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We review recent progress on holographic renormalization in the context of the gauge-gravity
correspondence when the bulk geometry is not asymptotically AdS. The prime example is the
Klebanov-Strassler background, whose dual gauge theory has logarithmically running couplings
at all energy scales. The presented formalism provides the counterterms necessary for obtaining
finite two-point functions of the scalar operators in the corresponding dual gauge theories.
The presentation is self-contained and reviews all the relevant background material concerning
a gauge-invariant description of the fluctuations around holographic renormalization group
backgrounds.

1. Introduction

Gauge/string duality offers an alternative approach to aspects of nonAbelian gauge theories
that are hard to describewith conventional techniques. For example, at strong coupling, many
nonAbelian gauge theories exhibit confinement, the familiar yet still somewhat mysterious
phenomenon that the only finite-energy states are singlets under the color gauge group: in
colliders, we never see quarks directly, only colorless hadrons. The details of confinement,
and other phenomena such as chiral symmetry breaking, are difficult to capture with
conventional gauge theory methods—they are inherently nonperturbative. Instead, in the
dual string picture, the nonperturbative gauge theory regime is typically described byweakly
coupled closed strings propagating on a space of higher dimensionality (the “bulk”), and
their dynamics can be approximated by classical supergravity. In this case, one also speaks of
gauge/gravity duality.
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One of the most powerful applications of gauge/gravity duality is the calculation of
field theory correlation functions from the dual bulk dynamics. This idea was developed in
[1–3] for superconformal gauge theories, whose gravity duals are Anti-de Sitter (AdS) spaces.
Let us briefly illustrate with a simple example how such a calculation is done. The starting
point is the correspondence formula [3]

e−Son-sh[s] =
∫
DΦe−SQFT[Φ]+

∫
Ois

iddx, (1.1)

where, on the left-hand side, Son-sh[s] denotes the renormalized bulk on-shell action evaluated
as a functional of suitably defined boundary values si of the various bulk fields. The right-
hand side represents the QFT generating functional for connected correlation functions of the
operators Oi, and the si play the role of sources. It is often more practical to consider the exact
one-point functions of the QFT operators, which are obtained from (1.1) as

〈Oi(x)〉 = −δSon-sh

δsi(x)
. (1.2)

Let us consider a massless scalar field in d + 1 = 5dimensional AdS space, with a bulk
action

Sbulk =
1
2

∫
d5x

√
ggAB∂Aφ∂Bφ, (1.3)

where the bulk metric is taken to be

ds2 =
1
z2

(
dz2 + ημνdxμdxν

)
, μ, ν = 1, 2, 3, 4. (1.4)

This is AdS space with characteristic length (or “radius”) L = 1. The boundary is located at
z = 0. The equation of motion for φ is

(
∂2z −

3
z
∂z + �

)
φ(z, x) = 0, (1.5)

where � = ∂μ∂μ. In momentum space, the general solution of (1.5), which is regular in the
AdS bulk space (in particular, for z → ∞), can be expressed as

φ(z,k) = 2
(
kz

2

)2

K2(kz)φ0(k), (1.6)

where k = (kμkμ)
1/2, and K2 is a modified Bessel function. The overall constant has been

chosen such that, for z� 1, one has [4]

φ(z,k) =

[
1 −

(
kz

2

)2

−
(
kz

2

)4(
ln
kz

2
− ψ(1) − 3

4

)
+ · · ·

]
φ0(k), (1.7)
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so that φ0 is the boundary value, which plays the role of the source, s, in the dual QFT.
To calculate the on-shell action, we introduce a cutoff boundary at z = ε > 0, integrate

(1.3) by parts and use the equation of motion in the bulk part, leading to

Sbulk = −1
2

∫
d4x

[
z−4φz∂zφ

]
z=ε
. (1.8)

Then, substituting (1.7) and switching to momentum space yields

Sbulk =
∫

d4k

(2π)4
φ0(−k)

[(
k

2ε

)2

+ 2
(
k

2

)4(
ln
kε

2
− ψ(2)

)
+ · · ·

]
φ0(k), (1.9)

where the ellipses denote terms that vanish in the near-horizon limit ε → 0. The two
divergent terms in the near-horizon limit are removed by adding counterterms, which must
take the form of local, boundary covariant functionals of the full fields φ (not of the boundary
values φ0). Hence, we add

Sc.t. = −
∫

d4x
√
γ

[
1
4
γμν∂μφ∂νφ +

1
8
ln(κε)

(
γμν∂μ∂νφ

)2]
, (1.10)

where γμν = ε−2ημν is the metric on the cutoff boundary, and κ is an arbitrary constant of
dimension mass. Changing κ is, therefore, the same as adding some finite counterterms.
After putting everything together and taking the near-horizon limit, we end up with the
renormalized on-shell action

Son-sh =
1
2

∫
d4k

(2π)4
φ0(−k)G(k)φ0(k), G(k) =

1
4
k4 ln

k

M
(1.11)

where M, a constant of dimension mass that depends on κ, represents the renormalization
scale. In (1.11), one can recognize the generating functional for the CFT 2-point function of
operators of dimension 4.

This short example illustrates the general philosophy behind holographic renormaliza-
tion (HR) and shows that the procedure has certain features in common with the usual
renormalization procedure in QFT. First, the bare, regularized generating functional diverges
when removing the cutoff. Second, counterterms are added at the cutoff, after which the
cutoff can be removed. Third, different renormalization schemes differ from each other by
finite (and local) counterterms. Last, the necessity to introduce a dimensionful constant
(renormalization scale) gives rise to a scale anomaly. For a more detailed account of HR in
AdS/CFT, valid in any asymptotically locally AdS (aAdS) bulk space-time and including also
gravity, fermion and form fields, we refer to the extensive original literature and reviews [5–
15]. The little “a” in aAdS is particularly important, because it allows to calculate correlators
in QFTs with running couplings, where the flow away from the UV fixed point is driven
either by an operator insertion or a spontaneous breaking of the scale symmetry. These are
known in AdS/CFT as holographic RG flows.

There are many gauge/gravity dualities, which do not involve aAdS bulk spaces.
For example, a field that has attracted much interest recently is nonrelativistic AdS/CFT,
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because of its potential applications to condensed matter physics. Let us just note that
HR has been formulated for backgrounds with Schrödinger [16, 17] and Lifshitz-like scale
symmetries [18, 19]. These and other cases share the fact that their bulk backgrounds
possess some anisotropic conformal infinity, which turns out to be crucial for HR [20]. Other
nonconformal cases are given by AdSp+2 × S8−p with a nonvanishing dilaton. These cases
exhibit a generalized conformal structure and imply couplings that run with a power law in
the UV. HR has been carried out in [21, 22] following the standard method as reviewed in
[12].

In this review, we will be concerned with relativistic QFTs, whose gravity duals are
formally given by so-called “fake” SUGRAs [23]. These theories describe gravity coupled to
an arbitrary number of dynamical scalars, with the condition that the scalar potential can be
expressed via a “superpotential”. (Hence, “fake” just means that the theory is not necessarily
supersymmetric, because this condition is weaker than supersymmetry. The relation between
supergravity and fake supergravity was analyzed in [24, 25].) This implies the existence
of BPS domain wall background solutions, which are the holographic duals of RG flows.
AdS/CFT systems (with aAdS geometry) typically fall into this class of theories. What we
drop, therefore, is only the requirement that the background has an asymptotic AdS region.
On the QFT side of the duality, this implies to give up the existence of a UV conformal
fixed point. (For this reason, we can speak of “nonAdS/nonCFT” dualities. These play a
prominent role in holographic models of QCD-like theories showing features such as mesons,
chiral symmetry breaking and confinement. Further details on this subject can be found in
the reviews [26–28].) In contrast to the nonconformal systems mentioned earlier, in which
one can perform HR based on the general asymptotic structure of the bulk space-time and
fields, we will make no specific assumptions on the asymptotic geometry of the bulk. Thus,
a general treatment of HR along the lines of the standard method [12] appears to be possible
only on a case-by-case basis. What we would like to answer is the question whether the
fake SUGRA structure of the bulk theories can be exploited to perform HR for the QFTs
dual to the BPS domain wall backgrounds. The answer to this question is positive, and
we review recent progress on a perturbative, or order-by-order, approach to HR. In this
approach, one considers the fluctuations around the exact BPS background flow and removes
the divergences order by order in the fluctuations. So far, the second-order counterterms
have been constructed, which are sufficient for the calculation of two-point functions in flat
backgrounds [29]. In a sense, the approach is inspired by [13, 14], where the philosophy was
put forward to concentrate on the part of the counterterm action which is really necessary to
calculate n-point functions for a given n, that is, the terms of nth order in the fluctuations. In
this spirit, [29] considered the case n = 2. It might be possible to derive the counterterms from
a fully covariant expression (similar to [30]), but this has not been achieved yet. The approach
is based on the gauge-invariant formalism for the dynamics of the bulk fluctuations [31–33],
which we include in this review for completeness. This formalism has turned out to be very
useful for the holographic calculation of correlation functions, mass spectra and scattering
amplitudes, both in aAdS and nonaAdS backgrounds.

The prime example of a nonaAdS/nonCFT fake SUGRA system, which exhibits a
logarithmically warped AdS geometry in the asymptotic region, is the Klebanov-Strassler
(KS) solution [34], which is well approximated in the UV by the Klebanov-Tseytlin (KT)
solution [35]. The fake SUGRA systems can be obtained by a consistent truncation of
type-IIB SUGRA [33, 36–38] and are the gravity duals of an SU(N + M) × SU(N) gauge
theory undergoing a series of Seiberg dualities, N → N − M. Whereas the KT solution
correctly describes the duality cascade, its bulk singularity makes it unreliable in the IR.
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The resolution of the singularity in the KS background provides a geometrical description of
chiral symmetry breaking and confinement. Calculating correlation functions in these cases
is much more involved, also because the procedure of HR has not been worked out yet in
a systematic way similar to the aAdS case. As a result, only a few attempts to calculate
correlators using the KT background have been made, compare for example, [30, 39–41],
and only in [30, 41] the program of HR, as reviewed in [12], was applied. A generalization
of this procedure to include flavor degrees of freedom was discussed in [42]. Furthermore,
calculations of mass spectra in the KS background [39, 43–47] have been done using a
pragmatic approach assuming that a consistent method of HR in nonaAdS backgrounds
exists.

Other systems of recent interest are derived from the Maldacena-Nunez background
[48], the gravity dual of N = 1 SYM describing, in the UV, the exact NSVZ β-function [49]
and a nonzero gluino condensate in the IR that breaks the chiral symmetry. In particular, so-
called walking solutions have been considered [50–52], where in a certain regime the gauge
coupling changes very little—it walks as opposed to runs. The walking region imitates, in
many respects, a conformal fixed point, and the slightly broken scale symmetry implies the
existence of a light particle. Walking Technicolor [53] is a phenomenologically interesting
alternative to the Higgs sector of the Standard Model. Glueball mass spectra in backgrounds
with walking couplings have been calculated in [54, 55].

There is, therefore, continued interest in understanding better the various aspects of
HR in nonaAdS backgrounds. As far as the calculation of correlation functions is concerned,
the state of the art are the mass spectra that have been mentioned above. To put these
calculations on a more solid footing and to prepare the ground for further investigations
(fully momentum-dependent propagators, three-point functions, etc.), a consistent and
systematic procedure of HR should be constructed.

Let us now state the main idea of the order-by-order approach. The starting point
of the holographic calculation of correlation functions in AdS/CFT, which we generalize to
nonaAdS configurations, is the correspondence formula (1.1). In AdS/CFT, the sources si are
identified with asymptotically rescaled boundary values of the on-shell bulk fields. When
trying to generalize this identification, one has to be aware of some implicit assumptions that
one usually uses in AdS/CFT [33]. The existence of a fixed point, where the bulk geometry
would be global AdS, allows to parameterize the scalars in such a way that their origin is
located at the fixed point, and that the individual scalars are the duals of boundary operators
with certain scaling dimensions. The fixed point corresponds to some conformally invariant
QFT (CFT). Therefore, holographic RG backgrounds that flow away from the fixed point
can be considered either as the duals of deformations of the CFT by relevant operators or as
the duals of vacua with spontaneously broken conformal symmetry, with finite couplings or
vacuum expectation values (VEVs), respectively, which are related to the background scalars.
In the nonaAdS case, such an interpretation is not directly possible. The absence of a fixed
point does not allow to fix an origin or to choose some otherwise preferred parameterization
of the scalar fields. On the field theory side, it is not possible to say that the RG flow is due to
some operator deformation or a ground state with a VEV of some special QFT. All we seem to
be able to say is that the holographic RG background is the dual of someQFT that has running
couplings. (In AdS/CFT, onewould simply say that the QFT under consideration is the CFT +
deformations or in a spontaneously broken phase.) Just as in AdS/CFT, however, correlation
functions of this QFT can be obtained by studying the dynamics of the fluctuations of the bulk
fields around the holographic RG flow. For two-point functions, which we will be concerned
with, it is sufficient to solve the linearized equations of motion, which have a useful form in
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the gauge-invariant formalism. The sources si will be given by certain asymptotic boundary
values of the on-shell bulk fluctuations.

Scheme dependence of correlation functions (but not of physical amplitudes) is a
general feature of renormalization in QFT. When adding counterterms that cancel the cutoff
dependent divergences, one is free to add finite counterterms, which are normally chosen
such that certain renormalization conditions are satisfied at some renormalization scale. The
same holds in HR in AdS/CFT. Also the order-by-order approach presented here includes
scheme dependence, although in a more indirect way. The choice of scheme is reflected in
certain ambiguities in the choice of the asymptotic basis functions for the fluctuations.

The rest of the review is structured as follows. In Section 2, we review the linearized
bulk dynamics of a fake SUGRA system around BPS domain wall backgrounds, expressed
in the language of gauge-invariant variables introduced in [31–33], and we introduce the
asymptotic decomposition of the on-shell fields into dominant and subdominant basis
solutions. The holographic renormalization for two-point functions following the order-by-
order approach of [29] is presented in Section 3. We restrict our attention to the scalar sector,
but the recipe can be extended easily to the traceless transversal fluctuations of the metric.
Because the results of this part yield new insights into the pole structure of the two-point
functions, we will also include the relevant updated material from [45]. Then, it will be
discussed how scheme dependence is incorporated in the order-by-order approach. Section 4
is dedicated to examples with aAdS backgrounds, that serve to verify the agreement of the
results of Section 3 with known results from AdS/CFT. Apart from the pure AdS case, we
will consider the GPPZ [56] and the Coulomb branch (CB) flows [57, 58], which have been
extensively studied in the literature. The GPPZ flow represents a massive deformation of
N = 4 SYM, while the CB flow is dual to a vacuum of N = 4 SYM, in which the conformal
invariance is spontaneously broken by a VEV. This gives us enough confidence to carry on
and consider the KS case in Section 5. Finally, Section 6 contains our conclusions.

2. Bulk Dynamics

Let us start by reviewing the equations governing the dynamics of the bulk fields [32, 33],
which encode the information about two-point functions in holographic renormalization
group flows.

The systems we consider are fake SUGRAs in d+1 dimensions with actions of the form

S =
∫

dd+1x
√
g

[
−1
4
R +

1
2
Gabg

MN∂Mφ
a∂Nφ

b + V
(
φ
)]

+ Sb, (2.1)

with M,N = 0, 1, . . . d, and where the potential V (φ) is given in terms of a superpotential
W(φ) by

V
(
φ
)
=

1
2
GabWaWb −

d

d − 1
W2. (2.2)

We will not specify at this point the boundary terms Sb in (2.1), as they do not affect the bulk
dynamics, although they are important for holographic renormalization. We will come back
to them in Section 3. In (2.1) and (2.2), Gab is the metric on the sigma-model target space and
Gab is its inverse. Moreover, we used the notationWa = ∂aW = ∂W(φ)/∂φa.
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Holographic renormalization group flows are described by domain wall backgrounds
of the form

ds2 = dr2 + e2A(r)ημν dxμ dxν, φa = φ
a
(r), (2.3)

with μ, ν = 1, . . . , d, satisfying the BPS equations

∂rA = − 2
d − 1

W
(
φ
)
, ∂rφ

a
=Wa

(
φ
)
. (2.4)

Linearized fluctuations around such a domain wall background are best described in a gauge
invariant fashion, which we review next.

2.1. The Sigma-Model Covariant Field Expansion

It is our aim to study the dynamics of the fake supergravity system (2.1), (2.2) on some known
backgrounds of the form (2.3), (2.4). In this section, we will expand the fields around the
background, exploiting the geometric nature of the physical variables to achieve a gauge-
invariant formulation of the fluctuation dynamics.

As is well known in gravity, reparametrization invariance of space-time comes at the
price of dragging along redundant metric variables together with the physical degrees of
freedom. One usually attempts to reduce redundancy by gauge fixing, but such an approach
causes problems for the study of fluctuations in holographic RG flows, due to the coupling
between the metric and scalar fluctuations [59–61]. Thus, following [31], we will start from a
clean slate keeping all metric degrees of freedom and describe in the next subsection how to
isolate the physical ones.

Using the sigma-model metric Gab(φ), one can define the sigma-model connection,

Ga
bc =

1
2
Gad(∂cGdb + ∂bGdc − ∂dGbc), (2.5)

and its curvature tensor,

Ra
bcd = ∂cGa

bd − ∂dG
a
bc + Ga

ceGe
bd − Ga

deG
e
bc. (2.6)

We also define the covariant field derivative as usual, for example,

DaAb ≡ Aa|b ≡ ∂bAa − Gc
abAc. (2.7)

All indices after a bar “|” are intended as covariant field derivatives according to (2.7).
Moreover, field indices are lowered and raised with Gab and Gab, respectively.

Armed with this notation, it is straightforward to expand the scalar fields in a sigma-
model covariant fashion. The naive ansatz φa = φ

a
+ ϕa, introducing ϕa simply as the

coordinate difference between the points φ and φ in field space, leads to noncovariant
expressions at quadratic and higher-orders, because these ϕa do not form a vector in (tangent)
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φ

ϕ

φ

Figure 1: Illustration of the exponential map.

field space. In other words, the coordinate difference is not a geometric object. However, it
is well known that a covariant expansion is provided by the exponential map, see for instance
[62, 63],

φa = expφ
(
ϕ
)a ≡ φa + ϕa − 1

2
Ga
bcϕ

bϕc + · · · , (2.8)

where the higher-order terms have been omitted, and the connection Ga
bc

is evaluated at φ.
Geometrically, ϕ represents the tangent vector at φ of the geodesic curve connecting the points
φ and φ, and its length is equal to the geodesic distance between φ and φ; see Figure 1.

It is also a standard result that the components ϕa coincide with the Riemann normal
coordinates (RNCs) (with origin at φ) of the point φ (see, e.g., [63]). This fact can be used to
simplify the task of writing equations in a manifestly sigma-model covariant form. Namely,
given a background point φ, we can use RNCs to describe some neighborhood of it and then
employ the following properties at the origin of the RNC system:

Ga
bc = 0, Ra

bcd = ∂cGa
bd − ∂dG

a
bc, (2.9)

in order to express everything in terms of tensors. Because the background fields depend on
r, we must be careful to use (2.9) only outside r-derivatives, but the simplifications are still
significant.

Finally, let us also define a “background-covariant” derivative Dr , which acts on
sigma-model tensors as, for example,

Drϕ
a = ∂rϕa + Ga

bcW
bϕc. (2.10)

If a tensorAa depends on r only implicitly through its background dependence, then we find
the identity

DrAa

(
φ
)
=Wb

(
φ
)
DbAa

(
φ
)
. (2.11)
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The background-covariant derivative Dr will be important in our presentation of the field
equations in Section 2.4.

2.2. Gauge Transformations and Invariants

The form of the background solution (2.3) lends itself well to the ADM (or time-slicing)
formalism for parametrizing the metric degrees of freedom, compare for example, [62, 64].
Instead of slicing in time, we will write a general bulk metric in the radially-sliced form

ds2 =
(
n2 + nμnμ

)
dr2 + 2nμdrdxμ + gμνdxμdxν (2.12)

where gμν is the induced metric on the hypersurfaces of constant r, and n and nμ are the lapse
function and shift vector, respectively. It will be important to us that the objects n, nμ and gμν
transform properly under coordinate transformations of the radial-slice hypersurfaces.

We can now expand the radially-sliced metric around the background configuration:

gμν = e2A(r)(ημν + hμν),
nμ = νμ,

n = 1 + ν,

(2.13)

where hμν, νμ and ν denote small fluctuations. Henceforth, we will adopt the notation that
the indices of metric fluctuations, as well as of derivatives ∂μ, are raised and lowered using
the flat (Minkowski/Euclidean) metric, ημν.

Now let us turn to the question of isolating the physical degrees of freedom from the
set of fluctuations {hμν, νμ, ν, ϕa} which we have introduced so far. In the earlier AdS/CFT
literature one usually removed the redundancy following from diffeomorphism invariance
by partial gauge fixing, that is, by placing conditions on certain components of the metric,
such as n ≡ 1, nμ ≡ 0. And indeed, it is always possible to perform a change of coordinates
which transforms the metric into a form that satisfies the gauge conditions.

Alas, as mentioned above, partial gauge fixing can create problems in coupled
systems. Instead, we will obtain the equations of motion in gauge-invariant form. Let us
start by considering the effect of diffeomorphisms on the fluctuation fields. We consider a
diffeomorphism of the form

xM = expx′
[
ξ
(
x′)]M = x′M + ξM

(
x′) − 1

2
ΓMNP

(
x′)ξN(

x′)ξP(x′) + · · · , (2.14)

where ξ is infinitesimal. Notice that we found it convenient to apply the diffeomorphism
inversely, that is, we have expressed the old coordinates xM in terms of the new coordinates
x′M. The use of the exponential map implies that also the transformation laws for the fields
can be written covariantly (the functions ξM(x′) are thought of as the components of a vector
field). For example, a scalar field transforms as

δφ = ξM∂Mφ +
1
2
ξMξN∇M∂Nφ + · · · , (2.15)
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whereas a covariant tensor of rank two transforms as

δEMN = ξL∇LEMN +
(
∇Mξ

L
)(
ELN + ξP∇PELN

)
+

(
∇Nξ

L
)(
EML + ξP∇PEML

)

+
(
∇Mξ

L
)(

∇Nξ
P
)
ELP +

1
2
ξP ξL

(
∇P∇LEMN − RS

LMPESN − RS
LNPEMS

)

+ · · · .

(2.16)

For the metric tensor gMN , (2.16) is simplified to

δgMN = ∇MξN +∇NξM +
(
∇Mξ

L
)
(∇NξL) − RMLNPξ

LξP + · · · . (2.17)

Equations (2.15) and (2.16) are most easily derived using RNCs around x′ and exploiting
(2.9). The second-order terms in ξ have been included here in order to illustrate the covariance
of the transformation laws. For our purposes, the linear terms will suffice.

Splitting the fake supergravity fields into background and fluctuations, as defined in
(2.13) and (2.8), the transformations (2.15) and (2.17) become gauge transformations for the
fluctuations, to lowest order:

δϕa =Waξr +O
(
f
)
,

δν = ∂rξr +O
(
f
)
,

δνμ = ∂μξr + e2A∂rξμ +O
(
f
)
,

δh
μ
ν = ∂νξμ + ∂μ

(
ηνρξ

ρ) − 4
d − 1

Wδ
μ
νξ

r +O
(
f
)
.

(2.18)

By O(fn) we mean terms of order n in the fluctuations {ϕa, hμν, νμ, ν}. Moreover, let us
decompose hμν as follows (in the following we will always assume k2 /= 0):

h
μ
ν = hTTμν + ∂μεν + ∂νεμ +

∂μ∂ν
� H +

1
d − 1

δ
μ
νh, (2.19)

where h
TTμ
ν denotes the traceless transverse part, and εμ is a transverse vector. It is

straightforward to obtain from (2.18)

δh
TTμ
ν = O

(
f
)
,

δεμ = Πμ
νξ

ν +O
(
f
)
,

δH = 2∂μξμ +O
(
f
)
,

δh = −4Wξr +O
(
f
)
.

(2.20)
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The symbol Πμ
ν denotes the transverse projector,

Πμ
ν = δμν −

1
�∂μ∂ν. (2.21)

The main idea of our approach is to construct gauge-invariant combinations from
the fields {hTTμν , εμ, h,H, ν, νμ, ϕa}. Using the transformation laws (2.18) and (2.20), this is
straightforward, and to lowest order, one finds the gauge-invariant fields (The choice of
gauge-invariant variables is, of course, not unique, as any combination of themwill be gauge-
invariant as well.)

aa = ϕa +Wa h

4W
+O

(
f2

)
, (2.22)

b = ν + ∂r
(

h

4W

)
+O

(
f2

)
, (2.23)

c = e−2A∂μνμ + e−2A� h

4W
− 1
2
∂rH +O

(
f2

)
, (2.24)

dμ = e−2AΠμ
νν

ν − ∂rεμ +O
(
f2

)
, (2.25)

e
μ
ν = hTTμν +O

(
f2

)
. (2.26)

The variables c and dμ both arise from δνμ, which has been split into its longitudinal and
transverse parts.

Although we have carried out the construction of gauge-invariant variables only to
lowest order, and as we will see below, this is all that is needed, it is necessary for consistency
that the preceding analysis can, in principle, be extended to higher-orders, which is indeed
the case. In this context it becomes clear that the geometric nature of the field expansions,
which is implied by the exponential map, is a crucial ingredient of the method.

Finally, let us prepare the ground for the arguments of the next subsection, where
we will analyze the implications of gauge-invariance on the equations of motion. To be
concise, we continue in a symbolic fashion. Let us consider the set of gauge-invariant fields,
I = {aa, b, c, dμ, eμν}. From the definitions (2.22)–(2.26) we see that there is a one-to-one
correspondence between I and a subset of the fluctuation fields, Y = {ϕa, ν, νμ, hTTμν }. We
collect also the remaining fluctuation variables into a set, X = {h,H, εμ}. Henceforth, the
symbols I, X and Y will be used also to denote the members of the corresponding sets.

One can better understand the correspondence between I and Y by noting that (2.22)–
(2.26) can be rewritten as

Y = I + y(X) +O
(
f2

)
, (2.27)

where y is a linear functional of the fieldsX. Going to quadratic order in the fluctuations, one
would find

Y = I + y(X) + α(X,X) + β(X, I) +O
(
f3

)
, (2.28)
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where α and β are bi-linear in their arguments. Terms of the form γ(I, I) do not appear, as
they can be absorbed into I.

We interpret the gauge-invariant variables I as the physical degrees of freedom,
whereas the (d + 1) variables X represent the redundant metric variables. This can be seen
by observing that one can solve the transformation laws (2.20) for the generators ξM, which
yields equations of the form

ξM = zM(δX) +O
(
f2

)
= δzM(X) +O

(
f2

)
, (2.29)

with zM being a linear functional.

2.3. Einstein’s Equations and Gauge Invariance

It is our aim to cast the equations of motion into an explicitly gauge-invariant form. This
means that the final equations should contain only the variables I and make no reference to
X and Y . Reparametrization invariance suggests that this should be possible, and we will
establish the precise details in this subsection.

Let us consider Einstein’s equations, symbolically written as

EMN = 0, (2.30)

but it is clear that the arguments given below hold also for the equations of motion for
the scalar fields. To start, let us expand the left-hand side of (2.30) around the background
solution, which yields, symbolically,

EMN = E(1)1
MN(X) + E(1)2

MN(Y ) + E(2)1
MN(X,X) + E(2)2

MN(X,Y ) + E(2)3
MN(Y, Y ) +O

(
f3

)
. (2.31)

Here, E(1) and E(2) denote linear and bilinear terms, respectively. The background equations
are satisfied identically. Substituting I for Y using (2.28) yields

EMN = Ẽ(1)1
MN(X) + E(1)2

MN(I) + Ẽ(2)1
MN(X,X) + Ẽ(2)2

MN(X, I) + E(2)3
MN(I, I) +O

(
f3

)
. (2.32)

Notice that the functionals E(1)2 and E(2)3 are unchanged (Y is just replaced by I), whereas
the others are modified by the X-dependent terms of (2.28), which we indicate by adorning
them with a tilde. For example, Ẽ(2)2 receives contributions from E(2)2, E(2)3 and E(1)2.

In order to simplify (2.32), we consider its transformation under the diffeomorphism
(2.14). On the one hand, from the general transformation law of tensors (2.16)we find, using
also (2.29), that it should transform as

δEMN =
[
∂Mδz

L(X)
]
ELN +

[
∂Nδz

L(X)
]
EML + δzL(X)∂LEMN +O

(
f3

)
. (2.33)
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On the other hand, the variation of (2.32) is

δEMN = Ẽ(1)1
MN(δX) + 2Ẽ(2)1

MN(δX,X) + Ẽ(2)2
MN(δX, I) +O

(
f3

)
. (2.34)

Let us compare (2.33) and (2.34) order by order. The absence of first-order terms on the right-
hand side of (2.33) implies that

Ẽ
(1)1
MN(X) = 0. (2.35)

It can easily be checked that this is indeed the case. Then, substituting EMN = E(1)2
MN(I)+O(f2)

into the right-hand side of (2.33) yields

δEMN = δ
{[
∂Mz

L(X)
]
E
(1)2
LN (I) +

[
∂Nz

L(X)
]
E
(1)2
ML(I) + z

L(X)∂LE
(1)2
MN(I)

}
+O

(
f3

)
. (2.36)

Comparing (2.36)with the second-order terms of (2.34), we obtain

Ẽ
(2)1
MN(X,X) = 0,

Ẽ
(2)2
MN(X, I) =

[
∂Mz

L(X)
]
E
(1)2
LN (I) +

[
∂Nz

L(X)
]
E
(1)2
ML(I) + z

L(X)∂LE
(1)2
MN(I).

(2.37)

Hence, we find that a simple expansion of Einstein’s equations yields gauge-dependent
second-order terms, but they contain the (gauge-independent) first order equation, and so
can consistently be dropped. Happily, we arrive at the following equation, which involves
only I:

E
(1)2
MN(I) + E(2)3

MN(I, I) +O
(
f3

)
= 0. (2.38)

The argument generalizes recursively to higher-orders. One will find that the gauge-
dependent terms of any given order can be consistently dropped, because they contain the
equation of motion of lower orders.

Equation (2.38) and its higher-order generalizations are obtained using the following
recipe:

Expand the equations of motion to the desired order dropping the fields X and replacing
every field Y by its gauge-invariant counterpart I.

This rule is summarized by the following substitutions:

ϕa −→ aa, ν −→ b, e−2Aνμ −→ dμ +
∂μ

� c, h
μ
ν −→ e

μ
ν . (2.39)

Since e
μ
ν is traceless and transverse, the calculational simplifications arising from (2.39) are

considerable.
Let us conclude with the remark that, although the rules (2.39) can be interpreted as

the gauge choice X = 0, the equations we found are truly gauge invariant.
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2.4. Equations of Motion

In this section, we will put into practice what we have just learned. The equations of motion
that follow from the action (2.1) are

∇2φa + Ga
bc g

MN
(
∂Mφ

b
)(
∂Nφ

c) − V a = 0 (2.40)

for the scalar fields, and Einstein’s equations

EMN = −RMN + 2Gab

(
∂Mφ

a)(∂Nφb
)
+

4
d − 1

gMNV = 0. (2.41)

Notice that we use the opposite sign convention for the curvature with respect to [31, 32].
We are interested in the physical, gauge-invariant content of (2.40) and (2.41) to

quadratic order in the fluctuations around an RG flow background of the form (2.3), (2.4). As
we have learned in the last section, it is obtained by expanding the fields according to (2.13)
and (2.8) and then applying the substitution rules (2.39). Since we defined the expansion
(2.8) geometrically, it is assured that we will obtain sigma-model covariant expressions. To
carry out this calculation in practice, it is easiest to use RNCs at a given point in field space,
so that one can use the relations (2.9) outside r-derivatives.

In the following, we will present the linearized equations of motion. We just collect
the results without going into details of the derivation. For intermediate steps we refer the
reader to the appendices B and C of [33]. (Note that we use a different notation for the indices
here than in [33]. The d + 1 dimensional indices are denoted byM,N here and by μ, ν there,
whereas the d dimensional indices are denoted by μ, ν here and by i, j there.) Let us start with
the equation of motion for the scalar fields (2.40), which gives rise to the following fluctuation
equation:

[
D2
r −

2d
d − 1

WDr + e−2A�
]
aa −

(
V a
|c − Ra

bcdW
bWd

)
ac −Wa(c + ∂rb) − 2V ab = 0. (2.42)

Second, the normal component of Einstein’s equations gives rise to

−4Wc + 4Wa(Dra
a) − 4Vaaa − 8V b = 0. (2.43)

Third, the mixed components of (2.41) yield

−1
2
�dμ − 2W∂μb − 2Wa∂μa

a = 0. (2.44)

The appearance of the fields aa, b, c and dμ on the left-hand sides of (2.42)–(2.44)
seems to indicate the coupling between the fluctuations of active scalars (nonzero Wa) to
those of the metric, which is familiar from the AdS/CFT calculation of two-point functions
in the literature. However, the gauge-invariant formalism resolves this issue, because (2.43)
and (2.44) can be solved algebraically (in momentum space) for the metric fluctuations b, c
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and dμ, so that the coupling of metric and scalar fluctuations at linear order is completely
disentangled. One easily obtains (using our assumption k2 /= 0)

b = − 1
W
Waa

a, (2.45)

c =
Wa

W

(
δabDr −Wa

|b +
WaWb

W

)
ab, (2.46)

dμ = 0. (2.47)

We proceed by substituting (2.45) and (2.46) into (2.42), using also the identities

V a =Wa|bWb −
2d
d − 1

WWa,

V a
|c = DrW

a
|c +Ra

bcdW
bWd +Wa|bWb|c −

2d
d − 1

(
WaWc +WWa

|c

)
,

(2.48)

which follow from (2.2) and (2.4), and we end up with the second-order differential equation

[(
δabDr +Ma

b −
2d
d − 1

Wδab

)(
δbcDr −Mb

c

)
+ δac e

−2A�
]
ac = 0, (2.49)

where we introduced the matrix

Ma
b =Wa

|b −
WaWb

W
. (2.50)

Equation (2.49) is the main result of the gauge-invariant approach and governs the dynamics
of scalar fluctuations around generic Poincaré-sliced domain wall backgrounds.

Let us also consider the tangential components of (2.41). Because of Bianchi’s identity,
their trace and divergence are implied by (2.42), (2.43), and (2.44), which is easily checked at
linear order. Thus, we can use the traceless transverse projector,

Πμκ

νλ
=

1
2

(
ΠμκΠνλ + Πμ

λ
Πκ
ν

)
− 1
d − 1

Πμ
νΠκ

λ, (2.51)

in order to obtain the independent components. This yields

(
∂2r −

2d
d − 1

W∂r + e−2A�
)

e
μ
ν = 0. (2.52)

As expected, the physical fluctuations of the metric satisfy the equation of motion of a
massless scalar field.

In the following, we focus on the scalar field equation (2.49). Let ns be the number
of scalar fields (components of a). As in [45], we will assume the existence of a set of 2ns
independent solutions of (2.49), which are defined as power series in k2 (in momentum
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space), with r-dependent coefficients that are more and more suppressed with increasing
powers of k2. (This is tantamount to demanding that the warp function A(r) grows without
limit for r → ∞, so that e−2Ak2 in (2.49) can be regarded as a correction in the asymptotic
region.) Moreover, the leading term (for large r) in each solution should be independent
of k2. In position space, k2 simply translates to the operator −�. Amongst these solutions,
one can distinguish between ns asymptotically dominant solutions âi (i = 1, . . . , ns) and ns
subdominant solutions ǎi with respect to their behaviour at large r. Including the field index,
we will interpret âai and ǎai as ns ×ns matrices. A regularity condition in the bulk interior, that
is,

Regularity condition :
(
aaGaba

b
)
r=IR

<∞, (2.53)

allows only for ns independent regular combinations of the asymptotic basis solutions.
Hence, we will decompose a general regular solution of (2.49) into

aa(r, x) = âai (r,−�x)si(x) + ǎai (r,−�x)ri(x), (2.54)

where si and ri are called the source and response coefficients, respectively, and �x =
ημν(∂/∂xμ)(∂/∂xν). The bulk regularity condition uniquely determines the (functional)
dependence of the responses ri on the sources si and gives rise to the nonlocal information
for the two-point functions of the dual operators.

Throughout the paper, we will consider mostly the analogue of (2.54) in momentum
space, sometimes omitting the dependence on k. Moreover, a ·will be used to denote the inner
product in field space, or the contraction of field space indices, for example, a · b = aaGabb

b.

3. Perturbative Holographic Renormalization

3.1. Scalar Two-Point Functions

In this section, we will present the general formalism for obtaining finite, renormalized two-
point functions for the QFT operators that are dual to the bulk scalar fields. Our starting
point is the following action, which is quadratic in the fluctuations and encodes the bulk field
equations (2.49),

S =
1
2

∫
dd+1xedA

{
[(Dr −M)a] · [(Dr −M)a] + e−2A∂μa · ∂μa

}
+
1
2

∫
ddx edAa ·U · a, (3.1)

with some symmetric counterterm matrix U, which is a local operator that will be specified
in a moment. The bulk integral in (3.1) is to be understood with a cutoff r0, where also the
boundary counterterm is evaluated. It follows that the variation of the on-shell action with
respect to a variation of the boundary value aa(r0) is given by

δSon-sh

δaa
= edA(Dr −M +U)aa, (3.2)



Advances in High Energy Physics 17

where the right-hand side is evaluated at r = r0. Let us define the counterterm matrix as

Uab =Mab −
1
2

[
(Dr â)ai

(
â−1

)i
b
+ (Dr â)bi

(
â−1

)i
a

]
, (3.3)

where (â−1)ia is the inverse of the matrix âai , defined in momentum space as a series in
k2, or equivalently, in position space as a series in −�. We will see momentarily that this
definition leads to finite one- and two-point functions. We also note the following subtlety.
The counterterm in (3.1) needs to be local in the fields, which means that Uab should be a
polynomial in k2 (in momentum space) or −� (in position space). The assumptions made in
Section 2 imply that Uab is a series in k2. However, we also assumed that the coefficients of
the series â with increasing powers of k2 are suppressed for large r due to the factor e−2A(r), so
that we can truncate the series in (3.3) to some polynomial, because the terms thus neglected
vanish in the large-r limit. Hence, strictly speaking, the counterterm operator Uab in (3.1) is
a polynomial truncation of (3.3).

Before deriving the two-point function, let us also introduce the following matrices:

Z̃ij = edA
[
(Dr â)i · âj − âi · (Dr â)j

]
,

Zij = edA
[
(Dr â)i · ăj − âi · (Dr ă)j

]
,

zij = edA
[
(Dr ă)i · ăj − ăi · (Dr ă)j

]
.

(3.4)

These matrices are independent of r, as one can show from the field equation (2.49). This
implies that zij should be identically zero, as the subdominant solutions vanish fast enough
asymptotically. (This is not necessarily the case if there are two or more bulk scalars with
massm2 = 2(2 − d), which, in the aAdS-case, would be dual to operators of dimension Δ = 2.
If at least two of these scalar fields are present and the background is not aAdS, one has to
check more carefully whether zij indeed vanishes. We will assume this in the following, as
it simplifies our final result. In all the examples we are considering later, this issue does not
play any role.) Furthermore, they are functions of k2 or −�, depending on whether one works
in momentum or position space.

Combining (3.2) with the decomposition (2.54), the (linear term of) the exact one-
point function (1.2), in momentum space, takes the form (The subscript 1 on the left-hand
side indicates that these are just the terms linear in the fluctuations.)

〈Oi(k)〉1 = − lim
r→∞

edA(r)

[
âi + ǎj

∂rj

∂si
(k)

]
· (Dr −M +U)

[
âls

l(k) + ǎlr
l(k)

]
, (3.5)

where, for the sake of brevity, we have omitted the dependence of the asymptotic solutions â

and ǎ on r and k2.



18 Advances in High Energy Physics

Substituting (3.3) into (3.5) and using thematrices (3.4), after some algebra one obtains

〈Oi(k)〉1 = Zijr
j +

1
2
Z̃ijs

j +
1
2
zjk

∂rj

∂si
rk

+
1
2
lim
r→∞

[(
â−1

)l
· ǎk

](
Z̃lir

k +
∂rk

∂si
Z̃ljs

j +
∂rj

∂si
Zljr

k +
∂rk

∂si
Zljr

j

)
.

(3.6)

Here, we have omitted the arguments k on the right-hand side. To obtain the final result, we
observe that the third term on the right-hand side vanishes, since zij ≡ 0, as stated above.
Moreover, the last term, which is the only one with a cutoff dependence, vanishes when the
large-r limit is taken, because (â−1)l · ǎk goes to zero. Hence, we end up with

〈Oi〉1 = Zijr
j +

1
2
Z̃ijs

j , (3.7)

which holds both in momentum and position space. From (3.7), one obtains the connected
two-point function

〈
Oi(x)Oj

(
y
)〉

= Zik(−�x)
δrk(x)
δsj

(
y
) +

1
2
Z̃ij(−�x)δ

(
x − y

)
. (3.8)

As promised, (3.7) and (3.8) are finite in the limit r0 → ∞, as the matrices Zij and Z̃ij do not
depend on r. Equation (3.7) agrees with (2.24) of [45], for which it provides the missing piece
Yij = Zij and identifies the contact term, which will be discussed further in Section 3.3.

In momentum space, (3.8) has a more practical form. Setting y = 0 by translational
invariance and Fourier transforming the coordinate x, one finds

∫
ddxeikx

〈
Oi(x)Oj(0)

〉
= Zik

(
k2

)∂rk
∂sj

(k) +
1
2
Z̃ij

(
k2

)
. (3.9)

In what follows, we will often work in momentum space omitting the argument k. By the
two-point function 〈OiOj〉 in momentum space, we will intend (3.9).

Unfortunately, the symmetry of the two-point function under exchange ofOi andOj is
not obvious from (3.8). It would be a nontrivial test of any concrete calculation to see whether
the right-hand side, with its antisymmetric second term, combines to something symmetric.

A different form of the 2-point function, which makes its pole structure more explicit,
can be obtained with the help of the Green’s function. The Green’s function satisfies

[(
Dr +M − 2d

d − 1
W

)
(Dr −M) − e−2Ak2

]
G
(
r, r ′; k2

)
= −e−dA(r)δ

(
r − r ′

)
, (3.10)
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where the factor e−dA on the right-hand side is the metric factor 1/√g from the covariant
delta function. The Green’s function can be written in terms of a basis of eigenfunctions,

G
(
r, r ′, k2

)
=

∑
λ

aλ(r)aλ(r ′)
k2 +m2

λ

, (3.11)

where the functions aλ satisfy (2.49) for k2 = −m2
λ
. (Again, we omit the matrix indices,

and the indices of the two aλ’s are not contracted.) Substituting (3.11) into (3.10) yields the
completeness relation

∑
λ

aλ(r)aλ
(
r ′
)
= e−(d−2)A(r)δ

(
r − r ′

)
, (3.12)

from which one can deduce the orthogonality relation

∫
dr e(d−2)A(r)aλ(r) · aσ(r) = δλσ. (3.13)

With the dot product we denote the covariant contraction of indices. Equation (3.13) provides
the condition for the eigenstates aλ to be integrable. Due to the factor e(d−2)A, the integral
measure is not the covariant bulk integral measure that one might have expected.

It can be checked in the various cases we consider that the asymptotically dominant
behaviours, âi, are not integrable, whereas the subdominant behaviours are integrable. Thus,
we have

aλ(r) = riλ ǎi(r). (3.14)

To derive a form of the 2-point function which makes its symmetry and pole structure
manifest, we start by considering the general formula for a solution a(r, k2) of (2.49) in
terms of the Green’s function and prescribed boundary values. Let r0 be a (large) cutoff
parameter determining the hypersurface where the boundary values are formally prescribed.
Remembering that neither the Green’s function nor its derivative vanish at the cutoff
boundary, we have (This formula follows from (3.10) upon multiplication by edA(r)a(r) from
the left, taking the integral over r, integrating by parts and using the field equation (2.49).
The IR boundary does not contribute, because edA vanishes there. The reason for this is that
r = rIR should correspond to a single point of the bulk space, which is only guaranteed if edA

vanishes there, c.f. (2.3).)

a
(
r, k2

)
= edA(r0)

[(
Dr0a

(
r0, k

2
))

·G
(
r0, r; k2

)
− a

(
r0, k

2
)
·Dr0G

(
r0, r; k2

)]
, (3.15)

where a(r0, k2) andDr0a(r0, k
2) are the prescribed values of the field and its first derivative at

the cutoff boundary, respectively. Since r0 is an unphysical cutoff parameter, we must ensure
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that the bulk field a(r) remains unchanged when r0 is varied. This is easily achieved, if,
together with a change of the cutoff, r0 → r0 + δr0, the boundary values are changed by

δa
(
r0, k

2
)
=

(
Dr0a

(
r0, k

2
))

δr0, δDr0a
(
r0, k

2
)
=

(
D2
r0a

(
r0, k

2
))

δr0, (3.16)

and the second derivative, D2
r0a(r0, k

2), is determined by the equation of motion (2.49).
To assure (3.16), we determine the formal boundary values at the cutoff, a(r0, k2) and
Dr0a(r0, k

2), from the generic asymptotic behaviour (2.54) (in momentum space), with
coefficients ri and si fixed. After inserting (2.54) and (3.11) into (3.15), we obtain

a
(
r, k2

)
= edA(r0)

∑
λ

aλ(r)
k2 +m2

λ

×
{
rl
[(
Dr0 ǎl

(
r0, k

2
))

· aλ(r0) − ǎl
(
r0, k

2
)
·Dr0aλ(r0)

]

+ sl
[(
Dr0 âl

(
r0, k

2
))

· aλ(r0) − âl
(
r0, k

2
)
·Dr0aλ(r0)

]}
.

(3.17)

To continue, we observe that for very large r0, the term on the second line of (3.17),
containing only subdominant solutions, is much smaller than the term on the third line.
Therefore, we drop it. Moreover, as we are interested only in the pole structure, we consider
k2 very close to −m2

λ
and expand the numerator keeping only the leading term, that is, we

replace k2 by −m2
λ in the numerator. Finally, we use the fact that the eigenfunctions are purely

subdominant, (At this point one may wonder where the dominant part of a comes from. It
arises from the sum over the spectrum in (3.17), in particular from the UV contribution. For
the simple case of AdS bulk, this is shown in appendix A.1 of [45]. However, it does not
contribute to the poles.)

aλ(r) = riλǎi
(
r,−m2

λ

)
. (3.18)

This yields

a
(
r, k2

)
=

k2≈−m2
λ

sl Zlj

(
−m2

λ

) r
j

λ
ri
λ

k2 +m2
λ

ǎi
(
r,−m2

λ

)
, (3.19)

with Zij defined in (3.4).
Thus, after reading off the response function ri (for k2 ≈ −m2

λ) from (3.19), we obtain
the poles of the connected 2-point function, using (3.7) and differentiating with respect to the
source sj ,

〈
Oi(k)Oj(−k)

〉
=

∑
λ

Zii′

(
−m2

λ

)
Zjj ′

(
−m2

λ

) ri
′

λ
r
j ′

λ

k2 +m2
λ

+ c.t.. (3.20)



Advances in High Energy Physics 21

Therefore, defining also

Zλ,i = Zii′

(
−m2

λ

)
ri

′

λ

= edA(r)
[(
Dr âi

(
r,−m2

λ

))
· aλ(r) − âi

(
r,−m2

λ

)
·Draλ(r)

]
,

(3.21)

our final result is

〈
Oi(k)Oj(−k)

〉
=

∑
λ

Zλ,iZλ,j

k2 +m2
λ

+ c.t. (3.22)

We note that the Zλ,i are independent of the choice of the subdominant basis solutions,
because the normalization of the eigenfunctions aλ is fixed by (3.13). Moreover, (3.22) shows
that the pole terms of the 2-point functions are manifestly symmetric under exchange of Oi

and Oj .

3.2. VEVs

Let us make a few comments on VEVs. Equation (3.5) only gives the part of the one-point
function which is linear in the fluctuations. At the moment, our approach does not allow
for a systematic derivation of the VEVs yet. However, we would like to make the following
observation. The scalar equations (2.49) have the zero mode solution (k2 = 0)

a
a ∼ Wa

W
(3.23)

which only depends on the radial variable r. Like any fluctuation, this has an expansion
into dominant and subdominant asymptotic solutions as in (2.54). In aAdS settings, nonzero
coefficients of the dominant and subdominant basis solutions are interpreted as finite
couplings and VEVs, respectively. As mentioned in the introduction, the interpretation of
finite couplings (in the sense of a deformation of some special QFT) cannot be made in the
general case, but we will continue to interpret the presence of asymptotically subdominant
behaviour as finite VEVs. However, this just means that the VEV is nonzero, because the
normalization factor in (3.23) is undetermined. In addition, there is an issue of scheme
dependence, when nonzero dominant behaviours are present, but this happens also in aAdS
settings, as will be seen in Sections 4 and 5.

3.3. Scheme Dependence

In QFT, contact terms of correlation functions, which do not influence physical scattering
amplitudes, depend on the renormalization scheme. Let us now discuss how the scheme
dependence of the two-point functions (3.8) appears from a bulk point of view. For the sake
of brevity, we will work in momentum space and omit all functional arguments.

The starting point is the decomposition (2.54) of a regular solution to the bulk field
equations. Clearly, the definition of the asymptotic solutions âi and ǎi is not unique. Our
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restriction on the functional form of these solutions in terms of series of k2 and the fact that
all subdominant solutions are negligible for large r with respect to all dominant ones still
allows for a change of basis of the form

â′i = Λj

i âj + λ
j

i ǎj , ǎ′i = μ
j

i ǎj , (3.24)

where the (nondegenerate)matrices Λij , λij and μij are polynomials in k2. Under this change
of basis, the matrices Z̃ij and Zij transform into (Remember zij = 0.)

Z̃′
ij = Λk

i Λ
l
j Z̃kl +

(
Λk
i λ

l
j −Λk

i λ
l
j

)
Zkl,

Z′
ij = Λk

i μ
l
jZkl,

(3.25)

respectively, while the source and response coefficients in the new basis become

s′i = sj
(
Λ−1

)i
j
, r′i =

[
rj − sl

(
Λ−1

)k
l
λ
j

k

](
μ−1

)i
j
. (3.26)

Inserting these transformations into (3.8), one finds the connected two-point functions of the
operators O′

i coupling to the sources s′i,

〈
O′
iO

′
j

〉
= Λk

i Λ
l
j〈OkOl〉 −

1
2

(
Λk
i λ

l
j + Λk

j λ
l
i

)
Zkl. (3.27)

Hence, the matrix Λj

i performs a rotation of the basis of operators, as one would have
expected, while a nonzero λji changes the contact terms, which corresponds to a change of
renormalization scheme.

In QFT, operators are usually characterized by their scaling dimension, which is
renormalization scale dependent. Under renormalization, they undergo operator mixing,
such that an operator of a given dimension, defined at a certain renormalization scale,
is generically made up of the operators of equal and lower dimensions, defined at a
larger renormalization scale. There is, however, some ambiguity, as operators of equal
dimension and otherwise equal quantum numbers can be arbitrarily combined to equivalent
combinations. This ambiguity finds a natural counterpart in the present approach. Ordering
the dominant asymptotic solutions according to their asymptotic behaviour in descending
order, it is natural to choose Λ in “upper triangular” form, such that each dominant solution
is modified only by solutions of equal and weaker asymptotic behaviour. A similar remark
would apply for μ.

A further restriction on the redefinition could come from the fact that the lowest order
terms in a near boundary expansion of the dominant solutions typically have a definite
correlation between powers of e−r and powers of k2. This is well known, for instance, in
the aAdS case with a single scalar field, compare for example, the discussion in Section 5.1
of [12]. Something similar happens in the case of KS, as can be seen from the explicit form
of the asymptotic solutions given in the appendix of [29] (we refrain from reproducing them
here as they are very “bulky”). We will refer to a choice of dominant solutions respecting this
correlation as a “natural” choice.
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Finally, we remark that it is reasonable to assume thatΛj

i and/or μ
j

i can be chosen such
that Z′

ij = δij in (3.25). A possible obstruction to this possibility would be that the matrices
needed to achieve that are nonpolynomial in k2. We will see later that the choice Zij = δij is
possible for the KS system. Starting with such a choice, a further change of basis using just
λij would lead to

Z̃′
ij = Z̃ij + λji − λij (3.28)

implying that one can achieve Z̃′
ij = 0 by a suitable choice of λij , although this choice is

obviously not unique.

4. Examples

In this section, we will compare the general expressions from the previous sections with the
results of holographic renormalization in the case of aAdS bulk space-times. To carry out HR,
one can use one’s favourite method from the choice of [10, 11, 14]. We will start with pure
AdS and then consider some favourite RG flows, the GPPZ [56] and the Coulomb branch
flows [57, 58].

4.1. Scalars in AdS Background

As the simplest case, we consider a number of free massive scalars in a pure AdS background.
The results are, of course, dictated by conformal invariance of the boundary CFT, but it is still
useful to deal with this case, because several statements that we make in what follows hold
in any aAdS configuration. In this and the following subsections we will set the AdS length
scale to L = 1. It can be reinstated by dimensional analysis.

An AdS background exists for any superpotential with a fixed point (where W is
nonvanishing). We consider the scalars parametrized by Riemann normal coordinates around
the fixed point and their local coordinate system rotated in such a way that the matrix of
second derivatives of W is diagonal [33]. This gives rise to a set of canonical scalar fields
with a superpotential

W
(
φ
)
= −d − 1

2
+
1
2

∑
a

wa

(
φa

)2 +O
(
φ3

)
. (4.1)

The (d + 1)-dimensional AdS background metric is given by

ds2 =
1
z2

(
dz2 + ημν dxμ dxν

)
, (4.2)

where the radial variable z is related to r of Section 2 by z = e−r . To linear order, the scalar
fields satisfy the equations of motion

(
∂2z −

d − 1
z

∂z −
m2
a

z2
− k2

)
aa = 0, (4.3)



24 Advances in High Energy Physics

where no summation over a is intended. The masses are related to the coefficientswa of (4.1)
by

m2
a = w

2
a + dwa. (4.4)

Z Matrices

For Re k ≥ 0, the conventionally normalized asymptotic solutions of (4.3) are

âai (z, k) = δ
a
i Γ(1 − αa)

(
k

2

)αa

zd/2I−αa(kz) = δ
a
i z

d/2−αa + · · · , (4.5)

ǎai (z, k) = δ
a
i Γ(1 + αi)

(
k

2

)−αa
zd/2Iαa(kz) = δ

a
i z

d/2+αa + · · · , (4.6)

(no summation over a)where the Iα are modified Bessel functions, and

αa =

√
d2

4
+m2

a. (4.7)

The powers of k in front of the solutions are necessary in order to make the leading terms
k-independent. It is straightforward to verify that the matrices (3.4) are (as the solutions are
diagonal, that is, proportional to δai , we use αa and αi interchangeably)

Zij = 2αi δij , Z̃ij = 0, zij = 0. (4.8)

These equalities hold true in any aAds configuration, as long as one uses the same asymptotic
normalizations.

Spectrum

Equation (4.3) admits a continuous spectrum of regular and subdominant solutions for k2 =
−λ2, λ > 0. The eigenfunctions are given by (The generic label λ for the eigenfunctions used
in Section 3 [c.f. (3.11)] is replaced here by two indices, λ = −k2 and i = 1, . . . , n. As before,
the upper index a is the vector component index.)

aaλi(z) = δ
a
i

√
λzd/2Jαi(λz), (4.9)

where the Jα are Bessel functions, and they satisfy the orthogonality relation

∫∞

0

dz
z
z−(d−2)aλi(z) · aλ′j(z) = δ

(
λ − λ′

)
δij . (4.10)
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Considering the small-z behaviour of (4.9) and comparing with (4.6), one can read off the
response coefficients ri

λ
of the eigenfunctions, compare for example, (3.18),

riλ =
(
λ

2

)αi
√
λ

Γ(1 + αi)
. (4.11)

Hence, after using (3.21), one obtains the two-point function in the form (3.22) as the sum
(here it is an integral) over the spectrum

〈
Oi(k)Oj(−k)

〉
= δij

22(1−αi)

Γ(αi)2

∫∞

0
dλ

λ2αi+1

k2 + λ2
= −δij

2Γ(1 − αi)
Γ(αi)

(
k

2

)2αi
. (4.12)

Notice that the second equality holds only after an analytic continuation, because the integral
does not exist if αi ≥ 0. This is equivalent to adding an infinite contact term to the integral
over the spectrum. For example, if 0 < αi < 1, we rewrite the integrand as

λ2αi+1

k2 + λ2
= λ2αi−1 − k2 λ

2αi−1

k2 + λ2
(4.13)

and add a contact term that cancels the first term on the right-hand side.

4.2. GPPZ Flow

In the GPPZ flow [56], we consider two canonical scalar fields φ and σ with the superpotential

W
(
φ
)
= −3

4

[
cosh

2φ
√
3
+ cosh(2σ)

]
. (4.14)

Both are dual to operators with bare dimensions Δ = 3. The scalar φ is the active scalar of the
GPPZ flow, that is, it is nontrivial in the background. More relations for the GPPZ flow can
be found in [65, 66].

Counterterms and Scheme Dependence

Let us start by reviewing the treatment in standard AdS/CFT [10, 11, 14]. Being dual to
operators of dimension 3, the scalar fields behave asymptotically as

φ(r) = φ0e−r + ψ2 re−3r + φ2e−3r + · · · ,

σ(r) = σ0e−r + ρ2 re−3r + σ2e−3r + · · · ,
(4.15)

where φ0, φ2, σ0, and σ2 are independent coefficients, whereas ψ2 and ρ2 depend on φ0 and
σ0. The background solution satisfies

e2φ/
√
3 =

1 + e−r

1 − e−r
, σ = 0, (4.16)
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which implies

φ0 =
√
3, ψ2 = 0, φ2 =

1√
3
. (4.17)

Carrying out holographic renormalization [10, 11, 14], one finds the coefficients ψ2 and
ρ2,

ψ2 = −1
2
k2φ0 +

4
3
σ2
0φ0,

ρ2 = −1
2
k2σ0 −

8
3
σ3
0 +

4
3
φ2
0σ0,

(4.18)

as well as the exact one-point functions with the full scheme dependence, (We have omitted
the curvature-dependent terms, which are irrelevant here.)

〈
Oφ

〉
= 2φ2 +

(
1
2
+m0

)
k2φ0 +

1
6
u4φφ

3
0 +

(
1
2
u4φσ −

4
3

)
σ2
0φ0,

〈Oσ〉 = 2σ2 +
(
1
2
+ m̃0

)
k2σ0 +

(
1
6
u4σ +

8
3

)
σ3
0 +

(
1
2
u4φσ −

4
3

)
φ2
0σ0.

(4.19)

The scheme-dependent coefficients that appear here stem from the addition of finite
counterterms of the form

gij
(
∂iφ

)(
∂jφ

)
, gij(∂iσ)

(
∂jσ

)
, φ4, φ2σ2, σ4. (4.20)

Let us linearize around the background (4.16), (4.17), which is sufficient to extract
the information for the two-point functions, and translate the fluctuation into the gauge-
invariant variables. One must take some care for the active scalar. Its mixing with the metric
fluctuations is described by (2.22), (2.23), and (2.45), where we must set ν = 0, because of the
orthogonal gauge used to derive (4.19). Hence, using

aφ = ϕφ +
Wφ

4W
h, aσ = ϕσ, b = ∂r

(
h

4W

)
= −

Wφ

W
aφ, (4.21)

one arrives at

〈
Oφ

〉
=

√
3
2

(
u4φ +

4
3

)
+

[
2aφ2 +

3
2

(
u4φ +

4
3

)
a
φ

0 +
(
m0 +

1
2

)
k2a

φ

0

]
,

〈Oσ〉 = 2aσ2 +
(
m̃0 +

1
2

)
k2aσ0 +

(
3
2
u4φσ − 4

)
aσ0 .

(4.22)

The coefficients a0, a2 with superscripts φ and σ are the independent coefficients of the
asymptotic expansion, that is, the analogue of (4.15), of the components of a. The first term on
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the right-hand side of (4.22) is a scheme-dependent, that is, unphysical, VEV, which vanishes
in renormalization schemes that respect SUSY (u4φ = −4/3) [12].

Let us now compare these expressions with the results of Section 3.1. In particular, let
us define the dominant and subdominant solutions by

âφ = e−r − re−3r 1
2
k2 + e−3rcφ + · · · , ǎφ = e−3r + · · · ,

âσ = e−r − re−3r 1
2
(
k2 − 8

)
+ e−3rcσ + · · · , ǎσ = e−3r + · · · ,

(4.23)

with two as yet undetermined coefficients cφ and cσ . The second terms in the dominant
solution can be determined directly from (4.18). From (4.23), one obtains the counterterm
matrix (3.3)

Uφφ = −re−2rk2 + e−2r
(
1
2
k2 + 2cφ

)
+ · · · ,

Uσσ = −2 − re−2r
(
k2 − 8

)
+ e−2r

(
1
2
k2 − 4 + 2cσ

)
+ · · · ,

Uφσ = Uσφ = 0,

(4.24)

where the ellipses indicate terms which do not contribute and can be truncated. It can be
noted that the resulting divergent counterterms agree with the divergent counterterms from
the standard approach. The last terms shown give finite contributions.

It is straightforward to verify that the Z matrices (3.4) that one obtains from (4.23)
agree with the AdS result (4.8).

Writing the bulk field a in terms of the asymptotic solutions (4.23) gives the source and
response coefficients, (the expressions for φ and σ are identical)

s = a0, r = a2 − c a0, (4.25)

so that the linear term of the one-point function (3.7) becomes

〈O〉1 = 2(a2 − c a0). (4.26)

Comparing this with the linear terms in (4.22), we find agreement in the nonlocal term
containing a2. Moreover, we can determine the constants cφ and cσ as (An alternative way
of determining them is to compare the finite counterterms that result from (4.24) with the
linearized standard ones.)

cφ = −3
4

(
u4φ +

4
3

)
− 1
4
(2m0 + 1)k2, cσ = −

(
3
4
u4φσ − 2

)
− 1
4
(2m̃0 + 1)k2. (4.27)

This result states explicitly the relation between the choice of the dominant basis and the
renormalization scheme. Note that only cφ, cσ ∼ (k2)n for n = 0 or 1 appear.
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Spectrum of the Active Scalar

Let us illustrate formula (3.22), which represents the 2-point function as a sum over its poles,
up to local terms, using as an example the active GPPZ scalar. The gauge invariant equation
of motion reads [31, 66]

[
u(1 − u)∂2u − 2(1 − u)∂u −

k2

4

]
aφ√
1 − u

= 0, (4.28)

where the radial coordinate u is defined by u = 1−e−2r , and the warp factor is e2A = u/(1−u).
Equation (4.28) admits a discrete spectrum of regular and subdominant eigenfunc-

tions, with mass squares

m2
n = 4n(n + 1), n = 1, 2, 3, . . . . (4.29)

The normalized eigenfunctions are

a
φ
n(u) =

√
2(2n + 1)
n(n + 1)

(1 − u)3/2 d
du

Pn(2u − 1), (4.30)

where Pn are Legendre polynomials. (As in [31, 66], regular and subdominant solutions of
(4.28) are given by Jacobi polynomials P (1,1)

n−1 (z), which are proportional to dPn(z)/dz.) One
easily finds the response coefficients

r
φ
n =

√
2n(n + 1)(2n + 1). (4.31)

Thus, we obtain for the 2-point function (3.22),

〈
Oφ(k)Oφ(−k)

〉
=

∞∑
n=1

8n(n + 1)(2n + 1)
k2 + 4n(n + 1)

+ c.t.. (4.32)

Clearly, the sum in (4.32) does not converge, so that there are again infinite contact terms. It is
instructive to compare (4.32)with the finite result from holographic renormalization [61, 67].
Let us pick the particular SUSY scheme u4φ = −4/3,m0 = −1/2. Then

〈
Oφ(k)Oφ(−k)

〉
=
k2

2

[
ψ

(
3 +

√
1 − k2
2

)
+ ψ

(
3 −

√
1 − k2
2

)
− ψ(1) − ψ(2)

]
, (4.33)

where ψ(z) = [ln Γ(z)]′. Using the identity

ψ(x) − ψ
(
y
)
=

∞∑
n=0

(
1

y + n
− 1
x + n

)
, (4.34)
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we obtain from (4.33)

〈
Oφ(k)Oφ(−k)

〉
=
k4

2

∞∑
n=1

2n + 1
n(n + 1)[k2 + 4n(n + 1)]

=
∞∑
n=1

[
8n(n + 1)(2n + 1)
k2 + 4n(n + 1)

− 2(2n + 1) + k2
2n + 1

2n(n + 1)

]
.

(4.35)

The nonlocal part agrees precisely with (4.32), and the scheme-dependent terms in (4.22)
have the same form as the infinite contact terms.

4.3. Coulomb Branch Flow

Let us consider the Coulomb branch (CB) flow [57, 58]. There is a canonical bulk scalar with
the superpotential

W
(
φ
)
= −e−2φ/

√
6 − 1

2
e4φ/

√
6. (4.36)

The background solution is given by the relations

v = e
√
6φ, e2A = l2

v2/3

1 − v ,
(4.37)

introducing the radial variable v. The length l is independent of the AdS radius L(= 1),
together with which it determines the radius of the disc on which the D3 branes are
distributed (l2/L).

Counterterms and Scheme Dependence

Let us again briefly review the asymptotic analysis form standard AdS/CFT. It follows from
(4.36) that φ is dual to an operator of bare dimension Δ = 2. Correspondingly, it has an
asymptotic expansion of the special form

φ(r) = φ0 re−2r + φ̃0e−2r + · · · , (4.38)

where φ0 and φ̃0 are the two independent coefficients. Asymptotically, the background
vanishes at the rate

φ ≈ − l2√
6
e−2r (4.39)

implying

φ0 = 0, φ̃0 = − l2√
6
. (4.40)
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From HR, the exact one-point function of the corresponding operator is given by [10,
11, 67]

〈O〉 = φ̃0 + u2φ0. (4.41)

Two comments are in order here. The second term, involving a scheme-dependent constant
u2, is new compared to the corresponding formulas of [10, 11, 67] and arises from the addition
of a finite counterterm proportional to

φ2

r2

∣∣∣∣∣
r=r0

, (4.42)

Furthermore, our result differs from [10, 67] by a factor of 1/2, as our φ0 differs by a factor
−2 from theirs and our definition of the one-point function (1.2) exhibits an additional minus
sign.

In contrast to the GPPZ flow, there is a scheme-independent VEV,

〈O〉0 = − l2√
6
. (4.43)

The presence of this VEV (but not its value) can also be inferred from the background mode,

Wφ

W
= − 4√

6

1 − v
2 + v

= − 4

3
√
6
l2e−2r + · · · . (4.44)

Linearizing around the background and switching to the gauge invariant scalar, with
an asymptotic expansion

a = a0re−2r + ã0e−2r + · · · , (4.45)

the one-point function (4.41) reads

〈O〉 = − l2√
6
+ ã0 + u2a0. (4.46)

In order to make contact to Section 3.1, let us define the dominant and subdominant
solutions as

â = re−2r + α̃e−2r , ǎ = e−2r . (4.47)

Writing (4.45) in this basis, one can read off the source and response as

s = a0, r = ã0 − α̃a0. (4.48)
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In this case, (3.4) results in Z̃ = 0 and Z = 1. (The case Δ = 2 would imply α = 0. The generic
(4.8) does not apply, because of the logarithm in the dominant solution.) Thus, (3.7) reads

〈O〉1 = ã0 − α̃a0. (4.49)

Comparison with the part of (4.46) that is linear in the fluctuation implies α̃ = −u2.
Finally, the counterterm “matrix” (3.3) obtained from the basis (4.47) is

U = −1
r
+
α̃

r2
+O

(
r−3

)
. (4.50)

This provides the standard logarithmically divergent counterterm and a scheme-dependent
finite contribution.

Two-Point Function and Spectrum

The two-point function for the CB flow was calculated in [61, 67]. Here, we present the
calculation using the equation of motion in the gauge-invariant formalism. To obtain the two-
point function of the scalar operator dual to a, consider the equation of motion (2.49), which
can be written in the form

{
v
[
v(1 − v)∂2v + (2α − (2α − 1)v)∂v − (α − 1)2

]

+ 2
[
v(1 − v)∂2v + (2α − (2α + 2)v)∂v − (α − 1)(α + 2)

]}2 + v
1 − vv

1−αa = 0,
(4.51)

where α = (1 +
√
1 + k2)/2. For convenience, we have set also l = 1. The regular solution of

(4.51), up to an irrelevant normalization, is found to be

a = B(α − 1, α + 1)vα−1
1 − v
2 + v

[F(α − 1, α − 1; 2α;v) − 3F(α − 1, α + 1; 2α;v)], (4.52)

where B(x, y) = Γ(x)Γ(y)/Γ(x+y). From this solution one can read off the two-point function
[61, 67] (shown for the scheme u2 = 0)

〈O(k)O(−k)〉 = −ψ(α) + ψ(1) + 4
3k2

. (4.53)

The spectrum is continuous for all k2 < −1, with an isolated pole at k2 = 0 due to a Goldstone
mode. The spectral density form2 = −k2 is found to be [4]

ρ(m) = −2I〈O(k)O(−k)〉|k2=−m2+iε = π tanh
(π
2

√
m2 − 1

)
+
8
3
πδ

(
m2

)
. (4.54)
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5. KS System

Finally, wewould like to apply the general discussion of Section 3 to the case of the Klebanov-
Strassler theory. We start by reviewing the relevant facts about the background.

5.1. KS Background

The effective 5d model describing the bulk dynamics of the KS system contains seven scalar
fields. (As in [33, 45], we restrict ourselves to the JPC = 0++ scalar sector, where C denotes the
quantum number under the Z2 charge conjugation symmetry of the KS theory, compare for
example, [68, 69]. Additional scalar fluctuations with JPC = 0+− and JPC = 0−− were discussed
in [46, 68, 69].) We will use the Papadopoulos-Tseytlin [36] variables (x, p, y,Φ, b, h1, h2).
The dual operators have dimensions Δ = 8, 7, 6 and twice 4 and 3 each. (It is not obvious
that this is a meaningful statement, because in contrast to aAdS settings, the KS system has
no UV conformal fixed point, where the operator dimensions can be fixed. However, the
deviation from aAdS behaviour is quite mild, such that the asymptotic solutions behave
nearly as if the dual operators had definite dimensions. This can be seen explicitly by
inspecting the asymptotic solutions given in the appendix of [29]. Their exponential τ-
dependence (e(Δ−4)τ/3 for â and e−Δτ/3 for ǎ) is what one would expect for a solution dual
to an operator of dimension Δ.) The KS radial variable τ will be introduced momentarily in
(5.3).

The sigma-model metric is

Gab∂Mφ
a∂Mφb = ∂Mx∂Mx + 6∂Mp∂Mp +

1
2
∂My∂

My +
1
4
∂MΦ∂MΦ +

P 2

2
eΦ−2x∂Mb∂

Mb

+
1
4
e−Φ−2x

[
e−2y∂M(h1 − h2)∂M(h1 − h2) + e2y∂M(h1 + h2)∂M(h1 + h2)

]
,

(5.1)

and the superpotential reads

W = −1
2

(
e−2p−2x + e4p coshy

)
+
1
4
e4p−2x[Q + 2P(bh2 + h1)]. (5.2)

Here, Q and P are constants related to the number of D3-branes and wrapped D5-branes,
respectively.

It is useful to introduce the KS radial variable τ by

∂r = e4p∂τ . (5.3)
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In terms of τ , the KS background solution of (2.4) is given by

Φ = Φ0,

ey = tanh
(τ
2

)
,

b = − τ

sinh τ
,

h1 = − Q

2P
+ PeΦ0 coth τ(τ coth τ − 1),

h2 = PeΦ0
τ coth τ − 1

sinh τ
,

2
3
e6p+2x = coth τ − τ

sinh2τ
,

e2x/3−4p = 2P 2eΦ03−2/3h(τ)sinh4/3τ,

(5.4)

with

h(τ) =
∫∞

τ

dϑ
ϑ cothϑ − 1

sinh2ϑ
[2 sinh(2ϑ) − 4ϑ]1/3. (5.5)

Moreover, the warp factor is given by

e−2A ∼ e4p
(
e−2x sinh τ

)2/3
h(τ), (5.6)

with a proportionality factor that sets the momentum scale.
The KT background solution is somewhat simpler, because there y = b = h2 = 0, but it

has a singularity. For the KT background solutions of the other fields, we refer to [33].

5.2. KS 7-Scalar System: Fluctuations

Now, we consider fluctuations of the 7 scalars around the KS background. All scalars appear
to be fully coupled in the bulk, but we can decouple a 4 × 4 set of fields from a 3 × 3 set to
leading order in the UV, as will be discussed in a moment. The system of field equations we
consider follows from (2.49) upon changing the radial coordinate to τ . One finds

[
(∂τ −M)(∂τ −N) − k2e−2A−8p

]
a = 0, (5.7)



34 Advances in High Energy Physics

where we have dropped the tensor indices, and the matricesM andN are defined by

Ma
b = −Na

b −K
a
b − 2e−2x−6pδab ,

Na
b = e−4p

(
∂bW

a − WaWb

W

)
,

Ka
b = 2e−4pGa

bcW
c.

(5.8)

We fix the momentum scale such that

e−2A = e4p
(
e−2x sinh τ

)2/3h(τ)
h(0)

. (5.9)

The equations of motion (5.7) can be solved asymptotically (for large τ), which is
needed for the holographic renormalization procedure of chapter 3. To do so one has to
expand the matrices and the warp factor in powers of e−τ . We spare the reader the technical
details (which can be found in [29, 45]) and just mention the following pattern in the
asymptotic solutions. Let us consider the two groups of scalars consisting, on the one hand, of
x, p, h1 and Φ, and on the other hand, of y, b and h2. (More precisely, we consider the gauge
invariant scalars built on them according to (2.22).) In [45], these two sets of scalars were
called the “glueball sector” and the “gluinoball sector”, respectively. In the KT background,
the scalars in the gluinoball sector are inert, that is, their background solutions are identically
zero, and consequently any terms coupling the two sectors are absent. This eventually leads
to the singularity in the IR, which is resolved in the KS background by taking into account
the backreaction on the gluinoball sector. Nevertheless, the UV decoupling is also apparent
in the asymptotic solutions. The solutions related to the operators of dimensions Δ = 8, 6 and
4 only have the first four components excited at leading (and next-to-leading) order. These
four components correspond exactly to the scalars of the glueball sector. The mixing only
appears at order e−τ relative to the leading order. Similarly, the solutions related to operators
of dimensions Δ = 7 and 3 only have the last three components excited at leading (and next-
to-leading) order. These correspond to the scalars in the gluinoball sector.

5.3. Holographic Renormalization

We are now ready to apply the formalism of Section 3 to the case of the KS system. In the
following discussion, we often restrict ourselves to the Δ ≤ 4 operators. This simplifies
the calculations considerably, and it suffices to discuss all the general features of a system
with several coupled scalars. We assume that the dominant and subdominant solutions are
ordered in such a way that those dual to the Δ ≤ 4 operators carry the indices i = 4, 5, 6, 7.

In order to discuss the issue of scheme dependence, we allow for redefinitions of the
dominant asymptotic solutions with the subdominant solutions. Again, we restrict to the
Δ ≤ 4 operators and only modify the corresponding dominant solutions according to

â′i = âi + λi
j ǎj (5.10)

with i, j = 4, 5, 6, 7.
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The matrix Z from (3.4) can be calculated (using the solutions of the appendix in [29])
and is given by

Zij = 31/3P 4e2φ0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−80
3

0
5
4
β 0 −2531

192
β2 −19

4
β

419
80

β

0 −2
9

0 0
8
3

3337
11520

β2
6913
3200

β2

0 0
20
9

737
120

β −4439
600

β −76
9

− 7
15

0 0 0 −4
9

10
9

0 0

0 0 0 0
4
9

0 0

0 0 0 0 0 −2
9

5
9

0 0 0 0 0 0
4
9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.11)

where we have introduced the abbreviation

β =
31/3

h(0)
k2. (5.12)

Note that Z does not depend on the λji , that is, it is scheme independent as it should be
according to (3.25).

As discussed in Section 3.3, one can also redefine the dominant solutions by other
dominant ones. In particular, to a dominant solution of dimension Δ, one could add other
dominant solutions of dimensions smaller than or equal toΔ. This would amount to an upper
triangular matrix Λ, compare for example, (3.24). It is easy to check that using μji = δ

j

i and

Λj

i =
(
31/3P 4e2φ0

)−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
80

0
27
1280

β
59697
204800

β2 −3051207
2048000

β2 0
297
640

β

0 −9
2

0 0 27 −30033
5120

β2
2990637
102400

β2

0 0
9
20

19899
3200

β −257769
32000

β −171
10

8739
400

0 0 0 −9
4

45
8

0 0

0 0 0 0
9
4

0 0

0 0 0 0 0 −9
2

45
8

0 0 0 0 0 0
9
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.13)
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in (3.25), which also rescales all operators, would lead to a matrix

Z′
ij = δij . (5.14)

Let us mention in passing that the appearance of the β-factors in (5.13) leads to a “natural”
form of Λj

i , according to the discussion in Section 3.3. It ensures that the structure of the
dominant solutions stays intact, that is, also after the redefinition the same combinations of
β and eτ appear as before. (Of course, this only becomes apparent by looking at the explicit
form of the asymptotic solutions given in the appendix of [29].)

Let us turn to the matrix Z̃ from (3.4). As stated in Section 3.3, one can always choose
a basis such that Z̃ij = 0. This statement holds also after the operator redefinition given by
(5.13). Allowing for scheme dependence in the rotated basis, one would find from (3.25)

Z̃′
ij = λji − λij . (5.15)

Calculating the two-point functions of the dual operators using (3.8) is, of course, more
involved and goes beyond the scope of this article. It would be interesting to make the scaling
withNeff ∼ ln(k/Λ) explicit, where Λ is the confinement scale, but certainly one would have
to rely on numerical methods. We note that in [39, 40] an approximation method was devised
to determine the leading order term of the two-point functions in an expansion for large
momenta. This method was also applied in [33, 41]. It would be interesting to see whether
and how the renormalization procedure presented here would modify the results of [39, 40].
Another remark is that, in any case, the renormalization procedure devised here justifies a
posteriori the pragmatic approach taken in [45] for the calculation of mass spectra in the KS
system. Probably, it also applies to the calculations in [46, 47] if it is possible to bring the
system considered there into the form of a fake SUGRA system.

It is also interesting to consider the counterterm matrix Uab. It is rather complicated,
and we only give the leading terms in an expansion in ε = e−2τ/3. For λij = 0, it is given by

Uab = 21/3
(

e−φ0

P 2(4τ − 1)

)2/3(
U4×4 U4×3
U3×4 U3×3

)
, (5.16)

with the submatrices

U4×4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−32
15

−32
5

− 9
640

(E)β2ε2 −
9βε
20

−32
5

−96
5

3βε −117
20

βε

− 9
640

(E)β2ε2 3βε −βε 3
2
βε

− 9
20
βε −117

20
βε

3
2
βε −

3(4τ + 17)βε
16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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U3×4 = UT
4×3 =

ε3/2

4τ + 5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
5
(28τ − 31)

128
5

(2τ + 1)
16
3

O(ε)

16
15

(2τ + 19)
256
15

(τ + 2) −16
9

O(ε)

−16
15

(2τ + 19) −256
15

(τ + 2)
16
9

O(ε)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

U3×3 =
1

4τ + 5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
3
(4τ + 17)

8
3

−8
3

8
3

−8
9

8
9

−8
3

8
9

−8
9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(5.17)

where E denotes 32τ2 + 148τ − 873.
The entries of U3×4 and U4×3 lead to mixings between the fields in the glueball and

gluinoball sectors. When considering nonvanishing λij , one notices that they are all scheme-
dependent.

In general, the scheme-dependent terms should only lead to finite contributions to the
action. We have verified this explicitly for the Δ ≤ 4 operators. Using the counterterm matrix
with λij /= 0 and considering nonvanishing sources only for the operators with Δ ≤ 4, we find

e4Aa ·U · a =
7∑

i,j=4

si
(
V

(1)
ij (λkl) + ε−1V

(2)
ij + V (3)

ij

)
sj (5.18)

with

V (1)
∣∣∣
4−7

=
1
9
31/3P 4e2φ0

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10λ45 − 4λ44 2λ45 − 2λ54 + 5λ55
5
2
λ47 + 5λ65 − 2λ64 − λ46 2λ47 − 2λ74 + 5λ75

2λ45 − 2λ54 + 5λ55 4λ55
5
2
λ57 − λ56 + 2λ65 2λ57 + 2λ75

5
2
λ47 + 5λ65 − 2λ64 − λ46

5
2
λ57 − λ56 + 2λ65 5λ67 − 2λ66

5
2
λ77 + 2λ67 − λ76

2λ47 − 2λ74 + 5λ75 2λ57 + 2λ75
5
2
λ77 + 2λ67 − λ76 4λ77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.19)

These finite terms are analogous to the finite quartic counterterms in the GPPZ flow and
the finite quadratic counterterm in the CB flow, compare for example, (4.20) and (4.42),
respectively, after expanding them to quadratic order in the fluctuations.
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In addition to these finite terms there are also divergent contributions which are either
linearly diverging in ε = e−2τ/3 or logarithmically. These are given by

V (2)
∣∣∣
4−7

=
1
9
31/3P 4e2φ0×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
2
(
τ2−3τ+5

)
β −3

8
(4τ − 7)β 0 0

−3
8
(4τ − 7)β −32τ+1

4τ+1
β 0 0

0 0 −1
4
(
16τ2+28τ+19

)
−4(2τ+1)

0 0 −4(2τ+1) −16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (3)
∣∣∣
4−7

=
1
9
31/3P 4e2φ0

⎛
⎝V (3,Δ=4) 02×2

02×2 V (3,Δ=3)

⎞
⎠,

(5.20)

with

V (3,Δ=4) = β2

⎛
⎜⎜⎜⎝

9
16
τ4 +

75
16
τ3 +

189
32

τ2 − 5355
128

τ +
38979
256

3
256

T

3
256

T 9
64

32τ3 + 424τ2 + 916τ + 371
4τ + 1

⎞
⎟⎟⎟⎠,

V (3,Δ=3) = β

⎛
⎜⎜⎜⎝

3
2
τ4 +

45
2
τ3 +

477
4
τ2 +

1959
8

τ − 1239
32

4τ3 + 51τ2 +
975
4
τ − 831

16

4τ3 + 51τ2 +
975
4
τ − 831

16
12τ2 + 156τ + 213

⎞
⎟⎟⎟⎠,

(5.21)

where T denotes (256τ4 + 2368τ3 + 4368τ2 − 5664τ − 1821)/(4τ + 1). Note that the linear
divergences are momentum independent for the Δ = 3 operators and proportional to k2 for
the Δ = 4 operators. Furthermore, the logarithmically divergent terms are proportional to
k2 for the Δ = 3 operators and proportional to k4 for the Δ = 4 operators. All this is very
reminiscent of the aAdS case, compare for example, Sections 5.2 and 5.3 in [12]. There is,
however, a difference in the fact that the logarithms appear in a much more complicated way,
and they are even present in the linearly divergent terms. Although some of this may be an
artifact of the choice of radial variable, this is consistent with the fact that the KS theory has
no UV conformal fixed point.

As mentioned above, all the entries of U3×4 and U4×3 are scheme-dependent and
thus only contribute finite terms to the renormalized action. This implies that one could
have determined all the divergent terms for the glueball-sector and the gluinoball-sector
separately. In other words, one can renormalize the KT theory without embedding it into
the KS theory. This is plausible, as the KT background is a good approximation to the KS
background in the asymptotic region, and the field theory divergences are UV divergences.
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This standpoint was also taken in [30, 41], where the renormalization was performed just for
the KT background.

5.4. Gluino Condensate

Finally, we would like to comment on the issue of VEVs. As we saw in the aAdS cases of
Section 4, the response function of the background fluctuation Wφ/W encodes the VEV in
those cases (up to an overall factor). We would like to see how this carries over to the case
of KS, where we expect a nonzero VEV for a gluinoball operator of Δ = 3. In order to derive
the VEV from first principles, one would need the exact form of the counterterms linear in
the fluctuations, which we have not determined yet. Thus, we can only take the cases of
GPPZ and CB as encouraging examples and calculate, in analogy, the response coefficients of
Wa/W . It is straightforward to calculate

Wa

W
=

4
4τ + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

1
3

−2
(
τ − 1

4

)

0

03

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
4e−τ

4τ + 1

⎛
⎜⎜⎜⎜⎜⎜⎝

04

−4τ + 1

(−4τ + 1)(τ − 1)

(τ − 2)(4τ − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

+O
(
e−2τ

)
. (5.22)

Comparing this with the asymptotic solutions, we obtain

Wa

W
= −2â5 − 4ǎ7 + 2ǎ6, (5.23)

where â5 is the dominant solution corresponding to one of the Δ = 4 operators and ǎ6 and ǎ7
are the subdominant solutions of the Δ = 3 operators. This result suggests the interpretation
that a combination of the twoΔ = 3 operators has a VEV, which is in agreement with the field
theory expectation of a condensate of the gluino bilinear [34, 70]. However, this statement is
again scheme-dependent. The redefinition (5.10) leads to

a = siâi + riǎi = siâ′i +
(
ri − sjλij

)
ǎi, (5.24)

and applying this toWa/W results in

Wa

W
= −2â5 + (−4 + 2λ57)ǎ7 + (2 + 2λ56)ǎ6 + 2λ55ǎ5 + 2λ54ǎ4, (5.25)

ǎ4 and ǎ5 being the subdominant solutions of the Δ = 4 operators. Let us apply the
“naturalness” criterion on the form of the λij described in Section 3.3. It would give λ55, λ54 ∼
β2, but β = 0 in (5.25), so that the coefficients of ǎ4 and ǎ5 vanish. The coefficients of
the ǎ6 and ǎ7 belonging to the Δ = 3 operators are more subtle, because the e−τ term in
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â5, which is the leading term in ǎ6 and ǎ7, is independent of β. On physical grounds we
expect that there should be a natural scheme in which the VEVs for the Δ = 3 operators
are not both vanishing simultaneously, compare for example, [34, 70]. It would be very
interesting to understand how to determine such a preferred scheme, which might amount
to extending the “naturalness” criterion of Section 3.3 or to finding an equivalent of the
supersymmetric scheme in the GPPZ flow. Obviously, it would also be interesting to obtain
the VEVs independently, using the linear terms of the action, but for this one would need the
linear counterterms.

6. Conclusions and Outlook

The recent efforts to perform HR systematically in nonaAdS backgrounds, which we have
reviewed, offer a promising picture for cascading gauge theories, like KS. It appears that the
pragmatic approach taken in various calculations of glueball mass spectra is justified, that
is, it has been established that two-point functions of renormalized operators exist, which
exhibit precisely the calculated mass spectra. This follows, as they are indeed of the general
form (3.9) assumed in the calculation of the spectra. We have presented the case of scalar
fields, but a generalization to other independent gauge-invariant fluctuations, for example,
the transverse traceless metric fluctuations, seems straightforward. The new order-by-order
approach, devised in [29], nicely reproduces the results of HR in aAdS settings. In particular,
the scheme dependence is incorporated in an interesting fashion.

There is, obviously, much room for further development. First, one needs to
understand the role of the gauge-dependent terms that remain in the full on-shell action.
The action (3.1) appears, of course, in an expansion of (2.1), but gauge-dependent second-
order terms involving the field h, especially, have been dropped. In aAdS settings, finite
terms of this kind are related to a conformal anomaly. A related question is whether the
second-order counterterms can be obtained from an expansion of some covariant expression
of the full fields, from which one may deduce Ward identities between various correlation
functions. Presumably, this would also shed some light on the question how to calculate
the VEV. Indeed, adding the superpotential W as a boundary term removes terms linear in
the fluctuations from the action. Therefore, a VEV must stem from the counterterms, which
is precisely how it works in aAdS settings. There, the counterterm U(φ) [7, 11] may differ
from the superpotential W(φ), although it satisfies the same equation (2.2). Expanding the
differenceU(φ) −W(φ) to first order in the fluctuations yields precisely the VEV.

Second, it would be very interesting to find a better definition of the naturalness
criterion for the choice of the asymptotically dominant basis solutions. This question is
essential to limit this choice to the freedom of choosing a scheme that one has in QFT. We
have seen in the examples in Section 4 that the scheme dependence yields redefinitions of
the dominant basis with certain powers of k2. Such a naturalness criterion may offer an
alternative way to unambiguously determine VEVs.

Third, one should investigate how the method extends to higher-orders in the
fluctuations. The quadratic terms in the bulk equations of motion have been given in [33],
including the metric fluctuations. From these, one may determine three-point functions and
scattering amplitudes.

Last, one should find a formulation of HR for systems, in which the assumptions on
the form of the asymptotic basis solutions do not hold. For the KS case considered here they
are satisfied, but other interesting cases in which people have used a pragmatic approach for
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mass spectra, for example, theMaldacena-Nunez system [45, 48] or the walking backgrounds
[50, 54], have a very different behaviour. It would also be interesting to see whether and, if
yes, how the systems considered in [22] could be described in the present approach.
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