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1 Introduction

We are interested in integrality structures of topological strings theory. Let X be a Calabi-

Yau 3-fold with symplectic form ω, according to the work of Gopakumar and Vafa [26], the

closed string free energy FX , which is the generating function of Gromov-Witten invariants

Kg,Q, has the following structure:

FX =
∑
g≥0

g2g−2s

∑
Q 6=0

Kg,Qe
−Q·ω =

∑
g≥0,d≥1

∑
Q 6=0

1

d
Ng,Q

(
2 sin

dgs
2

)2g−2
e−dQ·ω

where Ng,Q are integers and vanish for large g or Q. When X is a toric Calabi-Yau 3-fold,

the above Gopakumar-Vafa conjecture was proved in [33, 67].

Then we are going to investigate the integrality structures of open topological strings.

Let us consider a Calabi-Yau 3-fold X with a Lagrangian submanifold D in it. Based on

Ooguri and Vafa’s work [66], the generating function of open Gromov-Witten invariants can
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also be expressed in terms of a series of new integers which were later refined by Labastida,

Mariño and Vafa in [45–47]:∑
g≥0

∑
Q 6=0

g2g−2+l(µ)s Kµ,g,Qe
−Q·ω (1.1)

=
∑
g≥0

∑
Q 6=0

∑
d|µ

(−1)l(µ)+g∏l(µ)
i=1 µi

dl(µ)−1nµ/d,g,Q

l(µ)∏
j=1

(
2 sin

µjgs
2

)(
2 sin

dgs
2

)2g−2
e−dQ·ω.

These new integers nµ,g,Q (here µ denote a partition of a positive integer) are referred as

LMOV invariants in this paper.

Although for any toric Calabi-Yau 3-fold with Agangica-Vafa brane (AV-brane for

short) [1], we have an effective method to calculate the open string partition function

by gluing topological vertices [4, 41], it is difficult to compute the corresponding LMOV

invariants nµ,g,Q and prove their integrality properties.

During the past several years, we started a program to study the LMOV invariants and

their variations [10, 12, 55, 56, 82–84]. In this paper, we only focus on a special toric Calabi-

Yau 3-fold, i.e. the resolved conifold X̂ with one special Lagrangian submanifold (AV-brane

Dτ in integer framing τ). More general cases will be discussed in a separated paper [84].

We also refer to [60, 61, 69] and the references therein for some recent developments.

Based on large N duality, the open string theory of (X̂,Dτ ) is the large N duality of

the SU(N) Chern-Simons theory of (S3, Uτ ), where Uτ denotes a framed unknot (trivial

knot) with integer framing τ . The large N duality of Chern-Simons and topological string

theory was proposed by Witten [78], and developed further by [27, 47, 66]. Later, Mariño

and Vafa [62] generalized it to the case of a knot with arbitrary framing. The large N

duality of (X̂,Dτ ) and (S3, Uτ ) can be expressed in terms of the following identity:

Z
(S3,Uτ )
CS (q, a; x) = Z

(X̂,Dτ )
str (gs, a; x), q = e

√
−1gs (1.2)

where the explicit expressions of the above two partition functions in identity (1.2) are

given by the formulae (3.4) and (3.5) respectively. The identity (1.2) implies the Mariño-

Vafa formula [42, 62, 65], a very powerful Hodge integral identity, which implies various

important results in intersection theory of moduli spaces of curves, see [54, 80] for a review

of the applications of Mariño-Vafa formula. Finally, the identity (1.2) was proved by

J. Zhou [79] based on his previous joint works with C.-C. Liu and K. Liu [42, 44].

On the other hand side, through mirror symmetry, the partition function Z
(X̂,Dτ )
str (gs,a;x)

can also be computed by topological string B-model [7]. The mirror geometry information

of (X̂,Dτ ) is encoded in a mirror curve CX̂ . Then the disc counting invariants of (X̂,Dτ )

were given by the coefficients of superpotential related to the mirror curve [1, 3], and this

fact was proved in [19]. Furthermore, the open Gromov-Witten invariants of higher genus

with more holes can be obtained by using Eynard-Orantin topological recursions [15]. This

approach named BKMP conjecture, was proposed by Bouchard, Klemm, Mariño and Pas-

quetti in [9], and then fully proved in [16, 20] for any toric Calabi-Yau 3-fold with AV-brane,

so one can also use the BKMP method to compute the LMOV invariants for (X̂,Dτ ).
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In conclusion, now we have three different approaches to compute the open string par-

tition function Z
(X̂,Dτ )
str (gs, a; x): (i) topological vertex [4, 41]; (ii) Chern-Simons partition

function (3.4); (iii) BKMP method [9].

In this paper, we provide several explicit formulae for LMOV invariants of the open

string model (X̂,Dτ ) by using above methods. Firstly, we illustrate the computations of

the mirror curve of (X̂,Dτ ) by the approach in [2]. It turns out that the mirror curve of

this model is given by:

y − 1− a−
1
2 (−1)τxyτ (ay − 1) = 0. (1.3)

By using the mirror curve (1.3), we obtain an explicit formula for genus 0 and one-hole

LMOV invariants (disc countings) nm,0,l−m
2

(τ) which is denoted by nm,l(τ) for brevity:

nm,l(τ) =
∑
d|m,d|l

µ(d)

d2
cm
d
, l
d
(τ),

where

cm,l(τ) = −(−1)mτ+m+l

m2

(
m

l

)(
mτ + l − 1

m− 1

)
and µ(d) denotes the Möbius functions. In [56], we have proved that nm,l(τ) ∈ Z for any

τ ∈ Z, m ≥ 1, l ≥ 0.

Remark 1.1. Recently, Panfil and Sulkowski [69] generalized the above disc counting

formula to a class of toric Calabi-Yau manifolds without compact four-cycles which is also

referred to as strip geometries. In our notations, their formula (cf. formula (4.19) in [69]) can

be formulated as follow. Given two integers r, s ≥ 0, set l = (l1, . . . , lr), k = (k1, . . . , ks),

and |l| =
∑r

j=1 lj , |k| =
∑s

j=1 kj . We define

cm,l,k(τ) =
(−1)m(τ+1)+|l|

m2

(
mτ + |l|+ |k| − 1

m− 1

) r∏
j=1

(
m

lj

) s∏
j=1

m

m+ kj

(
m+ kj
kj

)
.

Then, we have the following disc counting formula

nm,l,k(τ) =
∑

d|gcd(m,l,k)

µ(d)

d2
cm/d,l/d,k/d(τ)

In [84], we have generalized the number theory method used in [56] to show that

nm,l,k(τ) ∈ Z.

For the LMOV invariants of genus 0 with two holes, we study the Bergmann kernel

expansion in the BKMP construction, and find an explicit formula for the LMOV invariants

n
(m1,m2),0,

m1+m2
2

(τ) which is denoted by n(m1,m2)(τ) for short,

n(m1,m2)(τ) =
1

m1 +m2

∑
d|m1,d|m2

µ(d)(−1)(m1+m2)(τ+1)/d

·
(

(m1τ +m1)/d− 1

m1/d

)(
(m2τ +m2)/d

m2/d

)
.

In [56], we have also proved that n(m1,m2)(τ) ∈ Z for m1,m2 ≥ 1 and τ ∈ Z.
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As to the genus 0 LMOV invariants with more than two holes, one can compute the

LMOV invariant nµ,0,Q(τ) for general Q by using the BKMP construction. But it is hard

to give an explicit formula for general Q, except Q = |µ|
2 in which case

n
µ,0,

|µ|
2

(τ) = (−1)l(µ)
∑
d|µ

µ(d)dl(µ)−1Kτ
µ
d
,0,
|µ|
2d

where

Kτ

µ,0,
|µ|
2

= (−1)|µ|τ [τ(τ + 1)]l(µ)−1
l(µ)∏
i=1

(
µi(τ + 1)− 1

µi − 1

)l(µ)∑
i=1

µi

l(µ)−3

.

It is obvious that Kτ

µ,0,
|µ|
2

∈ Z for any τ ∈ Z, and since l(µ) ≥ 3, it immediately implies

that n
µ,0,

|µ|
2

(τ) ∈ Z for any partition µ with l(µ) ≥ 3 and τ ∈ Z.

Finally, we study the high genus LMOV invariants nm,g,Q(τ) of framed unknot Uτ . We

define

gm(q, a) =
∑
d|m

µ(d)Zm/d(qd, ad),

where Zm(q, a) = (−1)mτ
∑
|ν|=m

1
zν

{mντ}
{m}{mτ}

{ν}a
{ν} . In [56], we have proved that gm(q, a) is

a polynomial of nm,g,Q(τ). More precisely,

gm(q, a) =
∑
g≥0

∑
Q

nm,g,Q(τ)z2g−2aQ ∈ z−2Z[z2, a±
1
2 ],

where z = q
1
2 − q−

1
2 . In other words, we have

nm,g,Q(τ) = Coefficient of term z2g−2aQ in the polynomial gm(q, a).

The rest of this paper is organized as follow: in section 2, we review the mathemat-

ical definitions of topological string partition functions, free energies, and the integrality

structures appearing in topological strings. Then we introduce the LMOV invariants in

open topological strings. In section 3, we first review Witten’s Chern-Simons theory for

three-manifolds and links, and the large N duality between the Chern-Simons theory and

topological strings. Then, the basic case for framed unknot was illustrated explicitly. We

also formulate the LMOV integrality conjecture for framed knot. In section 4, we study

the LMOV invariants for framed unknot in detail. We first illustrate the computations of

the mirror curve of (X̂,Dτ ) by using the approach of [2]. Then we compute the explicit

formulae for genus 0 LMOV invariants by using this mirror curve, and high genus LMOV

invariants with one hole as well. Finally, in section 5, we discuss several related questions

and works.
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2 Topological strings

2.1 Closed topological strings and Gromov-Witten invariants

Topological strings on a Calabi-Yau 3-fold X have two types: A-models and B-models.

The mathematical theory for A-model is Gromov-Witten theory [29, 31]. Let Mg,n(X,Q)

be the moduli space of stable maps (f,Σg, p1, . . . , pn), where f : Σg → X is a holomorphic

map from the nodal curve Σg to the Kähler manifold X with f∗([Σg]) = Q ∈ H2(X,Z).

In general, Mg,n(X,Q) carries a virtual fundamental class [Mg,n(X,Q)]vir in the sense

of [8, 52]. The virtual dimension is given by:

vdim[Mg,n(X,Q)]vir =

∫
Q
c1(X) + (dimX − 3)(1− g) + n.

When X is a Calabi-Yau 3-fold, i.e. c1(X) = 0, then vdim[Mg,0(X,Q)]vir = 0. The genus

g, degree Q Gromov-Witten invariants of X is defined by

Kg,Q =

∫
[Mg,0(X,Q)]vir

1

which is usually denoted by Kg,Q for brevity without any confusions. In A-model, the

genus g closed free energy FXg of X is the generating function of Gromov-Witten invariants

Kg,Q, i.e.

FXg =
∑
Q 6=0

Kg,Qe
−Q·ω,

where ω represents the Kähler class for X. We define the total free energy FX and partition

function ZX as

FX =
∑
g≥0

g2g−2s FXg , Z
X = exp(FX),

where gs denotes the string coupling constant. In mathematics, the free energy FX are

mainly computed by the method of localizations [24, 31]. Especially, when X is a toric

Calabi-Yau 3-fold, we have a more effective approach to obtain the partition function ZX

by the method of gluing topological vertices [4, 41].

Usually, the Gromov-Witten invariants Kg,Q are rational numbers, from the BPS

counting in M-theory, Gopakumar and Vafa [26] expressed the total free energy FX in

terms of the generating function of a series of new integer numbers Ng,Q as follow:

FX =
∑
g≥0

g2g−2s

∑
Q 6=0

Kg,Qe
−Q·ω =

∑
g≥0,d≥1

∑
Q 6=0

1

d
Ng,Q

(
2 sin

dgs
2

)2g−2
e−dQ·ω

The integrality of Gopakumar-Vafa invariants Ng,Q was first proved by P. Peng for the case

of toric Del Pezzo surfaces [67]. The proof for general toric Calabi-Yau threefolds was then

given by Konishi in [33].
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2.2 Open topological strings

Let us now consider the open sector of topological A-model of a Calabi-Yau 3-fold X with

a Lagrangian submanifold D with dim H1(D,Z) = L. The open sector topological A-model

can be described by holomorphic maps φ from open Riemann surface of genus g and l-holes

Σg,l to X, with Dirichlet condition specified by D. These holomorphic maps are referred

as open string instantons. More precisely, an open string instanton is a holomorphic map

φ : Σg,l → X such that ∂Σg,l = ∪li=1Ci → D ⊂ X where the boundary ∂Σg,l of Σg,l consists

of l connected components Ci mapped to Lagrangian submanifold D of X. Therefore,

the open string instanton φ is described by the following two different kinds of data: the

first is the “bulk part” which is given by φ∗[Σg,l] = Q ∈ H2(X,D), and the second is the

“boundary part” which is given by φ∗[Ci] = wαi γα, for i = 1, . . . l, where γα, α = 1, . . . , L is

a basis of H1(D,Z) and wαi ∈ Z. Let ~w = (w1, . . . , wL), and where wα = (wα1 , . . . , w
α
l ) ∈ Zl,

for α = 1, . . . , L. We expect there exist the corresponding open Gromov-Witten invariants

K~w,g,Q determined by the data ~w,Q in the genus g. See [35, 51] for mathematical aspects

of defining these invariants in special cases.

We take all wi ≥ 1 as in [62], and use the notations of partitions and symmetric

functions [57]. We denote by P the set of all partitions including the empty partition 0,

and by P+ the set of nonzero partitions. Let x = {x1, x2, . . .} be the set of infinitely many

independent variables. For n ≥ 0, let pn(x) =
∑

i≥1 x
n
i be a power sum symmetric function.

For a partition µ ∈ P+, set pµ(x) =
∏h
i=1 pµi(x). For ~µ ∈ PL, and ~x = (x1, . . . ,xL), let

p~µ(~x) =
∏L
α=1 pµα(xα). The total free energy and partition function of open topological

string on (X,D) are expressed in the following forms:

F
(X,D)
str (gs, ω, ~x) =

∑
g≥0

∑
~µ∈PL\{0}

1

|Aut(~µ)|
g2g−2+l(µ)s

∑
Q 6=0

K~µ,g,Qe
−Q·ωp~µ(~x)

Z
(X,D)
str (gs, ω, ~x) = exp(F

(X,D)
str (gs, ω, ~x)).

The central problem in open topological string theory is how to calculate the partition

function Z
(X,D)
str (gs, ω, ~x) or the open Gromov-Witten invariants K~µ,g,Q. For the case of

compact Calabi-Yau 3-folds, such as the quintic X5, there are only a few works devoted

to the study of its open Gromov-Witten invariants, for example, a complete calculation of

the disk invariants of X5 with boundary in a real Lagrangian was given in [68].

Suppose X is a toric Calabi-Yau 3-fold, and D is a special Lagrangian submanifold

named as Aganagic-Vafa A-brane in the sense of [1, 3]. The open string partition function

Z
(X,D)
str (gs, ω,x) can be computed by the method of topological vertex [4, 41] and the method

of topological recursion developed by Eynard and Orantin [15]. The second approach was

first proposed by Mariño [58], and studied further by Bouchard, Klemm, Mariño and

Pasquetti [9], the equivalence of the two methods was proved in [16, 20]

In the following, we only need to consider the case of L=1. It is also useful to introduce

the generating function of Kµ,g,Q in the fixed genus g as follow:

F
(X,D)
(g,l) =

∑
µ∈P+

∑
Q 6=0

Kµ,g,Qe
−Q·ωxµ11 · · ·x

µl
l .
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2.3 Integrality structures and LMOV invariants

We introduce the new variables q = e
√
−1gs , a = e−ω, and let fλ(q, a) be a function

determined by the following formula

F
(X,D)
str (gs, a,x) =

∞∑
d=1

1

d

∑
λ∈P+

fλ(qd, ad)sλ(xd),

where sλ(x) is the Schur symmetric functions [57].

Just as in the closed string case [26], the open topological strings compute the partition

function of BPS domain walls in a related superstring theory [66]. It follows that F (X,D)

also has an integral expansion. This integrality structure was further refined in [45–47]

which showed that fλ(q, a) has the following integral expansion

fλ(q, a) =
∞∑
g=0

∑
Q 6=0

∑
|µ|=|λ|

Mλµ(q)Nµ,g,Q

(
q

1
2 − q−

1
2

)2g−2
aQ,

where Nµ,g,Q are integers which compute the net number of BPS domain walls and Mλµ(q)

is defined by

Mλµ(q) =
∑
µ

χλ(Cν)χµ(Cν)

zν

l(ν)∏
j=1

(q−νj/2 − qνj/2), (2.1)

where χν(Cµ) is the character of an irreducible representation of the symmetric group and

zµ = |Aut(µ)|
∏l(µ)
i=1 µi.

For convenience, we usually introduce the invariant

nµ,g,Q =
∑
ν

χν(Cµ)Nν,g,Q. (2.2)

Definition 2.1. These predicted integers Nµ,g,Q and nµ,g,Q are both called LMOV

invariants.

Therefore,

fλ(q, a) =
∑
g≥0

∑
Q 6=0

∑
µ∈P

χλ(Cµ)

zµ
nµ,g,Q

l(µ)∏
j=1

(
q−

µj
2 − q

µj
2

)(
q−

1
2 − q

1
2

)2g−2
aQ

By applying the orthogonal relation
∑

λ
χλ(Cµ)χλ(Cν)

zµ
= δµ,ν , we obtain the following mul-

tiple covering formula for open topological string:∑
g≥0

∑
Q 6=0

g2g−2+l(µ)s Kµ,g,Qa
Q (2.3)

=
∑
g≥0

∑
Q 6=0

∑
d|µ

(−1)l(µ)+g∏l(µ)
i=1 µi

dl(µ)−1nµ/d,g,Q

l(µ)∏
j=1

(
2 sin

µjgs
2

)(
2 sin

dgs
2

)2g−2
adQ.

Hence we have the following integrality structure conjecture which is referred as the

Labastida-Mariño-Ooguri-Vafa (LMOV) conjecture for open topological string.

– 7 –
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Conjecture 2.2 (LMOV conjecture for open topological string). Let F
(X,D)
µ be the gener-

ating function defined by

F
(X,D)
str (gs, a,x) =

∑
µ∈P+

F (X,D)
µ pµ(x),

then F
(X,D)
µ has the integral expansion as in the righthand side of the formula (2.3).

There is no general definition for the open Gromov-Witten invariants Kµ,g,Q. However,

just as mentioned in the previous subsection, when X is a toric Calabi-Yau 3-fold, and D
is the Aganagic-Vafa A-brane [1], the open string partition function Z

(X,D)
str can be fully

determined by using the method of topological vertex [4, 41], and the open Gromov-Witten

invariantsKµ,g,Q can also be computed by the topological recursion formula [9]. It is natural

to ask how to prove the Conjecture 2.2 for the case of toric Calabi-Yau 3-fold. Actually,

this paper is devoted to this conjecture for the resolved conifold with one AV-brane of

framing τ .

2.4 Lower genus cases

We illustrate some lower genus cases for the above multiple covering formula (2.3). By

using the expansion sin x =
∑

k≥1
x2k−1

(2k−1)! , and taking the coefficients of g
2g−2+l(µ)
s aQ in

formula (2.3), we obtain

Kµ,0,Q =
∑
d|µ

(−1)l(µ)dl(µ)−3nµ
d
,0,Q

d
, (2.4)

Kµ,1,Q =
∑
d|µ

(−1)l(µ)+1

(
dl(µ)−1nµ

d
,1,Q

d
+

(∑l(µ)
j=1µ

2
j

24
dl(µ)−3− 1

12
dl(µ)−1

)
nµ
d
,0,Q

d

)

Kµ,2,Q =
∑
d|µ

(−1)l(µ)

(
dl(µ)+1nµ

d
,2,Q

d
+

∑l(µ)
j=1µ

2
j

24
dl(µ)−1nµ

d
,1,Q

d

+

(∑l(µ)
j=1µ

4
j

1920
dl(µ)−3+

∑
i<j µ

2
iµ

2
j

576
dl(µ)−3−

∑l(µ)
j=1µ

2
j

288
dl(µ)−1+

1

240
dl(µ)+1

)
nµ
d
,0,Q

d

)
for g = 0, g = 1 and g = 2 respectively. These formulae were firstly illustrated in [62].

Therefore

F(0,l) =
∑
|µ|=l

∑
Q

Kµ,0,Qa
Qxµ11 · · ·x

µl
l (2.5)

=
∑
|µ|=l

∑
Q

∑
d|µ

(−1)l(µ)dl(µ)−3nµ
d
,0,Q

d
aQxµ11 · · ·x

µl
l

= (−1)l
∑
|µ|=l

∑
Q

∑
d≥1

dl−3nµ,0,Qa
Qxdµ11 · · ·xdµll .

In particular

F(0,1) = −
∑
m≥1

∑
d≥1

∑
Q

nm,0,Q
d2

adQxdm, (2.6)

– 8 –
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and for g = 1, l = 1,

F(1,1) =
∑
m≥0

∑
Q

K(m),1,Qa
Qxm

=
∑
m≥0

∑
Q

∑
d|m

nm/d,1,Q/d +

(
m2

24
d−2 − 1

12

)
nm/d,0,Q/d

 aQxm

=
∑
m≥0

∑
Q

∑
d≥1

1

d

(
nm,1,Q +

(
m2

24
− 1

12

))
adQxdm.

3 Chern-Simons theory and large N duality

3.1 Quantum invariants

In his seminal paper [76], E. Witten introduced a new topological invariant of a 3-manifold

M as a partition function of quantum Chern-Simons theory. Let G be a compact gauge

group which is a Lie group, and M be an oriented three-dimensional manifold. Let A be a

g-valued connection on M where g is the Lie algebra of G. The Chern-Simons [11] action

is given by

S(A) =
k

4π

∫
M
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
where k is an integer called the level.

Chern-Simons partition function is defined as the path integral in quantum field theory

ZG(M ; k) =

∫
eiS(A)DA

where the integral is over the space of all g-valued connections A on M . Although it is not

rigorous, Witten [76] developed some techniques to calculate such invariants.

If the three-manifold M contains a link L, we let L be an L-component link denoted

by L =
⊔L
j=1Kj . Define

WRj (Kj) = TrRjHolKj (A)

which is the trace of holomony along Kj taken in representation Rj . Then Witten’s invari-

ant of the pair (M,L) is given by

ZG(M,L; {Rj}; k) =

∫
eiS(A)

L∏
j=1

WRj (Kj)DA.

When M = S3 and the Lie algebra of G is semisimple, Reshetikhin and Turaev [72, 73]

developed a systematic way to constructed the above invariants by using the representation

theory of quantum groups. Their construction led to the definition of colored HOMFLY-PT

invariants [46, 53], which can be viewed as the large N limit of the quantum Uq(slN ) invari-

ants. Usually, we use the notation Wλ1,...,λL(L; q, a) to denote the (framing-independent)

colored HOMFLY-PT invariants for a (oriented) link L =
⊔L
j=1Kj , where each component
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Kj is colored by an irreducible representation Vλj of Uq(slN ). Some basic structures for

Wλ1,...,λL(L; q, a) were proved in [48, 49, 81]. It is difficult to obtain an explicit formula of a

given link for any irreducible representations λ. We refer to [53] for an explicit formula for

torus links, and a series of works due to Morozov et al. [59] and Nawata et al. [64] for some

conjectural formulae of twist knots. In particular, we have the following explicit formula

for a trivial knot (unknot) U :

Wλ(U ; q, a) =
∏
x∈λ

a−1/2qcn(x)/2 − a1/2q−cn(x)/2

qh(x)/2 − q−h(x)/2
. (3.1)

For a box x = (i, j) ∈ λ, the hook length and content are defined to be hl(x) = λi + λtj −
i− j + 1 and cn(x) = j − i respectively.

3.2 Large N duality

In another fundamental work of Witten [78], the SU(N) Chern-Simons gauge theory on a

three-manifold M was interpreted as an open topological string theory on T ∗M with N

topological branes wrapping M inside T ∗M . Furthermore, Gopakumar and Vafa [27] con-

jectured that the large N limit of SU(N) Chern-Simons gauge theory on S3 is equivalent

to the closed topological string theory on the resolved conifold. Furthermore, Ooguri and

Vafa [66] generalized the above construction to the case of a knot K in S3. They intro-

duced the Chern-Simons partition function Z
(S3,K)
CS (q, a,x) for (S3,K) which is a generating

function of the colored HOMFLY-PT invariants in all irreducible representations.

Z
(S3,K)
CS (q, a,x) =

∑
λ∈P

Wλ(L, q, a)sλ(x). (3.2)

Ooguri and Vafa [66] conjectured that for any knot K in S3, there exists a corresponding

Lagrangian submanifold DK, such that the Chern-Simons partition function is equal to the

open topological string partition function on (X,DK). They have established this duality

for the case of a trivial knot U in S3, and the link case was further discussed in [47].

In general, we first should find a way to construct the Lagrangian submanifold DL
corresponding to the link L in geometry. See [13, 34, 47, 75] for the constructions for some

special links. Furthermore, if the Lagrangian submanifold DL is constructed, then we need

to compute the open sting partition function under this geometry. For a trivial knot in

S3, the dual open string partition function was computed by J. Li and Y. Song [51] and

S. Katz and C.-C.M. Liu [35].

On the other hand side, Aganagic and Vafa [1] introduced the special Lagrangian

submanifold in toric Calabi-Yau 3-fold which we call Aganagic-Vafa A-brane (AV-brane)

and studied its mirror geometry, then they computed the counting of holomorphic disc

end on AV-brane by using the idea of mirror symmetry. Moreover, Aganagic and Vafa

surprisingly found the computation by using mirror symmetry and the result from Chern-

Simons knot invariants [66] are matched. Furthermore, in [3], Aganagic, Klemm and Vafa

investigated the integer ambiguity appearing in the disc counting and discovered that the

corresponding ambiguity in Chern-Simons theory was described by the framing of the knot.
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They checked that the two ambiguities match for the case of the unknot, by comparing the

disk amplitudes on both sides.

Then, Mariño and Vafa [62] generalized the large N duality to the case of knots with

arbitrary framing. They studied carefully and established the large N duality between

a framed unknot in S3 and the open string theory on resolved conifold with AV-brane

by using the mathematical approach in [35]. By comparing the coefficient of the highest

degree of the Kähler parameter in this duality, they derived a remarkable Hodge integral

identity which now is called the Mariño-Vafa formula. Two mathematical proofs for the

Mariño-Vafa formula were given in [42] and [65] respectively. We describe this duality in

more details. For a framed knot Kτ with framing τ ∈ Z, we define the framed colored

HOMFLYPT invariants Kτ as follow,

Hλ(Kτ , q, a) = (−1)|λ|τq
κλτ

2 Wλ(K, q, a), (3.3)

where κλ =
∑l(λ)

i=1 λi(λi − 2i+ 1).

The Chern-Simon partition function for (S3,Kτ ) is given by

Z
(S3,Kτ )
CS (q, a; x) =

∑
λ∈P
Hλ(Kτ , q, a)sλ(x). (3.4)

We let X̂ := O(−1)⊕O(−1)→ P1 be the resolved conifold, and Dτ be the corresponding

AV-brane. The open string partition function for (X̂,Dτ ) has the structure

Z
(X̂,Dτ )
str (gs, a; x) = exp

− ∑
g≥0,µ

√
−1

l(µ)

|Aut(µ)|
g2g−2+l(µ)s F τµ,g(a)pµ(x)

 (3.5)

where F τµ,g(a) =
∑

Q∈Z/2K
τ
µ,g,Qa

Q and Kτ
µ,g,Q is the open Gromov-Witten invariants

Kτ
µ,g,Q =

∫
[Mg,l(µ)(D

2,S1|2Q,µ1,...,µl)]
e(V),

which is defined by S. Katz and C.-C. Liu [35]. In particular, when Q = |µ|
2 , the computa-

tions in [35] shows

Kτ

µ,g,
|µ|
2

= (−1)|µ|τ (τ(τ + 1))l(µ)−1 (3.6)

l(µ)∏
i=1

∏µi−1
j=1 (µiτ + j)

(µi − 1)!

∫
Mg,l(µ)

Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)∏l(µ)
i=1(1− µjψj)

where Λ∨g (τ) = τ g − λ1τ g−1 + · · ·+ (−1)gλg. Therefore, the large N duality in this case is

given by the following identity:

Z
(S3,Uτ )
CS (q, a; x) = Z

(X̂,Dτ )
str (gs, a; x) (3.7)

where q = eigs . By taking the coefficients of a
|µ|
2 of the following equality:

[pµ(x)g2g−2+l(µ)s ] logZ
(S3,Uτ )
CS (q, a; x) = [pµ(x)g2g−2+l(µ)s ] logZ

(X̂,Dτ )
str (gs, a; x),
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we obtain the Mariño-Vafa formula which is a Hodge integral identity with triple λ-classes.

The Mariño-Vafa formula provides a very powerful tool to study the intersection theory

of moduli space of curves. From it, we can derive the Witten conjecture [30, 77], ELSV

formula [14], and various interesting Hodge integral identities, see [40, 43, 80].

Combining the idea of dualities shown above, and together with several new technical

ingredients, Aganagic, Klemm, Mariño and Vafa finally developed a systematic method,

gluing the topological vertices, to compute all loop topological string amplitudes on toric

Calabi-Yau manifolds [4, 5]. The mathematical theory for topological vertex was finally

established in [41]. This method provides an effective way to compute both the closed and

open string partition function for a toric Calabi-Yau 3-fold with AV-brane. Therefore, we

have an explicit formula for the partition function of resolved conifold Z
(X̂,Dτ )
str (gs, a,x),

by comparing to the explicit formula Z
(S3,Uτ )
CS (q, a,x) of Chern-Simons partition function

describe above. Finally, J. Zhou proved the identity (3.7) in [79] based on the results in

their previous works [41, 42, 44].

3.3 Integrality of the quantum invariants

Now, let us collect the above discussions together. Let L be a link in S3, the large N duality

predicts there exists a Lagrangian submanifold DL in the resolved confold X̂, and provides

us the identity (3.7). Since the topological string partition function Z
(X̂,DL)
str (gs, a,x) has

the integrality structures by the discussions in section 2.3, it implies that the Chern-Simons

partition function Z
(S3,L)
CS (q, a,x) also inherits this integrality structure. Usually, this inte-

grality structure is called the LMOV conjecture for link in [48]. Furthermore, as mentioned

previously, the large N duality was generalized to the case of framed knot Kτ [62], where

the Chern-Simons partition Z
(S3,Kτ )
CS for framed knot Kτ is given by formula (3.4). For

convenience, we only formulate the LMOV conjecture for framed knot Kτ in the following,

although the conjecture should also holds for any framed link, see [50].

Conjecture 3.1 (LMOV conjecture for framed knot or framed LMOV conjecture). Let

F
(S3,Kτ )
CS (q, a,x) = logZ

(S3,Kτ )
CS (q, a,x)

be the Chern-Simons free energy for a framed knot Kτ in S3. Then there exist functions

fλ(Kτ ; q, a) such that

F
(S3,Kτ )
CS (q, a,x) =

∞∑
d=1

1

d

∑
λ∈P,λ 6=0

fλ(Kτ ; qd, ad)sλ(xd).

Let f̂µ(Kτ ; q, a) =
∑

λ fλ(Kτ ; q, a)Mλµ(q)−1, where Mλµ(q) is defined in the formula (2.1).

Denote z = q
1
2 − q−

1
2 , then for any µ ∈ P+, there are integers Nµ,g,Q(τ) such that

f̂µ(Kτ ; q, a) =
∑
g≥0

∑
Q

Nµ,g,Q(τ)z2g−2aQ ∈ z−2Z[z2, a±
1
2 ].
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Therefore,

zµĝµ(Kτ ; q, a) =
∑
ν

χν(Cµ)f̂ν(Kτ ; q, a)

=
∑
g≥0

∑
Q

nµ,g,Q(τ)z2g−2aQ ∈ z−2Z[z2, a±
1
2 ],

where nµ,g,Q(τ) =
∑

ν χν(Cµ)Nν,g,Q(τ).

K. Liu and P. Peng [48] first studied the mathematical structures of LMOV conjecture

for general links without framing contribution (i.e. as to the Chern-Simons partition (3.2)),

which is equivalent to the framed LMOV conjecture for any links in framing zero. They

provided a proof for this case by using cut-and-join analysis and the cabling technique [48].

Motivated by the work [62], K. Liu and P. Peng [50] formulated the framed LMOV con-

jecture for any links(as to the Chern-Simons partition function (3.4). In [10], the author

together with Q. Chen, K. Liu and P. Peng, developed the ideas in [50] to study the math-

ematical structures of framed LMOV conjecture and discovered the new structures named

congruence skein relations for colored HOMFLY-PT invariants.

4 LMOV invariants for framed unknot Uτ

In section 3.2, we have showed that, for a framed unknot Uτ in S3, the large N duality

holds [79]:

Z
(S3,Uτ )
CS (q, a; x) = Z

(X̂,Dτ )
str (gs, a; x), q = e

√
−1gs .

So one can compute LMOV invariants completely by using the colored HOMFLY-PT in-

variants of the framed unknot Uτ . On the other hand side, by using mirror symmetry,

one can also compute the partition function Z
(X̂,Dτ )
str (gs, a; x) from B-model. The mirror

geometry information of (X̂,Dτ ) is encoded in a mirror curve CX̂ . The disc counting in-

formation of (X̂,Dτ ) is given by the superpotential related to the mirror curve [1, 3], and

this fact was proved in [19].

Furthermore, the open Gromov-Witten invariants of higher genus with more holes can

be computed by using Eynard-Orantin topological recursions [15]. This approach named as

BKMP conjecture, was proposed by Bouchard, Klemm, Mariño and Pasquetti [9], and was

fully proved in [16, 20] for any toric Calabi-Yau 3-fold with AV-brane, so one can also use

the BKMP method to compute the LMOV invariants for (X̂,Dτ ). To determine the mirror

curve of (X̂,Dτ ), there are standard methods in toric geometry. However, in [2], Aganagic

and Vafa proposed another effective way to compute the mirror curve, their method can

be applied to more general large N geometry of an arbitrary knot in S3 [6]. The rest

contents of this section will be organized as follow, we first illustrate the computations of

the mirror curve of (X̂,Dτ ) by using the method in [2]. Then, we compute the explicit

formulae for genus 0 LMOV invariants. Next, we obtain the higher genus LMOV invariants

with one hole.
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4.1 a-deformed A-polynomial as the mirror curve

The method used in [2] to compute the mirror curve is based on the fact that, colored

HOMFLY-PT invariants colored by a partition with a single row is a q-holonomic function,

this fact was conjectured and used in many literatures, such as [17, 18], and was finally

proved in [23]. In fact, such idea can go back to [22].

Now, we illustrate such computations for framed unknot Uτ . We first compute the

noncommutative a-deformed A-polynomial (it is called the Q-deformed A-polynomial in [2],

the variable Q in [2] is the variable a here) for Uτ .

By formula (3.1), the colored HOMFLY-PT invariants colored by partition (n) for the

unknot U is given by

Wn(U ; q, a) =
a

1
2 − a−

1
2

q
1
2 − q−

1
2

· · · a
1
2 q

n−1
2 − a−

1
2 q
−n−1

2

q
n
2 − q−

n
2

It gives the recursion

(qn+1 − 1)Wn+1(U ; q, a)−
(
a

1
2 qn+

1
2 − a−

1
2 q

1
2

)
Wn(U ; q, a) = 0.

By formula (3.3), the framed colored HOMFLY-PT invariants for the framed unknot with

framing τ ∈ Z is

Hn(Uτ ; q, a) = (−1)nτq
n(n−1)

2
τWn(U ; q, a).

Then we obtain the recursion for Hn(Uτ ; q, a) as follow

(−1)τ (qn+1 − 1)Hn+1(Uτ ; q, a)−
(
a

1
2 qn+

1
2 − a−

1
2 q

1
2

)
qnτHn(Uτ ; q, a) = 0. (4.1)

For a general series {Hn(q, a)}n≥0, we introduce two operators M and L act on

{Hn(q, a)}n≥0 as follow:

MHn = qnHn, LHn = Hn+1,

then LM = qML.

Definition 4.1. The noncommutative a-deformed A-polynomial for series {Hn(q, a)}n≥0
is a polynomial Â(M,L; q, a) of operators M,L, such that

Â(M,L; q, a)Hn(q, a) = 0, for n ≥ 0,

and A(M,L; a) = limq→1 Â(M,L; q, a) is called the a-deformed A-polynomial.

Therefore, from the recursion (4.1), we obtain the noncommutative a-deformed

A-polynomial for Uτ as follow:

ÂUτ (M,L, q; a) = (−1)τ (qM − 1)L−M τ
(
a

1
2 q

1
2M − a−

1
2 q

1
2

)
.
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And the a-deformed A-polynomial is given by

AUτ (M,L; a) = lim
q→1

Â(M,L, q; a) = (−1)τ (M − 1)L−M τ
(
a

1
2M − a−

1
2

)
.

In order to get the mirror curve of Uτ , we need the following general result which is

written in the following lemma. Let Z(x) =
∑

k≥0Hk(q, a)xk be a generating function of

the series {Hk(q, a)|k ≥ 0}. We also introduce two operators x̂, ŷ act on Z(x) as follow:

x̂Z(x) = xZ(x), ŷZ(x) = Z(qx),

then ŷx̂ = qx̂ŷ. It is easy to obtain the following result (see Lemma 2.1 in [21] for the

similar statement).

Proposition 4.2. Given a noncommutative A-polynomial Â(M,L, q, a) =
∑

i,j ci,jM
iLj

for the series {Hk(q, a)|k ≥ 0}, then we have

Â(ŷ, x̂−1, q, a)Z(x) =
∑
i,j

∑
−j≤k≤−1

Hk+jqkixk. (4.2)

Proof. Since

Â(ŷ, x̂−1, q, a)Z(x) =
∑
i,j

ci,j ŷ
ix̂−jZ(x)

=
∑
i,j

ci,jq
−ijx−jZ(qix)

=
∑
i,j

ci,j
∑
n≥0
Hnq(n−j)ixn−j

=
∑
i,j

ci,j
∑
k≥0
Hk+jqkixk +

∑
i,j

∑
−j≤k≤−1

ak+jq
kixk,

and by the definitions of the operators M,L, Â(M,L, q, a)Hk = 0 gives∑
i,j

ci,jq
kiHk+j = 0, for k ≥ 0.

We obtain the formula (4.2).

Finally, the mirror curve is given by

A(y, x−1; a) = lim
q→1

Â(ŷ, x̂−1; q, a) = 0.

Therefore, in our case, the mirror curve is:

AUτ (y, x−1; a) = y − 1− a−
1
2 (−1)τxyτ (ay − 1) = 0. (4.3)
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4.2 Disc countings

For convenience, we let X = a−
1
2 (−1)τx, and Y = 1 − y, then the mirror curve (4.3) is

changed to the functional equation

Y = X(1− Y )τ (1− a(1− Y )). (4.4)

In order to solve the above equation, we introduce the following Lagrangian inversion

formula [74].

Lemma 4.3. Let φ(λ) be an invertible formal power series in the indeterminate λ. Then

the functional equation Y = Xφ(Y ) has a unique formal power series solution Y = Y (X).

Moreover, if f is a formal power series, then

f(Y (X)) = f(0) +
∑
n≥1

Xn

n

[
df(λ)

dλ
φ(λ)n

]
λn−1

(4.5)

Remark 4.4. In the following, we will frequently use the binomial coefficient
(
n
k

)
for all

n ∈ Z. That means for n < 0, we define
(
n
k

)
= (−1)k

(−n+k−1
k

)
.

In our case, we take φ(Y ) = (1−Y )τ (1−a(1−Y )). Let f(Y ) = 1−Y , by formula (4.5),

we obtain

y(X) = 1− Y (X) = 1 +
∑
n≥1

Xn

n

∑
i≥0

(−1)n+i
(
n

i

)(
nτ + i

n− 1

)
ai

since φ(λ)n has the expansion

φ(λ)n = (1− λ)nτ (1− a(1− λ))n

=
∑
i≥0

(
n

i

)
(−a)i(1− λ)nτ+i

=
∑
i,j≥0

(
n

i

)
(−1)i+j

(
nτ + i

j

)
aiλj .

Moreover, if we let f(Y (X)) = log(1− Y (X)), then[
df(λ)

dλ
φ(λ)n

]
λn−1

=
∑
i≥0

(−1)i
(
n

i

) n−1∑
j=0

(−1)j+1

(
nτ + i

j

)
ai

=
∑
i≥0

(−1)i
(
n

i

)
(−1)n

(
nτ + i− 1

n− 1

)
ai

where we have used the combinatoric identity:

n−1∑
j=0

(−1)j+1

(
m

j

)
= (−1)n

(
m− 1

n− 1

)
.
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Formula (4.5) gives

log(y(X)) = log(1− Y (X)) =
∑
n≥1

Xn

n

∑
i≥0

(−1)n+i
(
n

i

)(
nτ + i− 1

n− 1

)
ai,

i.e.

log(y(x)) =
∑
n≥1

xn

n

∑
i≥0

(−1)nτ+n+i
(
n

i

)(
nτ + i− 1

n− 1

)
ai−

n
2 .

By BKMP’s construction in genus 0 with one hole, one obtains

F(0,1) =

∫
log(y(x))

dx

x
(4.6)

=
∑
n≥1

xn

n2

∑
i≥0

(−1)nτ+n+i
(
n

i

)(
nτ + i− 1

n− 1

)
ai−

n
2 .

By formula (2.6), and if we let nm,l(τ) = nm,0,l−m
2

(τ), then

F(0,1) = −
∑
m≥1

∑
d|m,d|l

d−2nm
d
, l
d
(τ)xmal−

m
2 . (4.7)

Set

cm,l(τ) = −(−1)mτ+m+l

m2

(
m

l

)(
mτ + l − 1

m− 1

)
,

by comparing the coefficients of xmal−
m
2 in (4.7) and (4.6), we have

cm,l(τ) =
∑
d|m,d|l

nm/d,l/d(τ)

d2
.

By Möbius inversion formula, we obtain

nm,l(τ) =
∑
d|m,d|l

µ(d)

d2
cm
d
, l
d
(τ). (4.8)

In [56], we prove that nm,l(τ) ∈ Z by using the basic method of number theory. Recently,

Panfil and Sulkowski [69] generalized the above disc counting formula (4.8) to a class of

toric Calabi-Yau manifolds without compact four-cycles which is also referred to as strip

geometries. In our notations, their formula (cf. formula (4.19) in [69]) can be formulated

as follow.

Given two integers r, s ≥ 0, set l = (l1, . . . , lr), k = (k1, . . . , ks), and |l| =
∑r

j=1 lj ,

|k| =
∑s

j=1 kj . We define

cm,l,k(τ) =
(−1)m(τ+1)+|l|

m2

(
mτ + |l|+ |k| − 1

m− 1

) r∏
j=1

(
m

lj

) s∏
j=1

m

m+ kj

(
m+ kj
kj

)
.

Then, we have the disc counting formula

nm,l,k(τ) =
∑

d|gcd(m,l,k)

µ(d)

d2
cm/d,l/d,k/d(τ) (4.9)

It is obvious that formula (4.8) is just the special case of (4.9) by taking r = 1 and s = 0.

In [84], we will generalize the method used in [56] to show that nm,l,k(τ) ∈ Z.
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4.3 Annulus counting

The Bergmann kernel of the curve (4.4) is

B(X1, X2) =
dY1dY2

(Y1 − Y2)2
.

By the construction of BKMP [9], the annulus amplitude is calculated by the integral∫ (
B(X1, X2)−

dX1dX2

(X1 −X2)2

)
= ln

(
Y2(X2)− Y1(X1)

X2 −X1

)

More precisely, for m1,m2 ≥ 1, the coefficients
[
ln
(
Y2(X2)−Y1(X1)

X2−X1

)]
x
m1
1 x

m2
2 al

gives the

annulus Gromov-Witten invariants K(m1,m2),0,l.

Let bn,i = (−1)n+i
n+1

(
n+1
i

)(
(n+1)τ+i

n

)
and bn =

∑
i≥0 bn,ia

i. In particular b0 = 1− a. Then

Y (X) =
∑
n≥1

bnX
n,

and

Y2(X2)− Y1(X1)

X2 −X1
= (1− a) +

∑
n≥1

bn

(
n∑
i=0

Xi
1X

n−i
2

)
.

Let b̃m,l =
∑l

i=0 bm,i and b̃m =
∑

l=0 b̃m,la
l. For m1 ≥ 1,m2 ≥ 1, the coefficients c(m1,m2)

of [Xm1
1 Xm2

2 ] in the expansion

ln

1 +
∑
n≥1

b̃n

(
n∑
i=0

Xi
1X

n−i
2

)
is given by

c(m1,m2) =
∑

|µ|=m1+m2

(−1)l(µ)−1(l(µ)− 1)!b̃µ
|Aut(µ)|

|Sµ(m1)|

where Sµ(m1) is the set

Sµ(m1) = {(i1, . . . , il(µ)) ∈ Zl(µ)|
l(µ)∑
k=1

ik = m1, where 0 ≤ ik ≤ µk, for k = 1, . . . , l(µ)},

by this definition, Sµ(m1) = Sµ(m2).

We write c(m1,m2) =
∑

l≥0 c(m1,m2),la
l, then the annulus amplitude is

F(0,2) =
∑

m1≥1,m2≥1

∑
l≥0

(−1)(m1+m2)τ c(m1,m2),la
l−m1+m2

2 xm1
1 xm2

2 .

– 18 –
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Set n(m1,m2),l = n
(m1,m2),0,l−m1+m2

2

, the multiple covering formula (2.5) for l = 2 gives

F(0,2) =
∑

m1≥1,m2≥1

∑
l≥0

∑
d|m1,d|m2,d|l

1

d
n(m1

d
,
m2
d

), l
d
al−

m1+m2
2 xm1

1 xm2
2

we have

(−1)(m1+m2)τ c(m1,m2),l =
∑

d|m1,d|m2,d|l

1

d
n(m1

d
,
m2
d

), l
d
,

so

n(m1,m2),l =
∑

d|m1,d|m2,d|l

µ(d)

d
(−1)

(m1+m2)τ
d c(m1

d
,
m2
d

), l
d
.

In particular, when l = m1+m2
2 , we only need to consider the curve Y = X(1− Y )τ . With

the help of the following formula proved in [80]

Lemma 4.5 (Lemma 2.3 of [80]).

ln

(
Y1(X1)−Y2(X2)

X1−X2

)
=

∑
m1,m2≥1

1

m1+m2

(
m1τ+m1−1

m1

)(
m2τ+m2

m2

)
Xm1

1 Xm2
2 (4.10)

−τ (ln(1−Y1(X1))+ln(1−Y2(X2))) .

We obtain

c
(m1,m2),

m1+m2
2

(τ) =
1

m1 +m2

(
m1τ +m1 − 1

m1

)(
m2τ +m2

m2

)
. (4.11)

For brevity, we let n(m1,m2)(τ) := n
(m1,m2),

m1+m2
2

(τ) which is defined through for-

mula (4.11). Then we obtain

n(m1,m2)(τ) =
1

m1 +m2

∑
d|m1,d|m2

µ(d)(−1)(m1+m2)(τ+1)/d

·
(

(m1τ +m1)/d− 1

m1/d

)(
(m2τ +m2)/d

m2/d

)
.

In [56], we have also proved that n(m1,m2)(τ) ∈ Z for any m1,m2 ≥ 1 and τ ∈ Z.

4.4 Genus g = 0 with more holes

By formula (3.6), we have

Kτ

µ,g,
|µ|
2

= (−1)|µ|τ [τ(τ + 1)]l(µ)−1
l(µ)∏
i=1

∏µi−1
a=1 (µiτ + a)

(µi − 1)!

∫
Mg,l(µ)

Γg(τ)∏l(µ)
i=1(1− µiψi)

= (−1)|µ|τ [τ(τ + 1)]l(µ)−1
l(µ)∏
i=1

(
µi(τ + 1)− 1

µi − 1

)∑
bi≥0

l(µ)∏
i=1

µbii 〈
l(µ)∏
i=1

τbiΓg(τ)〉g,l(µ)
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When g = 0 and l ≥ 3, then Γ0(τ) = 1 and we have the Hodge integral identity:

〈τb1 · · · τbl〉0,l =

(
l − 3

b1, . . . , bl

)
.

Hence, we obtain

Kτ

µ,0,
|µ|
2

= (−1)|µ|τ [τ(τ + 1)]l(µ)−1
l(µ)∏
i=1

(
µi(τ + 1)− 1

µi − 1

)l(µ)∑
i=1

µi

l(µ)−3

. (4.12)

By using formula (2.4), we get

n
µ,0,

|µ|
2

(τ) = (−1)l(µ)
∑
d|µ

µ(d)dl(µ)−1Kτ
µ
d
,0,
|µ|
2d

. (4.13)

It is clear that Kτ

µ,0,
|µ|
2

∈ Z from formula (4.12), and since l(µ) ≥ 3, it is clear that

n
µ,0,

|µ|
2

(τ) ∈ Z

for any partition µ with l(µ) ≥ 3.

4.5 Genus g ≥ 1 with one hole

As discussed in the introduction, we have three approaches to the LMOV invariants

nµ,g,Q(τ) for the open topological string model (X̂,Dτ ), as to the higher genus LMOV

invariants nµ,g,Q(τ), we would like to use the identity (1.2) of large N duality to change

all the computations from topological string to Chern-Simons theory for knot invariants.

Since the large N duality of topological string and Chern-Simons theory was conjectured

for any framed knots (even links), we formulate the LMOV integrality conjecture for any

framed knots first, and then we focus on the special case of framed unknot Uτ in S3, and

give an explicit formula for the LMOV invariants n(m),g,Q(τ) whose integrality properties

was proved in [56].

4.5.1 Revist LMOV integrality conjecture for framed knot Kτ

We introduce the following notations first. Let n ∈ Z and λ, µ, ν denote the partitions. Set

{n}x = x
n
2 − x−

n
2 , {µ}x =

l(µ)∏
i=1

{µi}x. (4.14)

For brevity, we denote {n} = {n}q and {µ} = {µ}q. Let Kτ be a knot with framing τ ∈ Z.

The framed colored HOMFLYPT invariant H(Kτ ; q, a) of Kτ is defined by formula (3.3).

Let

Zµ(Kτ ) =
∑
λ

χλ(Cµ)Hλ(Kτ ),

– 20 –
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then the Chern-Simons partition function is given by

Z
(S3,Kτ )
CS =

∑
λ∈P
Hλ(Kτ )sλ(x) =

∑
µ∈P

Zµ(Kτ )

zµ
pµ(x).

We define Fµ(Kτ ) though the expansion formula

F
(S3,Kτ )
CS = log(Z

(S3,Kτ )
CS ) =

∑
µ∈P+

Fµ(Kτ )pµ(x),

then we have

Fµ(Kτ ) =
∑
n≥1

∑
∪ni=1ν

i=µ

(−1)n−1

n

n∏
i=1

Zνi(Kτ )

zνi
.

Remark 4.6. For two partitions ν1 and ν2, the notation ν1∪ν2 denotes the new partition

by combing all the parts in ν1, ν2. For example µ = (2, 2, 1), then the set of pairs (ν1, ν2)

such that ν1 ∪ ν2 = (2, 2, 1) is

(ν1 = (2), ν2 = (2, 1)), (ν1 = (2, 1), ν2 = (2)),

(ν1 = (1), ν2 = (2, 2)), (ν1 = (2, 2), ν2 = (1)),

For a rational function f(q, a) ∈ Q(q±, a±), we define the adams operator

Ψd(f(q, a)) = f(qd, ad).

Then, we set

ĝµ(Kτ ) =
∑
d|µ

µ(d)

d
Ψd(F̂µ/d(Kτ )), (4.15)

where

F̂µ(Kτ ) =
Fµ(Kτ )

{µ}
.

The LMOV integrality conjecture for framed knot Kτ states that

Conjecture 4.7. zµĝµ(Kτ ) is a polynomial of the LMOV invariants nµ,g,Q(τ), more pre-

cisely,

zµĝµ(Kτ ) =
∑
g≥0

∑
Q

nµ,g,Q(τ)z2g−2aQ ∈ z−2Z[z2, a±
1
2 ],

where z = q
1
2 − q−

1
2 = {1}.
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4.5.2 LMOV integrality invariants for Uτ

Now we apply the above computations to the case of framed unknot Uτ . By the large N du-

ality formula in this special case (1.2) proved by [79], the LMOV integrality Conjecture 2.2

for the open string model (X̂,Dτ ) and LMOV integrality conjecture for the Chern-Simon

theory (S3, Uτ ) are same. In other words, LMOV invariants for the (X̂,Dτ ) and (S3, Uτ )

are the same one.

For convenience, we define the function

φµ,ν(x) =
∑
λ

χλ(Cµ)χλ(Cν)xκλ .

By Lemma 5.1 in [10], for d ∈ Z+, we have

φ(d),ν(x) =
{dν}x2
{d}x2

.

By using the formula of colored HOMFLYPT invariant for unknot (3.1), we obtain

Zµ(Uτ ) =
∑
λ

χλ(Cµ)Hλ(Uτ )

= (−1)|µ|τ
∑
λ

χλ(Cµ)q
κλτ

2

∑
ν

χλ(Cν)

zν

{ν}a
{ν}

= (−1)|µ|τ
∑
ν

1

zν
φµ,ν(q

τ
2 )
{ν}a
{ν}

.

In particular, for µ = (m), m ∈ Z, we have

Zm(Uτ ) = (−1)mτ
∑
|ν|=m

1

zν

{mντ}
{mτ}

{ν}a
{ν}

.

For brevity, we set Zm(q, a) = 1
{m}Zm(Uτ ) = (−1)mτ

∑
|ν|=m

1
zν

{mντ}
{m}{mτ}

{ν}a
{ν} and gm(q, a) =

z(m)ĝm(Uτ ). Then, by formula (4.15), we obtain

gm(q, a) =
∑
d|m

µ(d)Zm/d(qd, ad). (4.16)

In [56], we have proved that gm(q, a) is a polynomial of the higher genus with one hole

LMOV invariants nm,g,Q(τ). More precisely,

gm(q, a) =
∑
g≥0

∑
Q

nm,g,Q(τ)z2g−2aQ ∈ z−2Z[z2, a±
1
2 ],

where z = q
1
2 − q−

1
2 = {1}. In other words, we have

nm,g,Q(τ) = Coefficient of term z2g−2aQ in the polynomial gm(q, a). (4.17)
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5 Conclusions and related works

In this finial section, we mention some related works and problems which are deserved to

study further.

• Applications of our explicit formulae. In A. Mironov et al’s work [61], they made

a lot of numerical computations for a large variety of LMOV invariants by using

their recent works on knot invariants. By experimental observation, they proposed

a conjecture that the absolute values of the LMOV invariants NKµ,g,Q for big enough

representations µ approach Gaussian/binomial distribution in g with just three µ, Q-

dependent parameters (cf. Conjecture in section 5 of [61] and note that the meanings

of the symbols µ, g,Q used here are corresponding to Q, g, n in [61]). The LMOV in-

variant nµ,g,Q are related to Nµ,g,Q through a character transformation formula (2.2).

So we expect that our explicit formulae could provide a rigid proof of their conjecture

at least for the case of framed unknot Uτ .

• Interpretations of the integrality of LMOV invariants. In [55], we found a relation

between the open string partition of C3 with AV brane Dτ and the Hilbert-Poincaré

series of the Cohomological Hall algebra of the |τ |-loop quiver in the sense of [32].

This is the first example of toric Calabi-Yau and quiver correspondence. Then in [37,

38, 83], a general knot-quiver correspondence was proposed. Especially, Sulkowski et

al. [38, 70] established this correspondence for a large class of knot, and links.

• Compute the explicit formulae for LMOV invariants in more general settings. In the

recent work of Panfil and Sulkowski [69], they found a direct relation between quiver

representation theory and open topological string theory on a class of toric Calabi-

Yau 3-folds referred as strip geometries. With the help of the relation to quivers they

also derive explicit expressions for classical open BPS invariants for an arbitrary strip

geometry, which lead to a large set of number theoretic integrality statements. In [84],

we generalize our current work to the case of torus knots and other settings, more

explicit formulae for corresponding LMOV invariants are obtained. We will develop

a general number theory method to prove integrality properties of LMOV invariants.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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