropic coordinates we should
not expect the components of Tµν to necessarily obey T ρ

ρ = T θ
θ

= T φ

φ
. We

thus anticipate, and shall indeed find, that for a steady state star there will be in
principle departures from the perfect fluid form.

While the spatial symmetry of a static, spherically symmetric star is quite
low (the geometry is only isotropic about one single point), in the Robertson–
Walker case the symmetry of the spatial geometry is very high (the geometry is
isotropic about every spatial point), being in fact as high as the spatial symmetry
of flat spacetime. Thus just as the incoherent averaging over all of the modes of
classical massless scalar or classical Maxwell fields propagating in a Minkowski
background geometry yields a perfect fluid energy–momentum tensor [4; 5; 6],
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incoherent averaging of the modes of the same fields in a background Robertson-
Walker geometry does so as well [4; 5; 6]. While it is the case that a Robertson-
Walker geometry does possess an intrinsic length scale (viz. that associated with
the spatial 3-curvature k), because of the high spatial symmetry, the only role of
this intrinsic scale is to affect how the energy density and pressure depend on tem-
perature [6] but not to generate any imperfect fluid terms in the energy–momentum
tensor. The effect which we identify in this paper could thus only be manifest in
geometries with a spatial symmetry lower than that which obtains for a Robertson-
Walker geometry.

In Sect. 2 of this paper we describe the incoherent averaging procedure in
detail. In Sect. 3, we apply it to a fluid in a specific, exactly solvable, static, spher-
ically symmetric geometry, to find that we do not obtain a perfect fluid form. In
Sect. 4, we examine the tensor structure of the energy–momentum tensor that we
obtain by incoherent averaging, and identify the presence of a non-perfect fluid
πµν term in it. In Sect. 5, we show that through the imposition of boundary condi-
tions there can be departures from a perfect fluid form for finite-sized systems even
in flat spacetime. Finally, in Sect. 6, we discuss the implications of kinetic theory
for the structure of fluids, and show that even for Newtonian gravity there are in
principle differences between stars and clusters of galaxies, even though both sys-
tems are static and spherically symmetric when in steady state. Such differences
would need to be taken into consideration when these particular systems become
relativistic. Reassuringly though, through the use of this same kinetic theory anal-
ysis we are able to provide a justification for the use of perfect fluids sources
in weak gravity stars, though any other gravitational situations would need to be
analyzed on a case by case basis.

2 The curved space energy–momentum tensor

For our purposes here an appropriate model to study is a minimally coupled mass-
less scalar field S(x) with action

I =−
∫

d4x(−g)1/2 1
2

∇µ S∇
µ S (22)

propagating in the background associated with the metric of (20). For the scalar
field the equation of motion is given by ∇µ ∇µ S = 0, i.e. by

− 1
H

∂ 2S
∂ t2 +

1
H1/2J3/2ρ2

∂

∂ρ

[
H1/2J1/2

ρ
2 ∂S

∂ρ

]
+

1
Jρ2

[
1

sinθ

∂

∂θ

(
sinθ

∂S
∂θ

)
+

1
sin2

θ

∂ 2S
∂φ 2

]
= 0, (23)

and the energy–momentum tensor is of the form

Tµν = ∇µ S∇ν S− 1
2

gµν ∇α S∇
α S. (24)
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The equation of motion can be separated, and for a real scalar field the general
solution can be expressed in terms of four characteristic solutions

S1(x)=Nm
` sin(ωt)Sω,`(ρ)Pm

` (θ)sin(mφ), S2(x)=Nm
` sin(ωt)Sω,`(ρ)Pm

` (θ)cos(mφ),
S3(x)=Nm

` cos(ωt)Sω,`(ρ)Pm
` (θ)sin(mφ), S4(x)=Nm

` cos(ωt)Sω,`(ρ)Pm
` (θ)cos(mφ),

(25)

where Nm
` is given by

Nm
` = (−1)m

[
(2`+1)(`−m)!

4π(`+m)!

]1/2

, (26)

and where the radial term obeys[
ω2

H
+

1
H1/2J3/2ρ2

d
dρ

(
H1/2J1/2

ρ
2 d

dρ

)
− `(`+1)

Jρ2

]
Sω,`(ρ) = 0. (27)

For the incoherent averaging procedure in the static, spherically symmetric
case, we note that in a given mode such as S1(x) a quantity such as ∇α S∇α S
evaluates to

∇α S1∇
α S1 = −ω2

H
cos2(ωt)[Sω,`Nm

` Pm
` ]2 sin2(mφ)

+
1
J

sin2(ωt)
[

dSω,`

dρ

]2

[Nm
` Pm

` ]2 sin2(mφ)

+
1

Jρ2 sin2(ωt)[Sω,`]2
[
[Nm

` ]2
[

dPm
`

dθ

]2

sin2(mφ)

+
m2

sin2
θ

[Nm
` Pm

` ]2 cos2(mφ)
]
. (28)

On now adding to this expression those obtained when one uses the other three
above solutions, one obtains

i=4

∑
i=1

∇α Si∇
α Si = −ω2

H
[Sω,`Nm

` Pm
` ]2 +

1
J

[
dSω,`

dρ

]2

[Nm
` Pm

` ]2

+
1

Jρ2 [Sω,`]2
[
[Nm

` ]2
[

dPm
`

dθ

]2

+
m2

sin2
θ

[Nm
` Pm

` ]2
]

. (29)

Using standard properties of the spherical harmonics,

∑
m

[Nm
` ]2[Pm

` ]2 =
(2`+1)

4π
,

∑
m

[Nm
` ]2m2[Pm

` ]2 =
(2`+1)`(`+1)sin2

θ

8π
, (30)

∑
m

[Nm
` ]2
[

dPm
`

dθ

]2

=
(2`+1)`(`+1)

8π
,
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one sums over the azimuthal quantum number m just as in [4], to obtain

∑
m

i=4

∑
i=1

∇α Si∇
α Si =

(2`+1)
4π

[(
−ω2

H
+

`(`+1)
Jρ2

)
[Sω,`]2 +

1
J

[
dSω,`

dρ

]2
]

= K(ω,ρ, `), (31)

with (31) serving to define K(ω,ρ, `). With regard to (31), we note that because
the angular part of the metric is maximally 2-symmetric, the sum on the azimuthal
m removes any dependence on the angle θ . Repeating this same procedure for the
rest of Tµν of (24) then yields (again following [4])

T00(ω,ρ, `) =
(2`+1)

4π
ω

2[Sω,`]2 +
HK

2
,

Tρρ(ω,ρ, `) =
(2`+1)

4π

[
dSω,`

dρ

]2

− JK
2

, (32)

Tθθ (ω,ρ, `) =
1

sin2
θ

Tφφ (ω,ρ, `) =
(2`+1)`(`+1)

8π
[Sω,`]2−

ρ2JK
2

,

with all other components of Tµν being zero.

To complete the incoherent averaging we need to sum over all ` values as well,
an infinite summation. However, if we revert back to flat space where H(ρ) =
J(ρ) = 1, the radial equation is then solved by the spherical Bessel functions
j`(ωρ), and the sum on ` can then be performed analytically using the complete-
ness relations for Bessel functions:
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∑
`

(2`+1) j2
` = 1, ∑

`

(2`+1) j`
d j`
dρ

= 0, ∑
`

(2`+1)
[

d j`
dρ

]2

=
ω2

3
,

∑
`

(2`+1) j`
d2 j`
dρ2 =−ω2

3
, ∑

`

(2`+1)`(`+1) j2
` =

2ω2ρ2

3
. (33)

On defining K(ω,ρ) = ∑` K(ω,ρ, `) and Tµν(ω,ρ) = ∑` Tµν(ω,ρ, `), one obtains
K(ω,ρ) = 0 and

T00(ω,ρ) =
ω2

4π
, Tρρ(ω,ρ) =

ω2

12π
, Tθθ (ω,ρ) =

1
sin2

θ
Tφφ (ω,ρ) =

ω2ρ2

12π
,

(34)

One thus obtains none other than the flat space perfect fluid form given in (1),
with the averaging on ` removing any dependence on the coordinate ρ from T ν

µ

because of the maximal 3-symmetry of the spatial part of a Minkowski metric.
The incoherent averaging prescription thus gives a perfect fluid in flat spacetime,
just as one would want.

3 Incoherent averaging in curved spacetime

To follow this same procedure in curved space is not at all as straightforward, since
for an arbitrary choice of H(ρ) and J(ρ) the radial equation will not necessarily
be solvable in terms of named functions, and the needed completeness relation for
the ensuing modes may not even be known at all. Moreover, in the dynamical
case where the energy–momentum tensor is used as the source of tensors such
as the Einstein tensor given in (21), one has to solve for H(ρ) and J(ρ) self-
consistently, a procedure that would not only not appear at all likely to yield an
analytic result, since it involves an infinite summation, it does not immediately
lend itself to numerical approximation either. However, to test the viability of the
perfect fluid assumption itself, one only has to seek an appropriate choice of H(ρ)
and J(ρ) for which one can do the ` summation analytically, to see whether or not
the relation Tρρ = Tθθ /ρ2 then does in fact ensue. For our purposes here we do
not need to impose the Einstein equations since it is not the gravitational equations
of motion that cause the fluid to be perfect. Rather, one already takes a steady
state energy–momentum tensor to be of perfect fluid form in flat spacetime before
gravity is even introduced. Hence we only need to ask whether or not one obtains
a perfect fluid when one repeats the above flat spacetime averaging calculation in
a given external gravitational field.

Since we are able to do the ` summation analytically for Bessel functions, in
the curved space case we shall seek a form for H(ρ) and J(ρ) for which the radial
equation can be reduced to the Bessel equation. To this end we set J(ρ) = H(ρ) =
f 2(ρ). For this choice, the metric in (20) reduces to

ds2 = f 2(ρ)[−dt2 +dρ
2 +ρ

2dθ
2 +ρ

2 sin2
θdφ

2], (35)
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to thus be conformal to flat. However, it is not flat since in it the Einstein tensor in
(21) takes the non-vanishing form

G00 =
4 f ′

ρ f
− f ′2

f 2 +
2 f ′′

f
, Gρρ =−4 f ′

ρ f
− 3 f ′2

f 2 ,

Gθθ =
Gφφ

sin2
θ

=−2ρ f ′

f
+

ρ2 f ′2

f 2 − 2ρ2 f ′′

f
,

(36)

a form which is still not a perfect fluid unless f (ρ) just happens to obey

f ′′

f
− f ′

ρ f
− 2 f ′2

f 2 = 0. (37)

For the metric of (35), on substituting Sω,`(ρ) = Qω,`(ρ)/ f (ρ) the radial
equation (27) reduces to[

ω
2 +

d2

dρ2 +2
d

dρ
− `(`+1)

ρ2 − 1
f

(
f ′′+

2 f ′

ρ

)]
Qω,`(ρ) = 0. (38)

Thus, for any choice of f (ρ) for which

− 1
f

(
f ′′+

2 f ′

ρ

)
= κ

2 (39)

where κ2 is positive, one finds that (38) then reduces to none other than the Bessel
function equation[

ω
2 +κ

2 +
d2

dρ2 +
2
ρ

d
dρ

− `(`+1)
ρ2

]
Qω,`(ρ) = 0, (40)

with immediate solution Qω,`(ρ) = j`(λρ) where λ = (ω2 + κ2)1/2. For (39)
solutions are readily given as

f (ρ) =
[α sin(κρ)+β cos(κρ)]

ρ
, (41)

and thus form a whole family of solutions labeled by all real values of the param-
eters κ,α and β . For any f (ρ) which obeys (39), the Einstein tensor reduces to

G00 =− f ′2

f 2 −2κ
2, Gρρ =−4 f ′

ρ f
− 3 f ′2

f 2 ,

Gθθ =
Gφφ

sin2
θ

=
2ρ f ′

f
+

ρ2 f ′

f
+2ρ

2
κ

2,

(42)

and in solutions of the form given in (41) is still not in the form of a perfect fluid,
with the solutions in (41) not obeying (37).

To now evaluate the energy–momentum tensor when (39) is imposed, on sum-
ming over ` as before, one obtains

K(ω,ρ) =
( f ′2 +κ2)

4π f 4 , (43)



14 P. D. Mannheim et al.

with the incoherently-averaged energy–momentum tensor itself being given by

T00(ω,ρ) =
1

4π

[
ω2

f 2 +
f ′2

2 f 4 +
κ2

2 f 2

]
,

Tρρ(ω,ρ) =
1

4π

[
ω2

3 f 2 +
f ′2

2 f 4 −
κ2

6 f 2

]
, (44)

Tθθ (ω,ρ) =
Tφφ

sin2
θ

=
1

4π

[
ρ2ω2

3 f 2 − ρ2 f ′2

2 f 4 − ρ2κ2

6 f 2

]
.

As we see, Tµν(ω,ρ) is not in the form of a perfect fluid since T ρ

ρ −T θ
θ

=
f ′2/4π f 6 is not zero. Since our analysis is valid for any f (ρ) which obeys (41),
we recognize a whole family of metrics for which a perfect fluid is not obtained.
In general then, the use of perfect fluid sources for spherically symmetric gravita-
tional systems must be regarded as open to question.

The essence of the calculation that we have presented here is that we start
with a free flat spacetime scalar field that possess kinetic energy but no potential
energy. In the absence of any potential energy there are no scalar field interaction
terms (such as S3 or S4 etc.), and both the wave equation for the scalar field and the
associated energy–momentum tensor can be diagonalized in a complete set of flat
spacetime plane wave basis modes, with the system thus being in a steady state.
An incoherent averaging over these basis modes leads to a flat spacetime energy–
momentum tensor that has the form of a perfect fluid (c.f. (34)). We then extend
this same scalar field theory to curved space. The system continues to be in steady
state since both the curved space wave equation and energy–momentum tensor are
diagonal in the curved space scalar field wave mode basis. On incoherently sum-
ming over the curved space mode basis we obtain an energy–momentum tensor
(c.f. (44)) that is not the covariant generalization of the flat spacetime energy–
momentum tensor which had been constructed by the same procedure. Covari-
antizing the wave equation and then summing over modes thus gives a different
energy–momentum tensor than first summing over the modes in flat spacetime and
then covariantizing the energy–momentum tensor that ensues. It is because of this
mismatch (due to the drop in symmetry from maximally 4-symmetric to only max-
imally 2-symmetric and the concomitant appearance of intrinsic length scales),
that covariantizing the form of a flat space energy–momentum tensor can be mis-
leading. We thus recognize that in covariantizing a system one should covariantize
not the incoherently averaged flat spacetime energy–momentum tensor, but rather
the flat spacetime steady state basis modes themselves, and whatever incoherently
averaged curved space energy–momentum tensor then ensues, that is the correct
one for the problem. Thus it does not follow that if a steady state flat spacetime
fluid is a perfect fluid then it will remain so in the presence of curvature. However,
if matter field modes are in steady state in flat spacetime, the matter field modes
themselves will still remain in steady state when curvature is introduced.

4 The tensor structure of the curved space fluid

To characterize the tensor structure of the energy–momentum tensor that the curved
space incoherent averaging procedure has led us to, we recall [7; 1] that in terms
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of a timelike vector Uµ , the ten independent components of a general curved space
fluid energy–momentum tensor can be written in the form

Tµν = ρ fUµUν + p f (UµUν +gµν)+πµν +qµUν +qνUµ , (45)

where UµUν + gµν ,qµ , and πµν obey U µ(UµUν + gµν) = 0,U µ qµ = 0,πµν =
πνµ ,gµν πµν = 0,U µ πµν = 0. With there being only three independent compo-
nents in (44), for our purposes here we have no need for the qµUν + qνUµ term
(a term that in kinetic theory is usually identified with heat transfer), but we
do need the anisotropic πµν . In terms of the general metric of (20), and with
Uµ = (H1/2,0,0,0) as usual, the non-zero elements of πµν and Tµν of (45) can
be written as

πρρ = 2q f J, πθθ =−ρ
2Jq f , πφφ =−ρ

2Jq f sin2
θ ,

T00 = Hρ f , Tρρ = J(p f +2q f ), Tθθ = Tφφ /sin2
θ = ρ

2J(p f −q f ), (46)

where just like ρ f and p f , the conveniently introduced quantity q f is equally a
general coordinate scalar. For the energy–momentum tensor of (44) and the metric
of (35) we thus identify

ρ f =
1

4π

[
ω2

f 4 +
f ′2

2 f 6 +
κ2

2 f 4

]
, p f =

1
4π

[
ω2

3 f 4 −
f ′2

6 f 6 −
κ2

6 f 4

]
, q f =

f ′2

12π f 6 ,

(47)

with a summation over ω being implicit. The energy–momentum tensor that we
have constructed here by incoherent averaging thus nicely falls into the general
class of fluid energy–momentum tensors given in [7; 1].

We would like to stress here that while the anisotropic πµν type term would
be associated with viscosity effects in flat spacetime physics, the generic decom-
position of the energy–momentum tensor as given in (45) requires no such identi-
fication. Specifically, the decomposition of (45) is a purely kinematic one involv-
ing tensors and vectors which are constructed solely so as to be transverse to the
fluid velocity Uµ , with (45) giving the most general allowed form containing such
quantities. Independent of any dynamical considerations, the energy–momentum
tensor must always have the form given in (45) (the form of (45) contains precisely
ten independent components), and there is nothing in the structure of (45) which
obliges a curved space πµν type term to be identified solely with non-steady state
effects. While any curved space viscosity effect would of course be described by a
πµν type term, nothing precludes such terms from describing steady state curved
space fluids as well. The characterization of the πµν term as a viscosity term comes
from experience with fluids in flat spacetime, and flat spacetime experience is not
an adequate enough guide for the description of fluids in curved space. Nothing in
the structure of (45) forbids a fully relaxed steady state fluid in curved space from
possessing such an anisotropic πµν , and not only that, the analysis of this paper
shows that in general one should anticipate that for steady state fluids in curved
space such terms can actually occur.3

3 In passing we note that while the energy–momentum tensor given in (46) and (47) recovers
the perfect fluid form when one takes its flat space limit (as it of course must), it does so not by
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For the form of Tµν given in (45), in the geometry associated with the metric
of (20) the covariant conservation condition T µν

;ν = 0 yields

p′f +2q′f +3
(

J′

J
+

2
ρ

)
q f +

H ′

2H
(ρ f + p f +2q f ) = 0, (48)

to thus show the explicit role played by the q f term in the energy and momentum
balance. Moreover, not only does q f act analogously to p f in the covariant con-
servation condition, it even does so in dynamical equations such as the Einstein
equations Gµν = −8πGTµν . Specifically, if we work in the weak gravity limit
where we can set H(ρ) = 1 + h(ρ),J(ρ) = 1 + j(ρ) with h(ρ) and j(ρ) both
being of order G, we can consistently find solutions to the Einstein equations in
which ρ f is of order one and p f and q f are both of order G. In the weak grav-
ity limit the Einstein equations and the conservation condition associated with the
metric of (20) reduce to

2 j′

ρ
+ j′′ = −8πGρ f , − j′

ρ
− h′

ρ
=−8πG(p f +2q f ),

− j′′

2
− j′

2ρ
− h′

2ρ
− h′′

2
= −8πG(p f −q f ), p′f +2q′f +

6
ρ

q f +
h′

2
ρ f = 0,

(49)

and to order G thus have a consistent weak gravity limit in which j+h = 0. In and
of themselves then, the dynamical equations do not require q f to be at least one
order in G smaller than p f .

Now we had noted above in Sect. 1 that for wave modes it is only the short
wavelength modes that obey geometrical optics, with the long wavelength modes
not being geodesic. Referring now to the incoherently averaged Tµν given in (44)
and (47), we see that in the large ω limit Tµν does indeed reduce to a perfect fluid
with the q f term becoming negligible. Perfect fluids are thus to be associated with
short wavelength modes alone, with departures from a perfect fluid form being
expected to occur at longer wavelengths where the geometric optics approxima-
tion no longer holds and one can no longer ignore the ∇µ ∇µ T term in (3). The
potential importance of such long wavelength modes thus depends on the scale of
spatial variation of the system of interest, a dynamical rather than a kinematical
issue, and will be analyzed further in Sect. 6 where we will reassuringly show that
for normal-sized (i.e. non-compact) weak gravity stars the effect of the q f type
terms is negligible. However, the relative importance of the longer wavelength
modes will increase as the size of a system is decreased, and it could thus be of
interest to explore what happens when a system such as star collapses to a size of
order its Schwarzschild radius.4

having πµν be a geometric quantity that vanishes in flat space (as would be the case if πµν were,
say, to be built out of tensors constructed from the Riemann tensor), but rather by having its
coefficient q f vanish in the limit. In the flat space limit the πµν term thus vanishes dynamically
rather than kinematically.

4 With the vectors n1
µ = Uµ + sinαVµ and n2

µ = Uµ + sinβWµ being timelike for Uµ =
(H1/2,0,0,0),Vµ = (0,J1/2,0,0),Wµ = (0,0,ρJ1/2,0) and arbitrary angles α and β , and with
n1

µ n1
ν T µν and n2

µ n2
ν T µν respectively evaluating to ρ f + sin2

α(p f + 2q f ) and ρ f + sin2
β (p f −
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5 Implications of boundary conditions

While we have discussed possible departures from a perfect fluid form in curved
space, such departures can even occur in flat space due to boundary effects of
finite sized systems. Such concerns do not arise in flat space when we consider
plane waves, since they fill all space. However, suppose we consider a finite-sized
cavity which is filled with massless scalar modes in thermal equilibrium (a spinless
black body). Now it is long known that if we take the cavity to be a cubical cavity
of side of length a and take the modes to obey periodic boundary conditions,
while we would find corrections of order hc/kTa to the familiar T00 ∼ T 4 black-
body formula, because of the cubic symmetry these corrections would treat all
components of the pressure tensor equivalently and leave the perfect fluid form
Txx = Tyy = Tzz = T00/3 (i.e. Trr = Tθθ /r2 = Tφφ /r2 sin2

θ = T00/3) intact. These
finite size effects would only be significant for wavelengths of order a, and would
become inconsequential as the size of the cavity is increased.

However, suppose we consider a spherical cavity of radius a, and rather than
periodic boundary conditions,5 instead require that the modes have radial wave
functions which vanish at the surface of the cavity. The radial functions would
then obey j`(ωa) = 0, with the allowed frequencies then being given by the
zeroes of the Bessel functions. Each Bessel function has its own infinite set of
discrete zeroes [e.g. the zeroes of j0(x) = (sinx)/x obey sinx = 0, and those of
j1(x) = (sinx)/x2− (cosx)/x obey sinx = xcosx]. On labeling these zeroes as j`n,
inside a flat space spherical cavity the allowed frequencies are given by the dis-
crete ω`

n = j`n/a, and the radial wave functions themselves are given by j`( j`nr/a).
[In flat space there is no distinction between the radial coordinates r and ρ of (18)
and (20).] The sum over modes proceeds initially as previously, with (32) being
replaced by

T00(ω`
n,r, `) =

(2`+1)
8π

[(
(ω`

n)
2 +

`(`+1)
r2

)
[ j`( j`nr/a)]2 +

(
d j`( j`nr/a)

dr

)2
]

,

Trr(ω`
n,r, `) =

(2`+1)
8π

[(
(ω`

n)
2− `(`+1)

r2

)
[ j`( j`nr/a)]2 +

(
d j`( j`nr/a)

dr

)2
]

,

Tθθ (ω`
n,r, `)

r2 =
Tφφ (ω`

n,r, `)
r2 sin2

θ
=

(2`+1)
8π

[
(ω`

n)
2[ j`( j`nr/a)]2−

(
d j`( j`nr/a)

dr

)2
]

.

(50)

q f ), for large enough positive or negative q f , it might be possible to violate the weak energy
condition nµ nν T µν > 0 for some appropriate timelike nµ and some specific set of ρ f , p f and
q f . (This happens not to be the case for the particular ρ f , p f and q f given in (47) and the metric
given in (35)). For strong gravity systems then, by generating the appropriate q f term, it might
be possible to evade the Hawking–Penrose singularity theorems for collapsing stars by relaxing
one of the assumptions which goes into the proof. Moreover, we would note that since a condi-
tion such as the weak energy condition is initially motivated by familiarity with standard fluids
in flat spacetime (where there is no q f term and the quantity ρ f + p f is positive), its extension
to curved space presupposes that the only role of gravity is to generalize a flat space condi-
tion to its covariant form, and not to act dynamically in a way that might prevent the covariant
generalization from actually holding.

5 For modes of the form j`(ωr)Pm
` (θ), periodic boundary conditions require that ` be even.
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Fig. 1 Plot of Trr (dashed curve) and Tθθ /r2 (continuous curve) as a function of r as incoher-
ently summed over the first 100 zeroes of each of the first 100 ` values of j`( j`nr/a) in a spherical
cavity of radius a = 1

To complete the incoherent averaging we would need to sum over all ω`
n for a

fixed ` and then sum over all `. However, to see whether or not a perfect fluid form
might emerge, we only need to look near r = a. Noting that every Bessel function
obeys the recursion relation

d j`(ωr)
dr

=
`

r
j`(ωr)−ω j`+1(ωr), (51)

and recalling that the zeroes of j`(x) are distinct from those of j`+1(x), we see that
at r = a j`( j`nr/a) vanishes but d j`( j`nr/a)/dr does not. Thus at r = a we have

T00(ω`
n,a, `)=Trr(ω`

n,a, `)=− 1
a2 Tθθ (ω`

n,a, `)=
(2`+1)

8π

(
d j`( j`nr/a)

dr

)2

| r=a .

(52)

Since Trr(ω`
n,a, `) is positive definite and equal and opposite to the negative def-

inite Tθθ (ω`
n,a, `)/a2, and since the sum over ω`

n and ` does not change this, we
see that we do not recover the perfect fluid form at r = a. A straightforward Taylor
series expansion of the form r = a−ε shows that this result remains true to second
order
in ε . To get a sense of how the incoherent sum at arbitrary r might look, we have
numerically summed over the first 100 zeroes of each of the first 100 ` values of
j`( j`nr/a) (i.e. 10,000 terms in total), and as we see in Fig. 1, there is no sign of a
perfect fluid form. Even in flat spacetime then, boundary conditions can prevent a
fluid from being of the prefect fluid form when the fluid is in thermal equilibrium
inside a spherical cavity of finite radius.

6 Implications of kinetic theory

While the gravitational equations themselves provide no specific basis for leaving
out any q f type terms from the fluid Tµν in either weak or strong gravity, through
the use of kinetic theory one is able to show that such terms are not appreciable
for weak gravity systems. In applying kinetic theory to gravitational systems there
are two approaches, one based on the Boltzmann equation, and the other based
on the Liouville equation. Since there are some differences between these two
approaches [8] with the former being more appropriate for stars and the latter
being more appropriate for systems such as a cluster of galaxies, we describe
them both.

Consider first a set of particles each of mass m in some long-range (typi-
cally gravitational) external potential Vext(x) that are undergoing rapid (typically
atomic) momentum conserving two-body collisions v + v2 → v′ + v′2 through a
scattering angle Ω with differential collision cross section σ(Ω). In the absence
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of two-body correlations the one-particle distribution function f (x,v, t) obeys the
Boltzmann equation (see e.g. [9])

∂ f (x,v, t)
∂ t

+v · ∂ f (x,v, t)
∂x

− ∂Vext(x)
∂x

· ∂ f (x,v, t)
∂v

=
∫
|v−v2|σ(Ω)[ f (x,v,′ t) f (x,v′2, t)− f (x,v, t) f (x,v2, t)]d3v2dΩ . (53)

As such, (53) admits of an exact time-independent Maxwell–Boltzmann type solu-
tion

fMB(x,p, t) = C exp
[
−mv2

2kT
− mVext(x)

kT

]
, (54)

where the temperature T and the coefficient C are independent of x. (That fMB
is an exact solution is because it makes both sides of (53) vanish separately.)
However, since averages with this distribution function are given by 〈A〉=

∫
d3pA fMB/

∫
d3p fMB,

for any dynamical variable A(x,v, t), the Vext(x) term would drop out and all
averages evaluated with this fMB would be spatially independent. Moreover, the
number density itself would behave as n(x)=

∫
d3p fMB(x,p, t)∼ exp(−mVext(x)/kT ),

and give a spatial dependence that is nothing like that required of the density of a
star of finite size.

Now as such, use of the above Boltzmann equation presupposes that the only
collisions of relevance are atomic type ones, and that those collisions dominate
the relaxation of the system to the distribution function fMB(x,p, t). However, in
stars gravitational collisions also play a role, and their effect cannot be isolated
solely in the ∂Vext(x)/∂x term in (53). Rather, they serve to modify the right-hand
side of (53) as well. However, since the cross-section for gravitational scattering
is infinite, the effect of gravity cannot be accounted for by a collision integral term
in which one simply includes a gravitational contribution to σ(Ω). Rather, one
should work with the Liouville equation as it is better suited to handle long range
forces, and we will discuss this below.

However, before doing so, we note that in kinetic theory, through use of the
method of the most probable distribution, it is possible to determine the distribu-
tion function without needing to actually solve or even construct the Boltzmann
equation at all. This method does not determine the approach to equilibrium (i.e.
the temporal behavior of the distribution function), but does give the equilibrium
configuration that results, and it is valid even if the distribution function does not
obey an equation such as (53) at all. Thus we can use the method of the most prob-
able distribution to get a sense of how gravitational interactions might modify the
distribution function (54). Ordinarily one applies the method by taking the sys-
tem of interest to be confined to a region of phase space with a fixed total energy
and fixed volume and introduces spatially-independent Lagrange multipliers for
the total number of particles and the total energy [9]. In the absence of grav-
ity this leads to the Maxwell–Boltzmann distribution being the overwhelmingly
likely one. In the presence of non-relativistic gravity we can adapt this method by
decomposing the star into concentric shells, and take the temperature and density
to be a constant within any given shell but to vary from one shell to the next. The
approximation here is that particles stay within shells and do not exchange energy
or momentum with any particles except those in their own shell. (Since gravity
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is a long range force, at best this assumption could only be valid when gravity is
weak.) In this approximation the Lagrange multipliers for the total number of par-
ticles and the total energy within a given shell are taken to be uniform throughout
the shell but to depend on the location of the shell, with the most probable (mp)
distribution function throughout the star then being given by

fmp(x,p, t) =
n

(2πmθ)3/2 exp
[
−m(v−u)2

2θ

]
. (55)

In (55) the particle number density n(x, t)=
∫

d3p fmp, the average velocity u(x, t)=∫
d3p fmpp/mn(x, t) and the temperature θ(x, t) = (m/3)

∫
d3p fmp|v− u(x, t)|2/

n(x, t) are now all spatially dependent.
While such a distribution function would not be an exact solution to the Boltz-

mann equation, in the event that n(x, t),u(x, t) and θ(x, t) are all slowly spatially
varying, fmp(x,p, t) would be a good first-order approximation to it. For such a
distribution function the pressure tensor Pi j = mn(x, t)〈(vi − ui)(v j − u j)〉 evalu-
ates to the isotropic

Pi j = δi jn(x, t)θ(x, t), (56)

to thus be of none other than of perfect fluid form. If the full distribution function
is taken to obey the Boltzmann equation, then in the next order the pressure tensor
evaluates [9] to the anisotropic

Pi j = δi jnθ − τnθ

[
∂ui

∂x j
+

∂u j

∂xi
− 2

3
δi j∇ ·u

]
(57)

where τ is the mean free time between particle collisions. With n(x, t) depending
on position, the ∂ jui + ∂iu j term would not be proportional to δi j. When n(x, t)
is slowly varying then, the pressure only begins to depart from δi j in corrections
to first order. To the extent then that weak gravity would cause a star to bind
with a slowly varying density and that τ would be small (i.e. a small mean free
time between atomic collisions), the q f type term could be neglected in lowest
order. Thus our ability to ignore q f in a weak gravity star depends on how good
a dynamical approximation the above fmp(x,p, t) is to the full f (x,p, t). The use
of perfect fluids as gravitational sources for weak gravity stars is thus equivalent
to using fmp(x,p, t) as the one-particle distribution function, and is justifiable if
n(x, t) varies slowly enough. However, once one has to go to a more rapidly vary-
ing n(x, t) as would be the case for stronger gravity, there would no longer appear
to be any immediate justification for ignoring q f type terms.6

6 In the theory of white dwarf stars the degeneracy pressure of the electrons in the star is
ordinarily calculated by introducing plane wave momentum eigenstates and filling up the Fermi
sea to a maximum momentum kF = h̄(3π2n)1/3, where n is the electron number density. Since
such momentum eigenstates are associated with spatial translation invariance, in order to be able
to use them at all the number density n and the pressure p = (1/3π2h̄3)

∫ kF
0 dkk4/(k2 + m2

e)
1/2

would have to be independent of position, and thus not be able to provide the pressure gradient
needed to balance the gravitational attraction of the nuclei in the star. To obtain the needed pres-
sure gradient in a weak gravity star one must use not the equilibrium Maxwell–Boltzmann (or
Fermi-Dirac) distribution fMB(x,p, t) but rather a spatially dependent departure from it, viz. the
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In terms of the geodesic equation discussion given earlier, we now see that
short wavelength for eikonal purposes means short with respect to the distance
scale on which the particle number density n(x, t) varies. The slower the spatial
variation of n(x, t) then, the fewer the number of modes that will not incoherently
average to a perfect fluid.7

In the above discussion it is the non-gravitational collisions which dominate,
with the discussion being given for a weak gravity star in which there are atomic
collisions between the atoms in the star. However, for a cluster of galaxies, it is
gravity itself which has to establish an equilibrium distribution of galaxies. In
clusters there is a lot of X-ray producing plasma located in the region between the
individual galaxies in the cluster. Collisions between the atomic particles in the
plasma can readily bring the plasma to thermal equilibrium, but unless they can
bring the galaxy distribution to equilibrium too, it would be up to gravity to do so.

To describe the role that gravity plays in a cluster of galaxies we turn to
the Liouville equation. We treat each of the N galaxies in the cluster as a non-
relativistic point particle of mass m with position xi and velocity vi. Each galaxy
moves in the non-relativistic gravitational field φ(xi) produced by the other galax-
ies in the cluster, and obeys

d2xi

dt2 =−∂φ(xi)
∂xi

. (58)

One introduces the normalized (to one) 6N-dimensional distribution function
f (N)(x1,v1, . . . ,xN ,vN , t), and finds that it obeys the Liouville equation

d f (N)

dt
=

∂ f (N)

∂ t
+

N

∑
α=1

[
vα ·

∂ f (N)

∂xα

− ∂φα

∂xα

· ∂ f (N)

∂vα

]
= 0, (59)

where

φα(xα) = ∑
β 6=α

φ(xα ,xβ ). (60)

most probable distribution fmp(x,p, t) as evaluated with slowly varying number density, aver-
age velocity, and temperature. One thus considers the star to be divided into concentric shells,
with there being no spatial variation within any specific shell (so that one can use plane wave
momentum states within each such shell), but with each shell having a maximum momentum
kF that depends on the radius of the shell. In this way the pressure becomes dependent on the
radial dependence of the number density n, and thereby generates the needed pressure gradient;
and one is thus able to use momentum eigenstates in a weak gravity star even though the elec-
tron number density depends on position. However, for a strong gravity star one is no longer
free to use momentum eigenstates and restrict to slowly varying modifications to the Maxwell–
Boltzmann distribution fMB(x,p, t). Rather, to construct the partition function, one must explic-
itly solve the Dirac equation in the curved space background and use whatever solutions to the
radial equation then emerge. As we noted in Sect. 3, the full calculation is a highly non-linear one
in which one must construct the energy–momentum tensor by an incoherent averaging over the
solutions to the curved space wave equation, and then have this very same energy–momentum
tensor serve as the source of the Einstein equations so as to fix the metric coefficients that are to
be used to obtain the solutions to the curved space wave equation in the first place.

7 For a normal star (viz. one far from any possible cold late time state) the interior temperature
is quite high. With high temperatures favoring high frequency Boltzmann factors, again we see
that in normal stars low frequency modes are suppressed.
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If the distribution function is symmetric under the interchange of any pair of par-
ticles and sufficiently convergent asymptotically, upon integrating (59), one finds
(see e.g. [10]) that for large N, the one- and two-particle distribution functions

f (1)(x1,v1, t) =
∫

d3x2d3v2 . . .d3xNd3vN f (N),

f (2)(x1,v1,x2,v2, t) =
∫

d3x3d3v3 . . .d3xNd3vN f (N),
(61)

are related by

∂ f (1)

∂ t
+v1 ·

∂ f (1)

∂x1
= N

∫
∂φ(x1,x2)

∂x1
· ∂ f (2)

∂v1
d3x2d3v2. (62)

In terms of the two-body correlation function defined by

g(x1,v1,x2,v2, t) = f (2)(x1,v1,x2,v2, t)− f (1)(x1,v1, t) f (1)(x2,v2, t) (63)

and the kinetic theory distribution f (x1,v1, t) = N f (1)(x1,v1, t) that is normalized
to ∫

d3v f (x,v, t) = n(x, t),
∫

d3xn(x, t) = N, (64)

we find that (62) takes the form

∂ f (x,v, t)
∂ t

+v · ∂ f (x,v, t)
∂x

− ∂V (x)
∂x

· ∂ f (x,v, t)
∂v

= N2 ∂

∂v
·
∫

∂φ(x,x2)
∂x

g(x,v,x2,v2, t)d3x2d3v2 (65)

where

V (x) =
∫

d3x2d3v2 f (x2,v2, t)φ(x,x2) =
∫

d3x2n(x2, t)φ(x,x2). (66)

As such, the potential V (x) introduced in (66) serves as a mean-field poten-
tial, and should the system relax to a steady state in which the two-body corre-
lation function becomes negligible, the left-hand side of (65) would then become
equal to zero. At first glance the left-hand side of (65) looks quite like the left-
hand side of the Boltzmann equation (53). However, in (53) Vext(x) is an external
one-body potential, while in (65) V (x) is a statistically averaged two-body poten-
tial. Moreover, while the vanishing of g(x1,v1,x2,v2, t) would cause the right-
hand side of (65) to vanish, it would not have the same effect on the right-hand
side of the Boltzmann equation of (53). In fact, it was the very requirement that
g(x1,v1,x2,v2, t) vanish that led [9] to
the explicit form for the collision integral term given on the right-hand side of
(53) in the first place, with the vanishing of g(x1,v1,x2,v2, t) not requiring the
vanishing of the Boltzmann equation collision integral term. With regard to (65),
we note that when the right-hand side of (65) does vanish (i.e. when the system
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virializes,8) one can say only that in the steady state solution to (65) the virial-
ized f (x,v, t) has to be a function of the quantity v2/2+V (x) (and of the angular
momentum L = x× v as well if the system is rotating). With (65) possessing no
analog of the collision integral term in (53) (gravity being long range), there is
nothing to force f (x,v, t) to be an exponential function of v2/2+V (x) 9. The spe-
cific dependence on v2/2 +V (x) that a virialized f (x,v, t) would acquire would
depend entirely on how the two-body g(x1,v1,x2,v2, t) would behave before it
becomes negligible. However, the very fact that the virialized f (x,v, t) does only
depend on the magnitude of v and not on its direction (i.e. not on L) then enables
us to recover the isotropic structure of (56), with the pressure tensor of a steady
state weak gravity cluster of galaxies indeed being of the perfect fluid form, just
as desired. However, the situation that is to obtain in the general relativistic strong
gravity case remains to be explored.
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