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we demonstrate that these constraints imply that to three-loop order the anomalous di-

mension involves only two-parton correlations, with the possible exception of a single color

structure multiplying a function of conformal cross ratios depending on the momenta of

four external partons, which would have to vanish in all two-particle collinear limits. We

suggest that such a function does not appear at three-loop order, and that the same is true

in higher orders. Our formula predicts Casimir scaling of the cusp anomalous dimension

to all orders in perturbation theory, and we explicitly check that the constraints exclude

the appearance of higher Casimir invariants at four loops. Using known results for the
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1 Introduction

The origin and structure of ultraviolet (UV) divergences in quantum field theories is well

understood. They can be absorbed into a renormalization of the parameters of the theory.

The fact that physical results must be independent of the UV regulator introduced in

intermediate steps of a calculation gives rise to powerful constraints, which are summarized

by the renormalization-group (RG) equations of the theory. Perturbative results for on-shell
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scattering amplitudes in theories with massless fields also contain infrared (IR) singularities,

which originate from loop-momentum configurations where particle momenta become soft

or collinear. These singularities cancel in physical observables, which also include real

radiation and are insensitive to soft and collinear emissions [1, 2].

In a recent letter [3], we have shown that the IR singularities of on-shell, n-particle

scattering amplitudes in massless QCD are in one-to-one correspondence with UV diver-

gences of operators defined in soft-collinear effective theory (SCET) [4–7]. This implies that

they can be analyzed using standard methods of operator renormalization. In particular,

the IR divergences of n-point scattering amplitudes can be absorbed into a multiplicative

renormalization factor Z and are fully determined by an anomalous dimension Γ. Both the

Z-factor and the anomalous dimension are matrices in color space, i.e., they mix amplitudes

with the same particle content but different color structure. In dimensional regularization,

IR singularities manifest themselves as poles in ǫ = (2 − d/2). The renormalization condi-

tions imply that the higher 1/ǫn poles are determined by the single-pole coefficient, from

which one obtains the anomalous dimension. In contrast to traditional effective theories,

SCET operators are nonlocal along the direction of large momentum flow. This induces a

dependence of the anomalous dimension Γ on the momentum transfers and translates into

the presence of Sudakov double logarithms in high-energy scattering processes.

The structure of the effective theory imposes non-trivial constraints on the form of

the anomalous dimension Γ. SCET contains a separate set of collinear fields for each

direction of large energy flow, and a single set of soft fields mediating interactions among

the different collinear sectors. Up to contributions suppressed by powers of the large

momentum transfers, the different collinear fields interact only through soft gluon exchange.

The matrix elements of n-parton operators factor into jet functions associated with each

set of collinear fields and a soft function which arises from interactions among the different

jets. Since different collinear fields do not interact, the jet functions are color diagonal.

Non-trivial momentum dependence and color correlations of the anomalous dimension arise

from soft interactions. The fact that the soft and jet functions must conspire to produce

an anomalous dimension depending only on hard momentum transfers leads to strong

constraints on the form of the allowed terms.

Due to the eikonal form of soft interactions, they can be represented as Wilson lines

along the directions of the external colored particles. This leads to further constraints im-

plied by the non-abelian exponentiation theorem [8, 9]. In QED, eikonal identities imply

that higher-order soft radiation is obtained by exponentiating the leading-order contribu-

tion [10]. In QCD this is no longer true, but only a particular set of color structures can

contribute to the soft anomalous dimension. We argue that their coefficients are related

to each other by the structure of eikonal interactions. Additional constraints are obtained

by considering limits in which some of the partons involved in a scattering process be-

come collinear. In the simplest case where two external momenta become collinear, an

n-parton amplitude reduces to a sum of (n− 1)-parton amplitudes multiplied by splitting

amplitudes. These splitting amplitudes and their anomalous dimensions can only depend

on the momenta and quantum numbers of the particles involved in the splitting process.

This leads to a constraint on the difference of the anomalous dimensions of the amplitudes

before and after the splitting.
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In this paper we derive the most general form of the anomalous dimension Γ com-

patible with the above constraints. We argue that to all orders in perturbation theory

the anomalous dimension has the same structure as at one-loop order, featuring only two-

particle correlations in colors and momenta. Our result is semi-classical in that it describes

color-dipole interactions, which probe the momenta and color charges of pairs of external

particles. This is reminiscent of Low’s theorem, which relates the cross section for soft pho-

ton emission to the classical cross section times a factor depending on the electric charges

and momenta of the external particles [11]. In our case, the quantum structure of the

underlying field theory shows itself via the coefficient of the color-dipole operator, which

we relate to the universal cusp anomalous dimension of light-like Wilson loops, and via

anomalous dimensions for quark and gluon fields. In practice, these anomalous dimensions

can be determined at three-loop order using existing results for the quark and gluon form

factors in QCD. However, our analysis is completely general and extends to arbitrary gauge

theories with massless fields.

Starting at three-loop order, the analysis of the structure of the anomalous dimension

becomes non-trivial. Based on a general study of the constraints following from soft-

collinear factorization and the non-abelian exponentiation theorem, we show that in the

most general case two additional color structures beyond those predicted by our simple

formula could appear at three-loop order. One of them describes interactions among four

different partons. We also show that at four-loop order a new structure could arise, which

would violate Casimir scaling of the cusp anomalous dimension. However, imposing the

correct behavior of n-parton scattering amplitudes in the limit where two partons become

collinear eliminates all of these additional structures. We also present a second argument

for the absence of the additional terms, based on the simple form of color-symmetrized

soft-gluon interactions, which suggests that these new structures vanish due to color con-

servation. In this way our formula is established at three-loop order. We note, however,

that our arguments could be circumvented by functions of conformal cross ratios of four

parton momenta that vanish whenever two partons become collinear. At three-loop order

a single color structure involving such a function is allowed by non-abelian exponentiation.

For our conjecture to be valid, this function must vanish. The observation of Casimir

scaling of the four-loop cusp anomalous dimension is unaffected by this caveat.

The arguments presented in this work suggest that our conjecture may hold to all

orders in perturbation theory. This would imply a new set of exact relations among am-

plitudes in perturbative quantum field theory and will hopefully shed new light on their

deeper structure. The knowledge of the structure of IR singularities, and of the associated

anomalous-dimension matrix, is also of significant practical interest for collider physics. It

is a necessary ingredient for the resummation of large logarithms in jet-production pro-

cesses. Solving RG equations in SCET resums perturbative logarithms of ratios of the

invariant masses of the produced jets to the large momentum transfers involved in their

production. As an application of our results, we predict the complete structure of IR

singularities for n-parton scattering amplitudes in massless QCD at the three-loop order.

In recent work, the four-gluon amplitude in N = 4 super-Yang-Mills theory (SYM) was

studied at three-loop order and expressed in terms of a small set of master integrals [12].
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Once these integrals have been evaluated analytically or in numerical form, this calcula-

tion will provide a stringent test of our predictions. Another interesting implication of

our analysis is the prediction that the cusp anomalous dimensions of quarks and gluons

should obey Casimir scaling to all orders in perturbation theory, i.e., they should be equal

to the quadratic Casimir operator CR in the fundamental or adjoint representation times a

universal coefficient. While Casimir scaling has been shown to hold up to three-loop order

by explicit calculation [13], this prediction is highly non-trivial in view of the expectation

that this scaling should no longer hold non-perturbatively, at least not for the finite parts

of Wilson-loop expectation values. Already a long time ago, Frenkel and Taylor argued

that Casimir scaling would be inconsistent with expectations about the area law for ma-

trix elements of Wilson loops giving rise to confinement [9]. More recently, investigations

of high-spin operators in string theory using the AdS/CFT correspondence [14–16] have

found a strong-coupling behavior that is inconsistent with Casimir scaling [17–19].

We begin in section 2 by recalling the connection between on-shell scattering ampli-

tudes and Wilson coefficient functions in SCET [3]. We then solve the RG equation for

the renormalization factor Z in terms of an integral over the anomalous-dimension matrix

of n-jet SCET operators. We derive the three-loop expression for Z in terms of known

anomalous-dimension coefficients and show that our approach reproduces Catani’s result

for the divergences of two-loop amplitudes [20]. In section 3 we discuss the structure

of SCET for n-jet processes, explicitly construct the necessary operators and show that

their matrix elements factor into jet and soft functions. We stress the importance of soft

operators built out of n light-like Wilson lines, which describe the color and momentum

correlations in the anomalous-dimension matrix. A detailed discussion of the arguments

supporting our conjecture for the structure of the anomalous-dimension matrix is pre-

sented in section 4. We recall important facts about the renormalization of Wilson loops

with cusps and cross points, the non-abelian exponentiation theorem, and soft-collinear

factorization in SCET. In section 5 we study the implications of the known behavior of

scattering amplitudes in the limit where two of the external partons become collinear. We

find that the n-jet anomalous-dimension matrix can be decomposed in this limit into the

sum of an (n − 1)-jet anomalous dimension and the anomalous dimension of the splitting

amplitudes, whose all-order form we derive. The nature of this decomposition imposes

another strong constraint on the momentum and color structures that can appear in the

anomalous dimension. In section 6 we perform an explicit analysis of the structure of the

soft anomalous-dimension matrix to three-loop order. We first list all structures allowed

by non-abelian exponentiation and then impose the constraints from soft-collinear factor-

ization and from two-particle collinear limits. These constraints eliminate all additional

terms with the exception of a single color structure, which is of subleading order in the

Nc → ∞ limit and compatible with the constraints if it is multiplied by a function of

conformal ratios which vanishes in all collinear limits. We also show that the constraints

enforce Casimir scaling of the cusp anomalous dimension to four loops. Our conclusions are

presented in section 7. Perturbative results required to evaluate our formulae at three-loop

order and some comments on the behavior of our color structures in the large-Nc limit are

compiled in two appendices.
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2 IR factorization and RG invariance

The key observation of our letter [3] was that the IR singularities of on-shell amplitudes

in massless QCD are in one-to-one correspondence to the UV poles of operator matrix

elements in SCET. These poles can therefore be subtracted by means of a multiplicative

renormalization factor Z, which is a matrix in color space. Specifically, we have shown that

the finite remainders of the scattering amplitudes can be obtained from the IR divergent,

dimensionally regularized amplitudes via the relation

|Mn({p}, µ)〉 = lim
ǫ→0

Z
−1(ǫ, {p}, µ) |Mn(ǫ, {p})〉 . (2.1)

Here {p} ≡ {p1, . . . , pn} represents the set of the momentum vectors of the n partons, and

µ denotes the factorization scale. The quantity |Mn(ǫ, {p})〉 on the right-hand side is a

UV-renormalized, on-shell n-parton scattering amplitude with IR singularities regularized

in d = 4−2ǫ dimensions. After coupling constant renormalization, these amplitudes are UV

finite. Apart from trivial spinor factors and polarization vectors for the external particles,

the minimally subtracted scattering amplitudes |Mn({p}, µ)〉 on the left-hand side of (2.1)

coincide with Wilson coefficients of n-jet operators in SCET [3], to be defined later:

|Mn({p}, µ)〉 = |Cn({p}, µ)〉 × [on-shell spinors and polarization vectors] . (2.2)

We postpone a more detailed discussion of the effective theory to section 3 and proceed to

study the implications of this observation.

To analyze the general case of an arbitrary n-parton amplitude, it is convenient to

use the color-space formalism of [21, 22], in which amplitudes are treated as n-dimensional

vectors in color space. Ti is the color generator associated with the i-th parton in the

scattering amplitude, which acts as an SU(Nc) matrix on the color indices of that parton.

Specifically, one assigns (T a
i )αβ = taαβ for a final-state quark or initial-state anti-quark,

(T a
i )αβ = −taβα for a final-state anti-quark or initial-state quark, and (T a

i )bc = −ifabc for

a gluon. We also use the notation Ti · Tj ≡ T
a
i T

a
j summed over a. Generators associated

with different particles trivially commute, Ti ·Tj = Tj ·Ti for i 6= j, while T
2
i = Ci is given

in terms of the quadratic Casimir operator of the corresponding color representation, i.e.,

Cq = Cq̄ = CF for quarks or anti-quarks and Cg = CA for gluons. Because they conserve

color, the scattering amplitudes fulfill the relation

∑

i

T
a
i |Mn(ǫ, {p})〉 = 0 . (2.3)

It follows from (2.1) that the minimally subtracted scattering amplitudes satisfy the

RG equation
d

d lnµ
|Mn({p}, µ)〉 = Γ({p}, µ) |Mn({p}, µ)〉 , (2.4)

where the anomalous dimension is related to the Z-factor by

Γ({p}, µ) = −Z
−1(ǫ, {p}, µ)

d

d lnµ
Z(ǫ, {p}, µ) . (2.5)
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The formal solution to this equation can be written in the form

Z(ǫ, {p}, µ) = P exp

[∫ ∞

µ

dµ′

µ′
Γ({p}, µ′)

]
, (2.6)

where the path-ordering symbol P means that matrices are ordered from left to right

according to decreasing values of µ′. The upper integration value follows from asymptotic

freedom and the fact that Z = 1 + O(αs).

In section 4, we will discuss theoretical arguments supporting an all-order conjecture for

the anomalous-dimension matrix presented in [3], which states that it has the simple form

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs) , (2.7)

where sij ≡ 2σij pi · pj + i0, and the sign factor σij = +1 if the momenta pi and pj are

both incoming or outgoing, and σij = −1 otherwise. Here and below the sums run over the

n external partons. The notation (i1, . . . , ik) refers to unordered tuples of distinct parton

indices. Our result features only pairwise correlations among the color charges and mo-

menta of different partons. These are the familiar color-dipole correlations arising already

at one-loop order from a single soft gluon exchange. The fact that higher-order quantum

effects do not induce more complicated structures and multi-particle correlations indicates

a semi-classical origin of IR singularities. Besides wave-function-renormalization-type sub-

tractions accomplished by the single-particle terms γi, the only quantum aspect appearing

in (2.7) is a universal anomalous-dimension function γcusp related to the cusp anomalous di-

mension of Wilson loops with light-like segments [23–25]. The three anomalous-dimension

functions entering our result are defined by relation (2.7). They can be extracted from

the known IR divergences of the on-shell quark and gluon form factors, which have been

calculated to three-loop order [26–28]. The explicit three-loop expressions are given in

appendix A.

Concerning the form of (2.7), we note that a conjecture that an analogous expression

for the soft anomalous-dimension matrix (see section 4.4 below) might hold to all orders

was mentioned in passing in the introduction of [12], without presenting any supporting

arguments. In a very recent paper, Gardi and Magnea have analyzed the soft anomalous-

dimension matrix in more detail and found that (2.7) is the simplest solution to a set of

constraints they have derived [29]. However, they concluded that the most general solution

could be considerably more complicated. Indeed, we emphasize that as a consequence of

our result some amazing cancellations must occur in multi-loop calculations of scattering

amplitudes. At L-loop order Feynman diagrams can involve up to 2L parton legs, while

the most non-trivial graphs without subdivergences can still connect (L+ 1) partons. We

predict that these complicated diagrams can be decomposed into two-particle terms, whose

color and momentum structures resemble that of one-loop diagrams. At two-loop order,

these cancellations were found by explicit calculation in [30, 31]. More recently, the anal-

ysis was extended to the subclass of three-loop graphs containing fermion loops [32]. In

section 6.2 we will present a simple symmetry argument explaining these results.

– 6 –
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To derive the perturbative expansion of the Z-factor from the formal solution (2.6) we

use the generalized expression

dαs

d lnµ
= β(αs, ǫ) = β(αs) − 2ǫ αs (2.8)

for the β-function in d = 4−2ǫ dimensions, where αs ≡ αs(µ) is the renormalized coupling

constant. The simple form of (2.7) implies that the matrix structure of the anomalous

dimension is the same at all scales, i.e., [Γ({p}, µ1),Γ({p}, µ2)] = 0. The path-ordering

symbol can thus be dropped in (2.6), and we can directly obtain an expression for the

logarithm of the renormalization factor. Writing Γ({p}, µ, αs(µ)) instead of Γ({p}, µ) to

distinguish the explicit scale dependence from the implicit one induced via the running

coupling, we obtain

ln Z(ǫ, {p}, µ) =

αs∫

0

dα

α

1

2ǫ− β(α)/α

[

Γ({p}, µ, α) +

α∫

0

dα′

α′
Γ′(α′)

2ǫ− β(α′)/α′

]

, (2.9)

where αs ≡ αs(µ), and we have defined

Γ′(αs) ≡
∂

∂ lnµ
Γ({p}, µ, αs) = −γcusp(αs)

∑

i

Ci . (2.10)

Note that this is a momentum-independent function, which is diagonal in color space.

We have used that, when acting on color-singlet states, the unweighted sum over color

generators can be simplified, because relation (2.3) implies that

∑

(i,j)

Ti · Tj = −
∑

i

T
2
i = −

∑

i

Ci . (2.11)

This relation can be used in our case, because the scattering amplitudes are color conserv-

ing. Note that a different but equivalent form of relation (2.9) has been given in [3].

It is understood that the result (2.9) must be expanded in powers of αs with ǫ treated

as a fixed O(α0
s) quantity. Up to three-loop order this yields

ln Z =
αs

4π

(
Γ′

0

4ǫ2
+

Γ0

2ǫ

)
+
(αs

4π

)2
[
−3β0Γ

′
0

16ǫ3
+

Γ′
1 − 4β0Γ0

16ǫ2
+

Γ1

4ǫ

]
(2.12)

+

(
αs

4π

)3
[

11β2
0 Γ′

0

72ǫ4
− 5β0Γ

′
1 + 8β1Γ

′
0 − 12β2

0 Γ0

72ǫ3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ǫ2
+

Γ2

6ǫ

]

+O(α4
s),

where we have expanded the anomalous dimensions and β-function as

Γ =

∞∑

n=0

Γn

(αs

4π

)n+1
, Γ′ =

∞∑

n=0

Γ′
n

(αs

4π

)n+1
, β = −2αs

∞∑

n=0

βn

(αs

4π

)n+1
. (2.13)

Exponentiating the result (2.12) and taking into account that the different expansion co-

efficients Γn commute, it is straightforward to derive an explicit expression for Z. For the
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convenience of the reader, we present the result along with the relevant expansion coeffi-

cients of the anomalous dimensions in appendix A. Note that the highest pole in the O(αn
s )

term of ln Z is 1/ǫn+1, instead of 1/ǫ2n for the Z-factor itself. The exponentiation of the

higher pole terms was observed previously in [33].

The IR singularities of two-loop scattering amplitudes were first predicted by Catani

a decade ago [20]. The one- and two-loop coefficients of our Z-matrix are closely related

to his subtraction operators I
(1) and I

(2). Catani’s formula states that the product

[

1 − αs

2π
I

(1)(ǫ) −
(
αs

2π

)2

I
(2)(ǫ) + . . .

]

|Mn(ǫ, {p})〉 (2.14)

is free of IR poles through O(α2
s). The subtraction operators I

(n)(ǫ) ≡ I
(n)(ǫ, {p}, µ) are

defined as

I
(1)(ǫ) =

eǫγE

Γ(1 − ǫ)

∑

i

(
1

ǫ2
− γi

0

2ǫ

1

T 2
i

)∑

j 6=i

Ti · Tj

2

(
µ2

−sij

)ǫ

, (2.15)

I
(2)(ǫ) =

e−ǫγE Γ(1 − 2ǫ)

Γ(1 − ǫ)

(
γcusp
1

8
+
β0

2ǫ

)
I

(1)(2ǫ) − 1

2
I

(1)(ǫ)

(
I

(1)(ǫ) +
β0

ǫ

)
+ H

(2)
R.S.(ǫ) .

The conditions linking these objects to ours are

2I(1) !
= Z1 + finite , 4I(2) !

= Z2 − 2I(1)
Z1 + finite , (2.16)

where Zn denotes the coefficient of (αs/4π)n in the Z-factor. The first relation is indeed

satisfied. The second one can be used to derive an explicit expression for the quantity

H
(2)
R.S. encoding the genuine two-loop coefficient of the 1/ǫ pole in (2.15), which was not

obtained in [20]. We find

H
(2)
R.S.(ǫ) =

1

16ǫ

∑

i

(
γi
1 −

1

4
γcusp
1 γi

0 +
π2

16
β0 Ci

)

+
ifabc

24ǫ

∑

(i,j,k)

T
a
i T

b
j T

c
k ln

−sij

−sjk
ln

−sjk

−ski
ln

−ski

−sij
,

(2.17)

which apart from the last term is diagonal in color space and universal in the sense that it is

a sum over contributions from each individual parton. Note that only the first term in this

result is of a form suggested by (2.9). The remaining terms in the first line arise because

the two-loop corrections involving the cusp anomalous dimension or the β-function are not

implemented in an optimal way in (2.15). More importantly, the term in the second line

of (2.17) arises only because the operator I
(1) in [20] is not defined in a minimal subtraction

scheme, but also includes O(ǫn) terms with n ≥ 0. As a result, the antisymmetric terms

in the product I
(1)

Z1 in the second relation in (2.16) contain the structure

1

16ǫ

∑

(i,j)

∑

(k,l)

ln
µ2

−sij
ln2 µ2

−skl

[
Ti · Tj,Tk · Tl

]
, (2.18)
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which after some algebraic simplifications reduces to the expression shown in the second

line of (2.17). Our result for H
(2)
R.S. agrees with the findings of [31] and confirms a conjec-

ture for the form of H
(2)
R.S. for a general n-parton amplitude made in [34]. Note that the

last term in (2.17) is only non-zero for four or more partons. Due to color conservation

the three-parton case involves only two independent generators T1 and T2, which is not

sufficient to obtain a completely antisymmetric structure to contract with fabc in (2.17)

or, equivalently, to get an non-zero commutator term in (2.18). In section 6.2 we will show

that the non-trivial color and momentum structure in the second line (2.17) is incompatible

with constraints derived from soft-collinear factorization, and thus it cannot appear at any

order in the anomalous-dimension matrix, from which the Z-factor is derived.

Our expressions (2.12) and (2.17) reproduce all known results for the two-loop 1/ǫn

poles of on-shell scattering amplitudes in massless QCD. In addition to the on-shell quark

and gluon form factors, these include e+e− → q̄qg [35] as well as all four-point amplitudes

of quarks and gluons [36–42]. At the three-loop level, only the IR divergences of the quark

and gluon form factors are known for the QCD case [26–28]. For N = 4 SYM in the planar

limit, on the other hand, the four-point functions are known up to four-loop order [43, 43],

and they also agree with our result.

An interesting alternative approach to the problem of IR singularities of on-shell am-

plitudes was developed in [33], where the authors exploited the factorization properties of

scattering amplitudes [45–47] along with IR evolution equations familiar from the analysis

of the Sudakov form factor [48]. They recovered Catani’s result (2.15) at two-loop order

and related the coefficient of the unspecified 1/ǫ pole term to a soft anomalous-dimension

matrix, which was unknown at the time. They also explained how their method could be

extended beyond two-loop order. The two-loop soft anomalous-dimension matrix was later

calculated in [30, 31]. In very recent work, Gardi and Magnea have pushed this approach

further and derived a set of constraint relations for the soft-anomalous dimension matrix,

which hold to all orders in perturbation theory [29]. We will comment later on the relations

between our analysis and their work.

3 Anomalous dimensions of n-jet SCET operators

3.1 Basic elements of SCET

To analyze a hard-scattering process involving energetic particles propagating along the

directions of unit three-vectors n̂i in SCET, we introduce two light-like reference vectors

ni = (1, n̂i) and n̄i = (1,−n̂i) for each direction, so that ni · n̄i = 2. The effective theory

then contains a set of collinear quark and gluon fields for each direction of large momentum

flow. These describe partons with large energies Ei ∼
√
ŝ associated with a jet of small

invariant mass M . The small ratio of these scales, λ = M2/ŝ, serves as the expansion

parameter of the effective theory. The components of the momenta pc of the collinear

quark and gluon fields χi and Aµ
i associated with the i-th jet direction scale as

i-collinear: (n̄i · pc, ni · pc, p
µ
c⊥) ∼ (1, λ,

√
λ) , (3.1)
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such that p2
c ∼ λ ∼M2. The ⊥ components are defined to be perpendicular to both ni and

n̄i. Via the equation of motion, the scaling of the momenta also implies a scaling for the

spin components of the fields. In the case of collinear fermions, it implies that two of the

four components of the Dirac spinor field are power suppressed. These can be integrated

out, after which the field fulfills the condition /niχi = 0. For the collinear gluon field, it

implies that leading-power operators only depend on Aµ
i⊥.

In the absence of soft interactions, each collinear sector of the theory is equivalent to

the original QCD Lagrangian [7]. This is not surprising, since we can imagine going into

the rest frame of any given jet, and the interactions among the partons of the jet will then

be the same as in ordinary QCD. The particular scaling of the fields (3.1) is dictated by

external kinematics, or more concretely by the source terms which generate them. The

purely collinear SCET Lagrangian is thus simply given by n copies of the ordinary QCD

Lagrangian, and the effective-theory fields χi and Aµ
i⊥ are related to the usual quark and

gluon fields via

χi(x) = W †
i (x)

/ni /̄ni

4
ψi(x) , Aµ

⊥(x) = W †
i (x) [iDµ

⊥Wi(x)] . (3.2)

The i-collinear Wilson lines

Wi(x) = P exp

(
ig

∫ 0

−∞
ds n̄i · Ai(x+ sn̄i)

)
(3.3)

ensure that these fields are invariant under collinear gauge transformations in each sector [4,

5]. The symbol P indicates path ordering, and the conjugate Wilson line W †
i is defined

with the opposite ordering prescription.

In addition to collinear fields for each direction, the effective theory contains a single

set of soft fields, which interact with all types of collinear fields. All components of the

momenta ps carried by these fields scale as

soft: pµ
s ∼ λ . (3.4)

This scaling is such that one can associate a soft parton with any of the n jets without

parametrically changing the invariant mass of the jet, because (pc + ps)
2 ∼ λ. The soft

fields can thus mediate low-energy interactions between different collinear fields. However,

at leading power this interaction is very simple: it can be obtained from the substitution

Aµ
i (x) → Aµ

i (x) +
n̄µ

i

2 ni · As(x−), or

Aµ
i (x) → Aµ

i (x) +
n̄µ

i

2
W †

i (x) g ni ·As(x−)Wi(x) , (3.5)

in each of the collinear Lagrangians, where x− = (n̄i · x)ni/2. Only the ni · As compo-

nent of the soft gluon field enters in this relation, since all other components are power

suppressed compared to the collinear fields. The peculiar x-dependence of the gluon field

is a consequence of the multipole expansion [7, 49], which implies that in interactions of

collinear and soft fields one should perform a derivative expansion of the form

[φc(x)]
2 φs(x) = [φc(x)]

2 [φs(x−) + x⊥ · ∂⊥ φs(x)|x=x−
+ . . .

]
. (3.6)
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The first-derivative term is suppressed by
√
λ, because x⊥ ∼ 1/

√
λ, while ∂⊥ acting on a

soft field counts as O(λ).

The substitution (3.5) gives rise to an eikonal interaction of soft gluons with collinear

fermion fields,

Lci+s = χ̄i(x)
/̄ni

2
ni ·As(x−)χi(x) . (3.7)

This interaction can be represented in terms of soft Wilson lines. Redefining the quark and

gluon fields as

χi(x) = Si(x−)χ
(0)
i (x) ,

χ̄i(x) = χ̄
(0)
i (x)S†

i (x−) ,

Aµ
i⊥(x) = Si(x−)Aµ

i⊥(x)S†
i (x−) ,

(3.8)

where

Si(x) = P exp

(
ig

∫ 0

−∞
dt ni · Aa

s(x+ tni) t
a

)
, (3.9)

eliminates the interaction Lci+s (including the pure-gluon terms). After this decoupling

transformation [5], soft interactions manifest themselves as Wilson lines in operators built

from collinear fields. The soft gluons do not couple to the spin of the collinear particles,

and for the discussion that follows the spin degrees of freedom will be irrelevant.

As written above the soft Wilson lines Si and S†
i are color matrices defined in the fun-

damental representation of the gauge group. The transformations (3.8) take on a universal

form if we define a soft Wilson line Si in analogy with (3.9), but with ta replaced by the

color generator T
a
i in the appropriate representation for the i-th parton. Representing a

generic collinear field as (φi)
αi
ai

(x) with color index ai and Dirac/Lorentz index αi, the soft

interactions can then be decoupled from this field by the redefinition

(φi)
αi
ai

(x) = [Si(x−)]aibi
(φi)

(0)αi

bi
(x) . (3.10)

Note that even anti-quarks transform according to this rule: in this case T
a
i = −(ta)T ,

which translates into the anti-path ordering in (3.8).

Hard interactions among the different jets are integrated out in the effective theory and

absorbed into the Wilson coefficients of operators composed out of products of collinear

and soft fields. Since additional soft fields in the SCET operators would lead to power

suppression, the leading n-jet operators are built from n collinear fields, one for each

direction of large energy flow [50, 51]. The most general such operator with given particle

content appears in the effective Hamiltonian

Heff
n =

∫
dt1 . . . dtn C̃a1...an

α1...αn
(t1, . . . , tn, µ) (φ1)

α1
a1

(x+ t1n̄1) . . . (φn)αn
an

(x+ tnn̄n) . (3.11)

Our notation is somewhat unusual, because the Wilson coefficients of these operators carry

spin and color indices. Usually both operators and Wilson coefficients are chosen to be

color-neutral Lorentz scalars. However, writing the operator in this form makes the con-

nection to the color-space notation we use for the scattering amplitudes most transparent.
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Adopting this notation, the effective Hamiltonian for an n-jet process reads

Heff
n =

∫
dt1 . . . dtn 〈On({t}, µ)|C̃n({t}, µ)〉 , (3.12)

where µ is the scale at which the SCET operator is renormalized. An n-parton scattering

amplitude is obtained by taking an on-shell partonic matrix element of this operator.

In this step effective-theory loop integrals vanish in dimensional regularization, because

they are scaleless. The on-shell matrix elements are therefore given by their tree-level

values, consisting of products of on-shell spinors and polarization vectors defined through

the relations
〈0|(χj)

a
α(tj n̄j)|pi; ai, si〉 = δij δaia e

−itin̄i·pi uα(pi, si) ,

〈0|(Aj⊥)aµ(tj n̄j)|pi; ai, si〉 = δij δaia e
−itin̄i·pi ǫµ(pi, si) .

(3.13)

Loop corrections to the scattering amplitude are encoded in the Wilson coefficients

C̃n({t}, µ). The integrations over ti in (3.12) produce the Fourier transforms Cn({p}, µ)

of these coefficients, which after contraction with the spinors and polarization vectors aris-

ing when taking the tree-level matrix elements are in one-to-one correspondence with the

scattering amplitudes [3], as shown in (2.2).

3.2 Soft-collinear factorization and decoupling

To obtain the general form of the anomalous-dimension matrix Γ defined in (2.4), we

now derive a factorization theorem for the matrix elements of SCET operators. The first

factorization step has already been achieved in (3.12), which separates hard from soft

and collinear fluctuations. In a second step, we separate the collinear and soft degrees

of freedom using the decoupling transformation (3.8), which eliminates the leading-power

interactions among soft and collinear fields. Since collinear fields from different sectors do

not interact directly, this completely factorizes a matrix element into a soft part S, given

by a product of Wilson lines along the directions ni, and a product of collinear matrix

elements Ji for each direction.

RG invariance implies that the right-hand side of (3.12) must be independent of the

renormalization scale. Denoting by Γh ≡ Γ the anomalous-dimension matrix of the hard

contributions contained in the Wilson coefficient functions Cn and by Γc+s the anomalous

dimension associated with the collinear and soft contributions contained in the matrix ele-

ments of the SCET operators,1 it follows that Γh = Γc+s. The decoupling transformation,

which removes the interactions of collinear fields with soft gluons and absorbs them into

Wilson lines [5], allows us to further decompose Γc+s = Γc + Γs. There are no mixed

soft-collinear contributions. The collinear piece Γc =
∑

i Γ
i
c is a sum over color-singlet

single-particle contributions, because the fields belonging to different collinear sectors of

SCET do not interact with one another. Hence, contributions to the anomalous dimension

involving correlations between different partons only reside in the soft and hard contribu-

tions, Γs and Γh, and they coincide.

1Following common practice, we define the anomalous dimensions of operators with the opposite sign

compared to those for Wilson coefficients.
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Figure 1. Graphical representation of the soft operator S({n}, µ) corresponding to an n-parton

scattering amplitude. The n light-like Wilson lines start at the origin and run to infinity. The dots

represent open color indices.

After the decoupling transformation the soft matrix element is a vacuum expectation

value of n light-like Wilson lines, one for each external parton in the associated color

representation:

S({n}, µ) = 〈0|S1(0) . . .Sn(0)|0〉 . (3.14)

As illustrated in figure 1, this object is an operator in color space, with each Si factor

operating on the color indices of the i-th parton. Its renormalization properties are strongly

constrained by the simplicity of soft gluon interactions, which only probe the direction of

the Wilson lines and their color charge. When the color indices are contracted in color-

singlet combinations, then S({n}, µ) turns into products of closed Wilson loops, which

touch or intersect each other at the origin. The renormalization properties of such Wilson

loops have been studied extensively in the literature, see e.g. [8, 9, 23, 52–55] and references

therein. We will use several results obtained in these studies and generalize them to the

case of the Wilson-line operator in (3.14). We will also indicate where known properties of

Wilson loops correspond to certain features of the effective theory and vice versa.

For on-shell amplitudes, the loop integrals in the effective theory have both IR and

UV divergences and vanish in dimensional regularization. This makes the correspondence

between the Wilson coefficients in (3.12) and the amplitudes manifest. However, because

of the cancellations between UV and IR poles we cannot use on-shell amplitudes to obtain

the anomalous dimensions of the SCET operators. To separate out the UV divergences we

need to consider IR-finite quantities. The simplest possibility is to consider slightly off-

shell n-parton amputated Green’s functions Gn({p}). However, in this case we encounter

a subtlety. While the off-shell Green’s function in QCD and SCET are IR finite, this is

no longer the case after the field redefinition (3.8). Field redefinitions leave “physical”

quantities such as on-shell matrix elements unchanged, but they can change the off-shell

behavior of fields. To calculate the anomalous dimensions perturbatively from off-shell

Green’s functions, one should use the original, non-decoupled fields.2 For the case of

the quark form factor, the corresponding one-loop calculation in the effective theory was

2Alternatively, one can perform the calculations using a different IR regulator, e.g. by considering finite-

length Wilson lines with n
2
i 6= 0 [25].
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performed in [56]. Generalizing this result to n-point functions, we find for the UV poles

of the jet and soft functions (normalized to 1 at tree level)

Jq(p
2, µ) = 1 +

αs

4π
CF

(
2

ǫ2
+

2

ǫ
ln

µ2

−p2
+

3

2ǫ

)
+ O(ǫ0) ,

Jg(p
2, µ) = 1 +

αs

4π

[
CA

(
2

ǫ2
+

2

ǫ
ln

µ2

−p2

)
+
β0

2ǫ

]
+ O(ǫ0) ,

S({p}, µ) = 1 +
αs

4π

∑

(i,j)

Ti · Tj

2

(
2

ǫ2
+

2

ǫ
ln

−σij ni · nj n̄i · pi n̄j · pj µ
2

2(−p2
i )(−p2

j )

)
+ O(ǫ0) .

(3.15)

The jet functions are color-diagonal. The reference vectors ni are defined such that up to

power corrections pi = Ei ni, which implies that at leading power 1
2 σij ni ·nj n̄i ·pi n̄j ·pj =

2σij pi·pj = sij. The one-loop divergences of the complete effective-theory n-particle matrix

elements are thus given by

S({p}, µ)
∏

i

Ji(p
2
i , µ) = 1− αs

4π

[
∑

(i,j)

Ti · Tj

2

(
2

ǫ2
+

2

ǫ
ln

µ2

−sij

)
+
∑

i

γi
0

2ǫ
+O(ǫ0)

]
. (3.16)

The UV divergences of the SCET operator matrix elements are equal and opposite to

those of the corresponding Wilson coefficient. They are thus given by minus the one-

loop coefficient of lnZ in (2.12). The one-loop coefficients of the jet-function anomalous

dimensions are obtained from (3.15) as γq
0 = −3CF and γg

0 = −β0. Interestingly, the

dependence on the off-shellness cancels in the divergent part of the full matrix elements,

which only depend on the hard scales sij. This cancellation has to occur, because the

anomalous dimensions of the operators cannot depend on low-energy scales such as p2
i .

Otherwise the scale dependence of the operators could not possibly cancel against the

scale dependence of the hard Wilson coefficients, which are insensitive to IR scales. As we

will explain below, the factorization property Γh = Γs +
∑

i Γ
i
c places a strong constraint

on the form of the anomalous dimension.

3.3 Color-symmetrized soft gluon attachments

Of special importance to our analysis in section 4 will be the fact that the interactions of soft

gluons with collinear partons take on a particularly simple form after a symmetrization of

color matrices has been performed. To derive the form of this relation, consider the sums

over all possible attachments of one or two soft gluons to a set of l Wilson lines Si(0)

with tangent vectors ni, such as those contained in the soft operator in (3.14). Using

the Feynman rules of SCET, we find the simple expressions shown in figure 2, where

the dots in the second relation represent an anti-symmetric color structure containing the

commutator [T a
i ,T

b
i ] for a single parton index. Such a structure can be reduced to a single

color generator using the Lie algebra of the gauge group. The important point to note

about this result is that for the symmetric color structure the momentum dependence is

the same irrespective of whether the soft gluons attach to the same or to different Wilson

lines. In the two-gluon case, this happens because the two possible attachments to a single
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Figure 2. Feynman rules for the sums over all possible attachments of one (top) or two (bottom)

soft gluons to a set of Wilson lines. The indices i, j run from 1 to l.

Wilson line yield
T

b
i T

a
i

ni · (k1 + k2)ni · k2
+

T
a
i T

b
i

ni · (k1 + k2)ni · k1
, (3.17)

which after symmetrization gives rise to the structure shown in figure 2.

The Feynman rules given in the figure generalize in an obvious way to the case of

more than two soft gluons. The reason is that the symmetrization in color generators

eliminates the need for the path-ordering symbol in the definition (3.9) of the soft Wilson

lines. Introducing the notation

(
T

a1
i1
. . . T

an

in

)
+
≡ 1

n!

∑

σ∈Sn

T
aσ(1)

iσ(1)
. . . T

aσ(n)

iσ(n)
(3.18)

for the symmetric product of n color matrices, where Sn is the set of permutations of n

objects, we obtain for the general case of m soft gluons attached to a set of Wilson lines

the Feynman rule

∑

i1,...,im

gm
nµ1

i1
. . . nµm

im

ni1 · k1 . . . nim · km

(
T

a1
i1
. . . T

am

im

)
+

+ . . . . (3.19)

Since color generators acting of different partons commute, the symmetric product in (3.18)

symmetrizes the color matrices acting on each individual parton. For instance, we have for

different indices i, j, k

(
T

a
i T

b
j T

c
i T

d
k T

e
k

)

+
=
(
T

a
i T

c
i

)

+
T

b
j

(
T

d
k T

e
k

)

+
. (3.20)

4 Constraints from soft-collinear factorization

We will now summarize the arguments that have led us to propose the conjecture (2.7).

Approaching the problem from the perspective of effective field theory adds one crucial ele-

ment to the discussion. This is the realization that the IR-divergent terms in the scattering
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amplitudes must obey some restrictive constraints, which do not apply to the finite remain-

ders. The scattering amplitudes are in general complicated functions of the kinematical

invariants sij as well as of the color, spin, and polarization quantum numbers of the exter-

nal partons. The different sij variables are assumed to be hard scales of the same order of

magnitude, so that the ratio of any two such variables is an O(1) quantity. In principle,

arbitrary functions of combinations of such ratios can arise in the expressions for the scat-

tering amplitudes. The situation is, however, very different for the IR-singular terms in the

amplitudes. RG invariance of the effective theory requires that the anomalous dimensions

of the hard matching coefficients |Cn({p}, µ)〉, which according to (2.2) correspond to the

on-shell scattering amplitudes, must be decomposable into sums of collinear and soft contri-

butions. This requires a rewriting of the hard momentum variables sij in terms of soft and

collinear variables. The very fact that such a rewriting must exist restricts the functional

dependence of the anomalous dimension on the sij variables to be either single logarithmic

or in the form of certain conformal cross ratios, which will be defined below. Moreover, the

structure of the effective theory enforces that terms depending on the collinear variables

cannot lead to correlations between different partons and must be diagonal in color space.

Correlations can only arise through soft gluon exchange. The universal structure of these

interactions implies that any dependence on the identity of the external partons can only

arise via their momenta and color charges, but not through spin information. We will also

discuss constraints on the color structure of the soft anomalous-dimension matrix implied

by the non-abelian exponentiation theorem and other considerations.

4.1 Renormalization of Wilson loops

A well-known property of Wilson loops is that they require UV subtractions beyond the

renormalization of the coupling constant in cases where the integration path is not smooth,

but contains one or more singular points [52–54]. These divergences can be removed multi-

plicatively. The simplest case is that of a Wilson loop with a single cusp, i.e., a point where

the tangent vector changes its direction abruptly. If the cusp is formed by two time-like

segments with tangent vectors n1 and n2, then these UV divergences are removed by a

factor Z(β12), which is a function of the hyperbolic cusp angle β12 defined by

cosh β12 =
n1 · n2√
n2

1 n
2
2

, (4.1)

where for simplicity we have assumed that n1 points into the cusp and n2 points out of it.

If the Wilson loop has more than one cusp, then each of them contributes an analogous

Z-factor.

A more complicated situation arises if, as in our case, different Wilson lines cross each

other at a point. Then Wilson loops tracing out the same space-time curves except for

the cross point mix under renormalization. An example are the two Wilson-loop operators

shown in figure 3, which illustrates this fact for the case of a four-jet operator corresponding

to qq̄ → qq̄ scattering. The renormalization factor Z({β}) is then a matrix on the space of

such Wilson loops, which depends on the set of all hyperbolic angles formed by the tangent

vectors at the cross point [54]. Generalizing these results to our case, where the Wilson-line
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Figure 3. Color-singlet contractions of four Wilson lines in the fundamental representation. The

resulting Wilson-loop operators mix under renormalization.

=−

Figure 4. Diagrammatic form of the Lie commutator relation. Gluons are drawn as wavy lines in

order to distinguish color-weight graphs from Feynman diagrams.

operators are matrices in color space as shown in (3.14), the renormalization factor must

be promoted to a soft matrix Zs acting on the product space of the color representations

of the n partons.

RG invariance implies that the renormalization factor can be constructed in the usual

way from a soft anomalous-dimension matrix Γs. For the case of a single cusp, the two-loop

expression for the anomalous dimension was first obtained in [23, 24].

4.2 Non-abelian exponentiation theorem

The structure of the soft anomalous-dimension matrix is restricted by the non-abelian

exponentiation theorem [8, 9], which implies that purely virtual amplitudes in the eikonal

approximation (i.e., with only soft gluon interactions taken into account) can be written as

exponentials of simpler quantities, which only receive contributions from Feynman graphs

whose color weights are “maximally non-abelian” (or “color-connected”). Applied to our

case, it follows that the logarithm of the soft Zs-factor, and with it the soft anomalous-

dimension matrix Γs, only receives such contributions.

We follow the diagrammatic approach to the non-abelian exponentiation theorem de-

veloped in [9], since it is more explicit and intuitive than the iterative construction presented

in [8]. To each Feynman diagram we assign a color-weight diagram, in which vertices are

replaced by color matrices (ta)ij or structure constants −ifabc (or, more generally, by gen-

erators T
a in the appropriate representation of the gauge group), and propagators by δij

for quarks and δab for gluons or ghosts. Color diagrams may be related to one another by

use of the Lie algebra relation [T a,T b] = ifabc
T

c, as illustrated in figure 4. In the adjoint

representation this is called the Jacobi identity. One defines a web as a connected set of

gluon lines, counting crossed lines as being connected. As a special case, one defines a con-

nected web as a connected set of gluon lines not counting crossed lines as being connected.

Examples of these definitions are given in figure 5. It has been shown in [9] that using the

Lie commutator relation any color-weight diagram can be written as a sum over products

of connected webs. Furthermore, of this sum only single connected webs contribute to the

color weights in the exponent.
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= −

− +

Figure 5. Decomposition of a web into a sum of products of connected webs. The non-abelian

exponentiation theorem states that only the single connected web shown in the first graph on the

right contributes to the color weights in the exponent of the amplitude.

The above definitions imply that the single connected webs contain those diagrams

that are two-particle irreducible diagrams with respect to the Wilson lines [23]. Note that

in our case the gluons can be attached to more than two Wilson lines, provided there are

more than two external partons. The fact that only single connected webs contribute to the

logarithm of the Zs-factor (and hence to the anomalous dimension), while products of webs

contribute to the Zs-factor itself, is in analogy to the usual structure of UV divergences

in quantum field theory, as described by Zimmermann’s forest formula. An illustration is

shown in figure 6. The inner connected web inside the box gives rise to a subdivergence.

Formal arguments explaining the systematics of UV divergences for arbitrary Wilson loops

can be found in [54].

4.3 Light-like Wilson lines

For large values of the cusp angle β12 in (4.1), the anomalous dimension Γ(β12) associated

with a cusp (or cross point) grows linearly with β12, which in this case is approximately

equal to ln(2n1 · n2/
√
n2

1 n
2
2) [23]. In the limit where one or both segments forming the

cusp approach a light-like direction, the cusp angle diverges (β12 → ∞). In dimensional

regularization this divergence gives rise to a single logarithm of the renormalization scale

in the anomalous dimension. If both segments lie on the light-cone, then [25]

Γ(β12)
n2

1,2→0
→ Γi

cusp(αs) ln
µ2

Λ2
s

+ . . . , (4.2)

where we refer to Γi
cusp(αs) as the cusp anomalous dimension in the color representation

of parton i. Its two-loop expression was obtained long ago in [57, 58] and [23, 24], while

the three-loop result was derived in [13]. The above equation is formal and meant to show

the dependence on the renormalization scale only. We will explain later how a soft scale

Λs with the proper dimensions appears in the argument of the logarithm.

In conventional applications of the RG, large (single) logarithms of scale ratios entering

perturbative results for multi-scale problems can be resummed with the help of anomalous

dimensions that are functions of the coupling constant, much like the β-function. This
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Figure 6. Example of a UV-divergent graph consisting of two connected webs. The subgraph

inside the box gives rise to a subdivergence. This structure contributes to the Zs-factor, but not

to the soft anomalous-dimension matrix.

resums terms of the form (αsL)n in the perturbative series, where L is the logarithm of the

relevant scale ratio. However, the presence of overlapping soft and collinear singularities

in on-shell scattering amplitudes of massless partons generates Sudakov double logarithms

of the form (αsL
2)n in perturbation theory. They can be resummed with the help of

anomalous dimensions which themselves contain a single logarithm L of the large scale

ratio. The logarithmic dependence of the anomalous dimension in (4.2) is an essential

feature in this context.

SCET is the appropriate effective field theory to formalize applications of the RG to

observables sensitive to Sudakov double logarithms. It has been used in the past to derive

the exact form of the anomalous dimensions of the two-jet operators for quarks and gluons,

which were found to be of the form [59–62]

Γ2−jet = −Γi
cusp(αs) ln

µ2

−s + 2γi(αs) . (4.3)

Here i = q for quarks and i = g for gluons, and s ≡ s12 is the invariant momentum transfer.

From the perspective of the effective theory, the appearance of the cusp logarithm is, at

first sight, perplexing. How can the anomalous dimension of an operator defined in an

effective theory, in which the hard scale s has been integrated out, remember the value

of that scale? The answer to this puzzle was given in [56], where it was explained that

the hard scale is imprinted in the effective theory via the large rapidity that separates

the rest frames of soft and collinear hadrons in a given physical process. This leads to a

characteristic entanglement of the hard, collinear, and soft mass scales, the latter two of

which are known to the effective theory. This correlation is such that µ2
c ∼ µh µs, and the

hard logarithm in relation (4.3) can thus be rearranged in the symbolic form

ln
µ2

µ2
h

= 2 ln
µ2

µ2
c

− ln
µ2

µ2
s

. (4.4)

Obviously, such a rearrangement of a hard contribution as a sum of collinear and soft con-

tributions is only possible for functions containing either constants or single logarithms of

scale ratios, a point that was also emphasized in [62]. We observe an interesting connec-

tion between RG invariance in SCET and a property of soft Wilson loops: RG invariance

requires a single-logarithmic dependence of the anomalous dimension on the hard scale, be-

cause only then can this dependence be decomposed into dependences on collinear and soft
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scales. Relation (4.4) then implies single-logarithmic dependence on the soft scale, in accor-

dance with known renormalization properties of Wilson loops mentioned above, see (4.2).

That a decomposition of the form (4.4) is indeed at work in the effective theory was

demonstrated in [56] using the method of regions, by analyzing the collinear and soft contri-

butions to the anomalous dimension (4.3) separately. As we have explained in section 3.2,

in doing this it is necessary to either consider physical quantities, which are IR finite, or

to introduce an IR regulator scale in order to define the collinear and soft scales. Using a

regulator introduces some arbitrariness and scheme dependence into the calculation of the

individual contributions, which however vanishes in their sum (see also [29, 31]). For con-

creteness, we introduce a small off-shellness (−p2
i ) > 0 for the external partons, taking the

limit p2
i → 0 wherever possible. The decomposition of a generic hard logarithm then reads

ln
µ2

−sij
= ln

µ2

−2σij pi · pj
= ln

µ2

−p2
i

+ ln
µ2

−p2
j

− ln
−2σij pi · pj µ

2

(−p2
i )(−p2

j )
. (4.5)

This is precisely the structure of collinear and soft logarithms found in [56]. Measuring all

scales in units of the hard scale, we have the power counting pi · pj ∼ 1 for the hard scales,

p2
i ∼ p2

j ∼ λ for the collinear scales, and p2
i p

2
j/pi · pj ∼ λ2 for the soft scales, in accordance

with the general discussion in section 3.1.

In our discussion below we will assume that such a regularization is employed. We

then introduce the notations3

βij = ln
−2σij pi · pj µ

2

(−p2
i )(−p2

j )
, Li = ln

µ2

−p2
i

(4.6)

for the logarithms of the soft and collinear scales, respectively. The definition of βij gener-

alizes that of the cusp angle in (4.1) to the case of light-like Wilson lines. The role of the

soft scale in (4.2) is played by Λ2
s = (−p2

i )(−p2
j)/(−2σij pi · pj). Relation (4.5) can now be

rewritten as

βij = Li + Lj − ln
µ2

−sij
. (4.7)

4.4 General structure of the soft anomalous-dimension matrix

We are now ready to analyze the structure of the anomalous-dimension matrix of n-jet

SCET operators. According to the discussion in section 3.2, we can write the decomposition

into soft and collinear pieces as

Γ({p}, µ) = Γs({β}, µ) +
∑

i

Γi
c(Li, µ) , (4.8)

where the collinear terms are diagonal in color space. The total anomalous dimension

depends on the n(n− 1)/2 kinematical variables sij , while its soft counterpart depends on

the n(n− 1)/2 cusp angles βij , as indicated. The collinear pieces are single-particle terms,

3At leading power in the effective theory, the product 2pi · pj in the argument of the first logarithm is

replaced by 1
2

ni · nj n̄i · pi n̄j · pj , see (3.15).
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each depending on a single collinear scale Li. The general form of the collinear part of the

anomalous dimension is known to be of the form [56]

Γi
c(Li) = −Γi

cusp(αs)Li + γi
c(αs) . (4.9)

We now substitute for the cusp angles entering the soft anomalous-dimension matrix the

expression on the right-hand side of (4.7). This yields Γs({s}, {L}, µ) as a function of the

variables sij and Li. The dependence on the collinear scales must cancel when we combine

the soft and collinear contributions to the total anomalous-dimension matrix. We thus

obtain the relation
∂Γs({s}, {L}, µ)

∂Li
= Γi

cusp(αs) , (4.10)

where the expression on the right-hand side is a unit matrix in color space. This relation

provides an important constraint on the momentum and color structures that can ap-

pear in the soft anomalous-dimension matrix. A corresponding relation has been derived

independently in [29].

Because the kinematical invariants sij can be assumed to be linearly independent,

relation (4.10) implies that Γs depends only linearly on the cusp angles βij , see (4.7). The

only exception would be a more complicated dependence on combinations of cusp angles,

in which the collinear logarithms cancel. The simplest such combination is

βijkl = βij + βkl − βik − βjl = ln
(−sij)(−skl)

(−sik)(−sjl)
, (4.11)

which coincides with the logarithm of the conformal cross ratio ρijkl defined in [29]. For

simplicity, we will use the term “conformal cross ratio” in the following also when referring

to βijkl. This quantity obeys the symmetry properties

βijkl = βjilk = −βikjl = −βljki = βklij . (4.12)

It is easy to show that any combination of cusp angles that is independent of collinear

logarithms can be expressed via such cross ratios. Moreover, given four parton momenta,

there exist two linearly independent conformal cross ratios, since

βijkl + βiklj + βiljk = 0 , (4.13)

and all other index permutations can be obtained using the symmetry properties in (4.12).

Our strategy in section 6 will be to analyze the structure of the soft anomalous-

dimension matrix first, since it is constrained by the non-abelian exponentiation theorem

and the constraint (4.10). The universality of soft gluon interactions implies that the soft

contributions only probe the momentum directions and color charges of the external par-

tons, but not their polarization states. Dependence on the parton identities thus only enters

via the cusp variables βij and non-trivial color-conserving structures built out of Ti genera-

tors. If our conjecture (2.7) is correct, then (4.9) implies that the soft anomalous-dimension

matrix should be given by

Γs({β}, µ) = −
∑

(i,j)

Ti · Tj

2
γcusp(αs)βij +

∑

i

γi
s(αs) , (4.14)
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where

γi(αs) = γi
c(αs) + γi

s(αs) . (4.15)

Using relation (2.11) we may indeed confirm that

∂Γs

∂Li
= −

∑

j 6=i

Ti · Tj γcusp(αs) = Ci γcusp(αs) ≡ Γi
cusp(αs) , (4.16)

in accordance with the constraint (4.10). Note that this result implies Casimir-scaling for

the cusp anomalous dimension, since Γg
cusp(αs)/Γ

q
cusp(αs) = CA/CF . We will come back to

the significance of this observation in section 6.4.

5 Consistency with collinear limits

Before turning to a diagrammatic study of the anomalous-dimension matrix we discuss

one more non-trivial constraint it must obey, which derives from the known behavior of

scattering amplitudes in the limit where two or more external partons become collinear.

In the limit where the momenta of two of the external partons become collinear, an

n-parton scattering amplitude factorizes into the product of an (n − 1)-parton scattering

amplitude times a universal, process-independent splitting amplitude. This was first shown

at tree level in [63, 64], and extended to one-loop order in [65]. An all-order proof was given

in [66]. Strictly speaking, the proof was constructed for leading-color amplitudes only, but

the crucial ingredients are unitarity and analyticity, and it should be possible to extend

it to the general case. Collinear factorization holds at the level of the leading singular

terms. It is often studied for color-ordered amplitudes, for which the color information is

stripped off. The color-stripped splitting amplitudes for the splitting of a parent parton

P into collinear partons a and b are usually denoted by SplitσP
(aσa , bσb) in the literature,

where σi denote the helicities of the partons. These functions have been calculated at

tree level (see, e.g., [67]), one-loop order [68], and recently even to two loops [69]. In

contrast, we will study collinear factorization using the color-space formalism, extending

the work of [70] beyond the one-loop approximation. In this framework, the splitting

amplitudes are elements of a splitting matrix Sp({pa, pb}), which acts in the space of

color and spin configurations of (n − 1)-parton scattering amplitudes. As is the case for

the scattering amplitudes, the divergence structure of Sp({pa, pb}) is independent of the

spin configuration of the involved partons, and we therefore suppress spin indices in the

following. For Catani’s formula (2.15), the consistency with collinear limits was shown

in [34].

Consider, for concreteness, the limit where the partons 1 and 2 become collinear and

merge into an unresolved parton P . We assign momenta p1 = zP and p2 = (1 − z)P and

consider the collinear limit P 2 → 0. In this limit the scattering amplitude factorizes in the

form

|Mn({p1, p2, p3, . . . , pn})〉 = Sp({p1, p2}) |Mn−1({P, p3, . . . , pn})〉 + . . . . (5.1)

The matrix of splitting amplitudes encodes the singular behavior of the amplitude |Mn〉
as p1||p2, and the factorization holds up to terms that are regular in the collinear limit.
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Analogous relations describe the behavior in limits where more than two partons become

collinear. However, it is sufficient for our purposes to focus on the simplest case.

The factorization formula (5.1) holds both for the dimensionally regularized scattering

amplitudes |Mn(ǫ, {p})〉 as well as for the minimally subtracted amplitudes |Mn({p}, µ)〉
in (2.1). Since we know that the divergences of the amplitude can be absorbed into a Z-

factor, equation (5.1) implies a constraint on the divergences of the splitting amplitudes.

It can be written as

lim
ǫ→0

Z
−1(ǫ, {p1, . . . , pn}, µ)Sp(ǫ, {p1, p2})Z(ǫ, {P, p3 . . . , pn}) = Sp({p1, p2}, µ) , (5.2)

where the matrix of renormalized splitting amplitudes on the right-hand side is finite for

ǫ→ 0. From (2.5) it then follows that this quantity obeys the RG equation

d

d lnµ
Sp({p1, p2}, µ) = Γ({p1, . . . , pn}, µ)Sp({p1, p2}, µ)

− Sp({p1, p2}, µ)Γ({P, p3 . . . , pn}, µ) .

(5.3)

Analogous equations hold for the higher splitting amplitudes Sp({p1, . . . , pm}, µ), which

describe the limits where more than two partons become collinear. To bring the RG

equation into a more useful form, we note that charge conservation implies

(T1 + T2)Sp({p1, p2}, µ) = Sp({p1, p2}, µ)TP , (5.4)

where TP is the color generator associated with the parent parton P . Since the matrix of

splitting amplitudes commutes with the generators of partons not involved in the splitting

process, we can thus commute the anomalous dimension in the second term to the left

to obtain
d

d lnµ
Sp({p1, p2}, µ) = ΓSp({p1, p2}, µ)Sp({p1, p2}, µ) , (5.5)

where we have defined

ΓSp({p1, p2}, µ) = Γ({p1, . . . , pn}, µ) − Γ({P, p3 . . . , pn}, µ)
∣∣
TP→T1+T2

. (5.6)

The fact that the anomalous dimension of the splitting amplitudes must be independent

of the colors and momenta of the partons not involved in the splitting process, which is

a consequence of the factorization formula (5.1), imposes a non-trivial constraint on the

form of the anomalous-dimension matrix. We will explore its implications in section 6.6.

Assuming the form (2.7) for the anomalous-dimension matrix Γ, we find that the

anomalous dimension of the splitting amplitudes has the simple all-order form

ΓSp({p1, p2}, µ) = γcusp

[
T1 · T2 ln

µ2

−s12
+ T1 · (T1 + T2) ln z + T2 · (T1 + T2) ln(1 − z)

]

+ γ1 + γ2 − γP , (5.7)

where γP is the anomalous dimension associated with the unresolved parton P . Note that

the momentum-dependent terms in the result are insensitive to the nature of the partons
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involved in the splitting process. The divergent part of the one-loop splitting amplitudes

for m partons in the color-space formalism was given in [70]. Expanding the result obtained

there for the case m = 2, we find

Sp1−loop(ǫ, {p1, p2}) =
αs

4π

[(
2

ǫ2
+

2

ǫ
ln

µ2

−s12

)
T1 · T2

+
2

ǫ

[
T1 · (T1 + T2) ln z + T2 · (T1 + T2) ln(1 − z)

]

+
1

2ǫ

(
γ1
0 + γ2

0 − γa
0

)
+ O(ǫ0)

]
Sptree({p1, p2}) ,

(5.8)

which is in agreement with the result obtained by solving the RG equation (5.5). Beyond

one-loop order the splitting amplitudes are given by rather complicated expressions [69];

however, we have checked that their IR divergences can indeed be obtained from the simple

anomalous dimension in (5.7), which only contains single logarithms of the momentum

fractions z and (1 − z). The exact form of the anomalous-dimension matrix in (5.7) is an

important by-product of our analysis.

6 Diagrammatic analysis

We now present a detailed diagrammatic study of the general structure of the soft

anomalous-dimension matrix up to three-loop order, implementing the constraints that

follow from the non-abelian exponentiation theorem and RG invariance of the effective

theory. At two-loop order we will recover the form found in [30, 31] from a simple sym-

metry argument. In these papers only the cusp piece of the soft anomalous-dimension

matrix was studied, which is legitimate given that the non-logarithmic terms can be shown

to be diagonal in color space. We find that this property is no longer trivial beyond

two-loop order.

The non-abelian exponentiation theorem restricts the color structures that can poten-

tially appear in the soft anomalous-dimension matrix. They are obtained by considering

single connected webs, whose ends can be attached in arbitrary ways to the n Wilson lines

in the soft operator in (3.14). In general, single connected webs at L-loop order carry

between 2 and (L+ 1) color generators T . In figure 7 we show the webs appearing up to

three-loop order. The dashed blobs represent self-energy or vertex functions, which have

color structure δab and −ifabc. The color structures of the three- and four-gluon vertices

can be expressed in terms of fabc symbols.

In our analysis in this section we only use basic properties of the Lie algebra of the

gauge group, which can be summarized as

[T a,T b] = ifabc
T

c , fabcfabd = CA δ
cd ,

tradj.

(
T

a
T

b
T

c
)

= ifadef begf cgd =
iCA

2
fabc .

(6.1)

The last relation follows from the Jacobi identity, i.e., the first relation in the adjoint

representation. While our explicit analysis refers to SU(N) non-abelian gauge theories, its

validity extends to other gauge groups as well.

– 24 –



J
H
E
P
0
6
(
2
0
0
9
)
0
8
1

(a) (b)

(c)

Figure 7. One-loop (a), two-loop (b), and three-loop (c) connected webs contributing to the soft

anomalous-dimension matrix. The dots represent color generators, which appear when the gluons

are attached to Wilson lines. In each set, only the first web gives rise to a new color structure.

6.1 One-loop analysis

In this case the relevant web consists of a single gluon, as shown in figure 7(a). If it is

attached to two different Wilson lines i and j, then the resulting color structure is Ti ·Tj. In

this case non-trivial momentum dependence can arise, which can lead to a factor βij . Recall

that only linear dependence on the cusp angle is allowed. For terms without momentum

dependence, the sum over parton legs reduces the color structure to a diagonal one, since

relation (2.11) can be applied in this case. Likewise, if the ends of the exchanged gluon are

attached to a single Wilson line i, then the color structure is T
2
i = Ci. It follows that at

one-loop order the soft anomalous-dimension matrix is indeed of the form (4.14).

6.2 Two-loop analysis

In this case two webs need to be considered, which are depicted in figure 7(b). The

connected web containing the gluon self-energy has the same color structure as a single

gluon exchange, and hence it does not lead to any new structures in the result (4.14). The

color structure of the three-gluon web is proportional to −ifabc times three color generators,

one for each leg. There are thus three possibilities, which we consider separately.

If all gluons are attached to a single Wilson line, then the resulting color structure is

− ifabc
T

a
i T

b
i T

c
i =

CACi

2
. (6.2)

In this case no momentum dependence can arise. If the gluons are attached to two different

Wilson lines i and j, then the resulting color structure is (recall that generators belonging

to different partons commute)

− ifabc
T

a
i T

b
i T

c
j =

CA

2
Ti · Tj . (6.3)
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In this case momentum dependence can arise, since two partons are involved in the loop

diagram. It is thus possible to get a factor βij or a constant. In any case we obtain the

same structures as at one-loop order. Finally, if the gluons are attached to three different

Wilson lines i, j, and k, then the resulting color structure

− ifabc
T

a
i T

b
j T

c
k (6.4)

is totally anti-symmetric in the parton indices, and it would therefore need to multiply a

totally anti-symmetric momentum-dependent structure formed out of the three kinematical

invariants βij , βjk, and βki. However, no such structure exists that would be consistent

with our constraint (4.10), since it requires linearity in the cusp angles in cases where less

than four parton momenta are involved. A nonlinear structure such as

(βij − βjk)(βjk − βki)(βki − βij)

=

(
ln

−sij

−sjk
+ Li − Lk

)(
ln

−sjk

−ski
+ Lj − Li

)(
ln

−ski

−sij
+ Lk − Lj

)
,

(6.5)

which is reminiscent of that appearing in (2.17), cannot be written as a sum of hard and

collinear contributions. Recall that this structure arises in Catani’s subtraction operator

I
(2) only because in [20] the subtraction of IR poles is not implemented in a minimal

scheme, giving rise to a term sensitive to the finite parts of the hard scattering amplitudes.

This simple symmetry argument explains the cancellations observed in [30, 31], where

two-loop diagrams with gluon attachments to three different parton legs were shown to

vanish. It follows that at two-loop order the soft anomalous-dimension matrix is still of

the form (4.14).

6.3 Three-loop analysis

The single connected webs in figure 7(c) containing insertions of self-energy or vertex func-

tions have the same color structure as the corresponding two-loop webs and hence give noth-

ing new compared with the discussion at two-loop order. This explains the cancellations

observed in [32], where three-loop diagrams with fermionic self-energy insertions and gluon

attachments to three different parton legs were shown to vanish. It thus suffices to consider

the two four-gluon webs, both of which have the color structure fadef bce
T

a
i T

b
j T

c
k T

d
l . If

two or more color generators act on the same parton (i.e., if two or more of the indices

i, j, k, l coincide), then the products of generators with the same parton index can be de-

composed into symmetric and anti-symmetric products. Using the Lie-algebra relations

in (6.1), the anti-symmetric products can always be reduced to structures containing fewer

generators. In this case we obtain one of the color structures already present in the two-

loop case. It is therefore sufficient to consider only the symmetric product of four color

generators, as defined in (3.18). We thus introduce the notation

Tijkl = fadef bce
(
T

a
i T

b
j T

c
k T

d
l

)

+
. (6.6)

This object has the symmetry properties

Tijkl = Tjilk = −Tikjl = −Tljki = Tklij . (6.7)
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If all four parton indices are different, then these are precisely the symmetry properties of

the conformal cross ratio βijkl in (4.11). Note that if four or three indices coincide, then

the symmetric product (6.6) vanishes. If two indices coincide, the non-vanishing index

combinations are

Tiijj = −Tijij = fadef bce
(
T

a
i T

b
i

)

+

(
T

c
j T

d
j

)

+
,

Tiijk = −Tijik = −Tjiki = Tjkii = fadef bce
(
T

a
i T

b
i

)

+
T

c
j T

d
k .

(6.8)

The four gluons of the connected webs shown in the first two graphs in figure 7(c)

can be attached to up to four Wilson lines. There are thus several cases that need to

be distinguished. If the gluons are attached to two different Wilson lines i and j, then

the color structure shown in the first line of (6.8) can arise. Since two parton legs are

involved in the loop diagrams, a dependence on βij can arise, which is at most linear.

We thus have the possibilities βij or a constant. If the four gluons are attached to three

different Wilson lines i, j, and k, then the color structure shown in the second line of (6.8)

can arise, which is symmetric in j and k. It follows that this structure can be combined

with a symmetric combination of the variables βij , βjk, and βkl. This leaves the three

possibilities βjk, (βij +βik), and a constant. Finally, if the four gluons are attached to four

different Wilson lines i, j, k, and l, then the color structure Tijkl must be combined with a

momentum structure with the same symmetry properties as those shown in (6.7). In this

case four parton legs are involved in the loop integration, and hence the result can depend

on the six cusp angles that can be formed out of the four parton momenta. However, the

anti-symmetry of Tijkl in (j, k) and (i, l) eliminates βjk and βil. Indeed, starting with any

linear function of the cusp angles, symmetry arguments can be used to replace

∑

(i,j,k,l)

Tijkl βij =
∑

(i,j,k,l)

Tijkl βkl =
∑

(i,j,k,l)

Tijkl
βij + βkl − βik − βjl

4
=

∑

(i,j,k,l)

Tijkl
βijkl

4
,

∑

(i,j,k,l)

Tijkl βik =
∑

(i,j,k,l)

Tijkl βjl =
∑

(i,j,k,l)

Tijkl
βik + βjl − βij − βkl

4
= −

∑

(i,j,k,l)

Tijkl
βijkl

4
,

∑

(i,j,k,l)

Tijkl βjk =
∑

(i,j,k,l)

Tijkl βil = 0 .

(6.9)

This leaves us with the structure Tijkl βijkl.

Since conformal cross ratios are invariant under the transformation from soft to hard

scales, the factorization constraint (4.10) does not prevent us from considering more compli-

cated functions of such ratios. The most general possibility would be to allow a function de-

pending on two linearly independent combinations of conformal cross ratios. Using (4.13),

we can write

F (βijkl, βiklj − βiljk) , (6.10)

where the second argument is invariant under all of the index permutations in (6.7). As long

as F is odd in its first argument, F (x, y) = −F (−x, y), this ansatz respects the symmetry

properties of the color structure Tijkl. It is not easy to see how a non-trivial function
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of conformal cross ratios could arise from a calculation of Feynman diagrams. According

to (2.12), any new structure in the anomalous dimension can first arise in the three-loop

coefficients Γ2 and Γ′
2. Since the relevant Feynman diagrams are free of subdivergences,

they do not generate higher poles than 1/ǫ2. One then expects at most single logarithms

to appear in the coefficient of the 1/ǫ pole term. Indeed, the structures in (6.9) do not

contain a cusp logarithm and therefore can only contribute to the Γ2/ǫ term in (2.12). An

example of a structure that can give rise to such a term is

1

ǫ2

[(
µ2

−sij

)3ǫ

+

(
µ2

−skl

)3ǫ

−
(

µ2

−sik

)3ǫ

−
(
µ2

−sjl

)3ǫ
]

= −3

ǫ
βijkl + . . . . (6.11)

We thus consider a linear dependence on the conformal cross ratio βijkl as the most plausible

possibility. However, in our discussion below we will allow for an arbitrary dependence

consistent with the symmetries of the problem.

At this point we have exhausted the new structures that could in principle contribute

to the soft anomalous-dimension matrix at three-loop order. Absorbing all terms not fitting

the simple forms shown in (4.14) into a quantity ∆Γs, we obtain

∆Γs =
∑

(i,j)

Tiijj

[
f1(αs)βij + f2(αs)

]

+
∑

(i,j,k)

Tiijk

[
f3(αs)βjk + f4(αs)(βij + βik) + f5(αs)

]

+
∑

(i,j,k,l)

Tijkl

[
f6(αs)βijkl + F (βijkl, βiklj − βiljk)

]
.

(6.12)

The functions fi(αs) and F (x, y), which represents a possible dependence on conformal

cross ratios that is more complicated than a linear βijkl term, start at three-loop order.

We suppress the argument αs in the latter function for brevity. Expression (6.12) can be

simplified considerably by performing the sums over those parton indices in the second and

third lines not involved in the various βij factors. In particular, the four-parton term linear

in βijkl can be simplified by using one of the first two relations in (6.9) and performing

the sums over the two free indices. Recall that generators belonging to different partons

commute, so a generator whose index is summed over can always be moved to the right

of all other generators, and then relation (2.3) can be applied. After a straightforward

calculation, we obtain

∆Γs =̂
∑

(i,j)

Tiijj

[(
f1(αs) − 2f4(αs) − 4f6(αs)

)
βij + f2(αs) − f5(αs)

]

+
∑

(i,j,k)

Tiijk

[
f3(αs) − 4f6(αs)

]
βjk +

∑

(i,j,k,l)

Tijkl F (βijkl, βiklj − βiljk) ,
(6.13)

where the symbol “=̂” means that the two expressions agree up to trivial color structures,

which can be absorbed into (4.14) and hence can be dropped from ∆Γs. Next, we evaluate
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the constraint (4.10) for the above expression, which implies

∂∆Γs

∂Li
= 2

∑

j 6=i

Tiijj

[
f1(αs) − 2f4(αs) − 4f6(αs)

]
+ 2

∑

(j 6=i,k 6=i)

Tjjik

[
f3(αs) − 4f6(αs)

]

= 2
∑

j 6=i

Tiijj

[
f1(αs) − f3(αs) − 2f4(αs)

]
+
C2

ACi

4

[
f3(αs) − 4f6(αs)

]
, (6.14)

where in the last step we have performed the sum over k. Relation (4.10) requires that

this result be proportional to the unit matrix in color space times a coefficient depending

only on the representation of parton i, which is not satisfied for the color structure of the

first term in the last equation. To see this, suppose there exists a constant ki depending

only on the representation of parton i, such that
∑

j 6=i Tiijj = ki 1. Taking traces over the

color indices of either parton i, or of all other partons, we find that ki would have to be

proportional to
∑

j 6=iCj, which evidently is not independent of the color representations of

the remaining partons involved in the scattering process. We must therefore require that

f3(αs) = f1(αs) − 2f4(αs) . (6.15)

The most general expression for the extra terms can thus be written as (with obvious

redefinitions of the coefficient functions)

∆Γs =
∑

(i,j)

Tiijj

[
f̄1(αs)βij + f̄2(αs)

]
(6.16)

+
∑

(i,j,k)

Tiijk f̄1(αs)βjk +
∑

(i,j,k,l)

Tijkl F (βijkl, βiklj − βiljk) .

It follows that using arguments based on factorization and non-abelian exponentiation

alone, one cannot exclude color and momentum structures in the soft anomalous-dimension

matrix that are more complicated that those in (4.14).

Inverting the relations between color structures that led to (6.13) and expressing the

result in terms of structures containing maximal numbers of color generators, we find that

the most general form of the additional contributions to the anomalous-dimension matrix

Γ of n-jet SCET operators in (2.7) is

∆Γ3({p}, µ) = − f̄1(αs)

4

∑

(i,j,k,l)

Tijkl ln
(−sij)(−skl)

(−sik)(−sjl)
− f̄2(αs)

∑

(i,j,k)

Tiijk

+
∑

(i,j,k,l)

Tijkl F (βijkl, βiklj − βiljk) ,
(6.17)

where the subscript “3” indicates that these structures could first arise at three-loop order.

At this order the entire contribution ∆Γ3 is proportional α3
s and all color dependence is

explicit, i.e. it arises only from the tensors Tijkl. To determine the coefficient function

F (x, y) = −F (−x, y) and the numerical coefficients multiplying the other two terms it

would suffice to calculate an arbitrary four-parton amplitude at three-loop order. If any

one of the terms in (6.17) did not vanish, then our conjecture (2.7) for the structure of the
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anomalous-dimension matrix would have to be modified starting at three-loop order. In

sections 6.5 and 6.6 we will show that the coefficients f̄1(αs) and f̄2(αs) indeed vanish to all

orders in perturbation theory, and that the function F (x, y) must vanish in all two-parton

collinear limits, which is compatible with it being zero for all values of its arguments. We

note, however, that even if the contribution proportional to F (x, y) would not turn out to

be zero no explicit µ dependence enters in (6.17), so that

∂

∂ lnµ
∆Γ3({p}, µ) = 0 , (6.18)

and hence there would not be a contribution of this structure to the function Γ′(αs)

in (2.10). It follows that in (2.12) a modification could first enter in the Γ2/ǫ term at

three-loop order. Equivalently, the structure of the cusp logarithms in the anomalous-

dimension matrix remains unaffected up to and including three loops, while the non-cusp

terms remain unaffected at least to two-loop order. Based on our result (2.7), and irre-

spective of whether the additional terms in (6.17) vanish or not, it is therefore possible to

resum large Sudakov logarithms at next-to-next-to-leading-logarithmic accuracy. This is

sufficient for most practical applications, since it allows the resummation of all Sudakov

logarithms which appear in next-to-leading order calculations of n-jet processes. Beyond

this accuracy, two-loop calculations of amplitudes with n partons are required to obtain

the necessary matching coefficients.

6.4 Higher Casimir contributions to the cusp anomalous dimension

For the special case of two-jet operators, the simple form (2.7) implies Casimir-scaling of the

cusp anomalous dimension, i.e., the cusp anomalous dimensions of quarks and gluons are

related to each other by the ratio of the eigenvalues Ci of the quadratic Casimir operators:

Γq
cusp(αs)

CF
=

Γg
cusp(αs)

CA
= γcusp(αs) , (6.19)

see (4.3) and (4.16). This relation is indeed satisfied at three-loop order [13]. To this order

Casimir scaling is a consequence of non-abelian exponentiation, as can be seen from our

analysis above: restricted to the two-jet case, all possible color structures arising up to

three-loop order are proportional to Ci. Beyond three loops non-abelian exponentiation

no longer automatically implies Casimir scaling [9], and there are arguments based on

calculations using the AdS/CFT correspondence [14–16] suggesting a violation at higher

orders [17–19]. The new color structures would involve higher Casimir invariants such as

those appearing in the four-loop β-function of non-abelian gauge theories [71, 72].

For the case of N = 4 SYM in the strong coupling limit, λ = g2
sNc → ∞, a violation

of Casimir scaling was found in [17] by considering a Wilson loop in a k-dimensional

antisymmetric representation of SU(Nc) in the limit where Nc and k go to infinity at fixed

ratio Nc/k. Since the calculation was performed in the strong-coupling limit, it does not

predict if and at which order in the weak-coupling expansion the effect would appear. On

the other hand, it is not implausible that it might appear at some order in perturbation

theory, since the perturbative resummation of ladder diagrams contributing to Wilson
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Figure 8. Four-loop connected webs involving higher Casimir invariants.

loops in N = 4 SYM indeed produces, when reexpanded for large λ, the e
√

λ behavior

characteristic for the strong-coupling limit [73]. Also, in [74, 75] an all-order form of the

cusp anomalous dimension of planar N = 4 SYM was proposed, which is given by the

solution of a certain integral equation. This conjecture has been checked by four-loop

calculations in the weak-coupling limit [76] and to second order in the strong-coupling

expansion using AdS/CFT and a two-loop superstring calculation [77].

Higher Casimir invariants can be constructed by considering symmetrized traces

da1a2...an

R = tr
[ (

T
a1
R T

a2
R . . . T

an

R

)
+

]
(6.20)

of generators in a representation R. Any such trace contracted with n generators defines

a Casimir invariant, since

Cn(R,R′) = da1a2...an

R T
a1
R′ T

a2
R′ . . . T

an

R′ (6.21)

commutes with all generators in the representation R of the group. If R is irreducible, then

Schur’s lemma implies that Cn(R,R′) is proportional to the unit matrix. These Casimir

invariants are, however, not all independent. To obtain an independent set of Casimir

operators it is sufficient to consider symmetric traces in the fundamental representation

to define the d-symbols, since da1a2...an

R = In(R) da1a2...an

F with a representation-dependent

index In(R). Furthermore, the invariants can be redefined, da1...an → da1...an

⊥ , such that

they fulfill the orthogonality conditions da1...al...an

⊥ da1...al

⊥ = 0 [78, 79]. For SU(N) groups,

N−1 independent invariants can be constructed in this way. More details on the evaluation

of group-theory factors appearing in Feynman diagrams can be found in [80].

Let us now consider possible contributions of these new color structures to the cusp

part of the soft anomalous-dimension matrix. The case n = 3 is irrelevant. The cor-

responding connected web, depicted in the middle graph in figure 7(c), consists of three

gluons attached to a gluon or fermion loop. These contributions have antisymmetric color

structure fabc. Symmetric traces of four color generators do arise, however, from the dia-

grams shown in figure 8. The corresponding single connected webs can contribute to the

soft anomalous-dimension matrix starting at four-loop order. Our goal is to study the

most general contributions of these webs proportional to a cusp logarithm. A complete

classification of potential new color and momentum structures that could arise at four-loop

order is left for future work.

Using the notation

Dijkl = dabcd
F T

a
i T

b
j T

c
k T

d
l = dabcd

F

(
T

a
i T

b
j T

c
k T

d
l

)

+
, (6.22)
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the possible contributions to the soft anomalous-dimension matrix linear in cusp angles

have the following structures: βij Diijj and βij Diiij (gluon attachments to two different

Wilson lines), βjk Diijk and (βij + βik)Diijk (attachments to three different Wilson lines),

or βij Dijkl (attachments to four different Wilson lines). Here we have exploited the fact

that Dijkl is totally symmetric in its indices. Using color conservation to evaluate the sums

over free parton indices, the result can be reduced to

∆Γcusp
s =

∑

(i,j)

βij

[
Diijj g1(αs) + Diiij g2(αs)

]
+
∑

(i,j,k)

βij Dijkk g3(αs) , (6.23)

where the superscript “cusp” indicates that we only focus on new structures linear in

cusp angles. The coefficient functions contain in general two terms of the form gi(αs) =

nf g
F
i (αs) + I4(A) gA

i (αs), see figure 8. They start at O(α4
s).

Let us now evaluate the condition (4.10), which implies

∂∆Γ
cusp
s

∂Li
= −C4(F,Ri) g2(αs) +

∑

j 6=i

[
2Diijj

(
g1(αs) − g3(αs)

)
+Dijjj

(
g2(αs) − 2g3(αs)

)]
.

(6.24)

Only the first term on the right-hand side is of the required form and can be absorbed into

the jet-function anomalous dimension, so that the factorization constraint (4.10) implies

g3(αs) = g1(αs) =
g2(αs)

2
. (6.25)

The higher-Casimir cusp terms must thus have the form

∆Γcusp
s = g1(αs)

[∑

(i,j)

βij

(
Diijj + 2Diiij

)
+
∑

(i,j,k)

βij Dijkk

]
. (6.26)

It is remarkable that the factorization constraint determines the structure of this term

uniquely up to an overall coefficient function.

The corresponding contribution to the four-loop anomalous-dimension matrix of n-jet

SCET operators is given by

∆Γ
cusp
4 = −g1(αs)

[∑

(i,j)

ln
µ2

−sij

(
Diijj + 2Diiij

)
+
∑

(i,j,k)

ln
µ2

−sij
Dijkk

]
. (6.27)

According to (4.16), the cusp anomalous dimension for two-jet operators now receives a

contribution not proportional to the quadratic Casimir operator of the gauge group. It is

given by

Γi
cusp(αs) = Ci γcusp(αs) − 2g1(αs)C4(F,Ri) . (6.28)

The four-loop cusp anomalous dimension is known for N = 4 SYM in the planar limit [44].

However, we show in appendix B that the higher Casimir contributions, as well as the

three-loop structures (6.17) discussed above, are subleading in the Nc → ∞ limit. These

structures are therefore not visible in the planar limit.
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6.5 A symmetry argument

Below, we will show that (with one possible exception) the additional structures considered

in section 6.3 and 6.4 can be excluded, because they do not have the correct properties in the

two-parton collinear limit. Before turning to this discussion, however, we find it instructive

to present a physical argument suggesting that the additional structures should be absent.

To this end, note that the simple form of color-symmetrized soft gluon attachments to a set

of Wilson lines discussed in section 3.3 implies restrictions on the form of the various terms

in (6.12). The Feynman rules discussed there imply that, irrespective of which Wilson lines

the gluons attach to, one gets the same loop integral apart from substitutions of ni vectors.

If the symmetry properties of the diagrams also hold for the anomalous dimensions,

they imply that the extra structures vanish due to color conservation, as we will show

below. What makes the argument somewhat subtle is that even for IR-finite quantities,

individual Feynman diagrams can contain IR divergences. These can manifest themselves

in scaleless integrals, for which the expansion around d = 4 does not commute with the use

of symmetry relations. For example, if one considers diagrams with exchanges between two

legs i and j, one finds that they contain cusp logarithms, while diagrams where the gluons

attach to a single leg are scaleless for light-like Wilson lines and vanish. In d dimensions, the

one-leg contribution can be obtained by the substitutions nj → ni and Tj → Ti. However,

after expanding around d = 4 the limit nj → ni is singular for the cusp term.

While the naive symmetry argument does not work for the cusp logarithms, we expect

it to remain valid for those terms in the amplitude that do not depend on the momentum

variables and light-cone vectors of the partons in the set of Wilson lines considered in

figure 2. This assertion should be checked with an explicit calculation. Assuming it is

true, we proceed to derive its implications. To this end, consider first the contributions

proportional to f3 and f6 in the formula (6.12) for the most general set of extra terms

arising at three-loop order. Using relation (6.9) and renaming some summation indices,

these two terms can be rewritten as

∆Γs ∋ f3(αs)
∑

(i,j,k)

βij Tijkk + 4f6(αs)
∑

(i,j,k,l)

βij Tijkl
!
= f3(αs)

∑

(i,j)

βij

∑

k,l 6=i,j

Tijkl . (6.29)

The last relation follows from the structure of color-symmetrized soft gluon attachments

shown in figure 2, when we take into account that the light-cone vectors nk and nl of

the Wilson lines not involved in the cusp do not enter the value of the loop integral.

It is illustrated in the left diagram depicted in figure 9. Relation (6.29) implies that

4f6(αs) = f3(αs). When combined with relation (6.15), this result leads to

f̄1(αs) = f1(αs) − 2f4(αs) − 4f6(αs) = 0 . (6.30)

Consider next the contributions proportional to f2 and f5 in (6.12). They both contain two

gluons attached to the Wilson line for parton i, plus a sum over the possible attachments

of the remaining two gluons. In analogy with (6.29), we conclude that

∆Γs ∋ f2(αs)
∑

(i,j)

Tiijj + f5(αs)
∑

(i,j,k)

Tiijk
!
= f2(αs)

∑

i

∑

j,k 6=i

Tiijk . (6.31)
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... ...

i

j

i

Figure 9. Graphical illustration of the sum over color-symmetrized soft gluon attachments giving

rise to the relations f3 = 4f6, g1 = 0 (left) and f2 = f5 (right).

This relation, which is illustrated in the right diagram in figure 9, implies that

f̄2(αs) = f2(αs) − f5(αs) = 0 . (6.32)

We conclude that the contributions of f̄1(αs) and f̄2(αs) to ∆Γ3 in (6.17) vanish, which

leaves only the possibility of a contribution involving the function F (x, y) of conformal

cross ratios. The physical argument underlying this cancellation is the vanishing overall

color charge of the n-parton scattering amplitude, combined with the simple form of color-

symmetrized soft gluon attachments to collinear particles.

For the new structure at four-loop order involving higher Casimir invariants a similar

argument can be made. In analogy with (6.29), the three structures shown in (6.23) should

all derive from

∑

(i,j)

βij

∑

k,l 6=i,j

Dijkl =
∑

(i,j)

βij

[
2Diijj + 2Diiij −

∑

k 6=i,j

Dijkk

]
. (6.33)

It follows that g1(αs) = g2(αs) = −2g3(αs), which is incompatible with (6.25) unless we

require that

g1(αs) = 0 , (6.34)

so that ∆Γ
cusp
4 in (6.27) vanishes. Hence, we find that the cusp anomalous dimension

obeys Casimir scaling also at four-loop order. This observation is not in contradiction to

the fact that, on physical grounds, one expects the finite terms in the vacuum expectation

values of Wilson loops to receive contributions from higher Casimir invariants [9].

6.6 Two-parton collinear limits

We will now rederive the conditions (6.30), (6.32), and (6.34) from an independent consid-

eration. To this end, we analyze the behavior of the extra terms in ∆Γ3 given in (6.17) in

the two-particle collinear limit and check whether they are compatible with collinear factor-

ization. For the contributions of the first two new structures to the anomalous dimension

of the splitting amplitudes, we obtain

∆ΓSp({p1, p2}, µ)
∣∣
f̄1(αs)

= 2
∑

(i,j)6=1,2

T12ij

[
ln

(−sPi)(−sPj)

(−s12)(−sij)
+ ln z(1 − z)

]
,

∆ΓSp({p1, p2}, µ)
∣∣
f̄2(αs)

= 2T1122 − 4
∑

i6=1,2

T12ii .
(6.35)
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Both contributions are incompatible with the factorization of collinear singularities, because

the splitting amplitudes and their anomalous dimension must not depend on the colors and

momenta of the remaining partons not involved in the splitting process. We must therefore

require that f̄1(αs) = f̄2(αs) = 0, in accordance with (6.30) and (6.32).

An analogous calculation shows that the new structure proportional to the function

g1(αs) in the expression for ∆Γ
cusp
4 in (6.27), which would lead to a violation of Casimir

scaling of the cusp anomalous dimension, is incompatible with the two-particle collinear

limits. Considering the terms proportional to ln[µ2/(−s12)] for example, we find that

∆ΓSp({p1, p2}, µ)
∣∣
g1(αs)

= −2

[
D1122 + D1112 + D1222 +

∑

i6=1,2

D12ii

]
ln

µ2

−s12
+ . . . . (6.36)

The sum over D12ii color structures cannot be expressed in terms of the color generators of

partons 1 and 2 alone. Hence, we must require that g1(αs) = 0, in agreement with (6.34).

Let us then finally consider the third structure in (6.17). The conformal cross ratios

either vanish or diverge when two parton momenta become collinear. In order to study

the collinear limits properly, we adopt the following parameterization of the momenta of

partons 1 and 2:

pµ
1 = zEnµ + pµ

⊥ − p2
⊥

4zE
n̄µ , pµ

2 = (1 − z)Enµ − pµ
⊥ − p2

⊥
4(1 − z)E

n̄µ , (6.37)

where n2 = n̄2 = 0 and n · n̄ = 2, and the ratio p⊥/E is a small expansion parameter. The

collinear limits corresponds to taking p⊥ → 0 at fixed E. This parameterization is such

that p2
1 = p2

2 = 0 remain on-shell, while −s12 = p2
⊥/[z(1 − z)]. The contribution to the

anomalous dimension of the splitting amplitudes resulting from the last term in (6.17) can

then be written as

∆ΓSp({p1, p2}, µ)
∣∣
F

=
∑

(i,j)6=1,2

[
8T12ij F (ωij , ωij) + 4T1ij2 F (ǫij ,−2ωij)

]
, (6.38)

where, at leading power in p⊥/E,

ǫij ≡ β1ij2 =
1

z(1 − z)E

(
p⊥ · pi

n · pi
− p⊥ · pj

n · pj

)
→ 0 ,

ωij ≡ β12ij = ln
p2
⊥

4z2(1 − z)2E2
+ ln

(−sij)

(−n · pi)(−n · pj)
→ −∞ .

(6.39)

Each of the two terms on the right-hand side of (6.38) is incompatible with the collinear

factorization constraint (5.6), unless the coefficient functions vanish in the collinear limit

p⊥ → 0.4 Since the splitting amplitudes scale like 1/
√
s12 ∼ 1/|p⊥|, the functions must

fall off at least as fast as ǫij ∼ eωij/2. It is an open question whether a function of

transcendentality up to 5 (since it appears in the 1/ǫ pole term at three-loop order) with

4We are grateful to Lance Dixon for pointing out that a contribution to ∆Γ3 in (6.17) involving a

function of conformal cross ratios that vanishes in all collinear limits in not excluded by our analysis.
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these properties exists and appears in the soft anomalous-dimension matrix at three-loop

order. The validity of our conjecture rests on the assumption that F (x, y) = 0.

We note in this context that a conjecture about the exponentiation of the finite terms

of scattering amplitudes in N = 4 SYM theory [76] was recently shown to be invalidated,

for the case of n > 5 partons and at two-loop order, by Regge cut contributions [83], which

vanish in all two-parton collinear limits [84]. However, these contributions were found not

to affect the divergent terms of the amplitude [85].

6.7 Extension to higher orders

Leaving aside the possibility of functions of conformal cross ratios that vanish in all collinear

limits, the arguments presented in the previous sections establish our conjecture (2.7) at

three-loop order and moreover exclude a certain class of modifications at four-loop order.

It would certainly be worthwhile to test the rigor of these arguments with explicit multi-

loop calculations, as we have emphasized toward the end of section 6.5. Nevertheless,

in our opinion these arguments provide compelling evidence that our result is correct to

all (finite) orders in perturbation theory. Essentially, the constraint (4.10) derived from

the factorization properties of SCET, when combined with the splitting relation (5.6),

requires that the anomalous-dimension matrix must be linear in both the cusp angles and

the color generators of the external partons, and that the coefficient of the cusp term

is the cusp anomalous dimension. This implies that momentum-independent terms are

color-diagonal to all orders. Momentum-dependent structures must have the color-dipole

structure exhibited in (2.7).

It thus appears that our relation (2.7) may indeed be an exact result of perturbative

quantum field theory, valid in arbitrary massless gauge theories. There are few such results

known in the literature, and it is not unreasonable to expect that the discovery of this

relation will have profound implications for our understanding of scattering amplitudes.

7 Summary and outlook

We have shown that the IR poles of on-shell scattering amplitudes in massless QCD can be

mapped onto the UV poles of the renormalization factor Z of n-jet operators in SCET. The

RG evolution of these operators is governed by a universal anomalous-dimension matrix,

whose form is severely constrained by soft-collinear factorization, non-abelian exponenti-

ation, and the behavior of amplitudes in collinear limits. We have argued that only the

simple form

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs)

is consistent with all these constraints and have explicitly checked that they exclude any

additional contributions up to three-loop accuracy. We also find that contributions from

terms involving higher Casimir operators are excluded at four loops. However, our argu-

ments do not exclude the presence of the term

∆Γ({p}, µ) =
∑

(i,j,k,l)

fadef bce
T

a
i T

b
j T

c
k T

d
l F (βijkl, βiklj − βiljk)
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at three-loop order (and analogous terms in higher orders), where the function F (x, y)

would have to vanish whenever two parton momenta become collinear, and the conformal

cross ratios βijkl are defined in (4.11). We consider it unlikely that such functions arise

in the anomalous-dimension matrix and thus conjecture that they are absent. Since the

discussion in our paper relies solely on the commutation relations and the Jacobi identity,

our results apply to any massless gauge theory based on a semi-simple group. Furthermore,

by combining our results with methods developed in [86–90], which relate the singularities

of massive and massless amplitudes, our formalism can be generalized to the massive case.

This is worked out in detail in [91].

The above form of the anomalous dimension is consistent with all existing results for

higher-order scattering amplitudes, but it would be desirable to further test it with explicit

multi-loop calculations. It will be particularly interesting to compare with the three-loop

result for the full four-parton amplitude in N = 4 SYM given in [12], once the neces-

sary master integrals become available. In particular, this result will check whether color

correlations between four partons appear, and whether they obey the constraints from soft-

collinear factorization and collinear limits, i.e. whether they have the form discussed above.

Also of great interest would be a calculation of the four-loop cusp anomalous dimensions of

quarks and gluons in QCD or its supersymmetric extensions, either by direct calculation,

extending the work of [13], or by using the approach based on the AdS/CFT correspon-

dence [19]. This would test our prediction of Casimir scaling. The recent accomplishment

of the exact evaluation of three-loop form factor integrals [28, 81] gives us hope that these

calculations will become feasible in the not too distant future.

Understanding the IR structure of scattering amplitudes is of significant theoretical

interest, and having explicit results for the divergent part of the amplitudes provides an

important check on multi-loop calculations. Also, since the singularities must cancel against

those of diagrams with real gluon emission, our results might lead to an improved treatment

of the soft and collinear singularities in real emission processes. However, the most impor-

tant application of our work are resummations of Sudakov logarithms in multi-jet processes.

There is a rich literature on Sudakov resummation for QCD processes, starting with the pio-

neering papers [92–95] (for a review, see [96] and references therein). In the effective theory,

the resummation of these logarithmically-enhanced contributions is achieved by solving the

RG equations for the Wilson coefficients. For two-jet observables, effective-theory methods

have been used to perform resummations to N3LL accuracy. Examples include threshold

resummation for deep-inelastic scattering [97], Drell-Yan production [60, 98], Higgs-boson

production [61, 99], and the extraction of αs from e+e− → 2 jets [100]. With the anomalous

dimension for the n-jet case at hand, it now becomes possible to reach the same accuracy

also for more complicated observables. The evolution equation (2.4) is simple enough to

admit exact solutions for a given n-parton scattering process. This can be used to perform

the resummation of large Sudakov logarithms in closed form.

A lot of work has been done to match parton showers with fixed-order calculations.

The effective-theory approach allows one to not only combine fixed-order with leading-log

resummations, but also to systematically resum subleading Sudakov logarithms. To obtain

predictions for n-jet observables, one needs the fixed-order results for n-parton amplitudes,
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which correspond to the Wilson coefficients of the operators in SCET. By combining our

results with a tree-level matrix element generator, one can obtain NLL resummations. New

efficient methods for one-loop calculations of processes with many legs are currently used to

develop generators for one-loop matrix elements [101]. Solving the associated RG equations

then leads to NNLL predictions. Finally, for 2 → 2 processes, the virtual corrections are

known to two-loop accuracy, so that in this case N3LL accuracy can be achieved. The

predictions for production rates of n-jet processes are obtained by combining the resummed

hard-scattering Wilson coefficients with jet and soft functions. In contrast to fixed-order

calculations or parton showers, these predictions are inclusive in the sense that they predict

jet observables, and not the contributions of individual partons: the jet functions already

include the integration over the phase space of the partons within a jet.

For the analysis of this paper the concepts of effective field theory, such as mode sepa-

ration and RG methods, were helpful to address an old problem of perturbative quantum

field theory, which had resisted a solution using traditional methods. Effective field theory

methods provide a natural language to discuss multi-scale problems, and we believe that

these methods will play an important role in improving the accuracy of predictions for

collider processes.
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A Three-loop anomalous dimensions and Z-factor

The three-loop expression for the renormalization factor Z removing the IR poles of n-

parton scattering amplitudes, as shown in (2.1), can be obtained by exponentiating our

result (2.9). An alternative way to determine the Z-matrix is to use the relations [102]

Γ = 2αs
∂

∂αs
Z

(1) ,

2αs
∂Z

(n+1)

∂αs
= ΓZ

(n) + β(αs)
∂Z

(n)

∂αs
+
∂Z

(n)

∂ lnµ
,

(A.1)

where the superscript “(n)” denotes the coefficient of the 1/ǫn pole term. These relations

allow one to construct the higher 1/ǫn pole terms in a recursive way. Either way, we find

Z = 1 +
αs

4π

(
Γ′

0

4ǫ2
+

Γ0

2ǫ

)

+
(αs

4π

)2
[
(Γ′

0)
2

32ǫ4
+

Γ′
0

8ǫ3

(
Γ0 −

3

2
β0

)
+

Γ0

8ǫ2
(Γ0 − 2β0) +

Γ′
1

16ǫ2
+

Γ1

4ǫ

]
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+
(αs

4π

)3
[

(Γ′
0)

3

384ǫ6
+

(Γ′
0)

2

64ǫ5
(Γ0 − 3β0) +

Γ′
0

32ǫ4

(
Γ0 −

4

3
β0

)(
Γ0 −

11

3
β0

)
+

Γ′
0Γ

′
1

64ǫ4

+
Γ0

48ǫ3
(Γ0 − 2β0) (Γ0 − 4β0) +

Γ′
0

16ǫ3

(
Γ1 −

16

9
β1

)
+

Γ′
1

32ǫ3

(
Γ0 −

20

9
β0

)

+
Γ0Γ1

8ǫ2
− β0Γ1 + β1Γ0

6ǫ2
+

Γ′
2

36ǫ2
+

Γ2

6ǫ

]
+ O(α4

s) . (A.2)

The expansion coefficients of the anomalous-dimensions and β-function have been defined

in (2.13). Through relations (2.7) and (2.10), the coefficients Γn and Γ′
n can in turn be

expressed in terms of the expansion coefficients of the anomalous dimensions γcusp, γq, and

γg, defined in analogy with the first relation in (2.13).

We now list these coefficients up to three-loop order in the MS renormalization scheme.

The expansion of the cusp anomalous dimension γcusp to two-loop order was obtained some

time ago [23–25, 57, 58]. The three-loop coefficient was calculated in [13]. The results are

γcusp
0 = 4 ,

γcusp
1 =

(
268

9
− 4π2

3

)
CA − 80

9
TFnf ,

γcusp
2 = C2

A

(
490

3
− 536π2

27
+

44π4

45
+

88

3
ζ3

)
+ CATFnf

(
−1672

27
+

160π2

27
− 224

3
ζ3

)

+CFTFnf

(
−220

3
+ 64ζ3

)
− 64

27
T 2

Fn
2
f . (A.3)

The anomalous dimension γq = γ q̄ can be determined from the three-loop expression for

the divergent part of the on-shell quark form factor in QCD [26]. The result was extracted

in [97]. In the notation of this paper 2γq = γV . We obtain

γq
0 = −3CF ,

γq
1 = C2

F

(
−3

2
+ 2π2 − 24ζ3

)
+CFCA

(
−961

54
− 11π2

6
+ 26ζ3

)
+CFTFnf

(
130

27
+

2π2

3

)
,

γq
2 = C3

F

(
−29

2
− 3π2 − 8π4

5
− 68ζ3 +

16π2

3
ζ3 + 240ζ5

)

+C2
FCA

(
−151

4
+

205π2

9
+

247π4

135
− 844

3
ζ3 −

8π2

3
ζ3 − 120ζ5

)

+CFC
2
A

(
−139345

2916
− 7163π2

486
− 83π4

90
+

3526

9
ζ3 −

44π2

9
ζ3 − 136ζ5

)

+C2
FTFnf

(
2953

27
− 26π2

9
− 28π4

27
+

512

9
ζ3

)

+CFCATFnf

(
−17318

729
+

2594π2

243
+

22π4

45
− 1928

27
ζ3

)

+CFT
2
Fn

2
f

(
9668

729
− 40π2

27
− 32

27
ζ3

)
. (A.4)

Similarly, the expression for the gluon anomalous dimension can be extracted from the di-

vergent part of the gluon form factor obtained in [26]. In terms of the anomalous dimensions
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given in [60], we have 2γg(αs) = γt(αs) + γS(αs) + β(αs)/αs. We find

γg
0 = −β0 = −11

3
CA +

4

3
TFnf ,

γg
1 = C2

A

(
−692

27
+

11π2

18
+ 2ζ3

)
+ CATFnf

(
256

27
− 2π2

9

)
+ 4CFTFnf ,

γg
2 = C3

A

(
−97186

729
+

6109π2

486
− 319π4

270
+

122

3
ζ3 −

20π2

9
ζ3 − 16ζ5

)

+ C2
ATFnf

(
30715

729
− 1198π2

243
+

82π4

135
+

712

27
ζ3

)

+ CACFTFnf

(
2434

27
− 2π2

3
− 8π4

45
− 304

9
ζ3

)
− 2C2

FTFnf

+ CAT
2
Fn

2
f

(
−538

729
+

40π2

81
− 224

27
ζ3

)
− 44

9
CFT

2
Fn

2
f . (A.5)

Our results for γq and γg are valid in conventional dimensional regularization, where po-

larization vectors and spinors of all particles are treated as d-dimensional objects (so that

gluons have (2 − 2ǫ) helicity states). In the ’t Hooft-Veltman scheme [103] or the four-

dimensional helicity scheme [104], their values would be different.

B Leading-color limit

Let us briefly discuss the Nc → ∞ limit, where a number of three- and four-loop results

are available for N = 4 SYM. It is interesting to ask whether these provide a test of our

conjecture for the anomalous dimension. Unfortunately, it turns out that both the terms

in (6.17) as well as the higher Casimir terms in (6.27) are subleading in the large-Nc limit

and are thus not constrained by known results for planar amplitudes.

A basis of leading color structures of n-particle gluonic amplitudes is given by the traces

tr(ta1 . . . tan) of color matrices in the fundamental representation of the gauge group [104–

106] (see [67] for a pedagogical review). The cyclicity of the trace implies that there are

(n − 1)! different color structures for n gluons. Structures involving several traces are

subleading for Nc → ∞. These color structures can be viewed as the different possibilities

of attaching n gluons to a quark loop. The leading contributions to squared amplitudes

in the Nc → ∞ limit arise when a given color structure is contracted with its reverse.

This gives

tr (ta1 . . . tan) tr (tan . . . ta1) =
Nn

c

2n
, (B1)

where terms of subleading order have been dropped. All other contractions are subleading,

so in this sense the color basis is orthogonal.

For Nc → ∞, the color structure Ti · Tj acts on these traces in a particularly simple

way. For n > 2, we find

(Ti)
aibi · (Ti+1)

ai+1bi+1 tr
(
ta1 . . . tbi tbi+1 . . . tan

)

= (−i)faibic (−i)fai+1bi+1c tr
(
ta1 . . . tbi tbi+1 . . . tan

)

= −Nc

2
tr (ta1 . . . tai tai+1 . . . tan) ,

(B2)
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where again subleading terms have been dropped. Note that the result is leading order

in color, since in the anomalous dimension this color structure gets multiplied by g2, and

g2Nc is held fixed in the Nc → ∞ limit. For the case of Ti · Tj with i and j not adjacent

we find a result that is of subleading order. In operator notation, we thus obtain

Ti · Tj → −Nc

2
δj,i±1 . (B3)

For the additional color structures arising in (6.17), we find

fadef bce (T a
i T

b
i )+ T

c
j T

d
k = O(Nc) ,

fadef bce
T

a
i T

b
j T

c
k T

d
l = O(Nc) ,

(B4)

for all indices i, j, k, l different. Similarly, for the new structures in (6.27) we obtain

Diijj = O(Nc) , Diiij = O(N3
c ) , Dijkk = O(Nc) . (B5)

At n-loop order the leading color structures are of the form Nn
c tr(ta1 . . . tan). Since the

two structures (B4) appear first at three-loop order, while those in (B5) arise first at the

level of four loops, their contribution is suppressed compared to the leading term.
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[86] S. Catani, S. Dittmaier and Z. Trócsányi, One-loop singular behaviour of QCD and SUSY

QCD amplitudes with massive partons, Phys. Lett. B 500 (2001) 149 [hep-ph/0011222]

[SPIRES].

[87] E.W.N. Glover, J.B. Tausk and J.J. Van der Bij, Second order contributions to elastic

large-angle Bhabha scattering, Phys. Lett. B 516 (2001) 33 [hep-ph/0106052] [SPIRES].

[88] A.A. Penin, Two-loop corrections to Bhabha scattering, Phys. Rev. Lett. 95 (2005) 010408

[hep-ph/0501120] [SPIRES].

– 45 –

http://dx.doi.org/10.1088/1126-6708/2004/07/040
http://arxiv.org/abs/hep-ph/0405236
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0405236
http://dx.doi.org/10.1016/j.physletb.2004.02.039
http://arxiv.org/abs/hep-ph/0312067
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0312067
http://dx.doi.org/10.1016/S0370-2693(97)00370-5
http://arxiv.org/abs/hep-ph/9701390
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9701390
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.012
http://arxiv.org/abs/hep-ph/0411261
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0411261
http://dx.doi.org/10.1016/S0550-3213(00)00300-X
http://arxiv.org/abs/hep-th/0003055
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0003055
http://dx.doi.org/10.1088/1742-5468/2006/11/P11014
http://arxiv.org/abs/hep-th/0603157
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0603157
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610251
http://dx.doi.org/10.1103/PhysRevD.72.085001
http://arxiv.org/abs/hep-th/0505205
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0505205
http://dx.doi.org/10.1088/1126-6708/2007/11/016
http://arxiv.org/abs/0709.0681
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.0681
http://dx.doi.org/10.1063/1.525212
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA,23,8
http://dx.doi.org/10.1063/1.526143
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA,25,219
http://dx.doi.org/10.1142/S0217751X99000038
http://arxiv.org/abs/hep-ph/9802376
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9802376
http://arxiv.org/abs/0902.3512
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.3512
http://dx.doi.org/10.1103/PhysRevD.79.033013
http://arxiv.org/abs/0808.3008
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.3008
http://arxiv.org/abs/0802.2065
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.2065
http://dx.doi.org/10.1103/PhysRevD.78.045007
http://arxiv.org/abs/0803.1465
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.1465
http://arxiv.org/abs/0807.0894
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.0894
http://dx.doi.org/10.1016/S0370-2693(01)00065-X
http://arxiv.org/abs/hep-ph/0011222
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0011222
http://dx.doi.org/10.1016/S0370-2693(01)00927-3
http://arxiv.org/abs/hep-ph/0106052
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0106052
http://dx.doi.org/10.1103/PhysRevLett.95.010408
http://arxiv.org/abs/hep-ph/0501120
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0501120


J
H
E
P
0
6
(
2
0
0
9
)
0
8
1

[89] A. Mitov and S. Moch, The singular behavior of massive QCD amplitudes,

JHEP 05 (2007) 001 [hep-ph/0612149] [SPIRES].

[90] T. Becher and K. Melnikov, Two-loop QED corrections to Bhabha scattering,

JHEP 06 (2007) 084 [arXiv:0704.3582] [SPIRES].

[91] T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons,

Phys. Rev. D 79 (2009) 125004 [arXiv:0904.1021] [SPIRES].

[92] G. Sterman, Summation of large corrections to short distance hadronic cross-sections,

Nucl. Phys. B 281 (1987) 310 [SPIRES].

[93] S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard

processes, Nucl. Phys. B 327 (1989) 323 [SPIRES].

[94] L. Magnea, All order summation and two loop results for the Drell-Yan cross-section,

Nucl. Phys. B 349 (1991) 703 [SPIRES].

[95] G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using

Wilson loops, Phys. Lett. B 313 (1993) 433 [SPIRES].

[96] N. Kidonakis, Resummation for heavy quark and jet cross-sections, Int. J. Mod. Phys. A

15 (2000) 1245 [hep-ph/9902484] [SPIRES].

[97] T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation

in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].

[98] A. Idilbi, X.-d. Ji and F. Yuan, Resummation of threshold logarithms in effective field

theory for DIS, Drell-Yan and Higgs production, Nucl. Phys. B 753 (2006) 42

[hep-ph/0605068] [SPIRES].

[99] A. Idilbi, X.-D. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in

effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [SPIRES].

[100] T. Becher and M.D. Schwartz, A precise determination of αs from LEP thrust data using

effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [SPIRES].

[101] NLO Multileg Working Group collaboration, Z. Bern et al., The NLO multileg

working group: summary report, arXiv:0803.0494 [SPIRES].

[102] T. Becher and M. Neubert, Toward a NNLO calculation of the B̄ → Xsγ decay rate with a

cut on photon energy. I: two-loop result for the soft function, Phys. Lett. B 633 (2006) 739

[hep-ph/0512208] [SPIRES].

[103] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields,

Nucl. Phys. B 44 (1972) 189 [SPIRES].

[104] Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories,

Nucl. Phys. B 379 (1992) 451 [SPIRES].

[105] F.A. Berends and W. Giele, The six gluon process as an example of Weyl-Van der Waerden

spinor calculus, Nucl. Phys. B 294 (1987) 700 [SPIRES].

[106] M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering,

Nucl. Phys. B 298 (1988) 653 [SPIRES].

– 46 –

http://dx.doi.org/10.1088/1126-6708/2007/05/001
http://arxiv.org/abs/hep-ph/0612149
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0612149
http://dx.doi.org/10.1088/1126-6708/2007/06/084
http://arxiv.org/abs/0704.3582
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.3582
http://dx.doi.org/10.1103/PhysRevD.79.125004
http://arxiv.org/abs/0904.1021
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.1021
http://dx.doi.org/10.1016/0550-3213(87)90258-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B281,310
http://dx.doi.org/10.1016/0550-3213(89)90273-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B327,323
http://dx.doi.org/10.1016/0550-3213(91)90393-C
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B349,703
http://dx.doi.org/10.1016/0370-2693(93)90015-A
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B313,433
http://arxiv.org/abs/hep-ph/9902484
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9902484
http://dx.doi.org/10.1088/1126-6708/2007/01/076
http://arxiv.org/abs/hep-ph/0607228
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0607228
http://dx.doi.org/10.1016/j.nuclphysb.2006.07.002
http://arxiv.org/abs/hep-ph/0605068
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605068
http://dx.doi.org/10.1103/PhysRevD.73.077501
http://arxiv.org/abs/hep-ph/0509294
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0509294
http://dx.doi.org/10.1088/1126-6708/2008/07/034
http://arxiv.org/abs/0803.0342
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.0342
http://arxiv.org/abs/0803.0494
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.0494
http://dx.doi.org/10.1016/j.physletb.2006.01.006
http://arxiv.org/abs/hep-ph/0512208
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0512208
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B44,189
http://dx.doi.org/10.1016/0550-3213(92)90134-W
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B379,451
http://dx.doi.org/10.1016/0550-3213(87)90604-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B294,700
http://dx.doi.org/10.1016/0550-3213(88)90001-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B298,653

	Introduction
	IR factorization and RG invariance
	Anomalous dimensions of n-jet SCET operators
	Basic elements of SCET
	Soft-collinear factorization and decoupling
	Color-symmetrized soft gluon attachments

	Constraints from soft-collinear factorization
	Renormalization of Wilson loops
	Non-abelian exponentiation theorem
	Light-like Wilson lines
	General structure of the soft anomalous-dimension matrix

	Consistency with collinear limits
	Diagrammatic analysis
	One-loop analysis
	Two-loop analysis
	Three-loop analysis
	Higher Casimir contributions to the cusp anomalous dimension
	A symmetry argument
	Two-parton collinear limits
	Extension to higher orders

	Summary and outlook
	Three-loop anomalous dimensions and Z-factor
	Leading-color limit

