CHARM DECAYS, MIXING AND VILATION AT THE B FACTORIES *

Nicola Neri

(representing the BaBar collaboration) Università di Pisa and INFN Sezione di Pisa Largo B. Pontecorvo, 3 - 56127, Pisa - Italy

Abstract

Flavor oscillation in $D^0 - \overline{D}^0$ system is predicted to be of order of percent or less in the Standard Model (SM), while CP violation is predicted to be of order $10^{-5} \div 10^{-3}$, and therefore not measurable with the current data sample. Evidence of CP violation with present statistics would constitute evidence of New Physics as long as a measurement of the mixing parameters x and y, not consistent with the SM predictions. We report on recent results from BABAR and BELLE experiments of $D^0 - \overline{D}^0$ mixing and CP violation measurements in D^0 decays for the most sensitive analyses: time dependent analysis of $D^0 \rightarrow$ $K^+\pi^-$ wrong sign decays, the measurement of the ratio of lifetimes of the decays $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$ relative to $D^0 \to K^- \pi^+$, search for mixing in semileptonic decays $D^0 \to K^{(*)} l \nu$ where $l = e, \mu$. New limits on CP-violating time-integrated asymmetries in two body decays $D^0 \to K^+ K^-$, $D^0 \to \pi^+\pi^-$ and in three body decays $D^0 \to K^+K^-\pi^0$, $D^0 \to \pi^+\pi^-\pi^0$ are also discussed. The analyses presented are based on 384 fb^{-1} data for the BABAR experiment and on $400 \div 500 \text{ fb}^{-1}$ data for the *BELLE* experiment. Data have been collected with the BABAR detector at the PEP-II asymmetric-energy BFactory at SLAC and with the BELLE detector at the KEKB asymmetricenergy B Factory at KEK.

Work supported by Università di Pisa and INFN. Also supported by U.S. Department of Energy and SLAC, Stanford University.

1 Introduction

B Factories are ideal laborarories (1, 2) to study charm physics which represents an important part of their scientific program. The main topics of charm physics are: $D^0-\overline{D}^0$ mixing and *CP* violation (*CPV*), search for rare charm decays, Dalitz plot analysis and charm spectroscopy. In the following we will focus on $D^0-\overline{D}^0$ mixing and *CPV*.

 $D^0-\overline{D}^0$ oscillations can be explained by the fact that the effective Hamiltonian which determines the time-evolution of the neutral D meson system is not diagonal in the $|D^0\rangle$, $|\overline{D}^0\rangle$ flavor defined base. The eigenstates of the effective Hamiltonian, $|D_{1,2}\rangle$, are therefore a linear combination of $|D^0\rangle$ and $|\overline{D}^0\rangle$:

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle,$$
 with $|p|^2 + |q|^2 = 1.$ (1)

If $C\!P$ is conserved, then q/p=1 and the physical states are $C\!P$ eigenstates.

The mixing parameters x and y are defined as

$$x \equiv \frac{m_1 - m_2}{\overline{\Gamma}}, \ y \equiv \frac{\Gamma_1 - \Gamma_2}{2\overline{\Gamma}},$$
 (2)

where $m_{1,2}$ and $\Gamma_{1,2}$ are the mass and the width values for the effective Hamiltonian eigenistates and $\overline{\Gamma} = (\Gamma_1 + \Gamma_2)/2$.

The effects of CPV in $D^0 - \overline{D}^0$ mixing can be parameterized in terms of the quantities

$$r_m \equiv \left| \frac{q}{p} \right| \text{ and } \varphi_f \equiv \arg\left(\frac{q}{p} \frac{\bar{A}_f}{A_f} \right),$$
 (3)

where $A_f \equiv \langle f | \mathcal{H}_D | D^0 \rangle$ $(\bar{A}_f \equiv \langle f | \mathcal{H}_D | \overline{D}^0 \rangle)$ is the amplitude for D^0 (\overline{D}^0) to decay into a final state f, and \mathcal{H}_D is the Hamiltonian for the decay. A value of $r_m \neq 1$ would indicate CPV in mixing. A non-zero value of φ_f would indicate CPV in the interference of mixing and decay.

In the SM $D^0-\overline{D}^0$ oscillations are predicted to proceed quite slowly. The short distance contributions to $D^0-\overline{D}^0$ mixing from the SM box diagrams are expected to be very small 3, 4). Long-distance effects from intermediate states coupling to both D^0 and \overline{D}^0 are expected to contribute, but are difficult to estimate precisely 5).

Within the SM, CPV is also expected to be small in the $D^0-\overline{D}^0$ system. An observation of CPV in $D^0-\overline{D}^0$ mixing with the present experimental sensitivity would be evidence for physics beyond the SM ⁶.

Recent results from *BABAR*⁽⁷⁾ and *BELLE*⁽⁸⁾ show an evidence of $D^0-\overline{D}^0$ oscillation at 3.9 σ and 3.2 σ level respectively. At this level of precision the measurements are compatibles with the predicted values from SM and put significant constraints on New Physics models⁽⁴⁾, 9).

2 Selection of signal events

Signal events are selected via the cascade decay $D^{*+} \rightarrow D^0 \pi_s^{+-1}$, and the flavor of the D meson is identified at production by the charge of the soft pion (π_s). The difference of the reconstructed D^{*+} and D^0 masses (Δm), which has an experimental resolution at the level of $\simeq 350 \text{ keV}/c^2$, is used to remove background events by requiring typically to be less than $1 \text{ MeV}/c^2$ from the expected value, $145.5 \text{ MeV}/c^{2-10}$. In order to reject background events with D^0 candidates from B meson decays, the momentum of the D^0 , evaluated in the center-of-mass (CM) of the e^+e^- system, is required to be greater than 2.4 - 2.5 GeV/c for most of the analyses. The D^0 proper-time, t, is determined in a vertex constrained combined fit to the D^0 production and decay vertices. In this fit the D^0 and the π_s tracks are imposed to originate from the e^+e^- luminous region. The average error on the proper time, $\sigma_t \sim 0.2 \text{ ps}$, is comparable with half of the D^0 lifetime 10). Particle identification algorithms are used to identify the charged tracks from D^0 decays.

3 Time Dependent measurements for mixing and CP violation

3.1 Wrong-sign decays $D^0 \to K^+ \pi^-$

The final wrong sign (WS) state can be produced via the doubly Cabibbosuppressed (DCS) decay or via mixing followed by the Cabibbo-favored (CF) decay $D^0 \to \overline{D}^0 \to K^+\pi^-$. The time dependence of the WS decay of a meson produced as a D^0 at time t = 0 in the limit of small mixing $(|x|, |y| \ll 1)$ and CP conservation can be approximated as

$$\frac{T_{\rm WS}(t)}{e^{-\overline{\Gamma}t}} \propto R_{\rm D} + \sqrt{R_{\rm D}} y' \,\overline{\Gamma}t + \frac{{x'}^2 + {y'}^2}{4} (\overline{\Gamma}t)^2 \,, \tag{4}$$

where $R_{\rm D}$ is the ratio of doubly Cabibbo-suppressed to Cabibbo-favored (CF) decay rates, $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$, $y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$, and $\delta_{K\pi}$ is the strong phase between the DCS and CF amplitudes.

The time dependence of the WS decays is used to separate the contribution of DCS decays from that of $D^0-\overline{D}^0$ mixing. The mixing parameters are determined by an unbinned extended maximum-likelihood fit to the reconstructed D^0 invariant mass m_{D^0} , Δm , t, σ_t variables for WS decays.

The BABAR experiment has found evidence of $D^0-\overline{D}^0$ mixing at 3.9σ level ⁷). The results of the different fits - no *CPV* or mixing, no *CPV*, *CPV* allowed - including statistical and systematic errors are reported in Table 1.

¹Consideration of charge conjugation is implied throughout this paper, unless otherwise stated.

Fit type	Parameter	Fit Results $(\times 10^{-3})$
No <i>CPV</i> or mixing	R_{D}	$3.53 \pm 0.08 \pm 0.04$
No CPU	R_{D}	$3.03 \pm 0.16 \pm 0.10$
	x'^2	$-0.22\ \pm 0.30\ \pm\ 0.21$
	y'	$9.7 \pm 4.4 \pm 3.1$
	R_{D}	$3.03 \pm 0.16 \pm 0.10$
<u>CD</u> V	A_{D}	$-21 \pm 52 \pm 15$
ollowed	x'^{2+}	$-0.24\ \pm 0.43\ \pm\ 0.30$
anoweu	y'^+	$9.8 \pm 6.4 \pm 4.5$
	x'^{2-}	$-0.20\ {\pm}0.41\ {\pm}\ 0.29$
	y'^-	$9.6 \pm 6.1 \pm 4.3$

Table 1: *BABAR* results from the different fits. The first uncertainty listed is statistical and the second systematic.

Figure 1: *BABAR* results. The central value (point) and confidence-level (CL) contours for $1 - \text{CL} = 0.317 (1\sigma)$, $4.55 \times 10^{-2} (2\sigma)$, $2.70 \times 10^{-3} (3\sigma)$, $6.33 \times 10^{-5} (4\sigma)$ and $5.73 \times 10^{-7} (5\sigma)$, calculated from the change in the value of $-2 \ln \mathcal{L}$ compared with its value at the minimum. Systematic uncertainties are included. The no-mixing point is shown as a plus sign (+).

The confidence level countours including systematic errors are shown in Fig. 1, where the no-mixing point $(x'^2, y') \equiv (0, 0)$ is shown as a plus sign (+).

The *BABAR* results have been confirmed by the CDF experiment with a significance for mixing at 3.8σ level ¹¹). *BELLE* experiment - on an equivalent data sample to *BABAR*- finds no evidence for mixing ¹²).

3.2 Lifetime Ratio of $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ relative to $D^0 \to K^-\pi^+$

One consequence of $D^0 - \overline{D}{}^0$ mixing is that D^0 decay time distribution can be different for decays to different CP eigenstates. $D^0 - \overline{D}{}^0$ mixing will alter the decay time distribution of D^0 and $\overline{D}{}^0$ mesons that decay into final states of specific CP⁻¹³). To a good approximation, these decay time distributions can be treated as exponential with effective lifetimes τ^+_{hh} and τ^-_{hh} , for D^0 and $\overline{D}{}^0$ events respectively, decaying to CP-even final states (such as K^-K^+ and $\pi^-\pi^+$). The effective lifetimes measurements can be combined into the quantities y_{CP} and ΔY :

$$y_{CP} = \frac{\tau_{K\pi}}{\langle \tau_{hh} \rangle} - 1$$

$$\Delta Y = \frac{\tau_{K\pi}}{\langle \tau_{hh} \rangle} A_{\tau} ,$$
(5)

where $\langle \tau_{hh} \rangle = (\tau_{hh}^+ + \tau_{hh}^-)/2$ and $A_{\tau} = (\tau_{hh}^+ - \tau_{hh}^-)/(\tau_{hh}^+ + \tau_{hh}^-)$. Both y_{CP} and ΔY are zero if there is no $D^0 - \overline{D}^0$ mixing. In the limit where CP is conserved in mixing and decay, but violated in the interference between them, these quantities are related to the mixing parameters $y_{CP} = y \cos \varphi_f$ and $\Delta Y = x \sin \varphi_f$, with the convention that $\cos \varphi_f > 0$.

BELLE experiment measures the relative difference of the apparent lifetime of D^0 mesons between decays to CP-even eigenstates and the $K^-\pi^+$ final state to be

$$y_{CP} = (1.31 \pm 0.32 (\text{stat.}) \pm 0.25 (\text{syst.}))\%,$$
 (6)

which represents a significance for $D^0-\overline{D}^0$ mixing at 3.2 σ level ⁸). The effect is presented visually in Fig. 2(d), which shows the ratio of decay time distributions for $D^0 \to K^+K^-, \pi^+\pi^-$ and $D^0 \to K^-\pi^+$ decays. The *CPV* parameter $A_{\Gamma} \equiv$ $-A_{\tau}$ was found to be consistent with zero:

$$A_{\Gamma} = (0.01 \pm 0.30 (\text{stat.}) \pm 0.15 (\text{syst.}))\%.$$
(7)

BABAR experiment measures $y_{CP} = (1.03 \pm 0.33(\text{stat.}) \pm 0.19(\text{syst.}))\%$, which represents evidence of mixing at 3.0 σ level, and $\Delta Y = (-0.26 \pm 0.36(\text{stat.}) \pm 0.08(\text{syst.}))\%$ consistent with no *CPV*¹⁴.

Figure 2: BELLE results of the simultaneous fit to decay time distributions of (a) $D^0 \to K^+K^-$, (b) $D^0 \to K^-\pi^+$ and (c) $D^0 \to \pi^+\pi^-$ decays. The cross-hatched area represents background contributions, the shape of which was fitted using D^0 invariant mass sideband events. (d) Ratio of decay time distributions between $D^0 \to K^+K^-, \pi^+\pi^-$ and $D^0 \to K^-\pi^+$ decays. The solid line is a fit to the data points.

4 Time integrated measurements for mixing and CP violation

4.1 Search for mixing in semileptonic decays $D^0 \to K^{(*)} l \nu$

The search for mixing in semileptonic WS decays is performed by reconstructing events from the decay chain $D^{*+} \rightarrow D^0 \pi_{\rm s}^+$ with $D^0 \rightarrow \overline{D}^0 \rightarrow K^{(*)+} l^- \overline{\nu}$, where $l = e, \mu$. Any WS event, characterized by the opposite charge of the $\pi_{\rm s}$ from D^* and the lepton from the neutral D, would be evidence of $D^{0-} \overline{D}^0$ mixing. In the approximation of small x and y and CP conservation, the decay time distribution of neutral D meson which changes flavor and decays semileptonically, and thus involves no doubly interfering Cabibbo-suppressed (DCS) amplitudes, is

$$R_{\rm mix}(t) \simeq R_{\rm unmix}(t) \frac{x^2 + y^2}{4} \left(\frac{t}{\tau_{D^0}}\right)^2$$
 (8)

where τ_{D^0} is the characteristic D^0 lifetime, and $R_{\text{unmix}}(t) \propto e^{-t/\tau_{D^0}}$. The time integrated mixing rate relative to the unmixed rate is

$$R_{\rm M} = \frac{x^2 + y^2}{2}.$$
 (9)

BELLE experiment did not find any evidence of WS events and sets the limit on the time integrated mixing rate, $R_{\rm M} < 6.1 \times 10^{-4}$ at 90% CL ¹⁵). BABAR experiment using a more exclusive reconstruction technique which fully reconstructs charm decays in the hemisphere opposite the semileptonic signal, sets the constraint $R_{\rm M} \in [-13, 12] \times 10^{-4}$ ¹⁶).

4.2 Two body decays $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$

The *CP*-even decays $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ are Cabibbo suppressed, with the two neutral charmed mesons, D^0 and $\overline{D}{}^0$, sharing the final states. CPviolating asymmetries in these modes are predicted to be of order $0.001\% \div 0.01\%$ in the SM ^{3, 17}). The observation of *CP* asymmetries at the level of current experimental sensitivity ¹⁸) would indicate a clear sign of physics beyond the SM ^{4, 19}). The *BABAR* experiment performed a search for *CPV* in neutral *D* mesons ²⁰), produced from the reaction $e^+e^- \to c\bar{c}$, by measuring the time-integrated asymmetries

$$a_{CP}^{hh} = \frac{\Gamma(D^0 \to h^+ h^-) - \Gamma(\overline{D}^0 \to h^+ h^-)}{\Gamma(D^0 \to h^+ h^-) + \Gamma(\overline{D}^0 \to h^+ h^-)},$$
(10)

where h = K or π .

Table 2: $C\!P\!V$ asymmetries in D^0 two body decays. The first error is statistical, the second systematic.

Quantity	Value
a_{CP}^{KK}	$(0.00 \pm 0.34 \pm 0.13)\%$
$a_{CP}^{\pi\pi}$	$(-0.24 \pm 0.52 \pm 0.22)\%$

The precise measurement of the time-integrated asymmetry is experimentally challenging due to the forward backward (FB) asymmetry in $e^+e^- \rightarrow c\overline{c}$ production - which creates a different number of D^0 and \overline{D}^0 reconstructed events due to the FB detection asymmetry due to the boost of the CM system relatively to the laboratory - and to different flavor tag efficiencies for D^0 and \overline{D}^0 . Those effects are ruled out by using both tagged and untagged control samples to measure the relative efficiency for soft pions on data and by measuring the integrated asymmetry as a function of the cosine of the angle of the D^0 in the CM, $\cos \theta \equiv \cos \theta_{D^0}^{\text{CMS}}$, and projecting out the even part due to *CPV*. The measured asymmetries, found to be consistend with zero, are listed in Table 2.

4.3 Three body decays $D^0 \to \pi^- \pi^+ \pi^0$ and $D^0 \to K^- K^+ \pi^0$

The three body decays $D^0 \to \pi^- \pi^+ \pi^0$ and $D^0 \to K^- K^+ \pi^0$ proceed via CP eigenstates (e.g., $\rho^0 \pi^0$, $\phi \pi^0$) and also via flavor states (e.g., $\rho^{\pm} \pi^{\mp}$, $K^{*\pm} K^{\mp}$), thus making it possible to probe CPV in both types of amplitudes and in the interference between them. Measuring interference effects in a Dalitz plot (DP) probes asymmetries in both the magnitudes and phases of the amplitudes, not simply in the overall decay rates.

The BABAR experiment searched for CPV asymmetries in both $D^0 \rightarrow \pi^-\pi^+\pi^0$ and $D^0 \rightarrow K^-K^+\pi^0$ decays quantifying $D^0-\overline{D}^0$ differences in four different methods: difference between Dalitz plots, difference between the angular moments, difference in phase space integrated asymmetry, difference in Dalitz plot fit results for amplitudes and phases, where only the latter is a model dependent approach. There is no evidence of CPV in any of the four different methods 21 . Result for phase space integrated asymmetry are reported in Table 3.

The *BELLE* experiment has measured the time integrated asymmetry in $D^0 \rightarrow \pi^- \pi^+ \pi^0$ and found no evidence of CPV^{-22} , see Table 3. *BELLE* also measured the relative branching ratio of $D^0 \rightarrow \pi^- \pi^+ \pi^0$ to $D^0 \rightarrow K^- K^+ \pi^0$ to be BR = $(10.12 \pm 0.04(\text{stat}) \pm 0.18(\text{syst})) \times 10^{-2}$.

Table	: 3:	CPV	time	integra	ted asy	ymmetrie	es for	D^0	three	body	decay	s. Th	e fi	irst
error	is s	tatist	tical,	the sec	ond sy	stematic	. For	BE	ELLE	result	s the	error	is 1	the
sum o	of th	ne sta	atistic	al and	the sys	stematic	conti	ribu	tion.					

Quantity	BABAR	BELLE
$a_{CP}^{KK\pi^0}$	$(0.00 \pm 0.34 \pm 0.13)\%$	-
$a_{CP}^{\pi\pi\pi^0}$	$(-0.24\pm0.52\pm0.22)\%$	$(0.43 \pm 1.30)\%$

5 Conclusions

In conclusion, the results from *B* Factories show evidence of charm mixing in WS $D^0 \rightarrow K^+\pi^-$ decays at 3.9 σ level (*BABAR*) and in the lifetime ratio analysis at 3.2 σ level (*BELLE*) and 3.0 σ level (*BABAR*). Significance of charm mixing exceeds 6.7 σ when combining all the available mixing results ²³. No evidence of *CPV* has been found in D^0 decays. The above results are compatible with the Standard Model predictions and provide useful constraints for New Physics models ⁴, ⁹).

6 Acknowledgements

I would like to thank the Istituto Nazionale di Fisica Nucleare (INFN) and the University of Pisa for the support for this work. I would like to thank also SLAC for its support and the kind hospitality.

References

- B. Aubert *et al.* [BABAR Collaboration], Nucl. Instrum. Meth. A **479**, 1 (2002)
- 2. Nucl. Instrum. Meth. A 479, 117 (2002).
- S. Bianco, F. L. Fabbri, D. Benson and I. Bigi, Riv. Nuovo Cim. 26N7, 1 (2003)
- 4. G. Burdman and I. Shipsey, Ann. Rev. Nucl. Part. Sci. 53, 431 (2003)
- L. Wolfenstein, Phys. Lett. B 164, 170 (1985). J. F. Donoghue, E. Golowich, B. R. Holstein and J. Trampetic, Phys. Rev. D 33, 179 (1986).
 I. I. Y. Bigi and N. G. Uraltsev, Nucl. Phys. B 592, 92 (2001). A. F. Falk, Y. Grossman, Z. Ligeti and A. A. Petrov, Phys. Rev. D 65, 054034 (2002).

A. F. Falk, Y. Grossman, Z. Ligeti, Y. Nir and A. A. Petrov, Phys. Rev. D 69, 114021 (2004).

- 6. G. Blaylock, A. Seiden and Y. Nir, Phys. Lett. B 355, 555 (1995)
- B. Aubert *et al.* [BABAR Collaboration], Phys. Rev. Lett. **98**, 211802 (2007)
- 8. M. Staric *et al.* [Belle Collaboration], Phys. Rev. Lett. **98**, 211803 (2007)
- 9. A. A. Petrov, Int. J. Mod. Phys. A 21, 5686 (2006)
- 10. W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006).
- T. Aaltonen *et al.* [CDF Collaboration], Phys. Rev. Lett. **100**, 121802 (2008)
- L. M. Zhang *et al.* [BELLE Collaboration], Phys. Rev. Lett. **96**, 151801 (2006)
- 13. T. h. Liu, arXiv:hep-ph/9408330.
- 14. B. Aubert *et al.* [BABAR Collaboration], arXiv:0712.2249 [hep-ex].
- 15. U. Bitenc et al. [BELLE Collaboration], arXiv:0802.2952 [hep-ex].
- 16. B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 76, 014018 (2007)
- F. Buccella, M. Lusignoli, G. Miele, A. Pugliese and P. Santorelli, Phys. Rev. D 51, 3478 (1995)
- D. Acosta *et al.* (CDF Collaboration), Phys. Rev. Lett. **94**, 122001 (2005);
 B. Aubert *et al.* (BABAR Collaboration), Phys. Rev. D **71**, 091101 (2005).
- 19. Y. Grossman, A. L. Kagan and Y. Nir, Phys. Rev. D 75, 036008 (2007)
- B. Aubert *et al.* [BaBar Collaboration], Phys. Rev. Lett. **100**, 061803 (2008)
- 21. B. Aubert et al. [BABAR Collaboration], arXiv:0802.4035 [hep-ex].
- 22. K. Arinstein [Belle Collaboration], Phys. Lett. B 662, 102 (2008)
- 23. A. J. Schwartz, arXiv:0803.0082 [hep-ex].