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Abstract

The exact progenitor-remnant connection of CCSNe, i.e. if a star explodes, and if it leaves

behind a neutron star or a black hole (BH), is not well understood yet. The understand-

ing of CCSNe and their explosion mechanism(s) is a long standing problem that many

astrophysicists tried to illuminate. The uncertainty of the explosion mechanism and

the explodability also affect the prediction of the nucleosynthesis yields in the ejecta

of CCSNe that contribute to the galactic chemical enrichment. In this thesis we study

the explodability, explosion properties, and the ejecta of neutrino-driven core-collapse

supernovae (CCSNe) with numerical simulations. This includes the study of the dynam-

ics and trends of CCSNe in dependence of progenitor properties. To investigate the ex-

plodability and the progenitor-remnant connection quantitatively one has to study large

samples of CCSN progenitors. Even though multi-dimensional simulations provide a

promising and necessary tool to study the exact nature of the possible explosion mech-

anisms, sophisticated three-dimensional models are computationally too expensive to

be used in the analysis of large samples of progenitors. With some exceptions for the

lightest progenitors of CCSNe, self-consistent numerically affordable one-dimensional

simulations that incorporate detailed microphysics, general relativity and sophisticated

neutrino-transport fail to explode.

The main focus of this thesis lies on the PUSH method, a parametrized framework to

efficiently investigate CCSNe for large samples of progenitors in spherically symmetric

simulations. By investigations of CCSNe we can determine the explodability and the

nucleosynthesis yields in the ejecta of the explosions obtained for the progenitors, as well

as dependencies of explosion properties on the progenitor properties. Main strengths of

the presented PUSH method in comparison with other artificial methods are obtaining

the mass cut directly from the simulations and the PNS as well as the electron flavor

neutrino luminosities are computed self-consistent at all simulation times. No changes

of the involved electron neutrino and anti-neutrino cross sections are made. To achieve

successful explosions in otherwise non-exploding models in spherical symmetry, we rely

on the neutrino-driven mechanism. In this mechanism of CCSNe electron neutrinos and

antineutrinos are able to heat matter behind the stalled shock front in the gain region
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sufficiently to induce a shock revival that ultimately leads to an explosion. It has been

found, that for efficient heating by neutrinos behind the shock multi-dimensional effects

as convection are crucial. In our simulations we tap the energy of theµ− and τ−neutrino

luminosities that otherwise stream out of the system and increase the effective heating

by neutrinos in regions where electron flavor neutrinos heat the matter. This enables

us to successfully induce physically motivated parametrized neutrino-driven CCSNe in

spherically symmetric simulations with a realistic SN equation of state (EOS).

After calibrating the PUSH method to SN 1987A for a suitable progenitor model, we pro-

ceed to explore large progenitor samples with solar metallicity. This is done by using ob-

servational properties of other CCSNe. By extending the calibration of the PUSH method

with a dependency on compactness we can investigate CCSN simulations for progenitor

models across the ZAMS mass range. We study large samples of progenitors with solar

metallicity and discuss trends of the obtained results for explosion energy, nucleosyn-

thesis yields and explodability. The resulting progenitor-remnant connection, the result-

ing prediction of the neutron star and black hole birth mass distributions that can be

compared to observations are presented. In the final part of this thesis we discuss work

done with the three-dimensional magnetohydrodynamics code with neutrino transport

ELEPHANT and compare our parametrized spherically symmetric CCSN simulations to

three-dimensional simulations.

vi



Acknowledgements

I would like to express my gratitude to a couple of people that supported me and con-

tributed to this thesis. My thanks go to:

F.-K. Thielemann for giving me the opportunity to work in his group, encouraging me

to go to many interesting conferences and workshops, his advice based on his profound

knowledge of physics, and his steady support.

Matthias Hempel for always having time for me, great and fruitful discussions, his invalu-

able advice, and for motivating and pushing me.

Albino Perego, Carla Fröhlich, Matthias Hempel, Sanjana Sinha, Marius Eichler, F.-K.

Thielemann and Matthias Liebendörfer for an interesting and fruitful PUSH collabora-

tion and for valuable work related advice.

Carla Fröhlich and Sanjana Sinha for a smooth extension of the PUSH collaboration, and

the great communication, exchange of data, and discussions.

Matthias Liebendörfer and Roger Käppeli for giving me the opportunity to work with the

ELEPHANT and the FISH code, and for their guidance and advice.

Rubén Cabezón, Kuo-Chuan Pan, Takami Kuroda, and Raphael Hirschi for interesting

discussions and their work related advice.

Maik Frensel for very interesting and enjoyable discussions about various aspects of

physics and Marius Eichler for beeing a great roommate at many conferences.

Julia Reichert, Marius Eichler, Maik Frensel, Rubén Cabezón, Andreas Lohs, Matthias

Hempel, Oliver Heinimann, Oliver Müller, Francesco Cefala for proofreading parts of this

thesis.

vii



My office mates (present and former): Marius Eichler, Maik Frensel, Julia Reichert, Ben-

jamin Wehmeyer, Albino Perego, Francesco Cefala, Eros Cazzato, and Roberto Scalera

for nice discussions related to work and otherwise, coffee breaks, and company during

extended working sessions.

All the other present and former Basel PhD students Oliver Heinimann, David Gobrecht,

Umberto Battino, Chiara Biscaro, Sofie Fehlmann, Arkaprabha Sarangi.

The former members of the Basel group Andreas Lohs, Nobuya Nishimura, Marco Pig-

natari, Almudena Arcones, Lecturer Thomas Rauscher as well as visiting scientists Igor

Panov and Nils Paar for a good atmosphere in the group.

Last but not least my family and friends for their invaluable support during my PhD stud-

ies.

viii



Contents

1 Introduction 1

1.1 Introductory Notes on Supernovae . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Core-Collapse Supernovae 11

2.1 Progenitors of Core Collapse Supernovae: Stellar Evolution of Massive Stars 14

2.2 Core-Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Bounce and Prompt Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Core-Collapse Supernova Explosion Mechanism . . . . . . . . . . . . . . . . 24

2.5 Thermonuclear Reactions: Nucleosynthesis in Core-Collapse Supernovae . 28

3 Numerical Implementation of Parametrized One-Dimensional Core-Collapse
Supernova Simulations: The PUSH Method 39

3.1 AGILE-IDSA-Leakage: Numerical Setup . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 General Relativistic Hydrodynamics . . . . . . . . . . . . . . . . . . 40

3.1.2 Neutrino Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.3 Equation of State: Treatment of the Nuclei and the Transition Be-

tween Non-NSE and NSE . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 The PUSH Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Analysis of PUSH Runs: Post-processing Analysis . . . . . . . . . . . . . . . 65

3.3.1 Explosion Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 The Tracer Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.3 Nucleosynthesis Yields . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Launching and Managing of a Large Number of Runs . . . . . . . . . . . . . 74

4 Results 1:
Dependencies and the First Calibration of the PUSH Method 77

4.1 Initial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Fitting and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 General Effects of Free Parameter Variations . . . . . . . . . . . . . . 80

4.2.2 Contributions to the Explosion Energy . . . . . . . . . . . . . . . . . 87

4.2.3 Explosion Dynamics and the Role of Compactness . . . . . . . . . . 92

ix



4.2.4 Fitting of SN1987A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.5 Ni and Ti Yields, Progenitor Dependence . . . . . . . . . . . . . . . . 100

4.3 Implications and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Sensitivities of Nucleosynthesis Yields . . . . . . . . . . . . . . . . . 102

4.3.2 Wind Ejecta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.3 Amount of Fallback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.4 Compact Remnant of SN 1987A . . . . . . . . . . . . . . . . . . . . . 106

4.3.5 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.6 Heating Efficiency and Residence Time . . . . . . . . . . . . . . . . . 110

4.3.7 Alternative Measures of the Explosion Energy . . . . . . . . . . . . . 113

4.3.8 Comparison with other Works . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Results 2:
An Explodability Study of One-Dimensional CCSN Simulations 121

5.1 Observational Data of CCSNe and the Faint SN Branch . . . . . . . . . . . . 123

5.2 The Entropy-gradient Criterion and SN 1987A . . . . . . . . . . . . . . . . . 130

5.3 Black Hole Formation and the Constant Parameter Calibration . . . . . . . 139

5.4 The Calibration of the PUSH Method Across the Mass Range . . . . . . . . . 145

5.5 Explosion Properties of Neutrino-driven CCSNe with PUSH . . . . . . . . . 158

5.6 Remnant Properties of CCSNe . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.7 Towards Different Metallicities . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6 Additional Results:
Three-Dimensional CCSN Simulations with ELEPHANT 177

6.1 Numerical Implementation of ELEPHANT . . . . . . . . . . . . . . . . . . . 177

6.2 Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.3 Shock Capturing for Comparison with Other Simulations . . . . . . . . . . 183

6.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7 Summary and Outlook 195

A Appendix 199

A.1 Typical Neutrino Cross-Section . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.2 A Criterion for Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.3 The Initial Mass Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Bibliography 203

x



1Introduction

„Home is behind, the world ahead,

and there are many paths to tread

through shadows to the edge of night,

until the stars are all alight.

— J.R.R. Tolkien, The Fellowship of the Ring

1.1 Introductory Notes on Supernovae

Supernovae (SNe) are explosive events which mark the end of the life of some stars. Dur-

ing these violent phenomena the dying stars typically eject some of their material with

a kinetic energy of the order of 1051 erg (1 Bethe, abbreviated as 1 B, is equivalent to

1051 erg) into the interstellar space [1–3]. The ejecta contains elements that have been

created during the stages of the life of the star and in its explosion. In this way, dying stars

contribute to the galactic chemical enrichment of their host galaxies and, therefore, are

important for the future generations of stars, planets, and life. Besides the contribution

to the chemical enrichment of the universe with their ejecta, some SNe produce a com-

pact remnant, a neutron star (NS) or a black hole (BH), which are amongst the most phys-

ically extreme objects that can possibly be observed. SNe are astrophysical scenarios and

astronomical objects that are among nature’s most energetic and spectacular events and

are much brighter and rarer than novae1. Their high luminosities, which enable them

to outshine even their host galaxy, are mainly powered by the decays 56Ni −→ 56Co, and

subsequently 56Co −→ 56Fe [2]. Some SNe that took place in our galaxy have been ob-

served by the naked eye. Chinese astronomers observed and recorded “guest stars”, at

least as early as the second century A.D.[1]. These stars have been named “guest stars”

due to their sudden appearance in the sky. They were visible for a certain time and then

1A classical nova is a reoccurring explosive event in a stellar binary system fueled by mass accretion
onto a white dwarf. Contrary to type Ia SN (see below), the white dwarf is not disrupted [3].
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faded away. These “guest stars” are nowadays referred to as novae and SNe. The ob-

served “guest stars” that were visible for a year or longer probably were supernovae, and

the shorter visible “guest stars”, common novae. The remnant of one of the most famous

SNe, which occurred in 1054 and was observed by Chinese astronomers, is the Crab Neb-

ula which contains a well known pulsar: a rotating neutron star which emits electromag-

netic radiation of all frequencies at regular intervals (∼30 pulses per second) [1]. Further-

more, two of the observed galactic SNe where discovered by naked eye observations by

Tycho Brahe and Johannes Kepler (SN 1572 and SN 1604). In 1572, Tycho Brahe, a Danish

nobleman and astronomer, discovered a SN in Cassiopeia. He found that the position of

this newly observed star did not change relative to the fixed stars. This observation con-

vinced him that its origin was beyond the moon. His conclusion was against the idea of

Aristotle, that everything beyond the moon is fixed. Tycho Brahe’s student and assistant,

Johannes Kepler, observed another SN in 1604 that remained visible for a year. In the last

few centuries, many SNe have been observed in other galaxies with telescopes, but mod-

ern astrophysicists still wait for a galactic SN (i.e. in our Milky Way). One of the most ex-

tensively observed objects in the history of astronomy is SN 1987A (see [2] and references

therein). In table 1.1 we show an overview of the afore mentioned famous historical SNe

that occurred in the Milky Way and the Large Magellanic Cloud. SN 1987A started to be

observable in 1987, after a blue supergiant star (Sanduleak -69° 202) underwent core col-

lapse and exploded in the Large Magellanic Cloud, a satellite galaxy of the Milky Way [4].

It was the brightest and the first naked eye SN since Kepler’s SN, and the first time that

neutrinos were detected from the collapse of a stellar core (e.g., with the water Cherenkov

detectors Kamiokande II and IMB (Irvine–Michigan–Brookhaven detector) [5–7]). This

well-documented event was observed in all wavelengths from gamma rays to radio. Un-

til nowadays SN 1987A is often taken as a reference point in discussions regarding SNe.

The second brightest SN since Kepler’s SN appeared in 1993 (SN 1993J) in the nearby

spiral galaxy M81 [2]. SN 1993J was the brightest SN seen in the Northern Hemisphere

since the invention of the telescope. The term Supernova was established by the two as-

tronomers Walter Baade and Fritz Zwicky, who began a systematic study of SNe in the

1930s [9, 10]. They already suggested that the source of the huge amount of energy that

is released in a SN could be generated by the gravitational collapse that takes place in the

transition of a star to a neutron star. An important statement taking into account that

the neutron was discovered by James Chadwick only two years prior to this suggestion

[11, 12]. The currently adopted naming scheme of SNe was suggested by Zwicky and col-

laborators in the early 1960s [13]. In this scheme, the name of each event is initiated with

the prefix SN followed by the year of discovery, after which, for years with more than one

SN, an upper case letter from A to Z is added for the first 26 SNe in a given year. If there

are more than 26 SNe in a year the lower-case letters aa, ab and so forth are used. SNe

can be divided into different types that are distinguished by their spectroscopic charac-
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Supernova Year [AD] Distance [kpc] Visual Peak [mag]

SN 1054 (Crab) 1054 2.2 -4.0
Tycho 1572 7.0 -4.0
Kepler 1604 10.0 -3.0

SN 1987A 1987 50±5 3.0

Tab. 1.1.: This compilation of ’historical’ SNe in the Milky Way and the Large Magellanic Cloud
(SN 1987A) represents only a fraction of the total. A few more galactic SNe have
been observed (see also [2, 8]) but the majority of SNe in the Milky Way are blocked
from view by dust. Note that the values for distances and peak visual magnitude,
with the exception of SN 1987A, are guesses at best. The formula for astronomical
magnitudes (apparent magnitude) is given by M =−2.5log10(brigthness)+const.
(see e.g. [2] chapter 14.2). The limit for naked-eye observations is approximately at
a magnitude of 6.0 . This table is adapted from [8].

teristics around maximum luminosity and by the properties of their light curves, which

leads to the classification scheme shown in figure 1.1. These characteristics depend on

the composition of the envelope of the SN progenitor. The distinction between the two

types of SNe, type I and type II, is done based on the presence (type II) or absence (type

I) of hydrogen lines. Each type can then be further subdivided based on the presence

or absence of absorption lines or other features of the light curve. However, the most

important physical characteristic of a SN is the underlying explosion mechanism. Type

Ia SNe are thermonuclear explosions, while SNe of types Ib, Ic and II are due to core col-

lapse. Depending on their initial masses at birth, called zero age main sequence (ZAMS)1

masses, stars live through certain stellar burning stages and can evolve into progenitors

of these different SN types [3]. In the following the main characteristics of the two dif-

ferent explosion mechanisms are briefly discussed. Core-collapse SNe (CCSNe) will be

discussed in more detail in chapter 2, as they are the focus of this doctoral thesis.

Thermonuclear SNe are thought to be the outcome of a detonation or deflagration of a

carbon-oxygen white dwarf that has a close companion star from which it can accrete

matter [3, 14]. White dwarfs are the evolutionary products of stars with ZAMS masses

M . 8M¯ which ended thermonuclear burning after He-burning. When the mass of a

white dwarf approaches the Chandrasekhar limit (MCH ≈ 1.4M¯), the star becomes un-

stable against collapse, because the pressure of the degenerate electron gas inside the

star can no longer sustain it against the gravitational force [1, 2]. The collapse of the

white dwarf triggers the nuclear fusion of carbon and oxygen into heavy nuclei. Carbon

ignites under degenerate conditions and a thermonuclear runaway occurs. This liberates

1A star starts its life on the ZAMS when hydrogen burning is initiated.
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Fig. 1.1.: Classification of supernovae according to their observed spectra (adapted from
[13, 14]). The two main types are distinguished by the absence (type I) or presence
(type II) of hydrogen Balmer lines. The Type I SNe can be further divided into
subtypes depending on the presence or absence of silicon and helium absorption
lines. Type Ia SN spectra show an absorption feature attributed to Si. Type Ib and Ic
both have weak or absent Si lines. They are distinguished by the presence or absence
of He lines. A complimentary classification can be done based on their explosion
mechanism: thermonuclear SNe (SN Ia) and core-collapse SNe (SN II,Ib/c). Type
Ia SNe originate from the deflagration or detonation of an accreting white dwarf.
Type Ib and Ic SNe originate from core collapse where either the H-envelope has
been removed (Ib), or the H- and He-envelope have been removed (Ic). Type IIb
is a ’cross-over’ type, where H-lines are present initially, but then disappear over
time. Eventually this type resembles the light curve of a Ib type. Normal type II
SNe are either IIL or IIP where the L and P stand for linear decay and plateau of the
luminosity after the initial peak, respectively. These types represent core-collapse
SNe of massive progenitors with plenty of hydrogen in their shell. Other subtypes
of type II SNe include type IIF (faint SNe), IIn (spectrum also has narrow emission
lines), and TTpec (spectrum has peculiar features).
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a large amount of nuclear binding energy, ultimately causing the thermonuclear explo-

sion of the white dwarf. In this explosion scenario, the white dwarf is disrupted, leaving

behind an expanding nebula without a central compact object remnant. The fact that

type Ia SNe are all generated under similar physical circumstances, with almost identical

characteristics (i.e. the amount of liberated energy and their light curve), makes it possi-

ble to use them as standard candles for the measurement of cosmological distance scales

[3, 13, 15]. The observation of the variation in the brightness of these SNe with redshift

allows to study the expansion of the universe and led to the discovery that the expansion

of the universe is accelerating ([16, 17], Nobel Prize in Physics 2011).

CCSNe are the outcome of a series of events that are initiated by the collapse of the iron

core of a massive star, M& 8M¯, and leave behind a compact remnant, i.e. a neutron star

or a black hole. The details of this phenomenon are explained in chapter 2. During the

first few hundreds of ms following the collapse, the formed proto neutron star (PNS), is

extremely hot and as a result neutrinos of all types are produced in vast numbers (∼ 1058).

During the collapse, a large amount of gravitational binding energy is liberated (∼ 3×
1053erg) and about ∼99% is carried away by neutrinos, since the PNS and its surrounding

envelope are optically thick to photons. Type II SNe are initiated by collapsing cores of

massive stars with masses between 8 and about ~60-120 M¯ (the range of explodability

can have a metallicity dependence1 [18]). Moreover, the hydrogen shell of these stars

can have various sizes and masses, even if they have the same initial mass. This leads

to a wide range of variability in type II SNe (see figure 1.1). To date, SN 1987A remains

the best observed CCSN. It is still used as a standard event for this SN type. Table 1.2

gives the basic observational data of SN 1987A. In figure 1.2 we show the visual (V-band)

magnitude of SN 1987A (compare the peak magnitude in figure 1.2 to the value given in

table 1.1 for the peak visual magnitude of SN 1987A). Besides SN 1987A, there are also

other astronomical observations of CCSN events. In chapter 5 in table 5.2, we give an

overview of observational properties of a collection of CCSNe that are used in the studies

presented in this work.

1The resulting remnant of a CCSN depends on the dominating explosion mechanism, ZAMS mass and
metallicity, see also figure 2.1 in chapter 2.
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Fig. 1.2.: Apparent V light curve of SN 1987A (figure taken from [19], see also references
therein). The different phases in the light curve are labeled. The most important
power contribution to the light curve comes in almost all cases from the radioac-
tive decay of material that has been synthesized during the explosion. The major
contribution comes from 56Ni, which is the main product of burning to nuclear
statistical equilibrium at the temperatures and densities encountered in CCSNe. The
half life of 56Ni with respect to decay to 56Co is 6.1 days. Subsequently, 56Co decays
with a half life of 77.2 days to 56Fe. The plateau of the light curve after the initial
peak is powered by the recombination of the hydrogen that has previously been
ionized by the supernova shock [19, 20]. It should be noted that very few objects
have been followed beyond about 200 days, a remarkable exception being SN 1987A.
Dust formation increased the decline rate of the light curve after about 450 days.
After 800 days the light curve flattened due to energy release of recombining ionized
matter (“freeze-out”). At later times, the flattening of the light curve is caused by the
radioactive decay of long lived 57Co and 44Ti, with a half life of 270 days and 60 year,
respectively. Also shown in the figure is the emission of the circumstellar inner ring,
which has been ionized by the shock. After about 1500 days the contribution from
the ring emission is stronger than the contribution form the SN ejecta itself.

6 Chapter 1 Introduction



Supernova SN 1987A (Sanduleak -69° 202)

Progenitor mass [M¯] ~18-21
Explosion energy [1051erg] (1.1 ± 0.3)
Ejected mass of 56Ni [M¯] (0.071±0.003)
Ejected mass of 57Ni [M¯] (0.0041±0.0018)
Ejected mass of 58Ni [M¯] 0.006
Ejected mass of 44Ti [M¯] (1.5±0.3)×10−4

Tab. 1.2.: Observational properties of SN 1987A. Even though this SN is often used as a stan-
dard case, it is possible that it is in fact a special case. With respect to its light curve,
SN 1987A is an extreme case of IIP, the luminosity increased for around 3 months
after the collapse and the SN was relatively faint. This is the reason why SN 1987A
sometimes also is referred to as type IIF or IIpec [2, 13, 21–24]. The explosion energy
is adapted from [21]. The nucleosynthesis yields for SN 1987A are taken from [22]
except for 58Ni which is taken from [25] and for 44Ti which is taken from [26]. For
58Ni no error estimates were given.

Another important aspect that is necessary to estimate the observability and the overall

impact of SNe on the evolution of galaxies, is SN rates. Figure 1.3 shows the estimated

SN rates for different galaxy types given in [27]. The rates depend rather strongly on the

galaxy type. For example, in elliptical galaxies, which have a small star formation rate for

short-lived massive stars that end their lives with a CCSN, no SN type Ib, Ic, and II have

been observed. We show some estimates for the CCSN rate in the Milky Way in table 1.3.

The lack of neutrino observations from CCSNe in the Milky Way implies an upper bound

of 10 CCSNe per century in our galaxy (at a confidence level of 90%) [28].

1.1 Introductory Notes on Supernovae 7



Fig. 1.3.: SN rate normalized to the stellar mass and expressed in SNuM (number of SNe per
century per 1010 M¯) as a function of the morphological index (Figure taken from
[27]). The lines correspond to type Ia (solid), type II and Ib/c (dotted and dashed),
with 1σ error bars. A clear increase of the SN rates from E/S0 (elliptical) to S0a/b
(lenticular) to Sbc/d (spiral) to Irr (irregular) can be seen for all the SN types.

SN rate [10−2y−1] Reference (Year)

5.8 ± 2.4 Tammann (1982), [29]
1.2+1.7−0.7 Ratnatunga & van den Bergh (1989), [30]

4.0 ± 2.0 Muller et al. (1992), [31]
2.0 ± 1.1 Cappellero et al. (1993), [32]
2.5 +0.8−0.5 Tammann et al. (1994), [33]

5.7 ± 1.7 Strom (1994), [34]
1.3 ± 0.9 Cappellero et al. (1997), [35]
3.4 ± 2.8 Timmes et al. (1997), [36]
8.4 ± 2.8 Dragicevich et al. (1999), [37]
1.5 ± 1.0 Cappellaro & Turatto (2000), [38]

1-2 Reed (2005), [39]

Tab. 1.3.: Estimated rates of CCSNe in the Milky Way over time [29–39], adapted from [13].
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1.2 This Work

The aim of this work is to gain insight on global properties of neutrino-driven CCSNe

from numerical simulations. These properties include explosion energy and the amount

of ejected matter of certain elements (e.g. 56Ni). In astrophysics, a numerical simula-

tion is an important tool to probe the laws of nature and gain further insight into the

physics of the investigated event or scenario. For more than 50 years, physicists tried

to understand CCSNe and their possible explosion mechanisms and until today no final

answer has been found. These highly complex systems incorporate many branches of

physics, such as mechanics, electromagnetism, fluid mechanics, quantum mechanics,

nuclear physics and general relativity, which makes them an extremely fascinating sub-

ject. We want to find dependencies between CCSN and progenitor properties. We use

the parametrized PUSH framework to study the neutrino-driven explosion mechanism

in one-dimensional simulations. We introduce the numerical setup of our spherically

symmetric simulations in chapter 3. Even though multi-dimensional simulations are

the tool of choice to investigate the explosion mechanism of CCSNe, they are not well

suited to explore large progenitor samples due to their high computational cost. PUSH

on the other hand is well suited to perform such investigations due to its computational

efficiency. The two approaches should be used in a complementary way to gain as much

insight as possible.

By calibrating the free parameters of the PUSH method to the observational properties of

SN 1987A (for a progenitor star in the mass range of 18-21 M¯) and extending the method

with a dependency of one of its free parameters on compactness, we achieve a calibra-

tion of PUSH over a wide range of ZAMS masses. We apply the PUSH method to the pro-

genitor sets of Woosley, Heger and Weaver (2002) and Woosley and Heger (2007) [40, 41].

The main focus is directed to the CCSN progenitors with solar metallicity. We also ex-

tend the samples to the low metallicity progenitors of [40] to obtain some preliminary

results. We discuss the trend of the explosion energy depending on compactness and

degeneracies and calibration possibilities for the free parameters of PUSH. In the main

part of this thesis, the focus lies on explodability and the investigation of explosion prop-

erties of neutrino-driven CCSNe (see chapter 5). We present the results obtained for this

study, including the resulting explodability and explosion properties of the investigated

progenitors as a function of ZAMS mass or compactness, respectively. Furthermore, the

resulting neutron star and black hole birth mass distributions that are obtained from our

predicted progenitor-remnant connection are presented. In the last part, we compare

three-dimensional ELEPHANT simulations with a similar numerical setup with PUSH.

Such a comparison can be used to improve the parametrized method (see chapter 6).
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A systematic study with PUSH can be used to learn more about the progenitor-remnant

connection of CCSNe and the ejected nucleosynthesis yields that contribute to the chem-

ical evolution of galaxies.
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2Core-Collapse Supernovae

„Problems worthy of attack prove their worth by

fighting back.

— Piet Hein

Core-collapse SNe (CCSNe) have been studied for many years and the exact mechanism

behind the explosion is still not fully understood. This chapter is an overview of this phe-

nomenon and the physics that play a role in these extremely energetic and fascinating

events.

CCSN explosions are among the most energetic events in the universe. They mark the

end of the life of massive stars and at the same moment, depending on the exact cause

and series of events during the explosion, also give birth to either a neutron star or a

black hole. Stars are essentially gas clouds that, through nuclear burning, fuse lighter el-

ements into heavier ones as they evolve. In the short moments leading up to their death

and, thereafter, the extreme conditions that are reached in terms of density, tempera-

ture and entropy, enable the fusion of nuclei up to the iron peak, the group of elements

with the highest binding energy. Depending on the exact conditions that are reached in

the ejected material, also several heavier elements can be created. By means of the mat-

ter that the stars eject back into the interstellar medium, they eventually contribute to

the chemical evolution of the universe. This synthesis of elements in stars was first pro-

posed in the historical paper by Burbidge, Burbidge, Fowler and Hoyle [42]. Stars come

in many sizes and, depending on their initial mass at the beginning of hydrogen burning

(the ZAMS mass) they will live different amounts of time and end their lives in different

ways.

Relatively light stars, with initial masses . 8M¯, end their life as carbon-oxygen white

dwarfs, compact objects that support themselves against gravitational collapse by means

of the pressure of degenerate electrons. These stars formed stable carbon-oxygen cores
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during stellar nuclear hydrogen and helium burning. When a white dwarf exceeds its

Chandrasekhar mass limit its life ends with a type Ia SN. In the mass range of 8−10M¯,

the final fate of stars is less certain since this mass region marks a transition region be-

tween thermonuclear and CCSN explosions. Stars in this mass range form an oxygen-

neon-magnesium core. The core of such a star either undergoes a collapse or it becomes

an oxygen-neon-magnesium white dwarf

Stars with masses & 10M¯ are massive enough to evolve past the H- and He-burning

stages and proceed further with nuclear burning processes, eventually forming a central

iron core. By the end of their hydrostatic burning phase, they have formed an onion-like

structure where the different layers of elements are roughly sorted by their mass num-

ber due to gravitation (see also figure 2.3). Once the central core consists of iron where

the binding energy per nucleon has its maximum, further burning would not release but

consume energy. CCSNe occur at the end of the evolution of such massive stars. The pro-

cess of core collapse begins when the central iron core of the star, which is still growing

during silicon shell burning, approaches the Chandrasekhar mass limit. At this point in

the evolution of the star its core can no longer withstand gravity and starts to collapse.

The available gravitational binding energy being released when the core collapses and

forms a compact object is given by [43]

∆EB ∼ GM 2
core

R
= 3×1053

(
Mcore

M¯

)2 (
R

10km

)−1

erg. (2.1)

Most of the energy is radiated away by the emission of neutrinos and only ∼ 1% of the

gravitational binding energy contributes to the kinetic energy of the ejecta of the explo-

sion (∼ 1051 erg). The exact nature of the mechanism that converts a small amount of

gravitational energy to enable a successful CCSN is not yet fully resolved and several

mechanisms like the neutrino-driven, the magneto-rotational, and quark phase transi-

tion are subject of ongoing research (see e.g. [44–46] and references therein). In the fol-

lowing chapters we will cover the contemporary understanding of the so called neutrino-

driven mechanism, where neutrinos emitted from the newly born PNS deposit energy

behind the shock and enable successful explosions.

Figure 2.1 gives a first qualitative overview of the possible fates of massive stars at the end

of their lives [18]. Note that this figure does not contain the newest insights on the topic

and is intended as an example. We can see that the fate and remnant of a star also can

depend on its metallicity, e.g. a star with higher metallicity loses more material during

its life due to wind loss, and can then be less likely to form a BH (or forms a less massive

BH in the case of a failed SN or collapse).
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Fig. 2.1.: Qualitative SN remnants of non-rotating massive single stars as a function of initial
stellar mass (ZAMS mass) and metallicity (figure taken from [18]). The line marked
with “no H envelope” differentiates stars that keep their hydrogen envelope during
their hydrostatic burning lives from stars that lose their hydrogen envelope (see also
section 2.1 for an overview of the different shell and core masses for progenitors from
[40, 41]). The line marked with “direct black hole” indicates the border of the direct
black hole forming regime. The direct black hole regime (black) has a gap where
pair-instability SNe, which leave behind no remnant, take place (white). Outside
of the direct black hole regime are the black hole by fallback (red) and the neutron
star regimes (green), where black holes and neutron stars are the possible remnants,
respectively. In the low mass regime it is shown that there is a transition between
iron core collapse and oxygen-neon-magnesium core collapse. At even lower masses
no CCSN takes place (dashed lines, lower left). In this regime a white dwarf is the
compact remnant of the star.
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2.1 Progenitors of Core Collapse
Supernovae: Stellar Evolution of
Massive Stars„He not busy being born is busy dying

— Bob Dylan

It’s Alright, Ma (I’m Only Bleeding)

This section gives a short overview on the possible progenitors of CCSNe. The lives of

massive stars with initial masses bigger than ∼8M¯ are terminated in an explosive event

that is called a CCSN, which leaves behind a neutron star or a black hole as a remnant. Be-

fore this final stage of a massive star’s live takes place, it evolves through the different ther-

monuclear burning phases that are initiated at its birth on the zero age main sequence

(ZAMS). Thermonuclear burning is the main source of energy that provides the internal

pressure to oppose the gravitational force on the stellar matter. To be precise, radiation

pressure and thermal pressure determine a star’s stability during the majority of its life.

In the later stages of stellar evolution, when the central density increases, electron degen-

eracy pressure starts to dominate. Stable burning conditions are attained when the en-

ergy generation rate is equal to the energy loss of the star due to emission of photons and

neutrinos. The main exothermic nuclear reactions, which produce the energy in the dif-

ferent burning stages, are the fusion of 4He, 12C, 20Ne, 16O and 28Si [1, 47]. Stellar burning

starts with hydrogen burning, where hydrogen is fused to helium. Typical temperatures

and densities of this burning phase are T = (0.1−0.2)GK and ρ = 3×102−104gcm−3 [47].

Once a hydrostatic burning phase has exhausted it’s primary fuel, the star contracts and

heats up, eventually igniting the next burning stage. Thus, the following nuclear burning

stages proceed at successively higher temperatures and, as a result of the contraction,

higher densities. In each burning stage the Coulomb barriers of the contributing nuclei

have to be overcome. The only exception is neon burning, as the photodisintegration of

neon, 20Ne(γ,α)16O, is triggered before oxygen burning can be established. The ashes of

silicon burning are the iron group elements and they form the iron core of the star. Sili-

con burning marks the last possible hydrostatic burning phase of a massive star because

the exothermic fusion of elements in stars stops with the formation of iron group nuclei,

the nuclei with the highest binding energies per nucleon (see figure 2.2). At this point the

stellar core has no further sources of nuclear energy left and grows in mass as it accumu-

lates the ashes of the surrounding burning shells. Figure 2.3 illustrates this “onion shell”

structure of a massive star at the end of its life.
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(a) Experimental binding energies per nucleon
of the most stable nuclei for each mass num-
ber

(b) Zoom showing the binding energies per nu-
cleon in the region of the iron peak nuclei. The
strongest bound nuclei are 56Fe, 58Fe and 62Ni

Fig. 2.2.: Binding energy B plotted against atomic mass number [3, 48, 49]. Figures taken from
[3].

Fig. 2.3.: Onion structure of a massive presupernova star (not to scale). The labels on the
upper half show the one or two most abundant nuclear species (also other species
are present) that are present in each region (according to [50] see also [3]). The lower
half labels show the nuclear burning shells. For example, “H-B” stands for hydrogen
burning. Nuclear reactions are very temperature dependent and nuclear burning
takes place in relatively thin shells at the interfaces between different compositions.
Figure adapted from [3].
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Massive stars spend about 90% of their life in the hydrogen and helium burning stages,

which correspond to several millions of years [3]. During these burning phases con-

vection and radiation transport dominate the cooling of the star and therefore set the

timescales on which energy is transported. The advanced burning stages beyond helium

burning have a significant smaller timescale. Silicon burning for instance has a timescale

of the order of weeks. When the central temperature of the star exceeds ~ 0.5GK neutrino

losses from pair annihilation set the timescale of the energy evolution in the system [40].

The reason for this difference in timescales is due to neutrinos leaving the star immedi-

ately as soon as they are created, which leads to a highly increased neutrino luminosity.

Thus, in the later burning stages the energy generated by nuclear reactions and gravi-

tational contraction equal the neutrino losses. In table 2.1 we give an overview of the

evolutionary burning phases and their characteristic quantities for a 20M¯ star. The pro-

genitor structure of stars with different metallicities and ZAMS mass at the onset of col-

lapse is shown in figure 2.4 (data from [40, 41])1. These figures illustrate the uncertainties

in wind losses and the dependence of the progenitor structure on metallicity.

Burning ρc Tc τ Lγ Lν Primary
Stage [gcm−3] [GK] [yr] [erg/s] [erg/s] Reactions

Hydrogen 5.6 0.040 1×107 2.7×1038 - CNO cycle

Helium 9.4×102 0.19 9.5×105 5.3×1038 < 1036 triple α

Carbon 2.7×105 0.81 3.0×102 4.3×1038 7.4×1039 12C+12C→20Ne +α

Neon 4×106 1.7 0.4 4.4×1038 1.2×1043 20Ne+γ→ 16O+α

Oxygen 6×106 2.1 0.5 4.4×1038 7.4×1043 16O+16O→ 28Si + α

Silicon 4.9×107 3.7 0.01 4.4×1038 3.1×1045 28Si+7α→ 56Ni

Tab. 2.1.: Stellar Burning Stages for a 20 M¯ star (Table adapted from [7, 51]), where ρc and
Tc denote the core density and core temperature. The quantities τ, Lγ and Lν
denote the time scale of the process and the corresponding photon and neutrino
energy luminosities. The last column gives the primary burning reaction of the
corresponding burning stage. Note that the duration of the different burning stages
ranges from millions of years to days.

1The iron core mass is defined as the layers with an electron fraction Ye < 0.495, the carbon-oxygen core
mass is given by the enclosed mass with a helium mass fraction XHe < 0.2 (i.e., up to the beginning
of the helium shell), and the helium core mass is given by the mass regions with a hydrogen mass
fraction XH < 0.2 (i.e. up to the beginning of the hydrogen shell).
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(a) Progenitor structure of stars with solar metal-
licity. Progenitors from [40]

(b) Progenitor structure of stars with solar metal-
licity. Progenitors from [41]

(c) Progenitor structure of stars with metallicity
Z = 10−4 ×Z¯. Progenitors from [40]

(d) Progenitor structure of stars with metallicity
Z = 0. Progenitors from [40]

Fig. 2.4.: A comparison of different progenitor sets of non-rotating single massive stars with
respect to metallicity (a,c and d) and between different sets with the same metallicity
(see a and b) [40, 41]. The low metallicity progenitors experience almost no mass
loss during their lives and as a result keep most of their H- and He-envelopes. The
plots show the Fe-core, the CO-core as well as the He-envelope, H-envelope and the
total mass of the star. The different contributions to the total mass are denoted by
MFe−core, MCO−core, MHe−env and MH−env.
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2.2 Core-Collapse

A CCSN begins when the iron core of the star starts to collapse. During the silicon burn-

ing phase, at the end of the hydrostatic stellar life, the iron core constantly grows in mass.

Consequently, the gravitationally induced contraction becomes stronger and increases

the compression of the stellar core. At this stage the pressure that keeps the star from col-

lapsing is provided by degenerate electrons. At first, these electrons are non-relativistic

but, due to compression, the central density of the core becomes so high that the rela-

tivistic regime is reached. The degeneracy pressure of relativistic electrons is given by

[43]

Pe ∼
(
Yeρ

)4/3 , (2.2)

where Ye = ne /ρNA is the electron fraction per baryon, ne is the electron number den-

sity, and ρ denotes the density. With increasing core density, the resulting Fermi energy

EF ∼ n
1
3
e ∼ (

Yeρ
) 1

3 of the electrons grows and drives electron captures on free protons and

nuclei [47]

e−+p → n +νe ,

e−+ (Z , A) → (Z −1, A)+νe , (2.3)

where A is the nucleon number and Z the proton number of the corresponding nucleus.

Since neutrinos can escape freely in this stage these reactions cause a reduction of the

electron fraction Ye and a decrease of the degeneracy pressure provided by the electrons.

Eventually, the mass of the Fe-core exceeds the Chandrasekhar mass limit, which is given

traditionally in the form [1, 52]1

MC H ≈ MC H ,0 = 5.83Y 2
e M¯. (2.4)

A gas of relativistic electrons and nuclei, with a mass that exceeds MC H , has no stable

configuration. The degeneracy pressure can no longer withstand the inward gravita-

tional force and the stellar core starts to collapse. This collapse can only be stopped

when the nuclear interaction becomes repulsive, which happens only when matter gets

compressed to a degree that densities reach and exceed nuclear densities. Any further

compression is resisted by the repulsive component of the strong interaction. Thus, the

collapse can only be stopped once the nuclei of the core form nuclear matter [1, 2]. A

more precise expression for the Chandrasekhar mass limit that takes into account the

1As an example, for an electron fraction of Ye = 0.5 this equation yields MC H ≈ 1.458M¯.
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thermal structure of the core, in particular that the entropy of the core is non-zero, is

given by ([40] and references therein)1

MC H = MC H ,0 ×
[

1+
(

se

πYe

)2]
. (2.5)

The variable se denotes the electronic entropy per baryon in units of the Boltzmann con-

stant kB , and its values typically vary between 0.4 in the center and 1 at the edge of the

iron core of a 15 M¯ star at the time of collapse. The collapse of the core is accelerated

by two processes. First, the contraction of the iron core increases the density further,

this leads to higher electron Fermi energies and as a result more electron captures occur.

This is also called "neutronization" of the core. The neutronization is mainly driven by

electron captures on protons and on iron group nuclei. See table 2.2 for the neutroniza-

tion thresholds (Fermi energies of the electron: EF ≡ me c2 + threshold) for protons and
56
26Fe. Due to the electron loss the electron pressure decreases and the collapse acceler-

ates. Second, at sufficiently high temperatures thermal radiation becomes energetic and

Reaction Neutronization Threshold [MeV]

e− + 1
1H → n + νe 0.782

e− + 56
26Fe → 56

25Mn + νe 3.695

Tab. 2.2.: Neutronization thresholds from [43, 53]. The electron rest mass energy, me c2 '
0.511MeV, has been subtracted. The reactions listed here correspond to the reactions
of equation (2.3).

intense enough that the iron peak nuclei are photodisintegrated [43]:

γ+ 56Fe → 13α+4n, (2.6)

Q = (13mα+4mn −mFe )c2 = 124.4MeV,

where Q is the energy required for this process (Q-value of the reaction). These reactions

remove thermal energy, in the form of binding energy, from the core that could have pro-

vided thermal pressure against the collapse. When the reaction given in equation (2.6)

is in equilibrium, the resulting composition of the core can be obtained from the condi-

tion for nuclear statistical equilibrium (NSE)2. As the stellar core collapses on the free-fall

timescale, tff(r ) ∼ 1/
√

G〈ρ(r )〉 (where 〈ρ(r )〉 is the average density of the enclosed mass

1As an example, with rough estimates for the electron fraction and the electronic entropy at the onset
of collapse of Ye ' 0.45 and se ' 0.7 one gets an effective Chandrasekhar mass of the iron core of
MC H ' 1.47M¯.

2See section 2.5
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at radius r ), the density of the core steadily increases and the mean free path of the neu-

trinos becomes progressively smaller [43]. The proportionality of the infall velocity to

the free-fall timescale indicates that the core collapses while the outer layers remain ap-

proximately unmoved since the average density decreases with the radius. Each neutrino

emission process (see equation (2.3)) has a corresponding inverse process, an absorption

process. At a certain point absorption and scattering of neutrinos make it impossible for

them to escape freely from the collapsing core at the speed of light and they start to dif-

fuse out on a longer (diffusion) timescale. The most important processes that contribute

to the coupling between neutrinos and matter are ([14, 43] and references therein):

(1) Free nucleon scattering: ν+n → ν+n, ν+p → ν+p

(2) Coherent scattering by heavy nuclei: ν+ (Z , A) → ν+ (Z , A)

(3) Nucleon absorption: νe +n → p +e−

(4) Electron neutrino scattering: νe +e− → νe +e−.

The first two reactions take place by the exchange of a Z boson and are thus neutral

current reactions. Furthermore, coherent scattering by heavy nuclei scales as A2 rather

than as A (A being the atomic mass), which would have been the case for incoherent

scattering. Nucleon absorption is a charged reaction and is mediated by the W bosons.

Neutrino electron scattering has charged and neutral current contributions. This scat-

tering process can lead to appreciable neutrino-energy loss and is thus believed to be

quite important in thermalizing the neutrinos. Once the mean free path of the neutrinos

gets significantly smaller than the radius of the iron core and the diffusion timescale of

the neutrinos is bigger than the collapse timescale, the neutrinos are considered to be

trapped [1]. The trapping of the neutrinos in the core occurs when the densities reach

∼ 1011 −1012gcm−3. This causes most of the neutrinos produced from electron captures

to remain inside of the core. They establish thermal- and β-equilibrium with matter and

the lepton fraction stays constant YL = Ye +Yνe , so that the collapse proceeds adiabat-

ically1 [43]. In this stage, the chemical potentials of protons, neutrons, electrons and

neutrinos fulfill the relation,

µp +µe =µn +µνe , (2.7)

where µ stands for the chemical potential of the particles (e−, p,n,ν) [43, 47] and the

neutrino distribution approaches an equilibrium Fermi-Dirac form. The radius inside of

1Due to trapping, neutrinos cannot stream out of the core immediately. Thus, the huge amount of
liberated gravitational binding energy must therefore be converted into other forms of internal energy
(e.g., thermal energy, energy of excited nuclear states, kinetic bounce energy, and neutrinos) and can
not be immediately released in the form of neutrinos
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the star, from where the neutrinos can stream freely to infinity is called neutrino sphere.

It is located where the optical depth of the neutrinos

τ(R,Eν) =
∫ ∞

R

dr

λν
(2.8)

is equal to τ(Rν,Eν) = 2/3 (see [1] and references therein). Here, λν is the mean free path

of the neutrinos, Rν the radius of the neutrino sphere and Eν denotes the energy of the

neutrinos. Note that neutrinos with different energies have different neutrino spheres.

In between the region of trapped neutrinos and the neutrino sphere the neutrinos do

not escape freely but diffuse out on a longer timescale.

At this point the collapse can be divided in two parts. The collapse of the inner part of

the core will be homologous [1, 43, 54], where the velocity of the infalling matter is pro-

portional to the radius, vr ∝ r , and smaller than the local speed of sound1. Homologous

means similar to itself, hence the distribution of density and temperature remains simi-

lar to the initial profile (at the onset of collapse) during the collapse, and only the scale

changes in time [1, 43]. In the outer part, matter is falling in supersonically with velocities

that are proportional to the free fall velocity (vr ∝ 1/
p

r ). The inner and the outer part of

the core are connected by the sonic point, where the speed of sound is equal to the speed

of the infalling matter. A sound signal from the inner core can not get past the sonic point

because beyond the sonic point the matter in which the sound wave propagates falls in

faster than the wave is transmitted.

2.3 Bounce and Prompt Shock

When the center of the core exceeds nuclear densities, ρnuc ∼ 1014gcm−3, nuclear forces

cause the equation of state to stiffen, ultimately stopping the collapse and leading to a

bounce of the core. The information of the halt of the collapse and the bounce of the

collapsing core initially can not get outside the sonic point, which separates the inner

and the outer core (see above), and the outer regions of the star keep falling in. In the

center the abrupt end of the collapse forms a pressure wave that propagates to the sonic

point where it eventually turns into a shock. The core bounce and the formation of the

prompt shock initialize the disruptive event known as a CCSN explosion. After bounce,

the inner core of the star settles into hydrostatic equilibrium, forming a proto neutron

star (PNS), while the shock propagates outward through the outer iron core, which is still

1The homologous inner core has an estimated size of about Mhc ∼ (0.6−0.8)M¯ and is roughly propor-
tional to Y 2

e [43, 54]
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collapsing. As the infalling unshocked matter (with velocities proportional to the free

fall velocity) reaches the shock front, it is abruptly decelerated. In the shock, the entropy

increases1. Below the shock, the matter falls much more slowly onto the PNS, which ac-

cretes the infalling matter. Consequently, the PNS develops a structure that consists of

an unshocked core, with a radius of the order of 10 km, and a shocked mantle, with a

radius of about 100 km. Thereby, the PNS has a density of the order of ρnuc ∼ 1014gcm−3

in the unshocked core. At entropy values of s ∼ 3kB/baryon behind the shock, nuclei dis-

sociate into protons and neutrons. The dissociation of heavy nuclei is an endoenergetic

process and it costs about 8.8MeV per nucleon and drains the shock’s energy ([1] and ref-

erences therein). As a result, the material behind the shock wave mainly consists of free

nucleons. This change in composition leads to a high electron neutrino production via

electron capture on free protons, which are then transformed into neutrons, behind the

shock. These neutrinos cannot escape freely because the matter is still dense and opaque

to them, until the shock reaches the neutrino sphere (at densities of∼ 1011gcm−3). As the

shock wave moves through the electron neutrino sphere a neutrino burst is emitted (see

figure 2.5). The peak luminosities of this neutrino burst are of the order of 1053erg s−1

and remain for several ms. As the neutrinos escape fast, the now free phase space is

refilled and the present matter deleptonizes quickly. The combined energy loss of the

shock wave due to photodissociation of heavy nuclei and neutrino emission weakens

the shock considerably (about 1.5×1051erg are drained from the shock for each 0.1M¯ of

photodissociated material). In the standard CCSN scenario today, this prompt shock is

not energetic enough to disrupt the star and it eventually stalls2. The stalled shock turns

into a standing accretion shock (SAS) at a radius of a few 100 km [44, 55]. Thus, a differ-

ent mechanism is needed to replenish the energy of the shock, revive it, and eventually

form a successful CCSN.

1For weak shocks the entropy increase is ∆s ' γ(γ+1)
12

(
vr
cs

)3
, where the adiabatic index is roughly γ= 4/3

when the shock is formed (see also above) [1].
2For some time it was believed that the bounce shock has enough energy to go through the entire star

and directly disrupt it (prompt shock explosion [40]). Today it appears that the energy available to the
prompt shock is not sufficient, ruling out the prompt shock mechanism.
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Fig. 2.5.: Temporal evolution of the neutrino luminosities and rms energies obtained from
numerical simulations with AGILE-Boltztran (figure taken from [56]). The dashed
lines represent the results of a 13 M¯ model and the solid lines represent the results
of a 40 M¯ model. The blue line belongs to the electron neutrino, the red line to the
electron antineutrino, and a green line to the µ- and τ-neutrinos. The luminosities
are sampled at a radius of 500 km. The rms energy of the neutrino flux was calculated
at the same radius. Both progenitors show a comparable neutrino burst with a
peak height of 3.5×1053ergs s−1. Note that significant differences appear in later
phases. The accretion-dominated electron flavor luminosities are determined by
the variations in the density profiles in the outer layers of the two models. When the
bounce shock propagates outward (a period of ∼4 ms after bounce), the neutrino
luminosity decays to a 30% lower level due to a decrease in the free proton fraction
when the shock is formed and the fact that the shock condenses previously still
neutrino emitting material to more neutrino opaque densities as it is running out.
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2.4 Core-Collapse Supernova Explosion
Mechanism„These violent delights have violent ends

and in their triumph die, like fire and powder,...

— William Shakespeare

Romeo and Juliet

The exact physical mechanism behind a CCSN explosion is still not known with certainty.

The CCSN mechanism that is currently thought to be able to revive the shock after it

has stalled, is the energy deposition by neutrinos that are thermally produced by the

PNS and by accretion of matter onto the PNS. Convection below the shock enables more

efficient heating by neutrinos, which eventually leads to a successful delayed ν-driven

explosion. Note that several possible supernova mechanisms are discussed by astro-

physicists. Among them are the neutrino-driven explosion mechanism [44, 45, 57, 58],

energy release due to a QCD phase transition in the core from baryonic to quark matter

[44, 45, 59, 60], the magneto-rotational mechanism [44, 45, 61, 62], the acoustic mecha-

nism, and the standing accretion shock instability (SASI) [44, 45, 63, 64].

In this work we focus on the neutrino-driven mechanism. The "neutrino-heating mech-

anism" was first discussed by Colgate and White (1966) [57] and numerically tested by

Bethe and Wilson (1985) [58]. In this scenario, the stalled shock can be revived by the

neutrino flux coming from the PNS, that deposites some of its energy in the matter be-

hind the shock, on a timescale of ∼100ms after bounce. The revival of the shock by heat-

ing of neutrinos ultimately leads to a supernova explosion, leaving behind a neutron star

or a black hole as a final remnant. In the following we outline how the stalled shock

can be revived in this mechanism. Neutrinos of all flavors are produced in the hot PNS

through electron-positron pair annihilation, electron bremsstrahlung, nucleon-nucleon

bremsstrahlung, plasmon decay, and photoannihilation. Electron neutrinos and elec-

tron antineutrinos are also produced by electron capture and positron capture. In the

outer layers of the PNS there is also accretion driven production and emission of neu-

trinos, until an explosion sets in and the mayor part of the mass shells above the PNS

start to move out. The neutrinos that diffuse out of the PNS carry most of the released

gravitational energy of the collapsed stellar iron core. Neutrinos can stream out freely

once they reach the neutrino sphere (see equation (2.8)), which is inside the mantle of

the PNS. There are different energy dependent neutrino spheres for different flavor neu-
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trinos1. Each neutrinosphere produces a thermal flux of neutrinos of the corresponding

flavor and energy. Due to the neutronization of the PNS mantle by the prompt shock, the

opacity of electron neutrinos is higher than the opacity of anti-electron neutrinos. There-

fore, the νe neutrino sphere is further outside than the ν̄e neutrino sphere, although they

get closer to each other as the PNS contracts.

Fig. 2.6.: Schematic that illustrates the situation just before shock revival and supernova
explosion in the delayed neutrino driven mechanism. Neutrinos emitted from the
PNS heat the matter in the gain region as the outer layers of the star keep falling onto
the shock. Convection is increasing the net heating efficiency that on the timescale
of ∼ 0.1−1s can lead to a neutrino driven explosion. Figure taken from [65].

In the neutrino-driven mechanism, the deposition of energy is caused by captures of

electron neutrinos and electron antineutrinos on nucleons (charged-current reactions)

νe +n → p +e−, (2.9)

ν̄e +p → n +e+. (2.10)

Figure 2.6 illustrates the stage of the neutrino heating in the gain region where the ther-

mal pressure behind the shock eventually can overcome the ram pressure of the infalling

material and revive the shock which can lead to an explosion (delayed neutrino-driven

mechanism). The heating of matter by neutrinos behind the shock is occurring in the

gain region. At the gain radius Rg which is between the neutrino sphere Rν and the shock

Rs , the temperature gets low enough that the charged-current captures of high energy

electron neutrinos and antineutrinos [58, 66] exceed the cooling by neutrino emission.

The gain radius is defined as the radius where neutrino cooling equals neutrino heating,

which is the case for the radial position where the temperature profile T (r ) of the star

crosses the temperature values roughly given by Tg ≡ Theating=cooling(r ) ∼ Tν (Rν/r )1/3 for

1The electron flavor neutrinos can interact with the medium through charged- and neutral-current
weak interactions, and the heavy lepton flavor neutrinos can interact only through neutral-current
processes.
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which heating by neutrinos equals cooling by neutrinos [58, 66–68]. The temperature Tν
denotes the temperature of the neutrino sphere, and Rν denotes the neutrino sphere ra-

dius. This relation follows from the formula for the heating rate by neutrinos evaluated

for the case of zero heating (see [58]). Deeper inside the star the neutrino-cooling rate

per nucleon (by captures of e− and e+ on protons and neutrons) dominates the neutrino

heating (mainly caused by absorption of νe and ν̄e on free neutrons and protons). Fur-

thermore, the gain radius fulfills the relation T 3
g Rg ∼p

Lν ∼
√

4πR2
νT 4

ν (this also follows

from the evaluation of the net heating rate, see [44, 58]). The heating of a mass element

in the gain region is dependent on the heating efficiency as well as on the residence time

inside the gain region. In multi-dimensional simulations low-entropy bubbles can be

accreted from the shock onto the PNS while neutrino-heated matter expands upward.

Thus, convection potentially increases the residence time of matter inside the gain re-

gion, and, as a result, this matter can be heated for a longer time. In one-dimensional

simulations, the residence time of matter inside the gain region is given simply by the

time matter needs to be advected from Rs to Rg . Furthermore, when the shock expands

in one-dimensional models the neutrino luminosity due to accretion is reduced, which

limits possible heating even more. In three-dimensions there are more possibilities for

the shock to expand and for matter to be accreted onto the PNS at the same time. Numer-

ical simulations demonstrated that multidimensionality is crucial for the understanding

of CCSNe. Hydrodynamic instabilities like convection and standing accretion shock in-

stabilities grow on timescales relevant for the supernova mechanism, and it has been

shown that nonradial flows can increase the heating efficiency, and are crucial for a

successful explosion (see, e.g., [44, 45] and references therein). Furthermore, with the

presently known and accepted standard input physics, energy deposition of neutrinos

behind the stalled shock has not proven to be efficient enough in state-of-the-art one-

dimensional supernova simulations and therefore does not lead to explosions (e.g., [56]).

Thus, the breaking of spherical symmetry due to e.g. convective motion, is seen as cru-

cial and decisive for the success of the neutrino-driven mechanism. Today, the delayed

neutrino-driven explosion scenario is believed to be a viable mechanism that enables

CCSN explosions.

Next, other explosion mechanisms are briefly discussed. The magneto-rotational mech-

anism is powered by rotational energy that is converted into pressure via the magnetic

field which then leads to an explosion (see, e.g., [44, 45, 61, 62, 69–71]). Crucial for this

mechanism is the enhancement of the magnetic field strength during the collapse and

in the early post bounce phase due to flux-freezing, the winding up of magnetic field

lines, and also the magneto-rotational instability (MRI). The growth of the magnetic field

strength in this scenario leads to magnetic pressures (pB = B 2/(8π)) that are comparable

to matter pressures. A magneto-rotational mechanism ultimately triggers jet-like explo-
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sions along the rotational axis that can reach high explosion energies, reaching even Hy-

pernova levels in the order of ∼10 Bethe (1 Bethe is equivalent to 1051 erg and can be

abbreviated as 1 B). This mechanism, if it reaches the conditions that are necessary for

r-process, is believed to be rare and could help to explain the abundance of r-process

elements in the early universe [72].

The acoustic mechanism was proposed in the works of Burrows et al. [73, 74] as a new

mechanism to trigger CCSN explosions. In the simulations that were performed, which

did not explode by neutrino-energy deposition, large dipole (l=1) g-mode oscillations of

the PNS core were excited at late times (&1 s). These excitations are caused by SASI slosh-

ing motions of the post shock layer and by anisotropic accretion downdrafts. PNS vibra-

tions create sound waves that turn into secondary shocks which help to heat the region

behind the main shock front. In this mechanism, the vibrating PNS acts as transducer

by transforming accretion energy of the infalling material into sound waves. The acous-

tic mechanism remains controversial as it has not yet been confirmed by other groups.

Furthermore, a counterargument to the proposed mechanism has been made in [75].

The QCD phase transition of the PNS from baryonic matter to quark matter, leads to

an additional release of (gravitational) binding energy and triggers a second shock wave

produced in a bounce. This second shock eventually catches up with the stalled primary

shock and leads to an explosion [60, 76]. This mechanism needs an equation of state that

also incorporates quarks, which still is not well known.

Until now it is not clearly decided which mechanism (or a combination of them) is the

standard case in CCSN explosions. Among other reasons for a lack of convergence, there

are still many uncertainties in the input physics, maybe too low resolutions of contem-

porary state of the art simulations, and effects from the usage of one-dimensional pro-

genitor models as the starting point for multi-dimensional models, which need to be

further investigated. Furthermore, recent three-dimensional simulations have revealed

new effects such as spiral modes of SASI [77, 78] and a dipolar lepton-number emission

self-sustained asymmetry (LESA) [79]. The understanding of these phenomena and their

consequences still need further investigations. In the future, three-dimensional simula-

tions that incorporate general relativistic radiation hydrodynamics, sophisticated input

physics and are performed at high resolution, might be able to give further insight and

help to fully understand the mechanism behind CCSNe. Nevertheless, due to the com-

plexity of the problem, these simulations likely belong to the upcoming sustained exas-

cale era.
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2.5 Thermonuclear Reactions:
Nucleosynthesis in Core-Collapse
Supernovae

The abundance distribution of nuclei that we observe today in the solar system (shown in

figure 2.7) consists of products of different physical scenarios and conditions. To under-

stand the origin of the elements one also has to understand the solar abundance distribu-

tion. In 1957, Burbidge, Burbidge, Fowler and Hoyle [42] and Cameron [82, 83] proposed

Fig. 2.7.: Solar system abundances with silicon normalized to 106 (abundances from [80]).
This figure is taken from [81].

how the solar isotopic abundances could be explained. The fusion of elements in stars

during their hydrostatic burning processes only explains the nuclear fusion up to the iron

group. The heavier nuclei (A > 60) are, for the major part, formed by processes involving

neutron captures on seed nuclei. The reason for this is that the required temperatures

to overcome the Coulomb barriers of heavier nuclei by means of charged-particle reac-

tions are so high that the nuclei would be destroyed by photodissociation instead. Thus,

elements heavier than iron must be formed in other scenarios and environments1.

In this thesis we discuss CCSNe and thus I give a short overview of thermonuclear re-

actions, explosive burning, and NSE. The intention is to give a basic idea of the involved

processes as well as the approximate timescales on which they take place. The timescales

1There are two types of neutron-capture processes that are generally believed to occur: the s- and the
r-process (slow and rapid neutron capture). These processes are not the topic of this thesis.
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of explosive burning are used in the approximativeα-network implemented in the PUSH

setup (see chapter 3). We first want to introduce expressions and useful concepts that are

used in the following descriptions. Matter consisting of a mixture of nuclei of different

species i , e.g. in an astrophysical plasma, has a mass density given by ρm = ∑
i ni mi ,

where ni is the number density and mi the mass of a nucleus of species i . The number

density of species i , i.e. the number of nuclei i per unit volume, changes due to nuclear

reactions but also due to expansion or contraction. A mole of particles of species i has a

mass of Mi = NAmi grams, where NA is Avogadro’s number. In terms of the atomic mass

unit mu (or u) Mi indicates the relative atomic mass of species i [2, 3, 47]1. The relative

atomic mass is given by [2]

Mi = mi /mu = (Zi mH + (Ai −Zi )mn −Bi /c2)/mu , (2.11)

where Ai denotes the number of nucleons in a nucleus of species i , Zi the number of

protons in a nucleus, mH is the mass of a hydrogen atom, mn the mass of a neutron, and

Bi the nuclear binding energy of the nucleus i . The mass density is

ρm =∑
i

ni mi =
∑

i ni Mi

NA
, (2.12)

which changes with composition and is not relativistically invariant. Since the number

of nucleons is conserved one can use the related quantity,

ρ =
∑

i ni Ai

NA
(2.13)

to avoid these difficulties. The fraction of matter of an astrophysical plasma that is repre-

sented by nuclei of species i is called the mass fraction Xi = ni Mi /(ρm NA). These quan-

tities sum up to one,
∑

i Xi = 1 (mass conservation). In the same way one can introduce

the nucleon fraction, i.e. the fraction of nucleons that are bound in species i ,

Xi = ni Ai

ρNA
. (2.14)

If only the changes due to nuclear transmutations are of interest, it is useful to introduce

the so called mole fraction (or abundance) of the different species i [2, 3, 47]

Yi = Xi

Ai
= ni

ρNA
(2.15)

a quantity that gives the fraction of species i that is present in a mole of particles of the

astrophysical plasma. The equation for charge conservation is Ye = ∑
i Zi Yi (assuming

1The atomic mass unit is defined as mu = m(12C )/12 = 1/NA .
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charge neutrality), where Zi is the number of protons per nucleus of species i and Ye =
ne /(ρNA) the electron fraction. One has to be careful with the usage of the mass fraction

since the mass density is strictly speaking not a conserved quantity even if no changes

in volume occur. This is due to the fact that nuclear reactions can transform mass in

energy and back again. Thus, in order to avoid this difficulty we use the baryon density

per mole ρ, as introduced above, since the number of baryons is always conserved in

nuclear transmutations.

Particle-Induced Reactions

The nuclear cross section for a reaction of a projectile i with a target nucleus j is defined

as [47]

σ= number of reactions per target per second

flux of projectile particles
=

r
n j

ni v
, (2.16)

with r being the number of reactions per cm3 and per second, ni the number density

of projectile particles, and n j the number density of target particles, respectively. The

interaction rate between two nuclei of species i and j of the form i + j → n +m with

number densities ni and n j is (in units of reactions per cm3 and per second) given by

ri j =
ni n j

1+δi j
〈σv〉i j , (2.17)

where δi j is the Kronecker delta which prevents double counting of reactions between

identical particles [3, 47]. The velocity-averaged cross section is given by

〈σv〉i j =
∫ ∞

0
P (v)vσi j (v)d v,

where P (v) is the normalized probability distribution function of relative velocities be-

tween two reacting particles and σi j is the cross section for the respective reaction. The

probability that the relative velocity of interacting nuclei is in the range of v and v +d v

is given by P (v)d v . The energy available to nuclei in a stellar plasma is that of their

thermal motion. Thus, the reactions triggered by this energy are called thermonuclear

reactions. Nuclei in a stellar plasma (with a few exceptions) are non-relativistic and non-

degenerate. Therefore, the velocities of nuclei in stellar plasma can be described by a

Maxwell-Boltzmann distribution

P (v)d v =
( mi j

2πkT

)3/2
exp

(
−mi j v2

2kT

)
4πv2d v, (2.18)
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where mi j = mi m j /(mi+m j ) is the reduced mass of the interacting particles [3, 51]. With

the relations Ei j = mi j v2/2 and dEi j /d v = mi j v we can write the velocity distribution

as an energy distribution P (Ei j )dEi j . For the velocity-averaged cross section at given

stellar temperature T we get [84, 85]

〈σv〉i j =
(

8

πmi j

)1/2 (
1

kT

)3/2 ∫ ∞

0
Ei jσ(Ei j )exp

(
−Ei j

kT

)
dEi j . (2.19)

The number of reactions per nucleus per second (for the reaction i ( j ,n)m) can be written

as [47, 84, 85]

λi j =− 1

ni

(
dni

d t

)
j
≡ ri j

ni
= ρY j

1+δi j
NA〈σv〉i j , (2.20)

where λi j is the interaction rate.

Reactions with Photons, Leptons and Decays

This section will illustrate the way one can assign a decay constant to a reaction rate,

ri j =λi j ni , for reactions of nuclei with lighter particles and decays based on the example

of reactions with photons. In the case that one of the participating particles is massless

or much lighter than the other particle, the relative velocity between the two particles

can be approximated by the velocity of the lighter particle which for massless particles

as photons or neutrinos is the speed of light c. The reaction γ+ j → n +m is called a

photodisintegration for which the number of reactions per cm3 and second is given by

[3]

rγ j = n j

∫ ∞

0
nγ(Eγ)cσ(Eγ)dEγ, (2.21)

where the number density of photons in a stellar plasma depends on the temperature

and the energy of the photons. We find for the decay constant (probability of decay per

nucleus per second) of nucleus j [3, 84]

λγ j = 1

τγ j
=− 1

n j

(
dn j

d t

)
= rγ j

n j
=

∫ ∞

0
nγ(Eγ)cσ(Eγ)dEγ (2.22)

with

rγ j =λγ j n j , (2.23)
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where τγ j is the mean lifetime of the nucleus j with respect to photodisintegration. Ac-

cording to Planck’s radiation law the energy density of electromagnetic waves with fre-

quencies in the interval [ν,ν+dν] at a given temperature T is given by [3, 47]

u(ν)dν= 8πhν3

c3

1

exp
(

hν
kT

)
−1

dν. (2.24)

Inserting Eγ = hν for the photon energy we get the following expression for the number

of photons per unit volume in the energy interval [Eγ,Eγ+dEγ] at temperature T

nγ(Eγ)dEγ =
u(Eγ)

Eγ
dEγ = 8π

(hc)3

E 2
γ

exp
(

Eγ
kT

)
−1

dEγ. (2.25)

Eventually we get for the decay constant of the photodisintegration at a given tempera-

ture, using equations (2.22) and (2.25)

λγ j (T ) = 8π

h3c2

∫ ∞

0

E 2
γ

exp
(

Eγ
kT

)
−1

σ(Eγ)dEγ. (2.26)

The reaction rates ri of processes that deplete species i involving leptons and decays

have a similar dependence on a decay constant. Thus, the number of reactions involv-

ing decays or leptons (per cm3 per second) can also be given by an expression of the

form ri = λi ni (to derive these expressions as well goes beyond the scope of this short

introductory section, see e.g., [47, 51]).

Reverse Reactions

Not all thermonuclear reactions have to be determined experimentally. The cross sec-

tions of a forward reaction i + j → o +m and the corresponding reverse reaction over

a compound nucleus state J are related to each other by the reciprocity theorem [86].

From this one obtains [3, 47, 84, 86]

σi ( j ,o)J

σm(o, j )J
= (1+δi j )go gmk2

o

(1+δom)gi g j k2
j

, (2.27)

which is also known as detailed balance, where gx = 2Sx + 1 (ground state degeneracy

factor), Sx is the spin of the appropriate nucleus (x = i , j ,m,o), δi j is the Kronecker delta,

and the kx are the wave numbers. This relation for the cross sections is valid for all indi-

vidual transitions summed over the compound nucleus states. Using equation (2.19), we
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get an expression for the total cross section at energies Ei j and Eom , with Ei j = Eom+Qo, j ,

where Qo, j is the Q-value of the reaction m(o, j )i , [3, 47, 84]

〈σv〉i j ,o = (1+δi j )

(1+δom)

go gm

gi g j

(
mom

mi j

)3/2

exp

(−Qo, j

kT

)
〈σv〉mo, j . (2.28)

Typically, photodisintegration rates are computed from the inverse capture reaction via

detailed balance. Using p2
γ = E 2

γ/c2, gγ = 2, Eγ = Eom +Qo,γ and with equations (2.28)

and (2.26) we obtain

λiγ(T ) = go gm

(1+δom)gi

(
momkT

2π~2

)3/2

exp

(
−Qo,γ

kT

)
〈σv〉m,o,γ. (2.29)

These relations between forward and reverse reaction rates assume that the interacting

particles are in their ground states. In an astrophysical plasma also excited states are ther-

mally populated. To take this into account we have to replace the gx with the partition

functions [84]

Gx (T ) =∑
i

gx,i exp(−Ei /kT ) . (2.30)

Explosive Burning Timescales

The burning timescales in stellar evolution depend on the energy loss timescales of the

stellar environment. During hydrostatic hydrogen and helium burning the energy loss is

dominated by the photon luminosity. The stellar matter is in a condition such that the

energy generation rates are equal to the radiation losses. In the later burning stages neu-

trino losses play the dominant role in the cooling process. Thus the burning timescales

are determined by temperatures where the energy generation rate is equal to the neu-

trino losses. Explosive events are determined by hydrodynamic equations and states

which provide different temperatures, densities or timescales for the nuclear burning of

the present nuclei. The fuels for explosive nucleosynthesis consist mainly of N = Z nu-

clei (α-particle nuclei) like 12C, 16O, 20Ne, 24Mg, or 28Si (which are the ashes of prior hy-

drostatic burning), resulting in heavier nuclei (with N ≈ Z ) [47]1. The burning timescales

for the destruction of species i in the corresponding burning phase can be defined as [47]

(corresponding to τ= 1/λ, see also equations (2.20), (2.29), and (2.26))

τi =
∣∣∣∣Yi

Ẏi

∣∣∣∣ . (2.31)

1There are two different scenarios of explosive burning that are not discussed in this thesis which are
the following. When a large supply of neutrons or protons is available the r- or rp- process takes place
and nuclei close to the neutron or proton drip line can be produced.
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Where the timescales of explosive burning for the fuels i (which are H, 4He,12C, 20Ne, 16O,

and 28Si) are determined by the major destruction reaction. All of these timescales are

temperature dependent. In addition, the timescales of fusion reactions also depend on

the density. The Ne- and Si-burning stages are dominated by (γ,α) destructions of 20Ne

and 28Si. Thus, these burning stages have timescales determined only by the burning

temperatures. We get for the timescale of a two-body interaction (see equation 2.20)

τi =
∣∣∣∣ Yi

(1+δi j )−1ρNA〈σv〉i j Yi Y j

∣∣∣∣= (
ρY j

1+δi j
NA〈σv〉i j

)−1

. (2.32)

The timescale of a three-body reaction is given by [51, 85]

τi =
(

Ni

Ni !N j !Nk !
ρ2N 2

A〈σv〉i j k Y j Yk

)−1

, (2.33)

where Na equals the number of particles of type a = i , j ,k involved in the reaction. For a

photodisintegration dominated process we obtain the timescale of the reaction with the

reverse reaction rate (see equation (2.29))

τi = 1

λiγ
=

(
go gm

(1+δom)gi

(
momkT

2π~2

)3/2

exp

(
−Qo,γ

kT

)
〈σv〉m,o,γ

)−1

, (2.34)

where the definitions are the same as given above.

Energy Generation in Thermonuclear Reactions

Nuclear processes are closely coupled to the hydrodynamic behavior of the stellar plasma.

The release or the absorption of energy due to thermonuclear processes changes the

pressure, temperature and the internal energy of the plasma and causes hydrodynamic

motions. The induced hydrodynamic motions may influence the continued supply of

thermonuclear fuel. The changes in nuclear composition can also change the equa-

tion of state and the opacity of the plasma. Thermonuclear reaction rates (abundance

changes) define the rate of thermonuclear energy release, ε̇nuc (with units [MeVg−1s−1]).

We consider the forward reaction i + j → n +m and assume it to be exothermic. The
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nuclear energy released per reaction is defined by the Q-value of the reaction, Qi j . The

Q-value of a reaction i(j,n)m is defined as

Qi j = mi c2 +m j c2 −mnc2 −mmc2

= [
mi c2 +m j c2 −mnc2 −mmc2]+ [

Anmuc2 + Ammuc2 − Ai muc2 − A j muc2]
= (M .E .)i + (M .E .) j − (M .E .)n − (M .E .)m ,

where mi denotes the mass (here mi is the atomic mass), Ai is the mass number and

(M .E .)i = (mi −Ai mu)c2 is the atomic mass excess of species i in units of energy [3]. The

energy production per unit mass and unit time is then given by [3]

ε̇nuc,i j =
Qi j

ρ
ri j =

Qi j

ρ

ni n j 〈σv〉i j

(1+δi j )
.

The energy of nuclei, photons, electrons and positrons produced in the reaction is re-

tained in the plasma. Since neutrinos interact weakly with the bulk medium, they escape

from the site of thermonuclear burning. Thus, the neutrinos carry their energy away due

to their small cross section and this energy has to be subtracted from the Q-value when

calculating the nuclear energy generation. The thermonuclear energy generation rate

summed over all reactions can be calculated with [3, 51]

ε̇nuc = 1

ρ

∑
i , j

ri j Qi j . (2.35)

Since the thermonuclear energy release is determined only by the abundance changes

we ultimately use a different way to express the total rate of thermonuclear energy release

(see section 3.1.3).

Nuclear Statistical Equilibrium

For temperatures that exceed T ≥ 3−4×109K ('0.26-0.35 MeV) capture reactions that

form heavier nuclei are in competition with the corresponding inverse photodissociation

reactions. At such high temperatures eventually the reactions and inverse reactions are

sufficiently rapid that an equilibrium is established. Such a situation ultimately leads to

a complete chemical equilibrium. For such an equilibrium, also called nuclear statistical

equilibrium (NSE) [3, 47], the following relations are valid for each nuclear species

(Zi , Ai )
 Zi protons+ (Ai −Zi )neutrons, (2.36)
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µi =µ(Zi ,Ai ) = Ziµp + (Ai −Zi )µn , (2.37)

where Ai is the number of nucleons in the nucleus, Zi the number of protons, and µi

the chemical potential of the nucleus (Zi , Ai ) of species i . Such conditions are achieved

during SNe explosions and also in other scenarios where the timescales on which nu-

clear reactions occur is shorter than the timescale on which the system evolves. For the

temperatures and densities involved all nucleons and nuclei are nondegenerate. As a

consequence Maxwell-Boltzmann statistics apply and the nucleons and nuclei are de-

scribed by Maxwell-Boltzmann distributions. Thus, the chemical potentials are given by

[47]

µi = mi c2 +kT ln

(
ρNAYi

Gi

(
2π~2

mi kT

)3/2)
, (2.38)

Inserted in equation (2.37) this yields

µi = kT ln

(
ρNAYi

Gi

(
2π~2

mi kT

)3/2)
+mi c2

= Zi

[
kT ln

(
ρNAYp

gp

(
2π~2

mp kT

)3/2)
+mp c2

]

+ (Ai −Zi )

[
kT ln

(
ρNAYn

gn

(
2π~2

mnkT

)3/2)
+mnc2

]
= Ziµp + (Ai −Zi )µn . (2.39)

The binding energy of species i is given by

Bi =∆mi c2 = [
Zi mp + (Ai −Zi )mn −mi

]
c2. (2.40)

Together with 2.39 and also using

mp ≈ mn ≈ mu , mi ≈ Ai mu , gp = gn = 2, (2.41)

we obtain the following expression for the abundance of species i

Yi =
Gi A3/2

i

2Ai

(
ρ

mu

)Ai−1 (
2π~2

mukT

)3(Ai−1)/2

Y Zi
p Y Ai−Zi

n exp

(
Bi

kT

)
. (2.42)
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In NSE the nuclear abundances can be determined uniquely for a given temperature T ,

density ρ and electron fraction Ye with the constraints of mass conservation and charge

conservation1 ∑
i

Ai Yi =
∑

i
Xi = 1 (2.43)

∑
i

Zi Yi = Ye . (2.44)

1The weak interaction is not necessarily in equilibrium and the change of Ye due to weak interactions
has to be taken into account as well.
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3Numerical Implementation of
Parametrized
One-Dimensional
Core-Collapse Supernova
Simulations:
The PUSH Method

This chapter gives an introduction to the numerical setup of the PUSH method and the

runs that were performed [87, 88]. The aim of PUSH is to provide an efficient parametrized

framework that makes it possible to investigate CCSNe in spherically symmetric simula-

tions. Even though multi-dimensional simulations are needed for an accurate investiga-

tion of the explosion mechanism they are computationally too expensive for systematic

studies that have to be based on a large set of progenitors.

PUSH and other artificial explosion methods are necessary because simulations in spher-

ical symmetry which include detailed neutrino transport and general relativity fail to ex-

plode self-consistently, except for the core-collapse progenitors with the lowest masses

[89, 90]. One-dimensional simulations show a smaller heating efficiency of electron fla-

vor neutrinos behind the shock due to an absence of convective motion and the inability

of an exploding system to further accrete matter onto the central object which would

result in additional accretion luminosity. The PUSH method provides extra energy depo-

sition in the heating region by tapping the energy of µ- and τ- (anti)-neutrinos in other-

wise consistent spherically symmetric simulations to mimic multi-dimensional effects

(e.g., convection, SASI) that enhance neutrino heating (see section 3.2). This enables

a consistent evolution of the PNS and treatment of the electron fraction of the ejecta.

Also, after the onset of explosion the method also prevents a too strong decrease in ν-

heating behind the shock caused by a drop in electron (anti)neutrino luminosity that

occurs in spherically symmetric simulations due to drastic reduction of the mass accre-
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tion rate onto the PNS. PUSH is well suited to investigate the dependence of explosive

nucleosynthesis, the progenitor-remnant connection, and the explosion dynamics and

energetics as a function of progenitor properties. Spherically symmetric models of CCSN

explosions are still a pragmatic and feasible method to study large numbers of progenitor

stars, from the onset of the SN explosion up to several seconds post bounce.

In this chapter we also introduce the tools that have been created in order to analyze

these parametrized one-dimensional simulations and e.g. evaluate their explosion en-

ergy and create tracer particles for network post-processing analysis (see section 3.3).

Furthermore, a description of the launching and managing of hundredths to thousands

of runs of different progenitor sets, parametrizations, resolutions and the tools that are

involved is given as well (see section 3.4).

The simulations are performed with the general relativistic hydrodynamics code AG-

ILE [91, 92], the neutrino transport scheme IDSA for electron neutrinos [93], and with

an implementation of the advanced spectral leakage (ASL) scheme to treat the µ- and

τ−neutrinos [94] (see sections 3.1.1 and 3.1.2). The equation of state (EOS) that we use

for matter in NSE is the HS(DD2) EOS [95, 96]. This EOS and its extension to non-NSE

conditions is treated in section 3.1.3. With this numerical setup we model the collapse,

the bounce, and the subsequent onset of explosion due to neutrino heating and the post-

explosion phase. The major part of the simulations have been performed with 180 radial

zones for a total time of 5 s which corresponds to a post bounce time of ∼ 4.6 s. AG-

ILE has an adaptive grid which distributes its grid points according to the gradients of

variables inside the computational domain. In regions where hydrodynamic and ther-

modynamic variables are steeper the resolution is higher. The surface of the PNS and

the shock front are better resolved than other regions in the post bounce phase and the

explosion phase.

3.1 AGILE-IDSA-Leakage: Numerical
Setup

3.1.1 General Relativistic Hydrodynamics

CCSNe are complex events which include a variety of physics. A realistic treatment of

the collapse and the post bounce evolution of a massive star requires a relativistic de-

scription of the system. In this chapter we give a short introduction to general relativistic
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hydrodynamics and the equations that are implemented in the AGILE code. We adapt

the notations and conventions used in Liebendörfer et al. [56, 91]. The Greek letters

denote the space time coordinates. Furthermore, we use relativistic units, with c=G=1

[97, 98]. The Einstein field equations of general relativity are given by (with the cosmo-

logical constantΛ set to zero)

Gµν = Rµν− 1

2
gµνR = 8πTµν, (3.1)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, gµν is the metric tensor, R is the

curvature scalar (or Ricci scalar) and Tµν is the stress-energy tensor. This is a covariant

tensor equation where all tensors are symmetric and therefore correspond to a set of ten

field equations. The Einstein equation shows the coupling between space-time curva-

ture and energy-matter distribution and gives the relation between the metric tensor gµν
and the stress-energy tensor Tµν. This relation can be seen by looking at the left hand

side of the Einstein field equations. The Ricci scalar is a contraction of the Ricci tensor

R = Rµ
µ = gµνRµν, (3.2)

and the Ricci tensor itself is a contraction of the Riemann tensor

Rµν = Rλ
µλν. (3.3)

The Riemann tensor is given by

Rα
βγδ = Γαβδ,γ−Γαβγ,δ+ΓεβδΓαεγ−ΓεβγΓαεδ, (3.4)

where Γα
βγ

is the metric connection (also called Christoffel symbol), which is given as

Γαβγ =
1

2
gαδ

(
gδγ,β+ gδβ,γ− gβγ,δ

)
. (3.5)

We make use of the comma notation where a comma denotes a partial differentiation

with respect to the component which follows the comma, e.g. φ,µ = ∂φ/∂xµ. The stress-

energy tensor is given by the energy and matter distribution of the described system, in

vacuum it is equal to zero, T µν = 0. In a closed system the stress-energy tensor has to

fulfill the conservation equations

T µν
;ν = 0, (3.6)
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thus the covariant divergence of T µν must be zero (the semicolon denotes the covariant

differentiation, see e.g. [99])1. This equation describes the conservation of energy and

momentum. The covariant divergence of the Einstein tensor represents the contracted

Bianchi identity and is zero as well

Gµν
;ν = 0. (3.7)

In order to describe a SN we have to find equations that describe the interior of a star.

The interior of a star can be described approximately with the stress-energy tensor of a

perfect fluid given by [97]

T µν = (
ε+p

)
uµuν+pgµν, (3.8)

where the total energy-density of the system is described by ε= ρ(1+e) (here ρ is the rest

mass density and e is the specific internal energy), p represents the isotropic pressure

and uµ = d xµ/dτ is the 4-velocity. In the rest frame of matter the stress-energy tensor of

a perfect fluid has the non-vanishing components (in the coordinate system (t ,r,θ,φ))

T t t = ρ(1+e),

T r r = T θθ = Tφφ = p. (3.9)

In addition p and ρ are related by an equation of state of the form p = p(ρ,T ) (also other

dependencies are possible). The invariant line element d s between a point xµ and a

neighboring point xµ +d xµ is given by

d s2 = gµνd xµd xν. (3.10)

For a spherically symmetric distribution of matter around the origin of the coordinate

system, e.g. an idealization of a massive star, we follow [91, 100] and make the spherically

symmetric ansatz for the metric

d s2 =−e2φd t 2 +e2Λd a2 + r 2 (
dθ2 + sin2θdφ2) , (3.11)

where the angles θ and φ describe a 2-sphere (dΩ2 = dθ2 + sin2θdφ2). Here φ, Λ and r

are functions of the coordinate time t and the radial coordinate a. The function r (t , a)

1We show an example for a mixed tensor of type (1,1): T i
k;l = T i

k,l +Γi
ml T m

k −Γm
kl T i

m . Each upper index
results in similar positive term and each lower index in a negative term.
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denotes the areal radius r = p
As/4π, where As is the surface of the corresponding 2-

sphere. Following Liebendörfer et al. (2001), we choose a metric of the form [91]

d s2 =−α2d t 2 +
(

r ′

Γ

)2

d a2 + r 2 (
dθ2 + sin2θdφ2) , (3.12)

where the exponentials in the metric 3.11 are substituted with the lapse functionα for eφ

and the function r ′/Γ for eΛ. The prime indicates a partial derivation of r with respect

to a and Γ =
p

1+u2 −2m/r . We choose a Lagrangian system of coordinates comoving

with matter. In the frame comoving with the rest mass the proper time lapse is related to

the coordinate time d t by the lapse function α, dτ=αd t (see also [101]). The radial co-

ordinate a is related to the enclosed rest mass. A mass shell with the rest mass A between

coordinates a1 and a2 at a fixed time t is given in this metric by [91]

A(a1, a2) =
∫ 2π

0

∫ π

0

∫ a2

a1

ρ0

(
r ′

Γ

)
d a r dθ r sinθdφ=

∫ a2

a1

4πr 2r ′ρ0

Γ
d a.

We require that

A(a1, a2)
!=
∫ a2

a1

d a,

correlating the spatial coordinate to the enclosed rest mass. This requirement is equiva-

lent to the relation

r ′ = Γ

4πr 2ρ
. (3.13)

We also define the velocity u which describes the change of areal radius with the proper

time of an observer comoving with a fluid element u = ∂r /α∂t = ṙ /α [91, 102]. Further-

more, we introduce the notation for conserved quantities according to [92, 103]. In anal-

ogy to Newtonian hydrodynamics the specific volume, specific energy and specific mo-

mentum are defined as
1

D
= Γ
ρ

, (3.14)

τ= Γe + 2

Γ+1

(
u2

2
− m

r

)
, (3.15)

S = u(1+e). (3.16)

In the non-relativistic limit (α = Γ = 1) these equations become the well known specific

volume 1/D = 1/ρ, the specific energy as a sum of specific internal, kinetic and gravi-

tational energy τ = e +u2/2−m/r and the specific radial momentum S = u. The equa-

tions that describe the system for a given metric and stress-energy tensor are given by

the Einstein field equations. Using the definitions above, the complete system of general
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relativistic hydrodynamics equations can be written in a conservative from [91, 92, 98]

∂

∂t

(
1

D

)
= ∂

∂a

(
4πr 2αu

)
, (3.17)

∂τ

∂t
=− ∂

∂a

(
4πr 2αup

)
, (3.18)

∂S

∂t
=− ∂

∂a

(
4πr 2αΓp

)− α

r

([
1+e + 3p

ρ0

]
m

r
+8πr 2(1+e)p − 2p

ρ0

)
, (3.19)

∂V

∂a
= 1

D
, (3.20)

∂m

∂a
= 1+τ, (3.21)

(1+e)
∂α

∂a
+ 1

ρ0

∂

∂a

(
αp

)= 0, (3.22)

where the enclosed volume V = 4πr 3/3 is defined by the areal radius. The equations

(3.17)-(3.19) represent volume conservation, total energy conservation, and radial mo-

mentum conservation. The equations (3.20)-(3.22) represent constraints for the rest

mass density ρ, the gravitational mass m, and the lapse functionα [91, 92]. In AGILE, the

nonlinear differential equations (3.17)-(3.19) together with the constraints (3.20)-(3.22)

(and one additional constraint for the adaptive grid) are finite differenced in the spatial

dimension to build a set of coupled ordinary differential equations. These equations

which are fulfilled for a state vector y are solved implicitly with the Newton-Raphson

method for the corrections [92, 104]

∆y =−
[
∂F (yn , ỹn+1,d t )

∂yn+1

]−1

F (yn , ỹn+1,d t ), (3.23)

where F denotes the set of implicit equations (with F = 0), the upper indices n denote

the time step (d t = t n+1 − t n), and ỹn+1 is a guess for the future solution of F . The term[
∂F /∂y

]−1 denotes the inverted Jacobian of the Taylor expansion around a guessed solu-

tion vector. For a detailed description of AGILE we refer to [91, 92].
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3.1.2 Neutrino Transport

In this section we introduce the implementation of the neutrino transport used in the

presented PUSH simulations [87, 88]. We use the Isotropic Diffusion Source Approxima-

tion (IDSA) for the electron neutrinos and electron antineutrinos [93]. For the heavy-

lepton flavor neutrinos (νx = νµ,νµ,ντ,ντ) we use an an Advanced Spectral Leakage

scheme (ASL) [105]. During the stellar collapse phase, we use a parametrized delep-

tonization scheme [106] to take neutrino-electron scattering effectively into account.

In the post bounce phase we neglect electron-neutrino scattering. The neutrino en-

ergy is discretized using 20 geometrically increasing energy bins, in the energy range

3MeV ≤ Eν ≤ 300MeV [87]. In table 3.1 we summarize the neutrino reactions which are

included in the IDSA and ASL scheme. These reactions represent the minimal set of the

most relevant weak processes in the post-bounce phase, especially up to the onset of

an explosion. Electron captures on heavy nuclei and neutrino scattering on electrons,

which are relevant in the collapse phase (see, e.g., [107, 108]), are included as part of the

parameterized deleptonization scheme and not explicitly in the form of reaction rates.

Furthermore, we omit nucleon-nucleon bremsstrahlung, N + N ↔ N + N + νx + ν̄x in

the ASL scheme (see, e.g., [109, 110]). The inclusion of nucleon-nucleon bremsstrahlung

would overestimate µ and τ neutrino luminosities during the cooling phase of the PNS

in our simulations [87, 88]. The reason is the missing neutrino thermalization provided

by inelastic scattering on electrons and positrons at the PNS surface. It has been tested

that the omission of this process does not significantly alter the µ and τ neutrino lumi-

nosities predicted by the ASL scheme before the onset of explosion [87]. Therefore, not

including nucleon-nucleon bremsstrahlung is only relevant for the cooling phase, where

it improves the overall behavior when compared to simulations performed with detailed

Boltzmann neutrino transport (see, e.g., [89]). The EOS HS(DD2) which we are using in-

cludes various light nuclei, such as alphas, deuterons or tritons (see also section 3.1.3).

Note that the inclusion of all neutrino reactions for such a detailed nuclear composition

would go beyond the standard approach implemented in contemporary supernova sim-

ulations, where only scattering on alpha particles is usually included. However, in order

to not completely neglect the contributions of the other light nuclei, we have added their

mass fractions to the unbound nucleons. This treatment is motivated by their very weak

binding energies and, therefore, by the idea that they behave similarly as the unbound

nucleons.
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Reactions Treatment Reference

e−+p ↔ n +νe IDSA [111]
e++n ↔ p +νe IDSA [111]
N +ν↔ N +ν IDSA & ASL [111]
(A, Z )+ν↔ (A, Z )+ν IDSA & ASL [111]
e−+e+ ↔ νµ,τ+νµ,τ ASL [111], [112]

Tab. 3.1.: An overview of the relevant neutrino reactions, where nucleons are denoted by N .
The nucleon charged current rates are based on [111], but we take into account the
effects of mean-field interactions [113–116]. This table is adapted from [87].

3.1.3 Equation of State: Treatment of the Nuclei and
the Transition Between Non-NSE and NSE

During a CCSN the thermodynamical quantities vary over many orders of magnitude.

Hot and dense matter is described by NSE. The outer layers, where the shock eventually

passes through, consist of a mixture of fully ionized nuclei. These nuclei are described

as an ideal gas. In the simulations presented in this thesis we use the tabulated micro-

physical equation of state (EOS) HS(DD2) [95, 96] for the high-density plasma in NSE,

unless stated otherwise. The used supernova EOS is based on the model by Hempel

and Schaffner-Bielich (2010) [95]. It uses the DD2 parametrization for the nucleon in-

teractions by Typel et al. (2010) [96], the nuclear masses from Audi et al. (2003) [48, 49],

and the Finite Range Droplet Model (Möller et al. [117]). The electrons are assumed

to be distributed uniformly and are described by a general Fermi-Dirac gas (including

positron contributions). The photon gas contribution is also taken into account (Stefan-

Boltzmann law). In total, there are 8140 nuclei included (up to Z=136 and to the neutron

drip line). The supernova EOS HS(DD2) was first introduced in Fischer et al. (2014) [118].

It has been demonstrated that the HS(DD2) gives better agreement with the constraints

from nuclear experiments and astrophysical observations than the commonly used EOSs

of Lattimer and Swesty (1991) [119] and Shen et al. (1998) [120]. Furthermore, the max-

imum mass of a cold neutron star for the HS(DDS) EOS is 2.42M¯ [118], which is above

the limits from Demorest et al. (2010) [121] and Antoniadis et al. (2013) [122].

The EOS employed in the PUSH framework includes an extension to non-NSE condi-

tions. This enables the inclusion of a larger computational domain, since also layers that

are not in NSE conditions, with lower temperature and density, can be included. With

a larger domain it is possible to follow the outgoing shock and investigate the temporal
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evolution of the total energy of the system, and all its contributions, for a longer time.

In order to follow the shock of the supernova explosion that is propagating outwards

in the computational domain with a velocity of the order of 〈vshock〉 ∼ 109 cm s−1 for a

time tsim of the simulation that is long enough to observe a saturation of the explosion

energy (tsim ∼ 1− 10s), one should include a computational domain that ranges up to

tsim ×〈vshock〉 on the order of 109 −1010 cm. In the non-NSE regime, the nuclear compo-

sition of the stellar material is described by 25 representative nuclei, covering the range

form neutrons and protons up to iron-group nuclei. The choice of nuclei that have been

included in this representative nuclear composition was guided by the goal to give a re-

alistic approximation of the nuclear composition of the stellar material, include explo-

sive burning in the simulations, use the information that was provided in the available

progenitor models, and to achieve a mapping of abundances from the progenitor calcu-

lations into the PUSH framework which is consistent with the provided electron fraction

(maintaining charge neutrality). These guidelines led to the inclusion of the set of nuclei

in the PUSH simulations given in table 3.2. The set of nuclei that we include consists of

neutrons, protons, the alpha nuclei 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti,
48Cr, 52Fe, 56Ni complemented by 14N and the asymmetric isotopes 3He, 36S, 50Ti, 54Fe,
56Fe, 58Fe, 60Fe, 62Fe, to be able to get a consistent distribution of nuclei also for situa-

tions with Ye 6= 0.5. The nuclear masses Mi of the nuclei are taken from Audi et al. (2009)

[48, 49].

In the following we explain the temporal evolution of the nuclei which we implemented

into the general relativistic spherically symmetric hydrodynamics code AGILE [56, 92].

We follow the solution for the temporal evolution of the electron abundance that is evolved

as a part of the state vector of AGILE

y = (a,r, v,m,ρ,T,Ye ,α), (3.24)

where a is the enclosed baryon mass, r the radius, v the velocity, m the gravitational

mass, ρ the baryon density, T the temperature, Ye the electron fraction, and α the lapse

function. The adaptive grid used in AGILE consists of grid points (i.e. N mass shells

in the star) that continuously move through the computational domain with respect to

the enclosed rest mass label ai (t ), ai being the enclosed mass of the i th shell [92]. The

enclosed rest mass between two shells, e.g. between shells i+1 and i , at the nth time step

t n is denoted by d an
i+ 1

2

, where zone edges are addressed with indices i and zone centers

with i + 1
2 . The enclosed rest mass label of each zone j at time t n is then given by [89]

an
j =

j−1∑
i

d an
i+ 1

2
. (3.25)
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Non-NSE Nuclei (PUSH simulations) Z A Progenitor values [40, 41]

n 0 1 ×
p 1 1 ×

3He 2 3 ×
4He 2 4 ×
12C 6 12 ×
14N 7 14 ×
16O 8 16 ×

20Ne 10 20 ×
24Mg 12 24 ×
28Si 14 28 ×
32S 16 32 ×
36S 16 36 -

36Ar 18 36 ×
40Ca 20 40 ×
44Ti 22 44 ×
50Ti 22 50 -
48Cr 24 48 ×
52Fe 26 52 ×
54Fe 26 54 ×
56Fe 26 56 ×
62Fe 26 62 -
58Fe 26 58 -
60Fe 26 60 -
56Ni 28 56 ×
62Ni 28 62 -

Tab. 3.2.: List of nuclei included in the nuclear composition in the non-NSE regime of the
simulations performed in the PUSH framework. Also listed are the nuclei included in
the progenitors of Woosley, Heger and Weaver (2002) [40], which are directly mapped
onto the simulations, with the exception of the given iron-group abundance, which
is not further specified in the progenitor data. We map it onto the available iron
nuclei in our EOS treatment. The amount of nuclei implemented in the progenitor
calculations of Woosley and Heger (2007) [41] is vast and not listed. For these
progenitors the abundances of the symmetric alpha nuclei are renormalized and
then mapped onto the simulation.

Now we have a look at the temporal changes of the zone-integrated values of observable

quantities in the comoving frame of the fluid given in the framework of the adaptive

grid [92]. In addition to changes inside a zone due to physical processes we also have to

consider the motion of the zone boundaries, which leads to fluxes entering and leaving

the zones. The resulting total change in time of a conserved quantity φ (e.g. the number
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of electrons) can be finite differenced in the form of the generic time evolution equation

[92]
φn+1

i+ 1
2

d an+1
i+ 1

2

−φn
i+ 1

2

d an
i+ 1

2

d t
+F adv

i+1 −F adv
i −Sext

i+ 1
2
= 0, (3.26)

where the temporal change of the quantityφi+ 1
2

d ai+ 1
2

in a zone with the enclosed baryon

mass d ai+ 1
2

is given by the changes due to advection at the boundaries F adv and a source

term Sext. The advection terms F adv
i+1 and F adv

i , denote the changes due to advection at

the upper and lower boundary, respectively [92]. The variable Sext describes the changes

of φ due to a source term, which is correspondent to the changes in abundances due

to explosive nuclear burning in the case of the advected nuclei. By introducing δi =
an+1

i − an
i , the difference of enclosed masses between the times t n and t n+1, and using

d an+1
i+ 1

2

= d an
i+ 1

2

+δi+1−δi to denote the new values for the individual zone masses (which

leads to convergence of the Newton-Raphson scheme in AGILE even in the presence of

huge density gradients between neighboring zones [89]), we get

φn+1
i+ 1

2

(
d an

i+ 1
2

+δi+1 −δi

)
−φn

i+ 1
2

d an
i+ 1

2

d t
+F adv

i+1 −F adv
i −Sext

i+ 1
2
= 0. (3.27)

The relative velocity between the fluid and the adaptive grid used in the computation of

the advection terms F adv is given by [56, 89, 92]

urel
i =−an+1

i −an
i

d t
=− δi

d t
. (3.28)

The nuclear abundances of the advected composition in the numerical implementation

of the PUSH setup are not included in the state vector y as in [89]. Instead, the generic

time evolution equations (3.26) and (3.27) are used to describe the evolution of the abun-

dances explicitly. Following the expression for the solution of the temporal change of the

electron fraction Ye [92], we get the following equation for the abundances Y n
m,i+ 1

2

(m

denotes the nuclear species)

Y n+1
m,i+ 1

2

d an+1
i+ 1

2

−Y n
m,i+ 1

2

d an
i+ 1

2

d t
+F adv

m,i+1 −F adv
m,i −αn+1

i+ 1
2

Y ext
m,i+ 1

2
= 0, (3.29)

where we adapted the form of the source term given in [92] (for the treatment of elec-

trons) for our description of the nuclei, α denotes the lapse function, and Y ext denotes
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the change of the abundances due to reaction rates. This leads to the explicit expression

of the temporal change of the abundances,

Y n+1
m,i+ 1

2
=

[
αn+1

i+ 1
2

Y ext
m,i+ 1

2
− Am

] d t

d an+1
i+ 1

2

+Y n
m,i+ 1

2

 d an
i+ 1

2

d an+1
i+ 1

2

 , (3.30)

where the advection terms have been replaced by Am = F adv
m,i+1 − F adv

m,i . The quantities

αn+1
i+ 1

2

and d an+1
i+ 1

2

are computed with the Newton-Raphson scheme of AGILE and the quan-

tities Y n
m,i+ 1

2

and Y ext
m,i+ 1

2
are stored and computed within the approximativeα-network in

the non-NSE region. To advect the nuclear composition inside the adaptive grid, we im-

plement the consistent multi-fluid advection method introduced by Plewa and Müller

(1999) [123]. This scheme is based on a correction of the partial mass fluxes of the dif-

ferent species of nuclei in such a way, that they consistently add up to the total mass

flux across zone boundaries. Two conditions have to be fulfilled in order to achieve con-

sistent multi-fluid advection. For an abundance distribution consisting of N different

nuclei (fluid phases) the following relation must hold for all times and zones

N∑
m

Xm = 1, (3.31)

where Xm denotes the mass fraction of the mth species. Furthermore, AGILE is a conser-

vative hydrodynamics code and thus, the total mass of one species across the domain of

the simulation can not change due to advection which is the second condition. The total

mass flux across boundaries due to the adaptive grid urel is given in equation (3.28). The

consistent multi-fluid advection fluxes of the mth species in the nth zone Fn,m are then

computed with

Fn,m = θn fn,m , (3.32)

where

θn = urel
n∑

m fn,m
(3.33)

is the scaling correction to the original partial mass fluxes fn,m . Like this the sum of all

modified mass fluxes adds up to the total mass flux across the boundaries due to the

movement of the adaptive grid. We compute the partial mass fluxes across the bound-

aries according to [92] with the extension of conditional switching to a donor cell advec-

tion scheme to guaranty consistent evolution of the composition, the fluxes, and numer-

ical stability. In the case that one of these criteria does not hold the advection terms of
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species m in the i th zone is computed with the stable but diffusive donor cell advection

scheme

F adv
m,i =

 Ym,i− 1
2

urel
i urel

i ≥ 0 (3.34a)

Ym,i+ 1
2

urel
i otherwise. (3.34b)

Non-NSE EOS of the Nuclei

The approximate α-network is used to follow the changes in composition due to explo-

sive burning outside of NSE. Explosive Helium, Carbon, Neon, and Oxygen burning are

currently implemented in the simulation. Thereby the burning converts the main fuel of

the corresponding burning phase to heavier elements on the typical burning timescale

τi =
∣∣∣Yi

Ẏi

∣∣∣ (see also chapter 2 section 2.5). The energetics of the nuclear reactions are fully

incorporated via the detailed non-NSE treatment. The non-NSE EOS is calculated with

the same underlying physical model of [95] that is used for the EOS in the NSE regime.

Such a consistent description of the NSE and the non-NSE regimes prevents spurious ef-

fects in the transition region between the two phases. We will shortly explain the EOS of

the non-NSE region in the following. For a homogeneous medium the grand-canonical

thermodynamic potential is given by the expression Ω = −PV [47], where P is the pres-

sure of the medium and V is the volume of the system1. Outside of NSE, the EOS of nuclei

can be described by an ideal Maxwell-Boltzmann gas. First, we give the expressions for

pressure and energy without Coulomb corrections which are discussed in a second step

below. In the following the entropy density s̃, the energy density ẽ, and the particle num-

ber density ñ are related to the entropy, energy and particle number in the way s̃ = S/V ,

ẽ = E/V , and ñ = N /V . For a non-relativistic Maxwell-Boltzmann gas of a mixture of

nuclei the internal energy density, the pressure, and the entropy density are given by

ẽ =∑
i

ẽi , (3.35)

s̃ =∑
i

s̃i , (3.36)

1For a homogeneous gas with constant temperature T and pressure P in a volume one gets the ex-
pression G = ∑

i µ̄i Ni for the free enthalpy. Inserted in equation G = U −T S +PV and solved for
Ω=U −T S −∑

i µ̄i Ni this gives the presented equation (µ̄i =µi +mi c2) [47].
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P =∑
i

Pi . (3.37)

The single components are given by

ẽi = 3

2
ñi kT, (3.38)

and

Pi = ñi kT, (3.39)

where k denotes the Boltzmann constant. The entropy is computed from Ω = −ñV kT

with [47]

S =−
(
∂Ω

∂T

)
V ,µ

, (3.40)

which yields1

s̃i = ñi k

(
5

2
+ ln

[
gi

ñi h3 (2πmi kT )3/2
])

. (3.41)

We show in the following lines how we describe and treat the EOS of the nuclei in the non-

NSE region in an equivalent way to the relativistic treatment in the NSE region. First, we

introduce the energy density of a single species of nuclei (also including the rest mass)

ε̃i = ñi

(
mi c2 + 3

2
kT

)
, (3.42)

where mi is the total nuclear mass of the corresponding nucleus. The total internal en-

ergy per baryon is then given by (without electrons)

eint =
∑

i ε̃i

nb
, (3.43)

where nb = Nb/V is the baryon number density. With

ñi /nb = Xi /Ai = Yi , (3.44)

we see that the total internal energy per baryon is given by (where Ai is the nuclear mass

number of species i )

eint =
∑

i
Yi

(
mi c2 + 3

2
kT

)
, (3.45)

and that the rest mass energy per baryon is given by

emass =
∑

i
Yi mi c2. (3.46)

1The number density of particles is given by ñ = eµ/kT g
h3 (2πmkT )3/2, where g is the degeneracy factor

of the considered particles [47].
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The thermal energy per baryon is given by

eth = eint −emass =
∑

i

3

2
Yi kT. (3.47)

In this case, since eint is conserved in the relativistic treatment of the EOS, the nuclear

reactions will decrease the rest mass energy by increasing the binding energy and as a

consequence will increase the thermal energy, i.e. heat up matter. Note that by dividing

the equations (3.45), (3.46), and (3.47) by the baryon mass mB we get the specific total

energy, specific rest mass energy, and the specific thermal energy.

Next we show how a change in the composition of the nuclei changes the temperature.

We consider a change in the composition ~X → ~X ′ and we know that eint=e ′int. This gives

us the temperature of the new composition as a

T ′ =

∑
i

mi c2

Ai

(
Xi −X ′

i

)+ 3

2
kT

∑
i

Xi

Ai

3

2
k
∑

i

X ′
i

Ai

. (3.48)

This temperature change corresponds to a change in thermal energy due to released en-

ergy ∆Q by nuclear burning. The obtained energy release rate due to nuclear burning is

equivalent to ėnuc =−∑
i Ẏi mi c2 (-∆emass =∆enuc). If we compare the thermal energy at

two different times we find that ∆Q has the form

∆Q = e ′th −eth =−∑
i
∆Yi mi c2, (3.49)

with ∆Yi = Y ′
i −Yi . Divided by the time step ∆t we get the energy release rate due to

nuclear burning (see also section 2.5)

ėnuc =−∑
i

Ẏi mi c2. (3.50)

Now we also introduce the Coulomb corrections that account for the interaction of the

nuclei with the electron background in the total specific energy and the total pressure of

nuclei according to [43]. With the assumption that ne is in first approximation uniform

we give an approximation of the Coulomb corrections. For small temperatures, i.e. T

approaching zero, the ions are positioned in a lattice. For simplicity the derivation is

done for one species of nuclei. For a given density of nuclei with charge Z (number of

protons of the nucleus) the lattice energy is minimized for a body-centered lattice. The

energy of the lattice is calculated by considering the Wigner-Seitz approximation, where
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the nuclei are in the centers of the cells. If we consider a “spherical” cell of the lattice

to be of the volume 4πR3/3 = 1/ñ, where ñ denotes the number density of nuclei, the

gas can be divided into neutral spheres of radius R with a nucleus in the center (each

cell contains the Z electrons that are closest to the corresponding nucleus). The total

Coulomb energy of each cell is the sum of the potential energies due to electron-electron

and ion-electron interactions1

EC = Eee +Ei e =
∫ R

0

Qr dQr

r
+Z e

∫ R

0

dQr

r
=− 9

10

Z 2e2

R
, (3.51)

where Eee represents the energy necessary to assemble a sphere of electrons with radius

R and charge QR = −Z e, and Ei e represents the energy to assemble the electron sphere

around a nucleus with charge Z e. The electrostatic energy per electron is given by

EC

Z
=− 9

10

(
4π

3

)1/3

Z 2/3e2ñ1/3
e , (3.52)

with ñe = Z /(4π/3R3). The numerical coefficient in equation 3.52, given by

(9/10)(4π/3)1/3 = 1.450793, is very close to the exact value for a body-centered cubic lat-

tice: 1.44423 [43, 124]. The negative pressure corresponding to the Coulomb correction

is given by [43]

PC = ñ2
e

d(EC /Z )

dñe
=− 3

10

(
4π

3

)1/3

Z 2/3e2ñ4/3
e . (3.53)

With this we have given the description of the EOS of composition of nuclei in non-NSE.

The description of the Coulomb corrections for the pressure was derived for small tem-

peratures T → 0 and overestimates this aspect for finite temperatures. Note that con-

tributions of electrons and photons to the specific internal energy are also considered.

In the non-NSE region the electrons contribute like an ideal gas and photons with the

internal energy of a black body photon gas.

Transition Between NSE and Non-NSE

In the following, we describe how the transition between NSE and non-NSE is imple-

mented. We define a transition region in temperature where this is done. First, we give

the boundary temperatures that describe the transition region of the EOS. Above the tem-

perature T2 = TNSE = 0.44MeV the matter is assumed to be in NSE and the EOS is de-

scribed by the supernova EOS HS(DD2). Below T1 = Tnon−NSE = 0.4MeV the EOS is given

1With Qr = ρR
4π

3
r 3 =−Z e

r 3

R3 being the charge of the electrons inside one cell (ρR =−ene is the charge

density of the electrons inside the cell)
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by the ideal gas description presented above. For the exception that the entropy per

baryon and the internal energy per baryon of the non-NSE EOS evaluated for T1 are big-

ger than the same quantities of HS(DD2) evaluated for T2 the temperature limit for NSE

can be increased up to a maximum value of T2(ρ,Ye ,T ) = T2,max = 1.4 MeV. This is done to

maintain stability of the hydrodynamics code by ensuring a unique solution for a given

temperature and to fulfill the condition of thermodynamical consistency, (∂S/∂T ) > 0.

Thus, we have four regions (often this reduces to three) of the EOS, the non-NSE EOS

region below T1, a transition region between non-NSE to NSE between T1 and T2, either

an extended transition region or NSE region between T2 and T2,max, and the NSE region

above a temperature of T2,max. In the transition region, between the temperatures T1

and T2, the EOS is linearly interpolated with respect to temperature. A thermodynamic

quantity,Λ (e.g. pressure), is then given by the interpolation with the parameter

χ(T ) = T −T1

T2 −T1
, (3.54)

by the expressions

Λ(ρ,Ye ,T ) = (
1−χ(T )

)
Λnon−NSE(ρ,Ye ,T1)+χ(T )ΛNSE(ρ,Ye ,T2). (3.55)

This description is not thermodynamic consistent but works well in this framework since

the differences between the two phases are small. We valued stability and simplicity

higher than thermodynamic consistency that would have a very high computational cost

and would be extremely complex to implement.

Furthermore, a mapping from the abundances of the NSE to the non-NSE distribution of

the nuclei in the approximativeα-network has been implemented. This is done to ensure

a smooth transition between the two regimes. The possible effects of nuclear reactions

in the transition to NSE and in the freeze-out of NSE that are not included in the approx-

imative α-network because the relevant reaction rates are not implemented. Thus, the

mapping of the nuclei mimics such possible reactions in an effective way. Between the

temperatures T0 = 0.3 MeV and T1 = 0.4 MeV the distribution of nuclei is mapped from

the NSE distribution of HS(DD2) to the network distribution on a characteristic burn-

ing timescale that is computed during the mapping (see below). If the temperature is

above T1 this transition happens instantly. In the case of a transition from non-NSE to

NSE the approximative α-network prevents the distribution of nuclei to go beyond 28Si.

Thus, the mapping approximates the explosive burning that would happen in a network

that includes more reactions. For a freeze-out from NSE to non-NSE, the mapping in the

transition region ensures that the distribution of nuclei in the α-network still follows the

NSE ground state of the distribution of nuclei given in HS(DD2). Like this, the still pos-
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sible changes of the distribution of the nuclei after freeze-out due to nuclear reactions

is mimicked. This mapping is rather complicated and it would be a good step of future

works to implement a more complete network that is able to compute a NSE distribution

of nuclei for its reduced set of nuclei at all given times (see, e.g., [125]). In the transition

region the nuclei of the NSE distribution are mapped to the network nuclei as follows.

First the distribution of nuclei obtained from HS(DD2), which consists out of neutrons,

protons, alphas, and a representative heavy nucleus, given by X NSE
n , X NSE

p , X NSE
α , and

X NSE
h , 〈Ah〉, 〈Zh〉, is mapped to a representative distribution in the framework of the nu-

clei implemented inside of the network: X non−NSE
i . Then, the nuclei are burned from

the current distribution inside the approximative network to the representative distribu-

tion of HS(DD2) on a computed burning timescale d tα. During the mapping it is always

ensured and used that mass and charge are conserved

∑
i

Xi = 1, (3.56)

Ye =
∑

i

Zi

Ai
Xi . (3.57)

For a NSE distribution of nuclei that contains no heavy elements Xh = 0 the mapping is

simply done by

X non−NSE
α = X NSE

α (3.58)

X non−NSE
p = Y NSE

e − 1

2
X NSE
α (3.59)

X non−NSE
n = 1−X NSE

p −X NSE
α . (3.60)

If heavy nuclei are present, Xh 6= 0, then the representative heavy nucleus of the NSE is

mapped onto the nucleus or the nuclei contained inside the network that are closest to

its charge and mass and the remaining neutrons or protons are added to X non−NSE
n or

X non−NSE
p , respectively. We illustrate the mapping of the mass fraction X NSE

n , X NSE
p , X NSE

α ,

and X NSE
h , to the representative non-NSE mass fraction X non−NSE

n , X non−NSE
p , X non−NSE

α ,

and X non−NSE
h , in figure 3.1 for two different situations. For both cases the neutrons, pro-

tons andα’s are directly mapped onto the respective abundances in the network. In case

1, the heavy NSE nucleus is surrounded by nuclei of the network and distributed among

them. In case 2 the nucleus is strongly asymmetric and thus mapped on the nucleus

that is most similar to it, and the remaining neutrons or protons are added to the others.

Once the X non−NSE
i are defined, the burning timescale for the burning from the current

mass fractions to the new defined ones is computed and the nuclei are “burned” to the

new distribution within the range of the time step of the hydrodynamics. This timescale
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Fig. 3.1.: Illustration of the mapping to the network. Crosses are nuclei that are implemented
in the network. The red circles indicate the nuclei that are used to map the NSE
distribution onto. Neutrons, protons and alphas are directly translated. The blue
dots indicate two cases of a representative heavy NSE nucleus that has to be mapped
onto the network nuclei. If the nucleus is surrounded by network nuclei as in case 1
it is mapped onto the neighboring nuclei. A nucleus that is far from stability as in
case 2 is mapped onto the best fitting nucleus nearby and the remaining protons or
neutrons are added to the other protons and neutrons. This is how the X non−NSE

i are
defined.

d tα(T ) is defined by a set of fixed parameters and the temperature. The rate of change

with which the old distribution is “burned” to the new one is defined by

R(d t ,d tα(T )) = 1−exp

(
− d t

d tα(T )

)
, (3.61)

where d t is the hydro time step of the simulation. The new distribution of nuclei that is

obtained by the mapping and the subsequent evolution of the abundances is given by

X non−NSE
new = R(d t ,d tα(T ))X non−NSE + (1−R(d t ,d tα(T ))) X non−NSE

old . (3.62)
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3.2 The PUSH Method: Parametrized
Spherically Symmetric Core-Collapse
Supernova Simulations

In this chapter we describe the numerical implementation of the PUSH method that was

introduced and published in Perego et al. (2015) [87]. Results that were obtained with

this version of PUSH are presented in chapter 4. The content of this section is partially

part of the publication Perego et al. [87]. Improvements and extensions to the PUSH

method, e.g., in the form of a dependence on compactness is presented in chapter 5.

The aim of the PUSH method is to provide a computationally efficient framework to in-

vestigate neutrino-driven CCSNe in spherically symmetric simulations to study multiple

aspects of CCSNe. Multi-dimensional simulations of CCSNe have shown that convec-

tion, turbulence and SASI in the shocked layers of the star increase the heating efficiency

of electron- and anti-electron-neutrinos inside of the gain region in comparison with

spherically symmetric simulations (see, e.g., [126–132]). This effect, in addition to the

simultaneous increase in time that a fluid element spends inside the gain region due to

convective motion (e.g., [133, 134]), provides better conditions for the development of

a successful explosion. Furthermore, in multi-dimensional explosion models, the shock

revival is followed by a phase of continued mass accretion onto the PNS and shock expan-

sion on a time scale of τ& 1s (see e.g., [132, 135–137]). After the onset of explosion, this

mass accretion through low-entropy down flows continues to power an accretion lumi-

nosity. Also, re-ejection (due to neutrino heating) of a fraction of this down flow matter

accelerates the shock and increases the explosion energy. The exact length of this phase

and the amount of energy that is injected into the explosion are still uncertain.

Self-consistent spherically symmetric simulations show a smaller heating efficiency of

electron neutrinos and antineutrinos behind the shock due to an absence of convective

motion. Therefore, such one-dimensional simulations of CCSNe, including general rel-

ativity and detailed neutrino transport, do not lead to explosions, with the exception of

the lowest-mass CCSN progenitors [89, 90]. In the case of an explosion, one-dimensional

simulations would additionally suffer from a too strong decrease of ν-heating behind the

shock due to a drop in electron (anti)neutrino luminosity that occurs in these models

due to a drastic reduction of the mass accretion rate on the PNS (lack of dimensionality

prohibits infalling matter after the onset of explosion). PUSH aims to capture and repro-

duce in spherically symmetric models the increased net neutrino heating on fluid ele-

ments in the gain region observed in multi-dimensional simulations due to convection
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and other multidimensional effects. This is done by providing extra energy deposition

in the gain region by tapping the energy of the µ− and τ−(anti)-neutrinos in otherwise

consistent spherically symmetric simulations to mimic multi-dimensional effects that

enhance neutrino heating. We deposit a fraction of the luminosity of the heavy flavor

neutrinos (νx ’s) behind the shock to ultimately provide successful explosion conditions.

The presented approach of PUSH is different to other artificial methods that try to mimic

the delayed neutrino-driven mechanism using electron flavor neutrinos to trigger explo-

sions in 1D models. The additional energy deposition in PUSH is calibrated by com-

paring the explosion energies and nucleosynthesis yields obtained from our progenitor

sample with observations of SN 1987A (see chapters 4 and 5). This fitting ensures that our

artificially increased heating efficiency has an empirical foundation. Even though in later

chapters the originally presented PUSH method (this chapter and chapter 4) is extended

to reproduce the observed explodability and the explosion energies of a large variety of

progenitors (chapter 5), the fitting of PUSH to SN 1987A remains a core aspect.

The usage of heavy lepton flavor neutrinos presents a number of advantages for the

parametrization of artificially triggered CCSN simulations, even though their contribu-

tion in self-consistent models is insignificant (see, e.g., [58]) and these neutrinos only

show a weak dependence on the temporal variation of the accretion rate (see,e.g., [56]).

The µ− and τ−(anti)neutrinos that stream out of the PNS provide a large energy reser-

voir that can be easily tapped. Hence, it is possible to trigger an explosion in spheri-

cally symmetric models without either a modification of the νe and ν̄e luminosities or a

change of charged current reactions. The µ− and τ−neutrino luminosities are calculated

consistently within our model. Thus, they include dynamical feedback from the accre-

tion history, progenitor properties, and the cooling of the newly born PNS. O’Connor

and Ott showed in broad progenitor studies that properties of the νx spectral fluxes cor-

relate significantly with the properties of νe ’s and ν̄e ’s during the accretion phase that

precedes the shock revival [138]. Furthermore, as mentioned above, νx luminosities are

only marginally affected by the onset of an explosion and can be used to mimic enhanced

neutrino heating in the gain region due to continued accretion onto the PNS. The main

feature of PUSH is the deposition of additional energy in the gain region. This is done by

introducing a local heating term, Q+
PUSH(t ,r ) (energy per mass and time). Its dependen-

cies are chosen to ensure a behavior of the parametrization that mimics and corresponds

to the multi-dimensional effects that it is aimed to reproduce. In the following, we intro-

duce the heating provided by PUSH according to [87]. The local heating term is given by

Q+
PUSH(t ,r ) = 4G (t )

∫ ∞

0
q+

PUSH(r,E)dE , (3.63)
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with

q+
PUSH(r,E) ≡σ0

1

4mB

(
E

me c2

)2 1

4πr 2

(
dLνx

dE

)
F (r,E), (3.64)

where

σ0 ≡ 4

π

( ~
me c

)−4 (
GF

me c2

)2

≈ 1.76×10−44cm2, (3.65)

is the typical neutrino cross-section1, mB ≈ 1.674×10−24g the average baryon mass, and

(dLνx /dE)/(4πr 2) the spectral energy flux for a single νx neutrino species with the en-

ergy E . All four heavy neutrino flavors are treated identically within the ASL scheme.

This is reflected in the factor 4 appearing in the expression for Q+
PUSH. The spatial depen-

dencies of Q+(t ,r ) (i.e. where PUSH is active) are captured in the term F (r,E) which is

introduced in equation (3.64) and given by

F (r,E) =
{

0 if d s/dr > 0 , ėνe ,νe < 0 or r > rs

exp(−τνe (r,E)) otherwise
, (3.66)

where τνe is the optical depth of the electron neutrinos, s the matter entropy, ėνe ,ν̄e the

net specific energy rate due to electron neutrinos and antineutrinos , and rs the shock

radius. Note that the term F (r,E) has this form in Perego et al. (2015) (see also chap-

ter 4), in the new analysis and investigation of large progenitor sets presented in chapter

5 it will be restated in a slightly changed form (the entropy-gradient criterion is omit-

ted). The two criteria in equation (3.66) capture the essential idea for the description of

CCSN explosions with PUSH: the version of PUSH used in chapter 4 is only active where

electron-neutrinos are heating and where neutrino-driven convection can occur2. The

free parameters of the PUSH method are introduced in the term G (t ) which determines

the temporal behavior of Q+
PUSH(t ,r ) (see equation (3.63)) and is given by

G (t ) = kPUSH ×



0 t ≤ ton

(t − ton)/trise ton < t ≤ ton + trise

1 ton + trise < t ≤ toff

(toff + trise − t )/trise toff < t ≤ toff + trise

0 t > toff + trise

, (3.67)

and it is illustrated in figure 3.2. The definition of the function G (t ) introduces a set

of parameters. Two of them remain free parameters that can be used to calibrate the

method (see later chapters), kPUSH and trise. In the following we summarize the different

parameters of the PUSH method [87, 88].

1See also section A.1 in the appendix.
2In the appendix in section A.2 a short derivation of this criterion is given.
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Fig. 3.2.: The function G (t) defines the temporal behavior of the heating due to the PUSH
method. The time PUSH heating begins, ton, is fixed by comparisons with multi-
dimensional models (it is set to 80 ms in our computations). The free parameters of
PUSH, trise and kPUSH, are set by our calibration procedure(s), spanning a wide range
from 50 ms to 600 ms, and from 0 (no PUSH heating) to ∼5, respectively. We assume
that the explosion due to the delayed neutrino-driven mechanism takes place within
the first second after core bounce. The time PUSH is switched of is set to toff = 1s.

kPUSH is a factor that controls the amount of extra heating provided by the PUSH method

(see figure 3.2). We make use of the µ and τ neutrino luminosity as energy reservoir and

σ0 as reference cross-section. Overall, this suggests a PUSH parameter kPUSH& 1.

ton sets the time at which the PUSH method is initiated. We connect ton to the time when

deviations from spherically symmetric behavior appear in multi-dimensional simula-

tions. The onset of aspherical behavior is related to the advection and convective growth

time scale denoted by τadv and τconv. The time scales are given by τadv = Ṁshock/Mgain,

where Ṁshock is the accretion rate at the shock and Mgain the mass in the gain region,

and τconv = f −1
B−V , where fB−V is the Brunt-Väisäla frequency. Matter convection in the

gain region sets in once the relation τadv/τconv& 3 is fulfilled [139]. For all the models ex-

plored in [87], this relation starts to be fulfilled t = 0.06−0.08s. For the studies presented

in this thesis, ton is ultimately set to 80 ms.

trise sets the time scale over which G (t ) increases from zero to the calibrated magni-

tude of the PUSH heating, kPUSH. We connect the parameter trise with the time scale

that characterizes the growth of multi-dimensional perturbations between the the gain

radius,Rgain, and shock radius, Rshock (see, e.g., [126]). A lower limit to the parameter trise

is given by the overturn time scale, τoverturn, defined as

τoverturn ∼ π(Rshock −Rgain)

〈v〉gain
, (3.68)
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where 〈v〉gain denotes the average velocity of matter inside the gain region. In [87] we

have found τoverturn ≈ 0.05s at times ∼ ton and after. For a contracting shock, SASIs are

expected to develop around 0.2−0.3s post bounce [129]. We adapt values of the param-

eter trise that have a similar order of magnitude. In the presented studies we used trise

values in the range 0.05s. trise. 0.6s.

toff sets the time at which the heating provided by PUSH starts to decrease. Neutrino-

driven CCSN explosions are expected to develop for times t . 1 s. This expectation is

based on the fast decrease of the neutrino luminosities during the first seconds after

core bounce [87]. In the simulations performed with the PUSH method we set the pa-

rameter toff to toff = 1 s. Note that heating by PUSH starts decreasing naturally even

before 1 s after core bounce due to the decreasing neutrino luminosities. The decrease

of the PUSH heating on a time scale of a few hundreds of milliseconds after an explosion

has been launched successfully makes results obtained with PUSH largely independent

of the choice of toff (for explosions that are not initiated too close to toff).

We see that the quantities ton (it is ultimately set to 80 ms) and toff (set to 1 s) are not free

parameters of the PUSH method. Still, PUSH has two remaining free parameters, trise

and kPUSH in particular. The choices for kPUSH and trise and their effect on the model and

on the explosion properties are discussed in the chapters 4 and 5.

With this implementation of PUSH, defined through the equations (3.63), (3.64), (3.66),

and (3.67), we have a framework to parametrize spherically symmetric CCSN simula-

tions. The energy deposited by PUSH, Epush, can be calculated from the energy deposi-

tion rate of PUSH dEpush/dt as

Epush(t ) =
∫ t

ton

(
dEpush

dt

)
dt ′ =

∫ t

ton

(∫
V

Q+
PUSHρdV

)
dt ′. (3.69)

The energy deposited by PUSH and the corresponding energy rate have to be distin-

guished from the corresponding energy and energy rate obtained by IDSA,

Eidsa(t ) =
∫ t

0

(
dEidsa

dt

)
dt ′ =

∫ t

0

(∫
Vgain

ėνe ,ν̄e ρdV

)
dt ′. (3.70)

Note that PUSH heating only can take place in the gain region due to its definition above

(thus, with V = Vgain in equation 3.69 the result is the same). In figure 3.3 we give the

energy deposition rates of IDSA and of PUSH (see equations (3.69) and (3.70)), as well as

the total energy deposited by neutrinos in the first 800 ms of our simulation for a 15 M¯
progenitor (with kPUSH =3.5 and trise =200 ms). To give an example of a Parametrized
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CCSN simulation with the PUSH method we show a first comparison of a model with

and without PUSH in the figures 3.4, and 3.5. The presented PUSH runs were done for

the progenitor with 15 M¯ and solar metallicity from Woosley and Heger (2007) [41] and

a setting of the PUSH parameters kPUSH =3.5 and trise =200 ms. In figure 3.4 we show

how the shock, PNS, and gain radii as well as the mass accretion onto the PNS and

on the shock evolve in time (with and without PUSH). The accretion rate at the shock

front is given by Ṁshock = dM(Rshock)/dt , and the accretion rate on the PNS is given

by ṀPNS = dM(RPNS)/dt . In both expressions, M(R) is the baryonic mass enclosed in-

side of the sphere of radius R, Rshock is the shock radius, and RPNS is the PNS radius

(ρ(RPNS) = 1011gcm−3). Figures 3.5 show the corresponding neutrino luminosities and

mean energies. These plots illustrate the mentioned problems of one-dimensional CCSN

simulations. The neutrino heating behind the shock front is not efficient enough and no

explosion is formed in the model without PUSH. PUSH enables a successful explosion.

Once an explosion forms successfully, the electron (anti)neutrino luminosities dip be-

cause of the reduction of the accretion rate. Also, the mean electron neutrino energy

is clearly affected by the onset of explosion. The heating due to infalling matter at the

surface of the PNS is reduced and the electron neutrinos, for which the ν sphere radius

is largest, immediately reflect this. The heavy lepton neutrino luminosities and mean

energies are robust in this phase and well suited to model the energy deposition of the

accretion luminosity of electron neutrinos that is present in multi-dimensional simula-

tions.

Fig. 3.3.: Energy deposition rates of IDSA and PUSH for the model presented in figures 3.4 and
3.5. Also the total energy deposition is shown. The times when PUSH is switched on,
its heating reaches maximum, and the explosion time (defined as the time when the
shock reaches and exceeds 500 km) are indicated by dashed lines.
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Fig. 3.4.: Temporal evolution of the shock radius, the PNS radius, the gain radius, and the
mass accretion rate at the PNS and the shock surface of a 15 M¯ progenitor with
solar metallicity from Woosley and Heger (2007) [41]. We show the results with (red)
and without (black) PUSH. The PUSH parameters of the presented run are: kPUSH

=3.5, trise =200 ms. The vertical dashed line indicates the explosion time.

Fig. 3.5.: Temporal evolution of the neutrino luminosities as well as the mean energies for a
run with (colored lines) and without (black lines) PUSH for a 15 M¯ progenitor with
solar metallicity from Woosley and Heger (2007) [41]. The PUSH parameters of the
presented run are: kPUSH =3.5, trise =200 ms. The vertical dashed line indicates the
explosion time.
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3.3 Analysis of PUSH Runs:
Post-processing Analysis

An important part of the analysis of PUSH simulations is done with a post-processing

approach [87, 88, 140]. This means that quantities that are used to classify and evaluate

the whole model are computed after the simulation is finished. We distinguish between

the explosion properties (explosion energy, mass cut, and explosion time), and the nucle-

osynthesis yields. The explosion properties are computed from the simulation profiles.

To evaluate the nucleosynthesis yields we create tracer trajectories for detailed nuclear re-

action network calculations. To efficiently investigate large samples of CCSN progenitor

models we furthermore define a set of criteria to quickly distinguish between different

outcomes of simulations, from explosions to black hole formation.

3.3.1 Explosion Properties

Throughout this thesis, we consider the time when the shock reaches and exceeds 500km

as the explosion time texpl (with respect to core bounce) [141]. There are several defini-

tions of texpl in the literature and some other studies (see, e.g., [126, 134]) use different

definitions, e.g., the time when the explosion energy increases above 1048 erg. We do

not expect that the different definitions of texpl result in qualitatively different explosion

times. In the following we introduce how the explosion energy and the mass cut is evalu-

ated in our models. An important quantity for the further discussion and analysis of the

models is the total energy of matter between an inner boundary at the mass shell m0 and

the upper boundary, the surface of the star, given by

Etotal(m0, t ) =−
∫ m0

M
etotal(m, t )dm , (3.71)

where M is the enclosed baryonic mass at the surface of the star and m0 is the enclosed

baryonic mass of the mass sphere at the inner considered boundary 0 ≤ m0 ≤ M , where

m0 corresponds to a value of the enclosed mass coordinate given in section 3.1.1). The

specific total energy is given by

etotal = eint +ekin +egrav . (3.72)

This expression represents the sum of the internal, kinetic, and gravitational specific en-

ergies. We use the general-relativistic expressions in the laboratory frame for all these
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quantities [89]. The integral of the total energy enclosed in the mass shell includes both

the part of the star evolved inside the computational domain of the hydrodynamical sim-

ulation, and the outer layers, which are considered as stationary profiles from the pro-

genitor model. In section 3.4 we give a set of criteria to automatically define the portion

of the star that is read into the computational domain. The explosion energy of a CCSN

simulation is used to compare different models among each other and with observations.

For our analysis of the explosion energy we evaluate:

(1) the total energy of the neutrino-heated matter that initiates the shock revival

which leads to an explosion,

(2) the nuclear energy released by the recombination of nucleons and alpha-

particles into heavy nuclei during the transition to non-NSE conditions,

(3) the energy released by explosive nuclear burning in the shock heated ejected matter,

(4) the total energy associated with the neutrino-driven wind developing after

the onset of explosion up to the end of our simulations,

(5) the total (negative) energy of the outer stellar layers

(also called the “overburden”, see below).

We are not taking into account the variation of the ejecta energy due to the appearance

of late-time fallback (i.e., for the results obtained in chapters 4 and 5). This approach is

justified as long as the fallback represents only a small fraction of the total ejected mass.

We assume that the total energy of the ejected matter (with rest-masses subtracted) con-

verts into kinetic energy of the expanding supernova remnant at times t À texpl. Thus, to

get the explosion energy we have to consider the thermal energy eth instead of the inter-

nal energy eint during the evaluation of the energy of the ejected material. This is done

by subtracting the rest mass contribution from etotal which is included in the form of eint

(see equation 3.47). With this, we define the specific explosion energy

eexpl = eth +ekin +egrav . (3.73)

This leads to the definition of the time- and mass-dependent explosion energy for the

fixed mass domain between m0 and M (see also equation 3.71)

Hexpl(m0, t ) =−
∫ m0

M
eexpl(m, t )dm . (3.74)
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This expression can be interpreted as the total energy of this region in a non-relativistic

EOS approach, where the rest masses are not included. The time-dependent explosion

energy is given by

Eexpl(t ) = Hexpl(mcut(t ), t ) . (3.75)

which denotes the energy of the ejected matter above the mass cut mcut(t ). The mass cut

is identified with an expression suggested by Bruenn [89]

mcut(t ) = m
(
max(Hexpl(m, t )

)
. (3.76)

Note that the maximum of Hexpl(m, t ) is evaluated outside the homologous core. Inside

the homologous core the specific explosion energy eexpl has large positive values once

the PNS has formed due to the high compression. Figure 3.6 shows the radial behavior

of eexpl, illustrating why the mass cut can be found this way.

The specific explosion energy of the outer stellar envelope is dominated by the nega-

tive gravitational contribution. In the neutrino-heated region and in the shocked region

above it the specific explosion energy is positive. In deeper layers it becomes negative

again, as these layers are gravitationally bound. Therefore, the definition given in equa-

tion (3.76) for mcut essentially locates the transition from gravitationally unbound to

bound layers. We evaluate the final mass cut for t = tfinal.

Fig. 3.6.: Illustration of the dependence of the Integral Hexpl(m, t ) (defined in equation (3.74))
on the (“radial”) enclosed mass coordinate m, and the definition of the mass cut.
The outer layers are gravitationally bound. In the gain region and the region behind
the shock eexpl becomes positive. For the gravitationally bound layers of the forming
neutron star or black hole we have eexpl < 0 again.

If not mentioned otherwise, our final simulation time is of the order of tfinal& 4.6 s, which

is always much larger than the explosion time and allows Eexpl(t ) to saturate (and fulfills

t À τheating, where τheating denotes the timescale on which neutrinos deposit a substan-
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tial amount of energy behind the shock). We consider Eexpl(t = tfinal) as the explosion

energy of our models. In this work, if we use Eexpl without the time as an argument, the

value represents this final explosion energy.

We also want to introduce the diagnostic energy E+(t ), and the overburden energy Eov(t )

which was mentioned above (see e.g., [142]). The diagnostic energy is an alternative mea-

sure of the explosion energy used in the literature for reasons of comparison (see chapter

4). This quantity is given by the integral of eexpl over regions where it is positive. This

means it is similar to Eexpl(t ) with the exception that it does not include the gravitation-

ally bound outer layers. The contribution of the gravitationally bound outer layers in the

integral given in equation (3.75) is also called “overburden“[142]. If we add the overbur-

den, Eov(t ) to the diagnostic energy E+(t ) we obtain the explosion energy defined above

(in equation (3.75))

Eexpl(t ) ≡ E+
ov(t ) = E+(t )+Eov(t ). (3.77)

The diagnostic energy is often used in multidimensional simulations as an estimate of

the explosion energy at early simulation times, see e.g., [143–147]. It should approach

the explosion energy for long enough simulation times, since all matter above the mass

cut eventually gets positive specific explosion energies (Eov → 0). An upper limit for the

explosion energy is obtained by taking into account the residual recombination energy

Erec(t ) (not liberated in our simulations) [87, 142]

E+
ov,r(t ) = E+

ov(t )+Erec(t ) , (3.78)

where Erec(t ) represents the energy that would be released if all neutron-proton pairs

and all 4He recombined to 56Ni in the regions of positive specific explosion energy.

3.3.2 The Tracer Tool

To evaluate the explosion properties of a large amount of runs at the same time we use

the tracer tool, the abtool (abundance tool) and various bash scripts to quickly gather

the data. In this section an overview of the mentioned tools that are used to perform

a progenitor scan evaluation with PUSH is given. Furthermore, explicit expressions are

given for several important quantities such as the specific explosion energy eexpl. Also,

the total and the explosion energy are described in more detail (it is also mentioned how

the progenitor profiles enters the expressions). These quantities were introduced in sec-

tion 3.3.1. The tracer tool uses the hydrodynamics and neutrino data profiles that are

computed during a PUSH run and evaluates them to compute tracer data, e.g., r (t ), v(t ),

ρ(t ), T (t ), Ye (t ) Lν(t ), 〈Eν(t )〉 (for all neutrino flavors) and computes among others the
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total energy and the explosion energy of the simulation. The tracer mass of the presented

data is 10−3 M¯. These tracers are used for the computations of the composition of the

ejecta (section 3.3.3).

First the progenitor profile and the last time step of the simulation tfinal are evaluated to

determine the enclosed baryon mass in the computational domain msim, the total mass

of the progenitor model mprog, and whether or not the shock left the outer boundary

(i.e. if no energy is lost due to the fact that the shock left the domain). This is done by

checking the radial velocity of the outer boundary of the computational domain.

The explosion energy defined in equation (3.74) is given by

Hexpl(m0, t ) =−
∫ m0

msim

eexpl(m, t )dm −
∫ msim

mprog

eexpl,prog(m, t = 0)dm , (3.79)

where the contribution of the progenitor shells are considered as a static boundary. Here,

msim is the mass enclosed in the computational domain, and mprog is the total progeni-

tor mass (m0 is the inner boundary for which the expression is evaluated). The specific

explosion energy is given by [89]

eexpl(m, t ) = Γe + 2

Γ+1

(
v2

2
− Gm

r

)
, (3.80)

where e is the specific thermal energy (the internal energy without the contribution of

the rest masses, see sections 3.1.3 and 3.3.1), v is the radial velocity of the fluid, m is the

enclosed baryon mass, r the radius, and Γ is given by [89, 91]

Γ(m, t ) =
√

1+
(v

c

)2
− 2Gm

c2r
. (3.81)

In the special relativistic limit the function Γ becomes the Lorentz factor which takes the

boost between the inertial and the comoving observers into account [92]. The progenitor

mass shells that are not included in the computational domain are evaluated by calcu-

lating the specific thermal energy (either with the supernova EOS HS(DD2) or the ideal

gas approach as in section 3.1.3), the gravitational energy, and the specific kinetic energy

(see equations (3.80) and (3.81)). These quantities are then integrated over the progeni-

tor domain by taking the sum over all zones with masses dm that are not included inside

of the computational domain of the simulation.

The domain included inside the simulation is evaluated in a similar way. The difference

in the evaluation is that some quantities have to be interpolated from the grid that is de-
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fined on the zone edges to the grid that is defined on the zone centers with zone masses

that correspond to the mass differences of neighboring mass shells dmi+ 1
2

. The total en-

closed masses of the mass shells in the simulation are given by m j = ∑ j−1
i dmi+ 1

2
(see

also section 3.1.3 and [89]). With all the quantities of the last time step prepared, the

integral given in equation (3.79) is computed by summing over the contributions of the

zones in the computational domain from the outer boundary to the inner boundary. The

contribution of the outer progenitor zones is computed first (outer boundary of the com-

putational domain at mi,max),

Hexpl(mi,max, tfinal) = Hexpl(msim, tfinal) =−
∫ msim

mprog

eexpl,prog(m, t = 0)dm , (3.82)

and added at the beginning of the iteration described below. The explosion energy at

the enclosed mass of the computational domain mi can then be successively calculated

with

Hexpl(mi , tfinal) = Hexpl(mi+1, tfinal)+eexpl(mi , tfinal)dmi+ 1
2

. (3.83)

This evaluation of Hexpl(m, tfinal) is then used to find the final mass cut of the simulation,

which corresponds to the remnant mass (see also section 3.3.1)

mcut(tfinal) = m
(
max(Hexpl(m, tfinal)

)
. (3.84)

The explosion energy of the run Eexpl that is used for further analysis or comparisons is

given by

Eexpl(tfinal) = Hexpl(mcut(tfinal), tfinal) . (3.85)

which denotes the energy of the ejected matter above the final mass cut mcut(tfinal). Once

the final explosion energy and the final mass cut are determined, the time dependent ex-

plosion energy for the determined final mass cut is computed for all times.

Based on this analysis of the explosion energy the tracer tool assigns a label to the run

that gives the information about the outcome. Thus, the tracer tool uses a set of criteria

to decide if the model exploded, formed a black hole, or did not yet form a black hole but

failed to explode. These criteria are used to quickly evaluate a large number of PUSH runs

(used in chapter 5). We distinguish between successful explosions, black hole formation,

and failed explosions. To do this we check the related quantities of the simulation (the

explosion time, the explosion energy Eexpl(tfinal), the time of the end of simulation, the

evolution of the central density). The simulation outcomes can be defined as follows:

70 Chapter 3 Numerical Implementation of 1D CCSN Simulations



(1) A simulation corresponds to an explosion if it completes the set final simulation time

of tfinal = 5 s (which corresponds approximately to a time of 4.6 s – 4.8 s post bounce)

and/or has a saturated positive explosion energy.

(2) A simulation corresponds to a non-exploding model (black hole formation) if a black

hole is formed in the 5 s run time.

(3) A simulation corresponds to a failed explosion and hence a non-exploding model

which eventually will form a black hole, if it has a negative explosion energy at times

when PUSH is no longer active (or at tfinal).

Summarizing information about the basic explosion properties like the explosion energy

or the mass cut are written out in a summary file. Thus, the described criteria allow us

to quickly evaluate large samples of PUSH runs. In addition to the explosion energy we

also compute the diagnostic energy, the diagnostic energy with overburden and the diag-

nostic energy with overburden and the recombination energy (as introduced in section

3.3.1) and their rate of change, respectively. Furthermore, also the neutrino quantities

are evaluated. In the tracers which are computed for the network post-processing the

mean average energies of the neutrinos are computed by dividing the energy luminosity

by the number luminosity.

The tracer with a resolution of 10−3 M¯ that are computed and written out for the whole

simulation represent the 0.34 M¯ above the mass cut (additional ten tracer inside the

mass cut are written out but they do not contribute to the ejecta). Note that the reso-

lution of the tracers as well as the evaluated range can be adjusted. The tracer masses

that are defined by the mass cut, the resolution and the range, are used to evaluate the

respective masses in the simulation output. This is done with the bisection method. The

zones that are closest to a tracer mass are used to assign the tracer its properties based

on the conditions of the hydro zone neighbors with either a linear, or a logarithmic inter-

polation (the density, the temperature and the radius are interpolated logarithmically).

The tracers are written out for all time steps. One point that might be changed is the way

the program accesses files. At the moment each time step involves various I/O actions

which makes the tool rather slow, especially when several simulations are evaluated at

the same time. The optimal way to evaluate large amounts of tracers as fast as possible is

to limit the amount of executed tools with a ”qsub“ script to about 20 at each given time.

An example for the tracer output is given in figure 3.7.

The abundance tool is another tool that has been created to analyze the PUSH runs. This

tool has the ability to evaluate a certain mass range of the simulations that can be cho-
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sen at the beginning of the evaluation. It is constructed to investigate the different en-

ergy components and their temporal evolution inside a given mass range. A meaningful

range to investigate the different energies is given by the mass cut and the outer bound-

ary of the hydro simulation. We use the specific energies that are computed for a given

time step (these are the same routines that are used by the tracer tool) and evaluate them

over the chosen mass range. The integral over the selected range is done by only evalu-

ating the zones of interest and therefore a simple sum of the specific quantity times the

zone masses over the respective zones is calculated. Furthermore, this tool is well suited

to read-out the abundance distributions off the different time steps for further analysis.

With this evaluation of the different energy components we can investigate how they

evolve in time.

3.3.3 Nucleosynthesis Yields

We describe how we compute the nucleosynthesis yields that are presented in chapters

4 and 5. The obtained yields are an important part of the fitting process and the analy-

sis of PUSH and can be used in GCE simulations in the future. Note that two different

networks, which we both mention here, have been used in chapter 4 and 5. The tracer

particles that are used by the networks are computed in the same way.

In chapter 4 we perform nucleosynthesis calculations using the full nuclear network

WINNET [61] to predict the composition of the ejecta. These computations include iso-

topes up to 211Eu covering the neutron-deficient as well as the neutron-rich side of the

valley of β-stability. The same reaction rates as in [61] are used. These reaction rates are

based on experimentally known rates where available and predictions otherwise. The n-,

p-, and alpha-captures are taken from [148]. In [148], known nuclear masses were used

where available and the Finite Range Droplet Model [117] was used for unstable nuclei

far from stability. The used β-decay rates are from the nuclear database NuDat21.

In chapter 5 we perform the nucleosynthesis calculations using the full nuclear network

CFNET. The nuclear reaction network, CFNET [149], follows the abundances of ∼2000

isotopes from free neutrons and protons to element Dysprosium to compute the compo-

sition of the SN ejecta. The included isotopes cover the neutron-deficient as well as the

neutron-rich side of the valley of β-stability. The reaction rates are the same as in [150]

and include charged-particle and neutron-capture reactions, electron and positron cap-

ture reactions, β-decays, and neutrino and antineutrino capture reactions on free nucle-

1http://www.nndc.bnl.gov/nudat2/
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ons. These reaction rates are based on the same measurements and descriptions as the

ones of WINNET.

The mass tracers used for the nucleosynthesis have the following properties (they are

created with the stand alone ”tr_network.f90“). To create them we divide the ejecta into

different mass elements of 10−3 M¯ each and follow the trajectory of each individual

mass element. The tracers contain the time post bounce, the radius, the density, the tem-

perature, the electron fraction, the electron neutrino and electron antineutrino number

luminosity, the electron neutrino and antineutrino mean energy, as well as the µ- and τ

neutrino number luminosity and the mean energy. The neutrino luminosities are eval-

uated at the radius of the tracer and the mean energies of the neutrinos are computed

by dividing the number luminosity by the energy luminosity of the neutrinos. We are

mainly interested in the amounts of 56Ni, 57Ni, 58Ni, and 44Ti. Thus, we only consider

the 340 innermost mass elements above the mass cut, corresponding to a total mass of

0.34 M¯. This can be done because the contribution of the outer mass elements to the

production of those nuclei is negligible.

The post-processing for the nucleosynthesis yields is split into two phases. For the times

t < tfinal, we use the temperature and density evolution from the hydrodynamical sim-

ulations as inputs for our network. Furthermore, the way the tracers are evaluated is

depending on their peak temperature. For each mass element of the ejecta we start the

nucleosynthesis post-processing when the temperature drops below 10 GK (∼ 0.86 MeV),

using the NSE abundances (determined by the current electron fraction Ye ) as the initial

composition. For the tracer particles that never reach 10 GK we start at the moment

of bounce and use the abundances from the approximate α-network at this point as the

initial composition. For all tracers the further evolution of Ye in the nucleosynthesis post-

processing is determined inside the WINNET and CFNET networks themselves.

At the end of the performed PUSH simulations (t = tfinal), the temperature and density of

the inner zones of the ejecta are still high enough for nuclear reactions to occur (T ≈ 1 GK

and ρ ≈ 2.5× 103 g cm−3). We extrapolate the radius, density and temperature of the

tracers up to tend = 100 s for an expansion with constant velocity using:

r (t ) = r (tfinal)+ t v(tfinal) (3.86)

ρ(t ) = ρ(tfinal)

(
r (tfinal)

r (t )

)2

(3.87)

T (t ) = T [s(tfinal),ρ(t ),Ye (t )], (3.88)
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where r denotes the radial position, v the radial velocity, ρ the density, T the tempera-

ture, s the entropy per baryon, and Ye the electron fraction of the tracer. Furthermore,

the temperature is computed at each time step with the EOS of [151]. The expansion

described in the equations (3.86)–(3.88) corresponds to an expansion with constant ve-

locity. To illustrate the tracers and how they are distributed we show the radial evolution

of the tracer trajectories and their peak temperature for tracers of a PUSH simulation in

figure 3.7 (progenitor: 15 M¯ [41], kPUSH =3.5, trise =200). The dashed black line indicates

the shock front.

Fig. 3.7.: We show the mass tracers for a PUSH model (progenitor: 15 M¯ [41], kPUSH =3.5, trise

=200). The black line denotes the PNS surface, the dashed tracer lines (increasing
in mass with steps of 10−3 M¯) are delayed ejecta (wind) that reach temperatures
around 4 MeV before they are ejected. The colors of the remaining tracers denote
their peak temperatures (the first six colored lines are separated by 5×10−3 M¯, then
the next six by 10−2 M¯, and the last three tracers are separated by 0.1 M¯. The black
dashed line denotes the shock front.

3.4 Launching and Managing of a Large
Number of Runs

The investigation of the explodability and various other aspects of CCSNe with parametrized

spherically symmetric simulations using many different progenitors, heating criteria,

and parameter sets involves the running and the evaluation of hundredths to thousands

of models. To make this task more manageable a collection of tools and scripts written

in Fortran, Python, and Bash has been created.
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First, we introduce a simple aspect that makes the data management considerably easier,

a naming system (also given and used in chapter 5). We introduce the naming system by

giving an example and then explain the meaning of the different components. The run

name

s20.0_t200_k3.5 ≡ [Progenitor set and metallicity][Model mass]_[trise]_[kPUSH], (3.89)

corresponds to a model using the 20 M¯ progenitor with the setting trise=200 ms and

kPUSH=3.5. Thus, the PUSH parameters are directly included in the name of the run (this

also corresponds to the folder name of the corresponding data of the simulation). The

first letter or letters of the name indicate the progenitor sample that is used. This letter is

followed by the ZAMS mass of the used progenitor, a t and the used trise parameter, and

a k and the used kPUSH parameter (separated by an underscore). We use the progenitor

sets of Woosley, Heger and Weaver (2002) and Woosley and Heger (2007) [40, 41]. The

naming system evolved historically and therefore the choice of the first letters does not

follow a consistent intrinsic logic. The set of the non-rotating progenitors of Woosley

Heger and Weaver (2002) with the metallicities Z = Z¯, Z = Z¯×10−4, and Z = 0 corre-

spond to the letters s, u, and z. The set of non-rotating progenitors of Woosley and Heger

(2007) with solar metallicity Z = Z¯ corresponds to the letter w . Thus, the example given

in Relation (3.89) corresponds to a progenitor from the set of Woosley, Heger and Weaver

(2002) with solar metallicity. This naming scheme has proved useful in the context of the

presented work.

The runs are initialized with a Python script that copies the programs source folder with

the correct progenitor (we do not include all the progenitors in the source folder because

they partially have sizes of ∼ 40 MB) and creates the desired sample of run folders. This

process involves the adjustment of Bash scripts that are adjusted to launch the differ-

ent runs (with qsub we submit jobs to the scheduler by the sun grid engine). Before

this Bash scripts are initiating the runs, the Python script changes command lines in the

Bash scripts which alter parameter entries of the input files that are read in by the CCSN

simulation at the moment of launch. With this chain of scripts we can launch several

hundreds of runs within a few minutes by only adjusting the Python script which auto-

matically takes care of the other scripts.

The initial choice of domain size has been set by hand in the input files for earlier ver-

sions but is automatized in the newest version of the numerical setup of PUSH (used for

the runs presented in chapter 5). In order to follow the shock of the supernova explosion

that is propagating outwards with a velocity of the order of 〈vshock〉 ∼ 109 cm s−1 for a

time tsim of the simulation that is long enough to observe a saturation of the explosion
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energy (tsim ∼ 1− 10s), one should include a computational domain that ranges up to

tsim × 〈vshock〉. In the automatic read-in, the progenitor is mapped onto the computa-

tional domain up to an upper limit that is set by one of the following criteria (the criteria

that is fulfilled first is the one which is applied):

(1) The density drops below ρ(r ) < 10 gcm−3,

(2) The radius exceeds the value r > 1010 cm,

(3) The read-in stellar mass exceeds M(r ) > 10 M¯.

These criteria are useful to quickly set up large simulation samples when a large progen-

itor set is investigated (see chapter 5).
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4Results 1:
Dependencies and the First
Calibration of the PUSH
Method1

In this chapter we present the results obtained with the PUSH method introduced in

chapter 3. The here presented material has been published in Perego, Hempel, Fröhlich,

Ebinger et al. (2015) [87] and consists of an overview of different methods to artificially

trigger explosions in spherical symmetric CCSN simulations, the introduction and cali-

bration of the PUSH method, and the analysis of the obtained results first published in

the paper2. In chapter 5 we update and improve the PUSH method and eventually apply

a recalibrated version to extended progenitor star sets in order to study the explodabil-

ity, explosion, and remnant properties of neutrino-driven CCSNe across the ZAMS mass

range.

In the past, predictions of SN nucleosynthesis relied on artificially triggered explosions,

either using a piston (e.g. [152–154]) or a thermal energy bomb (e.g., [155, 156]). For the

piston model, the motion of a mass point is specified along a ballistic trajectory. For the

thermal energy bomb, explosions are triggered by adding thermal energy to a mass zone.

In both cases, additional energy is added to the system to trigger an explosion. In addi-

tion, the mass cut (bifurcation between the proto-neutron star (PNS) and the ejecta) and

the explosion energy are free parameters which have to be constrained from the mass

of the 56Ni ejecta. While these approaches are appropriate for the outer layers, where

the nucleosynthesis mainly depends on the strength of the shock wave, they are clearly

incorrect for the innermost layers. There, the conditions and the nucleosynthesis are di-

1The content of this chapter has been published in Perego et al. (2015), The Astrophysical Journal,
Volume 806, Number 2 [87].

2With the following exceptions: Figures 4.1 and 4.2 have been added or redone. Table 4.1 only shows the
compactness at onset of collapse because of spatial reasons. The definition of the diagnostic energy,
the overburden, and the recombination energy is now given in section 3.3.1 and not in section 4.3.7.
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rectly related to the physics of collapse and bounce, and to the details of the explosion

mechanism. Besides the piston and thermal bomb methods, another widely used way

to artificially trigger explosions is the so-called “neutrino light-bulb”. In this method, the

PNS is excised and replaced with an inner boundary condition which contains an ana-

lytical prescription for the neutrino luminosities. The neutrino transport is replaced by

neutrino absorption and emission terms in optically thin conditions. Suitable choices

of the neutrino luminosities and energies can trigger neutrino-driven explosions (e.g.,

[157–161]). The light-bulb method has also been used to investigate models with respect

to their dimensionality. The transition from spherical symmetry (1D) to axisymmetry

(2D) delivers the new degree of freedom to bring cold accreting matter down to the neu-

trinospheres while matter in other directions can dwell longer in the gain region and

efficiently be heated by neutrinos [162]. The standing accretion shock instability (SASI,

e.g., [160, 163–167]) strongly contributes to this effect in 2D light-bulb models and leads

to strong polar oscillations of expansion during the unfolding of the explosion [133]. It

was first expected that the trend toward a smaller critical luminosity for successful ex-

plosions will continue as one goes from 2D to three-dimensional (3D) models [127, 134],

but other studies pointed toward the contrary [128, 131]. One has to keep in mind, that

a light bulb approach might not include the full coupling between the accretion rate and

the neutrino luminosity. However, recent models that derive the neutrino luminosity

from a consistent evolution of the neutron star support the result that 2D models show

faster explosions than 3D models [130, 142, 147, 168]. Most important for this work is a

finding that is consistent with all above investigations: In 3D there is no preferred axis.

The 3D degrees of freedom lead to a more efficient cascade of fluid instabilities to smaller

scales. In spite of vivid fluid instabilities, the 3D models show in their overall evolution

a more pronounced sphericity than the 2D models. Hence their average conditions re-

semble more closely the shock expansion that would be obtained by an exploding 1D

model.

In a 1D model with detailed Boltzmann neutrino transport two other methods to trig-

ger explosions using neutrinos have been used [89, 169]. These “absorption methods”

aim at increasing the neutrino energy deposition in the heating region by mimicking the

expected net effects of multi-dimensional simulations. In one case, the neutral-current

scattering opacities on free nucleons are artificially decreased to values between 0.1 and

0.7 times the original values. This leads to increased diffusive neutrino fluxes in regions

of very high density. The net results are a faster deleptonization of the PNS and higher

neutrino luminosities in the heating region. In the other case, explosions are enforced

by multiplying the reaction rates for neutrino absorption on free nucleons by a constant

factor. To preserve detailed balance, the emission rates also have to be multiplied by the

same factor. This reduces the timescale for neutrino heating and again results in a more
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efficient energy deposition in the heating region. However, the energy associated with

these explosions were always weak.

Recently, [141] have presented a more sophisticated light-bulb method to explode spher-

ically symmetric models using neutrino energy deposition in post-shock layers. They use

an approximate, grey neutrino transport and replace the innermost 1.1 M¯ of the PNS by

an inner boundary. The evolution of the neutrino boundary luminosity is based on an

analytic cooling model of the PNS, which depends on a set of free parameters. These

parameters are set by fitting observational properties of SN 1987A for progenitor masses

around 20 M¯ (see also [170]).

Artificial supernova explosions have been obtained by other authors using a grey leakage

scheme that includes neutrino heating via a parametrized charged-current absorption

scheme [171] in spherically symmetric simulations [172].

The PUSH method enables the deposition of a fraction of the luminosity of the heavy

flavor neutrinos emitted by the PNS in the gain region in order to increase the neutrino

heating efficiency. An accurate treatment of the electron fraction of the ejecta is ensured

through a spectral neutrino transport scheme for νe and ν̄e and a detailed evolution

of the PNS. This work covers the observed correlation between explosion dynamics of

CCSN progenitors and their compactness as well as the possible fitting of SN1987A with

the PUSH method for a set of red giant progenitors with solar metallicity in the mass

range between 18 M¯ and 21 M¯ from Woosley, Heger and Weaver (2002) [40]. PUSH

provides a framework to study many important aspects of CCSNe for large progenitor

sets: explosive supernova nucleosynthesis, neutron-star remnant masses, explosion en-

ergies, and other aspects where until recently full multi-dimensional simulations were

too expensive and traditional piston or thermal bomb models do not capture all the rele-

vant physics.

4.1 Initial Models

For this PUSH study, we use solar-metallicity, non-rotating stellar models from the stel-

lar evolution code KEPLER [40]. Our set includes 16 pre-explosion models with zero-age

main sequence (ZAMS) mass between 18.0 M¯ and 21.0 M¯ in increments of 0.2 M¯.

These models have been selected to have ZAMS mass around 20 M¯, similar to the pro-

genitor of SN1987A (e.g., [173]). We label the models by their ZAMS mass. In figure 4.1,

the density profiles of the progenitor models are shown. For each of them the compact-
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ness parameter ξM is defined following [172] by the ratio of a given mass M and the

radius R(M) which encloses this mass:

ξM ≡ M/M¯
R(M)/1000km

. (4.1)

Typically, either ξ1.75 or ξ2.5 are used. The compactness can be computed at the onset of

collapse or at bounce, as suggested by [172]. For our progenitors, the difference in the

compactness parameter between these two moments is not significant for our discus-

sions. Thus, for simplicity, in the following we will use ξ1.75 computed at the onset of the

collapse. The progenitor models considered here fall into two distinct families of com-

pactness: low compactness (ξ1.75 < 0.45; LC models) and high compactness (ξ1.75 > 0.45;

HC models), see table 4.1. Figure 4.2 shows the compactness as function of ZAMS mass

for the progenitors of this study. The non-monotonous behavior is a result of the evo-

lution before collapse. The mass range between 19 and 21 M¯ is particularly prone to

variations of the compactness. For a detailed discussion of the behavior of the compact-

ness as function of ZAMS mass see [174].

4.2 Fitting and Results

To test the PUSH method, we perform a large number of runs where we vary the free pa-

rameters and explore their impact on the explosion properties. We also analyze in detail

the basic features of the simulations and of the explosions in connection with the prop-

erties of the progenitor star. Finally, we fit the free parameters in the PUSH method to

reproduce observed properties of SN1987A for a progenitor star in the range 18-21 M¯.

4.2.1 General Effects of Free Parameter Variations

kPUSH

The parameter with the most intuitive and strongest impact on the explosion is kPUSH.

Its value directly affects the amount of extra heating which is provided by PUSH. As ex-

pected, larger values of kPUSH (assuming all other parameters to be fixed) result in the

explosion being more energetic and occurring earlier. In addition, a faster explosion im-

plies a lower remnant mass, as there is less time for the accretion to add mass to the

forming PNS.
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(a) Progenitors between 18 and 21 M¯.

(b) Progenitors sorted into LC and HC.

Fig. 4.1.: Density profiles as function of ZAMS mass for the progenitor models included in this
study (18.0 M¯ to 21.0 M¯). HC models are shown in red, LC models are shown in
blue. The vertical line in the inset is located at 1.75 M¯ and indicates that mass at
which the compactness parameter ξ1.75 is determined (see equation (4.1)).

Beyond these general trends with kPUSH, the detailed behavior depends also on the com-

pactness of the progenitor. For all 16 progenitor models in the 18-21 M¯ ZAMS mass
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Fig. 4.2.: Compactness ξ1.75 as function of ZAMS mass for our pre-explosion models at the
onset of collapse (blue dots) and at bounce (red crosses).

range, we have explored several PUSH models, varying kPUSH between 0.0 and 4.0 in in-

crements of 0.5 but fixing ton = 80 ms and trise = 150 ms. For kPUSH 6 1, none of the

models explode and for kPUSH = 1.5 only the lowest compactness models explode. Fig-

ure 4.3 shows the explosion energy, the explosion time and the (baryonic) remnant mass

as function of the progenitor compactness for kPUSH = 1.5,2.0,3.0,4.0. A distinct behav-

ior between low and high compactness models is seen. The LC models (ξ1.75 < 0.4) result

in slightly weaker and faster explosions, with less variability in the explosion energy and

in the explosion time for different values of kPUSH. Even for relatively large values of

kPUSH, the explosion energies remain below 1 Bethe. On the other hand, the HC models

(ξ1.75 > 0.45) explode stronger and later, with a larger variation in the explosion proper-

ties. In this case, for high enough values of kPUSH (& 3.0), explosion energies of& 1 Bethe

can be obtained. The HC models also lead to a larger variability of the remnant masses,

even though this effect is less pronounced than for the explosion time or energy. For the

values of kPUSH used here, we obtain (baryonic) remnant masses from approximately 1.4

to 1.9 M¯. The differences of LC and HC models will be investigated further in section

4.2.3.

There are three models with 0.37. ξ1.75 . 0.50 (corresponding to ZAMS masses of 18.0

(HC), 18.2 (LC), and 19.4 M¯ (HC)) which do not follow the general trend. In particular,

we find the threshold value of kPUSH for successful explosions to be higher for these mod-
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MZAMS ξ1.75 ξ2.5 Mprog MFe MCO MHe Menv

(M¯) at collapse at collapse (M¯) (M¯) (M¯) (M¯) (M¯)

18.2 0.37 0.173 14.58 1.399 4.174 5.395 9.186
18.6 0.365 0.170 14.85 1.407 4.317 5.540 9.313
18.8 0.357 0.166 15.05 1.399 4.390 5.613 9.435
19.6 0.282 0.118 13.37 1.461 4.959 6.243 7.125
19.8 0.334 0.135 14.54 1.438 4.867 6.112 8.428
20.0 0.283 0.125 14.73 1.456 4.960 6.215 8.517
20.2 0.238 0.104 14.47 1.458 5.069 6.342 8.125

18.0 0.463 0.199 14.50 1.384 4.104 5.314 9.187
18.4 0.634 0.185 14.82 1.490 4.238 5.459 9.366
19.0 0.607 0.191 15.03 1.580 4.461 5.693 9.341
19.2 0.633 0.191 15.08 1.481 4.545 5.760 9.325
19.4 0.501 0.185 15.22 1.367 4.626 5.860 9.365
20.4 0.532 0.192 14.81 1.500 5.106 6.376 8.433
20.6 0.742 0.278 14.03 1.540 5.260 6.579 7.450
20.8 0.726 0.271 14.34 1.528 5.296 6.609 7.735
21.0 0.654 0.211 13.00 1.454 5.571 6.969 6.026

Tab. 4.1.: ZAMS mass, compactness ξ1.75 and ξ2.5 at the onset of collapse and at bounce, total
progenitor mass at collapse (Mprog), mass of the iron core (MFe), carbon-oxygen
core (MCO), and helium core (MHe), and mass of the hydrogen-rich envelope (Menv)
at collapse, for all the progenitor models included in this study. The top part of
the table includes the low-compactness progenitors (LC; ξ1.75 < 0.4 at collapse),
the bottom part includes the high-compactness progenitors (HC; ξ1.75 > 0.45 at
collapse). Table adapted from [87].

els. A common feature of these three models is that they have the lowest Fe-core mass of

all the models in our sample and the highest central densities at the onset of collapse.

The choice of trise does not affect the observed trends with kPUSH: similar behaviors are

also seen for 50ms. trise. 250ms.

ton

To test the sensitivity of our method to the parameter ton, we compute models with

kPUSH = 2.0 and trise = 0.15s for a very large onset parameter, ton = 120ms. We com-

pare the corresponding results with the ones obtained for ton = 80ms. As expected, the

shock revival happens slightly later (with a temporal shift of ∼ 30ms), the explosion ener-

gies are smaller (by ∼ 0.05 B) and the remnant masses are marginally larger (by 0.08 M¯).

However, all the qualitative behaviors described above, as well as the distinction between
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Fig. 4.3.: Explosion energies (top), explosion times (middle), and (baryonic) remnant mass
(bottom) as function of compactness for kPUSH 1.5, 2.0, 3.0, and 4.0, and fixed trise =
0.15 s for all progenitor models included in this study (ZAMS mass between 18.0 and
21.0 M¯). Non-exploding models are indicated with Eexpl =−0.5 B in the top panel
and are omitted in the other panels. Figures taken from [87].
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high and low compactness models, do not show any dependence on ton. In the following,

we will always assume ton = 80ms.

kPUSH & trise

Previously, we have investigated the dependency of the model on the single parameters

kPUSH and ton. Now, we explore the role of trise in combination with kPUSH. For this,

we approximately fix the explosion energy to the canonical value of ∼ 1 B for the high

compactness models (corresponding, for example, to the previously examined models

with kPUSH = 3.0 and trise = 150ms), and investigate which other combinations of kPUSH

and trise result in the desired explosion energy. We restrict our explorations to a sub-set

of progenitor models (18.0 M¯, 18.6 M¯, 19.2 M¯, 19.4 M¯, 19.8 M¯, 20.0 M¯, 20.2 M¯
and 20.6 M¯) that spans the ξ1.75-range of all 16 progenitors. Figure 4.4 summarizes the

explosion energies, explosion times, and remnant masses for various combinations of

kPUSH and trise for progenitors of different compactness. The required constraint can

be obtained by several combinations of parameters, which lie on a curve in the kPUSH-

trise plane. As a general result, a longer trise requires a larger kPUSH to obtain the same

explosion energy. This can be understood from the different roles of the two parame-

ters: while kPUSH sets the maximum efficiency at which PUSH deposits energy from the

reservoir represented by the νµ,τ luminosity, trise sets the time scale over which the mech-

anism reaches this maximum. Together, they control the slope of G (t ) in the rising phase

(see figure 3.2). A model with a longer rise time reaches its maximum efficiency later, at

which time the luminosities have already decreased and a part of the absorbed energy

has been advected on the PNS or re-emitted in the form of neutrinos. To compensate for

these effects, a larger kPUSH is required for a longer trise. This is seen in figure 4.5, where

we plot the cumulative neutrino contribution (Epush +Eidsa) and its time derivative for

four runs of the 18.0 M¯ progenitor model, but with different combinations of trise and

kPUSH. Runs with larger parameter values require PUSH to deposit more energy (see

(Epush +Eidsa) at t ≈ texpl), and the corresponding deposition rates are shifted towards

later times. Moreover, for increasing values of trise, the explosion time texpl becomes

larger, but the interval between (ton + trise) and texpl decreases. Despite the significant

variation of kPUSH between different runs, the peak values of d(Epush +Eidsa)/dt at the

onset of the shock revival that precedes the explosion are very similar in all cases.

toff

Even though PUSH is active up to toff + trise & 1s, its energy deposition reduces progres-

sively on a timescale of a few 100 ms after the explosion has set in (see figure 4.5). This

shows explicitly that the value of toff does not have important consequences in our sim-
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ulations, at least as long as we have typical explosion times well below one second. The

observed decrease of the PUSH energy deposition rate after the launch of the explosion

will be explained in section 4.2.3.

4.2.2 Contributions to the Explosion Energy

In the following, we discuss the contributions to and the sources of the explosion energy,

i.e., we investigate how the explosion energy is generated. This is done in several steps:

first, we have a closer look at the neutrino energy deposition. Then we show how it relates

to the increase of the total energy of the ejected layers, and finally how this increase of

the total energy transforms into the explosion energy. For this analysis, we have chosen

the 19.2 and 20.0 M¯ ZAMS mass progenitor models as representatives of the HC and

LC samples, respectively. We consider their exploding models obtained with ton = 80 ms,

trise = 150 ms, and kPUSH = 3.0. A summary of the explosion properties can be found in

table 4.2.

The table shows that for both models neutrinos are required to deposit a net cumula-

tive energy (Epush +Eidsa) much larger than Eexpl to revive the shock and to lead to an

explosion that matches the expected energetics. For the two reference runs, when the

PUSH contribution is switched off (t = toff+ trise), the cumulative deposited energy is ∼ 4
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Quantity HC LC

ZAMS (M¯) 19.2 20.0
ξ1.75 (-) 0.637 0.283
ton (ms) 80
trise (ms) 150
kPUSH (-) 3.0
texpl (ms) 307 206
Mremn (M¯) 1.713 1.469
Eexpl (tfinal) (B) 1.36 0.57
Epush (toff + trise) (B) 3.51 1.08
Eidsa (toff + trise) (B) 2.76 1.01
Eidsa (tfinal) (B) 4.10 2.11

Tab. 4.2.: Explosion properties for two reference runs. These two runs are used to compare
the HC and LC samples. Table taken from [87].

times larger than Eexpl. This can also be inferred from figure 4.5 for other runs. That

ratio increases further up to ∼ 5.5 at t = tfinal, due to the neutrino energy deposition

happening at the surface of the PNS which generates the ν-driven wind. According to

equations (3.69) and (3.70), Epush and Eidsa are the total energies which are deposited in

the (time-dependent) gain region. This neutrino energy deposition increases the inter-

nal energy of the matter flowing in that region. However, since the advection timescale

is much shorter than the explosion timescale, a large fraction of this energy is advected

onto the PNS surface by the accreting mass before the explosion sets in, and hence does

not contribute to the explosion energy. Only the energy deposited by neutrinos in the

region above the final mass cut will eventually contribute to the explosion energy.

To identify this relevant neutrino contribution, in figure 4.6 we show the time evolution

of the integrated net neutrino energy deposition Eν(mfin
cut, t ) within the domain above the

fixed mass mfin
cut = mcut(tfinal). We choose mfin

cut to include all the relevant energy contri-

butions to the explosion energy, up to the end of our simulations. Despite the significant

differences in magnitudes, the two models show overall similar evolutions. If we com-

pare Eν(mfin
cut, t ) at late times with (Epush(toff + trise)+Eidsa(tfinal)) from table 4.2, we see

that it is significantly smaller. About two thirds of the energy originally deposited in the

gain region are advected onto the PNS and hence do not contribute to the explosion en-

ergy.

In addition to the neutrino energy deposition, in figure 4.6 we also show the variation of

the total energy for the domain above mfin
cut, i.e.,

∆Etotal(mfin
cut, t ) = Etotal(mfin

cut, t )−Etotal(mfin
cut, tinitial), where tinitial is the time when we start
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(thin dashed line), of the neutrino net deposition energy Eν (dot-dashed line) and
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cut =
mcut(tfinal), for the HC (left) and for the LC (right) reference runs reported in table 4.2.
The evolution of the time-dependent explosion energy, ∆Eexpl, is also shown (solid
line). Both ∆Hexpl and ∆Eexpl are computed with respect to Hexpl(mfin

cut, tinitial). The
difference between ∆Etotal(mfin

cut, t) and Eν represents the mechanical work, Emech;
the difference between ∆Etotal(mfin

cut, t) and ∆Hexpl(mfin
cut, t) represents the released

rest-mass energy, −∆Emass. Figures taken from [87].

our simulation from the stage of the progenitor star. The variation of the total energy can

be separated into the net neutrino contribution and the mechanical work at the inner

boundary, ∆Etotal = Eν + Emech. We note that in our general relativistic approach the

variation of the gravitational mass due to the intense neutrino emission from the PNS

is consistently taken into account. It is visible in figure 4.6, that the net deposition by

neutrinos makes up the largest part of the change of the total energy. The transfer of

mechanical energy Emech is negative because of the expansion work performed by the

inner boundary during the collapse and the PNS shrinking. However it is significantly

smaller in magnitude than Eν.

Next, we investigate the connection between the variation of the total energy and the

explosion energy. In figure 4.6, we show the variation of the explosion energy above

the fixed mass mfin
cut, i.e. ∆Hexpl(mfin

cut, t ) = Hexpl(mfin
cut, t ) − Hexpl(mfin

cut, tinitial), together

with the relative variation of the time-dependent explosion energy, ∆Eexpl(t ) = Eexpl(t )−
Hexpl(mfin

cut, tinitial). It is obvious from equations (3.47), (3.71), and (3.74) that the differ-

ence between ∆Hexpl(mfin
cut, t ) and ∆Etotal(mfin

cut, t ) is given by the variation of the inte-

grated rest mass energy, ∆Hexpl(mfin
cut, t ) = ∆Etotal(mfin

cut, t )−∆Emass(mfin
cut, t ). In figure 4.6,

−∆Emass(mfin
cut, t ) can thus be identified as the difference between the long-thin and the

short-thick dashed lines. We find that the overall rest mass contribution to the final explo-

sion energy is positive, but much smaller than the neutrino contribution. Figure 4.6 also

makes evident the conceptual difference between Hexpl and Eexpl, and, at the same time,
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shows that Hexpl(mfin
cut, t ) → Eexpl(t ) for t → tfinal, since we have chosen mfin

cut = mcut(tfinal).

It also reveals that the explosion energy Eexpl has practically saturated for t & 1s, while Eν
(and, consequently, ∆Etot and ∆Hexpl) increases up to tfinal, when mfin

cut is finally ejected.

However, this energy provided by neutrinos is mostly spent to unbind matter from the

PNS surface. Thus, the late ν-driven wind, which occurs for several seconds after 1 s, still

increases Eexpl, but at a relative small, decreasing rate.

To summarize, the variation of the explosion energy above mfin
cut can be expressed as

∆Hexpl(mfin
cut, t ) = ∆Etotal(mfin

cut, t )−∆Emass(mfin
cut, t )

= Eν(mfin
cut, t )+Emech(mfin

cut, t )−∆Emass(mfin
cut, t ) . (4.2)

The quantity −∆Emass is positive, but significantly smaller than Eν(mfin
cut, t ). Emech is neg-

ative and also smaller than Eν(mfin
cut, t ). Therefore, we conclude that in our models the

explosion energy is mostly generated by the energy deposition of neutrinos in the even-

tually ejected layers, especially within the first second after bounce.
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table 4.2. The internal and the rest mass energy are given with respect to the initial
rest mass, Emass,0 = Emass(mfin

cut, tinitial). The difference between the internal energy
and the rest mass energy represents the thermal energy. Figures taken from [87].

To give further insight, in figure 4.7 we show the time evolution of all energies which

contribute to the explosion energy together with the explosion energy itself, for both the

HC (left panel) and the LC model (right panel). We present Eint(mfin
cut, t ), −Emass(mfin

cut, t ),
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Egrav(mfin
cut, t ) and Ekin(mfin

cut, t ), which together give a complete decomposition of the ex-

plosion energy, i.e.,

Hexpl(mfin
cut, t ) = Ekin(mfin

cut, t )+Egrav(mfin
cut, t )

+Eint(mfin
cut, t )−Emass(mfin

cut, t ) . (4.3)

Compared to figure 4.6 we are now not dealing with variations any more but with abso-

lute values. Gravitational energy initially dominates (Hexpl(mfin
cut, t ) < 0), meaning that

the portion of the star above mfin
cut is still gravitationally bound. The HC model is ini-

tially more bound than the LC model (for example, Hexpl(mfin
cut, t = 0.1s) ≈−0.54B, versus

Hexpl(mfin
cut, t = 0.1s) ≈−0.40B, respectively). Before providing positive explosion energy,

neutrinos have to compensate for this initial negative binding energy as well as for the

negative Emech. This can be seen explicitly by expressing equation (4.2) as:

Hexpl(mfin
cut, tfinal) ∼ Hexpl(mfin

cut, tinitial)+Eν(mfin
cut, tfinal)

+Emech(tfinal) , (4.4)

where we have neglected ∆Emass.

In the following, we discuss the evolution of the relevant energies and, in particular, of

the rest mass energy (see section 3.1.3 for the description of the (non-)NSE EOS and

of the related definitions of the internal, thermal and rest mass energies). The inner-

most part of the ejecta (corresponding to ∼ 0.15 M¯ and ∼ 0.07 M¯ above mfin
cut for the

19.2 M¯ and 20.0 M¯ model, respectively) is initially composed of intermediate mass

nuclei (mainly silicon and magnesium). In the first part of the evolution, during the

gravitational collapse, no significant changes of Eint and Emass are observed in figure 4.7.

However, when this matter enters the shock, it is quickly photodissociated into neutrons,

protons, and alpha particles. This process increases the rest mass energy, as is visible

in figure 4.7 between roughly 200 and 300 ms for the HC model and between 100 and

200 ms for the LC model. At the same time, the release of gravitational energy of the still

infalling matter and the dissipation of kinetic energy happening at the shock, together

with the large and intense neutrino absorption on free nucleons, increase Eint. Later,

once neutrino heating has halted the collapse and started the explosion, the expanding

shock decreases its temperature and free neutrons and protons inside it recombine first

into alpha particles and then into iron group nuclei. At the same time, fresh infalling

layers are heated by the shock to temperatures above 0.44 MeV, and silicon and magne-

sium are converted into heavier nuclei and alpha particles under NSE conditions, lead-

ing to an alpha-rich freeze-out from NSE. The production of alpha particles, which are

less bound than the heavy nuclei initially present in the same layers, limits the amount
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of rest mass energy finally released. Thus, these recombination and burning processes

liberate in a few hundred milliseconds after texpl an amount of rest mass energy larger

but comparable to the energy spent by the shock to photodissociate the infalling matter

during shock revival and early expansion. We have checked in post-processing that the

full nucleosynthesis network WINNET confirms these results.

4.2.3 Explosion Dynamics and the Role of
Compactness
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Fig. 4.8.: Temporal evolution of (a) the accretion rate at the PNS and at the shock, (b) the shock,
the gain, and the PNS radii, (c) the neutrino luminosities, and (d) the neutrino mean
energies, for all modeled neutrino flavors. In all panels, we present exploding runs
for the 19.2 M¯ (red lines) and then 20.0 M¯ (blue lines) ZAMS mass models obtained
with the PUSH parameters reported in table 4.2. We also plot the corresponding
non-exploding runs obtained by setting kPUSH = 0 for the 19.2 M¯ (light red) and
20.0 M¯ (light blue) ZAMS mass progenitor models. Figures taken from [87].

The distributions of the explosion energy and explosion time obtained with PUSH, as

well as their variations in response to changes of the model parameters, suggest a pos-

sible distinction between high and low compactness progenitors. In the following, we
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investigate how basic properties of the models (e.g., the accretion history or the neutrino

luminosities), ultimately connected with the compactness, relate to differences in the

explosion process and properties. For a similar discussion in self-consistent 1D and 2D

SN simulations, see [175]. Again, we choose the 19.2 and 20.0 ZAMS mass progenitor

runs with trise = 150ms and kPUSH = 3.0, as representatives of the HC and LC samples,

respectively.

In figure 4.8, we show the temporal evolution of several quantities of interest for both the

19.2 M¯ and 20.0 M¯ models, with and without PUSH. The evolution before ton follows

the well known early shock dynamics in CCSNe (see, for example, [157]). In both models,

a few tens of milliseconds after core bounce, the expanding shock turns into an accretion

front, and the mantle between the PNS surface and the shock reaches a quasi-stationary

state. In this accretion phase, Ṁshock and ṀPNS are firmly related. However, the two

different density profiles already affect the evolution of the shock. Since ρ19.2/ρ20.0& 1.2

outside the shock and up to a radius of 2× 108 cm (while the infalling velocities of the

unshocked matter are initially almost identical), Ṁshock (and in turn also ṀPNS) starts to

differ between the two models around tpb ≈ 30 ms.

The difference in the accretion rates has a series of immediate consequences. For the HC

case, (i) neutrino luminosities are larger (figure 4.8c); (ii) the shock is subject to a larger

ram pressure (i.e., a larger momentum transfer provided by the collectively infalling mass

flowing through the shock), and, as visible in the case without PUSH, shock stalling hap-
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parameters are reported in table 4.2. Light red and light blue lines represent the
corresponding runs without PUSH (kPUSH = 0). Figure taken from [87].

pens earlier and at a smaller radius (figure 4.8b); (iii) the PNS mass grows faster. Since the

mass of the PNS at bounce is almost identical for the two models (MPNS ≈ 0.63 M¯), the

stronger gravitational potential implied by (iii) increases the differences in the accretion

rates even further by augmenting the ratio of the radial velocities inside the gain region

(larger by 12–15% at t ≈ ton for the 19.2 M¯ case).

For t > ton, the differences between the two runs amplify as a result of the PUSH action.

In the LC case, due to the lower accretion rate, a relatively small energy deposition by

PUSH in the gain region (smaller than or comparable to the energy deposition by νe

and ν̄e from IDSA, as visible in figure 4.9) is able to revive the shock expansion a few

milliseconds after ton. Later, the increasing dEpush/dt triggers an explosion in a few tens

of milliseconds, even before G (t ) reaches its maximum (figure 4.8b). In the HC case,

the energy deposition by neutrinos is more intense from the beginning due to the larger

neutrino luminosities and harder neutrino spectra (figures 4.8c and 4.8d) and due to

the higher density inside the gain region. However, because of the larger accretion rate,

the extra contribution provided by PUSH is initially only able to prevent the fast shock

contraction observed in the model without PUSH. During this shock stalling phase, the

accretion rate and the luminosity decrease, but only marginally and very similarly to the

non-exploding case. When PUSH reaches its maximum energy deposition rate (t ≈ ton+
trise), the shock revives and the explosion sets in (figure 4.8b).

In figure 4.10, we plot the ratio of the ram pressure just above the shock front

(Pram(R+
shock) = ρv2 calculated at R+

shock = Rshock +1km) to the thermal pressure just in-
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side it (Pth(R−
shock) where R−

shock = Rshock − 1km). In the non-exploding runs (i.e., with-

out PUSH), both these pressures decrease with time, but their ratio stays always well

above unity. On the other hand, in runs with PUSH, the more efficient energy deposition

by neutrinos reduces the decrease of the thermal pressure inside the shock. The corre-

sponding drop in the pressure ratio below unity determines the onset of the explosion.

In both runs, once the explosion has been launched, the density in the gain region de-

creases and the PUSH energy deposition rate reduces accordingly. The conversion from

an accreting to an expanding shock front decouples Ṁshock from ṀPNS. The latter drops

steeply, together with the accretion neutrino luminosities (figures 4.8a and 4.8c), while

Ṁshock decreases first but then stabilizes around an almost constant (slightly decreasing)

value. In the case where the shock expansion velocity is much larger than the infalling

matter velocity at Rshock, Ṁshock can be re-expressed as

Ṁshock ≈ 4πR2
shockρ(Rshock) vshock, (4.5)

where vshock = dRshock/dt ∝ Rδ
shock. For R > Rshock we have in good approximation

ρ(R) ∝ R−2, and thus

Ṁshock ∝ Rδ
shock. (4.6)

The stationary value of Ṁshock implies that δ≈ 0. Thus, after an initial exponential expan-

sion, the shock velocity is almost constant during the first second after the explosion.

Despite the larger difficulties to trigger an explosion, the HC model explodes more en-

ergetically than the LC model. According to the analysis performed in section 4.2.2, the

difference in the explosion energy between the HC and the LC model depends ultimately

on the different amount of energy deposited by neutrinos. Since the high compactness

model requires a larger energy deposition to overcome the ram pressure and the gravita-

tional potential, the total energy of the corresponding ejecta (and in turn the explosion

energy) will be more substantially increased. In addition, after the explosion has been

triggered, the larger neutrino luminosities and densities that characterize the HC model

inject more energy in the expanding shock compared with the LC model.
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4.2.4 Fitting of SN1987A

The ultimate goal of CCSN simulations is to reproduce the properties observed in real

SNe. So far we have only focused on the dependence of dynamical features of the explo-

sion (e.g., the explosion energy) on the parameter choices in the PUSH method. However,

the ejected mass of radioactive nuclides (such as 56Ni) is an equally important property

of the SN explosion. Here, we describe how we calibrate the PUSH method by reproduc-

ing the explosion energy and mass of Ni ejecta of SN 1987A for a progenitor within the

expected mass range for this SN.

Observational Constraints from SN 1987A

The analysis and the modeling of the observational properties of SN 1987A just after

the luminosity peak have been the topics of a long series of works (e.g., and references

therein [7, 21–25, 176–178]). They provide observational estimates for the explosion en-

ergy, the progenitor mass, and the ejected masses of 56Ni, 57Ni, 58Ni, and 44Ti, all of which

carry rather large uncertainties. In table 4.3, the values used for the calibration of the

PUSH method are summarized.

The ZAMS progenitor mass is assumed to be between 18 M¯ and 21 M¯, corresponding

to typical values reported in the literature for the SN1987A progenitor, see, e.g., [23, 24].

For the explosion energy we consider the estimate reported by [21], Eexpl = (1.1±0.3)×
1051 erg (for a detailed list of explosion energy estimates for SN 1987A, see for example

table 1 in [134]). This value was obtained assuming ∼14.7 M¯ of ejecta and an hydrogen-

rich envelope of ∼10.3 M¯. The uncertainties in the progenitor properties and in the

SN distance were taken into account in the error bar. The employed values of the total

ejecta and of the hydrogen-rich envelope are compatible (within a 15% tolerance) with

a significant fraction of our progenitor candidates, especially for MZAMS < 19.6 M¯ (see

table 4.1, where the total ejecta can be estimated subtracting 1.6 M¯ from the mass of

the star at the onset of the collapse). Explosion models with larger ejected mass (i.e.,

less compatible with our candidate sample) tend to have larger explosion energies (see,

for example, [178]). Finally, we consider the element abundances for 56,57Ni and 44Ti

provided by [22], which were obtained from a least squares fit of the decay chains to the

bolometric lightcurve. For 58Ni we use the value provided by [25].
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Fig. 4.11.: Ejected mass of 56Ni (top left), 57Ni (top right), 58Ni (bottom left), and 44Ti (bottom
right) and explosion energy for four representative HC progenitor models. Five
combinations of kPUSH and trise are shown, each with a different symbol. The error
bar box represents the observational values from [22] (for 56,57Ni and 44Ti) and from
[25] (for 58Ni). No error bars are reported for 58Ni. Figures taken from [87].
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Fig. 4.12.: Same as figure 4.11, but assuming 0.1 M¯ fallback. Note the different scale for 56Ni
and 58Ni compared to figure 4.11. Figures taken from [87].
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Eexpl (1.1±0.3)×1051 erg
mprog 18-21 M¯
m(56Ni) (0.071±0.003) M¯
m(57Ni) (0.0041±0.0018) M¯
m(58Ni) 0.006 M¯
m(44Ti) (0.55±0.17)×10−4 M¯

Tab. 4.3.: Observational properties of SN 1987A. The nucleosynthesis yields are taken from
[22] except for 58Ni which is taken from [25]. No error estimates were given for
58Ni. The explosion energy is adapted from [21]. For the progenitor range we chose
typical values found in the literature, see e.g. [23, 24]. Table taken from [87].

Fitting Procedure
We calibrate the PUSH method by finding a combination of progenitor mass, kPUSH, and

trise which provides the best fit to the all observational quantities of SN 1987A mentioned

above. The weight given to each quantity is related to the uncertainty. For example, due

to the large uncertainty in the 44Ti mass, this does not provide a strong constraint on

selecting the best fit.

Figure 4.11 shows the explosion energy and ejected mass of 56Ni, 57Ni, 58Ni, and 44Ti for

different cases of kPUSH and trise and for four select HC progenitors used to calibrate the

PUSH method. We do not consider the LC progenitors, because of their generally lower

explosion energies, see figure 4.3. The different cases of kPUSH and trise span a wide range

of explosion energies around 1 Bethe. For all parameter combinations shown, at least

one progenitor in the 18-21 M¯ range fulfills the requirement of an explosion energy

between 0.8 Bethe and 1.4 Bethe. There is a roughly linear correlation between the ex-

plosion energy and the synthesized 56Ni-mass. However, this correlation is not directly

compatible with the observations, as the ejected 56Ni is systematically larger than ex-

pected (up to a factor of ∼ 2 for models with an explosion energy around 1 Bethe). There

is a weak trend that models with higher trise tend to give lower nickel masses for given

explosion energy. Among the parameter combinations that produce robustly high explo-

sion energies (i.e., kPUSH ≥ 3), kPUSH = 3.5 with the high value of trise of 200 ms gives the

lowest 56Ni mass for similar explosion energies, but still much too high.

Our simulations can be reconciled with the observations by taking into account fallback

from the initially unbound matter. Since we do not model the explosion long enough

to see the development of the reverse shock and the appearance of the related fallback

when the shock reaches the hydrogen-rich envelope, we have to impose it, removing

4.2 Fitting and Results 99



some matter from the innermost ejecta1. With a value of ∼ 0.1 M¯ we can match both the

expected explosion energy and 56Ni ejecta mass, see figure 4.12. In this way we have fixed

the final mass cut by observations. However, we point out that we are able to identify the

amount of late-time fallback only because we also have the dynamical mass cut from

our hydrodynamical simulations. This is not possible in other methods such as pistons

or thermal bombs. Our value of ∼ 0.1 M¯ of fallback in SN 1987A will be further discussed

and compared with other works in section 4.3.3.

The observed yield of 56Ni provides a strong constraint on which parameter combina-

tion would fit the data. From the observed yields of 57Ni and 58Ni, only the 18.0 and

19.4 progenitors remain viable candidates. Without fallback our predicted 44Ti yields are

compatible with the observed yields (see figure 4.11). However, if we include fallback

(which is needed to explain the observed Ni yields), 44Ti becomes underproduced com-

pared to the observed value. Since this behavior is true for all our models, we exclude the

constraint given by 44Ti from our calibration procedure. From the considered parameter

combinations, we obtained the best fit to SN 1987A for the 18.0 M¯ progenitor model

with kPUSH = 3.5, trise = 200 ms, and a fallback of 0.1 M¯. These parameters are summa-

rized in table 4.4. In figure 4.13, we show the temporal evolution of the accretion rates,

of the relevant radii, and of the neutrino luminosities and mean energies for our best

fit model. For comparison purposes, we present also the results obtained for the same

model without PUSH. Note that in this non-exploding case the νe and ν̄e luminosities

stay almost constant over several ∼ 100 ms after core bounce, despite the decreasing ac-

cretion rate. This is due to the relatively slow variation of ṀPNS (for example, compared

with the variation obtained in the 19.2 M¯ model, figure 4.8) and due to the simultaneous

increase of the PNS gravitational potential, proportional to MPNS/RPNS (see, for example,

[179]). A summary of the most important results of the simulations using this parameter

set for the different progenitors in the 18-21 M¯ window is given in table 4.5. For the

remnant mass and for the 56Ni yields of our best-fit model, we provide both the values

obtained with and without assuming a fallback of 0.1 M¯.

4.2.5 Ni and Ti Yields, Progenitor Dependence

Figures 4.11 and 4.12 show that the composition of the ejecta is highly dependent on

the progenitor model, especially for the amount of 57Ni and 58Ni ejected. From the four

HC progenitors shown, two (18.0 M¯ and 19.4 M¯) produce a fairly high amount of those

1Note that we did not modify the explosion energy due to the fallback. This is based on the expectation
that at the late time when fallback forms, the explosion energy is approximately equally distributed
among the total ejected mass, which is about two orders of magnitude higher than our fallback mass.
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Fig. 4.13.: Same as in figure 4.8, but for the SN 1987A best fit model: 18.0 M¯ progenitor, with
ton = 80 ms, trise = 200 ms, and kPUSH = 3.5. Figures taken from [87].
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kPUSH trise ton toff

(-) (ms) (ms) (s)

3.5 200 80 1

Tab. 4.4.: Parameter values for best fit to SN 1987A. We identified the 18.0 M¯ model as the
progenitor which fits best, whereas we had to impose a late-time fallback of 0.1 M¯.
Table taken from [87].

isotopes, while the other two (19.2 M¯ and 20.6 M¯) do not reach the amount observed in

SN 1987A. A thorough investigation of the composition profile of the ejecta reveals that
57Ni and 58Ni are mainly produced in the slightly neutron-rich layers (Ye < 0.5), where

the alpha-rich freeze-out leads to nuclei only one or two neutron units away from the

N = Z line. A comparison of the Ye and composition profiles for the 18.0 M¯ and the

20.6 M¯ progenitors is shown in figure 4.14. For the 18.0 M¯ model, the cutoff mass is

1.56 M¯ and a large part of the silicon shell is ejected. In this shell, the initial matter

composition is slightly neutron-rich (due to a small contribution from 56Fe) with Ye '
0.498 (dotted line in top left graph) and the conditions for the production of 57Ni and
58Ni are favorable. The increase in Ye around 1.9 M¯ marks the transition to the oxygen

shell. The same transition for the 20.6 M¯ model happens around 1.74 M¯, i.e., inside the

mass cut. Therefore, this model ejects less 57Ni and 58Ni (see also [180]). In all our models,
44Ti is produced within the innermost 0.15 M¯ of the ejecta (see figure 4.14). Since we

assume 0.1 M¯ fallback onto the PNS, most of the synthesized 44Ti is not ejected in our

simulations.

4.3 Implications and Discussion

4.3.1 Sensitivities of Nucleosynthesis Yields

While post-processing the ejecta trajectories for nucleosynthesis, Ye is evolved by the

nuclear network independently of the hydrodynamical evolution. This leads to a dis-

crepancy at later times between the electron fraction in the initial trajectory (Y hydro
e ) and

in the network (Y nuc
e ). In order to estimate the possible error in our nucleosynthesis cal-

culations arising from this discrepancy, we have performed reference calculations using

Y hydro
e (t = tfinal) instead of Y hydro

e (T = 10 GK) as a starting value for the network (see sec-

tion 3.3.3). The results are shown in figure 4.14 for two progenitors: 18.0 M¯ and 20.6 M¯.

The label “standard” refers to the regular case which uses Y hydro
e (T = 10 GK) as input.
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Fig. 4.14.: Electron fraction profiles (top) and nuclear compositions at 100 s (bottom) above
the mass cut for the 18.0 M¯ (left) and the 20.6 M¯ (right) progenitors with the
parameters kPUSH = 3.5 and trise = 200 ms. The electron fraction is plotted for two
different times in the network: the input values for the first time step (“input”)
and the value after post-processing (“final”). The dashed lines in all panels corre-

spond to the alternative case, where Y hydro
e (t = 4.6 s) is taken as the initial electron

fraction in the network, whereas the solid lines represent the standard case (using

Y hydro
e (T = 10 GK)). Figures taken from [87].
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ZAMS Eexpl texpl MB
remnant MG

remnant M(56Ni )
(M¯) (Bethe) (s) (M¯) (M¯) (M¯)

18.0 1.092 0.304 1.563 1.416 0.158
18.2 0.808 0.249 1.509 1.371 0.110
18.4 1.358 0.318 1.728 1.549 0.144
18.6 0.702 0.239 1.529 1.388 0.090
18.8 0.721 0.236 1.522 1.382 0.093
19.0 1.366 0.317 1.716 1.54 0.161
19.2 1.356 0.318 1.724 1.546 0.152
19.4 1.15 0.326 1.608 1.452 0.158
19.6 0.371 0.230 1.584 1.433 0.04
19.8 0.661 0.225 1.523 1.383 0.088
20.0 0.613 0.222 1.474 1.342 0.085
20.2 0.379 0.224 1.554 1.408 0.039
20.4 0.743 0.263 1.674 1.506 0.094
20.6 1.005 0.277 1.781 1.592 0.141
20.8 0.959 0.277 1.764 1.578 0.135
21.0 1.457 0.316 1.733 1.554 0.198

18.0 (fb) 1.092 0.304 1.663 1.497 0.073

Tab. 4.5.: Summary of simulations for kPUSH = 3.5 and trise = 200 ms. For the model 18.0 (fb),
which is our best fit to SN 1987A, we have included 0.1 M¯ of fallback, determined
from observational constraints. See the text for more details. Table taken from [87].

The calculation using Y hydro
e (t = tfinal) as input is labeled “alternative” and is represented

by the dashed lines. The point in time at which the Ye profile is shown is indicated by

the supplements “input” (before the first time step) and “final” (at t = 100 s). The corre-

sponding nuclear compositions of the ejecta, each at the final calculation time of 100 s,

are shown in the bottom panels. For the alternative Ye profile of the 18.0 M¯ progeni-

tor (top left) the minimum around 1.59 M¯ disappears, leading to an increase in 56Ni in

this region at the expense of 57Ni and 58Ni (bottom left). For the 20.6 M¯ progenitor the

situation is similar, with only a very small region just above 1.8 M¯ showing significant

differences. In general, we observe that the uncertainties in Ye in our calculations are

only present up to 0.05 M¯ above the mass cut. The resulting uncertainties in the com-

position of the ejecta are very small or even inexistent in the scenarios where we consider

fallback.

The radioactive isotope 44Ti can be detected in SNe and SN remnants. Several groups

have used different techniques to estimate the 44Ti yield [22, 25, 181–185]. The inferred

values span a broad range, (0.5−4)×10−4 M¯. Traditional SN nucleosynthesis calcula-

tions (e.g. [152, 155]) typically predict too low 44Ti yields. Only very few models predict
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high 44Ti yields: Thielemann et al. [180] report 44Ti yields around 10−4 M¯ and above in

the best fits of their artificial SN explosions to SN 1987A. Rauscher et al. [186] argue that

the yields of 56Ni and 44Ti are very sensitive to the “final mass cut” (as we have shown,

too), which is often determined by fallback. Ejecta in a SN may be subject to convective

overturn. To account for this, we can assume homogeneous mixing in the inner layers up

to the outer boundary of the silicon shell before cutting off the fallback material (see, for

example, [187] and references therein). For our best-fit model, the ejected 44Ti mass in-

creases to 2.70 × 10−5 M¯, if this prescription is applied. Comparing to the previous yield

of 1.04 × 10−5 M¯, we observe that the effect of homogeneous mixing is considerable, but

not sufficient to match the observational values. The ejected 56−58Ni masses also show

a slight increase. However, there are also uncertainties in the nuclear physics connected

to the production and destruction of 44Ti. The final amount of produced 44Ti depends

mainly on two reactions: 40Ca(α,γ)44Ti and 44Ti(α, p)47V. Recent measurements of the
44Ti(α, p)47V reaction rate within the Gamow window concluded that it may be consid-

erably smaller than previous theoretical predictions [188]. In this study, an upper limit

cross section is reported that is a factor of 2.2 smaller than the cross section we have used

in our calculations (at a confidence level of 68%). Using this smaller cross section for the
44Ti(α, p)47V reaction, our yield of ejected 44Ti for our best-fit model (18.0 M¯ progenitor,

kPUSH = 3.5, trise = 200 ms) rises to 1.49 × 10−5 M¯ with fallback and 5.65 × 10−5 M¯
without fallback. This corresponds to a relative increase of 43% with fallback and 48%

without fallback. If we include both the new cross section and homogeneous mixing, the

amount of 44Ti in the ejecta is 3.99 × 10−5 M¯ including fallback. This value, however, is

still below the expected value derived from observations, but within the error box.

4.3.2 Wind Ejecta

In the analysis of the nucleosynthesis yields above, we have used a mass resolution of

0.001 M¯ for the tracers. This is too coarse to resolve the ejecta of the late neutrino-

driven wind. Note that in our best-fit approach, where no mixing is assumed, none of

the neutrino-driven wind is ejected because it is part of the fallback. Nevertheless, in

the following we report briefly on the properties of the wind obtained by our detailed

neutrino-transport scheme. For our best-fit model, the 18.0 M¯ progenitor, at tfinal we

find an electron fraction around 0.32, entropies up to 80 kB per baryon, and fast expan-

sion velocities (∼ 109 cm/s). Similar conditions are also found for the other progenitors.

They are not sufficient for a full r-process (see, for example, [189]). On the other hand,

we have found that the entropy is still increasing and the electron fraction still decreas-

ing in the further evolution. The high asymmetries are only obtained if we include the

nucleon mean-field interaction potentials in the neutrino charged-current rates [115].
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However, they are much higher than found in other long-term simulations which also

include these potentials [114, 115, 190]. This could be related to the missing neutrino-

electron scattering in our neutrino transport, which is an important source of thermal-

ization and down-scattering, especially for the high energy electron antineutrinos at late

times, see [191]. More detailed comparisons are required to identify the origin of the

found differences which will be addressed in a future study.

4.3.3 Amount of Fallback

To reconcile our models with the nucleosynthesis observables of SN 1987A we need to

invoke 0.1 M¯ of fallback (see section 4.2.4). The variation in the amount of synthe-

sized Ni isotopes between runs obtained with different PUSH parameters (figure 4.11)

suggests that a smaller trise (and consequently smaller kPUSH) could also be compatible

with SN 1987A observables, if a larger fallback is assumed. On the one hand, assuming

that trise ranges between 50 ms and 250 ms, fallback for the 18.0 M¯ model compatible

with observations is between 0.14 M¯ (for trise = 50 ms) and 0.09 M¯ (for trise = 250 ms).

On the other hand, if the amount of fallback has been fixed, the observed yields (espe-

cially of 56Ni) reduce the uncertainty in trise to. 50 ms.

Our choice of 0.1 M¯ is compatible with the fallback obtained by [141] in exploding spher-

ically symmetric models for progenitor stars in the same ZAMS mass window. More-

over, Chevalier [192] estimated a total fallback around 0.1 M¯ for SN 1987A, which is

supposed to be an unusually high value compared to “normal” type II SNe. Recent multi-

dimensional numerical simulations by [193, 194] confirmed this scenario and further-

more showed that such a hypercritical accretion can lead to a submergence of the mag-

netic field, giving a natural explanation why the neutron star (possibly) born in SN 1987A

has not been found yet.

4.3.4 Compact Remnant of SN 1987A

From the observational side, the compact remnant in SN 1987A is still obscure. From the

neutrino signal (see, e.g., [7, 195] and [196] for a recent detailed analysis) one can con-

clude that a PNS star was formed and that it lasted at least for about 12 s. The mass cut

in our calibration run is located at an enclosed baryon mass of 1.56 M¯ without fallback.

If we include the 0.1 M¯ of late-time fallback required to fit the observed nickel yields

and the explosion energy, we have a final baryonic mass of 1.66 M¯. For the employed

HS(DD2) EOS this corresponds to a gravitational mass of a cold neutron star of 1.42 M¯
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(without fallback) or 1.50 M¯ (with fallback). The CCSN simulations with artificial explo-

sions of [180], where a final kinetic energy of 1 Bethe was obtained by hand and where

the mass-cut was deduced from a 56Ni yield of (0.07± 0.01) M¯, lead to a similar bary-

onic mass of (1.6±0.045) M¯. These authors also wrote that uncertainties in the stellar

models could increase this value to 1.7 M¯ which would also be fully compatible with

our result.

The prediction of the neutron star mass has important consequences. From the observa-

tions of [121] and [122] it follows that the maximum gravitational mass of neutron stars

has to be above two solar masses. The maximum mass of the HS(DD2) EOS is 2.42 M¯,

corresponding to a baryonic mass of 2.92 M¯. If the compact remnant in SN 1987A was a

black hole, and not a neutron star, it means that at least ∼ 0.5 M¯ of additional accreted

mass were required, if we just take the two solar mass limit. If we use the maximum bary-

onic mass of HS(DD2) we even have to accrete ∼1.3 M¯ of additional material. Obviously,

if such a huge amount of material would be accreted onto the neutron star, our predic-

tions for the explosion energy and the nucleosynthesis would not apply any more.

Nevertheless, we have the impression that it would be difficult to fit the SN 1987A observ-

ables and obtain a black hole as the compact remnant at the same time. For spherical

fallback, it is certainly excluded. The only possibility could be a highly anisotropic explo-

sion and aspherical accretion, which we cannot address with our study. To show if such

a scenario can be realized remains a task for future multi-dimensional studies. In the

2D simulations of [161] the remnant mass is decreasing with the explosion energy and

an explosion energy above 1 Bethe would result in neutron stars below ∼ 2 M¯ baryonic

mass. Note that [197] already came to the same conclusion that the formation of a black

hole in SN 1987A “is quite unlikely”, based on 2D simulations with a 15 M¯ progenitor.

Another possibility was proposed by [198]. These authors argued that the time delay of

∼ 5 s observed for the neutrino signal by the IMB detector could be related to a collapse

to a quark star. Due to the proposed faster neutrino cooling of quark stars, this would

give a natural explanation why it has not been observed until today. The end of our

simulations is also around 5 s, thus we can make statements about the conditions at

which the phase transition to quark matter took place in SN 1987A, if the scenario of

[198] was true. We have a central mass density of 4.56× 1014 g/cm3 corresponding to

nc
B = 0.272 fm−3 or nc

B = 1.83 n0
B , a temperature of 23.2 MeV, and an electron fraction

of 0.24. Some simplified models for quark matter predict that the phase transition in

symmetric matter is shifted to higher densities compared with SN conditions [76]. Under

that hypothesis, a phase transition around 2 ρ0 and 20 MeV cannot be excluded.
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A simpler explanation is given by the possibility that a pulsar in the SN 1987A remnant is

simply not (yet) observable. Ögelman and Alpar [199], Graves et al. [200] showed that the

non-detection of any compact remnant puts important limits on the magnetic field the

NS can have (either unusually low or very high, in the realm of magnetars). Furthermore,

for both cases (NS and BH) [200] put severe constraints on currently ongoing accretion

scenarios, e.g., spherical accretion is almost ruled out. Graves et al. [200] conclude that

“it seems unlikely that the remnant of SN 1987A currently harbors a pulsar”. Our simu-

lations would be in line with the option of a neutron star with a very low magnetic field

or with a “normal” magnetic field which is still (partly) buried in the crust due to the late

time fallback, similar to what is observed for neutron stars in binary systems. In this re-

spect, recent high-resolution radio observations of the remnant indicate the presence of

a compact source or a pulsar wind nebula [201, 202]. Future observations will be able to

clarify the nature of this emission.

4.3.5 Correlations

As a byproduct of exploring the 18-21 M¯ window and the fitting procedure to SN 1987A

we have found interesting correlations between different quantities, which we will dis-

cuss here. In figure 4.15, we plot the explosion energy, the explosion time, and the (bary-

onic) remnant mass as function of the progenitor compactness. The results obtained

with the calibrated runs indicate a general trend with progenitor compactness for Eexpl.

The explosion time, texpl, is almost constant within each the LC and the HC group, while

the difference between the two groups is related to the difference between how LC and

HC models explode (discussed in section 4.2.3). The remnant mass increases with com-

pactness, as expected. Nevertheless, we notice significant deviations from the described

trends: for Eexpl and texpl in the HC sample, for Mrem mainly in the LC sample.

Figure 4.16 shows explosion times and explosion energies for all the exploding runs in

our sample. We can identify a correlation between texpl and Eexpl for a given progenitor:

the larger texpl the higher is Eexpl. This correlation is more pronounced for the HC models

than for the LC models.
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Fig. 4.15.: Explosion energies (top), explosion times (middle), and (baryonic) remnant mass
(bottom) as function of compactness for the PUSH parameters of our best-fit model
(kPUSH = 3.3 and trise = 0.15 s) for all progenitors in the 18-21 M¯ window. HC
models are denoted by a red cross, LC models by a blue plus. Our best-fit model for
SN 1987A is highlighted by a filled triangle. Figures taken from [87].
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4.3.6 Heating Efficiency and Residence Time

In the context of CCSNe, the heating efficiency η is often defined as the ratio between the

volume-integrated, net energy deposition inside the gain region and the sum of the νe

and ν̄e luminosities at infinity:

η=
∫

Vgain
ρ ėνe ,ν̄e dV

Lνe +Lν̄e

, (4.7)

see, e.g., [133, 136, 146, 168, 203]. In non-exploding, spherically symmetric simulations,

η usually rises within a few tens of milliseconds after core bounce and reaches its max-

imum around η ∼ 0.1 at t ≈ 100ms, when the shock approaches its maximum radial

extension. As soon as the shock starts to recede and the volume of the gain region de-

creases, η diminishes quickly to a few percents (see, for example, the long-dashed lines

in figure 4.17).

In multi-dimensional simulations, where the shock contraction is delayed or even not

happening, energy deposition is expected to be slightly more efficient (η ∼ 0.10 – 0.15

at maximum) and to decrease more slowly, within a few hundreds of milliseconds after

bounce or at the onset of an explosion (see, for example, [131, 133, 146, 168]). These

differences arise not only because the gain region does not contract, but also because

neutrino-driven convection efficiently mixes low and high entropy matter between the

neutrino cooling and the heating regions below the shock front. Furthermore, convec-
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Fig. 4.17.: Neutrino heating efficiency for the SN 1987A best fit model: 18.0 M¯ model with
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heating efficiency of the corresponding non-exploding model (kPUSH = 0) is also
presented (long-thin dashed lines). Figure taken from [87].

tive motion and SASIs are expected to increase significantly the residence time of fluid

particles inside the gain region during which they are subject to intense neutrino heat-

ing (see, e.g., [133, 134]). Since the increase of the particle internal energy is given by the

time integral of the energy absorption rate over the residence time, this translates to a

larger energy variation [134].

In spherically symmetric models, the imposed radial motion does not allow the increase

of the residence time. This constraint limits the energy gain of a mass element travel-

ing through the gain region. In models exploded using the light-bulb approximation, a

large enough internal energy variation is provided by increasing the neutrino luminosity

above a critical value, which depends on the mass accretion rate and on the dimension-

ality of the model (e.g., [127, 128, 130, 131, 133, 134, 157–160, 175]). Since in our model

the neutrino luminosities are univocally defined by the cooling of the PNS and by the

accretion rate history, we increase the energy gain by acting on the neutrino heating ef-

ficiency. This effect can be made visible by defining a heating efficiency that takes the

PUSH contribution into account, ηtot:

ηtot = η+ηpush =
∫

Vgain
ρ

(
ėνe ,ν̄e +Q̇+

push

)
dV

Lνe +Lν̄e

. (4.8)

In figure 4.17, we plot ηtot as a function of time for our SN 1987A calibration model,

with PUSH (kPUSH = 3.5) and without it (kPUSH = 0). We first notice that the heating
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efficiency provided by νe and ν̄e can differ between exploding (short-thick dashed lines)

and non-exploding models (long-thin dashed lines). In the case of the exploding model,

PUSH provides an increasing contribution to ηtot. It continues to increase steeply up to

t ≈ ton + trise, but also later, up to t ≈ texpl, due to the shock expansion preceding the

explosion. Thus, the increasing heating efficiency in our spherically symmetric models

can be interpreted as an effective way to include average residence times longer than the

advection timescale.
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Fig. 4.18.: Average and maximum heating efficiencies, calculated between t = ton and t = texpl

for the runs obtained with the fitted parameters, table 4.4, and plotted as a function
of the progenitor compactness ξ1.75. The black crosses and the red triangles refer to
the average and the maximum efficiency due to νe and ν̄e (η), while the blue stars
and the magenta squares to the average and the maximum total efficiency (ηtot),
including also the PUSH contribution. Figure taken from [87].

In figure 4.18, we collect the average and the maximum heating efficiencies, for all the

models obtained with the set of parameters resulting from the fit procedure (table 4.4).

Both the average and the maximum values are computed within the interval ton ≤ t ≤
texpl. We plot them as a function of the compactness and we distinguish between η

and ηtot. The maximum of η is usually realized at t ≈ ton, while the maximum of ηtot

is reached around t ≈ texpl (see also figure 4.17). Since the explosion sets in later for

HC models, when texpl & ton + trise, the PUSH factor G (t ) has time to rise to kPUSH for

these models. This increases not only the maximum but also the average ηtot compared

with the LC cases. We notice that all four quantities show a correlation with ξ1.75, but

much weaker in the case of η than in the case of ηtot. Moreover, in the HC region, we

recognise deviations from monotonic behaviors which reproduce the irregularities al-

ready observed in the explosion properties.
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4.3.7 Alternative Measures of the Explosion Energy

In the following, we discuss alternative measures of the explosion energy (introduced

in section 3.3.1) used in the literature for reasons of comparison. We investigate their

behaviors at early simulation times and their general rate of convergence. The quantity

E+
ov(t ) is defined as the sum of the overburden Eov and of the diagnostic energy E+(t ).

This measure of the explosion energy is equivalent to the one defined in equation (3.75):

Eexpl(t ) ≡ E+
ov(t ) = E+(t )+Eov(t ). (4.9)

For long enough simulation times, all matter above the mass-cut should get positive spe-

cific explosion energies, and thus the overburden should approach zero and the diagnos-

tic energy should become equal to the explosion energy Eexpl(t ). The “residual recombi-

nation energy” Erec(t ) [142] given by

E+
ov,r(t ) = E+

ov(t )+Erec(t ) , (4.10)

where Erec(t ) is the energy that would be released if all neutron-proton pairs and all 4He

recombined to 56Ni in the regions of positive specific explosion energy, is an upper limit

for the explosion energy. We call it residual recombination energy to make clear that

this is energy which is not liberated in our simulations, in contrast to the energy of the

recombination processes which we identified in section 4.2.2.
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In figure 4.19, we investigate the behavior of the diagnostic energy E+(t ), and we com-

pare it with our estimate of the explosion energy Eexpl(t ) ≡ E+
ov(t ) and with its upper limit
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represented by E+
ov,r(t ). We want to emphasize that these quantities are obtained from

mass integrals above the time-dependent mass-cut, in contrast to most of the energies

investigated in section 4.2.2, where a fixed mass domain was considered.

While E+
ov(t ) and E+

ov,r(t ) have already saturated to a constant value at t ≈ 1.5 s, even at

t ≈ 4.6 s the diagnostic energy has not yet converged. E+
ov(t ) and E+

ov,r(t ) approach their

asymptotic values from below, and any late time increase (t & 1.5 s) is due to the en-

ergy carried by the neutrino-driven wind ejected from the PNS surface. On the other

hand, E+(t ) reaches its maximum around . 1 s after texpl, when the neutrino absorp-

tion and the nuclear recombination have released most of their energy in the expanding

shock wave, and then it decreases towards E+
ov(t ), since matter with negative total spe-

cific energy is accreted at the shock. The difference between E+
ov(t ) and E+(t ) is mainly

represented by the gravitational binding energy of the stellar layers above the shock front.

Thus, the rate of convergence of the diagnostic energy depends on the amount of grav-

itational binding energy contained in the outer envelope of the star and on the relative

speed at which the shock propagates inside it. Since the gravitational binding energy of

the outer layers is similar between the two explored models, the different rate of conver-

gence depends mostly on the different expansion velocity of the shock wave, which is

larger for more energetic HC models.

Yamamoto et al. [161] found for a 15 M¯ progenitor that the diagnostic energy satu-

rates and thus reaches the asymptotic explosion energy already between 1 and 2 s post-

bounce. This difference to what we find is related to the different progenitors used and,

in particular, to the different binding energy of the outer envelopes, which is expected to

be much smaller for a 15 M¯ progenitor than for a ∼ 20 M¯ progenitor (see, for example,

figure 5 of [204]). Nevertheless, we conclude that the diagnostic energy is in general (i.e.,

without further considerations) not suited to give an accurate estimate of the explosion

energy at early times.

4.3.8 Comparison with other Works

A similar fitting to SN 1987A energetics has been done for multi-dimensional simula-

tions (2D and 3D) using a light-bulb scheme for the neutrinos by [134]. As initial condi-

tions they used a post-collapse model based on the 15 M¯ blue supergiant progenitor

model of [24]. Even if they did not provide the corresponding compactness, the val-

ues of the accretion rate (∼ 0.2 − 0.3 M¯ s−1) and of the electron neutrino luminosity

(∼ 1.8−3.5×1051 erg s−1) at the onset of the explosion are more compatible with our LC

models. In their fitting, only the diagnostic explosion energy E+ was used at a time of
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tpb = 1.5 s when it is expected to have saturated to Eexpl (see [161]). But no estimates

for the nucleosynthesis yields were given. The time when the shock reaches 500 km

(which corresponds for us to texpl) is significantly lower in their models (90-140 ms af-

ter bounce), mainly due to the different extension and evolution of the shock during the

first 100 ms after core bounce. A more detailed quantitative comparison (albeit limited

by the different dimensionality of the two models) requires to use a more similar progeni-

tor. However, the advection timescale and the mass in the gain region are larger than the

corresponding values we have obtained in all our models, as expected from the larger

average residence time resulting from multi-dimensional hydrodynamical effects.

Ugliano et al. [141] also calibrated their spherically symmetric exploding models with the

observational constraints from SN 1987A, and used progenitor models identical to the

ones we have adopted [40]. They also found that the remnant mass and the properties of

the explosion exhibit a large variability inside the narrow 18-21 M¯ ZAMS mass window

(they even found some non-exploding models). However, they did not find any clear

trend with progenitor compactness (for example, their calibration model is represented

by the 19.8 M¯ ZAMS mass progenitor which belongs to the LC sample). The explosion

timescales for models in the 18-21 M¯ ZAMS mass interval are much longer in their case

(texpl ∼ 0.3−1 s), while their range for the explosion energy (0.6 – 1.6 Bethe) is relatively

compatible with ours (0.4 – 1.6 Bethe). Clearly, all these differences are related to the

numerous diversities between the two models.

A possible relation between explosion properties and progenitor compactness has been

first pointed out by [171], who searched for a minimum enhanced neutrino energy depo-

sition in spherically symmetric models. Similarly to us, they found that more compact

progenitors require larger heating efficiency to explode. However, they do not investi-

gate the explosion energy of their models. Moreover, they consider it to be unlikely that

a model which requires η& 0.23 (ξ2.5 & 0.45) will explode in nature. In our analysis, we

have interpreted a large neutrino heating efficiency in spherically symmetric models as

an effective way to take into account longer residence time inside the gain region. We

have pointed out that HC models, characterized by larger ηtot, are required to obtain the

observed properties of SN 1987A. However, these models still have ξ2.5 < 0.45 and our

average heating efficiency are below the critical value of [171].

A clear correlation between explosion properties and progenitor compactness has been

recently discussed by [205]. They performed systematic 2D calculations of exploding CC-

SNe for a large variety of progenitors, using the IDSA to model νe and ν̄e transport. Due

to computational limitations and due to the usage of only a NSE EOS, their simulations

were limited to ∼ 1 s after core bounce. Thus, they could not ensure the convergence
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of the diagnostic energy and could not directly compare their results with CCSN observ-

ables. However, they found trends with compactness similar to the ones we have found

in our reduced sample.

Other authors have also compared the predicted explosion energy and Ni yield from their

models to the observational constraints. For example, [161], using the neutrino light-

bulb method to trigger explosions in spherical symmetry, found a similar trend between

explosion energies and nickel masses as we found (see table 4.5). They also compared to

a thermal bomb model with similar explosion energies and mass cut, and found that the

neutrino heating mechanism leads to systematically larger 56Ni yields. They related it

to higher peak temperatures, which appear because a greater thermal energy is required

to unbind the accreting envelope. They also concluded that the neutrino-driven mecha-

nism is more similar to piston-driven models by comparing with [206]. The problem of

overproducing 56Ni is lessened in the 2D simulations of [161] because of slightly lower

peak temperatures and the occurrence of fallback.

The conclusions drawn in section 4.2.2 about the contributions of nuclear reactions to

the explosion energy are somewhat opposite to what can be found in other works in the

literature. For example, [161] state that the contribution of the nuclear reactions to the

explosion energy is comparable to or greater than that of neutrino heating. Furthermore,

they identify the recombinations of nucleons into nuclei in NSE as the most important

nuclear reactions. However, they also point out that this “recombination energy eventu-

ally originates from neutrino heating”. We think that this aspect is crucial for understand-

ing the global energetics. Indeed, if we had started the analysis presented in figure 4.7 not

at bounce but at texpl we would also have identified a strong contribution from the nu-

clear reactions, given roughly by the difference between −(Emass−Emass,0) at texpl (which

is close to the minimum) and the final value. However, as is clear from the figure, roughly

the same amount of energy was actually taken from the thermal energy before texpl. The

dominant net contribution to the explosion energy originates from neutrino heating, as

is evident from figure 4.6 and as we have discussed in detail in section 4.2.2.

4.4 Summary and Conclusions

The investigation of the explosion mechanism of CCSNe as well as accurate explorations

of all the aspects related with it, is a long lasting, but still fascinating problem. Sophisti-

cated multi-dimensional hydrodynamical simulations, possibly including detailed neu-

trino transport, microphysical EOS, magnetic fields and aspherical properties of the pro-
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genitor structure, are ultimately required to address this problem. The high computa-

tional costs of such models and the uncertainties in several necessary ingredients still

motivate the usage of effective spherically symmetric models to perform extended pro-

genitor studies.

In this work we have presented a new method, PUSH, for artificially triggering parametrized

CCSN explosions of massive stars in spherical symmetry. The method provides a robust

and computationally affordable framework to study important aspects of CCSNe that re-

quire modeling of the explosion for several seconds after its onset for extended sets of

progenitors. For example, the effects of the shock passage through the star, the neutron

star mass distribution, the determination of the explosion energy, or explosive SN nucle-

osynthesis. Here, we have focused on the exploration of basic explosion properties and

on the calibration of PUSH by reproducing observables of SN 1987A. We considered pro-

genitors in the ZAMS mass range of 18 – 21 M¯ which corresponds to typical values for

the progenitor mass of SN 1987A [23].

Unlike traditional methods (such as thermal bombs, pistons, or neutrino light-bulbs),

our method does not require any external source of energy to trigger the explosion nor

a modification of the charged-current neutrino reactions. Instead, the PUSH method

taps a fraction of the energy from muon- and tau-neutrinos which are emitted by the

PNS. This additional energy is deposited inside the gain region for a limited time after

core bounce. The introduction of a local heating term that is only active where electron-

neutrinos are heating and where neutrino-driven convection can occur is inspired by

qualitative properties of multi-dimensional CCSN simulations. We have two major free

parameters, trise, describing the temporal evolution of PUSH, and kPUSH, controlling the

strength. They are determined by comparing the outcome of our simulations with obser-

vations.

Our setup allows us to model the entire relevant domain, including the PNS and the

ejecta. In particular, (i) the thermodynamic properties of matter both in NSE and non-

NSE conditions are treated accurately; (ii) the neutrino luminosities are directly related

to the PNS evolution and to the mass accretion history; (iii) the evolution of the electron

fraction is followed by a radiative transport scheme for electron flavor neutrinos, which

is important for the nucleosynthesis calculations.

We have studied the evolution of the explosion energy and how it is generated. The en-

ergy deposition by neutrinos is the main cause of the increase of the total energy of the

ejecta and, thus, the main source of the explosion energy. The net nuclear binding energy

released by the ejecta during the whole SN (including both the initial endothermic pho-
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todissociation and the final exothermic explosive burning) is positive, but much smaller

than the energy provided by neutrinos. Furthermore, we obtain an approximate conver-

gence of the explosion energy typically only after 1 to 2 seconds and only if the full pro-

genitor structure is taken into account. Vice-versa, we find that the so-called “diagnostic

energy” is, in general, not suited to give an accurate estimate of the explosion energy at

early times.

Our broad parameter exploration has revealed a distinction between high compactness

(ξ1.75 > 0.45) and low compactness (ξ1.75 < 0.45) progenitor models for the ZAMS mass

range of 18 – 21 M¯. The LC models tend to explode earlier, with lower explosion energy,

and with a lower remnant mass. When the HC models explode, they tend to explode

later, more energetically, and producing more massive remnants. This is due to differ-

ent accretion histories of the LC and HC models. The HC models have larger accretion

rates, which produce larger neutrino luminosities, (marginally) harder neutrino spectra,

and a stronger ram pressure at the shock. In order to overcome this pressure a more in-

tense neutrino energy deposition is required behind the shock. And, once the explosion

has been launched, a more intense energy deposition inside the expanding shock is ob-

served. Thus, HC models require more time to explode but the resulting explosions are

more energetic.

The fitting of the PUSH parameters to observations of SN 1987A has lead to several in-

teresting conclusions. The requirement of an explosion energy around 1 Bethe has re-

stricted our progenitor search to HC models. At the same time, our parameter space

exploration has shown that a constraint on the explosion energy is equivalent to a tight

correlation between the two most relevant PUSH parameters, trise and kPUSH: if a certain

explosion energy has to be achieved, a longer timescale for PUSH to reach its maximum

efficiency (trise) has to be compensated by a larger PUSH strength (kPUSH). This degen-

eracy can be broken by including nucleosynthesis yields in the calibration of the free

parameters.

We find an overproduction of 56Ni for runs with an explosion energy around and above

1 Bethe. This problem is observed for all the tested parameter choices and progenitors

that provide a sufficiently high explosion energy. Thus, fallback is necessary in our mod-

els to reproduce the observed nucleosynthesis yields. This fallback could be associated

with the formation of a reverse shock when the forward shock reaches the hydrogen shell.

The relatively large amount of fallback that we use (0.1 M¯) is consistent with observa-

tional constraints from SN 1987A and with explicit calculations of the fallback for explod-

ing models of ∼ 20 M¯ ZAMS mass progenitors [141, 192].
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The production of 57−58Ni is sensitive to the electron fraction of the innermost ejecta. A

final mass cut initially located inside the silicon shell can provide slightly neutron rich

ejecta, corresponding to the conditions required to fit the 57−58Ni yields of SN 1987A.

We found that this is only possible for the 18.0 M¯ and 19.4 M¯ ZAMS mass progenitors,

whereas for the other HC models, characterized by larger ξ1.75, the mass cut is located

inside the oxygen shell. The 18.0 M¯ and 19.4 M¯ ZAMS mass progenitors can explain the

energetics and all nickel yields if fallback is included. For 44Ti, in contrast, we find that

it is underproduced. However, we have shown that uncertainties in the relevant nuclear

reaction rates, together with mixing of the ejecta, can help reducing this discrepancy.

Our work has demonstrated that the progenitor structure and composition are of great

importance for the nucleosynthesis yields. Recently, it has been pointed out that as-

phericities in the progenitor structure could aid the multi-dimensional neutrino-driven

SN mechanism [207–209]. For our work, the compositional changes induced by multi-

dimensional effects in the progenitor evolution [210] would be of particular interest and

could be the subject of future work. However, at present, databases with large sets of

progenitors are only available for calculations that were done in spherical symmetry.

Finally, we have identified a progenitor (18.0 M¯ ZAMS mass, compactness ξ1.75 = 0.463

at collapse) that fits the observables of SN 1987A for a suitable choice of the PUSH pa-

rameters (ton = 80 ms, trise = 200 ms, and kPUSH = 3.5) and assuming 0.1 M¯ of fallback.

The associated explosion energy is Eexpl = 1.092 Bethe, while M( 56Ni) = 0.073 M¯. The

formation of a BH in SN 1987A seems to be unlikely, since it would require a much larger

fallback compared with our analysis and/or an extremely asymmetric explosion. Instead,

we predict that in SN 1987A a neutron star with a baryonic mass of 1.66 M¯ was born, cor-

responding to a gravitational mass of 1.50 M¯ for a cold neutron star with our choice of

the EOS. This will hopefully be probed by observations soon [202].

For our best model of SN 1987A the explosion happens on a timescale of a few hundreds

of milliseconds after core bounce. This timescale is consistent with the overall picture of

a neutrino-driven SN, and broadly compatible with the first results obtained in explod-

ing, self-consistent, multi-dimensional simulations.

From exploring the progenitor range of 18 – 21 M¯ ZAMS mass we found indications of a

correlation between explosion properties and the compactness of the progenitor model.

However, a more complete analysis will require the exploration of a larger set of progen-

itors with the PUSH method. This will be the topic of a forthcoming work. An extended

study considering all possible progenitors for CCSNe in the mass range of 8 – 100 M¯
will be relevant for several open questions in nuclear astrophysics, for example for the
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comparison of predicted to observed explosion energies, neutron-star remnant masses,

and ejected 56Ni (see, e.g., [137]) or for the prediction of complete nucleosynthesis yields

of all elements which is a crucial input to galactic chemical evolution. A full progenitor

study could also give more insight into the extent to which the compactness parameter

affects the SN energetics and nucleosynthesis.
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5Results 2: An Explodability
Study of One-Dimensional
CCSN Simulations 1

„Das Glück des Forschers besteht nicht darin eine

Wahrheit zu besitzen, sondern die Wahrheit zu

erringen...

— M. Planck

The PUSH method, introduced in chapter 3, is a viable tool to investigate the explod-

ability of progenitors by means of the neutrino-driven CCSN mechanism, the resulting

progenitor-remnant connection, and the nucleosynthesis in the ejecta. For the first fit-

ting procedure of PUSH (see chapter 4) the progenitors of Woosley, Heger and Weaver

(2002) [40] (abbreviated with WHW02) with solar metallicity in the mass range between

18 and 21 M¯, corresponding to the progenitor mass range of SN 1987A, were used. In

this chapter the PUSH method eventually is applied to a broad range of progenitors, i.e.

the whole sets of progenitors with solar metallicity from WHW02 and from Woosley and

Heger (2007) [41] (abbreviated with WH07), covering progenitors in the mass range be-

tween 10.8 M¯ and 120 M¯2. This task might initially sound straightforward but experi-

ence taught that the application of PUSH to a larger sample of progenitors covering many

different compactness values needs a more variable approach, i.e., a calibration of the

PUSH method that allows variability of the parameters and not only uses one single fixed

set for all models. This complication is not too surprising, since, after all, the full under-

standing of the nature of the CCSN explosion mechanism has been elusive for decades.

Here, I give an outline of the contents of this chapter. The results of which have been pub-

lished in the two papers Ebinger et al. and Curtis, Ebinger, et al. [88, 140]. As mentioned

1The content of this chapter has been published in an abbreviated version in Ebinger et al. (2018), The
Astrophysical Journal, Vol 870 Number 1 [88]

2The mentioned progenitor models are available online on the webpage,
“http://2sn.org/stellarevolution/”, see also figures 5.1 and 5.2.
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above, the aim of this chapter is to develop a calibration of the PUSH method that can be

applied to the extended ZAMS mass range of the progenitor samples WHW02 and WH07.

To do this, we formulate constraints based on observed CCSN properties (discussed in

section 5.1) and experience resulting from our application of the PUSH framework to

large model samples that the calibration needs to fulfill. Ultimately, the PUSH method

allows us to gain some insight on the explodability and the nucleosynthesis yields of

CCSN explosions and the resulting remnants. This is done step by step, beginning with

the description of the improvements made to PUSH since the version in Perego et al. [87].

After the introduction of the updated heating criteria and a discussion of the dependen-

cies, we present a new calibration model for SN 1987A obtained with the updated PUSH

method.The best fit parameters obtained from a calibration with the new heating crite-

rion to a star from the samples WHW02 and WH07 in the mass range of the progenitor

of SN 1987A are then applied to the whole range of progenitors to study the outcome of

this straightforward extension of the previous work on PUSH [87]. This initial approach

to investigate the explodability of the whole CCSN progenitor mass range leads to robust

explosions for all considered stars if reasonable explosion energies around 1051 erg for

possible progenitors of SN 1987A are imposed as a constraint. We conclude that the idea

of constant PUSH parameters is not able to explain observational data of CCSNe and the

the explodability of the whole range of progenitor models and proceed by searching for

a new approach, introducing a dependency of kPUSH on compactness. To achieve this,

we define a set of constraints that enable us to find a calibration of the PUSH method

with the compactness value. In the literature the compactness value ξM = M/M¯
R(M)/1000km is

commonly evaluated for M between 1.5 and 3.0 M¯, see, e.g., [138, 211–213]. The com-

pactness value used in the previous PUSH investigation [87], where we studied explod-

ing models that were intended to reproduce SN 1987A, was evaluated for M = 1.75 M¯.

Now we want to investigate a much broader ZAMS mass range range of CCSN progenitor

models. This involves the formation of BHs and more massive NSs than in the previous

investigation. Thus, to account for the larger possible masses that are included in the lay-

ers of the progenitor star that are crucial for the neutrino-driven explosion mechanism

as well as the larger possible NS remnant masses and BH formation, we use M = 2 M¯
to evaluate the compactness value ξM = ξ2.0 at bounce, if not otherwise indicated. The

calibration of PUSH is applied to the progenitor sets from WHW02 and WH07 [40, 41]

with solar metallicity and subsequently the results are presented. We also discuss the

remnants of neutrino-driven CCSNe and give their birth-mass distribution. In the last

section we give an outlook on the application of the PUSH method.

122 Chapter 5 An Explodability Study of One-Dimensional CCSN Simulations



5.1 Observational Data of CCSNe and the
Faint SN Branch

Before we go into the details of the calibration process, we want to discuss what can

be expected from the study of CCSNe with the PUSH method and summarize the ob-

servational constraints. As stated in the definition of the PUSH method, we rely on the

neutrino-driven mechanism to parametrize our one-dimensional SN models. An impor-

tant aspect that can be investigated with a PUSH calibration applied to the whole pro-

genitor range for solar, and also low metallicity progenitor stars, is the question which

stars do explode and which stars ultimately form a black hole (BH). This question and in

general the question about the explodability of CCSN progenitors has been also investi-

gated (amongst others) in the works of O’Connor and Ott (2011), Ugliano et al. (2012),

Nakamura et al. (2015), Ertl et al. (2016), Sukhbold et al. (2016), and Müller et al. (2016)

[141, 170, 211, 212, 214, 215]. In figure 5.1 the progenitor masses, different core and en-

velop masses, as well as different compactness values as a function of ZAMS mass for

the two progenitors samples WHW02 and WH07 with solar metallicity are shown. We

see that progenitors of the two solar metallicity sets with the same ZAMS mass can have

very different properties. This indicates that already at the level of the progenitors some

uncertainties are present which then can be reflected in the outcome of the simulations.

The recent observation of gravitational waves of a BH merger event, presented in the

work of Abbott et al. (2016) [216], confirmed the physical reality of gravitational waves.

What it also showed is that BHs with masses between 25 and 35 M¯ do exist in the uni-

verse. Presumably the simplest way to form a BH of a given mass is the collapse of the

corresponding progenitor to a BH. Thus, if the observed merging BHs did form directly

in failed SNe, this and future observations also give hints which progenitors will not form

successful CCSN explosions but collapse to BHs. In this case, the observation of the BH

merger event [216] would suggest that low metallicity stars in the mass range between 25

and 41 M¯ (see table 5.1) can form BHs as can be seen in figure 5.2, were the green band

indicates the mass region of the two observed BHs.

Primary Black Hole Mass 36+5
−4 M¯

Secondary Black Hole Mass 29+4
−4 M¯

Tab. 5.1.: Black hole masses observed in Abbott et al (2016) [216]

Even though solar metallicity progenitors are the main subject of this chapter, in section

5.6 we will give some first results on the explodability of CCSN progenitors of the samples
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(a) Progenitor structure of stars with solar metal-
licity from the WHW02 series in the mass range
between 10.8 M¯ and 40 M¯ [40].

(b) Progenitor structure of stars with solar metal-
licity from the WH07 series in the mass range
between 12 M¯ and 40 M¯ [41].

(c) Compactness of progenitors of stars from the
WHW02 series in the mass range between
10.8 M¯ and 40 M¯ [40].

(d) Compactness of progenitors of stars from the
WH07 series in the mass range between 12 M¯
and 40 M¯ [41].

Fig. 5.1.: The structure and the compactness of the stars contained in the progenitor set
of non-rotating single massive stars with solar metallicity of Woosley, Heger and
Weaver (2002), WHW02 [40], and Woosley and Heger (2007), WH07 [41], are shown.
The plots (a) and (b) show the Fe-core, the CO-core as well as the He-envelope, H-
envelope and the total mass of the star. The plots (c) and (d) show the compactness
ξM = M/M¯

R(M)/1000km evaluated at different enclosed masses, M=1.75 M¯,2.0 M¯ and ,
2.5 M¯.

from Woosley, Heger, and Weaver (2002) [40] with low metallicities, i.e., Z = Z¯× 10−4

and Z = 0. Future observations surely will give more insights into the distribution of BH

masses and with this also give clues on the explodability of CCSN progenitors.

Furthermore, by looking at the observed explosion energies in figure 5.3 it is possible

to define two branches of observed explosion energies of CCSNe above a certain ZAMS

mass of the involved star. For massive stars around or below 21 M¯ a more or less well
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Fig. 5.2.: Progenitor masses as a function of ZAMS mass of the sets from [40, 41]. The green
band indicates the mass range of the recently observed merging BHs, Abbott et al.
(2016) [216].

connected region of SNe energies is observed which also includes SN 1987A. This sug-

gests that the ZAMS mass region in between ∼15-21 M¯ represents a region where the

standard neutrino-driven mechanism is dominating, i.e., which is the driving compo-

nent responsible for the observed explosions. Towards lower masses the explosion ener-

gies slightly decline. This could mark a transition to weaker, “Crab like” SNe. The branch-

ing into two observational seemingly distinct branches of possible explosion energy and

nickel production takes place for stars in the ZAMS mass region above ∼21 M¯, see also

figure 5.3 [46].

One of the branches is given by the observations of very energetic γ-ray burst (GRB)

SNe and Hypernovae (HNe) [46, 145, 217]. For these scenarios rapid stellar rotation and

strong magnetic fields are thought to be crucial, thus, the PUSH method is not designed

to reproduce these observational values. The term HNe originated from the exceptional

brightness caused by a large nickel production in hyperenergetic explosions with ener-

gies of the order of& 1052erg [218–220]. A possible central engine of HNe and GRB SNe

are rapidly rotating BHs (collapsars), where matter around the central object sets free

energy in neutrinos, electromagnetic Poynting flux, and mass outflow. An alternative to

this scenario is a rapidly spinning neutron star with a strong magnetic field of the order

of & 1015 G that is formed during stellar collapse, where the HN or GRB is powered by

rotational energy, which is converted into explosion energy by the magnetic field. As
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briefly mentioned in section 2, in these events the magnetic field strength is increased

due to flux freezing in the collapse phase, curling up of field lines due to rotation, and

potentially amplified by MRI and can lead to the formation of jets and eventually a HN

explosion with an energy of the order of ∼ 1052erg. Another aspect which separates the

neutrino-driven SNe parametrized with PUSH from the HN branch is the limited explo-

sion energy and production of Ni which results from the PUSH method even in the most

energetic explosions. Thus we conclude that the HN branch likely is caused by a differ-

ent mechanism than the neutrino-driven SNe, presumably the magnetorotational one.

Of course one could imagine transitions and couplings between the two mechanisms for

models with certain degrees of rotation.

The second branch represents faint SNe, thus, CCSNe with low explosion energies that

are arguably not supported by a strong magnetorotational central engine. These SNe

mark a transition to failed SNe. This indicates a mechanism that can no longer effi-

ciently power explosions for progenitor models with ZAMS masses above ∼21-25 M¯ and

therefore directly leads to BH formation without an explosion or an explosion that fails

because most of the eventually ejected material falls into the BH. This branch of pre-

sumably neutrino-driven CCSNe can be reproduced with PUSH for a fit of the method

to observational values. The change of typical explosion energies could indicate that a

transition from efficiently neutrino-driven SNe to inefficiently neutrino-driven SNe takes

place. We argue that a possible explanation for this faint branch of CCSNe for more mas-

sive progenitors with higher compactness values marks a transition from efficiently con-

vective neutrino-driven CCSNe of lighter non-rotating stars to less efficiently neutrino-

driven CCSNe of heavier more compact non-rotating stars. Thus, we conclude that the

observation of the faint and the Hypernova branch together with the constraint that Hy-

pernovae are likely to be caused by a different somewhat rarer mechanism, suggests that

the neutrino-driven mechanism “powers” the Faint Supernova branch. Note that the

number of observed Faint and Hypernovae is biased towards Hypernovae since Faint

SNe are weaker and represent the transition to failed SNe that are not well, if at all, ob-

servable. However, definitive consensus on the existence of such a faint branch has, as

of now, not been reached by observers.

In this chapter we develop PUSH into a method that aims to reproduce observed CCSN

properties ranging from the mass region between ∼10-21 M¯ of the region of presum-

ably standard convective neutrino-driven SNe to the faint branch of SNe in the high

mass region above ∼21-25 M¯ with a calibration of its parameters in compactness. To

do this, we compare and fit the PUSH method to observational data that are available

and also compare our spherically symmetric simulations with multi-dimensional simu-

lations. Besides SN 1987A, which we use to gauge PUSH for standard neutrino-driven
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SNe, we also use a collection of other observational data of CCSN events presented in

table 5.2. The presented data are mainly taken from [46, 137] and references therein.
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Event MZAMS Eexpl m(56Ni) References
(M¯) (1051 erg) (M¯)

BL ; S ; L ; O/V∗∗

SN 1987A 18-21 1.1±0.3 0.071±0.003 L 1, 2

SN 1993J 12-17 1-2 0.06-0.09 L 3, 4, 5, 6, 7
0.07-0.11∗ L 8

SN 2004A 12.0±2.1 0.76-1.3 0.046+0.031
−0.017 O/V 3, 9, 10, 11, 12

SN 2004dj 12-15 0.7-0.9 0.020±0.002 O/V 3, 9, 10, 13, 14, 15, 16, 17
SN 2004et 12-15 1.1-1.8 0.062±0.02 S 3, 9, 10, 18, 19

25-29∗ 2.0-2.6∗ 20
0.062±0.02∗ BL 18

8+5
−1

∗ 21
SN 2005cs 9+3

−2 0.27-0.39 0.009±0.003 BL 3, 9, 10, 22, 23
17.2-19.2∗ 0.41±0.03∗ 24

SN 2009kr 11-20 1.6-3 3, 9, 10, 25
SN 2012aw 14-18 1.0-1.7 0.06±0.01 O/V 3, 9, 10, 18, 26, 27

1-2∗ 0.06±0.01∗ 27
1.5∗ 0.05±0.06∗ 28

SN 2012ec 14-22 0.6-1.9 - 3, 9, 10, 29

SN 1994I ~13-15 ~1.0 ~0.07 O/V 30, 31
SN 2005bf ~25−30 ~1.0−1−5 ~0.32 O/V 30, 32, 33

8.3∗ ~2∗ 34

Tab. 5.2.: Compilation of observational properties of CCSNe. Except for the values for
SN 1987A, this table mainly consists of values presented in Bruenn et al. [137]
and Nomoto et al. [46], and references therein. ∗ Values in rows following a given
SN name represent alternative ZAMS masses, explosion energies and the amounts
of ejected nickel. ∗∗ The abbreviations given in the column of the listed nickel
values denote: values obtained with the BL-method (BL), values obtained with the
S-method (S), values obtained with modeling of the lightcurve (L), and values ob-
tained by means of other methods or with a combination of various methods (O/V).
The values for the event SN 1994I given here are taken from Nomoto et al. [46, 221].
See also Bruenn et al. [137] for a discussion on the selection procedure. The used
references are:(1) Blinnikov et al. [21]; (2) Seitenzahl et al. [22]; (3) Bruenn et al. [137];
(4) Shigeyama et al. [222]; (5) Woosley et al. [223]; (6) Young et al. [224]; (7) Bartunov
et al. [225]; (8) Freedman et al. [226]; (9) Poznanski [227];(10) Dessart et al. [228];
(11) Hendry et al. [229]; (12) Maund et al. [230]; (13) Chugai et al. [231]; (14) Zhang
et al. [232]; (15) Maíz-Apellániz et al. [233]; (16) Wang et al. [234]; (17) Vinkó et al.
[235]; (18) Jerkstrand et al. [236]; (19) Sahu et al. [237]; (20) Utrobin and Chugai
[238]; (21) Crockett et al. [239]; (22) Maund et al. [240]; (23) Takáts and Vinkó [241];
(24) Utrobin and Chugai [242]; (25) Fraser et al. [243]; (26) Jerkstrand et al. [244];
(27) Bose et al. [245]; (28) Dall’Ora et al. [246]; (29) Maund et al. [247]; (30) Nomoto
et al. [46]; (31) Nomoto et al. [221]; (32) Janka [44]; (33) Tominaga et al. [248];(34) Fo-
latelli et al. [249]. Table taken and adapted from Ebinger et al. [88].
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(a) Explosion energy as a function of the ZAMS mass of the progenitors for several SN
and HNe reported by different authors.

(b) Ejected 56Ni masses as a function of the ZAMS mass of the progenitors for several SN
and HNe reported by different authors.

Fig. 5.3.: Explosion energy (a) and ejected 56Ni masses (b) as a function of the ZAMS mass of
the progenitors for several SN and HNe reported by different authors, see Nomoto et
al. (2013) [46] and references therein. The values for explosions below 25 M¯ seem to
lie in the region of standard SNe, whereas for explosions for stars between 25-40 M¯
a large variety from faint SNe to HNe (indicated in the figures). These figures are
taken and modified from [46]. Note, the shown figures are intended as an illustration
of the two possible SN branches. The observational properties we use in our study
mainly consists of observational data presented in [46, 137], and references therein,
given in table 5.2.
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5.2 The Entropy-gradient Criterion and
SN 1987A

In this section we will summarize the settings, dependences and degeneracies of param-

eters of the PUSH setup which we will use for new investigations throughout this chapter.

The various constraints that can be applied to a parametrized method and are ultimately

necessary to find a good solution are found in the course of many different tests and

investigations of different aspects. In the following we want to give an overview of the

criteria that eventually are used and the progenitor models that are investigated.

After various explorations it became clear that the PUSH method presented in [87] is

not directly applicable to a larger progenitor set (i.e. exceeding the mass range between

18 and 21 M¯ progenitors with solar metallicity). The main problem being the appar-

ent possibility of a dependence on compactness that should be taken into account. The

compactness dependence of the calibration of PUSH will be discussed in the sections

5.3 and 5.4. In this section we focus on changes of the setup of PUSH. In table 5.3 we

show the different models that are used in the presented investigations and list the dif-

ferent progenitor sets, their resolutions in ZAMS mass, and assign a progenitor name

to them to quickly reference to the different models. Below we give an easy set of rules

that generates the names for the models. Note that the naming system developed histor-

ically and does not follow a consistent intrinsic logic. We investigate the progenitor sets

of solar metallicity by Woosley, Heger and Weaver (2002) [40] and Woosley and Heger

(2007) [41].The different sets and model names are indicated by a letter: “s” denotes the

progenitors with solar metallicity from [40], and “w” denotes the progenitors with solar

metallicity from [41].The indication letter combined with the progenitor ZAMS mass for

“s” and “w” together with the two free PUSH fitting parameters kPUSH and trise defines

the name of a specific run. Here, we use model names that include the indication letter

and the ZAMS mass to refer to a specific model. As an example, s20.0 corresponds to a

model using the 20 M¯ progenitor from the WHW02 series [40] with solar metallicity.

After some initial analysis of PUSH results and a comparison to multi-dimensional re-

sults a change in the PUSH heating criteria was made. The additional energy deposition
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Series Label Min Mass Max Mass ∆m Ref.
(M¯) (M¯) (M¯)

WHW02 s 10.8 28.2 0.2 1
29.0 40.0 1.0 1
75.0 1

WH07 w 12.0 33.0 1.0 2
35.0 60.0 5.0 2
70.0 2
80.0 120.0 20.0 2

Tab. 5.3.: The table shows the letters used in the PUSH run names and the available progenitor
masses for the pre-explosion models with solar metallicity (Z = Z¯) mainly used
in this chapter [40, 41]. The ∆m denotes the mass spacings of available CCSN
progenitor models for each mass interval (Min Mass to Max Mass). The references
for the models are (1) Woosley et al. [40] and (2) Woosley and Heger [41]. This table
is taken and adapted from Ebinger et al. [88].

of PUSH is given by the local heating term, Q+
PUSH(t ,r ) (introduced in chapter 3, equa-

tions (3.63) and (3.64))1,

Q+
PUSH(t ,r ) = 4G (t )

∫ ∞

0
q+

PUSH(r,E)dE ,

with

q+
PUSH(r,E) ≡σ0

1

4mb

(
E

me c2

)2 1

4πr 2

(
dLνx

dE

)
F (r,E),

where (dLνx /dE)/(4πr 2) is the spectral energy flux for any single νx neutrino species

with energy E . From here on, we use the spatial term

F (r,E) =
{

0 if r > Rs or ėνe ,νe < 0

exp(−τνe (r,E)) otherwise
, (5.1)

contained in equations (3.63) and (3.64). In equation 5.1, τνe denotes the optical depth

of the electron neutrinos, s is the matter entropy, ėνe ,ν̄e the net specific energy rate due

to electron neutrinos and anti-neutrinos, and Rs the shock radius. The PUSH method

is only active where electron-neutrinos are heating (ėνe ,νe > 0) behind the shock. The

temporal dependence of PUSH, defined by G (t ) in equation (3.63) remains unaltered

(see also figure 3.2). The implemented shock finder that is used to find the shock radius

has been updated. A gradient based shock search proofed to be problematic for a sub-

1with σ0 being the typical neutrino cross-section σ0 ≈ 1.76×10−44cm2 and mb ≈ 1.674×10−24g an
average baryon mass.
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set of runs and captures different gradients if certain conditions are fulfilled. Thus, we

enhance the performance of this shock finder by using a similar method as in the imple-

mentation of the shock finder used for ELEPHANT in chapter 6, by going from outside to

the inside of the domain and locating the shock where a critical entropy value is reached

(when the entropy exceeds ∼6.5 kB per baryon). Note that the entropy-gradient criterion,

which stated that PUSH could only provide extra heating in regions for which the relation

d s/dr < 0 held true (criterion for possible convection), is no longer included in the spa-

tial heating term.1 Even though the entropy-gradient criterion used previously as one

of the heating criteria in PUSH is physical, it proved to be too restrictive in spherically

symmetric simulations. Unlike spherically symmetric simulations, multi-dimensional

simulations exhibit simultaneous outflow and downflow of matter. These regions of dif-

ferent matter flows and entropies can be at similar distances from the PNS making it a

difficult task for one-dimensional simulations to match their multi-dimensional coun-

terparts. In our simulations the entropy-gradient criterion tends to flatten the entropy

profile, resulting in a self-canceling effect of the parametrized method from the inside to

the outside on a relatively short timescale. Ultimately, it only allowed parameter values

which lead to relatively early explosion times for simulations reaching explosion energies

around∼ 1051 erg. Furthermore, in order to reproduce SN 1987A (in the context here with

a focus on explosion energy), the entropy-gradient criteria made PUSH parameters nec-

essary which were too robust in producing explosions over the investigated progenitor

range and in general confines the allowed parameter space. In figure 5.4 we have a look

at the entropy profiles for both settings around their respective time of explosion with

PUSH parameters that lead to the same explosion energy and compare them to an en-

tropy profile of a two-dimensional FLASH simulation (see [250] and references therein).

See also chapter 6 for further comparisons to multi-dimensional simulations done with

the ELEPHANT code [251]). The entropy profiles of the two PUSH runs at their respec-

tive explosion times are similar. The main difference is the time of explosion itself and

the evolution of the profiles in later stages. The entropy-gradient criterion is good in the

sense that it keeps the entropy at lower values that seem closer to the temporal evolution

available from multi-dimensional simulations after the explosion sets in. As mentioned

above, when combined with the constraint that PUSH needs to allow for explosion prop-

erties compatible with SN 1987A, the implementation of the entropy-gradient criterion

for convective enhanced heating limits the range of possible choices of trise to relatively

small values which leads to rather quickly exploding models and rapid evolutions of the

entropy profile if one wants to match observed explosion energies. In chapter 6 we will

also show that if we compare the shock radii of the two PUSH implementations to an

ELEPHANT model which is performed for the same progenitor model, the larger trise

lead to a better agreement with the shock radii. Thus, the switch to the new implementa-

1See section A.2 in the appendix for a short derivation.
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tion of F (r,E) allows for more flexibility in the fitting of the PUSH parameters which also

includes runs that match explosion energies of one Bethe with explosion times that are

later and therefore in better agreement with the presented multi-dimensional results.
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(a) The entropy per baryon as a function of radius is

shown for a PUSH setup corresponding to the best

fit presented in [87] (kPUSH = 3.5, trise = 200ms and

with the entropy-gradient criterion).

(b) The entropy per baryon as a function of radius is

shown for a PUSH setup with no entropy-gradient

criterion and the free parameters set to kPUSH =
4.0 and trise = 500ms.

100 200 300 400 500 600
Radius (km)

0

5

10

15

20

25

30

35

E
n
tr

o
p
y
 (
k
B
/b

a
ry

o
n
)

t=50 (ms)

t=100 (ms)

t=150 (ms)

t=200 (ms)

t=250 (ms)

t=300 (ms)

t=350 (ms)

t=400 (ms)

(c) The spherically averaged entropy per baryon as a

function of radius is shown for a 2D FLASH setup

which uses the same electron (anti)neutrino

transport [93] (figure courtesy of K.-C. Pan).

Fig. 5.4.: All three simulations done for the 20 M¯ progenitor (w20.0). Such comparisons can
be used as a further fit requirement (in addition to explosion energy and nucleosyn-
thesis yields) for the free parameters of the PUSH method. The PUSH runs have
almost the same explosion energy but different explosion times: (a) Eexpl= 1.12 B,
texpl= 285 ms, (b) Eexpl= 1.14 B, texpl=443 ms.
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To illustrate the effect of the inclusion or exclusion of the entropy-gradient criterion we

show the outcome of different parameter sets (variations of the two free parameters trise

and kPUSH) with respect to resulting explosion energy, remnant mass and explosion time

for one progenitor model. In figure 5.5 we show the resulting explosion energies for the

s18.8 progenitor (a star with solar metallicity and a ZAMS mass of 18.8 M¯). The area

of degeneracy in which the PUSH parameters result in similar explosion energies repre-

sents a degree of freedom with respect to the parameter choice for this quantity.

Fig. 5.5.: The explosion energies for the s18.8 progenitor are shown as a function of trise

for different values of kPUSH. The green band indicates the observational values
of the energy of SN 1987A [21]. The figure illustrates the degeneracy of different
parameter sets with respect to energy which represents a degree of freedom in the
fitting procedure of PUSH. The markers are slightly offset (circles to the right and
triangles to the left with respect to trise) to enhance the readability of the plot. Circles
denote models that do not use the entropy-gradient criterion and triangles denote
models that use it. This figure is taken from Ebinger et al. [88].

In figure 5.6 the dependence of the remnant mass and the explosion time on the variation

of one of the free PUSH parameters is shown. We can tune the PUSH parameters in order

to reproduce the expected order of magnitude of the explosion energy of a CCSN, e.g.,

SN 1987A (∼ 10−51erg), and have the freedom to choose/set different possible explosion

times and/or remnant masses.

In the new PUSH setup the presented freedom in the choice of parameters can be used

for one further change of approach in comparison to the PUSH method presented in [87].

From the comparison of the explosion energies, remnant masses and explosion times

for the s18.8 model with and without the entropy-gradient criterion we see that for sim-

ulations that reproduce the explosion energy constraints of SN 1987A the mass cut lies

much deeper if they were done with the entropy-gradient criterion due to the relatively
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(a) Remnant mass as a function of the PUSH pa-
rameter trise for different kPUSH values.

(b) Explosion time as a function of the PUSH pa-
rameter trise for different kPUSH values.

Fig. 5.6.: The remnant mass and the explosion time of the s18.8 model are shown as function
of trise for different values of kPUSH. Circles denote models with the entropy-gradient
criterion and triangles denote models without the entropy criterion. Note that only
exploding models are included in the plots.

early explosion times that are caused by the need for small trise values in order to reach

explosion energies of the order of ∼1 Bethe, limiting the possible mass accretion onto

the PNS. We find that the larger trise values that are a possible choice for the runs with-

out the entropy-gradient criterion also result in models with a sufficiently high explosion

energy but a mass cut that is located further out due to a later explosion time. The explo-

sion time affects the position of the mass cut and hence also the amount of ejected mass.

Also determined by the location of the mass cut is the total amount of ejected nickel, and

how much material with an electron fraction below 0.5 is ejected (Ye < 0.5) and can con-

tribute to the nucleosynthesis yields, which has an influence on isotope ratios of, e.g.,

nickel, and therefore affects the relative amounts of 57Ni and 58Ni. Furthermore, the po-

sition of the mass cut is also important regarding the question if imposing an amount of
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fallback might or might not be necessary to reproduce observational properties of CC-

SNe, especially of SN 1987A. Where the former setup with the entropy-gradient criterion

limited the choice of a fit for SN 1987A to relatively low trise values (∼200 ms) if one wants

to be in a reasonable explosion energy range, the new setup leaves the choice open and

presents a situation where one can choose between early explosion times with the neces-

sity to impose fallback or later explosion times without the need for additional fallback.

We found that for the new setup we no longer need fallback to get reasonable and consis-

tent results for the nucleosynthesis yields for all the observable values of yields of nuclei

which we take into account in a calibration to SN 1987A (56Ni, 57Ni, 58Ni, 44Ti). Gener-

ally, fallback consists of an early component, which can only be determined in multi-

dimensional simulations, and a late component, which requires simulation times far

longer that what is feasible with the PUSH setup. The late fallback component, caused by

shock reflections at density jumps of outer shell boundaries is not included in this study,

as its effect is considered to be small (see, e.g., Sukhbold et al. [214])1. For the outcome of

the simulations (successful explosion where a NS is formed or failed explosion where a

BH is formed) fallback plays a minor role, since different mass cuts with and without the

entropy-gradient criterion result in a similar ejecta mass after fallback is imposed to fit

nucleosynthesis yields. However, it is not obvious how much fallback should be imposed

for progenitor models that are outside of the mass range of possible SN 1987A progen-

itors. The new setup of PUSH (no entropy-gradient criterion) enables explosions that

have explosion energies and nucleosynthesis yields that are consistent with SN 1987A

without the necessity to impose fallback and allow for temporal evolutions of the shock

radius, neutrino heating rates, and entropy profiles that are not limited to early explo-

sions and show better agreement with multidimensional simulations by [137, 250] (see

also chapter 6). From now on we use the new PUSH setup without entropy-gradient cri-

terion. The first thing we do with the new PUSH setup is to perform the calibration of

the method by reproducing observational properties of SN 1987A for a suitable progen-

itor model. In chapter 4 (which represents the paper PUSH I; Perego, Hempel, Fröhlich,

Ebinger et al. [87]), we calibrated the PUSH method using models from the WHW02 with

solar metallicity in the ZAMS mass range between 18 and 21 M¯ [40]. Two possible cali-

bration candidates for SN 1987A were obtained (s18.0 and s19.4). Both models were able

to reproduce the observed Ni yields when we imposed 0.1 M¯ of fallback by hand. We

repeat the calibration procedure as described in chapter 4 using the progenitor models

from the WHW02 set with ZAMS masses between 18.0 and 21.0 M¯ in order to find a suit-

able candidate able to reproduce the observational properties of SN 1987A. We find that

for the parameters kpush = 4.3 and trise = 400 ms (which represent our calibration param-

eters for SN 1987A, see table 5.4) the s18.8 model is in good agreement with the observed

1The investigation of fallback remains an open point which can be investigated. An option would be an
analytical approach guided by the works [192, 252] and references therein.
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kpush [-] trise [ms] ton [ms] toff [s]
4.3 400 80 1

Tab. 5.4.: Parameter values from the new calibration of the PUSH method to reproduce
observed properties of SN 1987A for the model s18.8 (18.8M¯ ZAMS mass) from
WHW02 [40].

Quantity SN 1987A PUSH
(observed) (s18.8)

Eexpl (1051 erg) 1.1 ± 0.3 1.2
Mprog (M¯) 18-21 18.8
56Ni (M¯) (0.071±0.003) 0.069
57Ni (M¯) (0.0041±0.0018) 0.0027
58Ni (M¯) 0.006 0.0066
44Ti (M¯) (1.5±0.3)×10−4 3.05×10−5

Tab. 5.5.: The observed and calculated calibration properties of SN 1987A are presented.
The s18.8 progenitor star (18.8M¯ ZAMS mass) was identified as the model which
reproduces observational properties of SN 1987A for the parameters kpush = 4.3 and
trise = 400 ms. The presented nucleosynthesis yields for SN 1987A are taken from
[22] except for 58Ni which is taken from [25] and 44Ti which represents the value
from [26]. The value for the explosion energy is adapted from [21]. This table is
taken and adapted from Ebinger et al. [88].

explosion energy and yields of Ni and Ti with no need for any additional fallback. In

table 5.5 the observational properties of SN 1987A and the corresponding values from

our calibration model are summarized. With the exception of 44Ti where we now use the

newer results from [26] instead of [22], the presented observed properties of SN 1987A

are the same as in the first calibration done in chapter 4.
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5.3 Black Hole Formation and the
Constant Parameter Calibration

In this section we want to get a first idea of what to expect from an application of the

PUSH method to the whole progenitor range. We investigate the behavior of one-dimen-

sional simulations of CCSNe with the PUSH setup for a subset across the available pro-

genitor models without the application of the extra heating from PUSH, thus with the

setting kPUSH =0 and follow the initial idea to directly apply the PUSH method with con-

stant parameters (in this section we use the constant test parameters kPUSH = 4.0 and

trise = 400 ms) to a broader range of progenitors without any dependence on their prop-

erties. The application of a constant parameter set across the ZAMS mass range is done

to check if this represents a reasonable choice for usage of the PUSH method, and is sim-

ilar to the analysis done for a limited ZAMS mass range between 18 and 21 M¯ in Perego

et al. (2015) [87]. These investigations are performed using the progenitor sets s and w

with solar metallicity from WHW02 and WH07 [40, 41].

Self-consistent state of the art spherically symmetric simulations of CCSNe do not lead to

explosions via the delayed neutrino-driven mechanism (see e.g. [56]). The reason being

the lacking dimensionality that is the basis for many of the proposed explosion mech-

anisms (e.g. the convective neutrino-driven, the SASI, the acoustic, and the magneto-

rotational mechanism, see also section 2.4), with the exception of the phase transition

mechanism, which leads to successful SN explosions in one-dimensional models [60, 76].

The timescales on which the different models undergo collapse can depend on the struc-

ture of the progenitor and on the EOS that is used. The presented investigation of self-

consistent one-dimensional models is done in order to disentangle aspects - other than

the CCSN explosion mechanism - that have an influence on BH formation. Therefore,

here we investigate the effect that different choices of the EOS and of the progenitor

model can have in our one-dimensional simulations. We perform simulations for two

EOS (SFHO and DD2, [95, 118, 253]). The two considered progenitor samples with so-

lar metallicity provide us with different initial models for progenitors of several ZAMS

masses and thus can also give an insight on the effects of uncertainties of progenitor

models on the outcome of CCSN simulations. Figure 5.7 shows the temporal evolution

of the central densities of two different progenitor models of a 40 M¯ ZAMS mass star

with solar metallicity (WH07 [41] in green and WHW02 [40] in blue) and two equations

of state (HS(DD2) solid lines, SFHO dashed lines, [95, 118, 253]). The dependence of the

BH formation time (BH formation starts to occur for central densities of∼ 1015g cm−3) on

the EOS (indicated by the colored areas) and the even stronger dependence on the pro-
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genitor model for this progenitor ZAMS mass (difference between green and blue lines)

is evident. Thus, both aspects can have an influence on the explodability of numerical

models since they set an estimate for the upper limit of the timescale on which a delayed

mechanism should revive the stalled shock with the collapse time to a BH. Besides the

observation that uncertainties in progenitors can have a large impact (difference of green

and blue region in figure 5.7) we see that models with the EOS SFHO collapse faster than

the ones using HS(DD2). In figure 5.8 the BH formation times for a subset of different

progenitor ZAMS masses are given. The differences of the BH formation times between

the progenitors can be related to different accretion rates, which are correlated to com-

pactness ξM (the compactness of the progenitors is shown e.g. in figure 5.1).

Fig. 5.7.: Temporal evolution of the central density of a 40 M¯ ZAMS mass star with solar
metallicity for two progenitor models (WH07 [41] in green and WHW02 [40] in blue)
and two equations of state (HS(DD2) solid lines, SFHO dashed lines, [95], [118]). The
gravitational PNS masses at collapse are displayed next to the corresponding central
density curves. This figure is taken from Ebinger et al. [88].

From the collapse timescales we obtain for the reduced sets of progenitor models (see fig-

ure 5.8) we can draw first conclusions on the explodability of the different progenitors. As

expected, the progenitors with higher compactness have a shorter collapse time, namely

the progenitor with 25 M¯ ZAMS mass and the progenitors with a ZAMS mass that is

larger than 35 M¯. Also, the progenitor models of the WH07 set collapse to BHs on a

shorter timescale overall. The relation between the collapse timescale and compactness,

is also discussed in other works (see, e.g., [211]). The observed BH formation timescales

of the self-consistent one-dimensional CCSN simulations in the PUSH setup interpreted

as an upper boundary for the delayed neutrino-driven mechanism gives a first estimate
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Fig. 5.8.: Black hole formation times for a sample of progenitor star ZAMS masses from two
progenitor samples with solar metallicity (WH07 [41] in green and WHW02 [40] in
blue) and two equations of state are shown (see also figure 5.7). Note that the shorter
BH formation time for each progenitor corresponds to a model that is using the
SFHO EOS. This figure is taken from Ebinger et al. [88].

of the range of progenitors that will not explode and eventually form BHs. In the simu-

lations presented here, the candidates for BH formation are models with relatively high

compactness ξ2.0>0.5. From this, we expect that (at least some) progenitor models with

a compactness value ξ2.0>0.5 do not explode and end up as black holes. This will later be

summarized as a constraint on the PUSH method when it is applied to a full sample of

progenitor models.

In figure 5.9 we show the resulting explosion energies together with the compactness

value ξ2.0 of the constant application of PUSH parameters for the progenitors of the s

and w sets. We quickly see that this does not lead to the expected outcome. Further-

more, we come to the conclusion that these results can not explain observations and

are partially even opposite to the expected behavior with respect to explosion energy of

neutrino-driven CCSNe (see also section 5.1 and , e.g., compare the figures 5.3 and 5.9).

The induced explosion energy of PUSH shows a trend with compactness that needs to be

taken into account in future calibrations. The presented constant calibration of PUSH re-

produces observational values for stars with a ZAMS mass between 10 and 20M¯. Note

that for lighter stars it results in explosion energies that are maybe slightly too high. For

higher ZAMS masses, especially in the high compactness regions between 20 and 25M¯
and above 35M¯ the resulting explosion energies do not agree with the expected and ob-
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served trends of the faint branch and are too low to fall into the HNe branch1. The fact

that for a constant PUSH parameter set not a single BH was formed over the whole pro-

genitor range is opposite to our expectations and the general trend in the literature (see

e.g. [141, 170, 211]). We conclude that a different approach is needed.

In addition, figures 5.10 and 5.11 show the compactness together with the explosion en-

ergy (color coded) as a function of ZAMS mass and the explosion energy together with

the CO-core mass (color coded) as a function of compactness. The constant PUSH cal-

ibration runs provide a good opportunity for a search of different dependencies. One

interesting aspect that is noticeable is the degeneracy with respect to compactness of

several models with different explosion energies. We identified the compactness as an

important variable to determine the explosion properties. By looking at the differences

between these degenerate models (besides explosion energy) we can identify further

quantities that can have an effect on the explosion energy of the models. The different

explosion energies observed for the models that are degenerate in compactness have dif-

ferent CO-core masses. A first observation is that a higher CO-core masses correlates

with a lower explosion energy for models with similar compactness. This can be well

seen in the figures 5.10 and 5.11, where a region of degeneracy in compactness is indi-

cated by the green band to guide the eye. All models with the same compactness that lie

on opposite sides of the high compactness peak around 24 M¯ show a similar difference

in explosion energy even though the models have the same compactness. This gap in

explosion energy between the two groups of CO-masses is also present in the standard

calibration of the PUSH method.

1The explosion mechanism in the HNe branch is rare and likely not neutrino-driven.
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(a) Explosion energy for the progenitor set with solar metallicity from
WHW02 [40] in the mass range between 10.8 M¯ and 40 M¯ for the
application of constant PUSH parameters kpush and trise. The color
bar describes the compactness corresponding to the progenitor.

(b) Explosion energy for the progenitor set with solar metallicity from
WH07 [41] in the mass range between 12 M¯ and 40 M¯ for the
application of constant PUSH parameters kpush and trise. The color
bar describes the compactness corresponding to the progenitor.

Fig. 5.9.: The presented values of the explosion energies in figures (a) and (b) show that the
faint branch can not be reproduced with a constant application of PUSH parameters
kpush = 4.0 and trise = 400 ms. The black error bars indicate observational values
given in table 5.2.
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Fig. 5.10.: Compactness and explosion energy of the progenitor set s from WHW02 as a
function of ZAMS mass for simulations with constant PUSH parameters kpush

and trise. The green band indicates models with similar compactness values but
different explosion energies.

Fig. 5.11.: Explosion energy and CO-core masses of the progenitor set s from WHW02 as a
function of compactness for simulations with constant PUSH parameters kpush and
trise. The green band indicates models with degenerate compactness but different
explosion energies.
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5.4 The Calibration of the PUSH Method
Across the Mass Range

The PUSH method is a parametrization of the neutrino-driven mechanism. The pur-

pose of the method is to enable the investigation of CCSNe and their outcome in spher-

ically symmetric simulations. In the last chapter we have seen that the application of a

constant PUSH parameter to progenitors across the ZAMS mass range is not suited for

an investigation of properties of neutrino-driven CCSNe. In this section we introduce

requirements based on general features of CCSN observations that the PUSH method

should fulfill when it is applied for large progenitor samples with a wide distribution

in ZAMS masses. These requirements are formulated in the form of constraints on the

parametrized framework of PUSH. By introducing a dependence in compactness we suc-

cessfully calibrate the method and apply it to the solar metallicity progenitor models of

WHW02 and WH07 in order to investigate the explodability, the progenitor-remnant con-

nection and the nucleosynthesis yields of neutrino-driven CCSNe. For the calibration we

use the compactness values at bounce that is shown together with the initial compact-

ness of the used progenitor models in figure 5.12.

Let us introduce the constraints on the PUSH method that represent the main guidance

in the calibration process. In addition to a possible fit to SN 1987A we also require that

our calibration allows the possibility of formation of black holes and not only leads to ro-

bust explosions, as it is the case for a constant PUSH parameter set (see previous section).

Furthermore, the PUSH calibration should also reproduce the lower explosion energies

of observed CCSNe of less massive progenitors. Thus, in summary, applied across the

ZAMS mass range of the investigated progenitor star models of CCSNe the PUSH method

should:

(i) be able to reproduce the observational properties of SN 1987A for a suitable pro-

genitor model,

(ii) allow for the possibility of black hole formation, and

(iii) result in lower explosion energies for stars with ZAMS masses of . 13 M¯ (“Crab-

like SNe”).

Our aim is to find a calibration for the whole progenitor range. A connection between

the compactness and the resulting progenitor-explosion and progenitor-remnant con-
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nection has been pointed out first by O’Connor and Ott (2011) and was later investigated

and supported by Ugliano et al. (2012) and others [141, 170, 211, 212]. In the following,

we introduce a dependence of the extra heating of PUSH on compactness in order to ob-

tain a calibration that is suited to study explosion and remnant properties. It is obvious,

that we can reproduce the observed properties of SN 1987A by requiring that the PUSH

parameters are set to the calibrated values for the suited progenitor model. Our best fit

model of SN 1987A is the model s18.8 (see previous section). When we consider the col-

lapse timescales we obtained from our investigation of self-consistent one-dimensional

SN simulations, we see that more compact progenitors have a shorter BH formation time.

Interpreting the BH formation time of these simulations as an estimate of the upper limit

of the time on which the neutrino-driven mechanism can revive the stalled shock and

successfully launch an explosion, we relate higher compactness values with a trend to-

wards weaker and failing explosions. Thus, by decreasing the parametrized extra heating

above a critical compactness we allow for the possibility of BH formation and fulfill one

of our constraints. In the previous section (see figure 5.2) we have seen that for a con-

stant application of the PUSH parameters to all progenitor models we obtain explosion

energies that are slightly too high for less massive stars. In figure 5.12 we see that pro-

genitor models with lower ZAMS mass coincide with a lower compactness. Due to this

correlation we can reduce the extra heating below a threshold compactness in order to

fulfill the last requirement. Many tests and calibrations have been performed and large

amount of data have been generated1 in the course of the search for a possible calibra-

tion of the PUSH method. I will not list all attempts here in detail but rather give an

overview and collect the main constraints that a calibration for the whole compactness

range must fulfill in order to be in agreement with observations and some insights from

multi-dimensional simulations. This as a result allows us to draw conclusions on the

possible outcome of neutrino-driven CCSNe. If a certain aspect of the fitting process

can be illuminated by certain tests they will be presented. In the calibration process we

also made use of progenitors that now are obsolete. To still show the process of finding

a calibration, we show the intermediate calibration steps and whenever a now obsolete

old star model is used we will mention it. The final calibrations of PUSH that is using

the calibration against SN 1987A for the s18.8 model with the best fit parameters given in

table 5.4 can be found at the end of this section. We restrict the number of free parame-

ters that can be tuned with compactness to one of the two free PUSH parameters: kPUSH.

Thus, the calibration of the PUSH method is represented by the function kPUSH(ξ). The

sheer amount of runs necessary to disentangle effects of the changes of two parameters

with compactness did not seem promising with respect to the expected gain in physi-

cal insight from the parametrized method and goes beyond the scope of this work.This

1Even though a single run of a PUSH model in total only needs about 1GB of disk storage, the investiga-
tion of large parameter and progenitor sets quickly can lead to large amounts of data.
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chapter represents the fitting of PUSH to observational values where mainly the explo-

sion energies have been used since this quantity is readily available with the usage of

the tracer tool and allows for a comparison to a larger data set. In addition, also post

processing computations of nucleosynthesis yields have been made to verify that the re-

sulting yields are in a reasonable range (for the best fit of SN 1987A this constraint was of

course used an the same footing as the explosion energy). In chapter 6 we also compare

the results of the PUSH method to multi-dimensional simulations performed with the

ELEPHANT code.

Now we show how the requirements that the PUSH method should fulfill translate into

constraints on the calibration of kPUSH with compactness. Note, that we use the com-

pactness at bounce since it marks the exact same point during the evolution, or rather

the death, of the different stars and removes possible biases of the final states of the

progenitor models. In figure 5.12 we show the compactness values at the onset of col-

lapse and at bounce for the progenitor sets with solar metallicity from Woosley, Heger

and Weaver (2002) and Woosley and Heger (2007) [40, 41]. With the usage of a constant

parameter calibration ruled out, the investigated calibrations for kPUSH consist of var-

ious kinds of linear decreasing calibrations and linear calibrations with plateau values

towards smaller compactness values to stay in a reasonable explosion energy range for

less compact stars.

Any calibration of PUSH has to include a best fit for SN 1987A, i.e., a model that repro-

duces the observed properties with a parameter kPUSH, resulting in a calibration point at

the compactness value of the best fit model. The constraints concerning the weaker ex-

plosion energy in the low compactness region and the BH formation for more compact

stars result in fitting points similar to the fitting point given by the best fit of SN 1987A.

The compactness values of progenitors for ZAMS masses below 21 M¯, which represents

also the upper limit of the mass range of the possible SN 1987A progenitors (that we

assume to be the standard of neutrino-driven explosion forming models) are below a

compactness of ξ2.0 = 0.4−0.5. In a first attempt to emulate a transition from the stan-

dard convective neutrino-driven mechanism to a regime of less efficiently convective

neutrino-driven mechanism and eventually to BH formation we tuned the kPUSH param-

eter linearly down above the compactness value of ξ2.0 = 0.4−0.5. This approach results

in a satisfactory calibration to the observed explosion energies of CCSNe for the high

compactness, BH forming region. From this calibration of PUSH we get the constraint

that the parameter kPUSH is set to zero at compactness values of ξ2.0 = 0.7 and beyond.

We call the calibration of kPUSH which consists of a plateau representing the fit parameter

value of SN 1987A (see table 5.4) that is tuned down above a compactness ξ2.0 = 0.4−0.5

a plateau calibration from now on.
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(a) Compactness ξ2.0 of progenitors with solar
metallicity from WHW02 [40] for all progeni-
tors of the set.

(b) Compactness ξ2.0 of progenitors with solar
metallicity from from WH07 [41] for all progen-
itors of the set.

(c) Compactness ξ2.0 of progenitors with solar
metallicity from WHW02 [40] for a reduced
range up to 40M¯.

(d) Compactness ξ2.0 of progenitors with solar
metallicity from WH07 [41] for a reduced range
up to 40M¯.

Fig. 5.12.: The compactness ξ2.0 of the used progenitors from WHW02 and WH07 [40, 41]
with solar metallicity is shown. In figures (a) and (b) all progenitors of the sets are
shown. Figures (c) and (d) show a reduced set. Many of the progenitors do not
show big differences between the compactness values at the onset of collapse and
at bounce but for the most compact progenitors, there is a clearly visible increase
of compactness at bounce.

Observations of the explosion energies of less massive progenitors also indicates reduced

values towards lower compactness values. We tuned PUSH down from the kPUSH fit pa-

rameter of SN 1987A towards lower compactness values in order to reproduce the lower

observed values of explosion energies for the relatively low-mass CCSN progenitor mod-

els. Different initial values of the kPUSH parameter towards zero compactness were tested
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and eventually kPUSH = 2.5 was chosen as the fitting point out of the simulation series

sample. This additional decrease towards lower compactness values from the initially

constant parameter value of kPUSH leads to the calibration of the PUSH method that we

will call trapezoidal calibration from now on. We summarize the two calibration points

for lower and higher compactness values that result from the briefly described fitting

processes in table 5.6.

kPUSH(ξ2.0 = 0.0)) [-] kPUSH(ξ2.0,BF )) [-] kPUSH(ξ2.0 = 0.7)) [-]

2.5 4.3 0.0

Tab. 5.6.: Fitting points which are used as constraints for the final kPUSH dependence on ξ2.0

for low and high compactness values. Additional , we also need the constraint for
ξ2.0,BF = 0.245, which denotes the compactness of the best fit model for SN 1987A,
s18.8 (see also table 5.4).

The calibration points from table 5.6 together with the fit parameters of SN 1987A result

in three constraints on kPUSH. Ultimately, assuming a polynomial dependence of kPUSH

on compactness and, given the three calibration points, we consider a paraboloidal de-

pendence:

kPUSH(ξ) = aξ2 +bξ+ c. (5.2)

As we mentioned above, we also tested other piece-wise linear dependences of kPUSH on

the compactness value. The results of these different calibrations are very similar, con-

firming that our results are not sensitive to the choice of the functional dependence of

kPUSH. In figure 5.13 we show the different possible choices for kPUSH. To give an im-

pression of the different possibilities and the resulting outcome of the fitting function for

the different calibrations we present a comparison between the paraboloidal (2) and the

trapezoidal calibration in figure 5.14. We know from section 5.3 that a constant PUSH cal-

ibration leads to too high explosion energies for low and high compactness values and

does not form any BHs. Too high explosion energies for low compactness values rule out

the the plateau calibration of PUSH. The paraboloidal and the trapezoidal calibration

show very similar behavior and good agreement with observations. The paraboloidal

calibration seems to be the most natural way to construct a parameter dependence on

compactness from the three fitting points and has a smoother behavior than the other

calibration possibilities. Thus, we choose a parabola as the function that describes the

kPUSH(ξ2.0) function which from here on represents our standard calibration. In figure

5.15 we show the compactness dependence of the kPUSH parameter together with the

three constraints of the standard calibration (in this calibration the model that repro-

duces SN 1987A is s18.8). Let us summarize the calibration values of the parabolic depen-

dence of kPUSH, that represents our standard calibration of the PUSH method which has
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the form kPUSH(ξ) = aξ2 +bξ+ c. The calibration parameters which define the standard

calibration of the PUSH method used from here on between the compactness values 0.0

and 0.7 with the best fit model of PUSH that reproduces SN 1987A s18.8 with kPUSH=4.3

are

a =−23.99

b = 13.22

c = 2.5.

(5.3)

Note that the parameter trise is fixed to 400 ms.

Fig. 5.13.: The different possible calibrations for the compactness dependence of the kPUSH

parameter are given. The blue dots denote the calibration points for two test fits
to SN 1987A (for now obsolete progenitor models) and the black dots summarize
the constraints for low and high compactness values that have been tested. This
figure is intended to illustrate the different calibrations and how different versions
overlap for certain compactness values. The paraboloidal (2) and the trapezoidal
calibrations are compared to show the relative independence of the PUSH method
on the specific choice of kPUSH in figure 5.14.

Now, we apply the standard calibration to both series of progenitor models with solar

metallicity. In figure 5.16, we show the resulting explosion energies and the amount of

ejected 56Ni as a function of ZAMS mass for the standard calibration. We also have a look

at the amount of ejected 56Ni against the explosion energies of all the progenitors in the

s and w sets in figure 5.17. For both progenitor samples we see a rise from relatively low

explosion energies for lighter stars that form “Crab like” SNe to robust explosions with

energies between 0.8 and 1.6 Bethe between 15 and 21M¯ which is believed to be the
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(a) Explosion energies of progenitors from [40] up to 40M¯ ZAMS mass.

(b) Explosion energies of progenitors from [41] up to 40M¯ ZAMS mass.

Fig. 5.14.: The explosion energies for the trapezoidal and the paraboloidal calibration 2 of
PUSH for progenitor samples with solar metallicity from [40, 41] are shown in
figures (a) and (b). Note that only exploding models are shown.

range of the standard convective neutrino-driven mechanism. A region of BH formation

lies in the high compactness ZAMS mass range between 22M¯ and 26M¯ (see also fig-

ure 5.12). These stars represents stellar models that have an increased carbon-oxygen

core mass in comparison to lower ZAMS mass models and also have still major parts of

their hydrogen and helium envelopes. This peak in compactness is followed by a patch

of exploding models that have lost most of their hydrogen and helium envelopes with
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Fig. 5.15.: The compactness dependence of the kPUSH parameter is shown together with the
three constraints of the standard calibration of PUSH: (i) kPUSH =2.5 at ξ2.0 = 0.0, the
left black dot (“Crab-like SNe” for lower ZAMS masses), (ii) kPUSH =4.3 at ξ2.0 = 0.245,
the red dot (calibration model s18.8 for SN 1987A), (iii) kPUSH =0.0 at ξ2.0 > 0.7,
right black dot (BH formation). This figure is take from Ebinger et al. [88]

lower compactness. Above 30 M¯ the compactness of the progenitors increases again

with higher CO-core and iron core masses. Progenitors beyond 35 M¯ can form BHs

for the w progenitor set that has higher carbon-oxygen core and iron-core masses as

well as higher hydrogen and helium envelope masses. The progenitors for stellar models

with ZAMS masses above 50 M¯ of both sets explode (see figures 5.19 and 5.20). This

explodability behavior is similar as in the works by O’Connor and Ott (2011) [211] (see

also figure 2.1 that is from [40]). In section 5.7 we show the first preliminary results ob-

tained for the explodability of the low metallicity progenitor sets u and z [40]. For the

amount of ejected 56Ni we see a good agreement with observations in the mass range

between 10 and ∼21 M¯ where a linear rising trend is emerging for stars between 10 and

about 20 M¯ ZAMS mass. For the heavier progenitors of these sets we obtain explosions

as well as ejected nickel masses. These stars explode and they eject similar amounts of
56Ni. Due to the correlation of ejected mass of 56Ni and the explosion energy, stars with

different masses but with the same explosion energy eject similar amounts of 56Ni. For

the low-metallicity sets u and z the high-mass range does not explode (see section 5.7).

Note that stars heavier than 40 M¯ are considerably less abundant than stars with ZAMS

between 10 and 20 M¯ since the birth masses of stars follows the initial mass function

(IMF) (see, e.g., [254–256]1).The yields obtained by post-processing trajectories from the

1In the appendix we briefly describe the IMF (see A.3).
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PUSH simulations (published in Curtis et al. [140]) can be used in calculations of the

galactic chemical evolution.

We also investigate a different calibration of the PUSH method to the constraints by us-

ing the compactness value evaluated at a mass of 1.75M¯ that we call second calibra-

tion. The compactness value ξ1.75 is more strongly depending on the iron core mass and

shows a slightly different behavior than the compactness value ξ2.0 used previously. In

figure 5.18 we show kPUSH of the second calibration and the resulting explosion energies

compared to the observed values. The parameters of the second calibration of kPUSH

are a =−25.05, b =−13.96, and c = 2.5 (paraboloidal function in the compactness value

evaluated at 1.75M¯). A summary of the outcomes of CCSN simulations obtained for the

standard and the second calibration for both investigated progenitor samples with solar

metallicity is shown in figure 5.19. We see that the second calibration results in a lower

explodability overall and leads to a larger fraction of faint explosions and black holes. In

this chapter we showed that with a calibration in compactness we obtain an effective

model to investigate the properties of neutrino-driven CCSNe. The standard calibration

is in good agreement with the constraints we formulated based on observational data

and will be used to investigate the outcome of CCSN simulations for the full ZAMS mass

range of available CCSN progenitor models.
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(a) Explosion energy for the progenitor sets with solar metallicity from
[40, 41] in the mass range between 10.8 M¯ and 40 M¯. Vertical
dashes at the bottom of the figure indicate ZAMS masses for which a
BH was formed.

(b) Amount of ejected 56Ni for the progenitors with solar metallicity from
[40, 41] in the mass range between between 10.8 M¯ and 40 M¯.

Fig. 5.16.: The upper figure shows explosion energies as function of ZAMS mass for observed
supernovae (black crosses with error bars), for progenitor models from WHW02
(blue circles) and WH07 (green stars) from the standard calibration of the PUSH
method. The vertical dashes at the bottom of the figure indicate ZAMS masses for
which a BH was formed. The lower figure shows ejected 56Ni masses as function
of ZAMS mass for the same models. In both figures, black crosses with error bars
represent observational data and the red triangle indicates the calibration model for
SN 1987A, s18.8. Note that the lower left black cross in the lower panel represents
SN 2005cs with ZAMS mass of 9 M¯ which is below the mass range of our models.
Figure (a) is taken from Ebinger et al. [88]. Figure (b) uses values from computations
done in Ebinger et al. [88] and Curtis et al. [140].
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Fig. 5.17.: The figure shows ejected 56Ni masses as function of explosion energy for the solar
metallicity WHW02 progenitor sample (blue circles) and the WH07 progenitor
sample (green stars) for the standard calibration of the PUSH method. Crosses with
error bars represent observational data and the red triangle indicates the calibration
model for SN 1987A, s18.8. Note that the lower left black cross in the lower panel
represents SN 2005cs with ZAMS mass of 9 M¯ which is below the mass range of
our models. This figure is taken from Ebinger et al. [88].
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(a) Explosion energies for the progenitor sets with solar metallicity from
[40, 41] in the mass range between 10.8 M¯ and 40 M¯. Vertical
dashes at the bottom of the figure indicate ZAMS masses for which a
BH was formed.

(b) Compactness dependence of kPUSH for the second calibration.

Fig. 5.18.: The upper figure shows explosion energies as function of ZAMS mass for observed
supernovae (black crosses with error bars), for progenitor models from WHW02
(blue circles) and WH07 (green stars) from the second calibration of the PUSH
method, which results in lower explosion energies and is more prone to BH for-
mation. The vertical dashes at the bottom of the figure indicate ZAMS masses for
which a BH was formed. The lower figure shows the compactness dependence
of the PUSH parameter kPUSH for the second calibration together with the con-
straints: (i) kPUSH =2.5 at ξ1.75 = 0.0, the left black dot (“Crab-like SNe” for lower
ZAMS masses), (ii) kPUSH =4.3 at ξ1.75 = 0.3551, the red dot (calibration model s18.8
for SN 1987A), (iii) kPUSH =0.0 at ξ1.75> 0.7, right black dot (BH formation). These
figures are taken from Ebinger et al. [88].
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Fig. 5.19.: The explosion outcomes for the standard and the second calibration for the two
progenitor sets are shown against ZAMS mass. Colored regions indicate exploding
models that leave behind a NS as a remnant and black regions indicate BH forma-
tion. The lower two panels (darker colors) show the standard calibration and the
upper two panels (lighter colors) show the second calibration. This figure is taken
and adapted from Ebinger et al. [88].
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5.5 Explosion Properties of
Neutrino-driven CCSNe with PUSH

In this section we show, analyze, and discuss the explosion properties of the CCSN sim-

ulations done with the PUSH method for the entire WHW02 and WH07 samples with

solar metallicity based on the standard calibration introduced in this chapter. The pro-

genitor model samples include ZAMS masses between 10.8 and 120M¯. An overview of

the predicted explosion and remnant properties for all considered progenitor models is

given in figure 5.20. The figure shows, from top to bottom, the explosion energies, the

explosion times, the ejected Ni masses, the total ejecta masses, and the remnant masses

(baryonic mass) as a function of the ZAMS mass of the progenitor models for the WHW02

(in blue, left column) and the WH07 sample (in green, right column). Note that the two

samples cover a different mass range and contain a different amount of models (see also

table 5.3). In the following we summarize the features of the standard calibration of the

PUSH method (see also figures 5.15 and 5.16). We see that the general features are sim-

ilar for both samples. We obtain explosion energies from ∼0.5 to ∼1.7 Bethe, explosion

times from ∼0.26 to ∼0.56 seconds, ejected nickel masses from ∼0.02 to ∼0.16M¯, to-

tally ejected masses from ∼4 to ∼14.5M¯, and NS remnant masses (baryonic) from ∼1.3

to ∼2M¯ (see also the next section). We obtain the lowest explosion energies and Ni

masses for the progenitors with the lowest ZAMS mass (around 11-12 M¯). The highest

explosion energies and Ni masses result from progenitor models around 15 M¯, 18 M¯,

and 21 M¯ ZAMS mass. For the most massive progenitor models (with ZAMS masses

& 30 M¯), there is more variation between the two progenitor samples used in this work

as well as in comparison with other works. The WH07 progenitor sample has lower ex-

plosion energies, is more prone to BH formation, and results in somewhat more massive

NSs. Furthermore, the WH07 series has ejecta masses that are slightly larger for the same

ZAMS mass when compared to the WHW02 series. The results presented here show a

moderate trend of the explosion properties with ZAMS mass up to about 15 M¯ as ex-

pected from the calibration of PUSH. In the same mass range the compactness value ex-

hibits an increasing trend with ZAMS mass (and the CO-core mass grows with increasing

ZAMS mass, see figure 5.1). Beyond ∼15 M¯, we see no obvious trend with ZAMS mass.

In this ZAMS mass range, the relation between the mass and the compactness value is

more complex, as discussed in [174]. In our results for the WHW02 and the WH07 series,

we see a correlation between the explosion energy, the ejected Ni mass, and to a lesser

degree the remnant mass. The total ejected mass is dominated by the mass of the pre-

explosion model at collapse, hence we see a similar trend of the totally ejected mass with

ZAMS mass as we see for the progenitor mass in figure 5.1.
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Fig. 5.20.: This figure shows from top to bottom: explosion energy, explosion time, ejected Ni
mass, total ejecta mass, and remnant mass (baryonic mass) for the WHW02 sample
(left column in blue) and WH07 sample (right column in green) as function of the
ZAMS mass using the standard calibration of the PUSH method. The dark bars
in the explosion energy and remnant mass panels indicate models that did not
explode and formed black holes. These figures are taken from Ebinger et al. [88].
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After this overview of the explosion properties of the progenitor sets as a function of

ZAMS mass we now have a look at the dependencies of explosion energy, explosion

times and the progenitor-remnant connection as a function of the compactness value

ξ2.0. The explosion energies, baryonic neutron star masses, and explosion times of the

standard calibration as a function of compactness are shown in figure 5.21. For the rem-

nant mass (only NSs) a linear correlation with compactness is visible. Models with a

higher compactness value have a higher mass accretion rate and hence more matter is

accreted onto the PNS before the explosion [87]. For a constant kPUSH calibration we

would get no BH formation and the linear trend of the baryonic mass of the nascent NSs

is continued for high compactness values. Instead, with the standard calibration of the

PUSH method, these high compactness models do not explode and eventually collapse

to BHs which are not included in the figure. The explosion time shows a similar trend

with compactness but with a broader distribution. For the lowest compactness values

we see a scattered structure of the explosion time where it does not follow the general

trend. We see that for intermediate compactness (ξ2.0 ≈ 0.3), where the PUSH heating

reaches maximum values, the explosion times are comparable to the value of trise. The

explosion energy as a function of compactness shows two distinct features. The highest

explosion energies for each series show a paraboloidal dependence on the compactness

value, as expected from our kPUSH calibration. Furthermore, a scatter (up to 0.5 B) in the

explosion energies is present for compactness values between 02-0.45. In this region of

intermediate compactness values the explosion energies and the explosion times can be

categorized into two groups. We have seen that the compactness value of the progenitor

models has a peak around a ZAMS mass of 24.2 M¯ (WHW02) and 23.0 M¯ (WH07) (see

figure 5.1). To the left of the peak (i.e., with lower ZAMS mass) and to the right of the

peak (i.e., with higher ZAMS mass) the progenitor models have similar compactness val-

ues of 0.2 to 0.45. However, we see that they are different in their behavior. Note that in

figure 5.21 the models to the left of the peak value of compactness are indicated by open

markers and the models to the right of the peak value of compactness are indicated by

filled markers. Stars with lower ZAMS masses before the peak in compactness ultimately

take longer to form explosions and have a higher explosion energy than their counter-

parts with the same compactness values but higher ZAMS and CO-core masses. This

split into two groups is less pronounced in the case of the remnant mass. In the following,

we want to compare our results with other works. Similar studies of CCSN properties ob-

tained from simulations have been done in Ugliano et al. [141], Ertl et al. [170], Sukhbold

et al. [214] based on P-HOTB. With a calibration of their spherically symmetric models

to SN 1987A and, in the case of Ertl et al. [170], Sukhbold et al. [214], to lower explosion

energies for less massive progenitors, the explosion properties and yields of CCSNe were

investigated. Another recent study on the explodability of CCSNe that does not use hy-

drodynamic simulations has been presented in Müller et al. [257]. Müller et al. [257] use
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physically motivated scaling laws and differential equations to describe crucial quanti-

ties of CCSNe like the shock propagation, the neutron star contraction and the heating

conditions. Note that with the exception of Ugliano et al. [141] these other works use dif-

ferent progenitor star samples and ranges from 9 to 120 M¯, i.e. the smallest mass range

is covered in Müller et al. [257], which investigates progenitor stars between 10 and 32.5

M¯ ZAMS mass. Our explosion energies are compatible with values found in observa-

tions and similar to other studies [141, 170, 214, 257, 258]. Exceptions are the relatively

high explosion energies that Ugliano et al. [141] and Pejcha and Thompson [258] obtain

for progenitor stars with lower ZAMS mass. In Sukhbold et al. [214], slightly lower explo-

sion energies and nickel ejecta masses are obtained with a calibration for “Crab-like” SNe

for ZAMS masses below 12 M¯. The results presented in Pejcha and Thompson [258] and

Müller et al. [257] yield the largest range of explosion energies, spanning from 0.2 to 6 B,

and from a few 0.01 B to above 2 B, respectively. A prominent feature is the region of non-

explodability in the vicinity of 25 M¯ ZAMS mass. In our simulations we find BH forming

models in similar mass regions to other works at 20 M¯, around 25 M¯ and between 30

and 100 M¯. Similar to Müller et al. [257], we do not find many BH forming models be-

tween 15 and 20 M¯. We want to stress, that in the other studies [170, 214, 257] different

progenitor stars have been used and thus a perfect agreement is not expected.

In the last part of this section, we also have a look at trends of nucleosynthesis yields

for the ejected material with compactness. We do this by showing the behavior of four

key isotopes (56Ni, 57Ni, 58Ni, and 44Ti) with compactness in figure 5.22. We see that the

amount of ejected 56Ni and 44Ti show a strong linear correlation with the compactness.

These isotopes are symmetric, N = Z isotopes. For these isotopes, 56Ni in particular, the

amount ejected depends on the explosion energy. For 57Ni and 58Ni the dependence on

compactness is more complicated. The correlation broadens towards higher compact-

ness values (for the highest compactness values a factor of three difference between the

lowest and highest value of ejected 57Ni can be seen). An even stronger broadening can

be observed for 58Ni. While the amount of ejected 56Ni and 44Ti show a linear correlation

with explosion energy, the yields of 57Ni and 58Ni strongly depend on the local electron

fraction and thus, whether regions with slightly lower Ye are ejected or not. In general,

for models with a similar compactness value, the models with a lower ZAMS mass (open

symbols in figures 5.21 and 5.22) eject larger amounts of 57,58Ni and 44Ti. Note that an

in depth study of the nucleosynthesis yields for the standard calibration of PUSH is pub-

lished in [140].
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Fig. 5.21.: This figure shows (from top to bottom) the explosion energy, the remnant mass
(baryonic mass), and the explosion time for models from the WHW02 series (de-
noted by the blue circles) and from the WH07 series (denoted by green stars) as
function of the compactness value ξ2.0. Note that only exploding models are shown.
The red triangle indicates the calibration model (s18.8) of SN 1987A. Open symbols
indicate models with a ZAMS mass to the left of the compactness peaks of the
samples (see figure 5.12) and filled symbols indicate models to the right of the
compactness peaks of the samples. These figures are taken from Ebinger et al. [88].
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Fig. 5.22.: Ejected mass of 56Ni (top left), 57Ni (top right), 58Ni (bottom left), and 44Ti (bot-
tom right) are shown as a function of the compactness value ξ2.0 for the WHW02
and WH07 pre-explosion models. The markers describe the same models as in
figure 5.21. These figures are taken from Ebinger et al. [88].
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5.6 Remnant Properties of CCSNe

In this section we further cover an aspect of CCSNe that can be illuminated with the

PUSH method, the progenitor-remnant connection. Besides the investigation and pre-

diction of explodability, the explosion energies, and the nucleosynthesis we also gain a

prediction of the NS and BH birth-mass distributions from our simulations. Here, we will

present the resulting remnant masses of the standard calibration and the second calibra-

tion of PUSH obtained for the solar metallicity progenitor samples WHW02 and WH07

[40, 41] and show their mass probability distribution. Ultimately, we can compare our

resulting masses of the compact remnants with observations. In our CCSN simulations

performed with the PUSH setup (no excised inner PNS mass and a realistic nuclear EOS)

we can follow the full evolution of the PNS and obtain the baryonic mass of the newly

born hot NS (in the case of an explosion). The resulting gravitational masses of the cor-

responding cooled NSs (that may be observed) are smaller due to neutrino losses in the

cooling phase. To compare with observations, we compute the zero-temperature grav-

itational mass of the initially hot neutron star formed in the CCSN explosion using the

HS(DD2) nuclear EOS. We arrive at a distribution of gravitational birth-masses of NS by

weighting the predicted cool NS masses as a function of ZAMS mass with the initial mass

function (IMF). The IMF is an empirically found distribution function that describes the

number densities of stars with different initial masses in a given population of stars [254–

256]. It was first introduced by Salpeter [254] and was intended to give an easy way of

parameterizing the relative numbers of stars as a function of their ZAMS masses. There

are also different parameterizations (see e.g. [255, 259]) that refine the IMF, but for mas-

sive stars above 10 M¯ the IMF according to Salpeter [254] is sufficiently accurate1. With

the Salpeter IMF we compute a predicted remnant mass probability distribution for the

standard and the second calibration of PUSH applied to the s and w progenitor samples.

First, we show the gravitational birth-mass distribution of cool neutron stars. From ob-

servations we know that the distribution of NS masses in slow pulsars and non-recycled

high-mass eclipsing binaries has a mean of 1.28 M¯ (dispersion of 0.24 M¯), which is

consistent with the formation in CCSNe [260]. In figure 5.23, we show the gravitational

birth-mass distribution of NSs for the two progenitor sets that we obtain with the stan-

dard calibration. These two sets of progenitor stars include models with ZAMS masses

between 10.8 and and 120 M¯. Note that the different colors in figure 5.23 indicate dif-

ferent ranges of ZAMS masses of the progenitor models. The predicted NS masses are

between 1.2 and 1.8 M¯. We see that the lowest NS masses in the range between 1.2

and 1.4 M¯ are only noteworthily populated by the WHW02 sample. Furthermore, lower

ZAMS mass stars contribute most of lower NS masses around 1.4 M¯ and the higher

1A short description of the IMF is given in section A.3 of the appendix.
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ZAMS mass stars are the main contributors to the NS masses in the vicinity of 1.6 M¯. In

figure 5.25 we see that the predicted NS birth mass distribution for the second (less ener-

getic) calibration does not differ too much from our standard calibration. In comparison

to the reported observed NS distribution, the mass ranges of our predicted distributions

are somewhat shifted to higher masses. Due to a lack of progenitor models below a ZAMS

mass of 10.8 M¯ in the used samples, remnants from lighter progenitors are not included

in the study. These lighter progenitors, due to the applied Salpeter-IMF, would also con-

siderably contribute to the lightest NS masses and would arguably reduce the lower mass

limit of the predicted NS birth mass distribution. Note that for the WHW02 progenitor

sample we did not include the outlier with 75 M¯ ZAMS mass in the computation of the

mass distribution. We want to emphasize that the resulting mass distributions are valid

for single non-rotating stars and do not consider the possible effects present in binary

systems, such as mass accretion or loss due to a companion, which can lead to a very

different evolution of the stars. A statistically significant comparison of our results with

observed NS masses of double systems is beyond the scope of this study. Still, in the fol-

lowing we want to shortly compare our results with other works. Overall, our predicted

NS masses are 0.1 to 0.2 M¯ higher than those given in Ugliano et al. [141] and Pejcha and

Thompson [258], who used the same WHW02 progenitor star models. In general, our re-

sults are in agreement with Ertl et al. [170], who use different progenitor models below

a ZAMS mass of 30 M¯. In Nakamura et al. [205] 2D axisymmetric simulations up to 1 s

post bounce were performed for the same WHW02 progenitor sample. They find similar

NS masses as we do, in the range of 1.2 to 2.1 M¯. As we have discussed, our simulations

do not include fallback. In other studies it has been found that fallback does not have a

major effect (see, e.g., [214]). Note that all our exploding models result in NSs. This is a

consequence of our the numerical framework. In our spherically symmetric simulations

it is not possible to have infalling and outgoing matter at the same time. This is the rea-

son why we do not obtain any fallback for exploding models in our simulations, unlike in

multi-dimensional simulations where it is possible to have simultaneous in- and outflow.

A multi-dimensional simulation framework allows for substantial fallback in 2D and 3D

simulations (e.g. [136, 261, 262]).

We now turn our attention to the birth mass distributions of BHs that are formed in failed

CCSNe. In our numerical framework the CCSN simulations that run beyond the time on

which PUSH is active and ultimately fail to explode, and simulations that directly form a

BH contribute to the predicted birth mass distribution of BHs. Failed explosions that are

obtained with the PUSH method for the (non-rotating) WHW02 and WH07 progenitor

models correspond to BH masses from failed neutrino-driven CCSNe of non-rotating (or

weakly rotating) stars. The amount of mass of the star that collapses to a BH depends on

the amount of mass stripping and hence for the solar metallicity progenitor samples can
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be as low as the CO-core mass. For the two progenitor samples considered here, the final

masses of the stars at the onset of collapse do not exceed ∼17 M¯ due to wind mass loss

(see also figure 5.1).

In order to obtain the birth mass distributions of BHs, we weight the predicted BH masses

with an IMF in the same way as we did it for the NS masses. In figure 5.24 we show the

resulting BH birth mass distributions for our standard calibration of the PUSH method.

To illustrate how mass loss may effect the final BH masses we show different shaded re-

gions that correspond to different stellar cores that ultimately collapsed to a BH. For the

WHW02 and WH07 progenitor star samples with solar metallicity we obtain BH forma-

tion as the outcome of our CCSN simulations for stars between 20 and 30 M¯, centered

around ∼25 M¯ ZAMS mass, resulting in BH masses centered around ∼ 14 M¯. Stars

with ZAMS masses above 30 M¯ that form BHs are mainly found in the WH07 progenitor

sample, which consists of models that are more likely to collapse to BHs. Our second

calibration of PUSH results in considerably more BHs that are formed. This shifts the

resulting BH birth mass distribution to slightly lower masses for the second calibration

(see figure 5.26). For this calibration we see that the gap between possible low and high

BH masses is not as strongly present as for the standard calibration. We now can com-

pute the fraction of stars that ultimately form BHs for both calibrations with the Salpeter

IMF. We consider a ZAMS mass range from 8 to 150 M¯ for our estimate and assume that

stars between 8 M¯ and the lowest ZAMS mass in each sample successfully explode and

therefore leave behind a NS as a remnant. Also, we assume that the fate of the star with

the highest ZAMS mass within each sample is continued up to 150 M¯. The estimates for

the fraction of stars that end up as BHs for both calibrations and progenitor samples is

given in table 5.7.

Progenitor series Calibration Black Hole fraction

WHW02 I ~5%
WHW02 II ~16%

WH07 I ~8%
WH07 II ~21%

Tab. 5.7.: Black hole fraction estimates for the standard calibration (indicated by I) and the
second calibration (indicated by II) based on the results of the performed simula-
tions with the PUSH method and the assumptions listed in the text. The different
wind loss values for the solar metallicity progenitors has a comparably strong influ-
ence on the predicted progenitor remnant connection. The estimates are taken into
account the neutrino-driven mechanism. Since there are also other mechanisms
that enable CCSNe the given fractions can be seen as an upper limit.
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Note that our results are broadly consistent with the observationally determined BH

mass distribution (7.8±1.2 M¯, given in Özel et al. [263]), when we assume that the part of

the star that ultimately collapses to a BH is given by the helium core [264]. The BH masses

that we obtain from our study of the two solar metallicity progenitor samples, WHW02

and WH07, are not high enough to explain the BH masses from the recent LIGO/VIRGO

observations. BHs with such high masses can originate from low metallicity stars, which

experience less or almost no mass loss during their evolution, if they collapse with almost

their entire ZAMS mass.
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Fig. 5.23.: Gravitational birth mass distributions of cold neutron stars for WHW02 (top panel)
and WH07 (bottom panel) for the standard calibration. These figures are taken
from Ebinger et al. [88].
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Fig. 5.24.: BH mass distribution with and without helium envelope and also for the final
stellar masses for WHW02 (top panel) and WH07 (bottom panel) for the standard
calibration. These figures are taken from Ebinger et al. [88].
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Fig. 5.25.: Gravitational birth mass distributions of cold neutron stars for WHW02 and WH07
for the second calibration. These figures are taken from Ebinger et al. [88].
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Fig. 5.26.: BH mass distribution with and without helium envelope and also for the final stellar
masses for the second calibration. These figures are taken from Ebinger et al. [88].
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5.7 Towards Different Metallicities

To give a more complete picture of the explodability of massive stars we also show prelim-

inary studies that were performed for progenitors of [40] with metallicities Z = Z¯×10−4

and Z = 0 (primordial), the progenitor sets u and z. The presented results (preliminary)

are obtained for the parabola best fit discussed in the chapters above. The temporal

constraints in the writing process of this thesis means that we can merely present the

obtained explodability of a reduced subset of the available progenitors without nucle-

osynthesis yields yet. Still, we can see that simulations for the two low metallicity sam-

ples lead to a larger range of BH formation. A BH forming region in the vicinity of the

compactness peak around 25 M¯ is present, as it was the case for the solar metallicity

samples. For masses between ∼25 M¯ and ∼30 M¯ weaker explosions are obtained than

for the solar metallicity progenitor samples. Above ∼30 M¯ BHs are formed as expected

due to the high compactness of the progenitor stars. With a future evaluation of the

full sets we can present the full picture of the obtained explodability, neutron star mass

distributions as well as nucleosynthesis yields. With a prediction of explodability and nu-

cleosynthesis yields of different metallicities across the ZAMS mass range the metallicity

dependent contribution of CCSNe to the galactic chemical evolution can be investigated.

This might give valuable insight into chemical evolution as well as explodability via the

evaluation of the GCE results.

Massive stars with low metallicity evolve into heavier CCSN progenitors because they

experience less mass loss due to stellar winds. This leads to more compact progenitors

as well as to the possibility of more massive BHs that are directly formed . In figure 5.27

we show the compactness and the progenitor mass of the progenitor sets s, w , u, and z

as a function of ZAMS mass. With these results it is possible to estimate the percentage

of BH formation for the investigated metallicities, as well as the influence of wind loss

of the solar metallicity progenitors on the progenitor-remnant connection. We assume

that the progenitors between 8 M¯ and the start of our progenitor samples successfully

explode as CCSNe. Furthermore, based on our results we assume that both solar metal-

licity sets lead to CCSNe up to an upper limit of 150 M¯. Judging from our results for the

u and z sets for higher masses we assume that they form BHs for the high mass progeni-

tors up to 150 M¯. If we then weight the BH regions in our simulation samples with the

IMF with the lower and upper limit of 8 and 150 M¯ we obtain the percentage of stars

that form BHs. The results are summarized in table 5.8.
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Progenitor set Metallicity Black Hole fraction

z (WHW02) Z = 0 ∼ 18 %
u (WHW02) Z = Z¯×10−4 ∼ 21 %

Tab. 5.8.: Black hole fraction estimates based on the results of the performed PUSH simula-
tions and the assumptions listed in the text (the calibration used is outdated but
corresponds to a version of the standard calibration). We see that the lower metal-
licity progenitors result in a higher BH fraction than the solar metallicity progenitor
samples used in this work (see also table 5.7).

(a) Compactness of different progenitor sets from

[40, 41] for the whole mass range

(b) Compactness of different progenitor sets from

[40, 41] for the mass range between 10 and

45 M¯

Fig. 5.27.: Progenitor compactness of the progenitors from [40, 41].
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(a) Explosion energies of the parabola fit of PUSH for the progenitors of

the u set.

(b) Explosion energies of the parabola fit of PUSH for the progenitors of

the z set.

Fig. 5.28.: Explodability landscape of the solar as well as the low metallicity sets [40, 41]. We
see that the high mass progenitors of low metallicity stars collapse to BHs and do
not form explosions. Thus, these progenitors are able to reproduce the faint SN
branch.

174 Chapter 5 An Explodability Study of One-Dimensional CCSN Simulations



5.8 Summary and Conclusions

The investigation of the CCSN mechanism remains an intriguing problem. The solution

will likely require multi-dimensional hydrodynamical simulations, including general rel-

ativity, a nuclear equation of state, sophisticated neutrino transport, magnetic fields and

rotation, and also take into account the asphericity of the progenitor structure. The

high computational cost of such multi-dimensional simulations still limits the number

of models that can be investigated and still motivates the usage of effective spherically

symmetric models for extended progenitor and outcome studies.

In this chapter, we have improved the PUSH method from [87], which is used to arti-

ficially trigger parametrized core-collapse supernova explosions in spherical symmetry.

The PUSH method provides a computationally affordable framework to study aspects of

CCSNe that require the modeling of many different progenitors for several seconds after

the onset of the explosion. Here, we focused on applying it to two sets of non-rotating,

solar metallicity progenitor models between 10.8 M¯ and 120 M¯ to obtain explosions

and predict compact remnant properties.

The PUSH method has two free parameters (kPUSH and trise) that need to be determined

from external constraints. We have used three general constraints from observational

properties of CCSNe to set the parameters for any progenitor model. We required that

the PUSH method (i) reproduces the observed properties of SN 1987A for a suitable pro-

genitor model, (ii) allows for the formation of black holes, and (iii) results in lower explo-

sion energies for the lowest-mass progenitors (“Crab-like SNe”). These requirements led

to a compactness dependent function for kPUSH (and a fixed value for trise).

Using this setup, we have simulated the death of the SN-progenitor models in the two

samples as either successful neutrino-driven explosion or as failed explosion or direct

collapse to a black hole. This investigation has led to several interesting predictions and

conclusions:

As a whole, the resulting explosion energies from the PUSH method are in good agree-

ment with the explosion energies of observed CCSNe. In addition, the same models also

match observations simultaneously for 56Ni ejecta and explosion energy.

We have shown and discussed that it is possible to infer several interesting trends of ex-

plosion properties with compactness (and CO-core mass). The compactness is a better

indicator for the expected outcome than the ZAMS mass, however it does not tell the en-
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tire story. For example, we found that for models of similar compactness a degeneracy

exists that can be partially broken with the CO-core mass. This is consistent with the

finding in recent multi-dimensional simulations, where the outcome of the CCSN sim-

ulation is related to the binding energy of the outer envelope exterior of a given mass,

which has a strong correlation with compactness [213].

We found linear trends of ejected 56Ni and 44Ti yields with compactness (and explosion

energy). The yields of 57,58Ni do not follow the same simple correlation. Instead, the local

electron fraction has a strong impact on the final yields of these isotopes.

The predicted outcome (NS or BH) is in agreement with predictions from other works

that employ a comparable parametrized approach based on the neutrino-driven CCSN

mechanism. In particular, we also find a region of BH formation around ∼ 25 M¯ ZAMS

mass. Note that some of these studies use different progenitor sets below 30 M¯ ZAMS

mass.

We predict NS mass and BH mass distributions that are broadly consistent with observa-

tions. However, we do not find any BHs with mBH & 18 M¯ since non of the progenitor

models has a final mass at collapse above this due to mass loss. We saw in preliminary

results that low metallicity progenitor models (which experience less mass loss) result in

more massive BHs.
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6Additional Results:
Three-Dimensional CCSN
Simulations with ELEPHANT

This chapter represents the part of this thesis that has been done with the ELEPHANT

code (ELegant and Efficient Parallel Hydrodynamics with Approximate Neutrino Trans-

port) [93, 106, 251, 265]. It represents a different and independent part of the thesis that

was done to investigate aspects of multi-dimensional CCSN simulations. Of course it

was also intended to use the ELEPHANT code to compare results of the one-dimensional

PUSH simulations with multi-dimensional results. In the following, an overview of the

numerical implementation of the three-dimensional hydrodynamics code, aspects that

have been improved and tools that have been developed to analyze and compare the

ELEPHANT models to other three-dimensional simulations (e.g. Flash, Sphynx and fGR1,

[251]) ,or to one-dimensional simulations done with PUSH, is given. This can help to un-

derstand and improve various aspects of the involved codes. In the future, this could

be used to gain further insight in the differences between one and three-dimensional

simulations and with this improve the PUSH method. For a more detailed discussion of

ELEPHANT I refer to [93, 106, 251, 265–267].

6.1 Numerical Implementation of
ELEPHANT

The code ELEPHANT is based on the three-dimensional magnetohydrodynamics code

FISH and an implementation of the IDSA neutrino transport for the electron neutrinos

and anti-neutrinos [93, 251, 265]. The energy loss caused by µ- and τ-neutrinos is com-

puted with a neutrino leakage scheme during the whole simulation [268]. It has been

shown, that neutrino electron-scattering plays a significant role in the collapse phase,

but becomes rather insignificant in the post-bounce phase (e.g. [250, 269]). Thus, we
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make use of the parametrized deleptonization scheme of Liebendörfer et al. (2005) [106]

to take the neutrino-electron scattering into account in an efficient way during the col-

lapse. In the post-bounce phase we neglect electron-neutrino scattering in IDSA. Fur-

thermore, the version of ELEPHANT that is used in the framework of this thesis uses an

implementation of HS(DD2) EOS [95, 96], the same EOS that was used for the presented

PUSH simulations that has been incorporated recently into the ELEPHANT code by M.

Hempel, O. Heinimann and myself. This means that the setup of the performed three-

dimensional simulations presented in this chapter is the same as the one used for the

PUSH simulations (except for the non-NSE treatment in PUSH). This is a good founda-

tion for a first comparison of PUSH with three-dimensional models. ELEPHANT models

the innermost part of a massive star during the collapse and the post-bounce evolution

inside a three dimensional domain (usually cubic). This 3D domain uses the AGILE-IDSA

code [91–93](see also chapter 3) of a larger computational domain inside of which the 3D

cube is embedded as boundary conditions. The main strength of the ELEPHANT code

is its computational efficiency and simplicity. The simplicity expresses itself in the form

of an equidistant mesh which limits the size of the three-dimensional computational do-

main to the innermost hundreds of km of the star, with typical resolutions between 0.5

to 2 km. Each doubling of the included domain or of the resolution increases the compu-

tational cost by a factor of ∼ 23 = 8. Thus, for the most part we use a cubic domain with

an edge length of 300 to 600 km and a resolution of 1 or 2 km. This amounts to a maxi-

mum of 6003 = 216′000′000 individual cubic simulation zones of the domain. The global

computational domain is split into subdomains to make use of MPI parallelization and

enables the distribution of the task onto several nodes (further, OpenMP parallelization

can be used). Furthermore, ELEPHANT uses an implementation of Open ACC to make

use of GPU parallelization to compute the neutrino transport (IDSA), which uses about

∼ 60− 80% of the total simulation time and thus represents the major part of the com-

putational cost. This implementation of IDSA into ELEPHANT and FLASH has been the

aim of a recent proposal of the Basel group. The magnetohydrodynamics part based on

the FISH code is computed on the CPU of the used nodes. Typically, the global three-

dimensional cubic domain is split into 43 = 64 cubic subdomains that can be split up

in as many MPI processes. These subdomains use the GPU parallelization to compute

the neutrino transport. Always three planar sheets of the subdomain (one sheet is one

individual zone wide) at a time are send to the GPU. In figure 6.1 we illustrate the setup

of an ELEPHANT simulation, i.e. the innermost three-dimensional cube and the AGILE-

IDSA domain that acts as a boundary and runs in the background (AGILE is also used

to correct aspects that are not evolved in the best way in ELEPHANT due to a relatively

low resolution, especially in the innermost part of the PNS, e.g., evolution of central en-

tropy).
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Fig. 6.1.: An illustration of the setup of ELEPHANT. The 3D cube has Nx ×Ny ×Nz zones which
usually have a size of about 1 km3. This cube evolves the innermost ∼ 600 km3 of the
collapse and post bounce phase in 3D. The AGILE-IDSA run that sets the boundaries
for the 3D cube has a total extent of R ∼ 104 km. The dashed lines indicate the
xy-,xz-,yz-sheets which are stored in the hdf5-data segments for each time step with
the full available resolution. We use these sheets to evaluate the ELEPHANT runs
and find the shock position.

6.1 Numerical Implementation of ELEPHANT 179



We now come to the equations that are solved by ELEPHANT in order to evolve the

magneto-hydrodynamics (MHD) part. The equations of ideal MHD can be used to de-

scribe the temporal evolution of plasma and are used in ELEPHANT. Thus, the code

solves the following set of three-dimensional conservation equations with gravitational

source term (for the treatment of gravity, see section 6.2) [93, 251, 265–267, 270]

∂ρ

∂t
+∇· (ρv

) = 0, (6.1)

∂ρv

∂t
+∇· (vρv −bb

)+∇P = −ρ∇Φ, (6.2)

∂E

∂t
+∇· [(E +P ) v −b (v ·b)] = −ρv∇Φ, (6.3)

∂b

∂t
−∇× (v ×b) = 0, (6.4)

∂
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(
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)+∇· (ρYe v
) = 0 (6.5)

∂
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ν

)+∇· (ρY t
ν v

) = 0, (6.6)

∂

∂t

[(
ρZ t

ν

) 3
4
]
+∇·

[(
ρZ t

ν

) 3
4 v

]
= 0. (6.7)

Equations (6.1)-(6.4) express the conservation of mass, momentum, energy, and mag-

netic flux. The variables in the equations above denote the baryonic mass density ρ, the

velocity v , the magnetic field B =p
4πb, the total energy density E = ρe + (ρ/2)v2 +b2/2

(e is the specific internal energy given by the EOS HS(DD2), and the total pressure P =
p+b2/2 (sum of the matter pressure p given by the EOS HS(DD2), and the magnetic pres-

sure). The variable Ye denotes the electron fraction.The equations used in ELEPHANT

also include the advection of the trapped electron neutrino (and antineutrino) fractions

Y t
ν (the trapped neutrino spectrum can be approximated by a thermal spectrum) and a

multiple of the neutrino entropies
(
ρZ t

ν

)3/4, where Zν denotes the mean specific energy

of the neutrinos [93, 251]. The gravitational potential (included in the equations above

to take the effect of gravitational force into account) is given byΦ and fulfills the Poisson

equation (see section 6.2)

∇2Φ= 4πGρ. (6.8)

With the assumption that magnetic monopoles do not exist the magnetic field has to

fulfill the constraint

∇·b = 0. (6.9)

For a more detailed description of such an approach we refer to [265–267, 271]. The

computation of a time step in ELEPHANT is done with operator splitting technique as

it is described in [265–267] for the FISH code. The numerical solution algorithm of ELE-
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PHANT to the MHD equations is explicit. This means that the time step is restricted by

the Courant, Friedrich, and Lewy (CFL) condition [272]

∆t = k ·mini , j ,k

 ∆x

cx
i , j ,k

,
∆y

c y
i , j ,k

,
∆z

cz
i , j ,k

 . (6.10)

In the above equation the variable cd
i , j ,k which denotes the maximum speed at which

information can travel in the whole computational domain in each direction (d = x, y, z)

is given by

cd
i , j ,k = max

(
vn

d ,i , j ,k + cn
F,i , j ,k

)
. (6.11)

This quantity represents the sum of the velocity component in d and the speed of the fast

magnetosonic waves cF . Typically, the CFL number k is set to 0.75 in our simulations.

6.2 Gravitation

In the ELEPHANT code an effective general relativistic potential is implemented to ef-

ficiently describe the effects of general relativity. The following section describes how

the gravitational potential that is used in our 3D CCSN simulations is computed. The

Poisson equation is a non-homogeneous, elliptic partial differential equation [104, 273]

∇2u = f , (6.12)

where ∇2 denotes the Laplace operator and the source term f is given. If the source term

is equal to zero, equation (6.12) corresponds to the Laplace equation. Partial differen-

tial equations that do not involve a time derivative only have boundary conditions (BCs),

and no initial conditions (ICs). This is the reason why these problems are called bound-

ary value problems (BVPs). In comparison to the locally solved hyperbolic fluid equa-

tions where the propagation of information is limited by the fastest speed in the system,

the Poisson equation is a BVP and thus has no restriction by any signal speed limit. To

solve the Poisson equation the density distribution of the whole computational domain

needs to be accessible. The compactness of the mass distribution involved in CCSNe

makes it necessary to take general relativistic effects into account. A general relativis-

tic treatment leads to stronger gravitational forces than a Newtonian description. Thus,

the Newtonian treatment would lead to slower infall velocities and a reduced compact-

ness of the PNS. Below it is shown how GR effects can be taken into account in 3D CCSN

simulations with ELEPHANT by using an effective GR potential. The presented method

is an effective general relativistic approximation to the full GR solution following case
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”A“ in Marek et al. (2006) [274]. We use the HYPRE1library that we implemented into

ELEPHANT to efficiently solve the Poisson equation, specifically the V-cycle multigrid

solver denoted PFMG (for historical reasons; parallel semicoarsening multigrid solver)

included in HYPRE with a structured grid (see [275, 276] and references therein2). Thor-

ough theoretical descriptions of multigrid methods can be found in, e.g. [277, 278].

Effective General Relativistic Gravitational Potential

In the Newtonian case the gravitational field inside a star is described by a gravitational

potentialΦ, which represents a solution of the Poisson equation. In spherical symmetry

the Poisson equation reduces to

1

r 2

∂

∂r

(
r 2∂Φ

∂r

)
= 4πGρ. (6.13)

The vector of gravitational acceleration g = −∇∇∇Φ points towards the center of the star.

In spherical symmetry only the radial component is non-vanishing gr = −∂Φ/∂r . From

equation 6.13 one gets (integration over r )

∂Φ

∂r
= Gm

r 2 , (6.14)

where m is given by

m(r ) = 4π
∫ r

0
dr ′r ′2ρ. (6.15)

A purely Newtonian treatment of gravity is too simple and neglects the general relativis-

tic effects that become relevant in CCSN simulations. In the case of ELEPHANT we ap-

proximate the radial effects of general relativistic gravity in a Newtonian hydrodynam-

ics code by using an effective relativistic gravitational potential Φeff, which mimics the

deeper gravitational well of the relativistic case, following [274]. To ensure that the effec-

tive potential approximates effects of general relativistic gravity, one demands that the

potential reproduces the solution of hydrostatic equilibrium according to the Tolman-

Oppenheimer-Volkoff equation [279, 280]3. The effective gravitational potential that re-

places the Newtonian potential in ELEPHANT is given by

Φeff(r ) =−G
∫ ∞

r

dr ′

r ′2

(
meff +

4πr ′3

c2 [p +pν]

)
1

Γ2

(
ρc2 +e +p

ρc2

)
, (6.16)

1available online: http://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-
methods.

2See also the HYPRE user manual available on the afore mentioned webpage.
3The classical condition for hydrostatic equilibrium is given by ∂p

∂r =−ρ ∂Φ
∂r .
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and the effective mass is given by (using case A of [274])

meff(r ) = 4π
∫ r

0
dr ′r ′2Γ

(
ρ+ ρe

c2 + E

c2

)
, (6.17)

where p is the gas pressure, pν is the neutrino pressure, ρ is the rest-mass density, e is

the internal energy density, and E is the neutrino energy density. The metric function Γ

is given by

Γ=
√

1+
(v

c

)2
− 2Gmeff

r c2 . (6.18)

Note that v refers to the radial component of the velocity of the fluid.

The effective relativistic gravitational potential for multi-dimensional flows is calculated

by replacing the “spherical contribution” Φ̄ (r ) to the multi-dimensional Newtonian grav-

itational potential Φ
(
x, y, z

)
with the effective potential Φ̄eff(r ). For three-dimensional

Cartesian coordinates we get

Φeff
(
x, y, z

)=Φ(
x, y, z

)− Φ̄ (r ) + Φ̄eff (r ) , (6.19)

where the expressions Φ̄ (r ) and Φ̄eff(r ) represent spherically averaged potentials where

the effective potential is calculated according to equation (6.16). Thereby, the quantities

ρ, e, v , p, pν, and E are replaced by their corresponding spherically averaged values.

6.3 Shock Capturing for Comparison with
Other Simulations

A way to compare simulations with each other is the temporal evolution of their shock

and of course, in the case of PUSH an interesting aspect, to compare neutrino heating

rates and entropy profiles. This analysis can be done with a shock capturing Python tool

for ELEPHANT that was created during this work. We outline this tool here and then

use it to present initial comparisons with PUSH simulations. The tool was not only cre-

ated to compare ELEPHANT with PUSH, but to compare ELEPHANT with other three-

dimensional CCSN codes in the framework of [251]. In figure 6.1 the computational do-

main of ELEPHANT is shown. The three hdf5 data-segments that correspond to fully

resolved sub-sheets in the xy-, xz-, and the yz-layers were indicated in this figure. Now,

we use these data sheets due to their full resolution for all write-out times. With them

it is possible to capture the shock evolution of a simulation done with ELEPHANT and
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compare it to other runs.For each of the sheets we read in 8 rays by choosing a separation

angle of 45 degrees. Thus, we follow the coordinate axes as well as the diagonals and read

in the data along these rays. To capture the shock, we use the entropy as the critical indi-

cator. Figure 6.2 shows the xy-segment sheet and the corresponding 8 rays as an example.

A good way to find the shock efficiently is to follow the rays from outside to inside. We

define the shock position as the radius where the entropy exceeds a critical value for the

first time (for each ray). This value has been set to 6 kB per baryon in the here presented

studies. In the figures 6.2 and 6.3 the entropy per baryon and how the shock position

is evaluated is shown for an ELEPHANT simulation of a 15 M¯ progenitor [41] with the

EOS HS(DD2) at a time of 500 ms post bounce. The different rays are labeled A, B, C,

D, E, F, G, H and we see how different the entropy curves can be for different directions

in multi-dimensional simulations. The minimum and maximum position of the shock

are indicated as well. The shock positions that are gathered for each time step result

in a temporal evolution of the shock radius that can be compared to other simulations,

e.g. PUSH. This comparison of different shock radius evolutions for various PUSH pa-

rameter combinations for the same progenitor, the same EOS, and the same neutrino

transport is shown in the figures 6.4, and 6.5. We see that low trise (corresponding to the

old calibration presented in chapter 4) do not compare well with the ELEPHANT simula-

tions. The fit for SN 1987A with trise =400 ms is in better agreement with the ELEPHANT

run. We also show runs with trise =500 ms and trise =600 ms. Based on this comparison

(more should be performed in the future) we conclude that the temporal evolution of the

shock radius for the larger trise is in better agreement with the ELEPHANT simulation per-

formed with the same setup. We adapted a larger trise value earlier in chapter 5 to achieve

a better agreement of PUSH with observational properties and with multi-dimensional

simulations. Thus, it seems that the two comparisons of PUSH with multi-dimensional

results lead to similar conclusions. For further investigations and comparisons of PUSH

and ELEPHANT I suggest to also compare the neutrino heating profiles and use the com-

parison to possibly find refined criteria for the parametrized heating in PUSH. I outline

such a process here by comparing the model of PUSH that was in comparably good agree-

ment with the shock radius obtained in ELEPHANT (with kPUSH =4.0 and trise =500 ms).

In figure 6.6 the temporal neutrino heating profiles of PUSH for the run with kPUSH =4.0

and trise =500 ms are shown. Figure 6.8 shows the neutrino heating profiles for the differ-

ent rays at different times as well as the spherical average of the three-dimensional ELE-

PHANT simulation (dashed line). For this very preliminary investigation we just roughly

compare the two simulations. At 150 ms post bounce the heating profiles seem to be sim-

ilar in position and shape. The same holds for later times, i.e. at 450 ms post bounce up

to the end of the ELEPHANT simulation (∼500 ms post bounce). In between the heating

profiles differ. While the PUSH heating temporarily recedes and intensives, the heating

profiles for ELEPHANT gradually evolve outward. With increased time post bounce the
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Fig. 6.2.: The different rays which are used to find the minimum and maximum radius of the
shock are shown in equatorial plane as an example. They are are denoted by the
letters A to H and go along the coordinate axes and the diagonal directions of the
elephant simulation sheet. Here we see the xy-plane for a simulation for the w15
progenitor [41] with the EOS HS(DD2) [95] at a time of 500 ms post bounce. The
simulation was performed on the Piz Daint supercomputer of the CSCS in Lugano
with a resolution of 2 km and 450 zones per axis which are split up into subdomains
with 1503 zones resulting in 33 = 27 MPI processes.

8 rays evaluated in the ELEPHANT run differ more and more, indicating developing as-

pherical properties of the star. This is meant as an illustration of the differences between,

and the possibilities for future comparisons of 1D and 3D simulations. In figure 6.7 we

show the xy-sheet of the neutrino heating at 500 ms post bounce that corresponds to the

entropy sheet shown in figure 6.2.
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Fig. 6.3.: The evaluation of the different rays in the xy-plane are shown together with the
spherically averaged (Sph. av., dashed line) value of the whole simulation. The
minimum and maximum values of the radius for the shock front are given by rmin

and rmax. The values of the shock position are defined by the point were the entropy
rises the first time above a value of 6 kB per baryon. The minimum, maximum and
average values are collected for all three sheets through the center (xy-, xz-, yz-plane)
over time and are used to compare the shock evolution of the ELEPHANT simulation
to others.
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(a) Comparison of an ELEPHANT run with a calibration for PUSH presented
in chapter 4.

(b) Comparison of an ELEPHANT run with a calibration for PUSH presented
in chapter 5.

Fig. 6.4.: We show the shock radii and PNS radii of PUSH runs in comparison with ELEPHANT
run results. In figure (a) the best fit of chapter 4 with kPUSH =3.5 and trise =200 ms
is shown. Figure (b) shows the calibration of PUSH obtained in chapter 5 for kPUSH

=4.0 and trise =400 ms. All the runs use the same EOS and neutrino transport.
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(a) Comparison of PUSH with ELEPHANT for trise =500 ms.

(b) Comparison of PUSH with ELEPHANT for trise =600 ms.

Fig. 6.5.: We show the shock radii and PNS radii of PUSH runs in comparison with ELEPHANT
run results. Figures (a) and (b) are comparisons of ELEPHANT with PUSH runs with
kPUSH =4.0, and trise =500 ms and trise =600 ms, respectively. All the runs use the
same EOS and neutrino transport.

188 Chapter 6 Additional Results: Three-Dimensional CCSN Simulations



Fig. 6.6.: The neutrino heating profiles of electron neutrinos together with the PUSH extra
heating for a PUSH simulation with the parameters kPUSH =4.0 and trise =500 ms for
a 15 M¯ progenitor [41] is shown for several time steps post bounce.

Fig. 6.7.: Neutrino heating at 500 ms post bounce for an ELEPHANT run performed with the
EOS HS(DD2), IDSA, and a µ− and τ− neutrino leakage scheme. The model shown
is the same as in figure 6.2.

6.3 Shock Capturing for Comparison with Other Simulations 189



(a) ELEPHANT neutrino heating profile at 150 ms post bounce.

(b) ELEPHANT neutrino heating profile at 300 ms post
bounce.

(c) ELEPHANT neutrino heating profile at 450 ms post bounce.

Fig. 6.8.: Neutrino heating profiles for the 8 rays defined above together with the spherical
average (dashed line) of an ELEPHANT run for different times post bounce.
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6.4 Outlook

This is a very short section. It contains findings from the last weeks of this PhD thesis. We

only want to show some initial observations of interesting aspects in the ELEPHANT runs

that can be investigated in the future. Further investigations need to be done do distin-

guish whether the observed features are physical or simply represent numerical features.

Because the observed features are interesting we present them here. These features were

observed during a more detailed investigation of the ELEPHANT runs which were used

for the demonstrated comparisons with PUSH. For the simulation of a progenitor with

15 M¯, solar metallicity [41], the usage of the EOS HS(DD2) [95], and with a resolution

of 2 km an oscillation of the PNS was observed that induced shock waves behind the

stalled shock. In figure 6.9 we show entropy sheets for successive time steps to make the

induced waves of the PNS oscillation visible. For the same progenitor (w15.0) but with

an increased resolution of 1 km zones, a spiral motion was found. This is clearly visible in

the density sheets, see figure 6.10. In figure 6.11 we show the entropy for the same time

steps as the density profiles. These features look promising and should be investigated

but one has to be careful since both aspects could be numerical features.
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Fig. 6.9.: Entropy sheets (x and y axes in units of km and entropy in units of kB/baryon) for
consecutive time steps. Behind the main shock front motions are induced by the
oscillating PNS. The times shown (from top left to bottom right) are 500 ms, 501 ms,
502 ms, and 503 ms post bounce.
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Fig. 6.10.: Density sheets (x and z axes in units of km and density in units of g/cm3) for the
time steps (from top left to bottom right) 200 ms, 225 ms, 250 ms, and 273 ms post
bounce. At first the stalled shock is spherical and later develops a spiral structure.

6.4 Outlook 193



Fig. 6.11.: Entropy sheets (x and z axes in units of km and entropy in units of g/cm3) for the
time steps (from top left to bottom right) 200 ms, 225 ms, 250 ms, and 273 ms post
bounce. The same times are shown as for the density.
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7Summary and Outlook

„What we call the beginning is often the end.

And to make and end is to make a beginning.

The end is where we start from.

— T.S. Eliot

Little Gidding

We have investigated the properties of neutrino-driven CCSNe with the PUSH method in

spherically symmetric and ELEPHANT in three-dimensional simulations. CCSNe and

the underlying explosion mechanism(s) are complex subjects that have been investi-

gated for many years. To this day, they are not completely understood. In this thesis we

use efficient spherically symmetric simulations to study global properties of neutrino-

driven CCSNe. We are interested in the explodability as well as the explosion properties

of these extremely energetic explosions for a variety of pre-explosion models across a

wide range of ZAMS mass and identify trends of the explosion properties with progeni-

tor properties.

We fitted PUSH to reproduce SN 1987A and calibrated the method with a dependence

on compactness to observational data of other CCSNe for a broader range of ZAMS mass.

Tracers created from the PUSH models were post-processed with the networks WINNET

and CFNET. The calibrated PUSH method was applied to the solar metallicity progeni-

tor samples of [40, 41] which in total include pre-explosion models with ZAMS masses

between 10.8 and 120 M¯. This resulted in predictions of explosion energies, remnant

masses, nucleosynthesis yields and the progenitor-remnant connection in general. The

ELEPHANT code that formed a different part of this thesis has been used to compare

the one-dimensional simulations with multi-dimensional results to get clues for possi-

ble choices of the PUSH parameters.
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The calibration of the PUSH method and the subsequent investigation of the outcome of

neutrino-driven CCSNe in numerical simulations has led to interesting results. We have

seen that the resulting explosion energies and 56Ni ejecta are in good agreement with

observational data of CCSNe and obtain a progenitor-remnant connection which indi-

cates which progenitors successfully explode and form a NS and which progenitors end

their life as a BH. We find that the compactness is a better indicator of the expected out-

come (explodability) than the ZAMS mass of the progenitor models. For ZAMS masses

in the vicinity of ∼25 M¯, we find a region of BH formation (non-exploding models) for

our standard calibration and our second (more pessimistic) calibration. Above ∼30 M¯
we find that fewer black holes are formed for our standard calibration (overall more for

the progenitor sample of [41] than for the sample of [40]) than for the second calibra-

tion. For the second calibration we also obtain BH forming models below 20 M¯. The

standard calibration is in good agreement with observational properties and was used to

investigate the explosion properties and nucleosynthesis yields of neutrino-driven CC-

SNe across the ZAMS mass range.

The explosion energy, the remnant mass and the explosion time are presented as func-

tions of compactness. We have found that models with similar compactness can have

different explosion properties (which is visible in explosion energy in particular). For

some models this degeneracy in compactness can be broken with the carbon-oxygen

core mass of the progenitor star. We obtained linear trends with compactness for the

amount of ejected 44Ti and 56Ni (symmetric N = Z isotopes). The amount of ejected
57Ni and 58Ni do not show such a simple correlation with compactness. The abundances

of these isotopes depend on the electron fraction of the ejected material.

We find that our predicted NS and BH birth mass distributions are broadly consistent

with observations. The investigated solar metallicity samples do not contain progenitors

with masses that exceed ∼17 M¯ at collapse. Thus, we do not find BHs with masses

that exceed this limit for solar metallicity. In preliminary results for lower metallicity

progenitor star samples, we find that progenitors above ∼30 M¯ ZAMS mass form BHs.

These progenitors experience less mass loss and therefore these samples result in more

massive BHs than the solar metallicity progenitor samples.

In the future, the PUSH method can be further refined by taking into account other de-

pendencies besides compactness, e.g., carbon-oxygen core mass and mass accretion at

the shock front. Also, by extending the initial comparison with multi-dimensional simu-

lations one could try to mimic the neutrino heating rates of these simulations more accu-

rate by other spatial and temporal dependencies of the extra heating provided by PUSH

and compare the shock radii and temporal evolution of the simulations in further inves-
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tigations. Furthermore, the used approximate network can be extended or a more elab-

orate network can be implemented in the setup of the simulations. This would simplify

the non-NSE treatment immensely. As has been outlined in chapter 5, the simulations

performed with the PUSH method can be extended to other progenitor sets in the future,

e.g., to different metallicities to investigate the properties and outcomes of CCSNe for

these models as well. We have already presented first preliminary results. Another pos-

sibility would be the study of solar metallicity progenitor samples of different groups to

investigate the effects of the uncertainties in the progenitor models for the same metal-

licity and together with observational data possibly find constraints for the progenitor

models. A straightforward next step after the finding of the results for nucleosynthesis

yields with PUSH would be the application in simulations of the galactic chemical evo-

lution. The prediction of explodability and ejected nucleosynthesis yields can be used

in these computations to check the validity of the models as well as to gain deeper un-

derstanding of the contribution of CCSNe to this process. With complete predictions of

different metallicity progenitors the corresponding metallicity dependent GCE can be

investigated. This can be used as a testing case for the PUSH method as well as the galac-

tic chemical evolution simulations. It would also be possible to investigate the effects of

different equations of state on the explodability and the resulting remnant-masses. The

results of such studies can be compared with observations. There are many possibili-

ties, but in my opinion a fruitful and logical first step would be to investigate different

progenitor samples with the PUSH method, especially with different metallicities to get

a dependence of nucleosynthesis yields and explodability on metallicity to investigate

their implications on the galactic chemical enrichment.
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AAppendix

„Wo sich berühren Raum und Zeit,

Am Kreuzpunkt der Unendlichkeit –

Wie Windeswehen in gemalten Bäumen

Umrauscht uns diese Welt, die wir nur träumen.

— Maša Kaléko

A.1 Typical Neutrino Cross-Section

Two opacity contributions for neutrinos (mentioned in section 2.2) are

(1) Free nucleon scattering: ν+n → ν+n, ν+p → ν+p

(2) Coherent scattering by heavy nuclei: ν+ (Z , A) → ν+ (Z , A),

which are mediated by the Z boson. The total cross section (measured in the matter rest

frame) of free neutron scattering (with Eν¿ mnc2) is given by [43]

σn ≈ 1

4
σ0

(
Eν

me c2

)2

, (A.1)

and the total cross section for coherent scattering by heavy nuclei is given by [43] (see

also [14])

σA,coh ≈ 1

16
σ0

(
Eν

me c2

)2

A2
[

1− Z

A
+ (4sin2θw −1)

Z

A

]
, (A.2)

with Eν¿ 300A−1/3MeV, where θw is the Weinberg angle. Both cross sections are propor-

tional to the quantity σo (typical neutrino cross-section) given by [43]

σ0 ≡ 4

π

( ~
me c

)−4 (
GF

me c2

)2

≈ 1.76×10−44cm2. (A.3)
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A.2 A Criterion for Convection

In the following, we briefly introduce a criterion for convection according to [281]. A fluid

is in mechanical equilibrium (in a gravitational field with potentialφ) when the equation

∂p/∂r =-ρ∂φ/∂r holds. This condition for mechanical equilibrium can be fulfilled with-

out the temperature being constant in the fluid. In such a situation the equilibrium is

not guaranteed be stable. If the equilibrium is unstable fluid movements (convection)

appear and lead to mixing that equalizes the temperature in the fluid. For a mechani-

cal equilibrium is to be stable the condition for the absence of convection needs to be

satisfied. The condition for the absence of convection is given below.

A fluid element is at position r with the specific volume V (p, s), where p and s are the

equilibrium values for pressure and entropy at this location. When this fluid element

is displaced upwards adiabatically by a distance h, its specific volume becomes V (p′, s),

with p′ being the pressure at position r+h. For the system to be stable the emerging force

on the fluid element has to be in the direction of the original position. Thus, the fluid

element has to be heavier than the fluid element which it displaces in the new position.

The specific volume of the fluid element that is displaced is V (p′, s′), where s′ denotes

the equilibrium entropy at the position r +h. We therefore have the criterion of stability

given by

V (p′, s′)−V (p′, s) > 0. (A.4)

We expand this expression in powers of ds = s′− s = (ds/dr )h and arrive at(
∂V

∂s

)
p

ds

dr
> 0. (A.5)

By using the thermodynamical relation(
∂V

∂s

)
= T

cp

(
∂V

∂T

)
p

, (A.6)

where cp denotes the specific heat capacity at constant pressure (which is always non-

negative, as is the temperature). Thus, we get the relation(
∂V

∂T

)
p

ds

dr
> 0. (A.7)

Since most materials expand when heated we use(
∂V

∂T

)
p
> 0, (A.8)
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and get the criterion for stability (no convection)

ds

dr
> 0. (A.9)

This means that entropy has to increase with height for layers of the fluid to be stable

against convection. Without derivation, we also list the Ledoux criterion for convective

stability. Negative entropy gradients ds/dr are unstable according to the Ledoux crite-

rion [44, 279] (
∂ρ

∂s

)
Ye ,p

ds

dr
+

(
∂ρ

∂Ye

)
s,p

dYe

dr
> 0, (A.10)

which defines growth conditions for convection and Rayleigh-Taylor structures.

A.3 The Initial Mass Function

The initial mass function is an empirically found distribution function that describes

the number densities of stars with different initial masses in a given population of stars

[254–256]. It is not easy to find an exact description of the IMF that is connected to the

complex process of stellar formation and the parameterizations of the function vary for

different population types (e.g. galaxies, dwarf galaxies, globular clusters etc.) [255]. In

general, inside a given stellar population, the abundance of low-mass stars is greater than

the abundance of high-mass stars since they are formed in larger numbers and have a

longer lifetime on the main sequence. The IMF was first introduced by E. Salpeter [254]

and was intended to give an easy way of parameterizing the relative numbers of stars

as a function of their ZAMS masses. There are also different parameterizations (see e.g.

[255, 259]) that refine the IMF, but for massive stars above 10 M¯ the parametrization of

the IMF ξ(m) given by [254] is sufficient. We briefly introduce the IMF according to [7]

after [254].

For the mass interval relevant for the presented neutron star mass distribution analy-

sis (and available to us in the form of progenitors) the lower limit is given by the mass

Mmin=10.8M¯ or Mmin=12.0M¯, which represents the lightest progenitors in the used

samples. Of course, some lighter progenitors of CCSN and electron capture SNe would

complete the picture, since they can also contribute to the neutron star population and

can be added in a future study. The considered massive stars have roughly a lifetime

of the order of ∼ 106 − 107 years, which is much smaller than the age of the Milky Way

(which is of the order of ∼ 109 −1010). Thus, we assume that for the presented study we

can neglect temporal effects (constant star formation rate) and in a first approximation
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directly apply the IMF to the remnant mass distribution. The IMF enables estimations of

the numbers of stars within a mass range,

dN

dm
= ξ(m)

m
∝ m−(α+1), (A.11)

where m = M/M¯ (stellar mass in the units of solar masses)1. The total mass bound

inside stars with initial masses between m1 and m2 is given by

M(m1,m2) =
∫ m2

m1

ξ(m)dm (A.12)

and the total number of stars in this range is

N (m1,m2) =
∫ m2

m1

ξ(m)

m
dm. (A.13)

Using ξ(m) = ξ0m−α, these equations yield the following results

M(m1,m2) = ξ0(m−α+1
1 −m−α+1

2 )

α−1
, (A.14)

N (m1,m2) = ξ0(m−α
1 −m−α

2 )

α
. (A.15)

The normalized probability that a star in a given population between the masses ma and

mb is in the mass interval [mi ,mi+1], with ma ≤ mi < mi+1 ≤ mb , is given by

P (mi ,mi+1) = N (mi ,mi+1)

N (ma ,mb)
. (A.16)

In this form all the constant prefactors of the ξ(M) function cancel and for a given value

of the parameterα for each mass interval a simple expression of P (mi ,mi+1) is found:

P (mi ,mi+1) = m−α
i −m−α

i+1

m−α
a −m−α

b

. (A.17)

We use the canonical Salpeter slope α= 1.35 to describe the IMF above M ∼ 10M¯ [254,

255, 259].

1In the literature the IMF is often found in a power-law of the form (Salpeter [254] introduced the IMF

in this form) φ(log10(m)) = dN

d(log10(m))
∝ m−α [254, 255].
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