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Abstract. We derive directly from the C symmetry of Lorentzian space-time a Majorana
field with a non-standard pure-imaginary antisymmetric Majorana mass term and study some
applications.

1. C invariant quantum states ad hoc

The description of Majorana fermions is one of the central topics of contemporary physics not
only because of the spectacular phenomena of neutrino-oscillation or neutrinoless double beta
decay, (0νββ), but also because of the truly neutral fermion gauge fields (gauginos) predicted to
appear as companions to ordinary gauge bosons in supersymmetric theories. From formal point
of view, Majorana particles are treated in the textbooks differently but Dirac particles. While the
Dirac field is systematically derived from the P symmetry of Lorentzian space time, Majorana
particles are composed ad hoc at the quantum field level. The most prominent C invariant
quantum states are those exploited in the description of neutrino oscillations, constructed as [1]

νDM =
1√
2
(ν ± νc) ,

ν = uh(�p )a+
h (�p ) e−ip·x |0〉 , νc = uh(�p )b+

h (�p ) e−ip·x |0〉 ,
νL/R =

1
2
(14 ± γ5)ν , (νc)L/R =

1
2
(14 ± γ5)νc ,

where uh(�p )a+
h (�p )|0〉 and uh(�p )b+

h (�p )|0〉 are in turn the states of neutrino of momentum �p and
spin-projection h, and its charge conjugate. The neutrino spinors νL and (νc)R are the so called
“electroweak active”, while νR, and (νc)L are the “electroweak sterile” ones. The C parity states
in Eq. (1) underly neutrino oscillation data analysis and are frequently referred to as Majorana
spinors. They satisfy the following system of two Dirac equations coupled by the Majorana mass
term (

p/−MD −MM

−MM p/−MD

)(
ν
νc

)
= 0 (1)
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Equation (1) is the Dirac equation for one neutrino generation. It has as two limiting cases
the vanishing Dirac mass, MD = 0, and the vanishing Majorana mass, MM = 0, respectively.
The quantum states (1) belong to the so called Dirac-Majorana fields, ψ(εj)

DM (x), which are C
invariant and constructed as the following combinations of the Dirac quantum field, ψD(x), and
its anti-partilce conjugate, ψc

D(x),

ψ
(εj)
DM (x) =

1√
2

(
ψD(x) + ε∗jψ

c
D(x)

)
,

Cψ
(εj)
DM (x) = εjψ

(εj)
DM (x) , C = iγ2K , K = [ ]∗ ,

ε1 = −ε2 = 1, or, ε1 = −ε2 = i . (2)

To obtain ψc
D(x) one interchanges a −→← b in ψD(x)[3],

ψc
D(x) =

∫ d3�p

2p0

1

(2π)
3
2

∑
h

(
uh(�p )bh(�p )e−ip·x + uh(�p )ca+

h (�p )eip·x
)
. (3)

The one neutrino–anti-neutrino generation, column (ν, νc), in Eq. (1) is then described by means
of the Dirac-Majorana Lagrangian which is cast into the following matrix form [2]

LDM (x) = ψ̄
(εj)
(8) (x)

(
i∂/−MD −ε1MM

−ε∗1MM i∂/−MD

)
ψ

(εj)
(8) (x) ,

ψ
(εj)
(8) =

(
ψD(x)
ε∗jψc

D(x)

)

=
∫ d3�p

2p0

1

(2π)
3
2

∑
h

[
uh(�p )

(
ah(�p )

ε∗jbh(�p )

)
e−ip·x + uh(�p )c

(
b+

h (�p )
ε∗ja

+
h (�p )

)
eip·x

]
, (4)

a field with one-storey “wave functions”, and two-storey creation/annihilation operators. The
diagonal part of the mass matrix is the standard Dirac mass term. We here call standard- and
non-standard Majorana mass terms the ones corresponding to ε1 = 1, and ε1 = i, respectively.
We further notice that the matrix defining the Majorana mass term can equally well be viewed
as a metric in the ψ(εj)

(8) (x) space according to

ψ̃
(εj)
(8) (x) =

(
ψD(x), εjψc

D(x)
)

Γ(εj)
8 , Γ(εj)

8 =
(

04 ε114

ε∗114 04

)
, (5)

and write down the Lagrangian for MD = 0 as

L(8)(x) = ψ̃(8)(x)
( −MM 14 ε1i∂/

ε∗1i∂/ −MM 14

)
ψ(8)(x) .

(6)

Once having cast the Lagrangians into that form allows to search for field solutions beyond
Eq. (4) and of the (generic) form

ψ(8)(x) =
∫

dV
( ∑

k

λk(�p )dk(�p )e−ip·x + ρk(�p )d+
k (�p )eip·x

)
. (7)

Here dV is a properly chosen phase volume, the index k encodes in a proper way the required
eight degrees of freedom, d+

h (�p ), and dh(�p ) are in turn creation and annihilation operators of
one neutrino generation, while λk(�p ), and ρk(�p ) are the associated “wave functions”. Our goal
here is to derive systematically λk(�p ), and ρk(�p ) from the discrete C symmetry of space time.
Compared to Eq. (4), we expect Feynman diagram rules for ρk(�p )–, and λk(�p ), following from
ψ(8)(x) in Eq. (7) to be more comfortable in calculations of traces entering cross sections.
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2. Local quantum fields for one neutrino–anti-neutrino generation

2.1. Restive C parities

The C invariant Lorentz representations for spin-1/2 (they will be denoted by Ψh;(εj)
M (�p ) in the

following) diagonalize the charge-conjugation operator,

CΨh;(εj)
M (�p ) = εjΨ

h;(εj)
M (�p ) . (8)

The existence of two types of C invariant Lorentz representations– with real, (εj = ±1), and
imaginary, (εj = ±i) C parities, contrasts the case of the P operator, γ0, which allows only for
real spatial parity spinors. In one of the possibilities, the four linearly independent rest-frame
spinors that span the C invariant (1/2, )⊕ (0, 1/2) representation space

1
2

(
14 + iε∗jγ2K

)
Ψh;(εj)

M (�0 ) = Ψh;(εj)
M (�0 ) , (9)

can be chosen in the Cartesian frame as

Ψ↑;(εj)
M (�0 ) =

√
MM

⎛⎜⎜⎝
0
−ε∗j
1
0

⎞⎟⎟⎠ , Ψ↓;(εj)
M (�0 ) =

√
MM

⎛⎜⎜⎝
−ε∗j
0
0
−1

⎞⎟⎟⎠ . (10)

The basis spinors Ψh;(εj)
M (�0 ) result from the more general form given, among others, in Ref. [3],

as well as in Ref. [4]

Ψh;(εj)
M =

(
ε∗j iσ2[ ζ̇h ]∗

ζ̇h

)
=

(
ε∗jζ−h

ζ̇h

)
,

εj = ±1, or , εj = ±i , h =↑, ↓ , (11)

which is no more but precisely the C symmetric left-chiral spinor χ1 = νL⊕ (νL)c introduced in
Ref. [1]. Spinor (ζ), and co-spinor (ζ̇) are related via [5]

ζ =
(
ξ1

ξ2

)
, ζ̇ =

(
ξ1̇
ξ2̇

)
, ξα = i(σ2)αβξ

β ,

ξα̇ : = [ξα]∗ , ζ = ξ1 ζ↑ + ξ2 ζ↓ ,

ζ↑ =
(

1
0

)
, ζ↓ =

(
0
1

)
, (12)

and (iσ2)ij = εij is the Levi-Civita symbol which plays the role of metric in the SL(2, C) spinor
space. The equation of motion satisfied by the C parity spinors in any inertial frame is now
obtained in subjecting Eq. (9) to the Lorentzian boost,

B(�p )
1
2

(
14 + ε∗j iγ2K

)
B(�p )−1Ψh;(εj)

M (�p ) = Ψh;(εj)
M (�p ) ,

B(�p ) =
1√

2MM (p0 +MM )
(p/+MMγ0)γ0 . (13)

To ones great surprise, due to γμγ2 = −γ2γ
∗
μ, the boosted C operator turns out to be momentum

independent,

B(�p ) iγ2KB(�p )−1 = iγ2K , (14)
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and identical to the rest frame C parity operator . This apparently contrasts the case of the
rest-frame parity operator, P = γ0, that upon boosting provides the kinetic term of the Dirac
equation,

B(�p ) γ0B(�p )−1 =
p · γ
m

. (15)

It seems that the construction procedure of a C based covariant local quantum field comes here
to a stop. We emphasize on covariant , and local , because if one is willing to entertain non-local
quantum fields based on the non-covariant Ψh;(εj)

M (�p ) propagation, one can have a plenitude
of them in considering in place of C miscellaneous discrete symmetries. For example, the real
C parity spinors are simultaneously γ5γ1 invariant and B(�p )1

2(14 ∓ γ5γ1)B−1(�p )Ψh;(±1)
M (�p ) =

Ψh;(±1)
M (�p ), would be such an equation.1In general, C parities satisfy non-covariant equations of

the type,

B(�p )
1
2
(14 + iεjγ2A)B−1(�p )Ψh;(εj)

M (�p ) = Ψh;(εj)
M (�p ) , (16)

where A is the matrix that mimics complex conjugation in the basis of choice at rest. To be
specific, let us consider imaginary C parity in the helicity frame, where

ζ↑ =
√
m

(
cos θ

2e
−i ϕ

2

sin θ
2e

+i ϕ
2

)
, ζ↓ =

√
m

(
sin θ

2e
−i ϕ

2

− cos θ
2e

+i ϕ
2

)
.

Here, the operation of complex conjugation of, say, Ψh;(−i)
M (�0) takes the form K → A :=Diag

(−e+iϕ,−e−iϕ, e+iϕ, e−iϕ). Insertion of the latter expression into Eq. (16) allows to obtain the
following frame dependent wave equation(

(p/+mγ0)Ã(p/+mγ0)− 2m(p0 +m)
)
Ψh;(−i)

M (�p ) = 0,

where Ã = γ0γ2Aγ0, and we used “m” as a generic mass notion in place of MM . Reference [6]
in fact reports same equation up to A being replaced by −iA, a difference that comes about
by the different definition of C = γ2K used there. In effect, as long as there is no universal
matrix representation for the operation of complex conjugation, one encounters a multitude of
non-covariant equations corresponding to multitude of frames related to each other by similarity
transformations. We here take the position that such frames can not be interpreted as preferred
frames in the Universe as occasionally done in the literature [6]. Non-local quantum states based
upon non-covariant propagating Lorentz representations are in our opinion unphysical.

2.2. Taming C parity and two-storey spinors

In order to resolve the dilemma of static C propagators, we here for the sake of concreteness
focus on imaginary C parity spinors and notice that spatial parity, the only covariant discrete
symmetry, ladders between C parities according to γ0Ψ

↑;(i)
M (�0 ) = −iΨ↓;(i)

M (�0 ), γ0Ψ
↓;(i)
M (�0 ) =

iΨ↑;(i)
M (�0 ), etc, and creates a new discrete symmetry. This allows one to obtain covariant wave

1 Notice that also the Dirac uh(�p ) (or, vh(�p )) spinors can satisfy non-covariant equations. Suffices to recall that
they are also eigenspinors to, for example, γ5γ3 and therefore solutions to B(�p ) 1

2
(14±γ5γ3)B

−1(�p )uh(�p ) = uh(�p ).
Free spinors can satisfy a variety of occasionally non-covariant differential equations. It is the dynamics that selects
the relevant one in according to data. As long as data require covariance and the only covariant discrete symmetry
in spinor space is parity, the wave equations for spinors of other discrete parities need to be obtained from the
action of γ0 upon them.
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equation in two-storey spaces of the type(
04 −iB(�p )γ0B(�p )−1

iB(�p )γ0B(�p )−1 04

)
Λ(�p ) = Λ(�p ) ,

Λ(�p ) =

(
Ψ↑;(i)

M (�p )
Ψ↓;(i)

M (�p )

)
.

In substituting for B(�p )γ0B(�p )−1 = p·γ
m ≡ p/

m results in

(
p/ iMM14

−iMM14 p/

)(
Ψ↑;(i)

M (�p )
Ψ↓;(i)

M (�p )

)
= 0 . (17)

This is a Dirac like equation for a two-storey spinor. It differs from Eq. (1) through the
non-standard Majorana mass term which is pure imaginary and anti-symmetric. In nullifying
the determinant of the latter equation one obtains the standard time-like energy momentum
dispersion relation, p2 −M2

M = 0, and proves that such a mass term does not imply acausal
spinor propagation. These spinors are self-orthogonal, Ψh;(±i)

M (�p )Ψh;(±i)
M (�p ) = 0, and cross-

normalized according to, Ψh;(±i)
M (�p )Ψ−h;(±i)

M (�p ) = ±2iMM (δh↑ − δh↓) (properties referred to as
bi-orthogonality in Ref. [4]). We here notice that (i) self-orthogonality describes the limiting
case of a vanishing Dirac mass term, (ii) cross-normalization corresponds to a non-vanishing
Majorana-mass term, and conclude that fields based on top of Ψh;(εj)

M (�p ) will describe the
limiting case of a pure Majorana field. Though the coupled equations (17) have been noticed
(up to notational differences) already in Ref. [7], the identifications of the mass terms has not
been established there.
We now introduce the following complete set of two-storey spinors corresponding to Eqs. (17)

Λτ
1(�p ) =

(
uR
↑ (�p )∓ iuL

↑ (�p )c

uR
↓ (�p )∓ iuL

↓ (�p )c

)
,

Λτ
2(�p ) =

(
uR
↓ (�p )∓ iuL

↓ (�p )c

uR
↑ (�p )∓ iuL

↑ (�p )c

)
,

Λτ
3(�p ) =

(
uR
↑ (�p )∓ iuL

↑ (�p )c

−uR
↓ (�p )± iuL

↓ (�p )c

)
,

Λτ
4(�p ) =

(
uR
↓ (�p )∓ iuL

↓ (�p )c

−uR
↑ (�p )± iuL

↑ (�p )c

)
, (18)

with τ = ±. In defining now Λ̃τ
k(�p ) as

Λ̃τ
k(�p ) = Λ̄τ

k(�p )Γ(i)
8 , (19)

allows for the construction of an orthogonal basis in the recently designed two-storey space as

Λ̃τ
j (�p )Λτ

j (�p ) = +4MM , τ = +, j = 1, 4 ;
τ = −, j = 2, 3 ;

Λ̃τ
k(�p )Λτ

k(�p ) = −4MM , τ = +, k = 2, 3 ;
τ = −, k = 1, 4 ;

Λ̃τ
k(�p )Λτ ′

l (�p ) = 0 , τ �= τ ′ , k �= l . (20)
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Equation (20) shows that the space under consideration contains equal numbers of mutually
orthogonal spinors of real positive–, and of real negative norms, much alike the Dirac space.
This advantage allows for a canonical quantization á la Dirac when introducing the local ψ(8)(x)
field operator as

ψ(8)(x) =
∫
dV
[ ∑

τ=+,j=1,4;τ=−,j=2,3

Λτ
j (�p )dτ

j (�p ) e−ip·x

+
∑

τ=+,k=2,3;τ=−,k=1,4

Λτ
k(�p )dτ

k
+(�p ) eip·x

]
. (21)

Here, dV is the appropriate phase volume. This local quantum field is built on top of Lorentzian
C parity representations and describes one Majorana-neutrino generation. In this way we derived
a truly neutral local spin-1/2 field directly from C invariant Lorentz representations. As long
as above fields are eight-dimensional copies of the Dirac field, the Feynman diagram rules will
be the eight-dimensional version of the rules valid for the standard Dirac spinors and can be
exploited in calculations of cross-sections.
A decomposition of the textbook C parity spinors in Eq. (11) into Dirac spinors takes one to a
further surprise. It turns out that those are not the most economic C invariant combinations of
Dirac u and v spinors as they are superpositions of two smaller C invariant spinors of opposite
spin-projections/helicities according to

Ψ↑;(+i)
M (�p ) =

1
2

(
(u↑ − iuc

↑)− i(u↓ + iuc
↓)
)
, (22)

etc. As a consequence, the quantum states,

Λτ
k(�p )dτ

k (�p )|�p 〉 , (23)

are of unspecified spin-projections (helicities). However, above conduct only reflects
independence of C parity of spin-projection, and is not Majorana neutrino specific as claimed in
Ref. [6], but avoidable, a fact already manifest in Eqs. (1), (4) above. One could have started
from the very beginning with the smaller single-helicity Majorana spinors and constructed a
local quantum field on top of(

uh + iη uc
h

τ (uh − iη uc
h)

)
dhητ (�p ) , η = ±1, τ = ±1. (24)

However, this peculiarity has no impact onto physical observables such like widths and cross
sections. Indeed, in Ref. [8] we calculated that traces including two-storey spinors of unspecified
h label always reduce to standard Dirac traces including uh′(�p ) spinors of well defined h′. Notice,
finally, that also P parity does not distinguish between h and −h, and one can write the Dirac
equation as (p/−m)(uh±u−h) = 0. That one favors the well known single helicity version is not
a consequence of parity but a tribute to angular momentum conservation.

3. Summary and Discussion

The merit of our work as we see it is to have (i) revealed existence of either real, or, imaginary
C parity fermions, (ii) shown how to derive pure Majorana local quantum fields from first prin-
ciples on space time symmetries, exploiting covariant, parity based discrete symmetries in eight
spinorial dimensions, (iii) argued non-physicality of non-local theories as artifact of a lacking
universal matrix representation of complex conjugation, (iv) observed that the possible indefi-
niteness of the h label (due to helicity independence of C parity) does not show up in the physics
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observables such as widths and cross-sections. In Ref. [8] we further showed that unpolarized
beta decays do not distinguish between Dirac and Majorana fields. In polarized single β decays,
the non-standard Majorana mass term left a footprint in triggering the drop out of the neutrino
mass from the trace.
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number C01-39820.

References

[1] S. M. Bilenky, B. Pontecorvo, Phys. Rep. 41, 225 (1978).
[2] S. Esposito, Nuovo Cimento B111, 1449 (1996);

S. Esposito, and N. Tancredi, Eur. Phys. J. C4, 221 (1998);
S. Esposito, Int. J. Mod. Phys. A13, 5023 (1998).

[3] M. E. Peskin, and D. V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, N.Y. 1995)
pp. 68-76.

[4] D. V. Ahluwalia, Int. J. Mod. Phys. A11, 1885 (1996).
[5] J. Hladik, Spinors in Physics (Springer-Verlag, N.Y., 1999).
[6] D. V. Ahluwalia-Khalilova, Extended set of Majorana spinors, A new dispersion relation, and a preferred

frame,
E-Print Archive: hep-ph/0305335.

[7] V. V. Dvoeglazov, Rev. Mex. Fis. 41, 159 (1995).
[8] M. Kirchbach, C. Compean, and L. Noriega, Eur. Phys. J. A22, 149 (2004).

113


