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Abstract

We study the potential to observe CP-violating effects in various supersymmet-

ric cascade decay chains at the LHC. Asymmetries composed by triple products of

momenta of the final state particles are sensitive to CP-violating effects. We an-

alytically calculate the cascade decays including the relevant spin correlations to

compute the parton level asymmetry. In addition, we use Monte Carlo simulations

to estimate the sensitivity of the LHC to the CP-violating observables.

Due to large boosts that dilute the asymmetries, these can be difficult to observe

at the LHC. However, if all particle masses in a cascade decay are known, it may be

possible to reconstruct all momenta in the decay chains. We can then recover the

full asymmetry on an event-by-event basis even when we have missing momentum

due to a stable lightest supersymmetric particle. After the reconstruction, the non-

diluted CP-violating signal gets significantly enhanced so that an observation may

become feasible.

A fully hadronic study has also been completed to produce the best estimate

of the viability of these obseravbles at the LHC. We include both standard model

and SUSY backgrounds in the study. Our conclusions state that given a favourable

scenario, CP-violation may be observed in SUSY at the 3σ-level over a wide range

of CP-phases with 500 fb−1 of data.
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Chapter 1

Introduction

1.1 The Standard Model

The Standard Model of particle physics is an extremely successful theory that de-

scribes all of the fundamental constituents of matter and their interactions (apart

from gravity). The model describes to very high accuracy, a wealth of experimen-

tal data that has been collected over the past 40 years. Despite the fact that the

precision and energy of the experiments has rapidly advanced, there are still no

unambiguous hints of new structure (if we add neutrino masses to the model).

The model is built from three generations of quarks, q, and leptons, ℓ, that

form the fermionic matter fields. These matter fields interact via three fundamental

forces, the electromagnetic force, the weak force and the strong force which are

carried by various bosonic exchange particles.

Electromagnetism and the weak force are combined in the model to produce the

Glashow-Weinberg-Salam electroweak interaction [1–3]. This theory describes the

massless photon, γ, and the massive W± and Z0 bosons which interact with both

the quarks and leptons. The strong force is described by Quantum Chromodynamics

(QCD) [4–6] which explains the interaction between the massless gluon, g, and the

quarks.

All of the above particles and forces have now been thoroughly investigated in

experiments all over the world. However, one ingredient of the Standard Model

still remains to be discovered and this is the Higgs boson [7–11]. The Higgs boson

1
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is required to spontaneously break the electroweak symmetry so that we can give

masses to the weak gauge bosons. In addition, the mechanism allows us to give

masses to all the fermions in the model. Despite the success of the rest of the

theory we are still yet to find any direct evidence for a Higgs boson at a collider. So

far, we have only been able to place a bound on the mass of the particle from the

Large Electron Positron Collider (LEP) of, mH > 114.4 GeV (at the 95% confidence

level) [12]. Recently, the Tevatron has also started excluding certain masses for

the Higgs and the most recent exclusion is between 158 and 175 GeV (at the 95%

confidence level) [13]. Over the next few years, the discovery or exclusion of the Higgs

boson is one of the principle tasks of both the Tevatron and the newly operational

Large Hadron Collider [14, 15].

1.2 Standard Model problems

Whilst the Standard Model has been incredibly successful, we know that the model

cannot be the final theory of physics, since it does not include gravity. In addi-

tion, the model faces other theoretical challenges and there are experimental hints

(particularly from cosmology) that we require new physics to explain the universe

satisfactorily.

Probably the most discussed issue concerning the Standard Model is the so called

‘hierarchy problem’ [16,17]. Phenomenologically, the mass of the Higgs boson must

be around the electroweak scale, O(100 GeV), to preserve the unitarity of WW

scattering amplitudes [18, 19]. Indeed, indirect fits from electroweak observables

constrain the mass to be, mH = 87+35
−26 GeV, or mH < 157 GeV at 95% confidence

level [20,21]. However, if we calculate the quantum corrections to the Higgs mass we

find that the result contains a quadratic divergence. Fig. 1.1 shows the correction

to the Higgs mass, mH from a fermion, f , with mass, mf . If we evaluate this

contribution we find,

∆m2
H = −2

N |λf |2
16π2

(Λ2
UV − 2m2

f ln(ΛUV /mf ) + ...) , (1.1)

where λf is the coupling constant, N is a multiplicative factor (for example N(t) = 3

for top quarks due to summation over colour) and ΛUV is an ultraviolet momentum
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H

f

Figure 1.1: Loop corrections to m2
H from a fermion, f , with mass, mf .

cut-off. We see that the correction to the Higgs mass is proportional to the square

of this ultraviolet momentum cut-off. Now, if we believe that the Standard Model is

correct apart from the inclusion of gravity, we have no new physics in the model until

quantum gravitation effects become important. Hence, we have to set the ultraviolet

cut-off at the scale when we expect these effects to become important and this scale

can be assumed to be close to the Planck mass, MP ∼ 1019 GeV. Calculating with

this scale, we find that the correction to the Higgs mass is ∼ 1030 larger than the

mass of the Higgs itself. In principle we can renormalise the quadratic divergences

away but this requires an incredible fine-tuning between an extremely large bare

mass and the loop correction to result in a physical Higgs mass of O(100 GeV).

The precise cancellation over so many orders of magnitude is therefore thought to

be highly unnatural.

Another problem with the Standard Model is the lack of a suitable candidate for

cold dark matter. Dark matter was first presented as an idea to explain the shape

of galaxy rotation curves [22], which required the presence of additional matter

that was not luminous. New data from the gravitational lensing [23] and fits to

the currently favoured cosmological model [24] also support the idea that most of

the universe is composed of a non-relativistic, weakly interacting, stable particle.

However, the Standard Model does not contain a particle that matches this criteria.

For a recent review on the evidence and candidates for dark matter see [25].

Finally, we would also like to mention that the Standard Model is unable to

satisfactorily explain the baryon asymmetry of the universe. To produce an excess

of matter over anti-matter in the universe any theory must contain CP-violation [26].

Whilst the Standard Model contains a CP-violating phase in the CKM matrix [27],

the model produces an asymmetry many orders of magnitude smaller than that
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H

S

Figure 1.2: Loop corrections to m2
H from a scalar, S, with mass, mS.

observed in the universe [28–31].

1.3 Supersymmetry

A potential solution to all the problems discussed above is provided by Supersym-

metry (SUSY) [32,33]. SUSY is postulated as a new symmetry that exists between

fermions and bosons. It is theoretically interesting as it is the only non-trivial

extension of the Poincaré group [34]. Excellent introductions to SUSY are given

in [35, 36].

Phenomenologically, SUSY predicts that all bosons in the theory have a fermionic

partner and vice versa for the fermions. However all of the properties (i.e. charges

and masses) of the partners should be same. Instantly, we see that if SUSY is to

exist in nature, it must be a broken symmetry as we have not seen any partners to

the Standard Model particles yet. Thus, the mass of all of the partners that have

electric or colour charge must be higher than thus far probed in experiments.

In Sec. 1.2 we discussed the hierarchy problem that is often considered the most

pressing issue within the Standard Model. SUSY provides a solution to this problem

with the new partners of the Standard Model particles [37–39]. For example, Fig. 1.2

shows the correction to the Higgs mass, mH from a scalar, S, with mass, mS. If we

evaluate this contribution we find,

∆m2
H = −Nλ̃S

16π2
(Λ2

UV − 2m2
Sln(ΛUV /mS) + ...) , (1.2)

where λS is the coupling constant. We must also remember that for each on-shell

fermionic degree of freedom we require a scalar partner and consequently we have two

scalar partners for each Standard Model particle. Therefore, comparing Eq. (1.1) to
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Eq. (1.2), if we set,

λ̃S = −λ2
f (1.3)

we are able to cancel the UV divergence to the Higgs mass for each individual

Standard Model fermion.

However, we must note that we still have the logarithmic terms in both Eq. (1.1)

and Eq. (1.2). These will only cancel completely if we set,

mS = mf . (1.4)

but we know that for the SUSY partners this relation cannot be true, as they have

not been discovered yet. However, since this is just a logarithmic dependence, the

correction will stay small as long as the mass difference between the Standard Model

and SUSY states is small. Consequently, we come to the conclusion that the mass

splitting between the states should be around the weak scale O(1 TeV). In addition,

electroweak data points to a SUSY spectrum below 1 TeV [40–42]. Therefore, we

come to the conclusion that if SUSY exists in nature, there is a good chance of it

being seen at the LHC.

As well as solving the hierarchy problem, models of SUSY can also contain a

suitable candidate for dark matter [43, 44]. If we impose R-parity on our models

(see Sec. 2.3 for more details) the lightest SUSY partner (LSP) has to be stable. If

in addition, the particle only interacts weakly, then it can reproduce the required

abundance from cosmological considerations very accurately [45].

Finally, new SUSY models also offer the possibility of providing many new CP-

violating phases to the theory. These phases may be large and in particular scenarios

they have the potential to allow SUSY to generate the required baryon asymmetry

that we see in the universe [28,46–48]. In this thesis we concentrate on the discovery

potential of the LHC to be able to observe any new CP-violation that may be present

if SUSY is seen.

1.4 Thesis outline

We start the thesis in Chapter 2 by briefly describing the complex Minimal Super-

symmetric Standard Model (MSSM) and its interactions. This is the simplest SUSY
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extension of the Standard Model and is the theory that has been most studied phe-

nomenologically. In particular we fix the notation that will be used in the rest of the

thesis and also point out the specific CP-violating phases that we will concentrate

on.

In Chapter 3 we summarise some of the various studies that have looked at CP-

violation in the MSSM at the LHC. We start with a general introduction to the

transformation properties of the C, P and T symmetries before explaining their use

at colliders. The T-odd triple product correlations are discussed in detail as these

are the observables that are suitable to find hints for CP-violation at colliders. In

addition we also discuss constraints on CP-violating phases in SUSY from the low

energy electric dipole moment (EDM) experiments.

Our first study is presented in Chapter 4, where we investigated the pair pro-

duction of SUSY top quarks (stops, t̃i) at the LHC,

pp→ t̃it̃
∗
i . (1.5)

These are then followed by the decay,

t̃i → χ̃0
j + t→ χ̃0

1ℓ
+ℓ− +Wb. (1.6)

where χ̃0’s are called neutralinos and are mixed states comprising the SUSY partners

of the photon, Z and neutral Higgs bosons. We find that the three-body decay of

neutralinos are sensitive to CP-violating triple product asymmetries due to spin

correlations between the production and decay of the relevant χ̃0
j . We also explain

in detail how to calculate the asymmetries at the parton level and derive the origin

of the CP-violating terms.

In Chapter 5 we discuss 1st and 2nd generation SUSY quark (squark) production

but investigate the corresponding decay chain to Eq. (1.6). We chose to investigate

this decay, as firstly, the production cross section is substantially higher than for

stops which results in better a statistical significance for our asymmetry. Secondly,

when we investigate squark production in association with a SUSY gluon (gluino),

we find that we are able to kinematically reconstruct the event. With the recon-

struction, we find that the CP-asymmetry will be significantly larger.
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Our final study is presented in Chapter 6 where we return to discuss the pair

production of stops but we now consider the following two-body decay chain,

t̃i → χ̃0
j + t→ ℓ̃± + ℓ∓ +Wb→ χ̃0

1ℓ
±ℓ∓ +Wb. (1.7)

where ℓ̃± is a SUSY lepton (slepton). The advantage of studying the two-body decay

chain is that the single cascade in Eq. (6) is fully reconstructible. In addition, we

complete a fully hadronic study to try to accurately estimate the luminosity that

will be required to observe CP-violation in SUSY at the LHC.

Finally, we conclude the thesis in Chapter 7. In addition, we present the La-

grangian and couplings for all interactions used in the thesis in Appendix A. In

Appendix B we give the amplitudes for all of the processes calculated and in Ap-

pendix C we present details of the phase-space calculation.



Chapter 2

The complex MSSM

The simplest supersymmetric extension of the Standard Model is known as the

Minimal Supersymmetric Standard Model (MSSM) [49–52]. The model introduces

the minimal number of new particles and couplings that are necessary for a consis-

tent supersymmetric (SUSY) model. This results in each Standard Model particle

(left and right states) receiving a new ‘superpartner’ and in addition we require an

extended Higgs sector of two doublets, see Sec. 2.1.

If SUSY is realised in nature the symmetry must be broken since we have not

seen any of the additional particles yet and in unbroken SUSY, these would have

the same mass as the Standard Model fields. In the MSSM we choose to break

SUSY ‘softly’, which means allowing any terms into the Lagrangian that break the

symmetry but do not induce any new quadratic divergences, see Sec. 2.2. These

terms are introduced in the most general way and with no assumption as to how

the SUSY breaking mechanism occurs in nature.

2.1 Introduction

The MSSM extends the particle content of the Standard Model by introducing

the superpartners. The gauge group is the same as the Standard Model so the

superpartners have the same quantum numbers as the Standard Model fields but

differ by spin-1
2
. Firstly, all the quarks and leptons get new spin-0 partners called

squarks and sleptons as shown in Tab. 2.1. It must be noted that a superpartner is

8
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Name Particle Superpartner SU(3)C , SU(2)L, U(1)Y

(Spin-1
2
) (Spin-0)

Quarks, Squarks (uL, dL) (ũL, d̃L) (3, 2, 1
3
)

(x3 families) u†R ũ∗R (3, 1, −4
3
)

d†R d̃∗R (3, 1, 2
3
)

Leptons, Sleptons (ν, eL) (ν̃, ẽL) (1, 2, −1)

(x3 families) e†R ẽ∗R (1, 1, 2)

Table 2.1: The quarks, squarks, leptons and sleptons of the MSSM. The spin-0 fields
are complex scalars, whilst the spin-1

2
fields are two component Weyl fermions.

SU(3)C is the gauge group of colour charge, SU(2)L is the gauge group of weak
isospin and U(1)Y is the gauge group of Weak hypercharge.

Name Particle (Spin-1) Superpartner SU(3)C , SU(2)L, U(1)Y

(Spin-1) (Spin-1
2
)

Gluon, Gluino g g̃ (8, 1, 0)

W bosons, Winos W i
µ W̃ i (1, 3, 0)

B boson, Binos Bµ B̃0 (1, 1, 0)

Table 2.2: The gauge and gaugino fields of the MSSM. SU(3)C is the gauge group
of colour charge, SU(2)L is the gauge group of weak isospin and U(1)Y is the gauge
group of Weak hypercharge.

required for each on-shell Standard Model degree of freedom, therefore two scalar

states are required per Standard Model fermion. These are called the ‘left’ and

‘right’ states (f̃L, f̃R) as the partners of the corresponding Standard Model fermions

but actually have no helicity themselves since they are spin-0.

The gauge bosons of the Standard Model also receive superpartners that are

called gauginos with spin-1
2
, see Tab. 2.2. In analogy to the Standard Model photon,

Z, and the W± bosons, one can form a photino, γ̃, a Zino, Z̃, and W̃± from the B̃

and W̃ i fields. The superpartners of the gluons are the gluinos g̃.

In the MSSM we not only require superpartners to the Standard Model Higgs

bosons but we also need to enlarge the Standard Model Higgs Boson sector, see

Tab. 2.3. We now require two complex Higgs doublets with hypercharges U(1)Y =
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Name Particle Superpartner SU(3)C , SU(2)L, U(1)Y

(Spin-0) (Spin-1
2
)

Higgs, Higgsinos (H11, H12) (H̃11, H̃12) (1, 2, −1)

(H21, H22) (H̃21, H̃22) (1, 2, 1)

Table 2.3: The Higgs and higgsino fields of the MSSM. SU(3)C is the gauge group
of colour charge, SU(2)L is the gauge group of weak isospin and U(1)Y is the gauge
group of Weak hypercharge.

±1 to give masses to both the up and down type quarks and leptons and also

to cancel the new anomalies caused by adding extra fermions to the model. The

superpartners of the new Higgs fields are called higgsinos. For a detailed account of

the Higgs sector in the MSSM, see for example [53–55].

In analogy with the Standard Model, the gauge eigenstates of the MSSM do not

in general correspond directly to the mass eigenstates but instead mix. This is due

to the electroweak symmetry, SU(2)L × U(1)Y , being broken, allowing fields with

the same SU(3)C × U(1)em, spin and R-parity (Sec. 2.3) to mix. In the Standard

Model we have already seen that the Bµ and W i
µ mix to form the physical states:

γ, Z0 and W±. The same is also true for the quarks and leptons of the Standard

Model.

For the MSSM this also occurs; the individual squarks, sleptons, gauginos and

higgsinos can all mix with particles of the same quantum number. The only excep-

tion are the gluinos which are the only colour octet fermions that exist in the model.

The gauge eigenstates along with the physical mass eigenstates that are formed are

shown in Tab. 2.4. A particular point to note is that the gauginos and higgsinos

are able to mix together. These form new mass eigenstates called neutralinos, χ̃0
i ,

for the neutral particles (U(1)em = 0) and charginos, χ̃i, for those that have charge

(U(1)em = ±1).
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Name Spin Gauge Eigenstate Mass Eigenstate

Higgs Bosons 0 H0
1 , H

0
2 , H

−
1 , H

+
2 h0, H0, A0, H±

ũL, ũR, d̃L, d̃R ũ1, ũ2, d̃1, d̃2

Squarks 0 c̃L, c̃R, s̃L, s̃R c̃1, c̃2, s̃1, s̃2

t̃L, t̃R, b̃L, b̃R t̃1, t̃2, b̃1, b̃2

ẽL, ẽR, ν̃e ẽ1, ẽ2, ν̃e

Sleptons 0 µ̃L, µ̃R, ν̃µ µ̃1, µ̃2, ν̃µ

τ̃L, τ̃R, ν̃τ τ̃1, τ̃2, ν̃τ

Neutralinos 1
2

B̃0, W̃ 3, H̃0
1 , H̃

0
2 χ̃0

1, χ̃
0
2, χ̃

0
3, χ̃

0
4

Charginos 1
2

W̃−, W̃+, H̃−
1 , H̃

+
2 χ̃±

1 , χ̃
±
2

Gluino 1
2

g̃ g̃

Table 2.4: Gauge and mass eigenstates of the additional particles in the MSSM.

2.2 Soft SUSY breaking

Since no superpartners have (as yet) been discovered, we know that if SUSY exists,

it must be broken to allow the masses of the particles to be large enough to have es-

caped detection. SUSY breaking is not currently fully understood and we therefore

formulate the MSSM in a model independent way. This is accomplished by intro-

ducing any terms that break SUSY without inducing new quadratic divergences into

the theory. The different terms that we can add are as follows [56]:

• Gaugino mass terms, −1
2
Maλ̄aλa ;

• Scalar mass terms, −M2
φi
|φi|2 ;

• Trilinear scalar interactions, −Aijkφiφjφk ;

• Bilinear terms, −Bijφiφj .
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These breaking terms lead to the explicit form of the ‘soft’ SUSY breaking La-

grangian,

−Lsoft =
1

2
M1B̃B̃ + 1

2
M2W̃W̃ + 1

2
M3g̃g̃ +m2

H1
|H1|2 +m2

H2
|H2|2

+M2
Q̃
|q̃L|2 +M2

Ũ
|ũ∗R| +M2

D̃
|d̃∗R|2 +M2

L̃
|ℓ̃L|2 +M2

Ẽ
|ẽ∗R|2 (2.1)

+(hEAEH1ℓ̃Lẽ
∗
R + hDADH1q̃Ld̃

∗
R + hUAUH2q̃Lũ

∗
R +BµH1H2 + h.c.).

M1, M2 and M3 are the U(1), SU(2) and SU(3) gaugino mass terms respectively

whilst m2
H1

, m2
H2

and Bµ are the Higgs mass terms. The scalar mass terms are 3×3

Hermitian matrices in generation space which are represented by M2
Q̃
, M2

Ũ
, M2

D̃
,

M2
L̃

and M2
Ẽ

while the terms hEAE , hDAD and hUAU are general 3×3 matrices.

If we allow the parameters in Eq. (2.1) to be complex we have over 100 new free

parameters compared with the Standard Model.

If SUSY is discovered at the LHC the task will immediately turn to attempting

to measure these parameters in the hope of shedding light on the precise mechanism

of SUSY breaking. This may seem like a daunting task but luckily, for individual

processes, only a small subset should be important (at least at tree level).

The above implementation of the MSSM assumes no particular model for the

SUSY breaking mechanism. However, many ideas have now been presented as to

how SUSY may be broken in realistic models. In addition, these models try to

significantly reduce the number of free parameters so that the theory becomes far

more predictive and testable. A detailed discussion of different SUSY breaking

models is beyond the scope of this thesis but we will briefly introduce the model

that most of our scenarios are based around.

The model that we use is known as minimal supergravity (mSUGRA)1 [57, 58].

In this model, we specify a common gaugino mass, M1/2, a common scalar mass,

M0 and a universal trilinear coupling, A0, at the GUT scale. In addition we need

to specify tanβ = ν2/ν1 which is the ratio of the vacuum expectation values of the

1It must be noted that although the models are commonly known as mSUGRA, those presented

here do not contain any gravitation interactions. Therefore, the presence in the model of a gravitino

is ignored. Another name used in the literature for models with this parameter set but without

gravitation is the constrained minimal supersymmetric Standard Model (CMSSM).
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two Higgs fields and the sign of µ0. All of these parameters are defined at the GUT

scale however. We therefore need to evolve the various parameters down to the

electroweak scale using the renormalisation group equations (RGEs) calculated to a

particular loop order. This calculation will produce the various soft breaking terms

given in Eq. 2.1.

In chapter 4, we also examine a particular scenario within a non-universal Higgs

mass (NUHM) model [59–61]. These models allow the soft breaking Higgs masses,

mH1
and mH2

to be different to M0 at the GUT scale and consequently offer more

freedom in the phenomenology. In addition, we occasionally introduce ‘phenomeno-

logical’ models where we vary the soft breaking parameters individually. We do

this to examine the dependence of individual parameters and alternative coupling

schemes. For example in chapter 4 we investigate a scenario (scenario C) where the

second lightest neutralino is higgsino-like whilst keeping the kinematics similar.

Finally, we add CP-violation into the model by adding arbitrary CP-phases to

particular soft breaking terms in Eq. (2.1) for simplicity.

2.3 R-parity

One important point to mention is the lack of R-parity, PR, violating terms in

Eq. (2.1) and more generally, in the whole of the MSSM. For example, we could

have the following terms in the Lagrangian,

L∆L = λũ∗Ld̄ReL, (2.2)

L∆B = λ′d̃Rd̄RūR. (2.3)

These terms break lepton (∆L) and baryon (∆B) number though. Therefore, if both

kinds of terms are allowed, rapid proton decay would occur and this places strong

constraints on the couplings (in the example of Eq. (2.2-2.3), λ and λ′) [62, 63].

Throughout this thesis we use the definition of the MSSM where all R-parity violat-

ing couplings are set to zero for both theoretical minimality and phenomenological

reasons.

It must be stated however, that R-parity is applied by hand assuming the strict

minimality of the MSSM and it gives a new quantum number to all the particles in
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the MSSM. R-parity is defined as,

PR = (−1)3(B−L)+2s , (2.4)

where B is baryon number, L is lepton number and s is the spin of the particle.

All the ordinary Standard Model particles and the Higgs bosons have even R-parity

(PR = 1) whereas all the superpartners have odd R-parity (PR = −1). If R-parity

is exactly conserved, then none of the Standard Model particles can mix with the

superpartners. Furthermore, the symmetry imposes that each vertex in the theory

must contain an even number of superpartners and this condition has extremely

important phenomenological implications.

Due to R-parity, a single superpartner can only decay into an odd number of

lighter superpartners. Consequently, the lightest supersymmetric particle (LSP)

must be stable as it cannot decay to a purely Standard Model final state and it

cannot kinematically decay into any other superpartner. This property gives the

MSSM the possibility of explaining the dark matter that is currently favoured for

many cosmological models of the universe. As the LSP is stable, any LSPs produced

in the big bang will have survived to the current day (neglecting annihilation), en-

abling the abundance to be calculated and compared to cosmological measurements.

Searches for ‘exotic isotopes’ have put stringent bounds on stable particles that have

either electric or colour charge and therefore the LSP must only interact weakly [64].

R-parity also leads to distinctive phenomenology at collider experiments. Firstly,

since R-parity conservation leads to all interactions containing an even number of

superpartners, we can always expect to see the pair production of superpartners at a

collider. This also means, once a superpartner is produced, any possible decay must

leave another superpartner in the final state. This leads to a characteristic prediction

for many SUSY models. Cascade decays produce many final-state particles that may

be detected at the LHC. As one example, squark production pp→ q̃q̃∗ in particular

may be followed by the decay,

q̃ → χ̃0
2q, (2.5)

χ̃0
2 → ℓ̃+ℓ−, (2.6)

ℓ̃+ → χ̃0
1ℓ

+. (2.7)
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where the χ̃0
1 is the LSP in this example and the q̃∗ can follow the same decay chain.

We notice that there will be two LSPs in the final state and from cosmolog-

ical considerations these must only interact weakly. Therefore, we will have the

distinctive signature that the two LSPs will leave the detector without being seen.

Consequently a large momentum imbalance should be observed in many MSSM

events at colliders. In the MSSM, the two most popular choices for the LSP is a

sneutrino ν̃ or the lightest neutralino χ̃0
1 as shown in the example decay chain, see

Eq. (2.7).

2.4 Mass matrices

Due to electroweak and SUSY symmetry breaking, many of the superpartners have

the same quantum numbers. Therefore the gauge eigenstates can mix to create

mass eigenstates that are not flavour diagonal. The corresponding gauge and mass

eigenstates are shown in Tab. 2.4. Hence we have to deal with the mixing of fields

and diagonalise the mass matrices in order to determine the mass eigenstates.

Whilst the mass eigenstates are the particles that will be physically produced at

the LHC, the mixing matrices define the couplings of a particular particle and are

therefore of crucial importance. As the inputs of the mixing matrices are the SUSY

breaking parameters, measuring these matrices will also give important information

on the pattern of SUSY breaking. Finally, since the mixing matrices are in general

complex, any CP-violating phases that are present in the model manifest themselves

via the mixing (i.e. in mass eigenvalues and couplings).

2.4.1 Squarks

In the most general case, it is possible that all the squarks with the same charge,

R-parity (PR = −1) and colour can mix together. We would therefore have to

diagonalise two 6×6 squark mass matrices to find the mass eigenstates. However,

mixing between generations of squarks can cause severe problems due to large loop

corrections to flavour changing neutral current (FCNC) reactions [65,66]. Therefore,

we ignore intergenerational mixing and instead decompose the two 6×6 matrices into
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six 2×2 matrices which describe each flavour separately. The matrix in the basis of

the gauge eigenstates, (q̃L, q̃R) is,

M2
q̃ =





m2
q̃L

+m2
q m∗

q̃LR
mq

mq̃LR
mq m2

q̃R
+m2

q



 , (2.8)

where

m2
q̃L

= M2
Q̃

+m2
Z cos 2β (Iq

3L − eq sin2 θW ) , (2.9)

m2
q̃R

= M2
{Ũ ,D̃}

+ eqm
2
Z cos 2β sin2 θW , (2.10)

mq̃LR
= Aq − µ∗{cotβ, tanβ} . (2.11)

for {up, down} quarks respectively. eq, I
q
3L and mq are the charge, the third com-

ponent of the weak isospin and the mass of the partner quark respectively. θW is

the weak mixing angle and mZ is the mass of the Z-boson. The soft scalar masses

are MQ̃, MŨ and MD̃ which are soft breaking terms in the Lagrangian, Eq. (2.1). µ

and Aq are the higgsino mass parameter and soft SUSY-breaking trilinear coupling

respectively. Finally, tanβ = ν2/ν1 and is the ratio of the vacuum expectation value

of the two Higgs fields.

From the above parameters, µ and Aq can take complex values,

Aq = |Aq| eiφq , µ = |µ| eiφµ, (0 ≤ φq, φµ < 2π) , (2.12)

thus yielding CP-violation in the squark sector.

The off-diagonal terms of the mass matrix M2
q̃, Eq. (2.8), are proportional to

the mass of the Standard Model partner. Therefore, for the first two generations

of quarks, a very good approximation is to assume that the mass eigenstates are

equal to the interaction eigenstates. For the third generation however, this is no

longer true. The large mass of the top quark produces large mixing effects in the

stop sector and if tan β, µ or Aq is large enough, sizable mixing effects can also be

seen in the sbottom sector.

In general, the mass matrix M2
q̃ are hermitian and can be diagonalised by a

unitary matrix Rq̃. This unitary matrix rotates the gauge eigenstates, q̃L and q̃R,

into the mass eigenstates q̃1 and q̃2,

Rq̃ M2
q̃ R†

q̃ =





m2
q̃1

0

0 m2
q̃2



 . (2.13)



2.4. Mass matrices 17

We choose the convention m2
q̃1
< m2

q̃2
for the masses of q̃1 and q̃2. The matrix Rq̃

rotates the gauge eigenstates, q̃L and q̃R, into the mass eigenstates q̃1 and q̃2 as

follows,




q̃1

q̃2



 = Rq̃





q̃L

q̃R



 =





cos θq̃ sin θq̃ e−iφq̃

− sin θq̃ eiφq̃ cos θq̃









q̃L

q̃R



 , (2.14)

where θq̃ and φq̃ are the mixing angle and the CP-violating phase of the squark

sector, respectively. The masses are given by,

mq̃1,2
=

1

2

(

2m2
q +m2

LL +m2
RR ∓

√

(m2
LL −m2

RR)2 + 4|mLR|2m2
q

)

, (2.15)

whereas for the mixing angle and the CP phase we have,

cos θq̃ =
−mq|mLR|

√

m2
q |mLR|2 + (m2

q̃1
−m2

LL)2
, (2.16)

sin θq̃ =
m2

LL −m2
q̃1

√

m2
q |mLR|2 + (m2

q̃1
−m2

LL)2
, (2.17)

φq̃ = arg(Aq − µ∗{cot β, tan β}) . (2.18)

for {up, down} type quarks respectively.

By convention we take 0 ≤ θq̃ < π and 0 ≤ φq̃ < 2π. It must be noted that φq̃

is an ‘effective’ phase and does not directly correspond to the phase of any MSSM

parameter. Instead, the phase will have contributions from both φAq and φµ.

If mq̃L
< mq̃R

then cos2 θq̃ >
1
2

and q̃1 has a predominantly left gauge character.

On the other hand, if mq̃L
> mq̃R

then cos2 θq̃ <
1
2

and q̃1 has a predominantly right

character.

2.4.2 Sleptons

The mass matrix for the sleptons is arranged in the same way as for the squarks,

M2
ℓ̃

=





m2
ℓ̃L

+m2
ℓ m∗

ℓ̃LR
mℓ

mℓ̃LR
mℓ m2

ℓ̃R
+m2

ℓ



 , (2.19)

where

m2
ℓ̃L

= M2
L̃
−m2

Z cos 2β (
1

2
− sin2 θW ) , (2.20)

m2
ℓ̃R

= M2
Ẽ
−m2

Z cos 2β sin2 θW , (2.21)

mℓ̃LR
= Aℓ − µ∗ tanβ . (2.22)
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For the selectrons and smuons the left and right eigenstates can be considered to be

equal to the mass eigenstates due to the small mass of the Standard Model particles.

However, for the staus, mixing can occur in a similar way to the sbottoms if tanβ

is large enough. In this case, all the formulae for squark mixing are applicable and

we can parametrise the stau sector with a mixing angle θτ̃ and phase φτ̃ ,





τ̃1

τ̃2



 =





cos θτ̃ sin θτ̃ e−iφτ̃

− sin θτ̃ eiφτ̃ cos θτ̃









τ̃L

τ̃R



 . (2.23)

For the sneutrinos, ν̃, we only consider superpartners to the left handed Standard

Model states. As the masses of the Standard Model particles are so low, a good

approximation is to assume that the mass for each generation is,

m2
ν̃L

= M2
L̃

+
1

2
m2

Z cos 2β . (2.24)

2.4.3 Neutralinos

In the MSSM, the four neutralinos χ̃0
i (i = 1, 2, 3, 4) are mixtures of the neutral

U(1) and SU(2) gauginos, B̃ and W̃ 3, and the higgsinos, H̃0
1 and H̃0

2 . In general,

both the gauge and mass eigenstates are Majorana fermions where the sparticle

and anti-sparticle are identical. The mass term of the Lagrangian in the basis

ψ0 = (B̃, W̃ 3, H̃0
1 , H̃

0
2) is given by,

Lχ̃0 = −1

2
(ψ0)TMNψ

0 + h.c. (2.25)

Where the mass matrix,

MN =



















M1 0 −mZcβsW mZsβsW

0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ

mZsβsW −mZsβcW −µ 0



















(2.26)

is built up by the fundamental SUSY parameters: the U(1) and SU(2) gaugino

masses M1 and M2, the higgsino mass parameter µ, and tanβ = v2/v1 (cβ = cosβ,

sW = sin θW etc.). In addition to the µ parameter, a non-trivial CP phase can also
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be attributed to the M1 parameter (the phase of M2 can be rotated away with a

redefinition of the fields [67–70]),

M1 = |M1| eiφ1, (0 ≤ φ1 < 2π) . (2.27)

Since the complex matrix MN is symmetric, one unitary matrix N is sufficient to

rotate the gauge eigenstate basis (B̃, W̃ 3, H̃0
1 , H̃

0
2) to the mass eigenstate basis of

the Majorana fields χ̃0
i ,

diag(mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
) = N∗MNN

† , (mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
) . (2.28)

The masses mχ̃0
i

(i = 1, 2, 3, 4) can be chosen to be real and positive by a suitable

definition of the unitary matrix N [71].

The character of the mass eigenstates can be examined by looking at the relative

strength of the input, M1, M2 and µ. If, for example |M{1,2}| < |µ|, the two lightest

neutralinos will be dominated by the gaugino components and the two heavier states

will be mainly higgsino-like. In addition, a unification of the gaugino masses is

often assumed at some GUT scale. When the unified masses are run down to the

electroweak scale using the renormalisation group equations (RGE) the following

relation is found,

M1(MZ) =
5

3
tan2 θWM2(MZ) ≃ 1

2
M2(MZ). (2.29)

Consequently, we find that in the scenario presented above, the lightest neutralino,

χ̃0
1, is mainly bino, B̃, in character while the 2nd lightest neutralino, χ̃0

2, is mainly

wino, W̃ 0, in character. In addition, Eq. (2.29) implies that the masses will closely

follow the relation, mχ̃0
1
≃ 1

2
mχ̃0

2
.

If we now inspect scenarios where the higgsino mass parameter is less than the

gaugino mass parameters, |µ| < |M{1,2}|, the phenomenology of the neutralinos

has the opposite characteristics. The two lightest neutralinos will now mostly be

higgsino-like with masses close to that of |µ| whilst the heavier neutralinos will be

gauginos. Finally, if the higgsino and gaugino parameters are similar, |µ| ≃ |M{1,2}|
then some of the mass states will have mixed higgsino, gaugino characteristics.
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2.4.4 Charginos

Analogously to the neutralinos, the charged partners of the W± and H± also mix.

The mass eigenstates of these particles are called charginos χ̃± but are normal

Dirac fermions as the sparticle and anti-particle are different. The mass term of the

Lagrangian in the basis ψ+ = (−iW̃+, H̃+
2 ), ψ− = (−iW̃−, H̃−

1 ) is given by,

Lχ̃± = −1

2
(ψ+, ψ−)





0 MT
C

MC 0









ψ+

ψ−



 + h.c. (2.30)

where the mass matrix is,

MC =





M2

√
2mW sin β

√
2mW cosβ µ



 . (2.31)

Since the mass matrix is not hermitian we need two different unitary matrices to

diagonalise it,

U∗MCV
† =





mχ̃±
1

0

0 mχ̃±
2



 with mχ̃±
1
< mχ̃±

2
. (2.32)

Applying the U and V matrices on the gauge eigenstates ψ±
j gives the physical mass

eigenstates, χ̃±
1 and χ̃±

2 as follows,

χ̃+
i = Vjkψ

+
j , χ̃−

i = Uijψ
−
j , i, j = 1, 2 , (2.33)

The relative strength of M1 and µ define the couplings of the charginos in a similar

way to that of the neutralinos. If M2 < µ the lightest chargino, χ̃±
1 , is mainly wino,

W̃ , in character whilst the heavier chargino, χ̃±
2 , will be a higgsino, H̃±. If the

parameter hierarchy is opposite, µ < M2, the mass eigenstates will also have the

opposite characteristics. In contrast, if the parameters are of similar size, M2 ≃ µ,

the mass states will be mixed. Additionally, if we have a non-mixed scenario where

M2 and µ are separated, the wino-like chargino will have a similar mass to the

wino-like neutralino and the higgsino-like chargino will have similar mass to the

higgsino-like neutralinos.
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2.5 Electric dipole moment results

Some of the additional CP-violating phases of the MSSM are already constrained

by the low energy measurement of Electric Dipole Moments (EDMs). The most

demanding constraints come from the EDM of the Neutron [72], Thallium [73] and

Mercury [74] with the following values,

|dn| < 2.9 × 10−26e cm (90%C.L.) , (2.34)

|dTl| < 9.0 × 10−25e cm (90%C.L.) , (2.35)

|dHg| < 3.1 × 10−29e cm (90%C.L.) . (2.36)

If we ignore any CP-violation induced by a QCD θ-term, then the only CP-violating

term in the Standard Model is the electroweak phase within the CKM matrix. The

phase only contributes at the 2-loop level to the above observables and thus is

expected to be small, for example |dn| ∼ 10−32e cm [75–77].

In the MSSM however, more sizable contributions can be expected, especially

from the phases of the Higgs mass parameter, the gaugino mass parameter and the

trilinear couplings of the first generation squarks (φµ, φM1
, φM3

, φAu , φAd
) as they

can produce effects at 1-loop. Out of these, the experimental measurements most

severely constrain the phase of the Higgs mass parameter, φµ . 0.01π [78, 79]. The

constraint on the phase of the other parameters mentioned is less severe due to the

coupling structure of the corrections [80]. The constraints on the phases of the other

CP-violating MSSM parameters that have been investigated with respect to triple

product correlations (φAt , φAb
, φAτ ) at the LHC are weaker. The reason is that

they only contribute at the 2-loop level and can essentially be thought of as being

unconstrained at the current time [80].

A possible solution to allow for larger phases in the gaugino sector is to increase

the mass of the first and second generation squarks [81–83]. The larger mass sup-

presses the loop contribution to the EDM. However, this possibility allows the third

generation of squarks to remain light so that electroweak symmetry breaking still

take place and the MSSM continues to provide an explanation for the hierarchy

problem. Another way to alleviate the constraints on the phases of the gaugino
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sector is to allow cancellations between different phases of the model [84–87]. While

the phase of the Higgs mass parameter, φµ, is still very constrained, this approach

can help other parameters in the theory. For example, the phase of the U(1) gaugino

mass term, φM1
can now become essentially unconstrained in many models [88].

A recent comprehensive review of the CP-violating constraints within the MSSM

is given in [80] whilst a review of some of the issues regarding the different EDM

measurements and the reliability of the theoretical predictions is given in [89]. For

our studies, we set φµ = 0 due to the severity of the constraints on this particular

phase. However, we leave all other CP-violating phases free to vary from 0 < φ < 2π

to see the full range of their dependencies at the LHC.



Chapter 3

CP-violation studies at the LHC

If the MSSM is discovered at the LHC and if the model contains sizable CP-violating

phases, there are many potential observables that could be used to detect the CP-

violation. For example, masses [90–94], total cross sections [95, 96] and branching

ratios [97, 98] can all change when CP-phases are present in the model and could

in principle be used. However, these observables are all CP-even quantities and

consequently display the same behaviour for both the particle and the anti-particle.

In a model like the MSSM with so many free parameters this can cause a problem

as the CP effect can potentially be ‘faked’ by changing some of the soft breaking

parameters. In addition, loop corrections can be sizable to all of the observables

mentioned and can produce additional uncertainty when trying to determine the

CP-phase.

Therefore, in order to make the unambiguous observation of a complex param-

eter, we should use CP-odd observables where the CP conjugate process has an

opposite sign and cannot be faked by other model parameters. Examples of CP-odd

observables include rate asymmetries of branching ratios [99–103], rate asymme-

tries in cross sections [104] and angular distributions [105]. However, all of these

observables only exhibit CP-violating properties when we go to the loop level and

consequently we expect the effects to be relatively small. Another possibility to

consider, are observables that are TN -odd, Sec. 3.1, and can be defined using the

triple product correlations of momenta and/or spins of particles [106–116]. For the

case of SUSY at the LHC, we can do this using triple products of the final-state

23
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particles of cascade decays.

Two recent reviews of CP violation in the MSSM are given in [117, 118].

3.1 C, P and T transformations

We begin by briefly reviewing the transformation properties of C, P and T on a

single particle before explaining their use in reactions at colliders [119–121].

A single incoming particle, X, with momentum, P , and spin state, S, can be

written as,

|X; ~P, ~S〉in. (3.1)

If we apply a parity transformation, P, to the state, the momentum is reversed while

the spin remains fixed,

P|X; ~P , ~S〉in = |X;−~P , ~S〉in. (3.2)

The anti-unitarity time reversal operator, T, reverses the momentum and spin of a

particle and also exchanges the initial and final states,

T|X; ~P , ~S〉in = |X;−~P ,−~S〉out. (3.3)

Finally, the charge conjugation operation, C, replaces the particle by its antiparticle,

C|X; ~P , ~S〉in = |X̄; ~P , ~S〉in. (3.4)

It it also possible to have the combined action of all three transformations,

CPT|X; ~P , ~S〉in = |X̄; ~P ,−~S〉out. (3.5)

Using the CPT-theorem [122, 123], it is possible to show that relativistic quantum

field theories with usual spin-statistics relations have to be invariant under a CPT-

transformation. This invariance guarantees that the masses and also the total widths

of particles and antiparticles are the same.

Thus, due to CPT-invariance, any theory can only violate T if it also violates

CP, where,

CP|X; ~P , ~S〉in = |X̄;−~P , ~S〉in. (3.6)
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and therefore CP and T violation can be considered as equivalent.

In this thesis we concentrate on the violation of CP (or T) in cascade decays and

we therefore need to consider how the transformations work with the S-matrix. We

define an initial (final) state of ni (nf ) particles as,

|i〉 = |~Pa, ~Pb, ..., ~Sa, ~Sb, ...〉in , (3.7)

|f〉 = |~P1, ~P2, ..., ~S1, ~S2, ...〉out . (3.8)

The transformation properties under C, P and CP follow from those of the single

particle,

|fP〉 = | − ~P1, −~P2, ..., ~S1, ~S2, ...〉out , (3.9)

|fC〉 = |~P1̄, ~P2̄, ..., ~S1̄, ~S2̄, ...〉out , (3.10)

|fCP〉 = | − ~P1̄, −~P2̄, ..., ~S1̄, ~S2̄, ...〉out , (3.11)

and likewise for |iP〉, |iC〉 and |iCP〉.
For the T transformation, we also have to exchange the initial and final states,

|fT〉 = | − ~P1, −~P2, ...,−~S1, −~S2, ...〉in , (3.12)

|iT〉 = | − ~Pa, −~Pb, ...,−~Sa, −~Sb, ...〉out . (3.13)

We define the S-matrix as the usual,

〈f |S|i〉 = Sfi , (3.14)

The transformation properties can then be written as,

Sfi
P−→ SfP iP , (3.15)

Sfi
C−→ SfCiC , (3.16)

Sfi
CP−→ SfCP iCP

, (3.17)

with the T transformation also exchanging the initial and final states,

Sfi
T−→ SiT fT

. (3.18)
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In a collider experiment however, it is extremely hard to test T due to the require-

ment of exchanging the initial and final states. Therefore, it is often more practical

to experimentally probe what is known as a näıve time reversal operation , TN . This

operation is the same as a T transformation but we do not exchange the initial and

final states,

Sfi
TN−−→ SfT iT . (3.19)

3.2 TN transformation

To clarify the properties of the TN operator, we will consider the unitarity of the

S-matrix as explained in [121]. Using the optical theorem (e.g [120]) we can write

the S-matrix in terms of the scattering amplitude, T̂ ,

S = 1 + iT̂ . (3.20)

For the reaction, i→ f , we can write T̂ in terms of the reduced scattering amplitude,

τ̂ ,

T̂fi = 〈f |T̂ |i〉 , (3.21)

= (2π)4δ4(pf − pi)〈f |τ̂ |i〉 , (3.22)

where pf (pi) is the momentum of the final (initial) states.

We use the unitarity relation, S†S = 1 to obtain,

T̂fi − T̂ ∗
if = i

∑

x

T̂ ∗
xf T̂xi , (3.23)

where x denotes all possible intermediate states between i and f .

In terms of the reduced scattering amplitude, τ̂ , this becomes,

τ̂fi − τ̂ ∗if = i(2π)4
∑

x

δ4(px − pi)τ̂
∗
xf τ̂xi . (3.24)

If we now assume that there are no re-scattering effects (τ̂ii = τ̂ff = 0), and that

the initial and final states are stable, for each possible intermediate state, x, the

rhs of Eq. (3.24) vanishes. Therefore, in the absence of re-scattering, the reduced

scattering amplitude, τ̂ , is hermitian,

τ̂if = τ ∗fi . (3.25)
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Hence, if τ̂ is CP invariant, then it must also be T invariant due to the CPT theorem.

Consequently,

〈f |τ̂ |i〉 = 〈iT |τ̂ |fT 〉 , (3.26)

= 〈fT |τ̂ |iT 〉∗ . (3.27)

which leads to,

|〈f |τ̂ |i〉|2 = |〈fT |τ̂ |iT 〉|2 , (3.28)

which means that the modulus of 〈f |τ̂ |i〉 is invariant under a TN transformation.

As the expectation value of any operator depends only on |〈f |τ̂ |i〉|, Eq. (3.28)

implies that in the absence of any re-scattering, only TN -even operators can have

a non-zero expectation value if CP is conserved. Hence, a TN -odd observable can

only be seen if CP-violation is present or re-scattering effects occur. Another way

to make this statement is that in the absence of re-scattering (i.e. Im(τ̂)=0),

CPT → CPTN . (3.29)

Therefore, if the expectation value of a TN -odd observable is non-zero, CP-violation

or re-scattering effects must be present.

To make a definite observation of CP-violation, we must rule out the possibility

that a TN -odd observation is due to re-scattering effects. We can do this by look-

ing at the charge conjugated process (̄i → f̄ compared with i → f) to see if the

transformation is CP-even or CP-odd. Hence we can unambiguously determine if

the process is CP-violating.

Another implication of Eq. (3.25) and Eq. (3.28) is that a CP-odd, but TN -even

observable can only be seen if re-scattering effects are present. Hence, CP-odd,

TN -even observables cannot be present at the tree level.

3.3 Triple product correlations

The main observables we use to look for CP-violation in the MSSM at the LHC are

triple product correlations. These are produced from three independent momentum

or spin vectors combined as,

T = ~p1 · (~p2 × ~p3) , (3.30)
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where p is the momentum of the individual particle, but could also be a spin vector.

If we apply a TN operation to the triple product we reverse the sign of all

the momentum vectors and therefore the sign of the triple product. Hence, the

observable is TN -odd. Under the assumption of no re-scattering effects as explained

in Sec. 3.2 and CPTN invariance, this translates into a CP-odd observable.

The advantage of using triple product correlations to observe CP-violation in

the MSSM is that these effects can occur at the tree level and we can expect the

observables to be larger. We now explain the origin of the triple products and how

they can be used to observe CP-violation in the MSSM.

As an example, we consider the following decay chain,

t̃ → χ̃0
2 t, (3.31)

χ̃0
2 → ℓ+ ℓ− χ̃0

1 . (3.32)

where the t̃ undergoes a two body decay and the χ̃0
2 undergoes a three body decay.

This decay channel will be considered in more detail in Chapter 4 and the explicit

amplitudes will be shown.

We evaluate the above cascade decay chain by calculating the total amplitude

for both processes including the spin correlation between the production and decay

of the χ̃0
2. We find that the following trace appears in the amplitude, which results

in an explicit covariant product of momentum,

A · Tr[γ5γµγνγργσ] → iA · ǫµνρσp
µ

χ̃0
2

pν
t p

ρ
ℓ+p

σ
ℓ− , (3.33)

where A is the relevant coupling constant. We notice that the covariant product

is multiplied by a factor of i and consequently Eq. (3.33) only contributes to the

amplitude if A contains imaginary (CP-violating) terms. In the case of the above

example, these terms can come from complex phases within the neutralino mixing

matrix, Eq. (2.26). We also note that the covariant product appears in the amplitude

at the tree level and hence any potential observables are not loop suppressed.

If we expand the covariant product in terms of the explicit 4-momentum,

ǫµνρσp
µ

χ̃0
2

pν
t p

ρ
ℓ+p

σ
ℓ− = Eχ̃0

2

−→pt · (−→pℓ+ ×−→pℓ−) + Eℓ+
−→pℓ− · (−→pχ̃0

2
×−→pt ) (3.34)

−Et
−→pℓ+ · (−→pℓ− ×−→pχ̃0

2
) − Eℓ−

−→pχ̃0
2
· (−→pt ×−→pℓ+).
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we find the energy multiplied by the triple products of momenta (−→p1 · (−→p2 ×−→p3)). In

the rest frame of the χ̃0
2, (pχ̃0

2
= (mχ̃0

2
, 0, 0, 0)), the expression simplifies and produces

a single triple product,

T = mχ̃0
2

−→pt · (−→pℓ+ ×−→pℓ−) (3.35)

since all terms containing pχ̃0
2
→ 0. We can therefore measure the final-state mo-

menta and if we observe an overall triple product we can infer the presence of

CP-violation.

Again we draw attention to the fact that we cannot perform a true time reversal,

T, operation at a collider as it requires interchanging the initial and final states,

Sec. 3.2, [121] . Instead we apply a näıve time reversal, TN , operation that only

reverses the momentum and spin of the final-state particles but does not exchange

the initial and final states. In principle, absorptive phases that originate from final

state interactions (FSI) or the finite width of unstable particles could enter and

provide a TN -odd contribution. If these effects are sizable then the triple product

could be sensitive to CP-even, TN -odd effects. These contributions can be removed

however by looking at the charge conjugate process. If the sign of the observable

is opposite for the charge conjugate process, we know that the observable must be

CP-odd and not due to absorptive phases.

3.4 TN-odd asymmetry

In order to measure any CP-violation at a collider it is useful to define a dimension-

less parameter that can be used to easily understand the statistical significance of

any result. We therefore define the TN -odd asymmetry parameter,

AT =
NT+

−NT−

NT+
+NT−

=

∫

sign{T }|T |2d lips
∫

|T |2d lips
, (3.36)

where NT+
(NT−) are the numbers of events for which T is positive (negative), T is

the amplitude and d lips denotes Lorentz invariant phase space. The denominator

in Eq. (3.36),
∫

|T |2d lips, is equal to the total cross section which in the example
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tt̃

χ̃0
1

ℓ+

ℓ−

θ

Figure 3.1: The reaction geometry in the χ̃0
2 rest frame. The triple product, T , is

given by the angle between the t and the plane formed between the ℓ+ and the ℓ−

(in the χ̃0
2 rest frame, the χ̃0

1 also lies on this plane).

would be,

∫

|T |2d lips = σTot ,

= σ(pp→ t̃t̃∗) · BR(t̃→ χ̃0
2t) · BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−) . (3.37)

Fig. 3.1 shows that in the rest frame of the χ̃0
2, the χ̃0

1, ℓ
+ and ℓ− define a plane.

The triple product is given by the angle, θ, between the normal of this plane and

the t that was produced in the t̃ decay alongside the χ̃0
2. In terms of the asymmetry

parameter, events are regarded as NT+
(NT−) if the t was produced above (below)

the plane. An alternative definition can also be given for the asymmetry in terms

of the angular distribution,

AT =
NT+

−NT−

NT+
+NT−

=

∫ 0

1
dσ

d cos θ
d cos θ −

∫ −1

0
dσ

d cos θ
d cos θ

∫ 0

1
dσ

d cos θ
d cos θ +

∫ −1

0
dσ

d cos θ
d cos θ

, (3.38)

where,

cos θ =
−→pt · (−→pℓ+ ×−→pℓ−)

|−→pt | · |(−→pℓ+ ×−→pℓ−)| . (3.39)

If CP-violation is present we expect a non-zero expectation value for T and therefore

a non zero average angle between the plane and the produced t.

As stated above, a TN -odd asymmetry can in principle be formed if absorptive

phases are present from finite width effects or loop induced final state interactions.
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Although these effects are expected to be small for electroweak processes as they

are formally a higher order contribution we can remove them by defining a CP-odd

asymmetry,

ACP =
1

2
(AT − ĀT ) , (3.40)

where ACP corresponds to the asymmetry for the CP-conjugated process.

3.5 Boosted frame asymmetry

Whilst the covariant product in the amplitude, Eq. (3.33), is inherently Lorentz

invariant, the triple product, T , Eq. (3.35) is not. At the LHC we can expect the

particles produced to have substantial boosts in the laboratory frame that vary on

an event-by-event basis. We therefore need to analyse the effect of such boosts on

the triple product observable.

Ideally, we would like to reconstruct the rest frame of the χ̃0
2. We would then

be able to boost the momentum of the triple product particles into this frame and

access the value of the covariant product. However, the χ̃0
1 only interacts weakly

and therefore will escape the detector without being seen, so the rest frame cannot

of the χ̃0
2 cannot be trivially reconstructed.

If we analyse the covariant product in the laboratory frame,

ǫµνρσp
µ

χ̃0
2

pν
t p

ρ
ℓ+p

σ
ℓ−

lab
= Eχ̃0

2

−→pt · (−→pℓ+ ×−→pℓ−) + Eℓ+
−→pℓ− · (−→pχ̃0

2
×−→pt )

−Et
−→pℓ+ · (−→pℓ− ×−→pχ̃0

2
) − Eℓ−

−→pχ̃0
2
· (−→pt ×−→pℓ+). (3.41)

we see that our triple product observable is only sensitive to the first term (we only

exploit the sign). The other terms all require a measurement of the χ̃0
1 momen-

tum to find the χ̃0
2 momentum. We therefore do not measure the sign of the true

covariant product in the amplitude but instead only one component. As we have

lost information on the true sign of the covariant product, the asymmetry can be

significantly diluted for events at the LHC, Sec. 4.3.5.

Another way to understand the dilution of the asymmetry in the laboratory frame

is to think about the relative orientation of the t and the plane defined by the ℓ+ and

ℓ−, Fig. 3.1. These particles correspond to the triple product, T = −→pt · (−→pℓ+ × −→pℓ−)
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that is the first term in Eq. (3.41). In the rest frame of the χ̃0
2 the orientation is

‘correct’ and thus we measure the maximum asymmetry. However, in the laboratory

frame, the orientation of the t and the ℓ+, ℓ− plane will in general be different. For

some events, the difference in orientation can mean that the t ‘flips’ from one side

of the plane to the other and consequently we record an opposite sign for the triple

product.

3.6 Statistical error and significance

In order to determine whether a particular CP-asymmetry may be measured at a

collider we have to understand the statistical significance of any result. The relative

statistical error of the asymmetry Eq. (3.36) is given by,

δAT =
∆(AT )stat

|AT |
. (3.42)

We assume that NT+
(NT−) are the numbers of events where T is positive (negative),

as in Eq. (3.36), and are binomially distributed, giving the following statistical

error [124],

∆(AT )stat = 2
√

ǫ(1 − ǫ)/N , (3.43)

where,

ǫ = NT+
/(NT+

+NT−) =
1

2
(1 + AT ) , (3.44)

and N = NT+
+ NT− is the total number of events. We can also write the total

number of events in terms of the total cross section, σTot (Eq. (3.37) in example)

and luminosity, L, with the relation, N = LσTot.

Combining Eq. (3.42) and Eq. (3.43), we can then write down the statistical

significance of any asymmetry,

S = |AT |
√

LσTot

1 − A2
T

. (3.45)

For S = 1, the asymmetry can be measured at the 68% confidence level (CL), for S

= 1.96 at the 95% CL, etc.
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3.7 Triple product studies

There have now been many studies that have examined the possibility of searching

for CP-violation in SUSY using triple products. The majority of these studies

have been explored at a future linear collider and have mostly concentrated on CP-

violation from the direct production and decay of sleptons (e.g. [125]), neutralinos

(e.g. [106, 112]) and charginos (e.g [126]). The reason that the studies have been

based on the linear collider is mainly because of the much cleaner experimental

conditions when compared with the LHC. In addition, polarised beams and the

known centre-of-mass system (cms) energy allows the initial state, e+e−, to become

part of the T-odd observable (e.g [116, 127,128]).

At the LHC, the situation is more challenging due to the composite QCD initial

state. We no longer know the identity of the colliding particles, the collision centre-

of-mass energy is undetermined and a large QCD background will be present. In

addition, as the strong coupling constant is the largest, the cross section to coloured

particles is dominant. Consequently, the electroweak initial states considered in the

studies above are no longer competitive and the studies need to be based around

the production of QCD charged particles. The main studies using triple product

correlations in SUSY at the LHC are presented in Tab. 3.1.

The studies presented in this thesis, Chapters 4-6, are summarised briefly in this

section for completeness and comparison.

3.7.1 Initial two-body decay studies

The initial study to consider the possibility of using triple product correlations in

SUSY cascade decays at the LHC was [129]. This was a completely analytical,

parton-level study and looked at the following two-body cascade decay of a stop,

t̃→ χ̃0
2 t , (3.46)

χ̃0
2 → ℓ±N ℓ̃

∓ → ℓ±N ℓ
∓
F χ̃

0
1 , (3.47)

t→ bW → b ℓt νℓ , (3.48)
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Process Sub Decay 1 Sub Decay 2 CP Phases Max ACP Ref.

t̃→ tχ̃0
i t→ bW W → ℓ̄ν

χ̃0
i → ℓ̃ℓ ℓ̃→ ℓχ̃0

1 φAt, φµ, φM1
15(40)% [129]

t̃→ tχ̃0
i χ̃0

i → ℓℓ̄χ̃0
1 φµ, φM1

10[3]% [130]

t̃ → tχ̃0

i
t → bW Ch. 4

χ̃0

i
→ ℓℓ̄χ̃0

1
φAt

, φµ, φM1
15[4]% [131]

t̃→ tχ̃0
i t→ bW W → ℓ̄ν

χ̃0
i → ℓ̃ℓ ℓ̃→ ℓχ̃0

1 φAt, φµ, φM1
18(40)[6]% [132]

t̃ → tχ̃0

i
t → bW W → jj Ch. 6

χ̃0

i
→ ℓ̃ℓ ℓ̃ → ℓχ̃0

1
φAt

, φµ, φM1
15[4]% [133]

b̃→ tχ̃±
j t→ bW W → ℓ̄ν

χ̃±
j → ℓν̃ 10(40)%

χ̃±
j → ℓ̃ν ℓ̃→ ℓχ̃0

1 φAb
, φµ 15% [134]

b̃→ tχ̃±
j t→ bW W → ℓ̄ν

χ̃±
j → ℓν̃ φAb

, φµ 15(40)[7]% [135]

q̃ → qχ̃0

i
Ch. 5

χ̃0

i
→ ℓℓ̄χ̃0

1
φµ, φM1

15[2]% [136]

t̃2 → t̃1τ
−τ+ φAt 90% [137]

Table 3.1: Overview of the SUSY cascade decays now studied to analyze CP phases

at the LHC. Two-body decays are denoted by a → bc and three-body decays by

a→ bcd. The column ‘CP Phases’ lists the phases the process is sensitive to. ‘Max

ACP’ gives the maximal asymmetries which have been found in the rest frame of the

sfermion, the round brackets refer to the maximum asymmetry from non-observable

final states and the square brackets to the laboratory frame asymmetry. The rows

in bold correspond to the studies presented in this thesis along with the relevant

chapter number. This list is not exhaustive but presents the most promising channels

studied at the LHC. Some of the asymmetry numbers are not explicitly stated but

have been extrapolated from plots presented.
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where ℓ±N (ℓ∓F ) is the lepton produced in the χ0
2(ℓ̃

∓) decay and N(F ) denotes ‘near’

(‘far’). ℓt is the lepton produced in the t decay.

The study was the first to consider using t̃ decays and therefore did not attempt

to include the production process explicitly or try to estimate the dilution due to

the boosted decay. Instead the study focused exclusively on the cascade decay and

the triple products that could be formed

In the scenarios considered, the study found that the decay chain was most

sensitive to the phase of the top trilinear coupling, φAt , and T-odd asymmetries of

up to 40% were found. Unfortunately however, the maximum asymmetry was found

to occur with the triple product,

T = −→pℓt · (−→pt ×−→pℓ±
N
). (3.49)

The triple product requires simultaneous knowledge of the top, t, and the lepton

coming from the top, ℓt. The reason this triple product produces the largest asym-

metry is that the lepton produced by the top, ℓt is sensitive to the polarisation of

the W which in turn is sensitive to the polarisation of the top. This gives more

information on the top production amplitude than the direction of the W alone (for

example in the triple product, −→pW · (−→pt × −→pℓ±N
)) and therefore a larger asymmetry.

However, the triple product requires simultaneous knowledge of the top, t, and the

lepton coming from the top, ℓt. This neglects the fact that the missing neutrino, νℓ,

would seem to make this impossible at a collider.

The largest reconstructible T-odd asymmetries were found to be AT ∼ 15% with

the following triple products (labeling from [129]),

T1 = −→pb · (−→pt ×−→pℓ±N
), (3.50)

T3 = −→pℓt · (−→pb ×−→pℓ±N
), (3.51)

T5 = −→pℓt · (−→pℓ±N
×−→pℓ∓F

). (3.52)

The triple product from Eq. (3.50) is valid if we allow the top to decay hadronically

while Eqs. (3.51,3.52) are possible if the leptonic decay of the top is preferred.

One outstanding issue with the triple products shown in Eqs. (3.50,3.51), is that

they require that we can correctly distinguish the near and far lepton. This distinc-

tion may be possible with energy distributions but if we are not able to distinguish
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the leptons, the asymmetry is diluted (to AT ∼ 10%) as the far lepton has a weaker

spin correlation.

The same group also produced a study on the possibility of using cascade decays

of sbottoms, b̃, as an alternative [134] with the following decay,

b̃ → tχ̃−, (3.53)

χ̃− → ℓ− +ME, (3.54)

t → bℓtνℓ (bcs) [bjj], (3.55)

where ME is the general missing energy that contains a single ν and χ̃0
1 in the final

state.

The triple products of most interest are,

TA = −→pℓ · (−−−→p(ℓt,c) ×−→pt ), (3.56)

TB = −→pℓ · (−→pℓt ×−→pb ), (3.57)

where ℓ is the lepton produced by the χ̃− and ℓt is the lepton produced by the top.

Again, CP-violating asymmetries of up to, AT ∼ 40% were found. However, this

asymmetry was with the triple product TA, Eq. (3.56), which exploits the polarisa-

tion of the W. This would either require a leptonic top to be reconstructed or the

other possibility explored in this paper was to use a c-quark final state that needs to

be tagged. This will be extremely difficult at the LHC (or indeed a Linear Collider)

and without this final state, the asymmetry drops to around, AT ∼ 10%, for the

triple product TB, Eq. (3.57).

The study was also performed analytically at the parton level and the cascade

decay was focused on without the production process being included.

3.7.2 Stop studies with 3-body χ̃0
2 decay

Stop cascade decay chains were again studied in [130] but focused on the three body

decay of the χ̃0
2,

t̃→ χ̃0
2t, (3.58)

χ̃0
2 → ℓ+ℓ−χ̃0

1. (3.59)
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The three body of the χ̃0
2 has the advantage that the amplitude of this process alone

is sensitive to CP-phases in the neutralino sector and this study concentrated on

these phases. Also, from an experimental point of view, the three body decay has

the advantage that we do not need to distinguish the near and far leptons as we do

for many triple products in the two body case.

The difference occurs due to the fact that in the case of two, two-body decays of

the χ̃0
2,

χ̃0
2 → ℓ±N ℓ̃

∓ , (3.60)

ℓ̃∓ → ℓ∓F χ̃
0
1 , (3.61)

we can factorise the two decays using the narrow width formalism, see Sec. 4.2.2. The

narrow width formalism is applicable since both the χ̃0
2 and ℓ̃∓ can be approximated

as being on-shell. Consequently, the two decays are calculated separately and we

have no interference effects between final-state particles produced in different decays.

However, for the three body decay shown in Eq. (3.59), the decay is mediated

by various off-shell propagators (Z0, ℓ̃±L , ℓ̃±R), see Fig. 4.2, that each contribute.

Interference terms between these contributions give rise to the CP-violating triple

products. For the explicit expressions that contribute see Appendix B.3.

The study found parton-level asymmetries in the rest frame of the χ̃0
2 of up to

about, AT ∼ 10%, for CP-phases in the neutralino sector, Sec. 2.4.3, depending on

the particular MSSM scenario. In addition, an estimate was made for the dilution

of the asymmetry by the boosted initial state at the LHC. This was done by calcu-

lating the average boost of a t̃ produced at the LHC and applying this boost to the

decay chain. The estimated dilution of the asymmetry was an order of magnitude.

We extended the above study by explicitly calculating the dominant production

channel for t̃t̃∗ production at the LHC including the relevant parton distribution

functions (PDFs) [131]. This study is explained in detail in Chapter 4.

We also added the top decay into the calculations,

t→Wb, (3.62)
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and by including the top spin correlation, three independent triple products were

sensitive to phases in the stop mixing matrix, Sec. 2.4.1.

We found that the rest frame parton-level asymmetry reached a maximum of

AT ∼ 15% for a particular scenario and this was most sensitive to the phase of the

U(1) gaugino mass term, φM1
, in the neutralino sector. However, phases in the stop

sector could also be important and maximum asymmetry of AT ∼ 8% could be seen

as we vary φAt.

When we introduce the production process and PDFs however, a large dilution

in the asymmetry is seen due to the boosted stops. We find that the maximum

asymmetry as we vary φM1
is reduced from AT ∼ 15% to AT ∼ 4% whilst the

maximum asymmetry as we vary φAt is reduced from AT ∼ 8% to AT ∼ 3%.

Predictably, the reduction in the observable asymmetry significantly increases the

luminosity we would require to see CP-violating effects at the LHC. In this study we

presented the first estimates of the luminosity needed to see statistically significant

results and found that this would be particularly challenging. For example, we

found that for the above decay chain and in the scenarios studied we would require

at least 100 fb−1 to observe a 1σ-deviation from zero asymmetry for the CP-phase

φM1
, Sec. 4.3.5. To observe a phase for the top trilinear coupling, φAt , the situation

is even more difficult and we require 500 fb−1 to observe a 1σ-deviation from zero

asymmetry. For this early study experimental efficiencies or backgrounds were left

for later consideration.

3.7.3 Extension of two-body studies

In [132] the same two body stop cascade decay chain as in [129], Sec. 3.7.1, was

considered but the effect of the production process and PDFs were estimated. In

addition, the relevant branching ratios were included to give an estimate of the

required luminosity to see a statistically significant effect at the LHC.

The study found the same maximum asymmetry in the rest frame at parton

level, ∼ 40%, for the unobservable triple product −→pℓt · (−→pt ×−→pℓ±N
), Eq. (3.50), as the

phase, φAt is varied. When the production process and PDFs are included a dilution

factor that reduced the asymmetry, AT , by a factor of ∼ 3 was noticed. For the
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observable triple product, −→pℓt · (−→pt ×−→pℓ±N
), Eq. (3.51), the maximum asymmetry was

again found to be significantly less, AT ∼ 18% and this was also diluted by another

factor of ∼ 3 when we introduce the production process and PDFs. However, this

triple product also has experimental difficulties as we need to be able to distinguish

the near and far lepton in the χ̃0
2 decay which will be very challenging. The triple

product, −→pℓt · (−→pℓ±N
×−→pℓ∓F

), Eq. (3.52) avoids these problems but also has the smallest

maximum asymmetry at AT ∼ 14% in the rest frame and AT ∼ 4% in the lab frame.

When estimating the statistical significance at the LHC the study unfortunately

bases all of the results around the unobservable triple product that requires both the

top momentum and the momentum of the lepton produced by the top. Using this

triple product, a 1σ-deviation from zero asymmetry may be seen with as little as 5

fb−1. However, if realistic triple products are used, substantially more luminosity

can be expected to be required. Also, no experimental efficiencies or backgrounds

were considered and these can be expected to make the situation significantly more

challenging.

A similar update for two body sbottom cascade decay chains was presented

in [135], c.f. [134] Sec. 3.7.1. The idea was again to include the production process

including PDFs at the LHC to try and understand if CP-violating observables may

be seen in these decay chains at the LHC.

The results of the study were similar to those presented in the stop study. A

rest frame, parton-level asymmetry of up to ∼ 40% could be seen for the unob-

servable asymmetry that simultaneously requires the momentum of the top and the

momentum of the lepton produced by the top, TA, Eq. (3.56). For an observable,

rest frame, parton-level asymmetry TB, Eq. (3.57), the maximum was up to ∼ 18%

and in the lab frame this would be reduced to ∼ 8%.

Unfortunately this study also decided to make luminosity estimates for the un-

observable asymmetry and found that a minimum of 10 fb−1 would be required to

see 1σ-fluctuations at the LHC. Once again substantially more luminosity can be

expected to be needed for the realistic triple products. In addition no experimental

efficiencies or backgrounds were included.
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3.7.4 Momentum reconstruction studies

The studies in Secs. 3.7.1-3.7.3 all suffer from a common problem. Although large

rest frame parton-level asymmetries may be seen, these are severely diluted by the

boosted production process in the lab frame. To overcome this issue, we examined

how to use kinematical invariants in the decay chain to reconstruct the LSP, χ̃0
1,

momentum. Once the χ̃0
1 momentum is known, the momentum of any other particle

further up the decay chain can be trivially reconstructed. We first presented the idea

in [136], Chapter 5, when it was applied to 1st and 2nd generation squark production.

We also used the idea in [133], Chapter 6 when it was applied to t̃t̃∗ production.

In addition, none of the studies presented so far had included any of the many

experimental difficulties expected at the LHC. Our study in [136], Chapter 5, was the

first to include the kinematical cuts required for the LHC and smearing on the final-

state momentum. Also, the combinatorial issues of selecting the correct final-state

particles were included. The t̃t̃∗ study went further by investigating fully hadronic

events and their reconstruction. Both Standard Model and SUSY backgrounds were

also included to try and gain a realistic idea of whether these measurements would

be possible at the LHC.

Our squark study, Chapter 5 [136], investigated the same decay as presented in

Sec. 3.7.2 but with a 1st or 2nd generation squark replacing the stop,

q̃ → χ̃0
2q, (3.63)

χ̃0
2 → ℓ+ℓ−χ̃0

1. (3.64)

1st and 2nd generation squarks were chosen for the study as their production cross

section at the LHC is significantly higher than stops for the scenarios we considered.

Consequently, we hoped that statistically significant observations could occur for

lower luminosities. In addition, q̃g̃ production via,

qg → q̃g̃ , (3.65)

offers the possibility of reconstructing the χ̃0
1 momentum and thus, the decaying

squark rest frame. This is not possible for t̃t̃∗ production in the scenarios studied

with 3-body χ̃0
2 decay since we do not have enough kinematic constraints to solve
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the system. A drawback to studying the squark decay however, is that we are only

sensitive to CP-violating phases in the neutralino mass matrix. Since the quark will

not transfer any spin correlations we are not sensitive to any imaginary couplings

at the squark decay vertex.

Our study found that the rest frame parton-level asymmetry was similar to that

of the stop study with AT ∼ 15%. However, after the PDFs and the production

process is included, the asymmetry drops to AT ∼ 2% (this also includes a dilution

due to anti-squarks being present in the sample). When momentum reconstruction

is performed though, the observable asymmetry rises to AT ∼ 15% and shows the

power of this technique.

When estimating the expected luminosity required to see CP-violating effects

at the LHC, the study presented the first attempt at including some of the experi-

mental factors that are expected to be important. Selection cuts were performed on

the process and experimental smearing of the final-state particles was added. The

minimum luminosity at which CP-phases may be seen at the statistically significant

3σ-level was estimated to be 100 fb−1.

We then applied the same idea of momentum reconstruction to t̃t̃∗ production,

Chapter 6 [133], with the decay chains discussed in Sec. 3.7.1 and Sec. 3.7.3 but

with a fully hadronic top decay,

t̃→ χ̃0
2t, (3.66)

χ̃0
2 → ℓ±N ℓ̃

∓ → ℓ±Nℓ
∓
F χ̃

0
1, (3.67)

t→ bW → bjj. (3.68)

We now have a two body decay of the χ̃0
2 and thus enough kinematic conditions

to solve the system and find the χ̃0
1 momentum, Sec. 6.3. In addition, only a single

t̃ decay chain is required for the momentum reconstruction, whereas for the q̃g̃

production discussed above, the decay chain of the both the q̃ and the g̃ needs to

be included, Sec. 5.3.

We found the same maximum rest frame parton-level asymmetry as discussed

before at AT ∼ 15%. When the production process and PDFs were included this
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maximum asymmetry is reduced to AT ∼ 4%. The study then attempted to perform

reconstruction at the hadronic level for complete events and found that this was a

realistic proposal with the asymmetry returning to the rest frame level. None of

the Standard Model backgrounds were found to be an issue within the limitations

of the study as the reconstruction procedure severely reduces the background. The

expected minimum luminosity required if we only consider t̃t̃∗ production is 300 fb−1

to see a 3σ-statistical deviation. The general SUSY background was found to be

much more of an issue and extra cuts on top of the reconstruction procedure were

required to improve the signal to background ratio. With the SUSY background

included we would require a minimum of 500 fb−1 to see a 3σ-deviation.

For more information on both the studies presented in this section see Chapter 5

and Chapter 6.

3.7.5 Stop to taus

An additional study that considered using triple product correlations to search for

CP-violation in SUSY cascade decays was [137]. The study considered the following

two body decay chain,

t̃2 → Hit̃1, (3.69)

Hi → τ+τ− (3.70)

where the covariant product is built from the taus,

ǫµνρσ(pµ
τ+ , s

ν
τ+, p

ρ
τ−, s

σ
τ−), (3.71)

and sµ
τ± are the spin vectors of the individual taus.

To generate large asymmetries, the study requires the interference between closely

degenerate Higgs states, Hi. If this requirement is satisfied though, the asymmetries

can reach the very large maximum of A ∼ 90%.

However, the study does face formidable experimental challenges. Firstly, at

least one of the tau spins in Eq. (3.71) must be measured on an event-by-event basis

and this is expected to be very difficult at the LHC. Secondly, the backgrounds to

hadronic taus will be substantial and it is not clear if the final-state of Eq. (3.69,3.70)

will be reconstructible with a high enough signal to background ratio.
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3.8 Decay rate asymmetries

Another potential way to observe CP-violation in SUSY at colliders is via decay

rate asymmetries. As an example we choose the possible asymmetry for the decay

of χ̃±
1 → χ̃0

1W
± [99],

AΓ =
Γ(+)(χ̃

+
1 → χ̃0

1W
+) − Γ(−)(χ̃

−
1 → χ̃0

1W
−)

Γ(+)(χ̃
+
1 → χ̃0

1W
+) + Γ(−)(χ̃

−
1 → χ̃0

1W
−)
, (3.72)

where Γ+(−) is the decay rate for the positively (negatively) charged χ̃+(−) respec-

tively. The observable is therefore just a simple counting experiment between the

different final states and the statistical significance will be the same as detailed in

Sec. 3.6.

For most decays these asymmetries can be expected to be small as they can only

contribute at the loop level. However, for certain decays, the loop corrections can

become large (AΓ ∼ 15%) with the right couplings and kinematics [100].

Many different decay processes have now been investigated in the context of the

MSSM at the LHC. For example in Higgs decays [100, 102], stop decays [138, 139]

and charginos [99].



Chapter 4

Stop production and three body

neutralino decay

4.1 Introduction

In this chapter we study the production of stops at the LHC and the subsequent

cascade decay chain [131],

t̃i → χ̃0
j + t→ χ̃0

1ℓ
+ℓ− +Wb. (4.1)

The cascade is sensitive to CP-violating couplings in both the t̃i and χ̃0
j decay. Thus

the chain is sensitive to CP-violating couplings in both the neutralino and stop

mixing matrices (Sec. 2.4.1 and Sec. 2.4.3). In this thesis we set the phase φµ = 0

due to EDM constraints, Sec. 2.5, and therefore concentrate on the phases φM1
and

φAt in this chapter.

As our main observable we use triple product correlations that are explained in

detail in Sec. 3.3. The correlation allows us to create a CP-sensitive asymmetry that

is explained in Sec. 3.4.

The first CP-odd asymmetry we consider is formed from Tt = ~pt · (~pℓ+ × ~pℓ−).

This quantity has been studied at the parton level in [130], assuming pure gaugino-

like neutralinos. In this chapter we extend that work by providing fully analytic

expressions for the squared amplitude of the whole cascade process including full

spin correlations. In addition, we study the complete neutralino mixing matrix in

44
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order to see the effect of higgsino states and include scenarios where the neutralinos

of interest may be mainly higgsino-like.

A major open question of [130] was the exact effect that including the production

process and Parton Distribution Functions (PDFs) would have on the asymmetry,

see Sec. 3.5. The effect was only estimated in the previous study as being an order

of magnitude but here we calculate the dilution explicitly by completing the full

phase-space calculation. We see that including the PDFs has a big dilution effect

on the measurability of a CP-odd asymmetry.

In [129], further CP sensitive asymmetries formed from the momentum of the top

decay products were studied under the assumption of 2-body neutralino decays into

on-shell sleptons, namely Tb = ~pb ·(~pℓ+×~pℓ−) and Ttb = ~pb ·(~pt×~pℓ±). These variables

are sensitive to φM1
and φAt , but have different dependences on the CP-violating

phases as described in Section 4.2.4. Both of these CP-violating triple products are

produced at the stop decay vertex and therefore our decay chain is also sensitive to

these effects. Indeed, we can go further by combining all three observables which

would in principle allow one to disentangle the influences of both φM1
and φAt .

Since T-odd observables can also be generated by final-state interactions at the

one-loop level, one should in principle combine the asymmetry for a process with

that of its charge-conjugated process, Eq. (3.40). If a non-zero asymmetry is then

observed in this combination, it must correspond to a violation of CP symmetry.

To do this we must tag the charge of the t̃i involved in the cascade decay,

Eq. (4.1). Tagging the charge is possible if the t, produced by the t̃i, decays leptoni-

cally. Alternatively, since the dominant production channels at the LHC are via pair

production, pp → t̃it̃
∗
i , we could tag the charge of the t̃∗i produced in association.

If we know the charge of the opposite t̃∗i , we know the charge of the t̃i that we are

interested in.

In the following study, both of these approaches are taken, depending upon the

triple product being studied. For the triple products Tt and Ttb, we require the

momentum of the top to be reconstructed. Therefore, we cannot use a leptonically

decaying top in the triple product cascade decay, since the momentum of the as-

sociated neutrino is lost. Instead, for these triple products we must use the decay
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of the opposite t̃∗i to tag the charge. In all the scenarios we consider, the decay

t̃→ χ̃+
i b, is dominant, enabling charge identification from the leptonic decay of the

χ̃+
i . However, a detailed simulation including all combinatorial aspects and also

other background processes would be required to validate this possibility and is not

included in this study.

For the triple product, Tb, we do not require the momentum of the top. Therefore,

it may be possible to use a leptonically decay t to tag the charge of the t̃i. This

approach has the potential advantage that we can ignore the opposite cascade decay.

However, it must be noted that fully hadronic top decays will also work with this

triple product, using the opposite cascade decay tag mentioned previously.

In addition to looking for CP-violating effects in triple products we also consider

the possibility of looking at the masses and branching ratios of the particles involved

our decay chain, Eq. 4.1. Both of these observables are CP-even quantities and are

therefore not an unambiguous indicator of CP-violation though. However, it may

be possible to use these observables in combination with the triple products to

constrain the CP-violating phases more accurately. We also consider the accuracy

of these measurements at the LHC to see whether this is a realistic proposition.

We begin this chapter by describing the process under consideration in Sec. 4.2,

including the calculation method, the phases involved and their various effects. In

Sec. 4.3 we present numerical results for three specific benchmark scenarios and

discuss the potential for a measurement at the LHC. The Appendices A-C contain

details of the Lagrangian, the expression for the squared amplitude including full

spin correlations and the kinematics of the phase space in the laboratory system.

4.2 Formalism

4.2.1 Process studied

We study the dominant stop production process at the LHC, namely

gg → t̃it̃
∗
i , (4.2)
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g t̃∗1

g t̃1

g t̃∗1

g t̃1

g t̃∗1

g t̃1

g t̃∗1

g t̃1

Figure 4.1: Feynman diagrams for the production process gg → t̃1t̃
∗
1.

with the subsequent decay chain

t̃i → χ̃0
j + t→ χ̃0

1ℓ
+ℓ− +Wb. (4.3)

At tree level, the production process (4.2) proceeds via g exchange in the direct

channel and t̃ exchange in the crossed channel, and via a quartic coupling, as shown

in Fig. 4.1. Another possible source of t̃is is their production in gluino decays,

g̃ → t̃it. However this leads to an experimentally more complex topology than the

direct production and consequently we do not investigate this channel.

Since gluons do not couple to off-diagonal combinations of stop mass eigenstates,

t̃1
¯̃t2 production occurs only at the loop level, and we do not consider it here. We

focus here on t̃1
¯̃t1 production, since the reconstruction of full decay chains of t̃1 seems

achievable, even in the complex experimental environment at the LHC. With the

exception of the stop mass eigenvalues, see Sec. 2.4.1, no effects from supersymmetric

CP-violating couplings occur in the tree-level production process.

The first step in the cascade decay chain is the two-body process,

t̃i → tχ̃0
2 . (4.4)

Here CP-violating couplings of the t̃1 enter as well as those of the χ̃0
2, and are
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ℓ−

χ̃0
i ℓ+

χ̃0
k

Z0

ℓ−

ℓ+

χ̃0
k

χ̃0
i

ℓ̃L,R

ℓ−

ℓ+χ̃0
i

χ̃0
k

ℓ̃L,R

Figure 4.2: Feynman diagrams for the three-body decays χ̃0
i → χ̃0

kℓ
+ℓ−.

dominated by the phases φAt and φM1
, see Appendix B.1 1. We consider spectra

where the second steps in the cascade decay chains are the three-body decays of the

neutralino,

χ̃0
2 → χ̃0

1ℓ
+ℓ− , (4.5)

(cf. Appendix B.3) and the dominant top decay t → Wb (cf. Appendix B.6). The

neutralino decay occurs via Z0 or ℓ̃L,R exchanges, see Fig. 4.2. It is very sensitive to

CP-violating supersymmetric couplings, and its structure has been studied in detail

in [112, 140]. The phase φM1
(and also φµ, which has been set to zero here) affects

the mass of the χ̃0
2, as well as its couplings and decay rates.

4.2.2 Narrow width formalism and spin correlations

In principle we should not split the production and various decays of the cascade

into separate steps. Instead, we should just take the initial state and calculate

all possible diagrams (including interference terms) that lead to the final state.

However, in practice we would need to calculate a large number of diagrams and

each individual diagram would have significant complexities.

Therefore, we use the narrow width formalism [141] to factorize the full process

1Their structure has also been studied in detail in [129].
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into the production and each individual decay. The formalism assumes that each

intermediate particle (apart from the off-shell exchange particles) in the decay chain

can be approximated as being on-shell. This can be considered a good estimate

when the width of the particular particle in the decay chain is small compared to

its mass, Γ << m. This implies that the Breit-Wigner resonance shape can be

approximated by a δ function in the decays,

1

(q2 −m2)2 +m2Γ2
→ π

mΓ
δ(q2 −m2) . (4.6)

Studies have now been performed in the MSSM to look at the validity of the approx-

imation and where it breaks down [142, 143]. An additional requirement is found

that the sum of the mass of the daughter particles should be less than ∼ 90% of the

mass of the parent.

We use the definition of the narrow width propagator [140], |∆|2, in this thesis

that absorbs the factor of π into the phase-space calculation, and introduces a factor

of E, so that the partial width, Γ̂ (Appendix C), is calculated in the laboratory

frame,

|∆|2 =
E

mΓ
δ(q2 −m2) . (4.7)

However, to correctly calculate the angular distribution of the decay chain and

produce the triple product correlations that we are interested in, the narrow width

formalism alone is not sufficient. If the ‘on-shell’ propagator has spin (e.g a fermion

in our decays), an angular correlation will form between the production and decay

of the particle. Therefore, we need to include the spin dependence for each decay

and the correlation between decays.

We follow the Bouchiat-Michel formalism [141, 144, 145] and introduce 3 four

vectors sa
µ, a = 1, 2, 3 for the spin of each ‘on-shell’ fermion propagator. The sa and

p/m form an orthonormal set of four-vectors,

p · sa = 0 , (4.8)

sa · sb = −δab , (4.9)

sa
µs

a
ν = −gµν +

pµpν

m2
, (4.10)

where repeated indices are implicitly summed over. We can explicitly choose a
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particular basis for the set of 3 four vectors for the χ̃0
2, Eqs. (B.7.45-B.7.47), or t̃1,

Eqs. (B.7.48-B.7.50).

The above formalism has the advantage of allowing the calculation to be per-

formed with or without explicit spin vectors. One possible method is to contract the

spin vectors between the production and decay of a particular particle analytically

and effectively merge the squared matrix elements. Alternatively, the amplitudes

can be calculated with an explicit set of spin vectors and the correlation will only be

visible when the phase-space integral is performed. Hence, we are able to check that

the spin correlations have been calculated correctly by comparing the two results.

4.2.3 Squared amplitude

Using the above formalism, Sec. 4.2.2, the squared amplitude |T |2 of the full process

can be factorized into the processes of production gg → t̃1
¯̃t1 and the subsequent

decays t̃1 → tχ̃0
2, χ̃

0
2 → χ̃0

1ℓ
+ℓ− and t → Wb, with the second t̃1 being neglected

in the analysis. We apply the narrow-width approximation for the propagators of

the intermediate particles, t̃1, χ̃
0
2 and t, which is appropriate since the widths of the

respective particles are in all cases much smaller than their masses, cf. Table 4.3.1.

The squared amplitude can then be expressed in the form

|T |2 = |∆(t̃1)|2|∆(χ̃0
2)|2|∆(t)|2P (t̃1t̃1)

{

P (χ̃0
2t)D(χ̃0

2)D(t) +

3
∑

a=1

Σa
P (χ̃0

2)Σ
a
D(χ̃0

2)D(t)

+

3
∑

b=1

Σb
P (t)Σb

D(t)D(χ̃0
2) +

3
∑

a,b=1

Σab
P (χ̃0

2t)Σ
a
D(χ̃0

2)Σ
b
D(t)

}

, (4.11)

where a = 1, 2, 3 refers to the polarisation states of the neutralino χ̃0
i and top quark,

which are described by the polarisation vectors sa(χ̃0
i ), s

b(t) given in Appendix B.1.

In addition,

• ∆(t̃1), ∆(χ̃0
2) and ∆(t) are the ‘propagators’ of the intermediate particles which

lead to the factors Et̃1/mt̃1Γt̃1 , Eχ̃0
2
/mχ̃0

2
Γχ̃0

2
and Et/mtΓt in the narrow-width

approximation, Eqs. (4.6,4.7).

• P (t̃1t̃1), P (tχ̃0
2), D(χ̃0

i ) and D(t) are the terms in the production and decay,

Sec. B.1, B.3, B.6 respectively, that are independent of the polarisations of the
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decaying neutralino and top, whereas

• Σa
P (χ̃0

i ), Σb
P (t), Σab

P (χ̃0
2t) and Σa

D(χ̃0
i ), Σb

D(t), Sec. B.1, B.3, B.6 respectively,

are the terms containing the correlations between production and decay spins

of the χ̃0
2 and t.

According to our choice of the polarisation vectors sa(χ̃0
i ) [sb(t)], see Eqs. (B.7.45)–

(B.7.50) in Appendix B.1, Σ3
P/P is the longitudinal polarisation, Σ1

P /P is the trans-

verse polarisation in the production plane, and Σ2
P/P is the polarisation perpendic-

ular to the reference plane of the neutralino χ̃0
i [top quark t].

4.2.4 Structure of the T-odd asymmetries

As introduced in Sec. 3.3, suitable tools to study CP-violating effects are T-odd

observables based on triple products of momenta or spin vectors of the involved

particles. In this chapter we study the following T-odd observables,

Tt = ~pt · (~pℓ+ × ~pℓ−) , (4.12)

Tb = ~pb · (~pℓ+ × ~pℓ−) , (4.13)

Ttb = ~pt · (~pb × ~pℓ±). (4.14)

The T-odd asymmetries, Sec. 3.4 can then be defined for each triple product as,

ATf
=
NTf + −NTf−

NTf+ +NTf−
=

∫

sign{Tf}|T |2dlips
∫

|T |2dlips
, f = t, b and tb, (4.15)

where NTf+, NTf− are the numbers of events for which Tf is positive and negative

respectively, and the second denominator in (4.15),
∫

|T |2dlips, is proportional to

the corresponding cross section, namely σ(gg → t̃1t̃
∗
1 → tχ̃0

1ℓ
+ℓ−) in Eq.(4.12) and

σ(gg → t̃1t̃
∗
1 → Wbχ̃0

1ℓ
+ℓ−) in Eqs. (4.13) and (4.14). In the second numerator in

(4.15), the triple-product correlations only enter via the spin-dependent terms, as

explained in Eq. (4.17) and the following sections.

The observable ATb
has the advantage that it is not necessary to reconstruct

the momentum of the decaying t quark. However, as explained below, in order to

disentangle the effects of both phases of At and M1, it will be necessary to study all

possible observables.
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As can be seen from the numerator of ATf
, in order to identify the T-odd contri-

butions, we have to identify those terms in |T |2, Eq. (4.11), which contain a triple

product of the form shown in Eqs. (4.12)–(4.14).

As shown in Eq. (3.34), triple products are produced when covariant products,

iǫµνρσa
µbνcρdσ, are found in the amplitude squared of the process. In our process,

T-odd terms with ǫ-tensors are only contained in the spin-dependent contributions

to the production, Σab
P (χ̃0

j t), and in the spin-dependent terms in neutralino decay,

Σa
D(χ̃0

j ). It is therefore convenient to split Σab
P (χ̃0

j t) and Σa
D(χ̃0

j ) into T-odd terms

Σab,O
P (χ̃0

j t) and Σa,O
D (χ̃0

j) containing the respective triple products, and T-even terms

Σab,E
P (χ̃0

jt) and Σa,E
D (χ̃0

j ) without triple products,

Σab
P (χ̃0

jt) = Σab,O
P (χ̃0

j t) + Σab,E
P (χ̃0

jt), Σa
D(χ̃0

j) = Σa,O
D (χ̃0

j ) + Σa,E
D (χ̃0

j ). (4.16)

The other spin-dependent contributions Σa
P (χ̃0

j ) and Σb
P (t), as well as Σb

D(t), are

T-even.

When multiplying these terms together and composing a T-odd quantity, the

only terms of |T |2, Eq. (4.11), which contribute to the numerator of ATf
are there-

fore,

|T |2 ⊃
3
∑

a,b=1

[

Σab,O
P (χ̃0

j t)Σ
a,E
D (χ̃0

j)Σ
b
D(t) + Σa,E

P (χ̃0
j )Σ

a,O
D (χ̃0

j )

+ Σab,E
P (χ̃0

j t)Σ
a,O
D (χ̃0

j)Σ
b
D(t)

]

. (4.17)

The first term in Eq. (4.17) is sensitive to the T-odd contributions from the produc-

tion of the top and the neutralinos χ̃0
j . Comparing Eq.(B.1.9) with Eq.(B.3.25) and

(B.6.44) leads to the following possible combination of contributing momenta,

Σab,O
P (χ̃0

j t)Σ
a,E
D (χ̃0

j )Σ
b
D(t) ∼ ǫµνρσs

a,µ(χ̃0
j)p

ν
χ̃0

j
sb,ρ(t)pσ

t × (p[ℓ+,ℓ−]s
a)(p[b,W ]s

b). (4.18)

The second term and third terms in Eq. (4.17) are only sensitive to T-odd con-

tributions from the neutralino χ̃0
j decay. The second term depends only on the

polarization of χ̃0
j , comparing Eq.(B.3.32) with Eq.(B.1.5) therefore leads to the

only possible combination of momenta,

Σa,E
P (χ̃0

j )Σ
a,O
D (χ̃0

j ) ∼ (pts
a) × ǫµνρσs

aµpν
χ̃0

j
pρ

ℓ−p
σ
ℓ+ . (4.19)
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Since the third term depends on the polarization of both fermions, χ̃0
j and t, the

possible combinations, comparing Eq.(B.3.32) with Eq.(B.1.8) and (B.6.44), are,

Σab,E
P (χ̃0

j t)Σ
a,O
D (χ̃0

j)Σ
b
D(t) ∼ (pts

a)(pχ̃0
j
sb)(sbp[b,W ]) × ǫµνρσs

aµpν
χ̃0

j
pρ

ℓ−p
σ
ℓ+(4.20)

and (sasb)(sbp[b,W ]) × ǫµνρσs
aµpν

χ̃0
j
pρ

ℓ−p
σ
ℓ+ . (4.21)

As can be seen by substituting Eqs. (B.7.45)–(B.7.50) into Eq. (B.1.9) in Appendix

B.1, Σab,O
P (χ̃0

j t) vanishes for the combinations (ab) = (11), (22), (33), (13), (31), be-

cause they contain cross products of three linearly-dependent vectors. Only for the

remaining combinations, (ab) = (12), (21), (23), (32) , do we get a T-odd contribution

to the production density matrix.

Similarly, the expression for the T-even contributions, Σab,E
P (χ̃0

jt), Eq. (B.1.8) in

Appendix B.1, has non-zero components for a = 1, 3 but vanishes when a = 2. These

expressions are multiplied by Σa,O
D (χ̃0

j ), Eq. (B.3.32), and therefore only Σ1,O
D (χ̃0

j) and

Σ3,O
D (χ̃0

j ) contribute.

In the following section we derive the three triple products, study their different

dependence on phases and provide explicitly a strategy for determining φAt and φM1

and disentangling their effects.

4.2.5 Strategy for determining φAt
and φM1

Derivation of the triple products

Contracting the spin indices via Eq.(4.10) on Eqs.(4.18)–(4.21) lead to kinematic

expressions that only contain explicit momenta. We can the expand the terms with

covariant products (ǫµνρσ), as explained before, Eq. (3.34), in explicit momentum

components to produce scalar triple products of the momentum between three in-

dependent particles.

In our process we can classify the terms of Eq.(4.17) as follows:

• The terms of Eq.(4.18) lead to a combination between Ttb and Tb.

• The terms of Eq.(4.19) lead only to Tt.
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• The terms of Eq.(4.20) lead again only to Tt but terms of Eq.(4.21) produce

Tt as well as Tb, due to interference effects between both spin vectors of pt and

pχ̃0
j
.

T-odd terms sensitive to Tt

We consider first Tt, Eq. (4.12). As this includes the reconstructed top quark mo-

mentum, there are no spin terms from the decay of the top quark and the con-

tributing terms are the second and third term in Eq. (4.17) as explained in the

previous paragraph. The CP-sensitive terms of the decay density matrix are given

by Eqs. (B.3.32)–(B.3.35) and the contributing kinematical factor is ga
4 , Eq.(B.3.36),

ga
4 = imkǫµνρσs

aµpν
χ̃0

j
pρ

ℓ−p
σ
ℓ+ . (4.22)

We note that ga
4 is purely imaginary. When inserted, for instance, in Eq. (B.3.34) it

is multiplied by the coupling,

Im{aℓ̃∗
Lja

ℓ̃
LkO

L
kj} . (4.23)

See Eq. (A.2.8) and Eq. (A.4.23) for exact parameter dependence.

Both couplings depend on the phases φM1
(and φµ) and the factor contributes to

Σa,O
D . Analogous contributions follow from Eqs. (B.3.33) and (B.3.35). The corre-

sponding T-even terms of the production density matrix also entering in Eq. (4.17)

are obtained from Eq. (B.1.5).

T-odd terms sensitive to Ttb

For the triple product Ttb, Eq. (4.14), only the first term in Eq. (4.17) contributes,

but the kinematics are complicated by the fact that we need to include the decay of

the t in addition to that of the χ̃0
2. This comes from the fact that the kinematical

term that generates the triple product is fab
4 , Eq.(B.1.10):

fab
4 = ǫµνρσs

a,µ(χ̃0
j)p

ν
χ̃0

j
sb,ρ(t)pσ

t . (4.24)

As both sa,µ(χ̃0
j ) and sb,ρ(t) are contained in this term, we need to include their spin

correlated decays in order to produce a non-zero contribution.
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This term occurs only once in the t̃ decay amplitude, Eq. (B.1.9), and is multi-

plied by the complex pre-factor g2Im(aijb
∗
ij), Eq. (B.1.11). Both aij and bij contain

terms from the t̃ and χ̃0
j mixing matrices, and so are sensitive to both the phases

φAt and φM1
(and φµ).

T-odd terms sensitive to Tb

The triple product Tb, Eq. (4.13), is the most complicated, as it contains contribu-

tions from both the t̃ and χ̃0
2 decays (the first and third terms in Eq. (4.17)). The

kinematics is rendered more complex by the need to multiply each T-odd contribu-

tion by the terms from the other two decays. Each T-odd component is generated

through ga
4 and fab

4 , as for the other two triple products. As a consequence of having

a dependence on both the t̃ and χ̃0
2 decays, Tb is also sensitive to both phases φAt

and φM1
(and φµ).

Disentangling of effects of φAt and φM1

The T-odd asymmetries, Eq.(4.15), are determined by those CP-violating couplings

that are multiplied with the respective triple product. Under the assumption that

φµ is small, the neutralino sector depends only on φM1
and the stop sector only on

φAt. Since the involved triple product momenta show different dependence on the

CP-violating phases, as discussed above, it is possible in principle to disentangle the

effects of φAt and φM1
in our process and to determine the phases separately.

The decoupling is possible as the triple product Tt, can only be produced by

the term, Σa,E
P (χ̃0

j )Σ
a,O
D (χ̃0

j ), cf. section 4.2.5. The T-odd contribution in this term

comes from the decay of the χ̃0
j and consequently is only sensitive to the phase φM1

.

Once we have used the triple product Tt to determine the phase φM1
we can then

use the value as an input for the triple products, Ttb and Tb, in order to determine

the phase φAt .
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4.3 Results

4.3.1 Scenarios

In this Section we analyse numerically the various triple-product asymmetries in-

troduced in Eqs. (4.12)–(4.14) at both the parton level and with the inclusion of

parton distribution functions (PDFs) to study the discovery potential at the LHC.

In particular, we study the dependences of these triple-product asymmetries on the

MSSM parameters M1 = |M1|eiφM1 and At = |At|eiφAt . We also analyse the effects

of these parameters on the masses and branching ratios of the particles involved in

our process.

Scenario A: Reference B: NUHM - γ C: Higgsino

M1 109 97.6 105

M2 240 184 400

µ 220 316 -190

tanβ 10 20 20

ML 298 366 298

ME 224 341.7 224

MQ3 511 534.5 511

MU3 460 450 460

At -610 -451.4 -610

Table 4.1: Parameters for the three scenarios A, B, C considered in this chapter.

The parameters M2, |µ| and tan β in scenario B are chosen as for the scenario

SPS1a in [146]. We used mt = 171.2 GeV [20] and the SM value for the top width

Γt ∼ 1.5 GeV [147] for our study. All masses and widths are given in GeV.

For our numerical analysis we study in detail at both the partonic and PDF level

a reference scenario, A, where the χ̃0
2 is a gaugino-higgsino mixture. For comparison,

we also study at the partonic level a non-universal Higgs masses (NUHM) scenario,

B, and a third scenario, C, in which the χ̃0
2 is higgsino-like. The particle spectra for

these scenarios have been computed with the program SPheno [148]. These three
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Mt̃1 396.5 447.8 402.6

Mt̃2 595 609.6 591.6

Mχ̃±
1

177 172.8 186.3

Mχ̃±
2

301.6 346.05 421.1

mℓ̃L
302.4 369.8 303.1

mℓ̃R
229.2 345.2 229.2

φM1
0 π 0 π 0 π

mχ̃0
1

100.8 106.1 94.8 96.3 99.2 97.6

mχ̃0
2

177.0 171.3 167.1 166.6 186.2 179.8

mχ̃0
3

227.9 231.8 323.8 325.5 199.4 206.2

mχ̃0
4

299.1 297.6 343.4 341.8 419 418.9

Γt̃1 3.88 3.88 3.48 3.48 5.29 5.29

Γχ̃0
2

1.4×10−4 1.4×10−4 2.3×10−5 2.3×10−5 3.0×10−3 3.0 ×10−3

Table 4.2: Particle spectra for the three scenarios A, B, C considered in this chapter.

We used mt = 171.2 GeV [20] and the SM value for the top width Γt ∼ 1.5 GeV [147]

for our study. All masses and widths are given in GeV.

scenarios have been chosen to have similar masses, as displayed in Table 4.3.1, so

that the kinematic effects are similar in each case. We perform our studies using

our own program based on the analytic formulae we have derived for the various

cross sections and spin correlations. The program uses the VEGAS [149, 150] routine

to perform the multi-dimensional phase-space integral. We constrain ourselves to

cases where mχ̃0
2
< mχ̃0

1
+ mZ0 and mχ̃0

2
< mℓ̃L,R

, so as to forbid the two-body

decay of the χ̃0
2. The branching ratios for both processes have been calculated with

Herwig++ [151, 152] 2.

The feasibility of measuring these asymmetries at the LHC depends heavily on

the integrated luminosity at the LHC. For this reason we look closely at the cross

section, σ = σ(gg → t̃1
¯̃t1) × BR(t̃1 → tχ̃0

2) × BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) × BR(t → Wb)

2Beyond the Standard Model physics was produced using the algorithm of [153] and, in the

running of αEM , the parameterisation of [154] was used.
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and determine the nominal luminosity required to observe a statistically significant

result.

4.3.2 CP asymmetry at the parton level

Dependence of mχ̃0
1

and AT on φM1
and φAt

We start by discussing the dependence of M1 = |M1|eiφM1 on the parton-level, rest

frame asymmetries for each of the three scenarios. In order to see the maximum

dependence upon φM1
, we use the reconstructed t quark momentum and the triple

product Tt = ~pt · (~pℓ+ × ~pℓ−) . It should be noted from the following plots that the

asymmetry is obviously a CP-odd quantity that in addition to a measurement of

the phase, also gives the sign, as seen in Fig. 4.3(a). In comparison, using CP-even

quantities, for example the mass, it is not possible to determine if the phase is above

or below π, as seen in Fig. 4.3(b).

We see in Fig. 4.3(a) that the biggest asymmetry appears in scenario A, which

attains |ATt|max ≈ 12% when φM1
≈ 0.3π. One aspect of the plot that may be

surprising is that the asymmetry is not largest at the maximal value of the phase

(φM1
= π

2
). This is due to the coupling combinations and interferences and can be

seen from the equations in Sections 4.2.5. In Fig. 4.3(b), the dependence of the

masses of the neutralinos is shown. It can be seen clearly that the variations are too

small to be used to determine the phase.

In the cases of the two other scenarios shown in Fig. 4.3(a), the dependence

of the asymmetry on the phase φM1
is similar but slightly smaller. In the case of

scenario B (NUHM), the peak asymmetry is |ATt|max ≈ 9% when φM1
≈ 0.3π and in

scenario C (Higgsino) it is |ATt|max ≈ 7% when φM1
≈ 0.25π. Again, the asymmetry

does not peak when the phase is maximal.

To study the dependence upon φAt we need to use the triple products sensitive

to this phase, Tb = ~pt · (~pℓ+ × ~pℓ−) and Ttb = ~pt · (~pb × ~pℓ±) . Fig. 4.4(a) shows

ATb
and we see that the biggest asymmetry again occurs in Scenario A, but the

maximal asymmetry is only about half of |ATt|max with |ATb
|max ≈ 6%. Scenario C

produces a very similar asymmetry to Scenario A, with |ATb
|max ≈ 5.5%, whereas



4.3. Results 59

ATt,
√
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Figure 4.3: The asymmetry at threshold for the production process gg −→ t̃t̃∗ for

scenarios A, B and C for (a) ATt as a function of φM1
, and (b) the masses of the

neutralinos as functions of φM1
.
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Figure 4.4: (a) The asymmetry ATb
at threshold for the production process gg −→

t̃t̃∗ for scenarios A, B and C, and (b) the asymmetry ATb
at threshold, both as

functions of φAt .

the asymmetry in Scenario B is much smaller: |ATb
|max ≈ 2.5%. Fig. 4.4(b) shows

that the general shape of the asymmetries for ATtb
is similar to that of ATb

apart

from a difference in sign and that all the asymmetries are actually slightly larger. In

fact, for Scenario C, the largest asymmetry is generated using Ttb with ATtb
≈ 8%

when φAt ≈ 0.3π.

In the subsequent analysis, we concentrate on the favourable Scenario A, with

just a few remarks on the others.
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Figure 4.5: Contours in scenario A (in %) of the parton-level asymmetries (a) ATt

for the triple product Tt = ~pt · (~pℓ+ × ~pℓ−), as functions of the variables M1 and φM1
,

and (b) ATtb
for the triple product Ttb = ~pℓ+ · (~pt × ~pb), as functions of the variables

M1 and φAt.

4.3.3 Contour plots of ATt
and ATtb

for variables M1 and At

If we now lift the restriction of the GUT relation for |M1|, we can see how the

asymmetry varies with |M1| while leaving all the other parameters the same, for

Scenario A. Fig. 4.5(a) shows that the asymmetry peaks at |M1| ≈ 130 GeV and

φM1
≈ 0.25π when |ATt| ≈ 15%. Importantly though, the asymmetry can remain

above 10% between |M1| = 110 GeV and |M1| = 190 GeV, which is most of the

range allowed in this scenario.

By including the decay of the t quark that was produced in the t̃ decay, we can

also study the effect of φAt on our asymmetries. As the spin-correlation information

is now carried by the t quark, we have to change the triple product used to measure

the asymmetry, Eq. (4.15). It is found that the largest asymmetry can be measured

using the triple product, Ttb = ~pℓ+ ·(~pt×~pb) where |ATtb
|max ≈ 8.5% when φAt ≈ 0.5π

in Scenario A, as seen in Fig. 4.5(a). It may be noted that this asymmetry is slightly

smaller than those of [129] that can be reconstructed experimentally. In that paper,

scenarios were chosen where the χ̃0
2 decays via a two-body process, whereas here

we concentrate on scenarios where the χ̃0
2 decays via a three-body process, so to

maximise the sensitivity to φM1
. A more detailed discussion of [129] is given in
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Figure 4.6: Contours in scenario A (in %) of the asymmetries (a) Ab for the triple

product T = ~pb · (~pℓ− × ~pℓ+), as functions of the variables M1 and φAt and (b) Atb

for the triple product T = ~pℓ+ · (~pt × ~pb), as functions of the common variables

A = At = Ab = Aτ and φAt .

Sec. 3.7.1.

The phase dependence can also be seen with the triple product Tb = ~pb · (~pℓ+ ×
~pℓ+) although the asymmetry is found to be smaller here with |ATb

|max ≈ 6%, see

Fig. 4.6(a).

We have also considered the dependence of the asymmetry on the trilinear cou-

pling, At, in scenario A, as shown in Fig. 4.6(b). It can be seen that the asymmetry

is stable for the bulk of the region scanned, and only decreases near the edge of

the acceptable region for our scenario. The peak is now |ATtb
|max ≈ 9%, when

At ≈ −500 GeV, and the region where |ATtb
| > 8% extends from At ≈ −650 GeV

to At ≈ −250 GeV.

We now consider the effect on the asymmetry of varying simultaneously both the

phases φM1
and φAt . The triple products Tb = ~pb ·(~pℓ+ ×~pℓ−) and Ttb = ~pt ·(~pb×~pℓ±)

can have contributions from both phases, so we concentrate on these. For Tb,

Fig. 4.7(a) shows that the area of parameter space where φM1
and φAt constructively

interfere is actually quite small and peaked around φM1
≈ 0.2π and φAt ≈ 0.5π.

Apart from this area, varying both phases generally results in a reduction in the

asymmetry observed, caused by the neutralino and squark mixing entering the cou-
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Figure 4.7: Contours (in %) of the asymmetry at the parton level in scenario A

with M1 = 109 GeV for the triple products (a) Tb = ~pb · (~pℓ+ × ~pℓ−) and (b) Ttb =

~pℓ+ · (~pb × ~pt) for varying phases φM1
and φAt.

plings, Section 4.2.5. Importantly when φM1
≈ π the asymmetry vanishes, due to

the fact that the mixing between the wino and bino states becomes much weaker.

These mixing terms are the dominant entries in the coupling factor where φAt enters

(the last term in Eq. (B.1.11)).

Fig. 4.7(b) demonstrates that, for this scenario, φM1
generates virtually no asym-

metry for Tb. However, φM1
can still significantly reduce the asymmetry that φAt

can produce and, again, when φM1
≈ π we see that |ATtb

| ≈ 0 as expected.

If we now modify scenario A slightly by setting |M1| = 160 GeV, this results in

a more interesting scenario as the phases φM1
and φAt can interfere constructively

to produce an asymmetry larger than that seen before. When φM1
≈ 0.4π and

φAt ≈ 1.8π, we observe a peak asymmetry, |ATb
| ≈ 7% for the triple product Tb, as

seen in Fig. 4.8.

4.3.4 Dependences of branching ratios on φM1
and φAt

In order to determine whether an asymmetry could be observed at the LHC, we

need to calculate the cross section for the total process. Important factors in the

total cross section are the branching ratios BR(t̃1 → χ̃0
2t) (for CP-violating case

see [155]) and BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) [112]. Both of these change considerably with φM1
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ŝ ∼ 2mt̃

φAt/π

φM1
/π

(a)

 0  0.5  1  1.5  2

 0

 0.5

 1

 1.5

 2

-6

-4

-2

0

-2

-4

-6

2

6

4

2

0

2

4

6

-2

φAt/π

φM1
/π

(b)

 0  0.5  1  1.5  2

 0

 0.5

 1

 1.5

 2

4 2 1

-4 -2 -1

1 2 4

-1 -2 -4

Figure 4.8: Contours (in %) of the asymmetries in scenario A at the parton level

with M1 = 160 GeV for the triple products (a) Tb = ~pb · (~pℓ+ × ~pℓ−) and (b) Ttb =

~pℓ+ · (~pb × ~pt), as functions of the varying phases φM1
and φAt .
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Figure 4.9: Contours (in %) of branching ratios in scenario A as functions of M1

and φM1
: (a) BR(t̃1 → χ̃0

2t) and (b) BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−), ℓ = e or µ.

and φAt , altering the statistical significance of any measurement of |ATf
|. Analyzing

first the variation with M1, seen in Figs. 4.9 and 4.10(a), we see that the branching

ratio BR(t̃1 → χ̃0
2t) is indeed sensitive to variation of the phase, but can vary

more strongly with |M1|. For example, if φM1
= π when |M1| ≈ 150 GeV then

BR ≈ 11%, but if we keep the phase the same and change to |M1| ≈ 180 GeV

then BR ≈ 4% (i.e., it drops by almost a factor of three), as seen in Fig. 4.9(a).

The general reduction of BR(t̃1 → χ̃0
2t) as M1 increases is to be expected as the
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Figure 4.10: Contours (in %) of the branching ratio BR(t̃1 → χ̃0
2t), in scenario

A as functions of varying (a) M1 and φAt and (b) the common trilinear coupling

At = Ab = Aτ and the phase of the top-quark trilinear coupling φAt .

mass of the χ̃0
2 will rise resulting in a kinematic suppression for this decay state.

Similar large differences are found in BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) which varies between 3%

for M1 < 135GeV and 9% for M1 ≈ 165GeV Fig. 4.9(b).

The phase φAt does not enter BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−), but can have a large effect on

BR(t̃1 → χ̃0
2t). In scenario A, we see in Fig. 4.10 that BR ≈ 8% at φAt = 0 but

increases to BR ≈ 24% at φAt = π (i.e. a factor of 3 increase). The branching ratio

BR(t̃1 → χ̃0
2t) also has a dependence on |At| an this is shown in Fig. 4.10(b). We see

that if φAt = 0 then the branching vary between, BR ≈ 4% when |At| ≈ −750GeV

and BR ≈ 12% when |At| ≈ −100GeV.

In the range ofM1 = |M1|eiφM1 and At = |At|eiφAt studied, we find that BR(t̃1 →
χ̃0

2t) varies between 4% and 24% and BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) between 2.5% and 9% for

scenario A. Similar plots can also be produced for scenarios B and C but are not

presented here. It is found that BR(t̃1 → χ̃0
2t) varies between 4% and 14% for

scenario B and between 8% and 35% for scenario C. For BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) the

variation is between 3% and 12% for scenario B and between 2% and 5% for scenario

C.
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4.3.5 Influence of Parton Distribution Functions (PDFs) on

CP asymmetries

So far we have studied the triple-product asymmetries only when the production

process is close to threshold, and the t̃1 pair are produced almost at rest. However,

production at the LHC is not in general close to threshold, and we must include

PDFs in our analysis to see how an initial boost to the t̃1 affects the asymmetry. As

explained in Sec. (3.5), whilst the covariant product is a Lorentz invariant quantity,

the triple products are not. Therefore, we must analyse the optimal reference frame

to observe an asymmetry and compare this frame to the one that will be seen at the

LHC.

We first analyse the triple product, Tt, Eq. (4.12),

Tt = ~pt · (~pℓ+ × ~pℓ−) , (4.25)

which is produced by the covariant product present in the χ̃0
2 decay amplitude,

(pts
a) · ǫµνρσs

aµpν
χ̃0

j
pρ

ℓ−p
σ
ℓ+ → ǫµνρσp

µ
t p

ν
χ̃0

j
pρ

ℓ−p
σ
ℓ+ . (4.26)

Following the argument presented in Sec. 3.3 we can see that the optimal reference

frame is that of the χ̃0
2 rest frame. In this frame all the momentum components of

the χ̃0
2 vanish and we are left with the single triple product, Tt. However, the rest

frame of the χ̃0
2 is not the only optimal frame, if we apply momentum conservation

at the t̃1 decay vertex, we trivially find that pt̃1 = pχ̃0
2
+ pt. Applying this identity

to the covariant product results in,

ǫµνρσp
µ
t p

ν
χ̃0

j
pρ

ℓ−p
σ
ℓ+ → ǫµνρσp

µ
t p

ν
t̃1
pρ

ℓ−p
σ
ℓ+ , (4.27)

and hence, we see that both the χ̃0
2 and t̃1 rest frame can be considered equivalent

and optimum for the triple product Tt. For the triple products Ttb and Tb the same

argument can be made that shows both the the χ̃0
2 and t̃1 rest frame are equivalent.

We now present the numerical results and in this section we focus exclusively on

scenario A but very similar conclusions are obtained in both Scenarios B and C.
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Figure 4.11: (a) Asymmetry ATt for scenario A as a function of the t̃ momentum. (b)

Total cross section for scenario A for gg −→ t̃t̃∗ as a function of the parton-parton

centre-of-mass energy.

Fig. 4.11(a) shows the asymmetry |ATt| as a function of the t̃1 momentum. The

plot clearly verifies the conclusion that the t̃1 rest frame is optimal and that the

asymmetry falls sharply as the energy of the t̃1 increases. Fig. 4.11(b) shows the

total cross section in 14 TeV collisions at the LHC for gg → t̃1t̃
∗
1 as a function of the

parton-parton centre-of-mass energy, and demonstrates that the peak production

occurs close to threshold with a long tail of production at high energy. In addition,

even when production occurs at a low parton-parton centre-of-mass energy, in the

majority of cases one gluon may be carrying significantly more momentum than the

other in the collision. Consequently the produced t̃1 can have a large longitudinal

component to its momenta. Both these factors mean that the asymmetry observed at

the LHC will be substantially smaller than if the all t̃1 were produced at threshold 3.

In should be noted that similar results were found for all asymmetries and scenarios,

and this ‘dilution’ factor, Sec. 3.5, is always present.

We use the MRST 2004LO pdf set [156] in our analysis of the asymmetry, and

plot the integrated asymmetry |ATt| as a function of φM1
and φAt at the LHC in

Fig. 4.12(a), as the solid line. We see that the inclusion of the PDFs reduces the

3Both these effects could be overcome if one could measure the stop momenta and this possibility

is explored in the following chapters.
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Figure 4.12: Integrated asymmetries with parton density functions included in the

production process. The dotted and dashed lines indicate the asymmetry required

in order to observe a 1σ deviation from zero with the indicated luminosities, see the

text: (a) Tt = ~pt · (~pℓ+ ×~pℓ−) in scenario A as a function of φM1
with M1 = 130 GeV,

and (b) Ttb = ~pℓ+ · (~pt × ~pb) in scenario A as a function of φAt with M1 = 109 GeV.

asymmetry by about a factor of four in this case. This reduction is unsurprising,

given the reduction in asymmetry when one moves away from threshold shown in

Fig. 4.11(a), though the dilution factor does depend on the scenario4.

Using the production cross sections and branching ratios we can then estimate

the integrated luminosity required to observe an asymmetry at the LHC. We explain

in Sec. 3.6 the method used to calculate the statistical significance of any particular

asymmetry.

Figs. 4.12 (a), (b) and 4.13(a) show the expected levels of the integrated asym-

metries in scenario A with PDF effects included (solid line) together with dotted

and dashed lines showing the level of asymmetry one would need with the corre-

sponding integrated luminosity in order to obtain a statistical error AT > ∆(AT ).

In other words, the asymmetry could only be seen at the level of 1σ where the solid

line is above the relevant dotted or dashed line. For example, in scenario A after

4These results have been checked independently using Herwig++ [151,152] with three-body spin

correlations included.
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Figure 4.13: Integrated asymmetry with parton density functions included in the

production process. The dotted and dashed lines indicate the asymmetry required

in order to observe a 1σ deviation from zero with the indicated luminosities. The

asymmetry is for the triple product, Tb = ~pb · (~pℓ+ × ~pℓ−) in scenario A as a function

of φAt with M1 = 109 GeV.

100 fb−1, the asymmetry could only be seen for a small area of parameter space

around φM1
= 0.35π and 1.7π. Figs. 4.12 (a) and (b) show that even if φM1

or φAt

has a value that produces a maximal asymmetry, we require a substantial integrated

luminosity if we are to find a statistically significant result. In addition, it must be

noted that we have not included any detector effects into our analysis. One can

expect that the required integrated luminosity would rise substantially after the in-

clusion of backgrounds and experimental cuts (for more details on these effects in

similar observables see Chapter 5 and Chapter 6). Therefore, an observation of a

statistically significant CP-asymmetry using only this decay chain looks difficult at

the LHC.

4.3.6 Determination of the CP-violating phases

As we have shown, it will be challenging to determine the phases φM1
and φAt in

our process using the triple-product asymmetries alone. However, it would be very

worthwhile, as a non-zero measurement of a T-odd asymmetry would provide unique
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Figure 4.14: (a) The mass of the stop squarks t̃j, j=1,2 as functions of φAt/π, and

(b) contour plot showing the areas of the (M1, φM1
) parameter plane consistent with

a mass difference between χ̃0
2 and χ̃0

1 of 20 GeV (blue), 40 GeV (purple) and 60 GeV

(red) respectively. The bands assume a 1% error in experimental measurement of

the mass difference and a 5% error in M2.

evidence of CP violation. In the rest of this chapter, we examine briefly the potential

for a measurement using other variables, again concentrating on Scenario A.

Masses as a CP observable

Fig. 4.4(b) showed how the masses of the χ̃0
i s vary with φM1

and Fig. 4.14(a) shows

how the masses of the t̃i vary with φAt in scenario A. The variations in both of these

observables are only about 1 − 2% as we vary the phases over the complete range.

Unfortunately, the variation is significantly smaller than the expected determination

of the MSSM mass scale at the LHC. For example, a detailed analysis of a 2-body

cascade decay chain [157], concluded that in a relatively light scenario, the absolute

masses for χ̃0
2 and χ̃0

1 could be measured with an accuracy of 4 GeV. The method

relies on the clean dilepton edge produced from the decaying χ̃0
2.

A measurement of the t̃ masses will be substantially more difficult due to the

fact that the final state contains jets. However, using the ideas of kinematic recon-

struction, [158], a new study [159], claims that an error of 10% on the mass may be

possible with 20 fb−1 of data for an optimistic scenario. Unfortunately, the error is
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still far to large for us to be able to place a constraint on the t̃ masses.

Whilst the absolute mass measurements may not prove promising, a far more

accurate measurement at the LHC will be the mass difference between the χ̃0
2 and

χ̃0
1. As stated above, this can be determined in our scenario with a clear dilepton

end-point. The accuracy of this measurement is expected to be < 1% for a two body

cascade decay chain [157] and a study that considers a three body χ̃0
2 decay [160],

suggests that a similarly clear dilepton end-point should be visible in these scenarios

as well.

If we assume that M2 can be determined to 5% [161] at the LHC, we find the

regions plotted in Fig. 4.14(b). At the smaller values allowed for M1 in scenario A,

we see that this observable does not depend sensitively enough on φM1
for a mea-

surement to become possible. However, as M1 increases we see that the sensitivity

to φM1
becomes much clearer. Importantly, in scenario A, it is only possible to have

a mass difference, χ̃0
2 − χ̃0

1 . 40 GeV if φM1
is present. We must state though, that

this conclusion relies on the other MSSM parameters in the scenario being known.

The observable is not CP-odd and therefore cannot be used as unambiguous mea-

surement of CP-violation.

A more detailed discussion regarding MSSM mass measurements is given in

Sec. 5.3.5 and Sec. 6.3.4. For comprehensive reviews of the different studies that

have been completed for determining the sparticle masses at the LHC, see [162,163].

Inclusion of branching ratios

Other observables sensitive to the phases φM1
and φAt are the branching ratios

BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) and BR(t̃1 → χ̃0

2t), as discussed in Section 4.3.4. As is the case

for the masses, though, our current expectation of the accuracy of this measurement

at the LHC looks insufficient to constrain the phases although a detailed study has

not been performed.

Ideas to improve the situation are to study ratios of branching ratios [98, 161,

164]. By taking a ratio of different branching ratios, the production cross section

dependence is removed. However, many problems still remain including a severe

dependence on the reconstruction efficiency and possible backgrounds. In addition,
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BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) = 0.04,

Scenario A (φAt = 0)
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Figure 4.15: Parameter space allowed when the experimental accuracy of the branch-

ing ratio measurement is 50% (red) or 10% (purple) for (a)BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) = 0.04

and (b) BR(t̃1 → χ̃0
2t) = 0.1.

other parameters of the theory will need to be well constrained.

However, we include a illustrative example here to show how an accurate de-

termination of the branching ratios could be extremely useful if a measurement

was made. Fig. 4.15(a) shows in the context of scenario A that, if a measurement

BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) = 0.4 is made and we assume that the accuracy is 50% (∆1),

then the constraints on M1 and φM1
are rather weak. However, if the accuracy

could be improved to 10% (∆2), a determination of M1 and φM1
looks possible if

this analysis is combined with information from the χ̃0
2, χ̃

0
1 mass difference and that

of the triple-product correlations. For the branching ratio, BR(t̃1 → χ̃0
2t), the con-

clusion is similar, as seen in Fig. 4.15(b). With a measurement at 50% (∆1), we

again see that a determination of the CP-violating parameter is not possible but, if

a measurement can be made with an accuracy of 10% (∆2), then a determination

of φAt would be more plausible.

Thus, we may be able to to pin the model parameters down with greater accuracy

by combining information on the CP-violating asymmetries with masses, branching

ratios and possibly even cross sections.
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4.4 Conclusions

In this chapter we studied direct stop production followed by the decay t̃1 → tχ̃0
2,

χ̃0
2 → ℓ+ℓ−χ̃0

1, where the latter is a three-body decay and provide compact analytical

expressions for the amplitude and phase space. We have specifically concentrated

on measuring the CP-violating phases of the parameters M1 and At.

We have provided a thorough analysis of the contributions to this process which

lead to non-zero asymmetries in the parameters Tt, Tb and Ttb formed from triple

products of reconstructible final-state particles. These are sensitive to different

combinations of the phases mentioned above. We studied three spectra which had

different neutralino characteristics at the parton level and also studied the (large)

effect of including PDFs which had previously only been roughly estimated in the

literature.

We found that with the design integrated luminosity of the LHC of 100 fb−1,

the statistical errors would probably remain too great to distinguish a non-zero

asymmetry measurement from zero for most of the ranges of φM1
and φAt , and we

recall that this initial study did not include detector or background effects. However,

with a luminosity upgrade, the accuracy will improve and it could be possible either

to measure a non-zero value or else to provide limits on the possible phases.

Triple products are not the only variables sensitive to the phases of the pa-

rameters. We found that a good measurement of the mass difference between the

χ̃0
2 and χ̃0

1 neutralinos could constrain significantly the (M1,φM1
) parameter space.

It is possible that measurements of the two branching ratios BR(t̃1 → χ̃0
2t) and

BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) could also constrain both φM1

and φAt , although this is heav-

ily dependent on the experimental accuracy achieved. However, the disadvantage of

both mass differences and branching ratios is that a difference for the expected value

can potentially be faked by other values of the real parameters. This is in contrast

to the asymmetries from triple products which are uniquely due to CP violation.



Chapter 5

Squark gluino production and

three body neutralino decay

5.1 Introduction

In the previous study that considered t̃ pair production we saw that large CP-

violating asymmetries can be produced at the parton level. However, we also saw

that limited statistics and the dilution of the asymmetry due to fact that the stops

are produced with a significant boost will make the observation of these asymmetries

challenging at the LHC. The study in this chapter attempts to address these two

issues to demonstrate an analysis that may be realistic at the LHC.

We study the production of squarks at the LHC and the subsequent cascade

decay chain [136],

q̃i → χ̃0
j + q → χ̃0

1ℓ
+ℓ− + q. (5.1)

which is analogous to the chain shown in Eq. (4.1) but with a first or second gener-

ation q̃i replacing the t̃i.

5.1.1 Advantages of squark decay

The first advantage of studying this chain is that if the masses are similar, the

production cross section of squarks at the LHC is substantially higher than that of

stops. The higher production cross section is due to the fact that the proton contains

73
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valence up and down quarks. The valence quarks open up many new production

channels, including those in association with a gluino, Fig. 5.1, which lead to the

higher rate. When analysing the CP-violating asymmetries at the LHC, the higher

production rate directly corresponds to an improved statistical significance.

The production channel mentioned above,

qg → q̃g̃ , (5.2)

is of additional importance in this study as the cross section for q̃ production, is

substantially higher than the anti-particle, q̃∗, at the LHC. The asymmetry in pro-

duction occurs since the LHC collides two protons where the valence quarks will all

be quarks and not anti-quarks. Thus, a quark is far more likely to be present in the

initial collision than an antiquark leading to the process shown in Eq. (5.2) having

a higher cross section than that of the charge conjugate.

The asymmetry mentioned above has already been exploited in the literature

as a possible method to measure the spin of SUSY particles at the LHC [165].

For this study, the production asymmetry was required as the observable was an

asymmetry that had an opposite sign depending on whether a squark or anti-squark

was produced. Thus the observable would vanish if no production asymmetry was

present.

For our triple product asymmetries, we encounter a similar effect. As the triple

products are CP-odd, our asymmetries also have the opposite sign depending on

the particle/anti-particle nature of the squark in the cascade decay. Thus, we would

also have no net triple product asymmetry if there was not a production asymmetry

between the squarks and anti-squarks.

An additional advantage of considering squarks is that when we consider the

associated production with gluinos, some decay topologies allow the full kinematic

reconstruction of the event even with missing momentum, Sec. 5.3. As shown in

Eq. (3.35), if we can fully reconstruct the kinematics of a decay we can boost into

a reference frame in which the asymmetry is maximal. Hence, we can recover the

rest frame asymmetry and have the potential to substantially reduce the number of

reconstructed events required to see an asymmetry at the LHC.
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5.1.2 Disadvantages of squark decay

Unfortunately, there are also some disadvantages when comparing squark cascade

decays to those of stops. Firstly, we are no longer sensitive to any spin correlation

carried by the q in the decay, q̃i → χ̃0
j + q, as it will not decay to two separate

reconstructible particles. Hence, we cannot probe any CP-violating effects in the

squark mixing matrix and we are only sensitive to CP phases in the neutralino mass

matrix.

A second disadvantage with the squark decay, is that we are not able to tag the

charge of the produced quark. As mentioned above, the charge conjugate decay has

an asymmetry of the opposite sign so if we had an equal sample of squarks and

anti-squarks, the asymmetry would completely cancel and become unobservable.

However, due to the production asymmetry between squarks and anti-squarks, this

problem can be overcome at the LHC. In principle though, for the asymmetry to be

unambiguously CP-violating, we need to define a true CP-odd asymmetry between

the charge conjugate decays, Eq. (3.40). This is not possible for the decay shown in

Eq. (5.1) but there are good arguments as to why this quantity should be considered

a ‘good’ CP-odd observable. We have shown in Sec. 3.2 that a TN -odd observable

may not correspond to a CP-odd observable in the presence of final state interac-

tions (FSI). However, the only FSI possible in our decay chain are electroweak in

nature. These are expected to be a small total effect and therefore, the effect on

the asymmetry are assumed to be even smaller. In addition, similar decay chains

where no CP-violating effects are expected should be studied for triple product cor-

relations. If no correlations are found in these chains, we should be able to assume

that the correlations produced in the decays of interest are really CP-violating.

5.1.3 The study

We calculate the process shown in Eq. (5.1) fully analytically at the parton level

to see the effect of CP-violating phases, Sec. 5.2. We also include the dominant

production process and PDFs to understand the boosted frame dilution. To coun-

teract the dilution we present the method that allows full kinematic reconstruction
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of the events, Sec. 5.3. In Sec. 5.4 we present the numerical results of the study. We

also produce Monte Carlo events with explicit CP-violation included. We perform

basic selection cuts and include some experimental effects on these events to try and

accurately gauge the luminosity required to see CP-violation at the LHC.

5.2 Formalism

5.2.1 The process studied and the amplitude squared

As stated in the introduction, one of the dominant SUSY channels in many scenarios

at the LHC is associated squark-gluino production. At the tree level the production

process Eq. (5.3) proceeds via the light quark exchange in the direct channel and

squark/gluino exchange in the t channel, as seen in Fig. 5.1,

gq → g̃q̃L. (5.3)

We study the case where the squark subsequently decays via the following chain:

q̃L → χ̃0
j + q → χ̃0

1ℓ
+ℓ− + q. (5.4)

The first step in the cascade decay chain is the two-body process q̃L → qχ̃0
2. As

in Chapter 4 we consider spectra where the second step in the cascade decay chain

is the three-body decay of the neutralino, χ̃0
2 → χ̃0

1ℓ
+ℓ− (cf. Appendix B.3). The

relevant diagrams can be seen in Fig. 4.2. CP-violating couplings of both the χ̃0
2 and

χ̃0
1 are present in this decay and the phases affect the masses of χ̃0

1 and χ̃0
2, as well

as the couplings and decay rates. In addition, the spin vector of the χ̃0
2 has to be

explicitly included in the amplitude since the full spin correlations have to be taken

into account.

We again use the narrow-width approximation, Sec. 4.2.2, so that the squared

amplitude |T |2 of the full process can be factorised into the processes of production

pp → g̃q̃L and the subsequent decays q̃L → qχ̃0
2, χ̃

0
2 → χ̃0

1ℓ
+ℓ−. We also include

the spin correlations between the production and decay of the χ̃0
2. For the purpose

of analysing neutralino decays we do not need to include decays of the gluino pro-

duced with a squark but they will be needed later for momentum reconstruction,
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Figure 5.1: Feynman diagrams for the associated production process of squarks and

gluinos at the LHC, gq → g̃q̃L.

see Sec. 5.3. Applying the narrow-width approximation for the masses of the in-

termediate particles, q̃L and χ̃0
2, is appropriate since the widths of the respective

particles are in all cases much smaller than their masses and the mass differences

between them are large enough, see Appendix C. The squared amplitude can then

be expressed in the form,

|T |2 = 4|∆(q̃L)|2|∆(χ̃0
2)|2P (g̃q̃L)

{

P (χ̃0
2)D(χ̃0

2) +

3
∑

a=1

Σa
P (χ̃0

2)Σ
a
D(χ̃0

2)
}

, (5.5)

where a = 1, 2, 3 refers to the polarisation states of the neutralino χ̃0
2, which are

described by the polarisation vectors sa(χ̃0
2), given in Appendix B.2. In addition,

• ∆(q̃L) and ∆(χ̃0
2) are the propagators of the intermediate particles which lead

to the factors Eq̃L
/mq̃L

Γq̃L
and Eχ̃0

2
/mχ̃0

2
Γχ̃0

2
in the narrow-width approxima-

tion,

• P (g̃q̃L), P (χ̃0
2) and D(χ̃0

2) are the terms in the production and decay that are

independent of the polarisations of the decaying neutralino, whereas

• Σa
P (χ̃0

2) and Σa
D(χ̃0

2) are the terms containing the correlations between produc-

tion and decay spin of the χ̃0
2.
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According to our choice of the polarisation vectors sa(χ̃0
2), see Eq. (B.7.45-B.7.47)

in Appendix B.7, Σ3
P/P (χ̃0

2) is the longitudinal polarisation, Σ1
P /P (χ̃0

2) is the trans-

verse polarisation in the production plane, and Σ2
P/P (χ̃0

2) is the polarisation per-

pendicular to the reference plane of the neutralino χ̃0
2.

5.2.2 Structure of the T-odd asymmetry

We again use the triple products introduced in Sec. 3.3 to study the CP-violating

effects at the LHC. In this chapter we study the triple product analogous to one

previously studied in relation to stop decay, Eq. (4.12),

T = ~pq · (~pℓ+ × ~pℓ−). (5.6)

The T-odd asymmetry, Sec. 3.4, can again be defined for the triple product as,

AT =
NT+

−NT−

NT+
+NT−

=

∫

sign{T }|T |2d lips
∫

|T |2d lips
, (5.7)

where NT+
(NT−) are the numbers of events for which T is positive (negative)

and d lips denotes Lorentz invariant phase space. The denominator in Eq. (5.7),
∫

|T |2d lips, is equal to the total cross section, namely σ(pp → q̃Lg̃ → qχ̃0
1ℓ

+ℓ−g̃).

In the corresponding numerator of Eq. (5.7), the triple-product correlations only

enter via the spin-dependent terms. If the spin of the particles is neglected in the

calculation, the asymmetry will vanish. In addition, in order to identify the T-odd

contributions, we have to identify those terms in |T |2, Eq. (5.5), which contain the

triple product shown in Eq. (5.6).

As shown in Eq. (3.34), triple products are produced when covariant products,

iǫµνρσa
µbνcρdσ, are found in the amplitude squared of the process. In our process,

T-odd terms with ǫ-tensors are only contained in the spin-dependent contribution to

the three body neutralino decay, Σa
D(χ̃0

j ). As stated in the introduction, we cannot

probe the polarisation of the quark produced in the decay q̃i → qχ̃0
2 and therefore,

we have no T-odd contribution coming from this decay, Eq. (B.2.14).

For the decay of the χ̃0
2, it is convenient to split the spin dependent term Σa

D(χ̃0
j)

into a T-odd term, Σa,O
D (χ̃0

j ), containing the respective triple products and a T-even

term, Σa,E
D (χ̃0

j), without triple products,

Σa
D(χ̃0

j ) = Σa,O
D (χ̃0

j ) + Σa,E
D (χ̃0

j ). (5.8)



5.3. Momentum reconstruction 79

The contributions to Σa,O
D (χ̃0

j ) and Σa,E
D (χ̃0

j ) are given in Eq. (B.3.32) and Eq. (B.3.25)

respectively. We must also remember that these terms are multiplied by the spin

dependent (but T-even) contribution to the squark decay, Σa
P (χ̃0

j), Eq. (B.2.14).

When multiplying these terms together and composing a T-odd quantity, the

only term of |T |2 that contributes to the numerator of AT is therefore,

|T |2 ⊃
3
∑

a,b=1

[

Σa
P (χ̃0

j )Σ
a,O
D (χ̃0

j )

]

. (5.9)

Comparing Eq. (B.2.14) in the squark decay to Eqs. (B.3.33-B.3.35) in the χ̃0
2 decay

leads to the following combination of momenta,

Σa
P (χ̃0

j )Σ
a,O
D (χ̃0

j) ∼ (pqs
a(χ̃0

2)) × iǫµνρσs
aµ(χ̃0

2)p
ν
χ̃0

2
pρ

ℓ−p
σ
ℓ+ . (5.10)

Contracting the spin indices using Eq. (4.10), leads the following covariant product

in the numerator of Eq. (5.7),

iǫµνρσp
µ
q p

ν
χ̃0

2
pρ

ℓ−p
σ
ℓ+ , (5.11)

which in turn produces the triple product that we use as our observable, Eq. (5.6).

Any CP-violating phases enter via the coupling constants shown in Eqs. (B.3.33-

B.3.35). For example, in the Z0, ℓ̃ interference channel, Eq. (B.3.34), the following

coupling constant contributes,

aℓ̃
ja

ℓ̃∗
k O

L∗
kj , (5.12)

where aℓ̃
j is a coupling between χ̃0

j ℓ̃ ℓ, Eq. (A.4.17), and OL∗
kj is the coupling between

χ̃0
j χ̃

0
k Z

0. CP phases in the neutralino mass matrix, Eq. (2.26), enter all of these

couplings, giving rise to the CP-violating triple products.

5.3 Momentum reconstruction

5.3.1 Dilution effects

The triple product that is constructed from momenta in the laboratory frame suffers

from dilution factors at the LHC. The dilution is due to the lab frame being boosted

with respect to the rest frame of the χ̃0
2, for a more detailed discussion see Sec. 3.5.
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T = −→p q · (−→p ℓ+ ×−→p ℓ−)
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Figure 5.2: The parton-level asymmetry AT , Eq. (5.7), for the single decay chain

given in Eq. (5.4) as a function of the squark momentum, |~pq̃|, in the laboratory

frame. Only the q̃ asymmetry is shown and the dilution due to q̃∗ is not included.

The scenario is given in Table 5.1 with the phase φM1
= 3π/2.

In Sec. 4.3.5 we also explained how the t̃1 rest frame is equivalent to the χ̃0
2 rest

frame and this argument follows for the q̃ rest frame as well.

Just as in the stop study presented in Chapter 4 we see a considerable reduction

in the maximum asymmetry observable when we introduce the PDFs which causes

an undetermined boost to the system. To illustrate the dilution, Fig. 5.2 shows how

the parton-level asymmetry AT , Eq. (5.7), is diluted in the laboratory frame when

we produce the q̃ with varying initial momenta. The plot was produced with an

analytical calculation for the single decay chain given in Eq. (5.4). The scenario

displayed in Tab. 5.1 was used but with the phase set to φM1
= 3π/2.

We see that the asymmetry is maximal, AT ∼ 14%, when the q̃ is at rest but

drops to, AT ∼ 2.5%, when |~pq̃| ∼ 1 TeV. We must state that the magnitude of

the dilution depends on the chosen scenario and in particular on the masses of the

particles involved in the process. If it were possible to reconstruct the momentum

of the q̃, we could however perform a Lorentz transformation of all the momenta

and bypass the dilution factor, potentially recovering the full asymmetry.
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Figure 5.3: The process studied for mo-

mentum reconstruction.

5.3.2 Reconstruction procedure

In the mSUGRA scenario that we have chosen to study in this paper (see Sec-

tion 5.4.1) the full reconstruction of the event is made possible by considering the

decay chains of both the particles produced in the hard collision. We include all the

particles coming from both the q̃L and the g̃ because there are not enough kinematic

constraints to perform reconstruction if only the q̃ chain is considered. Therefore

we exclusively consider the production of q̃L and g̃ and their subsequent decays, see

Fig. 5.3. The q̃L decay chain will be the same as considered in Eq. (5.4) and the g̃

will decay as follows:

g̃ → t̃+ t→ χ̃+
1 + b+ t→ χ̃0

1ℓ
+νℓ + b+ t. (5.13)

In many scenarios the production of q̃L along with g̃ is the dominant source of the

first and second generation squarks at the LHC and in the considered scenarios the

branching ratios for these decay chains are favourable (cf. Sec 5.4).

Assuming that all the masses in the decay chains are known, Sec. 5.3.5, the

kinematics can be fully reconstructed using the set of invariant conditions and the

measured missing transverse momentum. For our procedure we follow the methods

for solving the kinematic equations very closely to those presented in [166, 167].

The novelty here is the inclusion of three-body decays of sparticles and allowing for

additional missing momentum due to neutrinos in the final state. The difference
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lies also in using the mass constraints. For our purpose we assume that masses of

sparticles are known and aim at the reconstruction of the momenta, whereas the

previous studies used the above conditions to reconstruct masses.

Rather than fully reconstructing the kinematics of both decay chains, an alter-

native idea may be to estimate the momentum of the χ̃0
2 and then boost into this

approximate frame. A formula that estimates the momentum was presented in [168]

and is shown below,

~p approx

χ̃0
2

≡
(

1 +
mχ̃0

1

Mℓℓ

)

~pℓℓ . (5.14)

This approach does not work in our study however as the approximation only be-

comes valid when ~pχ̃0
1
→ 0 in the rest frame of the χ̃0

2. At this kinematical endpoint

the two leptons are back to back which causes the plane spanned by ~pl+ and ~pl− to

become badly defined. The triple product is therefore small and inaccurate leading

to an asymmetry that is close to zero. Therefore the approach is not valid in our

case.

In our process the following invariant equations can be formed.

• q̃ decay chain,

m2
χ̃0

1
= (Pχ̃0

1a
)2 , (5.15)

m2
χ̃0

2
= (Pχ̃0

1a
+ Pℓ+a

+ Pℓ−a
)2 , (5.16)

m2
q̃ = (Pχ̃0

2
+ Pq)

2 . (5.17)

• g̃ decay chain,

m2
χ̃+

1

= (Pχ̃0
1b

+ Pνℓ
+ Pℓ+

b
)2 , (5.18)

m2
t̃ = (Pχ̃+

1
+ Pb)

2 , (5.19)

m2
g̃ = (Pt̃ + Pt)

2 , (5.20)

where P denote 4-momenta of respective particles, and where necessary we

label particles coming from squark and gluino decays with subscripts a and b,

respectively.
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• We also have the missing transverse momentum constraint,

−→p T
miss = −→p T

χ̃0
1a

+ −→p T
χ̃0

1b
+ −→p T

νℓ
. (5.21)

• We combine the momenta of χ̃0
1b and νℓ coming from the gluino together as it

is impossible to resolve these two particles,

Pg̃ME = Pχ̃0
1b

+ Pνℓ
. (5.22)

• An additional condition on the solutions is that the invariant P 2
g̃ME has to be

greater than the mass of the LSP, m2
χ̃0

1

,

P 2
g̃ME > m2

χ̃0
1
. (5.23)

We apply this condition to each solution and discard as unphysical any that

does not meet it.

After expressing the momenta of intermediate particles in terms of the final-state

particles,

Pχ̃0
2

= Pχ̃0
1a

+ Pl+a
+ Pl−a

, (5.24)

Pχ̃+
1

= Pg̃ME + Pℓ+
b
, (5.25)

Pt̃ = Pb + Pχ̃0
1b

+ Pℓ+
b

+ Pνℓ
, (5.26)

we now have a total of eight equations, Eq. (5.15) - (5.21), and eight unknowns,
(

Eχ̃0
1a
, pχ̃0

1a
(x), pχ̃0

1a
(y), pχ̃0

1a
(z)

)

, (5.27)

(

Eg̃ME, pg̃ME(x), pg̃ME(y), pg̃ME(z)

)

. (5.28)

In principle the system can be solved to find Pχ̃0
1
and Pg̃ME. Equations Eq. (5.15)

and Eq. (5.18) are quadratic in Pχ̃0
1

and Pg̃ME respectively, so we consider these

last. Using on-shell conditions, quadratic terms in the remaining equations can be

removed giving 6 linear equations, therefore we can simply use a matrix to give us

solutions in terms of the energies Eχ̃0
1

and Eg̃ME. We first expand −→p χ̃0
1

and −→p g̃ME

in terms of other momenta contained in the respective decay chains,

−→p χ̃0
1a

= A−→p ℓ+a
+B−→p ℓ−a

+ C−→p q , (5.29)

−→p g̃ME = D−→p ℓ+
b

+ E−→p b + F−→p t . (5.30)
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We can now form the system of 6 linear equations for unknowns A-F with Eχ̃0
1a

and

Eg̃ME as free parameters,

M
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The matrix M can then be inverted to give solutions for each of the momentum

components of −→p χ̃0
1

and −→p g̃ME in terms of Eχ̃0
1a

and Eg̃ME. These solutions are

substituted into the two quadratic equations, Eq. (5.15) and Eq. (5.18), to produce

two equations of the form,

a11E
2
χ̃0

1a
+ a12Eχ̃0

1a
Eg̃ME + a22E

2
g̃ME + a1Eχ̃0

1a
+ a2Eg̃ME + a ≡ FA = 0 ,

(5.33)

b11E
2
χ̃0

1a
+ b12Eχ̃0

1a
Eg̃ME + b22E

2
g̃ME + b1Eχ̃0

1a
+ b2Eg̃ME + b ≡ FB = 0 ,

(5.34)

where the coefficients aij, ai, a and bij , bi, b are functions only of masses and mea-

sured momenta. We use,

FA − a11

b11
× FB = 0 , (5.35)
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to produce the linear equation for Eχ̃0
1a

,

Eχ̃0
1a

=
a11b− a b11 − a2b11Eg̃ME + a11b2Eg̃ME − a22b11E

2
g̃ME + a11b22E

2
g̃ME

−a11b1 + a1b11 + a12b11Eg̃ME − a11b12Eg̃ME
.

(5.36)

This result can then be substituted into Eq. (5.33) to obtain a quartic equation of

the following form,

Q4E
4
g̃ME +Q3E

3
g̃ME +Q2E

2
g̃ME +Q1Eg̃ME +Q0 = 0 , (5.37)

where the various Q’s are functions of the a’s and b’s in Eqs. (5.33) and (5.34).

5.3.3 Discussion of graphical solutions

Analysing the roots of the quartic equations, Eq. (5.37), we select the solutions

that are real and discard the solutions that contain imaginary parts. The selected

roots are substituted into Eq. (5.36) to find the corresponding solutions for Eχ̃0
1a

.

Using the values of Eg̃ME and Eχ̃0
1a

together with the inverted matrix we can now

calculate A,B,C,D,E, F , see Eqs. (5.29),(5.30) and hence the components of −→p g̃ME

and −→p χ̃0
1a

.

In general, taking into account multiple roots, Eq. (5.37) has 4 solutions. Thus

we would have 4 real, 2 real and 1 complex pair or 2 complex pairs of roots. Only

the real roots can yield physical solutions, therefore for each event we normally

expect real solutions. As Eq. (5.37) is derived from Eqs. (5.33) and (5.34) they

share the same set of solutions. Both Equations (5.33) and (5.34) are polynomials

of degree 2 in Eχ̃0
1a

and Eg̃ME so they correspond to degree 2 curves in the Eχ̃0
1a

and Eg̃ME plane (ellipses, hyperbolas or parabolas). The intersection points solve

simultaneously both equations and at the same time the quartic Equation (5.37). A

graphical solution to this set of equations is shown in Fig. 5.4 for one sample event.

In this example we have two real solutions, of which only one corresponds to the

actual momenta in the event.

In the realistic physical case one has to include uncertainties on measured mo-

menta and masses. This will of course affect above equations and solutions. Smear-

ing of momenta will typically result in shifting of the curves shown in Fig. 5.4.
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Figure 5.4: Ellipses in the Eχ̃0
1a

and Eg̃ME plane corresponding to Equations (5.33)

(solid line) and (5.34) (dashed line) for one sample event. Out of the two real

solutions the lower right one gives the correct momenta of the original event.

Therefore it is possible that one can get two additional solutions or no real solutions

at all. The consequences of experimental effects on our analysis will be discussed in

Sec. 5.5.2.

5.3.4 Practical approach

In general more than one solution to the above system will remain depending upon

the resolvent. In some cases Eq. (5.23) reduces the number of solutions further. For

the application of this study we therefore calculate the triple product, Eq. (5.6),

for each individual solution. If all solutions produce the same sign triple product

we keep the event and use it in our asymmetry. If any of the solutions disagrees

on the sign of the triple product we will discard the whole event and it will not

contribute. This method has the disadvantage that we lose events and therefore

statistical significance.

An additional issue when trying to complete the momentum reconstruction pro-

cedure are combinatorial problems when attempting to assign the measured mo-

menta to the correct particle in the given event. If we take the leptons as an
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example, we know that opposite sign, same flavour leptons must come from the χ̃0
2.

However, it is possible that a same flavour lepton could be produced from the χ̃+
1

in the opposite decay chain and be confused with those coming from the χ̃0
2. In

order to assign the leptons correctly to the decay chains one can use the conditions

for invariant masses. In the squark decay chain a useful observable is the invariant

mass of two leptons and in the gluino decay chain one can use the invariant mass of

the b-jet from the stop decay and the lepton from chargino decay. The end points

of these distributions are given by

Mℓ+a ℓ−a
< mχ̃0

2
−mχ̃0

1
, (5.38)

Mbℓ+
b

<

√

√

√

√

(m2
t̃1
−m2

χ̃+
1

−m2
b)(m

2
χ̃0

2

−m2
χ̃0

1

)

mχ̃+
1
mχ̃0

2

. (5.39)

It turns out that only a small fraction of the events, around 5% in our scenario, sat-

isfies both conditions simultaneously for the two possible assignments of the leptons

in question. Moreover, if we run the momentum reconstruction algorithm, we find

that physically acceptable solutions are only found in roughly 10% of events where

a wrong assignment has occurred. These conditions act as a strong discriminant,

therefore we do not expect lepton combinatorics to be a relevant issue for this study.

Another possible approach to this problem would be the subtraction of the

opposite-sign opposite-flavour (OSOF) lepton pairs. In that case the quantities

NT+
and NT− in Eq. (5.7) would be defined as

NT+
= [Ne+e− +Nµ+µ− −Ne+µ− −Ne−µ+ ]T+

, (5.40)

NT− = [Ne+e− +Nµ+µ− −Ne+µ− −Ne−µ+ ]T− . (5.41)

In Eqs. (5.40) and (5.41) one adds the number of events with a positive (negative)

triple product using e+e− pairs (and the jet) to the number of events with a posi-

tive (negative) triple product using µ+µ− pairs and subtract the number of events

with positive triple product using e+µ− and e−µ+ pairs. For the combinatorial

background one gets equal rates for same flavour and opposite flavour lepton pairs

since the leptons are uncorrelated. Hence, this “flavour subtraction” procedure re-

moves (up to statistical fluctuations) all combinatorial background resulting from

the lepton pairing problem and also all background coming from χ̃0
2 → χ̃0

1τ
+τ−.
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5.3.5 Mass reconstruction at the LHC

Since our procedure requires the sparticle masses to be known, we wish to com-

ment on the possibility of mass determination in our scenario. One of the standard

approaches at the LHC is to study kinematic edges and endpoints of the invariant

mass distributions, see e.g. [157, 161, 169, 170]. In our case the masses of g̃, q̃L, t̃1,

χ̃0
1,2 and χ̃±

1 are required. The possible invariant mass observables would include:

• quark and leptons in the decay chain of q̃L followed by the squark decay to

chargino or neutralino χ̃0
2,

• lepton pair in the neutralino χ̃0
2 decay, cf. Eq. (5.38),

• top and bottom quarks in the gluino decay chain Eq. (5.13),

• bottom quark and lepton in the stop decay chain, cf. Eq. (5.39),

• quark pairs in the decay of gluino to the 1st and 2nd generation squarks [171,

172].

Fitting the above invariant masses to experimentally measured edges and endpoints

should provide enough number of constraints to obtain the required information.

However we must make it clear that all of the above studies examined two, 2-

body decays for the χ̃0
2 and not the single three body decay that takes place in our

scenario. Mass measurements for the three body decay were studied in [160] and

similar mass end-points were found. A mass fit for a particular scenario was not

attempted though so the expected accuracy cannot be given.

Whilst measuring the masses of the individual particles is obviously important,

for the majority of our equations in Eq. (5.31), we actually require the difference

between variousm2’s in the decay chains. The mass differences are measured directly

by the respective end-points and it is hoped that this method will measure these mass

differences with high accuracy O(1%) for leptonic final-states [157]. Final-states

involving jets will obviously be less well constrained but it is hoped measurements

of O(5 GeV) may be possible. Errors at this level were tested on the reconstruction

procedure but very little degradation was noted. For stops and charginos, some
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model assumptions may be required on the masses before we can begin to use the

kinematic reconstruction.

The on-shell mass condition for the χ̃0
1 requires the absolute mass scale and this

should be measured at the LHC to a precision of better than 10% [157] for low

mass scenarios similar to the phenomenology presented in this chapter. As an extra

check on the numerical stability of the reconstruction procedure, up to 20 GeV

absolute mass errors were tested on the absolute mass scale of the decay chain as a

conservative estimate. This had a negligible effect on the reconstruction efficiency

and the CP-asymmetry and is therefore not considered to be a problem.

In addition new methods have been proposed for measuring the sparticle masses

from the kinematic invariants directly [158, 159, 166, 167, 173, 174]. These methods

also employ the mass invariants on an event-by-event basis but use this information

to reconstruct the masses of the particles in the decay chain. Therefore, these

methods are directly measuring the inputs we require for Eq. (5.31). We then use

the output from these methods to reconstruct the χ̃0
1 on an event-by-event basis.

The impact of the mass uncertainties will be discussed in Section 5.5.2. Com-

prehensive reviews of all the major mass reconstruction methods proposed for the

LHC are given in [162, 163].

5.4 Numerical results

5.4.1 Chosen scenario: spectrum and decay modes

In order to study the experimental prospects of measuring CP-violating effects at

the LHC we use an MSSM scenario derived from mSUGRA parameters defined at

the GUT scale, as shown in Tab. 5.1. This scenario has been already used to analyse

the properties of the neutralino sector in [113]. The values of the parameters at the

electroweak scale have been derived using the RGE code SPheno [148]. Masses of

the coloured particles are of order 500 GeV, apart from the light stop t̃1, which has

a mass of 171.0 GeV. The lightest supersymmetric particle (LSP) is the lightest

neutralino with a mass of 78.1 GeV. The second neutralino and the light chargino

have masses around 150 GeV, whereas the sleptons are around 200 GeV. Therefore
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Parameter Value Particle Mass [GeV] Particle Mass [GeV]

m0 150 GeV g̃ 496.5 χ̃0
1 78.1

m1/2 200 GeV d̃L 484.1 χ̃0
2 148.4

A0 -650 GeV d̃R 466.4 χ̃±
1 148.2

tanβ 10 ũL 477.9 χ̃±
2 436.0

sign µ + ũR 465.9 ẽL 207.5

|M1| 80.5 GeV b̃1 397.2 ẽR 173.1

M2 153.3 GeV b̃2 462.6 ν̃e 192.0

M3 484.6 GeV t̃1 171.0 τ̃1 149.4

µ 419.0 GeV t̃2 498.0 τ̃2 212.5

ν̃τ 187.2

Table 5.1: mSUGRA input parameters at the GUT scale, MSSM parameters

and particle masses in GeV from SPheno 2.2.3 [148] for φM1
= 0 and with

mt = 171 GeV.

we note that the two-body decay channels of χ̃0
2 and χ̃±

1 are closed and this gives

a good opportunity to study CP-violation effects in their three-body decay modes.

Details of the mass spectrum can be found in Tab. 5.1. The values of the gaugino

mass parameters reproduce the given spectrum in the case when all the CP phases

are set to 0. In order to generate CP-violating effects in the following we will

attribute a non-zero phase φM1
to the bino mass parameter,

M1 = |M1|eiφM1 , 0 ≤ φM1
< 2π , (5.42)

while keeping the absolute value |M1| fixed as given in Tab. 5.1.

Although we chose a specific scenario our method is applicable in a wider range

of parameter points. For the decay chain that we concentrate on, we require the

three-body decay of the χ̃0
2 which places the following constraints on the SUSY
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masses,

mχ̃0
2
< mℓ̃ , (5.43)

mχ̃0
2
−mχ̃0

1
< mZ . (5.44)

Equation (5.43) ensures that the decay, χ̃0
2 → ℓ̃ℓ cannot occur whereas Eq. (5.44)

forbids the decay χ̃0
2 → Zχ̃0

1.

To complete momentum reconstruction from the gluino side, other decay modes

can contribute with regard to the scenario presented here but their impact on the

final result would be scenario dependent. For example if the decay t̃→ tχ̃0
2 became

kinematically open the momentum reconstruction would actually become easier as

there would be no neutrino in the final state and the system would become over-

constrained. However, there would now be one additional top and one additional

lepton in the final state that may cause new combinatorial difficulties.

As already mentioned, the highest production rate is typically obtained for

coloured final-states containing squarks and gluinos at the LHC. In our scenario,

where their masses are not very heavy, the total cross section for production of

strongly interacting supersymmetric particles reaches 140 pb, see Tab. 5.2. For our

purpose we will be interested in the inclusive production of left squarks and the

associated production of left squark and gluino1. As was mentioned in Sec. 3.3,

anti-squarks give a CP asymmetry with exactly the opposite sign to squarks. We

note however that the inclusive cross section for left squark production is almost a

factor of 4 larger than the cross section for left anti-squark production. This is a

direct consequence of the fact that we have two protons in the initial state for which

the abundance of quarks is significantly higher than of anti-quarks. Since we cannot

distinguish experimentally squarks and anti-squarks of the first two generations this

fraction of anti-squarks will cause some dilution in the asymmetry. A similar situ-

ation occurs for associated squark-gluino production for which the ratio of squarks

1Triple product asymmetry in right squarks decay chain has the opposite sign as compared

to the left squarks (and the same sign as that of left anti-squarks), however in our case where

the coupling of the right squark to the second lightest neutralino is suppressed due to small bino

component of χ̃0

2
, this contribution remains negligible.
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Produced Particles Cross Section (pb)

At least one coloured SUSY particle. 148

At least one g̃. 58.8

q̃Lq̃L + q̃Lq̃
∗
L + q̃Lq̃R + q̃Lq̃

∗
R + q̃Lg̃ 30.0

q̃∗Lq̃L + q̃∗Lq̃
∗
L + q̃∗Lq̃R + q̃∗Lq̃

∗
R + q̃∗Lg̃ 8.3

q̃Lg̃ 18.2

q̃∗Lg̃ 3.1

t̃1t̃
∗
1 66.3

Table 5.2: Leading order cross sections at
√
s = 14TeV for direct production of

various particles from Herwig++ 2.3.2 [151,152] using MRST 2004LO PDF set [156].

q̃ stands for squarks of the first and second generation.

to anti-squarks is 18.2 pb to 3.1 pb, see Tab. 5.2. Together with left squarks we

also have the production of right squarks at a comparable rate. However, since the

latter decay almost exclusively to the lightest neutralino in our scenario, as shown

in Tab. 5.3, they do not give rise to the CP-odd asymmetry.

Following the production process we include subsequent decays of squarks and

gluinos. The dominant decay mode of the gluino is to the light stop and the top with

a branching ratio of BR = 53.8%. The light stop then decays almost exclusively

to χ̃±
1 b. Left squarks decay mainly to the light chargino and the second lightest

neutralino with branching fractions of 65% and 33% respectively. Finally we consider

the decays of chargino χ̃±
1 and neutralino χ̃0

2. Leptonic decays constitute in total

BR = 61% for the chargino and BR = 68% for the neutralino decay modes. For

decays into light leptons we have BR = 24.3% and BR = 9% for chargino and

neutralino, respectively. The most interesting are the neutralino decays to electrons

and muons that are used to construct the CP-sensitive triple product, Eq. (5.6). The

summary of the relevant branching ratios can be found in Tab. 5.3. It may be noted

that in the scenario presented, the branching ratio χ̃0
2 → χ̃0

1τ
+τ− is high (59.3%).
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Decay BR Decay BR Decay BR

g̃ → t̃1t̄+ c.c. 53.8% q̃L → χ̃±
1 q 65% t̃1 → χ̃+

1 b 98.1%

g̃ → b̃1b̄+ c.c. 26.6% q̃L → χ̃0
2q 33% t̃1 → χ̃0

2c 1.6%

g̃ → q̃Rq̄ + c.c. 11.8% q̃L → χ̃0
1q 1.5% χ̃0

2 → χ̃0
1τ

−τ+ 59.3%

g̃ → b̃2b̄+ c.c. 3.8% χ̃+
1 → χ̃0

1νττ
+ 37.2% χ̃0

2 → χ̃0
1νν̄ 23.6%

g̃ → q̃Lq̄ + c.c. 3.3% χ̃+
1 → χ̃0

1quq̄d 38.5% χ̃0
2 → χ̃0

1qq̄ 8.1%

q̃R → χ̃0
1q 98% χ̃+

1 → χ̃0
1νµµ

+ 12.2% χ̃0
2 → χ̃0

1e
+e− 4.5%

q̃R → χ̃0
2q 1% χ̃+

1 → χ̃0
1νee

+ 12.1% χ̃0
2 → χ̃0

1µ
+µ− 4.5%

Table 5.3: Branching ratios for the scenario defined in Tab. 5.1 from SPheno

2.2.3 [148] for φM1
= 0.

This is due to the masses of the χ̃0
2 and τ̃ being very close and hence the kinematic

factors are favourable. The particular branching ratio is simply a coincidence in the

scenario chosen however and is not a required feature for our study.

When we vary the phase of the M1 parameter, the masses and couplings in the

neutralino sector are affected. First we note that the changes in the neutralino

masses are negligible and smaller than the possible experimental accuracy. It turns

out however, that the phase φM1
has large impact on neutralino couplings and

therefore the pattern of its decay modes. The most significant change is for the light

chargino decays to the LSP and a fermion pair. With increasing phase the branching

ratio for χ̃+
1 → χ̃0

1νττ
+ rises and eventually reaches 70% for φM1

= π. At the same

time the branching ratios for decays to light leptons remain roughly at the level of

10%. As we will explain later, a chargino decay to tau, followed by a leptonic tau

decay can be used for momentum reconstruction in the same way as a chargino decay

to an electron and a muon. On the other hand, the decay χ̃0
2 → χ̃0

1τ
+τ− followed by

a leptonic tau decay will be a background, since it gives incorrectly reconstructed

momenta. Finally, we note that in the case of neutralino χ̃0
2 decays to light leptons,

the respective branching ratios increase up to 5.5% for φM1
= π/2.
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T = −→p q · (−→p ℓ+ ×−→p ℓ−)
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Figure 5.5: The parton-level asymmetry AT , Eq. (5.7), for the single decay chain

given in Eq. (5.4) in the rest frame of q̃L as a function of φM1
. The scenario is given

in Tab 5.1.

5.4.2 CP asymmetry at the parton level

We start by discussing the dependence of the asymmetry on φM1
, Eq. (5.7), at the

partonic level studying only the decay chain presented in Eq. (5.4). In order to see

a maximal effect, we place the q̃L at rest and calculate the triple product and the

asymmetry in its distribution, Sec. 5.2.2.

We see from Fig. 5.5 that the maximal asymmetry in this scenario is roughly

14% and this occurs when the phase φM1
is just above π/2 and just below 3π/2. The

asymmetry is produced by a complex interplay between different couplings in the

χ̃0
2 decay, cf. Eqs. (B.3.33)-(B.3.35), and can vary significantly between scenarios.

These couplings can all have different behaviour with respect to φM1
and in other

scenarios the maximum asymmetry can be seen far from π/2.

It should be noted from the previous plot that the asymmetry is obviously a

CP-odd quantity that in addition to a measurement of the phase, also determines

whether it lies above or below π, as seen in Fig. 5.5. In comparison, using CP-even

quantities, for example the mass, it is not possible to determine if the phase is above

or below π. It must also be noted that these quantities have a weak dependence upon

the phase and will be challenging to study. Moreover CP-even quantities alone do
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not give unambiguous proof of CP violation in the model, that can only be provided

by CP-odd observables, see Sec. 3.2.

5.4.3 Influence of parton distribution functions on CP asym-

metries

Experimentally the situation becomes significantly more complicated since in gen-

eral, particles are not produced at rest but can be heavily boosted in the laboratory

frame. Our observables can be significantly reduced in size by this effect as triple

product correlations induced by spin effects are largest in the rest frame of the de-

caying particle. Essentially, a boosted frame can make the momentum vector of the

quark appear to come from the opposite side of the plane formed by ℓ+ and ℓ−. As

explained in Sec. 5.2.2 and before in Sec. 4.3.5, this causes a severe dilution in the

asymmetry that is measured at the LHC.

There are two other dilution factors that have to be taken into account and give

a further reduction in the observed asymmetry. The first one we consider is the

contamination from anti-squarks q̃∗L that will be produced at the LHC along with

squarks q̃L. There is no way of identifying the charge of the produced quark in

contrast to the top discussed in chapter 4 and chapter 6. Consequently we need to

include the effect of the q̃∗L in our analysis. Anti-squarks produce an asymmetry of

the opposite sign to q̃L so if for example we had equal numbers of each of them,

no overall asymmetry could be seen. However, the production cross section for q̃∗L

is substantially lower than that of q̃L due to the valence quarks in the proton, see

Tab. 5.2 and at the LHC we would expect only roughly 20% of the sample to be q̃∗L.

The other background contribution is that of neutralinos decaying to a tau pair,

χ̃0
2 → χ̃0

1τ
+τ− followed by leptonic tau decays to the pair of opposite-sign same-

flavour leptons. Since the branching ratio for the above decay is large, even after

inclusion of leptonic tau decays there is a significant number of events faking our

signal, i.e.

BR(χ̃0
2 → χ̃0

1τ
+τ− → χ̃0

1ℓ
+ℓ−νℓν̄ℓντ ν̄τ ) ≈ 2 × 0.6 × 0.175 × 0.175 = 3.7%. (5.45)
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compared with

BR(χ̃0
2 → χ̃0

1ℓ
+
e,µℓ

−
e,µ) ≈ 2 × 0.045 = 9%. (5.46)

As the asymmetry calculated for such leptons is diluted, this background introduces

a further dilution factor. However, this background can be easily removed using the

flavour subtraction technique described above, Eqs. (5.40) and (5.41). In addition

we will see later that much of this background is removed after the application of

simple selection cuts on the lepton energy and the invariant mass.

We use the MRST 2004LO [156] PDF set in our analysis of the asymmetry and

plot the integrated asymmetry AT as a function of φM1
in Fig. 5.6. We see that the

inclusion of the PDFs and the q̃∗L sample reduce the asymmetry by about a factor of 8

in this scenario as compared to the result of Sec. 5.4.2. The maximum asymmetry

is now |AT | = 1.7%. It must be noted that the dilution factor does depend on the

scenario studied and changes in particular with the mass of the sparticle that is

initially produced.

For the calculation of the asymmetry we included the production channels shown

in rows 3 and 4 of Table 5.2 but we only take decays of individual q̃L and q̃∗L following

the decay chain in Eq. (5.4). At this point correct identification was assumed for

the final-state particles and no hadronisation or detector effects were included but

these assumptions will be relaxed in Sec. 5.5. The only backgrounds in the study

are those discussed above.

Using the total production cross sections2 for q̃L and q̃∗L, and respective branching

ratios from Table 5.3 we can now estimate the integrated luminosity required to

observe the asymmetry at the LHC with a certain significance.

We use the definition of statistical given in Sec. 3.6 and the significance of any

particular asymmetry is given in Eq. (3.45). The horizontal lines in Fig. 5.6 show

an estimate of the amount of luminosity required for a 3σ observation of a non-zero

2Note that the total rate of squark production is actually larger than 30.0 pb quoted in Table 5.2,

as some of the subprocesses give a pair of squarks e.g.(q̃Lq̃L) and both can contribute to our analysis.

The total number of squarks in the sample at the given luminosity L and
√

s = 14 TeV is therefore

33.2 × L. In case of anti-squarks the number is 8.5 × L.
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Figure 5.6: The parton-level asymmetry AT , Eq. (5.7), in the laboratory frame

with PDFs included in the analysis using the scenario shown in Tab. 5.1. The

coloured lines show the size of the asymmetry needed for a 3σ observation at the

given luminosity, L=(20 fb−1, 50 fb−1, 100 fb−1), assuming squarks were produced

via the channels shown in rows 3 and 4 of Tab. 5.2. All produced q̃ and q̃∗ that

follow the decay chain given in Eq. (5.4) are taken into account.

asymmetry. In other words, an asymmetry can be seen at the 3σ level where the

asymmetry curve in Fig. 5.6 lies outside the luminosity band.

5.4.4 Impact of momentum reconstruction on the observ-

able CP asymmetry

In order to increase the statistical significance of our CP asymmetry we investigate

the possibility of reconstructing the momenta of the invisible particles in our process.

In principle a perfect reconstruction would return the magnitude of the asymmetry

to that where the q̃L is at rest but in reality there are additional complications with

this procedure, see Sec. 5.3. The reconstruction is performed at the partonic level

with PDF’s included in the production process.

Again our sample of events will contain q̃∗L which have an asymmetry of the oppo-

site sign to that of q̃L as has already been discussed in Sec. 5.4.3. As we are looking
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Figure 5.7: The parton-level asymmetry AT , Eq. (5.7), in the reconstructed q̃L rest

frame. The coloured lines show the size of the asymmetry needed for a 3σ observation

at the given luminosity, L=(20 fb−1, 50 fb−1, 100 fb−1) for the production channels

q̃Lg̃, q̃
∗
Lg̃ Tab. 5.2. The decay chains included are shown in Eq. (5.4) and Eq (5.13).

As explained in the text correct jet and lepton assignment is assumed.

exclusively at q̃Lg̃ and q̃∗Lg̃ production however when applying the momentum recon-

struction, we actually have a smaller number of q̃∗L that dilute the asymmetry (15%,

see Table 5.2). After including this dilution factor we see our maximum asymmetry

reduced from AT ∼ 14% to AT ∼ 11%, see Figs. 5.5 and 5.7, respectively.

To calculate the luminosity we require to see a statistically significant effect at the

LHC we include the production cross sections for channels q̃Lg̃, q̃
∗
Lg̃ (Tab. 5.2) and

the branching ratios from both the q̃L and g̃ decay chains Eq. (5.4) and Eq. (5.13).

No hadronisation or detector effects were included in this section and correct identi-

fication was assumed for the quarks. For the leptons the correct assignment is made

as is explained in Sec. 5.3.4. For the jets, a detailed experimental study would be

required to look at this question as we need to include hard radiation, reconstruc-

tion and b-tagging efficiencies. However, a cursory examination suggests that the

individual jets may be resolvable. For example, the jet coming from the q̃L decay is

the hardest one for a high proportion of events. We would also require three other
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jets to have the invariant mass mt. Finally we would then require at least one b-jet

to be tagged. We would like to state here that the only backgrounds included in the

study are those of q̃∗Lg̃ production and the decay chain Eq. (5.45).

After inclusion of all branching ratios the production rate for our process drops

down to 200 fb (after hadronic top decay), which results in approximately 20 000

events at the integrated luminosity L = 100 fb−1. One extra point to note is that

we are able to use events where the χ̃±
1 in the opposite decay chain produces a

τ±. Kinematically these events are similar to our normal signal events but we have

one extra neutrino ντ that will be invisible and simply contribute to our missing

transverse momenta. An additional factor that reduces the number of reconstructed

and accepted events are the multiple solutions, as discussed in Sec. 5.3. We only

use events when all solutions produce the same sign triple product and this allows

us to use approximately ∼ 60% of the events.

The horizontal lines in Fig. 5.7 again show an estimate of the amount of lumi-

nosity required for a 3σ observation of a non-zero asymmetry. It can be seen that

the luminosity lines are not flat but actually give a narrower band as φM1
→ π. This

effect is caused by the branching ratios, q̃L → qχ̃0
2, χ̃

0
2 → χ̃0

1ℓ
+ℓ− and χ̃+

1 → χ̃0
1νℓℓ

−

altering with the change in phase and producing more events. We see that after

20 fb−1 of well understood LHC data it may be possible to start seeing a statisti-

cally significant effect if large phases are present. It must be noted however that for

this method to be successful we will require mass measurements of the individual

particles involved in the decay chains. This will obviously require significant running

time and may even need the help of a precision linear collider.

5.5 Inclusion of experimental factors

To more realistically estimate if the study will be possible at the LHC some addi-

tional experimental factors need to be included in the analysis. For this purpose we

simulate events using the Monte Carlo event generator Herwig++ 2.3.2 [151, 152].

These events will be used in the following to perform momentum reconstruction and

as a cross check for our analytic calculations.
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We start with the inclusion of the selection cuts that have to be used to resolve

leptons and jets and these are listed below:

ET (j1) ≥ 100 GeV , (5.47)

ET (j) ≥ 25 GeV , (5.48)

ET (ℓe,µ) ≥ 10 GeV , (5.49)

Mℓ+ℓ− ≥ 20 GeV , (5.50)

|η| ≤ 2.5 . (5.51)

Here ET (j1) is the transverse energy of the hardest jet, ET (j) is the transverse

energy of all other jets, ET (ℓe,µ) is the transverse energy of the leptons, Mℓ+ℓ− is the

invariant mass of the opposite-sign same flavour lepton pair, and η is the pseudo-

rapidity of all the final-state particles in the decay chain. Moreover we require at

least two b-jets and that 1 b-jet plus 2 other jets (typically with the lowest pT ) should

reconstruct the top quark. Since we need the top momentum to be reconstructed

we only take into account tops that decay hadronically.

One of the consequences of the application of the above cuts, especially Eq. (5.49)

and (5.50) is the significant reduction in the background originating from τ ’s, Eq. (5.45).

This is due to the rather low energy of the leptons coming from τ decays and the

even lower invariant mass of the resulting lepton pair, which is peaking around 0.

Already at this point, approximately 95% of this background is removed.

Another factor we include is the momenta of the resolved particles being smeared

due to the intrinsic experimental precision. The accuracy for both jets and electrons

follows the same function but with different coefficients [175]:

σE

E
=

√

a2
j,e

E
+
b2j,e
E2

+ c2j,e , (5.52)

where

• for jets aj = 0.6 GeV
1
2 , bj = 1.5 GeV and cj = 0.03;

• for electrons the accuracy is better, with ae = 0.12 GeV
1

2 , be = 0.2 GeV and

ce = 0.01.
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The resolution for muons has a different functional dependence,

σpT

pT

=

{

0.00008(pT/GeV − 100) + 0.03,

0.03,

pT > 100 GeV,

pT < 100 GeV.
(5.53)

In addition we also have a finite resolution on the measurement of missing transverse

energy,
σx

MET

ET
=
σy

MET

ET
=

0.57
√

ET/GeV
, (5.54)

which are the errors on the x and y components of the MET vector and ET is the

scalar sum of all visible transverse energy .

The momenta smearing will only affect the observables when we perform mo-

mentum reconstruction as the LSP momenta will be reconstructed with limited

precision. The triple product will not suffer however as the measurement only relies

on the direction of the measured particles and not on the energy measurement. The

direction can be found far more accurately and this error happens to be negligible

for our observables.

Finally, we also investigate the fact that the masses of the particles in the decay

chains we are interested in will only be known with a certain precision at the LHC

(we assume 10% error), see Section 5.4.1. This error will again only affect the

observables when we perform momentum reconstruction in order to boost into the

rest frame of the χ̃0
2 and can cause the frame to be mis-measured, see Section 5.5.2

for more details.

5.5.1 Experimental factors without momentum reconstruc-

tion

Out of the experimental factors mentioned above, only the cuts affect the result for

the triple product correlation measured in the laboratory frame. These cuts reduce

the number of detectable events by ≈ 50% and consequently significantly increase

the luminosity required to make a statistically significant measurement at the LHC,

see Fig. 5.8. For example if large phases are present we may begin to see hints with

integrated luminosity L = 50 fb−1. With L = 300 fb−1 we could become sensitive
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Figure 5.8: The asymmetry AT , Eq. (5.7), in the laboratory frame for the decay

chain Eq. (5.4) after the cuts, Eqs. (5.47)-(5.51), have been applied. The coloured

lines show the size of the asymmetry needed for a 3σ observation at the given

luminosity, L=(50 fb−1, 100 fb−1, 300 fb−1), assuming squarks were produced via

the channels shown in rows 3 and 4 of Tab. 5.2. Momentum smearing for both

the leptons and quarks was studied and found to have a negligible effect. All other

relevant experimental details are mentioned in the text.

to phases in the ranges 0.15 π . φM1
. 0.9 π and 1.1 π . φM1

. 1.85 π where the

asymmetry |AT | > 0.7%.

For the calculation of the asymmetry we included the production channels shown

in rows 3 and 4 of Table 5.2 taking into account the decays of individual q̃L and q̃∗L as

listed in Eq (5.4). No explicit hadronisation was included but momentum smearing

is expected to simulate some of this effect. We also need to include additional hard

QCD radiation and other detector effects (for example fakes) in a full experimental

study. Correct identification was assumed for the quark and two leptons. The

backgrounds in the study are those from q̃∗L and Eq. (5.45).

It must be noted however, that significant pollution due to backgrounds will

be expected for this signal from both the Standard Model and the MSSM. Further

experimental cuts will certainly be required to improve the signal/background ratio
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and without a more detailed study it is hard to predict what effect this will have on

the ability to complete this measurement at the LHC, especially as the asymmetries

are rather small.

5.5.2 Experimental factors with momentum reconstruction

When we perform the momentum reconstruction we need to include the experimental

precision on the momentum of the visible particles. This resolution is ∼ 3% for

leptons and follows Eq. (5.52) for jets. The corresponding effect on momentum

reconstruction is a reduction in the number of events that have the same sign triple

product. As stated in Sec. 5.4.4 we discard any events where we have solutions with

opposite sign triple products. Discarding these events reduces the percentage we

can use from ∼ 60% without momentum smearing down to ∼ 30% when we include

it.

The other difficulty momentum smearing creates is that all the reconstructed

solutions can now have the wrong sign triple product as we no longer correctly

reproduce the rest frame of the neutralino χ̃0
2. Inevitably this effect produces a

decrease in the observed asymmetry from ∼ 11% to ∼ 8%.

We again include the cuts on all visible particles in our decay chain given by

Eqs. (5.47)-(5.51). These cuts significantly reduce the number of visible events and

remove ∼ 80% of the events compared with our initial näıve estimates. When we

combine the cuts with the momentum reconstruction efficiency we are left with

∼ 6% of the initial events and this clearly increases the luminosity needed to make

an observation statistically significant. After inclusion of these effects the number of

events drops from 20000 down to 1200 at the integrated luminosity of L = 100 fb−1.

This results in a 1σ absolute uncertainty of order ∼ 3% on the asymmetry, according

to Eq. (3.43).

Another possible experimental aspect we investigate is a 20 GeV uncertainty

on the absolute mass scale of the supersymmetric particles used in the momentum

reconstruction. We found that this has a negligible effect on the momentum recon-

struction as long as the mass differences between different particles in the decay

chain are known better than O(5 GeV). The assumption that the mass differences
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Figure 5.9: The asymmetry AT , Eq. (5.7), in the reconstructed q̃L frame for q̃Lg̃,

q̃∗Lg̃ production followed by the decay chains shown in Eq. (5.4) and Eq (5.13) with

cuts Eqs. (5.47)-(5.51). The coloured lines show the size of the asymmetry needed

for a 3σ observation at the given luminosity, L=(50 fb−1, 100 fb−1, 300 fb−1). The

momenta of the final-state particles have been smeared according to Eq. (5.52)-

(5.54) to replicate the LHC detector effects. All other relevant experimental details

are mentioned in the text.

are known to a higher accuracy is reasonable as the main method of measuring

masses in SUSY decay chains at the LHC will be via kinematic end points that are

measured with high precision.

Figure 5.9 shows the asymmetry and the luminosity required at the LHC to

see a statistically significant result at the 3σ level at the LHC once all the above

factors have been taken into account. The production channels are q̃Lg̃, q̃
∗
Lg̃ and

the branching ratios are included from both the q̃L and g̃ decay chains. No explicit

hadronisation effects were included here and possible additional hard jets in the

final state require further study. Also correct identification was assumed for all the

leptons and quarks in both decay chains as explained in Sec. 5.4.4 and Sec. 5.3.4.

Again the only backgrounds included in the study are those of q̃∗Lg̃ production and

of taus that decay to visible leptons, Eq. (5.45). In chapter 6 we extend the analysis,
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albeit with stop production, to include all Standard Model and SUSY backgrounds.

We can see that using this method, with integrated luminosity L ∼ 100 fb−1 we

start to become sensitive if large phases happen to be present. After L ∼ 300 fb−1

we expect to have sensitivity to phases in the ranges 0.2 π . φM1
. 0.85 π and

1.15 π . φM1
. 1.8 π, and obviously more luminosity will improve this further.

Note that a direct comparison between the methods with and without momentum

reconstruction based on the above plots should not be performed. The backgrounds

from both SM and MSSM will be more severe when we do not perform momentum

reconstruction and clearly many new cuts will be required to isolate the signal, which

is the consequence of being totally inclusive. For the method when we perform

momentum reconstruction, we have a well defined final state that is difficult to

be faked by Standard Model processes and is also uncommon for SUSY cascade

decays. Moreover the multiple cuts on all the particles and the need for the missing

momentum to be successfully reconstructed mean that many backgrounds will be

rejected. In Sec. 6.5.4 we show the potential power of the momentum reconstruction

technique for rejecting backgrounds when applied to stop production.

However, for the study shown in Fig. 5.8, none of these extra benefits of mo-

mentum reconstruction are present. It can be expected that the backgrounds may

be substantial (especially from competing SUSY decays) and will require conven-

tional kinematic cuts to reduce. Both the cuts and backgrounds will increase the

luminosity required to observe a CP signal for this analysis in comparison to Fig. 5.9.

5.5.3 Conclusion

In this chapter we studied squark production, followed by the decay, q̃L → χ̃0
2q →

ℓ+ℓ−χ̃0
1q. We again used CP-violating asymmetries composed of triple product cor-

relations to examine the sensitivity of the LHC to CP phases within the MSSM. In

this study, CP-asymmetries were only formed from the three body decay of the χ̃0
2.

Therefore we were only sensitive to phases in the neutralino mixing matrix and in

particular we concentrated on the phase, φM1
.

Again, we found that when we calculated the full production process and in-

cluded the PDFs, the asymmetry was significantly diluted. We therefore applied
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the technique of momentum reconstruction to boost all the final-state particles of

interest into the rest frame of the produced q̃L. We found that it was almost pos-

sible to recover the rest frame asymmetry. Using the momentum reconstruction

technique we estimate that with 300 fb−1 we should see sensitivity in the range

0.2π . φM1
. 0.85π.

However, we wish to emphasise that we need to study fully hadronic events

to confirm these preliminary findings. In addition, these events should be passed

through a detector simulation to see if the momentum reconstruction of the final

state is valid. We also need to run the same analysis on both Standard Model and

MSSM backgrounds to make sure that the signal to background ratio is acceptable.



Chapter 6

Stop Production with two-body

decays

6.1 Introduction

For the final study presented in this thesis, we again consider the production of stops

but with the following decay chain [133],

t̃i → χ̃0
2 + t→ ℓ̃± + ℓ∓ +Wb→ χ̃0

1 + ℓ± + ℓ∓ +Wb . (6.1)

The difference from the decay chains previously studied is that in the scenarios

considered in this chapter the mass of at least one slepton is less than the χ̃0
2 (mχ̃0

2
>

mℓ̃). Consequently, the χ̃0
2 decays via a two body decay to an on-shell ℓ̃ which in

turn undergoes a two-body decay.

Unfortunately, the decay of the χ̃0
2 now produces no triple product correlations

because the ℓ̃ cannot carry any spin correlations since it is a scalar. Therefore, we

are only sensitive to correlations in the stop decay and the two triple products we

can form are,

TℓN
= ~pℓN

· (~pW × ~pt) , (6.2)

Tℓℓ = ~pb · (~pℓ+ × ~pℓ−) . (6.3)

In the scenarios considered in this chapter, these triple products and mainly sensitive

to phases in the stop mixing matrix. Since we have set φµ = 0 in this thesis, we

107
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exclusively consider the effect of φAt. In principle, φM1
could also contribute but we

concentrate on scenarios where the χ̃0
2 is mainly wino-like and thus the effect of φM1

is negligible.

Following on from the momentum reconstruction technique presented in Chap-

ter 5, we also reconstruct the momentum of the χ̃0
1 in this study to recover the rest

frame asymmetry. The reconstruction is actually much simpler for the two body

decay shown in Eq. (6.1) as the single decay chain alone contains enough invariants

to solve the system. Whereas the reconstruction presented in Sec. 5.3 required a

quartic equation to be solved which can result in 4 separate solutions, the solution

to the two-body decay is only a quadratic.

We begin the chapter by describing the process under consideration and the

terms that produce the CP-asymmetry. In Sec. 6.3 we explain the momentum re-

construction technique for the two-body decay chain and consider the combinatorial

difficulties that will be faced at the LHC. We discuss the analytical parton-level

results in Sec. 6.4 where both the t̃i is at rest and where the PDFs and produc-

tion process is included. Sec. 6.5 describes the hadron level results where we have

performed a Monte Carlo study and applied a jet-finder after showering and hadro-

nisation has taken place. We also include the cuts required at the LHC and some

of the most important experimental efficiencies. Both Standard Model and SUSY

backgrounds have been simulated to examine how these effect our results. Finally,

we conclude in Sec. 6.6.

6.2 Formalism

6.2.1 The process studied and the amplitude squared

At the LHC, the light stop (t̃1) particles can be produced via pair production,

pp→ t̃1t̃
∗
1 (6.4)

As mentioned in Sec.4.2.1, the dominant production process is from gluon fusion

and we again use this channel when performing the analytical calculation.
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In our study the CP-violating observables are produced in the following decay,

t̃1 → χ̃0
2 + t. (6.5)

We require the χ̃0
2 to decay via two, 2-body leptonic channels,

χ̃0
2 → ℓ̃±Rℓ

∓
N → χ̃0

1ℓ
∓
Nℓ

±
F , (6.6)

where N and F denote the near and far leptons respectively. In addition, we only

consider events where the t is fully reconstructible and hence decays hadronically,

t→Wb→ quq̄db. (6.7)

We again apply the narrow-width approximation (Sec. 4.2.2) and include the full

spin correlations for production and decay of the intermediate particles, t̃1, χ̃
0
2, ℓ̃ and

t. The squared amplitude |T |2 of the full process can then be factorised into the

processes of production gg → t̃1t̃
∗
1 and the subsequent decays t̃1 → tχ̃0

2, χ̃
0
2 → ℓ̃ℓN ,

ℓ̃ → χ̃0
1ℓF and t → Wb. The use of the narrow-width approximation is appropriate

since the widths of the respective particles are much smaller than the masses in all

cases. The squared amplitude can then be expressed in the form,

|T |2 = 4|∆(t̃1)|2|∆(χ̃0
2)|2|∆(ℓ̃)|2|∆(t)|2P (t̃1t̃

∗
1)
{

P (χ̃0
2t)D(χ̃0

2)D(ℓ̃)D(t)

+

3
∑

a=1

Σa
P (χ̃0

2)Σ
a
D(χ̃0

2)D(ℓ̃)D(t) +

3
∑

b=1

Σb
P (t)Σb

D(t)D(χ̃0
2)D(ℓ̃)

+

3
∑

a,b=1

Σab
P (χ̃0

2t)Σ
a
D(χ̃0

2)Σ
b
D(t)D(ℓ̃)

}

, (6.8)

where a, b = 1, 2, 3 refers to the polarisation states of the neutralino χ̃0
i and top

quark t. In addition,

• ∆(t̃1), ∆(χ̃0
2), ∆(ℓ̃) and ∆(t) are the pseudo-propagators of the intermediate

particles which lead to the factors Et̃1/mt̃1Γt̃1 , Eχ̃0
2
/mχ̃0

2
Γχ̃0

2
, Eℓ̃R

/mℓ̃R
Γℓ̃R

and

Et/mtΓt in the narrow-width approximation.

• P (t̃1t̃1), P (tχ̃0
2), D(χ̃0

2), D(ℓ̃) and D(t) (Appendix B) are the terms in the pro-

duction and decay that are independent of the spin of the decaying neutralino

and top, whereas,
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• Σa
P (χ̃0

i ), Σb
P (t), Σab

P (χ̃0
2t) and Σa

D(χ̃0
2), Σb

D(t) (Appendix B) are the spin-dependent

terms giving the correlations between production and decay of the χ̃0
2 and t.

We follow the formalism and conventions described in [141].

• It must be noted that the slepton ℓ̃ produces no spin correlation term in the

amplitude since it is a scalar.

Explicit expressions are given in Appendix B.

6.2.2 Structure of the T-odd asymmetry

As in chapter 4 and chapter 5, we classify all terms of the corresponding amplitude

squared, Eq.(6.8), with respect to their TN–odd or TN–even character. Only the

products that contain a TN -odd contribution will lead to CP-odd violating observ-

ables (Sec. 5),

• The spin–independent terms introduced in the previous section, P (t̃1t̃1), P (tχ̃0
2),

D(χ̃0
2), D(ℓ̃), D(t) do not cause any TN -odd terms.

• The spin-dependent terms, Σa
P (χ̃0

i ), Σb
P (t), Σab

P (χ̃0
2t), Σa

D(χ̃0
2), Σb

D(t), however,

often can be divided up into TN -even and TN -odd terms, depending on the

processes studied. In our case, a sequence of 2-body decays, however, we can

only split Σab
P (χ̃0

2t) = Σab,E
P (χ̃0

2t) + Σab,O
P (χ̃0

2t), all other spin-dependent terms

only lead to TN -even terms.

• Therefore, the TN -odd term in the amplitude is,
∑3

a,b=1 Σab,O
P (χ̃0

2t)Σ
a
D(χ̃0

2)Σ
b
D(t)D(ℓ̃).

When we contract the spin indices of the t and χ̃0
2 and evaluate the TN -odd

contribution we find that the following covariant product appears in the amplitude,

Σab,O
P (χ̃0

2t)Σ
a
D(χ̃0

2)Σ
b
D(t) ∼ iǫµνρσs

a,µ(χ̃0
2)p

ν
χ̃0

2
sb,ρ(t)pσ

t × (pℓN
sa)(p[b,W ]s

b), (6.9)

∼ iǫµνρσp
ν
χ̃0

2
pµ

ℓN
pρ

Wp
σ
t , (6.10)

where Σab,O
P , Σa

D(χ̃0
2) and Σb

D(t) are given by Eq. (B.1.9), Eq. (B.4.39) and Eq. (B.6.44)

respectively.
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Eq. (6.9 ) is multiplied by the imaginary part of the coupling, Eq. (B.1.11)

that contain terms from both the t̃, Eq. (2.4.1), and χ̃0, Eq. (2.26), mixing ma-

trices. Hence, any complex phases contained in those mixing matrices will yield

CP-violating effects that can be seen in an observable that exploits the covariant

product.

If we expand the covariant product (as in Sec. 3.3) we find the triple product,

TℓN
= ~pℓN

· (~pW × ~pt) , (6.11)

The triple product is analogous to the one presented in Eq. (4.14). However, whereas

in the three body decay of the χ̃0
2 we only needed to know the charge of the lepton

in the triple product, for the sequence of 2 two-body decays we also need to know

if the lepton originated from the first or second decay.

An alternative triple product that uses both leptons can be found though. The

covariant product can be re-expressed in the following form by exploiting momentum

conservation, pχ̃0
2

= pℓ̃ + pℓN
, pℓ̃ = pℓF

+ pχ̃0
1
, pW = pt + pb,

ǫµνρσp
µ

χ̃0
2

pν
ℓN
pρ

Wp
σ
t = ǫµνρσ(pℓF

+ pχ̃0
1
)µpν

ℓN
pρ

Wp
σ
b . (6.12)

This covariant product leads to the triple product,

Tℓℓ = ~pb · (~pℓ+ × ~pℓ−) . (6.13)

However, Eq. (6.12) shows that we have effectively two covariant products, one

which contains the momentum of the χ̃0
1. Thus, there is no kinematical frame in

which the triple product, Tℓℓ will be completely equivalent to the covariant product

in Eq. (6.12). We can understand this since the far lepton is not directly correlated

with the spin of χ̃0
2 and therefore triple products containing the momentum of the

far lepton will be lower.

Using the triple products, we can again define the asymmetry parameter using

Eq. (3.36). We then define,

AℓN
= AT (TℓN

), Aℓℓ = AT (Tℓℓ), (6.14)

where AℓN
is the asymmetry from the triple product TℓN

and Aℓℓ is the asymmetry

from the triple product Tℓℓ.
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Once again, the asymmetries formed from triple products will suffer a dilution

at the LHC due to boosted frames, see Sec. 3.5 Hence, we again use the ideas of

momentum reconstruction to find the optimal reference frame for the asymmetry

and evaluate the triple product.

For all our observables we require that we know the charge of the decaying t̃1

and can therefore distinguish the particle and anti-particle. We can combine the

process with the charge-conjugated decay to make an unambiguous observation of

CP-violation via TN -odd observables. In addition, since the charge conjugate decay

has an asymmetry of the opposite sign, if we do not know the charge of the decaying

stop, the asymmetry would simply cancel. The charge of the t̃1 can be found by

demanding that the opposite cascade produces a single lepton and thus a tri-lepton

final-state overall.

An extra subtlety in the two-body decay chain is that changing the charge of

the near lepton ℓN reverses the sign of the triple product, TℓN
, Eq. (6.11). We can

distinguish the near and far leptons using the momentum reconstruction technique,

Sec. 5.3. However if for some reason the leptons cannot be identified we can still use

the triple product Tℓℓ, Eq. (6.13). No lepton distinction is required as exchanging

the near and far leptons has an extra sign change that cancels the change produced

by the charge exchange.

6.3 Momentum reconstruction

6.3.1 Dilution effects

The triple product that is constructed from momenta in the laboratory frame suffers

from dilution factors (∼ 4) at the LHC. This is due to the lab frame being boosted

with respect to the rest frame of the χ̃0
2 or t̃1, see Eq. (3.5). It results in a con-

siderable reduction in the maximum asymmetry observable when we introduce the

PDFs which causes an undetermined boost to the system. Fig. 6.1 shows how the

asymmetry is diluted in the laboratory frame when we produce the t̃1 with varying

initial momenta. If we were able to reconstruct the momentum of the t̃1, we could

perform a Lorentz transformation of all the momenta in the triple product into the
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Figure 6.1: The asymmetry AT, Eq. (3.36), as a function of the stop momentum,

|~pt̃|, in the laboratory frame. The solid line is the asymmetry for the triple product

TℓN
, Eq. (6.11) and the dotted line is for the triple product Tℓℓ, Eq. (6.13). The

respective masses are given in Tab. 6.2, Tab. 6.3 and Tab. 6.4.

t̃1 rest frame and potentially recover the full asymmetry.

6.3.2 Reconstruction procedure

We are able to reconstruct the χ̃0
1 four momentum by reconstructing the following

two body decay chain in full,

t̃→ t+ χ̃0
2 → t+ ℓ̃± + ℓ∓N → t+ χ̃0

1 + ℓ∓N + ℓ±F . (6.15)

Assuming that all the masses in the decay chains are known, the kinematics can

be fully reconstructed using the set of invariant mass conditions,

m2
χ̃0

1
= (Pχ̃0

1
)2, (6.16)

m2
ℓ̃±

= (Pχ̃0
1
+ Pℓ±F

)2, (6.17)

m2
χ̃0

2
= (Pℓ̃± + Pℓ∓N

)2 = (Pχ̃0
1
+ Pℓ±F

+ Pℓ∓N
)2, (6.18)

m2
t̃1

= (Pχ̃0
2
+ Pt)

2 = (Pχ̃0
1
+ Pℓ±F

+ Pℓ∓N
+ Pt)

2, (6.19)

where P denote the four momenta of the respective particles.
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Figure 6.2: The process studied for mo-

mentum reconstruction.

We see that with the four equations we have enough information to solve the

system and find each component of the χ̃0
1 four momentum. A solution to the above

set of equations is presented in [167] and we outline the procedure here. We first

expand the χ̃0
1 momentum in terms of the final-state momentum of the ℓ∓F , ℓ±N and

t,

−→p χ̃0
1

= a−→p ℓ±F
+ b−→p ℓ∓N

+ c−→p t . (6.20)

In order to derive a system of 3 linear equations for the unknowns a−c, we calculate

~pχ̃0
1
· ~pℓF

, ~pχ̃0
1
· ~pℓN

and ~pχ̃0
1
· ~pt. Inserting Eq. (6.20) and exploiting Eqs. (6.17-6.19)

we form the system of equations,

M











a

b

c











=











1
2
(m2

χ̃0
1

−m2
ℓ̃
) + Eχ̃0

1
EℓF

1
2
(m2

ℓ̃
−m2

χ̃0
2

) + pℓF
· pℓN

+ Eχ̃0
1
EℓN

1
2
(m2

χ̃0
2

+m2
t −m2

t̃1
) + pℓF

· pt + pℓN
· pt + Eχ̃0

1
Et











, (6.21)

where,

M =











−→p ℓF
· −→p ℓF

−→p ℓF
· −→p ℓN

−→p ℓF
· −→p t

−→p ℓN
· −→p ℓF

−→p ℓN
· −→p ℓN

−→p ℓN
· −→p t

−→p t · −→p ℓF

−→p t · −→p ℓN

−→p t · −→p t











.

(6.22)

We invert the matrix M to find solutions for a, b and c in terms of constants and
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Eχ̃0
1
. The on shell mass condition for the χ̃0

1, Eq. (6.16), can then be expressed as,

E2
χ̃0

1
= (a, b, c)M











a

b

c











+m2
χ̃0

1
. (6.23)

We solve the above quadratic, to find two solutions for Eχ̃0
1
. These solutions are

then substituted back into Eq. (6.20) to find all components of the t̃1 momentum

on an event-by-event basis.

6.3.3 Challenges from multiple solutions

We encounter a complication in the reconstruction as Eq. (6.16) is quadratic in (pχ̃0
1
).

Consequently we have two solutions for (pχ̃0
1
) for each reconstructed event but we

have no extra information in the single decay chain to determine which solution is

physically correct. As we cannot distinguish which of these solutions corresponds

to the physically correct configuration, we need to analyse both. Therefore, we

calculate the t̃1 momentum for both configurations and boost all final-state particles

in the triple product into the reconstructed t̃1 rest frame. If the sign of both triple

products are the same then the event is recorded but if the sign of the triple products

are different, we discard the event since we cannot know which of the reconstructed

solutions is correct. The method has the disadvantage that we lose events and

therefore statistical significance.

However, we find that the asymmetry can actually rise (≈ 1.5%) due to the

nature of the events that are removed. The events most likely to be removed are

those with small triple products. This is because the smaller the triple product of a

particular event, the more likely that the triple product will change sign if the rest

frame is mis-measured. Another property of events with small triple products is that

the asymmetry is lower than that of events with large triple products. Therefore, if

these events are removed from our sample, proportionally more events are removed

in the denominator of the asymmetry, Eq. (3.36) and the asymmetry will rise in

value.

When performing the momentum reconstruction at the LHC we have additional

problems from multiple solutions that come from combinatorial effects in the event.
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Firstly, to complete the reconstruction we need to correctly identify the near and

far lepton in the decay chain Eq. (6.15) if we wish to compute the triple product

TℓN
, Eq. (6.11) (although this information is not required for the triple product Tℓℓ,

Eq. (6.13)). We find that in ≈ 20% of events the wrong assignment of near and

far leptons satisfy the kinematic equations Eq. (6.16)-(6.19) and produce two extra

solutions for the momentum of the χ̃0
1 in addition to the solutions found from the

correct configuration. In addition, we always require a third lepton in the event

coming from the opposite decay chain to correctly identify the stop charge. For

example the lepton produced in the decay chain t̃∗1 → χ̃−b̄, χ̃− → ℓ− +X, where X

are neutral decay products. If this lepton is of the same flavour as those in the triple

product decay chain there is a small chance that it can also reconstruct the χ̃0
2. All

of these combinatorial issues are removed by again demanding that all calculated

triple products are of the same sign and discarding any events where opposite sign

solutions occur.

Further combinatorial issues occur with the reconstructed top in the event.

Firstly a second b is always present in the opposite decay chain and this can oc-

casionally combine with a reconstructed W to give a fake t. The opposite decay

chain also can contain extra quarks that can produce more reconstructed t’s. Fi-

nally, the parton shower can sometimes radiate hard gluons that are also seen as

extra jets and further complicate the combinatorial problem. Whenever extra t

quarks are found that satisfy the event kinematics we perform the same procedure

as for combinatorial leptons. Triple products are calculated for all reconstructed

rest frames and only events, that yield the same sign for all the reconstructed triple

products, are recorded.

6.3.4 Mass measurements

As mentioned above, we assume that the masses of all the SUSY particles in the

decay chain will be known. In Sec. 5.3.5, we briefly discussed the measurement of

the SUSY mass states at the LHC and the main studies on this topic. We found

that for the mass differences we require in Eq. (6.21), the mass end-point method

is well established. It is hoped that the method will measure these mass differences
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with high accuracy O( 1%) [157].

Whereas the cascade decay studied in chapter 5 involved a three body decay of

the χ̃0
2 the decay presented in this chapter involves,

χ̃0
2 → ℓ̃±ℓ∓, ℓ̃± → χ̃0

1ℓ
± . (6.24)

The vast majority of the studies presented in Sec. 5.3.5 actually studied this decay

chain. Therefore, we can have far more confidence that the mass reconstruction

methods will provide the required accuracy. We again test errors on the absolute

mass scale of up to 20 GeV and an error on the mass differences of 5 GeV. Both of

these errors have a negligible impact on the reconstruction efficiency.

These errors can be viewed as conservative apart from the mass of the stop.

However, using the method of kinematic invariants and high luminosity, such an

accuracy may become possible [167].

6.4 Parton level results

In this section we analyse numerically the CP-asymmetry at the parton level, with

the inclusion of parton distribution functions, whilst in Sec. 6.5 we complete a

hadronic level study to estimate the realistic environment and the discovery po-

tential at the LHC. In particular, we focus on a specific mSUGRA parameter point,

Tab. 6.1, at the parton level before discussing more general low mass mSUGRA

scenarios for our hadronic study.

6.4.1 Chosen scenario: spectrum and decay modes

We choose for this study the mSUGRA scenario shown in Tab. 6.1 with an added

CP-phase to the trilinear coupling φAt . The spectrum at the electroweak scale have

been derived using the RGE code SPheno 2.2.3 [148] and the masses of the gauginos

and scalars are shown in Tab. 6.2, Tab. 6.3 and Tab. 6.4 respectively. Using the low

energy soft SUSY breaking parameters and the phase of the trilinear coupling φAt ,

we calculate the masses and mixing of the t̃i’s, see Sec 2.4.1 for details.
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Parameter m0 m1/2 tan β sign(µ) A0

Value 65 210 5 + 0

Table 6.1: mSUGRA benchmark scenario (masses in GeV).

Particle mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

mχ̃±
1

mχ̃±
2

mg̃

Mass(GeV) 77.7 142.4 305.1 330.3 140.7 329.9 514.116

Table 6.2: Masses (in GeV) of the gauginos calculated by SPheno 2.2.3 [148].

Particle mt̃1 mt̃2 mb̃1
mb̃2

mq̃dL
mq̃dR

mq̃uL
mq̃uR

Mass(GeV) 345.7 497.8 443.4 466.0 484.7 465.2 478.7 464.9

Table 6.3: Masses (in GeV) of the SUSY squarks calculated by SPheno 2.2.3 [148]

except for t̃i that were calculated at tree level with phase φAt = |4
5
π|.

Particle mℓ̃L
mℓ̃R

mτ̃2 mτ̃1

Mass(GeV) 163.4 110.8 164.9 108.0

Table 6.4: Masses (in GeV) of the SUSY sleptons calculated by SPheno 2.2.3 [148].

For the presented analysis to work, we require the SUSY spectrum to have the

following mass hierarchy,

mt̃1 −mt > mχ̃0
2
> mℓ̃±R

> mχ̃0
1
, (6.25)

to allow for full momentum reconstruction. This hierarchy is often a feature in the

mSUGRA parameter space. In addition we concentrate on light mass scenarios as

the study is statistically limited and consequently we require a large production

cross section.

The feasibility of the study at the LHC depends heavily on the integrated lumi-
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Parameter Value

BR(t̃1 → χ̃0
1t) 34.6

BR(t̃1 → χ̃0
2t) 7.5

BR(t̃1 → χ̃+
1 b) 50.1

BR(t̃1 → χ̃+
2 b) 7.8

BR(χ̃0
2 → µ̃+

Rµ
−/ẽ+Re

−) 11.6

BR(χ̃+
1 → τ̃+

1 ντ ) 95.1

σ(pp→ t̃1t̃
∗
1) [pb] 3.44

Table 6.5: Nominal values of the branching ratios (in %) for various decays calculated

in Herwig++ [151,176] with phase φAt = |4
5
π|. In the last row, cross sections for stop

pair production at the LHC with
√
s = 14 TeV at leading order (LO) from Herwig++.

nosity. For this reason we look closely at the predicted cross section of the asymmetry

decay chain,

σ = σ(pp→ t̃1t̃
∗
1)×BR(t̃1 → tχ̃0

2)×BR(χ̃0
2 → ℓ̃±ℓ∓)×BR(ℓ̃± → χ̃0

1ℓ
±)×BR(t → quq̄db),

(6.26)

and the relevant values for our scenario are shown in Tab. 6.5. In our study we

also need to identify the charge of the t̃1 in the opposite decay chain and this is

possible when the decay products contain a single lepton (any number of jets are

allowed). We see that the dominant production of single leptons from t̃1 decays are

via the channel t̃1 → χ̃+
1 b. However, as only the right sleptons and the bino-like

χ̃0
1 are lighter than the wino-like χ̃+

1 , the decay of the χ̃+
1 is via mixing terms or

Yukawa couplings and hence the decay BR(χ̃+
1 → τ̃+

1 ντ ) dominates, Tab. 6.5. For

this reason we find that our study is far more promising if τ identification is possible

and we compare results where τ identification has and has not been used later in

the next section, Sec. 6.5.
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6.4.2 CP asymmetry at the parton level

We start by discussing the dependence of φAt on the parton level asymmetry,

Eq. (3.36), for both the triple products TℓN
and Tℓℓ, Eqs. (6.11), (6.13). In or-

der to see the maximum dependence upon φAt we reconstruct the t̃1 at rest and

calculate the triple product in this frame.

We see from Fig. 6.3(a) that the largest asymmetry occurs for the triple product

TℓN
, which attains |AℓN

|max ≈ 15% when φAt ≈ 0.8π. For the triple product Tℓℓ,

the asymmetry is smaller, |Aℓℓ|max ≈ 6.5%, because the ‘true’ CP triple product

correlation is only partially measured, see Sec. 6.2.2.

If we now include the dominant production process at the LHC (gg → t̃1t̃1)

and relevant parton distribution functions (MRST 2004LO [156]), we see that the

asymmetries are significantly diluted, Fig. 6.3(b). The asymmetry for the triple

product TℓN
, drops from |AℓN

|max ≈ 15% to |AℓN
|max ≈ 4.5% and the reduction

is due to the boosted frame of the produced t̃1 as discussed in Sec. 6.2.2. For the

triple product Tℓℓ, the reduction in the asymmetry is far less, from |Aℓℓ|max ≈ 6.5%

to |Aℓℓ|max ≈ 3.8%. This is because the triple product, relies on the ℓF being

correlated with the ℓ̃ by the intrinsic boost of the χ̃0
2, ℓ̃ system which already has a

boost, even when the t̃1 is at rest. As the t̃1 becomes boosted, the boost of the χ̃0
2,

ℓ̃ system becomes proportionally less so, as the momentum of the t̃1 is distributed

throughout the decay chain. The difference in the dilution of the two asymmetries

with t̃ momentum can be seen in Fig. 6.1.

6.5 Hadron level results

In order to estimate the potential for observing CP-violating effects in t̃1 decays at

the LHC more realistically, we perform the analysis at the hadronic level. For the

first study in this thesis, Chapter 4, we made no attempt to analyse the hadronic

effects at all (apart from the PDFs) and indeed every other study on this topic

have only investigated at the parton level. Hadronic effects were partially estimated

in Chapter 5, for example by applying a momentum smearing technique, Sec. 5.5.

However, we go one step further with this analysis and generate Monte Carlo events
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Figure 6.3: (a) The asymmetry AT, Eq. (3.36), in the rest frame of t̃1 as a function

of φAt . (b) The asymmetry AT, Eq. (3.36), in the laboratory frame as a function

of φAt at the LHC at 14TeV. The solid line is the asymmetry for the triple product

TℓN
, Eq. (6.11) and the dotted line is for the triple product Tℓℓ, Eq. (6.13).

where the final state is the same that would be seen in a detector. We apply a

jet finder to these events and our analysis uses no truth information from the hard

interaction. In addition, this is the first study in which both Standard Model and

SUSY backgrounds were produced and analysed to explore how they may effect the

observation of CP-phases.

We use the Herwig++ [151, 176] event generator to calculate all the matrix el-

ements in the process, the initial hard interaction, the subsequent SUSY particle

decays, the parton shower and the hadronisation. We again emphasise the impor-

tant feature of Herwig++ is that it calculates the spin correlations in the SUSY

cascade decay and allows the input of complex mixing matrices. Consequently, the

triple product CP-asymmetry can be automatically calculated within Herwig++.

6.5.1 Cuts used and signal identification

The hadronic analysis of the produced events has been performed within the program

Rivet [177,178]. We used the anti-kt [179,180] jet algorithm with R=0.5 and applied

the following acceptance cuts,
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• pTℓi
> 10GeV,

• pTji
> 20GeV,

• invariant mass of opposite sign same flavour (OSSF) leptons: Mℓ+ℓ− > 10GeV,

• |ηℓi
| < 2.5,

• |ηji
| < 3.5,

• lepton jet isolation, ∆ R = 0.5,

• b-tag efficiency = 60% [14],

• hadronic τ -tag efficiency (whenever used) = 40% [14].

To identify the events we demand three charged leptons in the final state, so that

we can correctly identify the charge of each t̃1 produced in the event, Sec. 6.2.2. In

addition, we demand that a pair of these leptons are OSSF as is the case for light

leptons from χ̃0
2 decay. Whenever a t̃1 decays in our scenarios a b is produced and

therefore we require at least one b-tag in the final state (in principle we could require

2 b-tags including the opposite decay chain but we loose 40% of events due to b-

tagging efficiency). On top of the b we require at least 2 more jets to be found in the

final state so the full reconstruction of the t is possible. As all of our triple products

and momentum reconstruction need a t we require at least one hadronic t to be

reconstructed. For this procedure, we first demand that 2 jets (not b’s) reconstruct

a W± (70GeV < Mjj < 90GeV). We then impose that a reconstructed W± and one

b jet reconstruct a t (150GeV < MW±b < 190GeV).

Once these cuts have been passed we then perform the kinematical reconstruction

shown in Sec. 5.3 with any t’s and OSSF leptons found in the final state. If the

particles satisfy the kinematic constraints Eq. (6.16)-(6.19), we will have at least

two different solutions on event-by-event basis for the momentum of the χ̃0
1. For

each solution, the relevant rest frame triple product is calculated and only if all the

signs of the triple products agree the event is accepted.
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6.5.2 Standard model background

The following Standard Model backgrounds were produced with Herwig++: tt, Drell-

Yan gauge boson production (Z, γ, W ), WW , WZ, ZZ, Wγ. In addition, we gener-

ate ttℓ+ℓ− events with MadGraph [181] and then use Herwig++ to perform the parton

shower and hadronisation. These backgrounds were selected as the Standard Model

processes most likely to pass our analysis cuts. We find that the only background

to pass the event selection is ttℓ+ℓ− with the very low rate of 0.03 events/fb−1 after

kinematical reconstruction. This corresponds to only ≈ 1% of the signal process for

our particular scenario.

Although the above result is encouraging, it must be stated that our analysis

contains no jets mis-identified as leptons. As the dominant standard model processes

produced by Herwig++ only contain a maximum of two hard leptons in the initial

process, the lack of a tri-lepton signal is not surprising. However, we do not expect

major problems from Standard Model backgrounds if we limit the study to leptons

from the first and second generation. tt can be expected to provide the largest

background when both W± decay leptonically and an extra lepton is produced

from a b or a mis-identified jet. Even when this occurs though, we still require an

additional two hard jets in the event that have to combine with a b to form a t.

Moreover, the final state then has to fulfill the reconstructed particular kinematics

of our signal and finally all the calculated triple products have to agree.

To improve the statistical significance of our analysis, we also investigated the

possibility of using τ -tagging in the opposite decay chain to that of our signal.

In this analysis, we now change the original tri-lepton signal to a first or second

lepton OSSF and additional hadronic τ . The mis-identification of a jet for a τ is

much higher than for the other leptons and the standard model backgrounds may

now become an issue [14]. However, this analysis is currently postponed to future

studies.
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Figure 6.4: (a) The asymmetry AℓN
, Eq. (3.36), for the decay chain shown in

Eq. (6.27)-(6.28) as a function of φAt at the hadronic level after momentum re-

construction has been performed. (b) The branching ratios: t̃1 → χ̃+
1 b (black solid),

t̃1 → χ̃+
2 b (red dotted), t̃1 → χ̃0

1t (purple slashed), t̃1 → χ̃0
2t (blue slash-dot).

6.5.3 Stop Production

We begin by studying t̃1t̃
∗
1 production along with the following decay chain,

t̃1 → χ̃0
2t→ χ̃0

1e
+e−jjb, (6.27)

t̃∗1 → χ̃0
1t→ χ̃0

1µ
−ν̄µb̄. (6.28)

to test the momentum reconstruction procedure. The above decay chain is the

cleanest signal process from a combinatorial point of view. We find a reconstruction

efficiency of ≈ 5% for this particular topology after cuts and the requirement for

same sign triple products. The decay chain Eq. (6.28) has a single lepton in the

final state allowing us to tag the charge of both the t̃1 and t̃∗1 in the process.

For the CP-asymmetry, we now concentrate purely on the triple product TℓN
,

Eq. (6.11) calculated in the reconstructed rest frame of the t̃1, as this is the ob-

servable with high significance at the LHC. Fig. 6.4(a) shows that there is virtu-

ally no dilution when we move to the hadronic level and the asymmetry stays at

|AℓN
|max ≈ 15%. In fact, the hadronic level reconstruction does induce a degree of

dilution, ≈ 1.5% but this is cancelled by our procedure of removing opposite sign

triple products which enhances the asymmetry by a similar amount, Sec. 6.3.3.
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t̃1t̃
∗
1 g̃, q̃

Herwig++ LO (pb−1) 3.44 75.8

Prospino LO (pb−1) 3.34+1.15
−0.8 76.7+24.8

−17.3

Prospino NLO (pb−1) 5.04+1.19
−0.92 99.5+7.7

−9.6

Table 6.6: Cross section at the LHC with
√
s = 14 TeV production channel

t̃1t̃
∗
1 and coloured SUSY production for both leading order (LO) and next-to-

leading order (NLO). All cross sections were calculated using Herwig++ [151, 176]

or Prospino [182–184]. The errors indicated next to the Prospino cross sections

relate to varying the factorisation and renormalisation scales from 0.5mt̃1 → 2mt̃1 .

The plot was constructed by producing a large number of Herwig++ events (2×
107) with the precise cascade decays given in Eq. (6.27) and Eq. (6.28). These events

were all produced with a scenario where φAt = 0.8π and thus the asymmetry was

maximal. Due to the factors mentioned above we saw no difference in the asymmetry

within the statistical errors of the simulation. For all other values of the phase, φAt ,

we assumed that this conclusion would hold and no dilution would be seen. Thus,

the other points on the plot are an extrapolation of this behaviour.

In order to estimate whether it is possible to observe a CP-asymmetry in t̃1

decays at the LHC we need to calculate the statistical significance of any result

and we again use the definition shown in Eq. (3.45). The total cross section used

to calculate the statistical significance of any result in this chapter has been cal-

culated using Herwig++ at the leading order (LO) for consistency. However, next-

to-leading order production cross sections are available and have been calculated

using Prospino [182–184], cf. Tab. 6.6. We see that in general the cross sections

at NLO are higher than those at LO suggesting that the effective luminosity at the

LHC will be more optimistic than those shown in the following results. In addition,

the factorisation and renormalisation scale uncertainties are shown that indicates

an estimate of the underlying theoretical uncertainty.

Due to the phase dependence of both the t̃1 branching ratios, see Fig. 6.4(b),
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and production cross section, the statistical significance for different values of φAt

cannot be trivially extrapolated. The total number of events observed will be an

interplay between the branching ratios and the production cross section. However,

in the case of branching ratios, each of the decays, t̃1 → χ̃+
1 b, t̃1 → χ̃+

2 b and t̃1 → χ̃0
1t

has a different reconstruction efficiency and asymmetry dilution that needs to be

calculated. For example, we see from Fig. 6.4(b) that the branching ratio for the

decay t̃1 → χ̃+
2 b increases noticeably as we vary φAt from φAt = 0 to φAt = |π|

due to this decay becoming kinematically more favourable. The χ̃+
2 has a large

number of final states with no lepton however, so consequently the number of signal

events decreases. Also, the χ̃+
2 decays generally contain extra jets that make the

reconstruction of the event more difficult and thus reduce the efficiency of this

channel.

Fig. 6.5(a) shows the asymmetry when all t̃1 decay channels are considered and

an estimate of the amount of luminosity required for a 3σ-observation of a non-zero

asymmetry for pure t̃1t̃
∗
1 production at the LHC. We can see that the asymmetry

is slightly diluted when all t̃1 decay modes are included from |AℓN
|max ≈ 15% to

|AℓN
|max ≈ 12.5%. The dilution is due to reconstructed events that are not origi-

nating from the signal process, Eq. (6.15). These events have no overall asymmetry

and therefore simply dilute the signal. The horizontal lines show the estimate of

the required luminosity required to see a certain asymmetry; an asymmetry can be

seen at the 3σ level where the asymmetry curve in Fig. 6.5(a) lies outside the lumi-

nosity band. The luminosity bands are not flat because as discussed before, both

the branching ratios and production cross section of the t̃1 vary with the phase φAt .

We can see that in our scenario for pure t̃1t̃
∗
1 production, we expect a sensitivity for

|0.5π| < φAt < |0.9π| with 500 fb−1.

We can see the effect of varying the mSUGRA parameters tanβ and A0 in

Fig. 6.5(b). It is shown that as the value of either tanβ or A0 is increased, we

require more luminosity to see a statistically significant observation even with max-

imum asymmetry. An increase in tanβ decreases the sensitivity because the branch-

ing ratio χ̃0
2 → ℓ̃±ℓ∓ is reduced. The reduction is due to τ̃ ’s becoming more mixed

which increases the left handed component in the lighter τ̃ . Therefore, the τ̃1 cou-
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Figure 6.5: Pure t̃1t̃
∗
1 production, all decay channels included, see Tab. 6.5 for branch-

ing ratios for the specific parameter point and Fig. 6.4 for how these alter with φAt .

τ tagging is included in both plots. (a) Asymmetry, AℓN
, at reference point with

3σ-luminosity lines shown. (b) Minimum luminosity required for 3σ-discovery in

tanβ,A0 plane when asymmetry, AℓN
, is maximal.
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Figure 6.6: Minimum luminosity required for 3σ-discovery in m0, m1/2 plane when

asymmetry, AℓN
, is maximal. Pure t̃1t̃

∗
1 production, all decay channels included, see

Tab. 6.5 for branching ratios for the specific parameter point and Fig. 6.4 for how

these alter with φAt . Purple area is ruled out by LEP direct detection [20] and red

area has no two body decay χ̃0
2 → ℓ̃±ℓ∓. (a) With τ tagging. (b) Without τ tagging.

ples more strongly to the predominantly wino χ̃0
2 and begins to dominate this decay

channel at the expense of the signal process. A rise in A0 decreases sensitivity mainly

because the CP-asymmetry is reduced. The reason is that after RGE running, an
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increase in A0 reduces the magnitude of the trilinear coupling At that contains the

phase, φAt that we are interested in. Hence the CP effects are reduced.

Similarly, Fig. 6.6(a) shows the effect of varying the mSUGRA parameters m0

and m1/2 on the minimum luminosity required for an observation of CP effects. We

note as general trend that as m1/2 is increasing, we need more luminosity to observe

the CP-violating triple products. This is due to the increase in t̃1 mass which reduces

the production cross section for t̃1t̃
∗
1. If we increase m0 we see that a large area of

the parameter space has no two body decay χ̃0
2 → ℓ̃±ℓ∓ as ℓ̃± > χ̃0

2.

Fig. 6.6(b) indicates the effect of having no hadronic τ -tagging for the decay

χ̃+
1 → τ̃+

1 ντ . The τ final-state dominates the χ̃+
1 decay which in turn is the dominant

product of the t̃1 in low mass mSUGRA scenarios, Tab. 6.5. As stated in the

beginning of Sec. 6.5 we assume a 40% τ -tagging efficiency and without this we lose

approximately a factor of 2 in effective luminosity for our signal process.

6.5.4 Impact of momentum reconstruction on SUSY back-

ground separation

All of the previous sections results have assumed that the t̃1t̃
∗
1 process can be isolated

effectively. However, in the mSUGRA scenarios investigated many other SUSY par-

ticles will be produced. Tab. 6.7 shows that the total production cross section for

SUSY is ≈ 25 times greater than for t̃1t̃
∗
1 production and we can therefore expect

sizable backgrounds. We can also expect that the vast majority of the SUSY back-

ground processes will have no other spin correlated CP-sensitive triple product with

the same final state and will therefore just act as a dilution to the CP-asymmetry

by contributing to the denominator of Eq. (3.36).

Tab. 6.7 shows that after the initial event selection and top reconstruction, the

SUSY background is still ≈ 10 times larger than the signal process. Note that if we

apply the kinematical reconstruction to these events we see that we substantially

reduce the background to be only ≈ 3 times larger.

In order to observe CP-violating effects in t̃1t̃
∗
1 production at the LHC, however,

the signal to background ratio may still be too high and consequently we need further

cuts to isolate the signal process. We notice that in mSUGRA scenarios, the largest
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t̃1t̃
∗
1 SUSY t̃1t̃

∗
1 Signal / SUSY Background

Cross Section (pb−1) 3.44 80.1

Events with 500 fb−1 1.7×106 4×107

Events with 500 fb−1 32389 410735 0.079

Initial selection

Events with 500 fb−1 7117 64729 0.11

Top Reconstruction

Events with 500 fb−1 1213 3759 0.32

Kinematic Reconstruction

Events with 500 fb−1 901 967 0.93

Extra SUSY cuts

Table 6.7: Cross section, number of events and signal to background ratio at the

LHC with
√
s = 14 TeV at LO for both the production channel t̃1t̃

∗
1 and inclusive

SUSY production. All cross sections were calculated using Herwig++ [151, 176].

background comes from g̃ production followed by the dominant decay to either

sbottom, g̃ → b̃ib with a branching ratio of ≈ 30%. The b̃i decays dominantly to χ̃0
2b

or χ̃+
1 t which leads to a very similar final state as the signal process when combined

with the opposite decay chain. The difference between the SUSY background and the

t̃1’s is that the g̃ and first and second generation q̃ have a higher mass. In addition, a

gluino has in general one more decay vertex in the cascade decay producing another

hard jet. These two factors mean that the average pT of the particles produced in

the event will be higher and the number of jets will be greater, thus we can use

these characteristics to discriminate the signal from the background. Hence we cut

on the number of jets reconstructed in an event,

Number of jets < 6. (6.29)
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For the pT cuts, we have,

pT (Hardest Jet) < 200 GeV, (6.30)

pT (2nd Jet) < 130 GeV, (6.31)

pT (3rd Jet) < 80 GeV (if applicable), (6.32)

pT (Any b Jet) < 150 GeV, (6.33)

pT (Any Lepton) < 100 GeV. (6.34)

Tab. 6.7 shows that after all these cuts are performed the signal to background

ratio improves significantly and we now have roughly the same number of signal and

background events in the sample.

If we now re-evaluate the luminosity plots with the SUSY background included,

Fig. 6.7,6.8, we see that more luminosity is now required to observe a statistically

significant effect. Due to the background dilution of the asymmetry, we now have

|AℓN
|max ≈ 6.5% for our scenario Fig. 6.7. Consequently we are now only sensitive

to phases between 0.6π < φAt < 0.85π with 1 ab−1 of data. If we look at the tanβ,

A0 contour plot we see that sensitivity at the LHC for 1 ab−1 is only possible for

small values of tanβ.
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Figure 6.7: General SUSY production for the asymmetry AℓN
. τ tagging is included

in both plots. (a) Asymmetry, AℓN
, at reference point with 3σ-luminosity lines

shown. (b) Minimum luminosity required for 3σ-discovery in tanβ,A0 plane when

asymmetry, AℓN
, is maximal.
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Figure 6.8: General SUSY production for the asymmetry AℓN
. Minimum luminos-

ity required for 3σ-discovery in m0, m1/2 plane when asymmetry, AℓN
, is maximal.

Purple area is ruled out by LEP direct detection [20] and red area has no two body

decay χ̃0
2 → ℓ̃±ℓ∓. (a) With τ tagging. (b) Without τ tagging.

However, we would like to emphasise that it may be possible to substantially

improve the statistical significance of an asymmetry measurement and return to

close to the significance achieved when looking at a purely t̃1t̃
∗
1 process, even with

the same SUSY background. Namely, via measuring the SUSY spectra (in particular

the g̃ and b̃) a good estimate of the background should be possible. The background

events can then be subtracted from the denominator of the asymmetry, Eq. (3.36),

to give the true value of the asymmetry. Thus, the statistical significance should be

much improved.

We would also like to remind the reader that this subtraction only becomes

reliable if the signal to background ratio is good enough otherwise the signal is

swamped by statistical fluctuations. Thus the momentum reconstruction procedure

is vital since it significantly reduces the backgrounds that are present.

Similarly, a more constrained area of observability is seen in the m0, m1/2 plane,

Fig. 6.8(a). With 1 ab−1 of data, our study suggests that only if m1/2 < 220 GeV

will it be possible to observe a CP-phase in the stop sector. Again, we see the

importance of τ -tagging to our study from the difference between Fig. 6.8(a) and

Fig. 6.8(b). If τ -tagging is not used in the study, no CP-violation in the t̃1 sector

can be observed with 1 ab−1 of data.
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6.5.5 Open experimental issues

Although the presented study was completed at the hadronic level, a full detector

simulation should be completed to confirm the conclusions of this chapter. The

most obvious experimental issue that could affect our results is the finite momen-

tum resolution of the detector for both jets and leptons when performing momentum

reconstruction. However, the resolution was tested with regards to momentum re-

construction in chapter 5, with a significantly more complicated final state and it

was found to have only a small effect.

In terms of background suppression the mis-tagging of various objects could

increase both the Standard Model and SUSY background. For the Standard Model

background, the most obvious example is the tt process generating a tri-lepton

signal [14]. The process requires a jet to be mistagged as a lepton, which is not

investigated in this study. The suitability of hadronic τ -tagging in the study also

needs to be investigated thoroughly as these are expected to have significant mis-

identification rates [14]. However, this is beyond the scope of this theoretical study.

6.6 Conclusions

In this chapter we studied t̃1t̃
∗
1 production and subsequent two body decays. We

again form triple product correlations from the final-state particles that are sensitive

to the presence of complex phases in the model. We find that in the mSUGRA

scenario studied one can expect an asymmetry in the triple product distribution of

up to 15% when calculated in the rest frame of the produced stop. The source of

the CP violation in our case was the phase of the trilinear coupling At that attains

a value of φAt ∼ 0.8 when the asymmetry is maximum in our scenario.

The investigation was the first to analyse Monte Carlo hadronic events when

using triple products to look for CP-violation in SUSY. We again find that the rest

frame CP-odd asymmetry is diluted by the high boosts of the produced particles

and this makes an observation difficult. Therefore we again studied the impact of

momentum reconstruction of invisible LSPs to get access to the rest frame of the t̃1.

Having fully reconstructed events we are able to boost particle momenta back to the



6.6. Conclusions 133

rest frame of the t̃1 and the maximum asymmetry is recovered to 15%. In addition,

momentum reconstruction leads to a significant increase in the signal background

ratio and thus is very important in attempting to isolate the process of interest.

If we consider exclusive t̃1 production and all possible t̃1 decay chains the maxi-

mum asymmetry is diluted slightly to ∼ 12.5%. In the mSUGRA scenario considered

in this chapter one should expect to see a 3σ effect at L = 500 fb−1 for phases in

the range 0.5 π . φAt . 0.9 π. If general SUSY production is considered, signifi-

cant backgrounds to our signal process are present and extra kinematical cuts are

required to remove this background. Even after these cuts some SUSY background

remains and our maximum asymmetry is reduced to ∼ 6.5%. To see a 3σ effect at

the LHC would require L = 1 ab−1 of data for sensitivity to phases in the range

0.6 π . φAt . 0.85 π.

We emphasise that the asymmetry after momentum reconstruction is a much

cleaner observable from a theoretical point of view, thanks to a well defined final

state. Therefore, using the above technique provides prospects for the observation

of CP-violating effects for a range of the phase φAt after a few years of LHC run-

ning at the high luminosity. The full assessment of LHC’s ability to resolve CP

violation in the MSSM, however, will definitely require a detailed simulation of de-

tector effects, SM and SUSY backgrounds which is beyond the scope of the present

phenomenological analysis.



Chapter 7

Conclusions

Supersymmetry has garnered significant interest from the particle physics commu-

nity. This is due to both the theory’s elegance and also the ability of particular

models to solve some of the most pressing issues facing fundamental physics today.

If supersymmetry is to provide a solution to the hierarchy problem, then we can

expect that the model should reveal itself over the next few years at the LHC. If

new states start being discovered, the challenge we immediately face is to measure

and characterise the new physics. Of particular importance is the possibility that

a model of supersymmetry may contain CP-violating phases. This thesis explores

ideas of how these phases may be uncovered in supersymmetry at the LHC.

The main tool we used to study CP-violation within supersymmetry were triple

product correlations. These correlations are formed from the momenta or spin vec-

tors of three independent final-state particles. Supersymmetry is particularly suited

for these observables due to the common occurrence in the theory of cascade decays,

with many separate final-state particles. The correlations studied are all TN -odd

and using the CPT theorem (neglecting higher orders) correspond to CP-violating

observables.

Our first study looked at stop pair production at the LHC with the following

cascade decay,

t̃i → χ̃0
j + t→ χ̃0

1ℓ
+ℓ− +Wb. (7.1)

We found that the decay was sensitive to phases in both the stop and neutralino

mixing matrices. At the parton level and in the rest frame of the stop, we found that

134
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the asymmetry could be as high as ∼ 12%. However, when we included the produc-

tion process and PDFs at the LHC we found that the asymmetry was significantly

diluted to the boosted initial state. The boost reduces the maximum asymmetry in

the scenarios studied to ∼ 4%. When we include the production cross section and

branching ratios, we estimate that a 1σ deviation from zero asymmetry may be seen

with 500 fb−1.

We also studied how the masses and branching ratios of the particles involved in

the cascade decay vary with CP-phases. However, these are both CP-even quantities

and we conclude that the LHC is unlikely to be able to make an unambiguous

observation of CP-violation from these observables.

The first study highlighted two key difficulties we face when searching for CP-

violation in SUSY cascade decays at the LHC. One issue is that the study has

statistical limitations and it will be challenging to record enough events to make an

unambiguous measurement of an asymmetry. Another issue is that the asymmetry is

significantly diluted by the boosted production process which makes an observation

much harder. Our second study attempted to resolve both of these issues.

Progress was made on the statistics front by looking at first and second generation

squark production. The cross section is substantially higher for first and second

generation squarks than for stops and consequently we can expect more events of

interest to be observed. Secondly, if we look at squark production in association

with a gluino we find that for some decay modes, the whole event is kinematically

reconstructible. Thus we can boost all final-state particles into the rest frame of the

squark and recover the full asymmetry.

We found that the rest frame parton-level asymmetry could be as large as 15%

for the scenario discussed. Although we see a large dilution from the production

process and PDFs, once momentum reconstruction is performed, the full asymmetry

is almost recovered. We also added experimental cuts and final-state momentum

smearing in the analysis and estimated that the sensitivity to phases at the LHC

could be seen at the 3σ-level with 300 fb−1.

For the last study in this thesis we again investigated stop pair production but

the scenario had a different mass hierarchy. In this scenario, mχ̃0
2
> mℓ̃, and therefore
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the χ̃0
2 undergoes a two-body decay. Hence, the cascade decay of interest is,

t̃i → χ̃0
2 + t→ ℓ̃± + ℓ∓ +Wb→ χ̃0

1 + ℓ± + ℓ∓ +Wb . (7.2)

Any triple products are now only sensitive to phases that enter in the t̃i decay.

Despite this restriction, rest frame, parton-level asymmetries of up to 15% can be

in seen the scenarios studied. As usual, these asymmetries are significantly diluted

when the production process and PDFs are included so we employ momentum re-

construction. Compared with the squark-gluino study, kinematic reconstruction is

far simpler as we have enough invariants to solve the system with just one decay

chain. Once the reconstruction is complete, we find that the asymmetry returns to

the t̃i rest frame level.

As an additional facet to this study, we produced Monte Carlo events at the

hadronic level and employed a jet finder to try and produce a realistic analysis for

the LHC. With this analysis, we found that if we just consider t̃i decays that a 3σ-

sensitivity at the LHC to phases in low mass scenarios of this kind could be expected

with 500 fb−1. We also considered the effect of supersymmetric backgrounds and

found that the kinematic reconstruction can act as an effective cut to isolate the

signal. If we assume no knowledge of the background, the luminosity required to

see a 3σ-signal is estimated as 1 ab−1. However, subtraction of the background has

the potential to reduce this luminosity requirement.

These studies show, that whilst challenging, searching for CP-violation in cas-

cade decays will be worthwhile if low mass supersymmetry is seen at the LHC.

However, we must perform a full detector simulation with all backgrounds included

to confirm the findings we have made. The simulations will also act as a valuable

training ground to see how far precision physics can be pushed at the LHC. We have

already seen how potentially useful kinematic reconstruction can be in recovering

the asymmetry and suppressing background. Hopefully, new ideas will emerge, us-

ing all the final-state information, so that we can really begin to decode the full

supersymmetric Lagrangian.



Appendix A

Interaction Lagrangians and

couplings

A.1 Production process

The interaction Lagrangian terms for the production processes are,

Lggg = gs∂
νGa

µg
µρfabcG

b
νG

c
ρ , (A.1.1)

Lqqg = −gsT
a
rsG

a
µq̄rγ

µqs , (A.1.2)

Lq̃iq̃jg = igsT
a
rsδijG

a
µq̃

∗
jr

↔

∂µ q̃is , (A.1.3)

Lqq̃ig̃ = −
√

2gsT
a
rs

[

q̄r(R
q̃
i1PR − Rq̃

i2PL)g̃aq̃i,s + g̃a(Rq̃
i1PL − Rq̃

i2PR)qrq̃
∗
i,s

]

, (A.1.4)

Lgg̃g̃ =
igs

2
fabcG

a
µg̃

bγµg̃c , (A.1.5)

Lq̃iq̃jgg = 1
2
g2

s(
1
3
δab + dabcT

c)Ga
µG

bµq̃∗j q̃i . (A.1.6)

where gs is the strong coupling constant and PL,R = 1
2
(1∓γ5). T

a are the generators

of SU(3) while fabc and dabc are colour factors derived from SU(3). For more details

see [185, 186]

A.2 Stop Decay

The interaction Lagrangian for the stop decay (t̃i → χ̃0
jt) is,

Ltt̃χ̃0 = ¯̃χ0
j

(

at̃
ijPL + bt̃ijPR

)

t t̃∗i + h.c. , (A.2.7)
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The couplings are given by,

at̃
ij = − e√

2 sW cW
Rt̃

i1

(

1

3
sWN

∗
j1 + cWN

∗
j2

)

− Yt Rt̃
i2N

∗
j4 , (A.2.8)

bt̃ij =
2
√

2 e

3cW
Rt̃

i2Nj1 − Yt Rt̃
i1Nj4 , (A.2.9)

where Rt̃
ij are the entries of stop mixing matrix, Eq. (2.14), and Nij are the entries

of the neutralino mixing matrix, Eq. (2.28). sW = sin θW and cW = cos θW where θW

is the weak mixing angle. e is the electromagnetic coupling constant (e = g2sW =

g1cW ) and the top Yukawa coupling is given by,

Yt =
e mt√

2mW sW sin β
. (A.2.10)

where mt is the mass of the top quark and mW is the mass of the W± boson.

tanβ = ν2/ν1 and is the ratio of the expectation value of the two neutral Higgs

fields.

A detailed discussion of the stop decay couplings and decays to neutralinos and

charginos is given in [98].

A.3 Squark decay

The lagrangian for the coupling of the first and second generation squarks to neu-

tralinos can be considered a simplifiction of that for stops. Firstly, we neglect the

small Yukawa terms and thus we have no couplings to the higgsino components. Sec-

ondly, mixing between the left and right squark states can be neglected, Eq. (2.8).

For the decay (q̃i → χ̃0
jq) we therefore have,

Lqq̃iχ̃0
j

= aq̃
Lj

¯̃χ0
jPL q q̃

∗
L + bq̃Rj

¯̃χ0
jPR q q̃

∗
R + h.c. , (A.3.11)

where the couplings are given by,

aq̃u

Lj = − e√
2 sW cW

(

1

3
sWN

∗
j1 + cWN

∗
j2

)

, (A.3.12)

bq̃u

Rj =
2
√

2 e

3cW
Nj1 , (A.3.13)

aq̃d

Lj = − e√
2 sW cW

(

1

3
sWN

∗
j1 − cWN

∗
j2

)

, (A.3.14)

bq̃d

Rj = −
√

2 e

3cW
Nj1 . (A.3.15)
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q̃L(R) are the left (right) squarks respectively of the first and second generation.

Under the approximation of no squark mixing, q̃R = q̃1 and q̃L = q̃2.

A.4 Neutralino and slepton decay

In our analytical calculations we concentrate on neutralino decays to electrons and

muons (followed by slepton decay if the 2-body process is on-shell). We ignore taus

and therefore neglect the small Yukawa terms present in the same way as for the 1st

and 2nd generation squarks. In addition, we again make the assumption that the

mixing effects will be negligible.

The interaction lagrangian for the vertex χ̃0
j ℓ̃

±ℓ± is,

Lℓℓ̃iχ̃0
j

= aℓ̃
Lj

¯̃χ0
jPL ℓ ℓ̃

∗
L + bℓ̃Rj

¯̃χ0
jPR ℓ ℓ̃

∗
R + h.c. , (A.4.16)

where the couplings are given by,

aℓ̃
Lj =

e√
2 sW cW

(

sWN
∗
j1 + cWN

∗
j2

)

, (A.4.17)

bℓ̃Rj = −
√

2 e

cW
Nj1 . (A.4.18)

Identically to the squarks, under the approximation of no slepton mixing, ℓ̃R = ℓ̃1

and q̃L = q̃2.

For the 3-body neutralino decay, χ̃0
j → χ̃0

kℓ
±ℓ±, we also have a contribution from

the exchange of a Z0. Therefore the following Lagrangians are required to calculate

this decay,

LZ0ℓ+ℓ− = −Zµℓ̄γ
µ[LℓPL +RℓPR]ℓ , (A.4.19)

LZ0χ̃0
j χ̃0

k
= Zµ

¯̃χ
0
jγ

µ[OL
jkPL +OR

jkPR]χ̃0
k , (A.4.20)

where the couplings are given by,

Lℓ =
e

cWsW

(

− 1

2
+ s2

W

)

, (A.4.21)

Rℓ =
e

cWsW

(

s2
W

)

, (A.4.22)

OL
jk =

e

2cWsW
(Nm4N

∗
n4 −Nm3N

∗
n3) , (A.4.23)

OR
jk = − e

2cW sW

(OL∗
mn) , (A.4.24)
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The full interaction Lagrangian for the MSSM can be found in [187,188].



Appendix B

Amplitudes

B.1 Stop decay t̃1 → χ̃0
jt

We give the analytic expression for the stop decay density matrix which produces

the χ̃0
j and t. The decay can be decomposed as,

|M(t̃1 → χ̃0
j t)|2 = P (χ̃0

jt) + Σa
P (χ̃0

j ) + Σb
P (t) + Σab

P (χ̃0
jt) , (B.1.1)

whose spin-independent contribution reads,

P (χ̃0
jt) = (|at̃

1j |2 + |bt̃1j |2)(ptpχ̃0
j
) − 2mtmχ̃0

j
Re(at̃

1jb
∗
1j) , (B.1.2)

where pt and pχ̃0
k

denote the four-momenta of the t-quark and the neutralino χ̃0
k.

The coupling constants aij and bij are shown in Eq. (A.2.8, A.2.9) and by substi-

tuting the explicit matrix elements of Eq. (2.14) we can show the specific parameter

dependence,

|at̃
1j |2 + |bt̃1j |2 = cos2 θt̃

(

e2

2s2
W c

2
W

∣

∣

∣

1

3
sWNj1 + cWNj2

∣

∣

∣

2

+ Y 2
t |Nj4|2

)

+ sin2 θt̃

(

8e2

9c2W
|Nj1|2 + Y 2

t |Nj4|2
)

+ 2 sin θt̃ cos θt̃ Yt

(

e√
2 sW cW

Re

[

eiφt̃

(

1

3
sWN

∗
j1 + cWN

∗
j2

)

Nj4

]

− 2
√

2 e

3cW
Re
[

e−iφt̃Nj1N
∗
j4

]

)

. (B.1.3)
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Re
[

at̃
1jb

t̃∗
1j

]

= cos2 θt̃

e√
2 sW cW

Yt Re

[(

1

3
sWN

∗
j1 + cWN

∗
j2

)

N∗
j4

]

+ sin2 θt̃

2
√

2 e

3cW
Yt Re[N∗

j4N
∗
j1]

+ sin θt̃ cos θt̃

(

Y 2
t Re

[

e−iφt̃N∗2
j4

]

− 2

3

e2

sW c2W
Re

[

eiφt̃

(

1

3
sWN

∗
j1 + cWN

∗
j2

)

N∗
j1

])

. (B.1.4)

The spin-dependent terms that depend on individual spin contributions are T-even

and are given by,

Σa
P (χ̃0

j) = (|bij |2 − |aij|2)mχ̃0
j
(pts

a(χ̃0
j )) , (B.1.5)

Σb
P (t) = (|bij |2 − |aij|2)mt(pχ̃0

j
sb(t)) , (B.1.6)

where sa(χ̃0
j) (sb(t)) denote the spin-basis vectors of the neutralino χ̃0

j (t-quark)

respectively (for an explicit representation see Eq. (B.7.45-B.7.50)). Again the cou-

pling constants can be expanded as,

|bt̃1j |2 − |at̃
1j |2 = cos2 θt̃

(

Y 2
t |Nj4|2 −

e2

2s2
W c

2
W

∣

∣

∣

1

3
sWNj1 + cWNj2

∣

∣

∣

2
)

+ sin2 θt̃

(

8e2

9c2W
|Nj1|2 − Y 2

t |Nj4|2
)

− 2 sin θt̃ cos θt̃ Yt

(

e√
2 sW cW

Re

[

eiφt̃

(

1

3
sWN

∗
j1 + cWN

∗
j2

)

Nj4

]

+
2
√

2 e

3cW
Re
[

e−iφt̃Nj1N
∗
j4

]

)

. (B.1.7)

The terms that depend simultaneously on the spin of the top quark and of the

neutralino can be split into T-even, Σab,E
P (χ̃0

j t), and T-odd, Σab,O
P (χ̃0

j t). The T-even

contributions are as follows,

Σab,E
P (χ̃0

jt) = 2Re(aijb
∗
ij)[(s

a(χ̃0
j )pt)(s

b(t)pχ̃0
j
) − (ptpχ̃0

j
)(sa(χ̃0

j )s
b(t))]

+ mtmχ̃0
j
(sa(χ̃0

j)s
b(t))(|aij |2 + |bij |2) . (B.1.8)

The T-odd contributions that generate the triple product correlations that we are

interested in are,

Σab,O
P (χ̃0

jt) = −g2Im(aijb
∗
ij)f

ab
4 , (B.1.9)

where the T-odd kinematical factor is given by,

fab
4 = ǫµνρσs

a,µ(χ̃0
j)p

ν
χ̃0

j
sb,ρ(t)pσ

t . (B.1.10)
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Sec.5.2.2 explains how this epsilon product generates the triple product observable.

We again expand the coupling constant to see the functional dependence,

Im
[

at̃
1jb

t̃∗
1j

]

= cos2 θt̃

e√
2 sW cW

Yt Im

[(

1

3
sWN

∗
j1 + cWN

∗
j2

)

N∗
j4

]

+ sin2 θt̃

2
√

2 e

3cW
Yt Im[N∗

j4N
∗
j1]

+ sin θt̃ cos θt̃

(

Y 2
t Im

[

e−iφt̃N∗2
j4

]

− 2

3

e2

sW c
2
W

Im

[

eiφt̃

(

1

3
sWN

∗
j1 + cWN

∗
j2

)

N∗
j1

])

. (B.1.11)

B.2 Squark decay q̃L → χ̃0
jq

The analytic expression for the squark decay density matrix which produces the χ̃0
j

and q can be decomposed as,

|M(q̃L → χ̃0
jq)|2 = P (χ̃0

jq) + Σa
P (χ̃0

j) , (B.2.12)

whose spin-independent contribution reads,

P (χ̃0
jq) = |aq̃

Lj |2(pqpχ̃0
j
) , (B.2.13)

where pq and pχ̃0
j

denote the four-momenta of the quark q and the neutralino χ̃0
j .

The spin-dependent contributions is T-even and given by,

Σa
P (χ̃0

j) = −|aq̃
Lj |2mχ̃0

j
(pqs

a(χ̃0
j)) , (B.2.14)

where sa(χ̃0
j ) denotes the spin-basis vector of the neutralino χ̃0

j , see Eq. (B.7.45-

B.7.47) for an explicit representation.

B.3 Neutralino 3-body decay χ̃0
j → χ̃0

kℓ
+ℓ−

The analytic expression for the squark decay density matrix can be decomposed as,

|M(χ̃0
j → χ̃0

kℓ
+ℓ−)|2 = D(χ̃0

j) + Σa
D(χ̃0

j) . (B.3.15)

The contributions independent of the polarisation of the neutralino χ̃0
j are,

D(χ̃0
j ) = D(ZZ) +D(Zℓ̃L) +D(Zℓ̃R) +D(ℓ̃Lℓ̃L) +D(ℓ̃Rℓ̃R) , (B.3.16)
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where,

D(ZZ) = 32|∆(Z)|2(L2
ℓ +R2

ℓ )

×
[

|OL
kj|2(g1 + g2) + (Re OL

kj)
2 − (Im OL

kj)
2)g3

]

, (B.3.17)

D(Zℓ̃L) = 8Lℓ Re
{

∆(Z)
[

aℓ̃
Lja

ℓ̃∗
Lk∆

∗
t (ℓ̃L)(2OL

kjg1 +OL∗
kj g3)

+ aℓ̃∗
Lja

ℓ̃
Lk∆

∗
u(ℓ̃L)(2OL∗

kj g2 +OL
kjg3)

]}

, (B.3.18)

D(ℓ̃Lℓ̃L) = 2

[

|aℓ̃
Lj |2|aℓ̃

Lk|2
(

|∆t(ℓ̃L)|2g1 + |∆u(ℓ̃L)|2g2

)

+ Re
{

(aℓ̃∗
Lj)

2(aℓ̃
Lk)

2∆t(ℓ̃L)∆∗
u(ℓ̃L)

}

g3

]

. (B.3.19)

∆(Z) and ∆t,u(ℓ̃L) denote the propagators of the virtual particles in the direct chan-

nel and in both crossed channels (labelled t, u, cf. Fig. 4.2). The quantities D(Zℓ̃R)

and D(ℓ̃Rℓ̃R) can be derived from Eqs. (B.3.18) and (B.3.19) by the substitutions,

Lℓ → Rℓ , ∆t,u(ℓ̃L) → ∆t,u(ℓ̃R) , OL
kj → OR

kj , aℓ̃
Lj,k → bℓ̃Rj,k . (B.3.20)

The kinematic factors are,

g1 = (pχ̃0
k
pℓ−)(pχ̃0

j
pℓ+) , (B.3.21)

g2 = (pχ̃0
k
pℓ+)(pχ̃0

j
pℓ−) , (B.3.22)

g3 = mjmk(pℓ−pℓ+) . (B.3.23)

We can split the terms depending on the polarisation of the neutralino into T-even

and T-odd contributions,

Σa
D(χ̃0

j ) = Σa,E
D (χ̃0

j) + Σa,O
D (χ̃0

j) . (B.3.24)

The T-even contributions depending on the polarisation of the decaying neutralino

χ̃0
j are,

Σa,E
D (χ̃0

j) = Σa,E
D (ZZ)+Σa,E

D (Zℓ̃L)+Σa,E
D (Zℓ̃R)+Σa,E

D (ℓ̃Lℓ̃L)+Σa,E
D (ℓ̃Rℓ̃R) (B.3.25)
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where,

Σa,E
D (ZZ) = 32|∆(Z)|2(R2

ℓ − L2
ℓ)

×
[

− [(ReOL
kj)

2 − (Im OL
kj)

2]ga
3 + |OL

kj|2(ga
1 − ga

2)
]

, (B.3.26)

Σa,E
D (Zℓ̃L) = 8Lℓ Re

{

∆(Z)
[

aℓ̃
Lja

ℓ̃∗
Lk∆

∗
t (ℓ̃L)

(

− 2OL
kjg

a
1 +OL∗

kj g
a
3

)

+ aℓ̃∗
Lja

ℓ̃
Lk∆

∗
u(ℓ̃L)

(

2OL∗
kj g

a
2 +OL

kjg
a
3

)

]}

,(B.3.27)

Σa,E
D (ℓ̃Lℓ̃L) = 2

[

|aℓ̃
Lj|2|aℓ̃

Lk|2[|∆u(ℓ̃L)|2ga
2 − |∆t(ℓ̃L)|2ga

1 ]

+ Re
{

(aℓ̃∗
Lj)

2(aℓ̃
Lk)

2∆t(ℓ̃L)∆∗
u(ℓ̃L)ga

3

}

]

, (B.3.28)

The contributions Σa,E
D (Zℓ̃R) and Σa,E

D (ℓ̃Rℓ̃R) are derived from Eqs. (B.3.27) and

(B.3.28) by applying the substitutions given by Eq. (B.3.20) and in addition ga
1,2,3 →

−ga
1,2,3. The kinematic factors are,

ga
1 = mj(pχ̃0

k
pℓ−)(pℓ+s

a(χ̃0
j )) , (B.3.29)

ga
2 = mj(pχ̃0

k
pℓ+)(pℓ−s

a(χ̃0
j )) , (B.3.30)

ga
3 = mk[(pχ̃0

j
pℓ+)(pℓ−s

a(χ̃0
j )) − (pχ̃0

j
pℓ−)(pℓ+s

a(χ̃0
j))] . (B.3.31)

The T-odd contributions depending on the polarisation of the decaying neutralino

χ̃0
j are,

Σa,O
D (χ̃0

j) = Σa,O
D (ZZ)+Σa,O

D (Zℓ̃L)+Σa,O
D (Zℓ̃R)+Σa,O

D (ℓ̃Lℓ̃L)+Σa,O
D (ℓ̃Rℓ̃R) (B.3.32)

where,

Σa,O
D (ZZ) = 32|∆(Z)|2(L2

ℓ − R2
ℓ)
[

2Re (OL
kj) Im (OL

kj)ig
a
4

]

, (B.3.33)

Σa,O
D (Zℓ̃L) = 8Lℓ Re

{

∆(Z)
[

− aℓ̃
Lja

ℓ̃∗
LkO

L∗
kj ∆∗

t (ℓ̃L)

+ aℓ̃∗
Lja

ℓ̃
LkO

L
kj∆

∗
u(ℓ̃L)

]

ga
4

}

, (B.3.34)

Σa,O
D (ℓ̃Lℓ̃L) = 2 Re

{

(aℓ̃∗
Lj)

2(aℓ̃
Lk)

2∆t(ℓ̃L)∆∗
u(ℓ̃L)ga

4

}

. (B.3.35)

The contributions Σa,O
D (Zℓ̃R) and Σa,O

D (ℓ̃Rℓ̃R) are derived from Eqs. (B.3.27) and

(B.3.28) by applying the substitutions given by Eq. (B.3.20). The kinematic factor

is

ga
4 = imkǫµνρσs

aµ(χ̃0
j)p

ν
χ̃0

j
pρ

ℓ−p
σ
ℓ+ . (B.3.36)
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B.4 Neutralino 2-body decay χ̃0
j → ℓ̃±Rℓ

∓

The analytic expression for the 2-body neutralino decay density matrix can be de-

composed as,

|M(χ̃0
j → ℓ̃±Rℓ

∓)|2 = D(χ̃0
j) + Σa

D(χ̃0
j) , (B.4.37)

whose spin-independent contribution reads,

D(χ̃0
2) =

|aℓ̃
Rj |2
2

{m2
χ̃0

j
−m2

ℓ̃R
} . (B.4.38)

The spin-dependent contribution is T-even and reads,

Σa
D(χ̃0

2) = −|f l
L2|2mχ̃0

2
{(sa(χ̃0

2)pℓ∓}. (B.4.39)

where sa(χ̃0
j ) denotes the spin-basis vector of the neutralino χ̃0

j , see Eq. (B.7.45-

B.7.47) for the explicit representations.

B.5 Slepton decay ℓ̃±R → χ̃0
kℓ

±

The slepton is a scalar and consequently carries no spin correlation. Therefore, we

only have a spin independent component for the decay,

|M(ℓ̃±R → χ̃0
kℓ

±)|2 = D(χ̃0
j) , (B.5.40)

=
|aℓ̃

Rk|2
2

{m2
ℓ̃R

−m2
χ̃0

k
} . (B.5.41)

B.6 Top decay t→W+b

The analytical expression for the 2-body decay of the top quark into a W -boson and

the final-state bottom quark can be decomposed as,

|M(t→W+b)|2 = D(t) + Σb
D(t) , (B.6.42)

whose spin-independent contribution reads,

D(t) =
e2

4s2
W

{m2
t − 2m2

W +
m4

t

m2
W

} . (B.6.43)
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The spin-dependent contribution is T-even and reads,

Σb
D(t) = − e2

2s2
W

mt{(sb(t)pb) +
m2

t −m2
W

m2
W

(sb(t)pW )}. (B.6.44)

where sb(t) denotes the spin-basis vector of the neutralino t, see Eq. (B.7.48-B.7.50)

for the explicit representations.

B.7 Spin vectors

Spin correlations can be carried by both the neutralino and the top depending on

the decay chain. For the numerical calculations we perform the computation with

explicit spin vectors in the amplitudes. The three spin-basis four-vectors s1, s2

and s3 form a right-handed system and provide, together with the momentum, an

orthogonal basis system. They are chosen as,

s1(χ̃0
j ) =

(

0,
(~pχ̃0

j
× ~pt̃i) × ~pχ̃0

j

|(~pχ̃0
j
× ~pt̃i) × ~pχ̃0

j
|

)

, (B.7.45)

s2(χ̃0
j ) =

(

0,
~pχ̃0

j
× ~pt̃i

|~pχ̃0
j
× ~pt̃i |

)

, (B.7.46)

s3(χ̃0
j ) =

1

mχ̃0
j

(

|~pχ̃0
j
|,
Eχ̃0

j

|~pχ̃0
j
|~pχ̃0

j

)

. (B.7.47)

The spin-system for the top quark has been chosen analogously,

s1(t) =

(

0,
(~pt × ~pχ̃0

j
) × ~pt

|(~pt × ~pχ̃0
j
) × ~pt|

)

, (B.7.48)

s2(t) =

(

0,
~pt × ~pχ̃0

j

|~pt × ~pχ̃0
j
|

)

, (B.7.49)

s3(t) =
1

mt

(

|~pt|,
Et

|~pt|
~pt

)

, (B.7.50)

and Et and Eχ̃0
j

denote the energies of the top quark and the neutralino χ̃0
j , respec-

tively.



Appendix C

Kinematics

C.1 Phase space

Here we consider the generic phase space terms that can be applied to any process

discussed in this thesis.

Ā

A

B̄

B
U

V

X

Y

Z

Figure C.1: Example process, AĀ → BB̄, B → UV, V → XY Z, used to illustrate

phase space factors.

The complete cross section for all the processes discussed in this thesis can be

decomposed into the production cross section and the branching ratios of the sub-

sequent decays. For the example process shown in Fig. C.1,

dσtot = dσ(AĀ→ BB̄) · EB

mBΓB
dΓ̂(B → UV ) · EV

mV ΓV
dΓ̂(V → XY Z) ,

(C.1.1)

where the factors E/mΓ come from the use of the narrow-width approximation for

148
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the propagators of the unstable particles B and V . This approximation is valid for

(Γ/m)2 ≪ 1, which is satisfied for all cases studied in our scenarios.

C.2 2-body decay, 1 massive final state particle

For the 2-body decay B → UV where m2
U = 0 and m2

V 6= 0 we have,

dΓ̂2,1(B → UV ) =
1

4EV

D(B → UV ) dΦ2,1, (C.2.2)

where D(B → UV ) is the amplitude for the decay B → UV . dΦ2,1 is the phase

space factor in the laboratory system for the 2-body decay with 1 massive particle

in the final state,

dΦ2,1 =
1

(2π)2

EU

2||~pB| cos θU − EV − EU |
dΩU , (C.2.3)

where dΩU = dφUd(cos θU) is solid angle of the particle U .

C.3 2-body decay, 2 massive final state particles

For the 2-body decay B → UV where m2
U 6= 0 and m2

V 6= 0 we have,

dΓ̂2,2(B → UV ) =
2

EB

D(B → UV ) dΦ2,2 , (C.3.4)

where D(B → UV ) is the amplitude for the decay B → UV . dΦ2,2 is the phase

space factor in the laboratory system for the 2-body decay with 2 massive particles

in the final state,

dΦ2,2 =
1

(2π)2

|~p±V |2
2|EB|~p±V | −E±

V |~pB| cos θV |
dΩV , (C.3.5)

where dΩV = dφV d(cos θV ) is solid angle of the particle V .

There is a subtlety in the phase-space calculation, namely that there can be two

solutions for ~pV . If,

|~pV | < p0 , (C.3.6)

where

p0 = λ
1
2 (m2

B, m
2
U , m

2
V )/2mV , (C.3.7)
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and

λ(m2
B, m

2
U , m

2
V ) = (m2

B −m2
U −m2

V )2 − 4m2
Um

2
V , (C.3.8)

then the decay angle, θV = ∡(~pB, ~pV ), is unconstrained and there is only one solu-

tion. However, if

~pV > p0 , (C.3.9)

then the angle is constrained by

sin θmax
V =

p0

|~pB|
=
λ

1
2 (m2

B, m
2
U , m

2
V )

2|~pB|mV

, (C.3.10)

and there are two physical solutions,

|~pV | =
(m2

B +m2
V −m2

U)|~pB| cos θV ±EB

√

λ(m2
B, m

2
U , m

2
V ) − 4|pB|2 m2

V (1 − cos2 θV )

2|pB|2(1 − cos2 θV ) + 2m2
B

.

(C.3.11)

For the region of phase space where two solutions exist the cross section becomes a

summation of the solutions for each of the subsequent decay chains.

C.4 3-body decay, 1 massive final state particle

For the 3-body decay B → UV where m2
X = 0, m2

Y = 0 and m2
Z 6= 0 we have,

dΓ̂3,1(V → XY Z) =
1

4EV
D(V → XY Z) dΦ3,1, (C.4.12)

where D(V → XY Z) is the amplitude for the decay V → XY Z. dΦ3,1 is the phase

space factor in the laboratory system for the 3-body decay with 1 massive particle

in the final state,

dΦ3,1 =
1

8(2π)5

EX

||~pV | cos θX −EZ − EX −EY cosα| EY dEY dΩXdΩY , (C.4.13)

where dΩX(Y ) = dφX(Y )d(cos θX(Y )) is solid angle of the particle X(Y ) respectively

and the opening angle between X and Y is α = ∡(~pX , ~pY ).

When evaluating the phase-space integral at the parton level, kinematical limits

need to be determined on some of the variables and these are listed below,

EY <
m2

V −m2
Z

2(EV − |~pV |)
, (C.4.14)

cos θY <
2EVEY +m2

Z −m2
V

2EY |~pV |
. (C.4.15)
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