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Abstract
Recent years mark a great success of the Standard Model. Discovery of the Higgs boson
confirmed that electroweak symmetry is broken by a vacuum expectation value of a scalar
field, thus finally proving the fifty year old theoretical idea. However a modification of the
SM is required to accommodate many already observed phenomena such as the existence
of dark matter or proper inclusion of gravitational interactions.

Discovery of the Higgs boson opened a new era of precision measurements which can
guide us to the correct extension of the SM by the determination of the properties of
new particle. Currently all the data is consistent with the SM prediction, however the
accuracy of these measurements leaves open a possibility of significant modification of the
SM. Due to lack of direct evidence of new physics at the LHC it is the new data about
the Higgs boson properties that we will use as a guide towards its extension. We will
begin by discussing the properties of the SM Higgs boson in the Standard Model and its
supersymmetric extension which still is the best hope against the SM Hierarchy problem.

Next we will exhibit a more practical approach and address issues present in the
Standard Model, namely the vacuum stability issue. While the SM does not require
an extension to be consistent, having a vacuum which is not absolutely stable is not a
comfortable situation. We will also discuss bounds on theories beyond the SM coming
from requirement of not destabilizing the electroweak vacuum to much. Here we will use
the very generic framework of higher dimensional operators provided by nonrenormalisable
theories.

Lastly we will discuss baryogenesis, another necessary phenomenon, absent in the
Standard Model. We will again use effective field theory approach and focus on the
bounds on such extensions, that we can extract from requiring successful baryogenesis.
Our main focus here will be the possible modification of such bounds coming from our
lack of knowledge of the early universe cosmological history.

This thesis is mainly based on published papers [1, 2, 3, 4, 5, 6, 7, 8] .
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Chapter 1

The Standard Model of elementary
particle physics

1.1 Introduction

The Standard Model [9, 10, 11] is the renormalisable theory correctly describing all experi-
ments at modern colliders. It succesfully predicts all known elementary particles particles
and gauge interactions, excluding gravity. We will review some of its basic properties
before proceeding to discuss its extensions.

1.2 SM Lagrangian

Standard Model is defined by the Lagrangian

L = LG + LM + LH + LY , (1.1)

where LG describes gauge interactions, LM contains fermionic matter fields, LH is the
Higgs sector responsible for electroweak symmetry breaking and LY describes Yukawa
interactions between the previous two.

SM is based on the SU(3) × SU(2) × U(1) gauge group. The corresponding part of
the Lagrangian reads

LG = −1

4
Gα
µνG

µν
α −

1

4
W a
µνW

µν
a −

1

4
BµνB

µν , (1.2)

where Gµν , Wµν and Bµν are field strength tensors associated with spin one fields of all
the gauge groups.

The scalar sector of SM is described by

LH = |DµH|2 − V (H), (1.3)

where
V (H) = −m2|H|2 + λ|H|4. (1.4)

1



2CHAPTER 1. THE STANDARD MODEL OF ELEMENTARY PARTICLE PHYSICS

For µ2 > 0 the minimum of the potential corresponds to non zero value of the field, thus
ground state of the theory is not symmetric under the gauge group. This is precisely the
Brout-Englert-Higgs mechanism [12, 13, 14] responsible for masses of the gauge bosons
and fermions. We can rewrite the scalar field as

H =

(
χ−

(v + h+ iη)/
√

2,

)
(1.5)

where the vacuum expectation value is v ' 246 GeV. The three Nambu-Goldstone bosons
η and χ± of the spontaneous breaking become longitudinal polarisations of the gauge
bosons W± and Z as they acquire their masses.

mW =
g

2
v ' 80.39 GeV, mZ =

√
g2 + g′2

2
v ' 91.19 GeV. (1.6)

where g = g2 and g′ = (5/3)g1 Thus electroweak symmetry SU(2) × U(1) is broken and
only electromagnetic U(1)em symmetry remains, mediated by the photon which is the
remaining massless combination of electroweak gauge fields. The last scalar degree of
freedom h corresponds to the physical Higgs boson [12]. Only recently, with the discovery
of the Higgs boson [15, 16] and measurement of its mass mh ' 125GEV, the last free

parameter of the SM was determined, namely at the tree level λ =
m2
h

2v2 ' 0.13.
Fermionic matter fields are minimally coupled to gauge fields,

LM =
∑
f

iψ̄fγ
µD(f)

µ ψf , (1.7)

where the covariant derivative reads Df
µ = ∂µ − ig3G

a
µT fa − ig2W

i
µT

f
i − ig1Y

fBµ, T (f)
α ,

T
(f)
a are the SU(3) and SU(2) generators in the representation of the gauge group cor-

responding to ψf and Y f is the hypercharge of ψf . Standard Model is a chiral theory
in which only the left-handed fermions are charged under SU(2), while the right-handed
fermions are SU(2) singlets. Table 1.1 summarises the matter content of the Standard
Model. In the quark sector we have one doublet and two singlets, corresponding to the

qL uR dR lL eR

SU(3) 3 3̄ 3̄ 1 1

SU(2) 2 1 1 2 1

Y 1/6 2/3 -1/3 -1/2 -1

Table 1.1: Matter content of the Standard Model.

left- and right-handed up and down quarks. In the lepton sector there is one left-handed
doublet and one right-handed singlet. All the fermions come in three generation, which
differ only in the Yukawa sector which describes their interactions with the Higgs field,
and is defined by.

LY =
1√
2

∑
i,j

yiju q̄
i
LH

cujR + yijd q̄
i
LHd

j
R + yij`

¯̀i
LHe

j
R, (1.8)
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Figure 1.1: Feynman diagram contributing to mh at one loop in the Standard Model.

where Hc = iσ2H∗ and i, j number the three generations. When H acquires a vev the
above equation generates the masses of the fermions

mf =
yf√

2
v (1.9)

which is crucial since the SU(2)×U(1) symmetry would not allow a gauge invariant mass
term for them. Different families differ only in their Yukawa couplings and consequently
in their masses.

1.3 Problems in the SM

Brout-Englert-Higgs mechanism made it possible to create a renormalisable theory ex-
plaining most of the existing collider experiments, however it could not do so without
introducing additional theoretical problems. First of these is the long standing natu-
ralness problem resulting from very high sensitivity of scalar mass terms to quantum
corrections. The second one is more specific to SM and comes from large corrections to
the Higgs potential coming from the top quark which render the electroweak minimum
unstable.

1.3.1 Naturalness problem

In the Standard Model the SU(2) × U(1) gauge symmetry forbids mass terms for vectors
and fermions. These masses have to vanish in the limit of unbroken symmetry and as we
have seen they are consequently proportional to the Higgs vev. The point of vanishing
mass would increase the symmetry of the theory and has to be stable under quantum
corrections, since the renormalisation procedure preserves all symmetries. This holds to
all orders in perturbation theory,which is a very important result because it implies that
size of the quantum corrections is controlled by the tree level contribution. Consequently
we say that fermion and vector masses are protected from quantum corrections.

Unfortunately the same is not true for bosons. In SM the mass of the Higgs boson is an
arbitrary parameter not protected by any symmetry. Instead it is additively renormalized
and receives corrections proportional to masses of all particles that couple to it. For
example second diagram shown in Figure 1.1 generically predicts correction

δm2
h = λ

∫ Λ d4k

(2π)4

1

k2
∝ λ

16π2

∫ Λ

dk2 ∝ λ

16π2
Λ2 (1.10)



4CHAPTER 1. THE STANDARD MODEL OF ELEMENTARY PARTICLE PHYSICS

which is quadratically divergent. Including this correction gives the physical mass

m2
h = m2

h0 + δm2
h = m2

h0 +
λ

16π2
Λ2, (1.11)

where Λ is a mass scale above which SM does not describe physics any longer. Taking
typical values mh =125.09 GeV and Λ ≈ Mp ≈ 1019 GeV, we can see that the tree level
value m0 and the correction have to be adjusted to cancel some 30 orders of magnitude.
This is an incredible fine-tuning to most people.

Looking more closely at the whole Higgs mass correction in the SM given by diagrams
in Figure 1.1 we get

δm2
h =

3Λ2

8π2v2
(4m2

t −m2
h − 2m2

W −m2
Z), (1.12)

where the corrections appear in the same order as in Figure 1.1. From left to right we get
top quark correction proportional to its Yukawa coupling (corrections from other fermions
are much smaller), Higgs correction proportional to λ and W and Z bosons corrections,
where all couplings have been expressed through corresponding masses. We can define a
measure of the needed cancellation (or fine-tuning)

∆ =
δm2

h

m2
h

≈ 0.2
Λ2

v2
. (1.13)

For example if ∆ = 100, right hand side of (1.11) has to be tuned to an order of a percent
to cancel δm2

h and the tree level value m2
h0.

If there would be no physics beyond the Standard Model there would be no natu-
ralness problem, the above equations can be solved and do not pose a computational
problem. However as soon as new physics appear, the scale Λ becomes a dynamical quan-
tity connected with said physics and obtaining the correct Higgs mass would simply be
very unlikely. This implies that the scale of new physics should not be higher than a
few TeV to avoid large fine tuning. We will discuss the most motivated solution to the
naturalness problem, supersymmetry in Chapter 2.

1.3.2 SM vacuum stability problem

Even if we chose to ignore the issue of naturalness, SM is not free of problems. Another
one, connected with stability of the Higgs potential, arises when we try to extrapolate
the theory to very high energies. To do so we need to properly incorporate quantum
corrections, the first is the one-loop effective potential [17] which in SM takes the form
[18]

VSM(h)1−loop = −m
2

2
h2 +

λ

4
h4 +

∑
i=W,Z,t,χ,h

ni
64π2

m4
i

[
ln

(
m2
i

µ2

)
− Ci

]
(1.14)
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with

nW = 6 m2
W =

g2

4
h2 CW =

5

6

nZ = 3 m2
Z =

g2 + g′2

4
h2 CZ =

5

6

nt = −12 m2
t =

y2
t

2
h2 Ct =

3

2
(1.15)

nχ = 3 m2
χ =

1

2
λh2 −m2 Cχ =

3

2

nh = 1 m2
h =

3

2
λh2 −m2 CZ =

3

2

and all the couplings are calculated at the scale µ.
In order to improve the convergence of the perturbative series and thus ensure our one-

loop potential is a good approximation we must choose an appropriate scale. To this end
we could numerically minimize the one-loop correction for all values of the field, however
in the SM one can simply set the scale equal to the value of the field µ =< h >. Then
the logarithms in the one-loop correction will remain small for all values of the field. In
fact we can note that with this substitution the potential (1.14) simplifies significantly for
very large values when we can neglect the explicit mass term m ≈ 0. All the masses are
simply proportional to h and the one-loop correction can be thought of as a modification
of the quartic coupling

V (h) ≈ λeff
4
h4. (1.16)

5 10 15 20

-0.05

0.00

0.05

0.10

0.15

Log10h

λ

λeff

λ3-loop

λ2-loop

λ1-loop

Figure 1.2: Runninf of λeff at different levels of accuracy together with λeff from (1.17)
(using three-loop λ) in the Standard Model

To be able to compute all the couplings at the scale µ = h we use renormalisation
group equations. The most important one is the running of λ, because the one loop
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correction is very small due to appropriate choice of the scale. At the one-loop order for
λ we have [19]

dλ

dµ
=

1

16π2

(
24λ− 6y4

t + λ(12y2
t − 9g2

2 −
9

5
g2

1) +
9

8
g4

2 +
27

200
g4

1 +
9

20
g2

1g
2
2

)
. (1.17)

The first two terms on the right hand side of the above equation are sufficient to roughly
explain the problem. The measured Higgs mass predicts a rather small value λ ≈ 0.13
while the large top quark mass means a large Yukawa coupling yt ≈ 0.93. This makes
the Higgs quartic coupling run negative around h = 1011 GeV, which means the potential
bends back down and a very deep minimum appears at very large values of the field.
Figure 1.2 depicts running of the λ coupling at various level of accuracy togehter with the
effective coupling λeff including quantum corrections to the potential. We will discuss
this issue and its implications in detail in Chapter 3.

1.3.3 Baryogenesis

We will discuss one of the most interesting scenarios of baryogenesis called electroweak
baryogenesis [20, 21, 22, 23] that in principle does not require an extension of the Standard
Model. In this scenario the observed baryon asymmetry of the Universe is created during
the electroweak phase transition (EWPT). This requires [24]

• baryon number violation

• both C and CP violation

• departure from thermal equilibrium.

The last condition can be fulfilled if the phase transition is of the first order. However,
in the Standard Model with a Higgs mass of 125 GeV it is of the second order and the
field transitions smoothly into its new non-symmetric minimum which develops as the
temperature drops. Thus, to realize electroweak baryogenesis (EWBG) we require new
physics modifying SM near the electroweak scale in order to generate a barrier between the
symmetric phase and the minimum which breaks the symmetry [25, 26]. Such exensions
of SM gained renewed attention recently, since the experimental accuracy with which
we measure the Higgs properties increases and all models predicting modification to its
scalar potential can be probed with higher and higher accuracy [27, 28]. We will discuss
how modified cosmological history of the universe can facilitate EWBG and make these
experimental bounds less stringent.



Chapter 2

Supersymmetric solution to
problems of SM

2.1 Introduction to SUSY

Supersymmetry remains the most promising extension of the Standard Model which can
help to solve its naturalness problem.

The main advantage of supersymmetric theories is their theoretical robustness. Su-
persymmetry is the biggest possible extension of spacetime symmetries in quantum field
theory [29, 30]. Even the minimal realisation of SUSY containing the minimal number
of fields needed to extend SM into a supersymmetric theory (called MSSM) represents a
very rich phenomenology which we will discuss in this chapter.

2.1.1 Supersymmetry algebra

We begin by summarising the extension of Poincare algebra to the Sypersymmetry al-
gebra containing both commutators and anticommutators. In genera SUSY algebra can
contain multiple generators. Algebras with more than one spinorial generator (N > 1) are
called extended SUSY algebras. However, extended algebras are not very useful for phe-
nomenological perspective, thus we will concentrate on the simplest example with N = 1,
for which the algebra reads,

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0,

[Pµ, Qα] = [Pµ, Q̄α] = 0, (2.1)

{Qα, Q̄α̇} = 2σµαα̇Pµ,

where σ are the Pauli matrices, P is the momentum and Q and Q̄ are the SUSY generators
forming Weyl spinors.

7



8 CHAPTER 2. SUPERSYMMETRIC SOLUTION TO PROBLEMS OF SM

2.1.2 Supremultiplets

We will try to explain the meaning of SUSY algebra through a direct construction of the
physical states. The first and the simplest case is the massless supermultiplet. We will
consider a normalized state of a massless particle |p, λ〉 where p is an energy-momentum
four-vector and λ is the chirality. We will use a frame in which pµ = (E, 0, 0, E), which
gives

{Qα, Q̄α̇} =

(
0 0
0 4E

)
. (2.2)

We begin our construction with a state

|p, λ〉 = Q1Q2|E, λ′〉 (2.3)

for which,
Qα|p, λ〉 = 0, (2.4)

because
QαQα = 0, (2.5)

where underline means no sum, due to first line of the algebra (2.1). The state generated
by Q̄1̇ has zero norm, since

〈p, λ|Q1Q̄1̇|p, λ〉+ 〈p, λ|Q̄1̇Q1|p, λ〉 = 0, (2.6)

Thus the massless supermultiplet consists of only two states |p, λ〉 oraz Q̄2̇|p, λ〉 with
chiralities λ and λ − 1

2
. Via the CPT transformation we also obtain a supermultiplet

containing states with chiralities −λ oraz −λ+ 1
2
.

We can now proceed to description of massive supermultiplets. In the rest frame of a
particle with mass m we have pµ = (m, 0, 0, 0), which together with (2.1) gives

{Qα, Q̄α̇} =

(
2m 0
0 2m

)
. (2.7)

Similarly to the massless case we begin with a state for which

Qα|p, s, s′〉 = 0. (2.8)

Next by acting on that state with Q̄α̇ we create all the other possible states. Starting
from the state with spin 0 we have

|p, 0, 0〉,
Q̄1̇|p, 0, 0〉 ∝ |p, 1

2
, 1

2
〉, (2.9)

Q̄2̇|p, 0, 0〉 ∝ |p, 1
2
,−1

2
〉,

Q̄2̇Q̄1̇|p, 0, 0〉 ∝ |p, 0, 0〉′. (2.10)

In genera starting from a state with the spin s we will obtain a multiplet with spins s,s+ 1
2

and s− 1
2
.
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2.1.3 Superfields

We will proceed to discussion of the superspace formalism which is based on generalisation
of spacetime by adding four additional anticommuting coordinates Q̄α̇,Qα (α, α̇ = 1, 2). In
superspace we can define superfields Φ(x, θ, θ̄) which play the role of SUSY representation.
Irreducible representations of SUSY, play a fundamental role in the superspace formalism.
In the MSSM the most important ones are the chiral and vector superfields. Chiral
superfield

Φ(y) = φ(y) +
√

2θψ(y) + θ2F (y)

= φ(x)− iθσµθ̄∂µφ(x)− 1

4
θ2θ̄2∂2φ(x)

+
√

2θψ(x) +
i√
2
θ2∂µψ(x)σµθ̄ + θ2F (x) (2.11)

where yµ = xµ− iθσµθ̄, contains a scalar field φ(x), and a spinor field ψ(x)α together with
a non-dynamical auxiliary field F (x), which can be expressed in a given model through
dynamical fields using the equations of motion. The vector superfield in Wess-Zumino
gauge reads

V a = θσ̄µθ̄vaµ(x) + iθ2θ̄λ̄a(x)− iθ̄2θλa(x) +
1

2
θ2θ̄2Da(x), (2.12)

and contains a vector field Aaµ(x), a spinor field λaα(x) and also a non-dynamical field
Da(x).

2.1.4 Supersymmetric Lagrangians

We will start by discussing a simplest possible supersymmetric model containing only a
few chiral superfields. Kinetic part of the Lagrangian reads

L0 = ∂µφ̄i∂µφi + iψ̄iσ̄
µ∂µψi + F̄iFi, (2.13)

Which we can rewrite using (2.11), as

L0 = ΦiΦ̄i|θθθ̄θ̄. (2.14)

The most general interaction part of the Lagrangian reads

W =
1

2
mijΦiΦj|θθ

1

3
gijkΦiΦjΦk|θθ + h.c. (2.15)

where mij and gijk are symmetric under the change of indexes. The W is the superpo-
tential. Theory described by the Lagrangian, LWZ = L0 +W was first described by Wess
and Zumino [31].



10 CHAPTER 2. SUPERSYMMETRIC SOLUTION TO PROBLEMS OF SM

The next step towards a supersymmetric version of SM is introducing gauge symme-
tries. We will start by considering a non-abelian gauge transformation

Φ→ eiΛΦ

V → V + i(Λ− Λ†) + . . . (2.16)

V = T aijVa

Λ = T aijΛa

where, Λ is a chiral superfield and T a is a hermitian generator of the gauge group. The
kinetic part of a gauge-invariant Lagrangian describing a vector superfield reads

LV = −1

4
F a
µνF

aµν + iλ̄aσ̄µDµλ
a +

1

2
DaDa, (2.17)

where the field strength tensor reads

F a
µν = ∂µv

a
ν − ∂νvaµ − gfabcvbµvcν , (2.18)

and the covariant derivatives take the form

Dµλ
a = ∂µλ

a − gfabcAbµλc
Dµφi = ∂µφi + igAaµT

aφi (2.19)

Dµψi = ∂µψi + igAaµT
aψi.

To obtain a gauge invariant Lagrangian describing interaction of chiral and vector fields,
we rewrite the WZ lagrangian (2.1.4) replacing derivatives with their covariant versions
and add an interaction term [32], obtaining

L = LWZ + LV −
√

2g
[
(φ̄T aψ)λa + λ̄a(ψ̄T aφ)

]
+ g(φ̄T aφ)Da. (2.20)

Equations of motion for non-dynamical fields read

Da = −gφ∗T aφ,
F i = −W̄i, (2.21)

F̄i = −Wi,

where W is the superpotential (2.15), and

Wi =
∂W (φ)

∂φi
. (2.22)

Using these EOMs we obtain the scalar potential

V (φ, φ̄) = F̄iFi +
1

2
DaDa = W̄iWi +

1

2
g2(φ̄T aφ)2. (2.23)
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2.2 MSSM

Superpartners have identical quantum numbers. Thus in order to extend SM to a super-
symmetric theory we need to at least double the number of fields to include superpartners
of known particles. We do this by promoting SM quarks and leptons to chiral super-
fields. Gauge bosons become vector parts of vector superfields, which means adding so
called bino, wino and gluino which are fermionic superpartners of the known W bosons
Z bosons and gluons. We also promote the Higgs boson to a chiral supermultiplet which
means adding its fermionic superpartner. Unfortunately adding a charged fermion intro-
duces a chiral anomaly. This means that even in the minimal model we need an additional
Higgs doublet with opposite charge in order to cancel the anomaly. Another reason is that
the superpotential W is a holomorphic function of the fields. Thus to recreate SM Yukawa
couplings which contained conjugate Higgs field, we need a new Higgs doublet with an
opposite charge.

The MSSM superpotential reads

WMSSM = URyuQHu +DRydQHd + ERheLHd + µHuHd, (2.24)

where UR,DR,Q,ER,L,Hu,Hd are chiral superfields corresponding to supermultiplests fro
Table 2.1, h are 3× 3 matrices in the space of fermionic families.

supermultiplet fermions bosons SU(3) SU(2) U(1)Y

quarks
Qi =

(
U i
L

Di
L

)
qiL q̃iL 3 2 1

6

U i
R uiR ũiR 3̄ 1 −2

3

Di
R diR d̃iR 3̄ 1 1

3

leptons
Li =

(
νi

Ei
L

)
liL l̃iL 1 2 −1

2

Ei
R eiR ẽiR 1 1 1

Higgs
bosons

Hu =

(
H+
u

H0
u

) (
h̃+
u

h̃0
u

) (
h+
u

h0
u

)
1 2 1

2

Hd =

(
H0
d

H−d

) (
h̃0
d

h̃−d

) (
h0
d

h−d

)
1 2 −1

2

Gauge
bosons

g g̃ g 8 1 0

W W̃ W 1 3 0

B B̃ B 1 1 0

Table 2.1: Fields present in the MSSM. Index i = 1, 2, 3 numbers families.

2.2.1 R-parity

There are terms allowed by gauge symmetries and supersymmetry which we did not
include in our superpotential (2.24) for example

HuL,LQD,DDU,LLE. (2.25)
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Including them would violate baryon and lepton number conservation, which would go
agains experimental results. To exclude those terms we postulate a new symmetry, R-
parity. To all the fields we assign charges such that

PM = (−1)3(B−L), (2.26)

where B is the baryon number and L is the lepton number. The superpotential terms we
did not include in MSSM (2.25) are excluded since products of their PM are not equal to
one, however all the terms present in (2.24) are allowed.

2.2.2 Soft SUSY Breaking

If supersymmetry was preserved superpartners of known particles would have the same
mass as observed particles. However we did not observe any superpartners to the date,
and so SUSY has to be violated. There are many known mechanisms of SUSY breaking.
In order to investigate phenomenology of the models while remaining oblivious to the
specific mechanism we can parametrise this breaking by adding so called soft terms to the
Lagrangian. These are terms which preserve the gauge symmetries and explicitly break
supersymmetry without reintroducing quadratic divergences present in the SM. In case
of MSSM these terms take the form [33]

Lsoft = − 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)
−

(
˜̄UauQ̃Hu + ˜̄DadQ̃Hd + ˜̄EaeL̃Hd + h.c.

)
(2.27)

− Q̃†m2
QQ̃− ˜̄Um2

U
˜̄U † − ˜̄Dm2

D
˜̄D† − L̃†m2

LL̃− ˜̄Em2
E

˜̄E†

− m2
HuH

†
uHu −m2

Hd
H†dHd + (bHuHd + h.c.)

where, m2
Q,m2

U ,m2
D, m2

L,m2
E are 3× 3 matrices in the family space, which generate the

fermion masses, au,ad,ae, are 3×3 matrices in the family space, representing triple scalar
couplings. The terms M3,M2,M1 are gluino, wino and bino masses, while m2

Hu
,m2

Hd
and b

are SUSY breaking corrections to the Higgs potential.
Off-diagonal elements in matrices m2

Q, m2
U ,m2

D, m2
L,m2

E would introduce additional
flavour breaking. Hovewer experiments do not observe flavour breaking beyond the one
present in SM. Thus it is natural to assume these marices are diagonal, say

m2
U =

m2
U1

m2
U2

m2
U3

 . (2.28)

To avoid new flavour breaking from the couplings au,ad and ae we assume they are
proportional to the Yukawa couplings y,

au = Auyu , ad = Adyd , ae = Aeye. (2.29)

We also assume all soft terms are real, thus limiting the flavour breaking to the one coming
from SM. This setup is called minimal Flavour Violation (MFV) and it will be realized
in all the models we will discuss in this thesis.
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2.2.3 MSSM mass specrtum

Given the soft terms at a given energy scale we can compute the full mass spectrum of
MSSM. We will now rewiew this procedure at the tree level.

We will begin with squarks and sleptons, by finding the appropriate part of the MSSM
Lagrangian for each field f̃ .

Lmass f̃ = −
(
f̃ ∗L f̃ ∗R

)
m2

f

(
f̃L
f̃R

)
, (2.30)

For the third family this leads to the following mass matrices

m2
t̄ =

(
m2
Q3

+m2
t +

(
1
2 − 2

3 sin2 θW
)
m2
Z cos 2β mt (At − µ cotβ)

mt (At − µ cotβ) m2
U3

+m2
t + 2

3 sin2 θWm
2
Z cos 2β

)
,

m2
b̄ =

(
m2
Q3

+m2
b −

(
1
2 − 1

3 sin2 θW
)
m2
Z cos 2β mb (Ab − µ tanβ)

mb (Ab − µ tanβ) m2
D3

+m2
b − 1

3 sin2 θWm
2
Z cos 2β

)
,

m2
τ̄ =

(
m2
L3

+m2
τ −

(
1
2 − sin2 θW

)
m2
Z cos 2β mτ (Aτ − µ tanβ)

mτ (Aτ − µ tanβ) m2
E3

+m2
τ − sin2 θWm

2
Z cos 2β

)
, (2.31)

where m2
Q3

,m2
U3

,m2
D3

,m2
L3

,m2
E3

, At,Ab,Aτ are the soft terms from (2.27) , mt,mb,mτ are
msses of the fermionic superpartners of discussed scalars and mZ is the Z boson mass.
The angle θW is the Weinberg angle known from SM and angle β is given by the ratio of
vevs of the Higgs fields

tan β =
vu
vd

=
〈H0

u〉
〈H0

d〉
. (2.32)

The mass matrices m2
f from (2.31) are diagonalized by a rotation by angle θf such that

tan 2θf =
mf

2
12 +mf

2
21

mf
2
11 −mf

2
22

(2.33)

which gives the mass eigenstates(
f̃1

f̃2

)
= S

(
f̃L
f̃R

)
=

(
cos θf sin θf
− sin θf cos θf

)(
f̃L
f̃R

)
(2.34)

with masses

Sm2
f̄S
−1 =

(
m2
f̃1

0

0 m2
f̃2

)
. (2.35)

For other families the mass matrices can be approximated by diagonal ones because the
mixing terms are proportional to their small Yukawa couplings which are negligible com-
pared to the soft terms.

Chargino masses are defined by parts of the Lagrangian of the form

Lmass χ± = −1

2
(ψ±)TM±ψ

±, (2.36)
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where ψ± =
(
W̃+, h̃+

u , W̃
−, h̃−d

)
and M± is in block diagonal form

M± =

(
0 (Mχ±)T

Mχ± 0

)
(2.37)

consisting of

Mχ± =

(
M2

√
2mW sin β√

2mW cos β µ

)
, (2.38)

containing the soft terms M2,µ and W boson mass mW . To find the physical masses we
diagonalize the above matrix with two unitary matrices U i V :

U ∗Mχ±V
−1 =

(
mχ±1

0

0 mχ±2

)
, (2.39)

following a convention where mχ±1
≤ mχ±2

.
Part of the Lagrangian relevant for neutralino masses reads

Lmasa χ0 = −1

2
(ψ0)TMχ0ψ0, (2.40)

where ψ0 =
(
B̃, W̃ 0, , h̃0

d, h̃
0
u

)
. The neurtalino mass matrix is given by

Mχ0 =


M1 0 −mZ cosβ sin θW mZ sinβ sin θW
0 M2 mZ cosβ cos θW −mZ sinβ cos θW

−mZ cosβ sin θW mZ cosβ cos θW 0 −µ
mZ sinβ sin θW −mZ sinβ cos θW −µ 0

 .

(2.41)

We find the eigenvalues, diagonalising the above with a unitary matrix N such that

N ∗Mχ0N−1 =


mχ0

1
0 0 0

0 mχ0
2

0 0

0 0 mχ0
3

0

0 0 0 mχ0
4

 , (2.42)

requiring that |mχ0
1
| ≤ |mχ0

2
| ≤ |mχ0

3
| ≤ |mχ0

4
|.

2.2.4 Higgs sector and electroweak symmetry breaking

The Higgs potential in the MSSM takes the form

V = (µ2 +m2
Hu)(|H0

u|2 + |H+
u |2) + (µ2 +m2

Hd
)(|H0

d |2 + |H−d |2)

+ [b(H+
u H

−
d −H0

uH
0
d) + h.c]

+
1

2
g2|H+

u H
0
d
∗

+H0
uH
−
d
∗|2

+
1

8
(g2 + g′

2
)
(
|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |2
)2
. (2.43)
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To minimize it we notice that SU(2) invariance allows us to perform a transformation
such that H+

u = 0. The the minimisation condition ∂V/∂H−d = 0 gives H−d = 0, which
allows us to use only neutral components H+

u = 0 , H−d = 0 , H0
d = Hd , H

0
u = Hu. Now

the potential reads

V = (µ2 +m2
Hu)|Hu|2 + (µ2 +m2

Hd
)|Hd|2 + (bH0

uH
0
d + h.c)

+
1

8
(g2 + g′

2
)
(
|Hu|2 − |Hd|2

)2
. (2.44)

The Z boson mass takes the form

v2
u + v2

d = v2 =
4m2

Z

g2 + g′2
. (2.45)

This allows us to rewrite the minimisation condition ∂V/∂Hd = ∂V/∂Hu = 0 as

µ2 =
1

2

[
tan 2β

(
m2
Hu tan β −m2

Hd
cot β

)
−m2

Z

]
b = Bµ =

1

2
sin 2β

(
m2
Hu +m2

Hd
+ 2µ2

)
, (2.46)

thus expressing µ and B parameters through the soft terms, β angle and Z mass.
Two Higgs doublets consist of four complex scalars from which three are used to give

masses to Z and W± bosons. The remaining five are, a peusdoscalr A with mass

m2
A = 2µ2 +m2

Hu +m2
Hd
, (2.47)

two charged bosons
m2
H± = m2

A +m2
W , (2.48)

and two neutral ones h and H, whose masses are foun by diagonalising

Mh,H =

(
m2
A sin2 β +m2

Z cos2 β −(m2
Z +m2

A) sin β cos β
−(m2

Z +m2
A) sin β cos β m2

A cos2 β +m2
Z sin2 β

)
. (2.49)

The eigenstates take the form(
H
h

)
=

(
cosα sinα
− sinα cosα

)(
Hd

Hu

)
. (2.50)

The lighter of neutral bosons plays the role of the SM Higgs boson, its mass in the MSSM
reading

m2
h =

2m2
Zm

2
A cos2 2β

m2
A +m2

Z +
√

(m2
A +m2

Z)
2 − 4m2

Zm
2
A cos2 2β

. (2.51)

From this we get a tree level bound on the Higgs mass in the MSSM

m2
h ≤ m2

Z cos2 2β ≤ m2
Z . (2.52)

This bound is not fulfilled by observed masses and large loop corrections are required
to reach agreement with the experiment. Later on we will see this reintroduces the
naturalness problem in MSSM to certain extent.
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2.2.5 Renormalisation group equations

In the previous section we discussed obtaining the spectrum of the theory, staring with the
soft terms (2.27). To properly resum all corrections the soft terms should be computed
at the scale near the masses of the superpartners, here we will assume this scale is a
geometric average of the stop masses

MEWSB =
√
mt̄1(MEWSB)mt̄2(MEWSB). (2.53)

At this scale the one-loop correction to the effective potential is minimal [34]. This
means that the perturbative series converges as fast as possible, and our results containing
only one and two-loop corrections is as close as possible to the full result. Now we
will discuss how to obtain the soft terms at the MEWSB scale from their initial values
given by a SUSY breaking mechanism that usually occurs at a much higher scale. The
form of RGEs depends on on the renormalisation scheme. We will use values in the
Dimensional reduction (DR) scheme which is the most convenient for SUSY calculations
since it preserves SUSY in radiative corrections [33] contrary to a usually more popular
MS scheme.

In MSSM RGEs for the gauge couplings take the form

d

dt
gi =

1

16π2
big

3
i , bi = (

33

5
, 1,−3), (2.54)

where t = ln(Q/Q0) , Q is the renormalisation scale and Q0 is some reference scale. A
very important feature of the MSSM is the fact that the gauge couplings unify at a certain
energy scale, giving hope that we can embed MSSM in a theory which unifies all the forces.

RGEs of the gaugino masses read

d

dt
Mi =

2

16π2
Mibig

2
i , bi = (

33

5
, 1,−3). (2.55)

Masses of quarks and leptons are generated by the Higgs mechanism and their values
are proportional to elements of the matrices h. Since the firs two families are much
lighter than the third one, we can neglect their couplings and keep only diagonal elements
generating masses of the third families

yt =

0 0 0
0 0 0
0 0 yt

 , yb =

0 0 0
0 0 0
0 0 yb

 , yτ

0 0 0
0 0 0
0 0 yτ

 . (2.56)

RGEs of those couplings read

d

dt
yt =

yt
16π2

(
6|yt|2 + |yb|2 −

16

3
g2

3 − 3g2
2 −

13

15
g2

1

)
,

d

dt
yb =

yb
16π2

(
6|yb|2 + |yt|2 + |yτ |2 −

16

3
g2

3 − 3g2
2 −

7

15
g2

1

)
, (2.57)

d

dt
yτ =

yb
16π2

(
4|yτ |2 + 3|yb|2 − 3g2

2 −
9

5
g2

1

)
.
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Using the above simplification and keeping in mind the soft terms a are proportional to
Yukawa couplings, we can replace them with A-terms At , Ab and Aτ from (2.29). Their
RGEs read

8π2 d

dt
At = 6|yt|2At + |yb|2Ab +

16

3
g2

3M3 + 3g2
2M2 +

13

15
g2

1M1,

8π2 d

dt
Ab = 6|yb|2Ab + |yt|2At + |yτ |2Aτ +

16

3
g2

3M3 + 3g2
2M2 +

7

15
g2

1M1,

8π2 d

dt
Aτ = 4|yτ |2Aτ + 3|yb|2Ab + 3g2

2M2 +
9

5
g2

1M1. (2.58)

RGEs of the scalars apart from gauge interactions, contain terms coming from in-
teractions with scalar which are proportional to their masses (2.27), and a hypercharge
contribution

X = m2
Hu −m2

Hd
+ Tr[m2

Q + m2
D + m2

E − 2m2
U −m2

L], (2.59)

together with Yukawa coupling contributions

Xt = 2|yt|2(m2
Hu +m2

Q3
+m2

U3
+ A2

t ),

Xb = 2|yb|2(m2
Hd

+m2
Q3

+m2
D3

+ A2
b), (2.60)

Xτ = 2|yt|2(m2
Hd

+m2
L3

+m2
E3

+ A2
τ ).

(2.61)

For the first two families the result is,

16π2 d

dt
m2
f = −8

3∑
i=1

Ci(f)g2
iM

2
i +

6

5
Yfg

2
1X, (2.62)

where Yf is the hypercharge of the field from (2.1), and the constants C are

C1(f) =
3

5
Y 2
f ,

C2(f) =

{
3
4

dla f = Q,L,Hu, Hd

0 dla f = U,D,E
(2.63)

C3(f) =

{
4
3

dla f = Q,U,D
0 dla f = E,L,Hu, Hd,

while for the third family

16π2 d

dt
m2
Q3

= −32

3
g2

3M
2
3 − 3g2

2M
2
2 −

2

15
g2

1M
2
1 +Xt +Xb +

1

5
g2

1X,

16π2 d

dt
m2
U3

= −32

3
g2

3M
2
3 −

32

15
g2

1M
2
1 + 2Xt −

4

5
g2

1X,

16π2 d

dt
m2
D3

= −32

3
g2

3M
2
3 −

8

15
g2

1M
2
1 + 2Xb +

2

5
g2

1X, (2.64)

16π2 d

dt
m2
L3

= −6g2
2M

2
2 −

6

5
g2

1M
2
1 +Xτ −

3

5
g2

1X,

16π2 d

dt
m2
E3

= −24

5
g2

1M
2
1 + 2Xτ +

6

5
g2

1X.



18 CHAPTER 2. SUPERSYMMETRIC SOLUTION TO PROBLEMS OF SM

Large contributions from the gaugino masses quickly increase the masses so their elec-
troweak scale value can be large even for very small high energy values.

RGEs of the parameters in the Higgs potential read

16π2 d

dt
m2
Hu = −6g2

2M
2
2 −

6

5
g2

1M
2
1 + 3Xt +

3

5
g2

1X,

16π2 d

dt
m2
Hd

= −6g2
2M

2
2 −

6

5
g2

1M
2
1 + 3Xb +Xτ −

3

5
g2

1X,

16π2 d

dt
µ = µ

(
3|yt|2 + 3|yb|2 + |yτ |2 − 3g2

2 −
3

5
g2

1

)
, (2.65)

16π2 d

dt
B = 6|yt|2At + 6|yb|2Ab + 2|yτ |2Aτ + 6g2

2M2 +
6

5
g2

1M1.

It will be very important for our future discussion that the biggest contribution here
usually comes from Xt. This happens because Xb and Xτ are proportional to their smaller
Yukawa couplings (yb, yτ < yt). The X does not play a role if the soft masses of all the
scalars are similar and cancel out in X (2.59). The fastest decreasing mass (as we decreases
the renormalisation scale) is m2

Hu
. This is an important fact since this is the mass which

usually changes its sign, thus triggering electroweak symmetry breaking.

2.2.6 Fine-tuning

While supersymmetry ameliorates hierarchy problem of the SM it can introduce a different
hierarchy between heavy superpartners and the elecroweak scale. This is often called
the little hierarchy problem of MSSM. To see the fine-tuning, that is an unacceptable
sensitivity of observables with respect to high energy SUSY braking parameters. We
start by inverting the equation for finding the minimum of the potential (2.46)

m2
Z = tan 2β

[(
m2
Hu +

tu
vu

)
tan β −

(
m2
Hd

+
td
vd

)
cot β

]
− 2µ2, (2.66)

thus expressing the Z boson mass through the soft terms. As we discussed in Section 2.2.4
the Higgs mass is bounded from above by mZ at the tree level and pushing it to the
observed value of 125GeV requires large radiative corrections. The biggest one comes
from top-stop loop [35]

δm2
h =

3g2m4
t

8π2m2
W

[
log

(
M2

S

m2
t

)
+
X2
t

M2
S

(
1− X2

t

12M2
S

)]
, (2.67)

where M2
S =

√
mt̃1mt̃2 is the average of stop masses, and Xt = mt(At − µ cot β) is an

off diagonal element of stop mass matrix. Parameters in (2.66) also receive top-stop loop
corrections, which in the simplest approximation read

δm2
Hu|stop = −3Y 2

t

8π2

(
m2
Q3

+m2
U3

+ |At|2
)

log

(
Mu

TeV

)
, (2.68)
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where m2
Q3
m2
U3

and At are the high scale SUSY breaking soft terms, and Mu is the scale
of SUSY breaking. Thus requiring correct Higgs mass gives large corrections that have to
cancel out in the right hand side of (2.66) to predict the correct value of MZ .

Now we can define fine-tuning with respect to parameter a as [36]

∆a =

∣∣∣∣∂ lnMZ

∂ ln a

∣∣∣∣ . (2.69)

To find a specific value we vary parameter a then solve RGEs from Mu to MEWSB scale
and use (2.66) to numerically calculate the derivative. After doing so for all the free
parameters we calculate

∆ = max
ai

∆ai , (2.70)

to find our final value for the whole set.

2.3 Numerical implementation

We will outline the implementation of the RG-solver and spectrum generator we developed
to implement the results from previous section. The numerical procedure we use is similar
to the ones used in existing codes [37, 38, 39]. We work with quantities renormalized in DR
and use renormalization group equations (RGE), to iteratively find low energy parameters
for a given set of high energy soft terms.

2.3.1 MZ Scale

At the scale MZ we include radiative corrections to couplings. We set Yukawa couplings
using the tree-level relations

yt =
mt

√
2

v sin β
, yb =

mb

√
2

v cos β
, yτ =

mτ

√
2

v cos β
, (2.71)

where mt,mb,mτ are fermion masses and v is the Higgs vev. At the first iteration we use
physical masses and SM Higgs vev v ≈ 246, 22 GeV. During subsequent iterations above
quantities are renormalized in DR scheme and one-loop SUSY corrections are included.
To calculate the top mass we use 2-loop QCD corrections [40] and 1-loop corrections from
super-partners from the appendix of [41]. While calculating the bottom mass we follow

Les Houches Accord [42], starting from running mass in MS scheme in SM mb
MS
SM . Next

applying the procedure described in [43] we find DR mass at MZ , from which we get
MSSM value by including corrections described in appendix D of [41]. While calculating
the tau mass we include only leading corrections approximated in [41]. We calculate the
Higgs vev in the MSSM using

v2 = 4
M2

Z + Re ΠT
ZZ(MZ)

g2
2 + 3g2

1/5
, (2.72)

where we include Z self interactions described in appendix D of [41]. To calculate g1 , g2,
g3 in DR in the MSSM we use the procedure described in appendix C of [41].
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Calculate radiative corrections to couplings
gi(MZ),ht(MZ),hb(MZ),hτ (MZ) (use SM val-
ues in the first run)

?
RGE : Mz →Mu

Include soft breaking terms given at high scale
Mu. Run from Mu → 1/R with 5D RGEs and
1/R→MEWSB with four dimensional RGEs.

?
RGE : Mu →MEWSB

Iteratively calculate µ,Bµ and the mass spec-
trum (in the first run find estimates for
MEWSB ,µ and Bµ)

?
if µ converged

Calculate physical masses

6

R
G

E
:
M

E
W
S
B
→

M
Z

Figure 2.1: Schematic of the numerical algorithm. Sub-
sequent steps are described in the appendix.

2.3.2 RGE and Mu scale

After calculating coupling constants at the scale MZ we numerically solve RGEs [33],[44],
to find their values at the scale Mu, at which we include the soft breaking terms. Then
we solve RGEs again to find soft terms, coupling constants, tan β and Higgs vev v at the
scale MEWSB =

√
mt̃1(MEWSB)mt̃2(MEWSB). At first iteration we take µ = sgn(µ) GeV

and Bµ = 0 and run to the scale at which the above equation is fulfilled.

2.3.3 Electroweak symmetry breaking

In order to obtain correct electroweak symmetry breaking we use minimization conditions
for the scalar potential to find new values of µ and Bµ. We include radiative corrections
in these equations by the substitution

mHu → mHu +
tu
vu

, mHd → mHd +
td
vd
. (2.73)
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We include full one-loop corrections to tu and td presented in appendix E of [41] and leading
two-loop corrections [45, 46, 47, 48, 49]. Since these corrections depend on sparticle masses
which in turn depend on the µ parameter that we aim to calculate, an iterative calculation
is performed to obtain new values of µ and Bµ.

If the new values differ significantly from the ones obtained in previous repetition of
the whole algorithm described above, we run back to the MZ scale and repeat the whole
calculation once again. If however the values of µ and Bµ converged, we can move on to
the calculation of physical masses.

2.3.4 Calculation of physical masses

To calculate physical masses we use only leading corrections described in [41] everywhere
but the Higgs sector. In the Higgs masses calculation we use full one-loop corrections
from [41] and leading two-loop corrections described in [45, 46, 47, 48, 49].

2.3.5 Constraints imposed on the scalar potential

To chceck if a given set of soft terms describes a realistic physical situation we check if
the scalar potential is not unbounded from below (UFB). And if the potential dose not
have minimums deeper than the one breaking electroweak symmetry, which would break
SU(3) or U(1)em (CCB). [50, 51, 52, 53, 54] . We include simple tree level bounds:

• for UFB
|µBµ| ≤ m2

Hu +m2
Hd

at scale Mx ∈ [MEWSB,Mu], (2.74)

• and CCB

A2
f ≤ 3(m2

fL
+m2

fR
+ µ2 +m2

Hu) at scale Mx ∈ [MEWSB,Mu]. (2.75)

2.3.6 Fine-tuning

After the calculation of the spectrum is finished, one has a whole set of parameters and
couplings that predict correct electroweak symmetry breaking. In order to calculate fine-
tuning we solve the RGEs from Mu scale down to MEWSB with one of the fundamental
parameters ai changed slightly at the high scale Mu . Then at the scale MEWSB we
recalculate the spectrum and use minimization conditions to calculate a new value of
tan β and to obtain our new prediction for m2

Z , which means that we calculate numerically
the derivative in the definition of fine-tuning (2.69). We repeat that procedure for all
parameters ai and obtain our final result as a maximum of results obtained for each of
those parameters (as in (2.70)).

2.4 Naturalness of gravity and gauge mediation

Gravity mediation is a generic concept in which SUSY breaking is mediated to the visible
sector through gravitational interactions. The simplest and most popular of such models
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called minimal supergravity (mSUGRA) predicts parameters which are unified at the scale
of SUSY breaking Mu, so the soft terms (2.27) take the form

M1 = M2 = M3 = M 1
2

At = Ab = Aτ = A (2.76)

mHu = mHd = mQi = mUi = mDi = mLi = mLi = m0 i = 1, 2, 3

In this section we will compare this model with a theoretically more promising class of
models where SUSY breaking is mediated through gauge interactions.

Meade, Shih and Seiberg [55] defined gauge mediation models as those in which vis-
ible and hidden sectors completely decouple when gauge couplings vanish. Their most
important result was that, in general, in such models there can be only six parameters
determining the low energy sparticle spectrum. We parametrise the high energy soft terms
with three parameters corresponding to gaugino masses

M1 =
α1

4π
mY , M2 =

α2

4π
mw, M3 =

α3

4π
mc, (2.77)

and three parameters determining masses of scalars Λ2
c , Λ2

w , Λ2
Y . Scalar superpartner

soft masses are given by

m2
f̃

= 2

[
C3(f)

(α3

4π

)2

Λ2
c + C2(f)

(α2

4π

)2

Λ2
w + C1(f)

(α1

4π

)2

Λ2
Y

]
, (2.78)

where αi = g2
i /4π

2 and

C1(f) =
3

5
Y 2
f

C2(f) =

{
3
4

for f = Q,L,Hu, Hd

0 for f = U,D,E
(2.79)

C3(f) =

{
4
3

for f = Q,U,D
0 for f = E,L,Hu, Hd.

These parameters above are assumed do be independent of each other at the high scale
so the whole set of parameters used in fine-tuning calculation contains

ai = {mY ,mw,mc,ΛY ,Λw,Λc, µ, Bµ}. (2.80)

A specific model of gauge mediation predicts the above quantities in terms of physical
parameters. We will use two particular examples from [56]. The first one (GGM1) is
defined by the superpotential

W1 = Xi(y
iQ̄Q+ riŪU + siĒE), (2.81)

with three independent parameters predicting the scalar mass parameters

ΛQ =
yiFi
yjXj

ΛU =
riFi
rjXj

ΛE =
siFi
sjXj

, (2.82)
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and consequently

mc = 2ΛQ + ΛU , mw = 3ΛQ, mY =
4

3
ΛQ +

8

3
ΛU + 2ΛE,

Λ2
c = 2Λ2

Q + Λ2
U , Λ2

w = 3Λ2
Q, Λ2

Y =
4

3
Λ2
Q +

8

3
Λ2
U + 2Λ2

E. (2.83)

(2.84)

the full set of free parameters used while calculating fine-tuning reads

aGGM1
i = {ΛQ,ΛU ,ΛE, µ, Bµ}. (2.85)

Superpotential of the second model (GGM2) reads

W2 = Xi(y
iQ̄Q+ riŪU + siĒE + λiqqq̃ + λilll̃) + F iXi. (2.86)

Now we have five independent parameters predicting soft masses

ΛQ =
yiFi
yjXj

ΛU =
riFi
rjXj

ΛE =
siFi
sjXj

Λq =
λiqFi

λjqXj

Λl =
λilFi

λjlXj

. (2.87)

Resulting soft masses are given by

mc = Λq + 2ΛQ + ΛU , mw = Λl + 3ΛQ, mY =
2

3
Λq + Λl +

4

3
ΛQ +

8

3
ΛU + 2ΛE,

(2.88)

Λ2
c = Λ2

q + 2Λ2
Q + Λ2

U , Λ2
w = Λ2

l + 3Λ2
Q, Λ2

Y =
2

3
Λ2
q + Λ2

l +
4

3
Λ2
Q +

8

3
Λ2
U + 2Λ2

E.

The full set of parameters of GGM2 parameters used in fine-tuning calculation is

aGGM2
i = {ΛQ,ΛU ,ΛE,Λq,Λl, µ, Bµ}. (2.89)

Gauge mediation models have been known to struggle with fine-tuning issues because
only negligible A-terms are generated. Large mixing in the sfermion mass matrices would
increase their contribution to Higgs mass as in (2.67), making it easier to push the Higgs
boson mass to 125 GeV. On the other nonuniversal gaugino masses make it easier to
avoid the most severe experimental bounds coming from gluino mass. The nonuniversal
scalar masses help avoiding severe bounds on masses of the squraks of the first and second
generation. In our numerical calculations we used the following bounds on sparticle masses

mg̃ ≥ 1500GeV,

mũi ,md̃i
,mc̃i ,ms̃i ≥ 1500GeV i = 1, 2,

mt̃i ≥ 560GeV i = 1, 2, (2.90)

mb̃i
≥ 620GeV i = 1, 2,

mχ̃1 ≥ 250GeV.
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Figure 2.2: Fine-tuning in models GGM1 and GGM2 as well as in the general six
parameter model (left panel). Fine-tuning in mSUGRA model calculated using standard
definition (2.69) as well as using derivative of the Higgs mass instead of the Z boson mass
(right panel).

We also fix the values Mu = 108 GeV and tan β = 40.
Figure 2.2 shows minimal amount of fine-tuning predicted by the above models (in-

cluding mSUGRA) as a function of the Higgs mass. As we can see generally models with
larger number of free parameters predict smaller amount of fine-tuning. This is possible
because they allow us to increasing the Higgs boson mass with subdominant corrections.
We also verified that varying the SUSY breaking scale Mu between 106 GeV and 1012

GeV does not change the shape of the result, while thelowest possible fine-tuning changes
by about thirty percent (with lower scales predicting less fine-tuning).

In the general model with 6 parameters, the biggest sources of fine-tuning are colored
contributions. Namely the gluon mass parameter mc or contributions to scalar masses
Λ2
c . The contribution from µ parameter is small in solutions which minimize fine-tuning

(lower border of allowed fine-tuning regions in our plots), because it can be decreased by
increasing Λ2

Y and Λ2
w and decreasing Λ2

c which in turn increases high scale m2
Hu

without
affecting masses of coloured particles. The value of m2

Hu
decreases with decreasing energy

scale and eventually runs negative to break electro-weak symmetry. As we can see from
large tan β approximation of (2.66)

m2
Z

2
≈ −m2

Hu − |µ|2. (2.91)

increasing high scale m2
Hu

makes it run down towards less negative value and so decreases
required µ. Since coloured particle masses which would affect fine-tuning the most, do not
changed, we obtain a smaller µ parameter and similar fine-tuning. Meanwhile, increased
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Λ2
Y and Λ2

w result in larger subdominant corrections to Higgs mass. The contribution from
Bµ parameter is usually small because it enters the calculation only through potential
minimization condition, and so the result is suppressed by a factor coming from (2.66)

∂

∂ tan β
tan 2β tan β =

∂

∂ tan β

tan2 β

1− tan2 β
=

2 tan β

(1− tan2 β)2
∝ 1

tan3 β
(2.92)

which is very small for large tan β.
In model GGM2 squark and gluino masses have contributions from all parameters con-

nected with color interactions ΛQ,ΛU ,Λq. Consequently fine-tuning coming from coloured
particle masses is distributed among these fundamental parameters. The worst fine-tuning
contribution comes typically from the µ parameter. The same can be said about GGM1
model. The biggest source of fine-tuning is usually µ parameter.

The key result of this section is that fine-tuning in gauge mediated supersymmetry
models is not higher than in a more standard gravity mediated case. This is surprising
because A-terms which vanish in GGM are considered to be crucial for obtaining the
correct Higgs mass within MSSM. The only other source of corrections are loop effects
which require heavy superpartners which in turn, generically lead to higher fine tuning.

2.5 Constraints from muon anomalous magnetic mo-

ment

Muon anomalous magnetic moment is one of the few observables which do not agree with
their SM predictions. The discrepancy between the experimental result from BNL [57] and
the SM prediction is more than 3σ. SM predictions have been independently evaluated
by several different groups [58, 59, 60] and their results are in a very good agreement.
Currently this discrepancy between the SM prediction and the experiment is

∆aµ ≡ aexp
µ − ath

µ = (28.7± 8.0)× 10−10. (2.93)

This discrepancy is similar in size to the SM electroweak contribution and MSSM contri-
bution from sleptons can accommodate it.

2.5.1 MSSM (g − 2)µ contribution

The bulk of the MSSM contribution to (g − 2)µ is given by [61, 62] chargino-sneutrino
contribution which approximately reads

δaχµ =
αm2

µ µM2 tan β

4π sin2 θW m2
ν̃µ

(
fχ(M2

2/m
2
ν̃µ)− fχ(µ2/m2

ν̃µ)

M2
2 − µ2

)
, (2.94)

and the bino-smuon contribution approximated by

δaNµ =
αm2

µ M1(µ tan β − Aµ)

4π cos2 θW (m2
µ̃R
−m2

µ̃L
)

(
fN(M2

1/m
2
µ̃R

)

m2
µ̃R

− fN(M2
1/m

2
µ̃L

)

m2
µ̃L

)
, (2.95)
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where mµ̃L and mµ̃R are the smuon masses, and the loop functions read

fχ(x) =
x2 − 4x+ 3 + 2 lnx

(1− x)3
, fχ(1) = −2/3 , (2.96)

fN(x) =
x2 − 1− 2x lnx

(1− x)3
, fN(1) = −1/3 .

In most of the MSSM parameter space the SUSY contribution is dominated by the
chargino-sneutrino contribution (2.94). This contribution decouples when chargino or
muon sneutrino masses are big. However this contribution can still be of the order of the
SM EW one, even if these masses are many times larger than the W boson mass. This
happens because the suppresion can be compensated by large values of tan β.

2.5.2 Muon anomalous magnetic moment vs. naturalness

First let us note that accommodating the (g − 2)µ discrepancy (2.93) is impossible in
the mSUGRA model. The reason is that all scalar masses have to be unified at the high
scale, and severe experimental constraints push this unified mass towards high values. As
a result slepton masses are also very heavy and the SUSY contribution (see (2.94) and
(2.95)) is heavily suppressed.

General gauge mediation models allow different masses for coloured squarks and color-
less sleptons (2.78). This means we can still accommodate the (g−2)µ discrepancy (2.93)
in GGM models. Figure 2.3 shows the SUSY contribution in GGM models discussed in
Section 2.4. We can see that only the general case (with 6 free parameters) predicts δaµ
within 1σ bound for mh = 125 GeV, while model 2 falls near 2σ bounds and model 1 is
far beyond 2σ. Even the most general case makes it hard to increase δaµ further, since all
slepton generations have unified mass at the high scale. Unlike the first two generations
the 3rd generation gets negative contribution from its large Yukawa coupling

16π2 d

dt
m2
L3
⊃ 2|hτ |2(m2

Hd
+m2

L3
+m2

E3
+ A2

τ ). (2.97)

This makes stau tachionic before smuon is light enough to reproduce the required value
of δaµ.

Another important point is that small masses required in the slepton sector leave us
with large squark corrections, needed to increase the Higgs mass, and those have severe
impact on fine-tuning. This means all solutions with large (g − 2)µ contribution will be
quite fine-tuned. This is shown in the right panel of Figure 2.3, where all the reagions
predict fine-tuning roughly four times higher than the minimal one shown in Figure 2.2.

2.5.3 Maximal chargino and smuon masses from (g − 2)µ

From the previous two section it is clear that a sufficiently light smuon and chargino are
required to accommodate the (g − 2)µ discrepancy with MSSM contribution. There is
actually one loophole since there is a contribution proportional to the µ term which does
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Figure 2.3: Regions of largest possible SUSY contribution to muon (g − 2)µ and corre-
sponding fine-tuning

not decouple when these masses are large, however it requires µ to be in the multi TeV
region to accomodate the discrepancy, and thus predicts a highly unnatural scenario. We
will not discuss this possibility further.

Now we proceed to we calculate the upper bounds on the smuon and chargino masses
as a function of tan β. We perform a scan over the relevant parameters. As discussed
in the previous sections, the MSSM contribution to (g − 2)µ depends mostly on tan β,
gaugino masses M1, M2, smuon and sneutrino soft terms, mE1 = mE2 and mL1 = mL2 ,
and the µ parameter. We vary these parameters in the following ranges:

1.5 ≤ tan β ≤ 50 ,

0 GeV ≤ |M1| ≤ 1500 GeV ,

40 GeV ≤ |M2| ≤ 1500 GeV , (2.98)

90 GeV ≤ mL2 ,mR2 ≤ 1500 GeV ,

50 GeV ≤ |µ| ≤ 1500 GeV .

We calculated the full one loop and the leading two-loop supersymmetric contributions
to the muon anomalous magnetic moment, given in [62]. In the two-loop contribution we
set MSUSY (defined in [62]) to be equal to either the bino or smuon mass, whichever is
lighter. The largest positive MSSM contribution to (g − 2)µ is obtained when µ, M1 and
M2 have positive signs because then both the chargino-sneutrino (2.94) and bino-smuon
(2.95) contributions are positive. We have checked this by scanning over all possible sign
assignments of µ, M1 and M2.
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Figure 2.4: Left panel: Upper bound on the lightest chargino and smuon masses for sev-
eral values of tan β obtained by requiring that the (g−2)µ accommodate the experimental
result with 1σ accuracy. Right panel: Lower bound on tan β as a function of a common
experimental lower bound on the smuon and chargino masses resulting in the indicated
aSUSY
µ .

Left panel of Figure 2.4 shows the upper bounds on the masses of the lighter smuon and
chargino consistent with the (g − 2)µ experimental result at 1σ level. The bounds come
from requirement that the SUSY contribution to aµ pushes the result to differ from the
experimental central value by at most one standard deviation. For very large tan β ∼ 50,
smuon masses up to a TeV are sufficient to explain the (g − 2)µ anomaly. With the
lowest values allowed by LEP [63], namely 103.5 and 100 GeV for chargino and smuon
mass respectively tan β & 2 is required to explain the (g − 2)µ anomaly. The right panel
of Figure 2.4 shows a lower bound on tan β as a function of a common (hypothetical)
experimental lower bound on the masses required to obtain a given value of ∆aSUSY

µ . The
more recent LHC limits on the smuon and chargino masses are not as generic as the LEP
ones. For example with mass-degeneracies smaller than about 10%, the LHC does not set
any constraints.

2.5.4 Upper bounds on the stop masses

In the previous section we described how the lower limit on the smuon and chargino
masses results in a lower bound on tan β, if the (g − 2)µ anomaly is to be explained by
supersymmetric contributions. Now we will discuss how such a bound can be translated
into an upper bound on the stop masses [64, 65].

We will begin by recalculating the upper bound on the stop masses as a function of
tan β. The simple one-loop formula for the Higgs mass in the MSSM reads:

m2
h ≈ m2

Z cos2 2β +
3g2m4

t

8π2m2
W

[
ln

(
m2
t̃

m2
t

)
+
X2
t

m2
t̃

(
1− X2

t

12m2
t̃

)]
, (2.99)

where mt̃ ≡
√
mt̃1mt̃2 , mt̃i are the eigenvalues of the stop mass matrix (2.31) and Xt ≡

At − µ/ tan β with At being the SUSY breaking top trilinear coupling. Once we set the
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stop masses, the Higgs mass is minimized for vanishing stop-mixing parameter Xt. Thus,
we will consider Xt = 0 since we are interested in the upper bound on the stop masses.

We calculated the Higgs mass using FeynHiggs 2.10.0 [66, 67] which combines the ex-
isting fixed-order results for the radiative corrections up to two loops with a resummation
of the leading and subleading logarithmic contributions from stops to all orders. The in-
clusion of the latter allows for a reliable prediction of the Higgs mass also for stops much
heavier than the TeV scale.

The Higgs mass measurement at the LHC has reached a very good experimental pre-
cision [68, 69]

mh = 125.09± 0.21(stat)± 0.11(syst)GeV , (2.100)

with which the dependence of the Higgs mass on other than stops sparticle masses (mainly
gauginos and higgsinos) has to be taken into account. In order to explain the (g − 2)µ
anomaly we need rather light charginos. On the other hand, we try to find a conservative
upper bound on the stop masses. Thus in the following analysis we fix M2 = µ = 1
TeV. Lighter charginos would result in a larger Higgs mass, hence, a more stringent upper
bound on the stop masses. For example, we find that for M2 = µ = 200 GeV the Higgs
mass is typically bigger by about 1.5 GeV than in the case M2 = µ = 1 TeV. We also
fix M3 = 2.5 TeV to be on the safe side from the LHC gluino mass bounds. We checked
that increasing M3 up to mt̃ decreases the prediction for the Higgs mass only by several
hundreds of MeV.

The last parameter whose value has a non-negligible impact on the Higgs mass is the
pseudoscalar Higgs mass, mA. It controls the mixing between the SM-like and the heavy
MSSM Higgs. Smaller values of mA result in a smaller Higgs mass so, in order to be
conservative, we use the values of mA equal to the current experimental lower limits. For
tan β & 15, the best limit comes from the Higgs searches in the ττ channel performed
by ATLAS and CMS [70, 71]. It varies from about 400 GeV for tan β = 15 up to 950
GeV for tan β = 50. For a smaller tan β, the main constraint comes from the LHC Higgs
coupling measurements which sets the limit mA & 400 GeV almost independently of tan β
for tan β & 2 [72] required to explain the (g − 2)µ anomaly. We found that for mA = 400
GeV the Higgs mass is smaller by about 2 GeV than in the case of decoupled A.

In Figure 2.5 we plot the Higgs mass versus mt̃ for several values of tan β with the
remaining MSSM parameters set to the values described above. In the calculation we
use the top mass from the recent combination of the LHC and Tevatron results which
yields mt = 173.34 ± 0.76 GeV [73]. The upper bound on mt̃ is below 25 TeV even for
tan β = 5. For tan β = 10, the upper bound is about 6 TeV using the central values of
the FeynHiggs prediction and the measured values of the Higgs and top masses. After
taking into account the theoretical uncertainty reported by FeynHiggs (about 1 GeV for
mt̃ ≈ 10 TeV), using the top mass 1σ below the central value (which reduces the Higgs
mass by about 0.7 GeV) and imposing the Higgs mass of 125.7 GeV (which is 2σ above
the central value) the upper bound on the stop masses for tan β = 10 is relaxed to
about 9 TeV. We can combine now the results shown in Figure 2.4 with the Higgs mass
dependence on tan β and the stop masses, for the vanishing stop mixing. In the left panel
of Figure 2.6 we plot the contours of the upper bounds on the stop masses in the plane of
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Figure 2.5: Left: The Higgs mass versus mt̃ for several values of tan β. Other relevant
MSSM parameters are: Xt = 0, M3 = 2.5 TeV, M2 = µ = 1 TeV and mA is set to the
current lower experimental limit, see the text for more details. The width of the bands
corresponds to the theoretical uncertainty, as calculated by FeynHiggs, added linearly to
the uncertainty from varying the top mass within 1σ from the experimental central value.
Right: Zoom of the plot on the left.

the hypothetical experimental lower bounds on the lightest chargino and smuon masses,
if one requires consistency with the (g − 2)µ measurement at 1σ level. In this plot we
take the experimental upper bound on the Higgs mass at 95 % C.L. which is, according
to eq. (2.100), about 125.7 GeV. In the theoretical prediction for the Higgs mass we use
µ = M2 = 1 TeV, mA equal to current experimental lower limit and take into account the
theoretical uncertainties reported by FeynHiggs (in order to get conservative upper bound
we assume that FeynHiggs overestimate the Higgs mass). Moreover, we use the value of
the top mass, mt = 172.58 GeV, which is 1σ below the current experimental central value.
With these conservative numbers we find that the LEP constraints set the upper bound
on the stop masses of about 7000 TeV. The left panel of Figure 2.6 demonstrates that
relatively mild improvements of the limits on the chargino and smuon masses would have
a strong impact on the upper bound on the stop masses. The reason is that the tree-level
contribution to the Higgs mass strongly depends on tan β as long as tan β is not large.
While the LHC limits are not generic, for typical spectra the smuon and chargino masses
are excluded at least up to 300 GeV [74]. This is enough to bring down the upper bound
on the stop masses to about 8 TeV.

An electron-positron collider with center-of-mass energy
√
s = 500 GeV, such as the

planned ILC [75] or upgraded TLEP [76] could probe chargino and slepton masses up
to 250 GeV, thus bringing the robust upper bound on the stop masses down to 10 TeV.
Tree-level Higgs mass is saturated for large tan β and so, it is difficult to move the upper
bound on the stop masses far below 10 TeV, as it as we can see in the left panel of
Figure 2.6. In addition to the improvement in the stop mass bound from better limits
on the smuon and chargino masses, a slightly better precision may come from stronger
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Figure 2.6: Left panel: The contours of the upper bounds on the stop masses in the plane
of hypothetical experimental lower bounds on the lightest chargino and smuon masses and
requiring the prediction for (g − 2)µ to be within 1σ from its experimental value. Right
panel: The upper bound on the stop masses as a function of a common (hypothetical)
experimental lower bound on the chargino and smuon masses for several values of aSUSY

µ .
The values of aSUSY

µ are as in Fig.1.

limits on mA and from improvements in the top mass measurement. Similarly as in
Figure 2.4, for a broader qualitative picture of the upper bounds on the stop masses, it
is interesting to see how the results change if different experimental values of (g − 2)µ
are taken. In the right panel of Figure 2.6 we plot the upper bound on the stop masses
as a function of common hypothetical experimental limits on the smuon and chargino
masses for several values of aSUSY

µ . This plot is especially interesting since future lepton
colliders are expected to set similar experimental lower limits on both masses. These
bounds are roughly equal to a half of the center of mass energy of the colliding leptons.
Assuming that the theoretical (g − 2)µ is consistent with the current measurement at
2σ, the upper bound on the stop masses is somewhat relaxed. However, if the lower
experimental limit on the chargino and smuon masses was set around 300 GeV even the
2σ agreement with the current (g−2)µ measurement would imply the upper bound on the
stop masses around 10 TeV. The stops with masses around 10 TeV are beyond the LHC
reach. While precise studies of the discovery potential of the 100 TeV hadron collider are
still missing, preliminary simulations indicate that such masses could be probed at that
collider provided that gluinos and other squarks are in a similar mass range [77]. A direct
production of 10 TeV stops is, of course, more challenging. Nevertheless, in the recent
article [78] it is argued that directly produced stops decaying to a top and a neutralino
could be discovered (excluded) up to 6.5 (8) TeV with 3000 fb−1 of integrated luminosity
at a 100 TeV collider.

To sum up, if SUSY is responsible for the (g − 2)µ anomaly, the chargino and smuon
masses are strongly constrained from above. In consequence, experimental lower limits
on the chargino and smuon masses lead to lower bounds on tan β. We have translated
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the bounds on tan β into upper bounds on the stop masses from the requirement that
the predicted Higgs mass does not overshoot the experimental value. The main results
are presented in Figure 2.6. The LEP limits on the smuon and chargino masses result in
an upper bound on the stop masses exceeding 103 TeV. However, even mild improvement
of the LEP limits results in a significant improvement of this upper bound. Current
LHC limits on smuon and chargino masses obtained for not too compressed gaugino and
higgsino spectra reduce the upper bound on the stop masses to about 10 TeV. Electron-
positron colliders operating at

√
s = 500 (1000) GeV would allow to set the upper bound

on the stop masses to about 10 (5) TeV. Such stops could be discovered at the 100 TeV
hadron collider.

The main conclusion of this section is that, with the help of the discussed future
colliders, SUSY should be discovered, if superpartners are responsible for the explanation
of the (g − 2)µ anomaly.

2.5.5 Possible loophole

There exists a contribution to (g − 2)µ that does not decouple in the limit of very heavy
higgsino, hierarchically heavier than gauginos and sleptons even if the latter are very
heavy. This effect comes from the Feynman diagram with the loop involving bino and
smuon with a chirality flip occurring on the smuon line and it is approximately given by
(2.95). This diagram is obviously suppressed by the smuon masses but it is proportional
to the smuon mixing which, in turn, is proportional to Aµ − µ tan β. This means that,
contrary to other contributions, it grows with the higgsino mass rather than decouples.
It is most effective when bino and smuon masses are close to each other (for M1 � mµ̃

it is suppressed by M1 in the numerator of (2.95) while for M1 � mµ̃ it is suppressed
by the loop function fχ0 defined in (2.96)). This means that in principle the (g − 2)µ
anomaly can be explained for any value of tan β and the smuon and bino masses by taking
appropriately large µ. This is demonstrated in Figure 2.7. We can see that agreement
with the (g − 2)µ measurement at 1σ is possible for heavier sleptons than discussed in
the previous subsection but at the cost of highly unnatural values of µ. For example for
tan β = 10 and smuon masses of 500 GeV (g−2)µ can be within 1σ from the experimental
value for µ ≈ 20 TeV (for light charginos satisfying the LEP limits such smuon masses
would not allow for (g − 2)µ within 1σ).

A large bino contribution due to such a spectrum is disfavoured by the naturalness
arguments. However, it turns out that this possibility can be constrained also in a more
objective way. A detailed study of that case was performed in Ref. [79]. Too large
values of µ tan β lead to instability of the EW vacuum due to large trilinear coupling of
sleptons to the Higgs. It was shown in [79] that for universal slepton masses the vacuum
stability implies that (g−2)µ consistent with the measurement at 1σ can be obtained only
for the lightest smuon mass below about 300 GeV (we reproduce this result, using the
formula (14) from [79], in Figure 2.7). This upper bound is independent of tan β because
the relevant quantity is µ tan β (of course the saturation of this bound requires heavier
higgsinos for smaller tan β). Moreover, it was shown in Ref. [79] that most of that region
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Figure 2.7: Minimal value of µ for tan β = 10 required for the bino contribution to be
consistent with the (g − 2)µ measurement at 1σ level as a function of the lightest smuon
mass (solid lines). Upper bounds on µ from the EW vacuum stability in the smuon and
stau directions, calculated using the formula (14) of Ref. [79], are also shown (dashed
lines).

of the parameter space is already excluded by the LHC searches. Only a small window of
the lightest smuon masses between about 290 and 300 GeV for a very restricted range of
bino masses remains allowed. This window can be extended to about 400 GeV assuming
that the (g − 2)µ is brought in agreement with the measurement only at 2σ. In any case,
this window will be probed at the LHC with

√
s = 13 TeV.

The vacuum stability constraint can be relaxed if the stau masses are larger than the
smuon masses because then larger values of µ tan β (which control the size of the off-
diagonal entry of the stau mass matrix that tends to destabilize the vacuum) are allowed.
In consequence, for a given value of aSUSY

µ smuons can be heavier. However, if the stau
masses are larger than the smuon masses by a factor bigger than about 15 (which roughly
corresponds to the ratio of the tau to muon masses) the vacuum stability constraint in
the muon direction becomes more stringent than that in the stau direction. In that case
(g−2)µ can be within the 1σ experimental bound for the lightest smuon mass up to about
1.2 TeV (for so heavy smuons µ would have to be above 300 TeV for tan β = 10). For
a heavier smuon the electroweak vacuum is unstable in the smuon direction. Neither the
LHC nor future lepton colliders, such as the ILC or TLEP, will be able to probe 1.2 TeV
smuons. However, they could be within the reach of CLIC which aims to operate at the
center-of-mass energy of 3 TeV [80]. It is also possible that such smuon masses could be
probed at a future 100 TeV collider.

It was also noted in [79] that a large non-universality between smuon and stau masses
leads to a strong tension with µ → eγ unless lepton flavor violation is extremely small
(the mass-insertion parameters should be below 10−6). Therefore, the bino contribution
can be efficiently probed also by looking for rare decays. Similarly, the CP phase of the
µ parameter has to be strongly suppressed in order to avoid constraints from the electric
dipole moments.
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2.6 Extnesion of MSSM with vectorlike top pratner

As we discussed in previous sections, in the minimal realization of supersymmetry, the
Higgs boson mass at tree level is bounded by the Z boson mass and needs to be lifted up
by radiative corrections from superpartners. This calls for large superpartner masses that
introduce a new hierarchy between the weak scale and the scale of supersymmetry. This
is often called the little hierarchy problem of the MSSM. In this section we will consider
an extension of the MSSM with an added vectorlike top partner.

We will focus on an extension of MSSM with a vectorlike top quark partner. This is
the simplest of vectorlike matter extensions [81, 82, 83, 84, 85, 86, 87, 88, 89, 90] that
can effectively reduce the little hierarchy due to large new contributions it induces to
the Higgs mass. Our aim is to revisit to what extent such an extension can raise the
Higgs boson mass through radiative corrections and help ameliorate the MSSM hierarchy
problem, and to specify what experimental probes at the LHC will find or exclude this
possibility during the high-luminosity phase.

2.6.1 The Model

To illustrate the impact of adding a vectorlike quark we use the simplest possible su-
persymmetry spectrum with all soft terms at the scale MSUSY . The only exceptions are
the A terms equal to −MSUSY . Also, the Higgs boson soft masses and B parameters
are chosen to accommodate correct electroweak symmetry breaking. To this very simple
spectrum we add a vectorlike top multiplet, t′ and t̄′, where t′ has the quantum numbers
of the right-handed top quark tcR and t̄′ is its conjugate. The soft masses of the scalar
components of t′ and t̄′ are also equal to MSUSY .

The superpotential of the MSSM with an additional vectorlike top partner (omitting
small Yukawa couplings of the first two families), reads

W = YtQHut̄+ Yt′QHut̄
′ +mt′t̄+Mt′t̄′ + YbQHdb̄+ YτLHdτ̄ + µHuHd. (2.101)

The above superpotential leads to the following mass matrix in the basis Ψ = (Q, t′, t̄†, t̄′
†
):

Mt =

(
0 mt

m†t 0

)
, mt =

(
Ytv2 Yt′v2

m M

)
, (2.102)

where v =
√
v2

1 + v2
2 ≈ 246, tan β = v2/v1 and v2 = v sin β/

√
2.

In order to obtain masses of the fermions we diagonalize the mass matrix by unitary
L and R matrices:

LmtR
† = diag(mt1 ,mt2). (2.103)

We always set the first eigenvalue equal to the top quark mass, while the second is the
mass of the new vectorlike quark. The mass matrix of the scalars takes the following form:
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M2
S = M2

t +


m2
Q3

+D 1
2
, 2
3

0 vu√
2
At − vd√

2
µYt

vu√
2
At′ − vd√

2
µYt′

0 m2
t̄′ +D0, 2

3
Bm BM

vu√
2
At − vd√

2
µYt Bm m2

U3
+D− 1

2
,− 2

3
0

vu√
2
At′ − vd√

2
µYt′ BM 0 m2

t′ +D0,− 2
3

 ,

(2.104)

in the basis Φ = (t̃, t̃′, ˜̄t, ˜̄t′), where DT3,q = (T3− q sin θW ) cos(2β)M2
Z is the electroweak D

term contribution, and A and B are soft breaking terms corresponding to the appropriate
couplings in the superpotential. Due to mixing with the vectorlike quark, the top Yukawa
coupling can now be very different from its MSSM value while still keeping the predicted
top mass unchanged. There are always two values of the top Yukawa that predict the
correct top mass, and we always chose the larger one. The smaller value is a modification
of the fermiophobic Higgs coupling approach, and generally is more constrained by the
data.

In what follows we focus on two sets of new parameters. One set incorporates the
small mixing example with m = 0, and the other incorporates the large mixing case with
m = MSUSY . In both cases the superpotential vectorlike mass term M is also equal to
MSUSY . New scalar soft masses are m2

t̄′ = m2
t′ = M2

SUSY and all other mass parameters
which were not present in the MSSM are set to Bm = BM = At′ = 0. For simplicity we set
the pseudoscalar mass mA and all MSSM soft breaking terms to MSUSY except mH1 , mH2

and B which we vary in order to achieve correct electroweak symmetry breaking for each
value of MSUSY . A-terms are all set to −MSUSY . As mentioned above Yt is always fixed
by requiring that at the tree level mt1 = mMSSM

t which corresponds to the physical top
mass mt = 173.35 GeV when one-loop corrections are included. The only free parameters
left are MSUSY and tan β.

2.6.2 Higgs mass correction

We calculate the contribution to the mass of the light neutral Higgs boson using effective
potential approximation in the decoupling regime [85]. The contribution to the effective
potential from tops and stops and the new vectorlike states reads

∆V =
6

64π2

4∑
i=1

[
F (m2

t̃i
)− 2F (M2

ti
)
]

(2.105)

where F (x) = x2 ln(x/Q2) while M2
ti

and m2
t̃i

are eigenvalues of the fermion mass matrix

(2.102) and scalar mass matrix (2.104) respectively. The correction to the light Higgs
boson squared mass is equal to

∆m2
h =

[
sin2 β

2

(
∂2

∂v2
u

− 1

vu

∂

∂vu

)
+

cos2 β

2

(
∂2

∂v2
d

− 1

vd

∂

∂vd

)
+ sinβ cosβ

(
∂2

∂vd∂vu

)]
∆V.

(2.106)

Since the above correction already includes the top and stop contribution, we subtract
the MSSM top and stop correction ∆mh

MSSM which was already included in our MSSM
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value mMSSM
h . We calculate the ∆mh

MSSM correction using eigenvalues of the MSSM mass
matrices in equation (2.105) and then using an equation similar to (2.106), with only
MSSM masses. Our final computation of the corrected Higgs mass reads

m2
h = (mMSSM

h )2 + ∆m2
h − (∆mMSSM

h )2. (2.107)

Figure 2.8 shows the value of MSUSY needed to obtain mh = 125.09 GeV as a function
of Yt′ together with various constraints explained in the following section. Figure 2.9
shows the minimal value of MSUSY achievable without violating any of the experimental
constraints. The smaller the value of MSUSY the more the vectorlike extension of the
MSSM helps to ameliorate the little hierarchy problem. The MSSM values of MSUSY

corresponding to tan β = 5, 7, 10 and 30 are MSUSY = 11.4, 7.4, 5.7 and 4.4 TeV, which
means that in all presented cases we are able to achieve much lower MSUSY than required
in the MSSM, without violating any of the constraints.

Since the additional contribution to the Higgs mass from the vectorlike quark sector
lowers the value of MSUSY needed to achieve the observed Higgs mass, it also increases the
prospects of finding the correspondingly lower superpartner masses at subsequent runs of
the LHC .

2.6.3 RGE corrections

The introduction of additional states and additional Yukawa couplings to the MSSM
causes the renormalization group flow trajectories of the couplings to be altered as the
scale increases. In this section we discuss these effects and specify the implications and
constraints they have on the unification of couplings and the possible development of
Landau poles.

In this analysis we have calculated two-loop renormalization group equations using
SARAH [91, 92, 93], and confirmed the results analytically using known results [94]. Very
significant changes in the renormalization group trajectories come from new coefficients
in the one-loop running of the gauge couplings,

d

dt
gi =

1

4π2
big

3
i bi =

(
41

5
, 1,−2

)
. (2.108)

These new equations predict the unification scale MU (defined here by g1(MU) = g2(MU))
to be significantly lower than in the MSSM. The new unification scale is not far above
1013 GeV.

It is important to point out that unification at a scale around 1016 GeV can still easily
be achieved by positing appropriate high-scale threshold corrections [95] or by adding
vectorlike quarks so that together all vectorlike superfields form a complete represen-
tation of SU(5). This can reestablish coupling constant unification without significant
modifications to other bounds discussed in the following sections.

However a more stringent constraint comes from the running of Yt′ and its contribution
to the running of Yt. At one-loop order these contributions induce Landau poles in the
Yukawa couplings’ running when Yt′ is sufficiently large, at two-loop order Yt and Yt′
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Figure 2.8: Common superpartner mass MSUSY required to obtain mh = 125.09 GeV as
a function of Yt′ for m = M (left panel) and m = 0 (right panel). Bottom row shows a
zoom of the top row plots‘ lower right corners. MSSM values of MSUSY required to obtain
mh = 125.09 GeV corresponding to tan β = 5, 7, 10 and 30 are MSUSY = 11.4, 7.4, 5.7
and 4.4TeV. Dashed lines are allowed by all considered constraints, while solid lines cor-
respond to different exclusions which will be achievable in HL-LHC. The calculation of
these bounds is explained in the next subsection. Dark blue regions may be excluded by
measurement of the Higgs boson signal strength at 2σ significance. Dark green regions
predict corrections to oblique parameters that may be excluded by future HL-LHC mea-
surements at 2σ significance, and red regions may be excluded in the second LHC run
by direct detection of the top partner. Vertical lines show maximal Yt′ allowing gauge
coupling unification before the quasifixed point sets in. All parameters except tan β are
fixed by assuming a single supersymmetry scale MSUSY and requiring correct top and
Higgs physical masses mt = 173.35 GeV , mh = 125.09 GeV .

develop a strongly coupled UV quasifixed point. The range of values of Yt′ that allow
gauge coupling unification before the UV quasifixed point sets in are Yt′ ∈ (−1.775, 0.002)
for m = MSUSY and Yt′ ∈ (−0.8275, 0.8275) for m = 0. These values are marked on the
plots showing our results. However, since we do not consider a specific UV completion, it
is not necessary to treat them as constraints.
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Figure 2.9: Minimal value of MSUSY achievable without violating any of the above con-
straints as a function of m

MSUSY
(left panel) and tan β (right panel). All other parameters

are fixed by assuming a single supersymmetry scale MSUSY and requiring correct top and
Higgs masses mt = 173.35 GeV , mh = 125.09 GeV .

2.6.4 Oblique parameters

The Peskin-Takeuchi precision electroweak parameters [96] S and T are defined in terms
of electroweak vector boson self-energies as

αS

4s2
W c

2
W

=

[
ΠZZ(M2

Z)− ΠZZ(0)− c2W

cW sW
ΠZγ(M

2
Z)− Πγγ(M

2
Z)

]
/M2

Z , (2.109)

αT = ΠWW (0)/M2
W − ΠZZ(0)/M2

Z . (2.110)

We calculate the S and T parameter contributions from the vectorlike quarks and their
scalar superpartners using results from [85]. The one-loop functions G(x), H(x, y),
B(x, y), and F (x, y) have been defined in ref. [97] and particle names stand for the squared
mass of the particles when they appear as an argument of these functions.

Contributions from t′ to the electroweak vector boson self-energies are:

∆Πγγ = − Nc

16π2
2g2s2

W

[
e2
uG(Mt2)

]
,

∆ΠZγ = − Nc

16π2
gsW

[
eu
∑
i=1,2

(gZ
tit
†
i

− gZ
t̄i t̄
†
i

)G(ti)

]
−∆ΠSM

Zγ , (2.111)

∆ΠZZ = − Nc

16π2

[
2∑

i,j=1

(|gZ
tit
†
j

|2 + |gZ
t̄i t̄
†
j

|2)H(ti, tj)− 4Re(gZ
tit
†
j

gZ
t̄i t̄
†
j

)mtimtjB(ti, tj)

]
−∆ΠSM

ZZ ,

∆ΠWW = − Nc

16π2

2∑
i=1

[
(|gWtib†|

2)H(b, ti)
]
−∆ΠSM

WW ,

where Nc = 3, eu = 2/3, ed = −1/3 and SM contributions are similar to those above
with couplings in which L11 = 1 is the only nonzero element of the mixing matrix. The
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massive vector boson couplings with quarks are

gZ
tit
†
j

=
g

cW

(
1

2
L∗i1Lj1 − eus2

W δij

)
, gZ

t̄i t̄
†
j

=
g

cW

(
eus

2
W δij

)
,

gWtib† =
g√
2
L∗i1, (2.112)

where L is the fermion mixing matrix defined in (2.103).
The up-type scalar mass matrix (2.104) is diagonalized by the unitary matrix U :

UM2
SU
† = diag(m2

t̃1
,m2

t̃2
,m2

t̃3
,m2

t̃4
), (2.113)

while the MSSM sbottom mass matrix M2
D is diagonalized by the unitary matrix D

DM2
DD

† = diag(m2
b̃1
,m2

b̃2
). (2.114)

Contributions from third family squarks to the electroweak vector boson self-energies are

∆Πγγ =
Nc

16π2
g2s2

W

[
e2
u

4∑
i=1

F (t̃i, t̃i) + e2
d

2∑
i=1

F (b̃i, b̃i)

]
,

∆ΠZγ =
Nc

16π2
gsW

[
eu

4∑
i=1

gZt̃i t̃∗i
F (t̃i, t̃i) + ed

2∑
i=1

gZ
b̃ib̃∗i

F (b̃i, b̃i)

]
, (2.115)

∆ΠZZ =
Nc

16π2

[
4∑

i,j=1

|gZt̃i t̃∗j |
2F (t̃i, t̃j) +

2∑
i,j=1

|gZ
b̃ib̃∗j
|2F (b̃i, b̃j)

]
,

∆ΠWW =
Nc

16π2

2∑
i=1

4∑
j=1

|gW
b̃i t̃∗j
|2F (b̃i, t̃j),

where the vector boson couplings with the squarks are:

gZt̃i t̃∗j
=

g

cW

(
1

2
(U∗i1Uj1)− eus2

W δij

)
,

gZ
b̃ib̃∗j

=
g

cW

(
−1

2
(D∗i1Dj1)− eds2

W δij

)
, (2.116)

gW
b̃i t̃∗j

=
g√
2

(D∗i1Uj1).

To calculate MSSM contributions we use expressions from [97] excluding corrections
from stops and sbottoms which were already included in the vectorlike contribution cal-
culation. We also verified dominant corrections coming from new fermions with similar
results from [98].

The currently allowed experimental values are S = 0.06 ± 0.09 and T = 0.1 ± 0.07
(assuming U = 0) with correlation 0.91 [99] (the correlation parameter is the tilt in the
ellipse in the S-T plane). Only minimally more stringent constraints can be achieved from
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Figure 2.10: Correction to the T parameter as a function of Yt′ for m = M (left panel)
and m = 0 (right panel). All values satisfy mh = 125.09 GeV . Green points show values
above which the results can be excluded at 2σ by future experimental constraints.

LHC running at
√
s = 14 TeV with high integrated luminosity 300 fb−1. Predicted future

sensitivity values of S = 0.06± 0.09 and T = 0.1± 0.06 are taken from [100].

Figure 2.10 shows resulting corrections to the T parameter as a function of Yt′ together
with points showing values above which the results can be excluded at 2σ by future
experimental constraints. These points are very close to forming a vertical line because
corrections to the S parameter are very small for all interesting values of Yt′ . This is also
the reason for which we do not include a plot of vectorlike corrections in the S- T plane.

Corrections from other superpartners are very small due to the simplified spectrum
we chose. Figure 2.11 shows corrections coming from MSSM with and without the stops
contribution from 100, 000 randomized spectra of masses up to 3 TeV. A more randomized
spectrum is unlikely to produce points outside the the S and T exclusion ellipse. Most of
the points would bring our results closer to the central values due to negative T competing
against large positive vectorlike quark corrections and positive S contributions, which push
our results towards the experimentally allowed ellipsis.

Superpartner corrections to electroweak precision observables are generally small be-
cause superpartners are largely decoupled even with current direct detection exclusions.
However inclusion of a new quark can introduce unacceptably large corrections to the T
parameter if its mixing with the SM top is substantial. Nevertheless, it is important to
note that with currently available bounds, electroweak corrections are the most important
constraints on our model. However, as the energy and luminosity increase for HL-LHC
the observables at play in the electroweak precision analysis do not improve substantially.
Therefore, precision electroweak analysis constraints become relatively less important in
time compared to direct detection probes of new states and especially compared to preci-
sion Higgs analysis, which is discussed in the next subsection.
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Figure 2.11: Oblique parameter corrections in S − T plane coming from the MSSM (left
panel) and the same results without stop and sbottom contribution (right panel), with a
randomized spectrum of superpartner masses up to 3 TeV.

2.6.5 Higgs boson coupling corrections

Next we turn to calculation of Higgs boson branching ratios including the above mod-
ifications and new couplings to the top quark and its vectorlike partner. We start by
discussing the shifts in couplings of the MSSM compared to the SM and then compare
with the case with extra vectorlike top states. In the MSSM, the Higgs couplings to up
and down type quarks and vector bosons take the form [101, 102]:

cu =
gu
gSM
u

=
cosα

sin β

cd =
gd
gSM
d

=
− sinα

cos β
(2.117)

cV =
gV
gSM
V

= sin(β − α),

where α is the Higgs mixing angle and tan β = vu/vd.
Most experimentally important branching ratios have the same values as in the MSSM,

which are obtained by multiplying the appropriate ci coefficients in front of the SM partial
width exprressoins

Γ(h→ bb̄) = c2
dΓ

SM(h→ bb̄), Γ(h→ τ τ̄) = c2
dΓ

SM(h→ τ τ̄),

Γ(h→ µµ̄) = c2
dΓ

SM(h→ µµ̄), Γ(h→ cc̄) = c2
uΓ

SM(h→ cc̄), (2.118)

Γ(h→ WW ) = c2
V ΓSM(h→ WW ), Γ(h→ ZZ) = c2

V ΓSM(h→ ZZ).

The remaining important branching ratios are loop induced and are modified due to
modified top couplings and new particles in the loops. We will express these branching
ratios as

Γ(h→ X) =
|AX |2

|ASM
X |

2 Γ(h→ X)SM. (2.119)
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In the following Nc = 3 and loop functions F , I and A, as well as coefficients τ , are
defined in [101]. Charges and third components of isospin for fields used in the following
equations are shown in Table 2.2, while modifications of the top and top prime couplings
to the Higgs bosons are given by

ghti t̄i =
YtLi1Ri1 + Yt′Li1Ri2

Y MSSM
t

, (2.120)

where L and R are fermion mixing matrices defined in (2.103). ASUSYX are sums of the
contributions of superpartners which we neglect since they have very small couplings

g ≈ m2
Z

M2
SUSY

.

For branching ratio to two gluons we have,

Agg = cd
∑
i=d,s,b

F 1
2
(τi) + cu

∑
i=u,c

F 1
2
(τi) + cu

2∑
i=1

ghti t̄iF 1
2
(τti) +ASUSYgg , (2.121)

ASM
gg =

∑
i=d,s,b

F 1
2
(τi) +

∑
i=u,c,t

F 1
2
(τi).

Similarly for the branching ratio to two photons we have,

Aγγ = cV F1(τW ) + cde
2
e

∑
i=e,µ,τ

F 1
2
(τi) + cdNce

2
d

∑
i=d,s,b

F 1
2
(τi) + cuNce

2
u

∑
i=u,c

F 1
2
(τi)

+ cuNce
2
u

2∑
i=1

ghti t̄iF 1
2
(τti) +ASUSY

γγ (2.122)

ASM
γγ = F1(τW ) + e2

e

∑
i=e,µ,τ

F 1
2
(τi) +Nce

2
d

∑
i=d,s,b

F 1
2
(τi) +Nce

2
u

∑
i=u,c,t

F 1
2
(τi).

Lastly for branching ratio of Higgs to a photon and Z boson we obtain

AZγ = cdeeve
∑
i=e,µ,τ

A 1
2
(τi, λi) + cdNcedvd

∑
i=d,s,b

A 1
2
(τi, λi) + cuNceuvu

∑
i=u,c

A 1
2
(τi, λi)

+ cuNceu

2∑
i=1

vtighti t̄iA 1
2
(τti , λti) + cVA1(τW , λW ) +ASUSYZγ (2.123)

ASM
Zγ = eeve

∑
i=e,µ,τ

A 1
2
(τi, λi) +Nce

2
d

∑
i=d,s,b

A 1
2
(τi, λi) +Nce

2
u

∑
i=u,c,t

A 1
2
(τi, λi) + A1(τW , λW ),

where vf = (2T f3 − 4efs
2
W )/(sW cW ), sW = sin θW and cW = cos θW .

The branching ratios are given by

B(h→ X) =
ΓX∑
i

Γi
(2.124)
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Table 2.2: Charges and effective third isospin components. The mixing matrix L is defined
in (2.103).

∆µγγ ∆µbb ∆µττ ∆µWW ∆µZZ
0.06 0.11 0.08 0.06 0.07

Table 2.3: Higgs signal strength future experimental sensitivities at 1σ significance from
CMS [103]

with the sum running over all decay channels computed in this section. We approximate
the resulting signal strength modification by including only the gluon fusion production
channel, which at leading order gives

∆µX =
σB(h→ X)− σSMBSM(h→ X)

σSMBSM(h→ X)
=

σB(h→ X)

σSMBSM(h→ X)
− 1 (2.125)

≈ σ(gg → h)

σSM(gg → h)

Br(h→ X)

BSM(h→ X)
− 1 ≈ Γ(h→ gg)

ΓSM(h→ gg)

B(h→ X)

BSM(h→ X)
− 1.

We confront these results with future experimental bounds as predicted by the CMS
Collaboration [103] shown in Table 2.3. SM values of the branching ratios were taken
from [104]. The resulting signal strength modifications are dominated by the increased
gg → H production cross section compared to the SM and even MSSM. In our model all
signal strengths grow rapidly when the mixing with the vectorlike state is increased. The
most important exclusion limit comes from the H → WW signal. The high sensitivity in
this channel is due to the onset of high statistics and high accuracy in the measurement of
this channel at the HL-LHC. This can be compared to H → γγ which is not as useful due
to smaller modifications of its total σ ·B rate. There is a partial cancellation of vectorlike
top contribution in the σ ·B product. The second best exclusion channel is H → ZZ with
slightly worse experimental accuracy. The increased experimental sensitivities at HL-
LHC leads to the conclusion that the first evidence for vectorlike quarks in this context
of natural supersymmetry would likely come from deviations found in precision Higgs
observables.

2.6.6 Direct detection

The best source for the direct mass bound for the new vectorlike states are dedicated
analyses by the ATLAS and CMS collaborations at LHC. In particular, the recent CMS
analysis [105] of t′ decaying in three channels t′ → bW, tZ, tH without assumptions on the
branching ratios, has current mass limits between 687 GeV and 782 GeV.

A similar analysis of decay to the same final states in future colliders was performed
in [106]. The authors predict mass ranges in which t′ could be discovered or excluded for
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Figure 2.12: Vectorlike top partner mass for which mh = 125.09 GeV as a function of
Yt′ for m = M (left panel) and m = 0 (right panel). Horizontal line corresponds to the
future experimental bound.

different energies and integrated luminosities. We use their exclusion limit (at 95% C.L.)
for vectorlike top partner achievable in LHC at

√
s = 14 TeV with integrated luminosity

300 fb−1, namely mt′ < 1525 GeV.

Figure 2.12 shows the vectorlike top partner mass needed to achievemh = 125.09 GeV as
a function of Yt′ . The right-hand side plot is very similar to Figure 2.8 because, as ex-
pected, the mass of the vectorlike top is close to MSUSY , while in the left-hand side plot
the mass is significantly enhanced due to large mixing.

It is important to point out here that direct detection is crucially dependent on the
mass of the additional quark, while all previously discussed constraints were more de-
pendent on its mixing with already observed states. Consequently the interplay between
constraints described in this section and those of the previous two depends on the mixing,
which is a consequence of our choice of spectrum parameters. This is why we include
both small (m = 0) and maximal (m = MSUSY ) mixing scenarios in our analysis. Direct
detection bounds turn out to be very important for our model. And in fact this probe
proves to be the strongest for the part of parameter space corresponding to large tan β,
unless the mixing is sufficiently large (m ≈ MSUSY ). Otherwise precision Higgs analysis
will be a more powerful probe as shown in Figure 2.13.

2.6.7 Summary and comparison of bounds

To summarise, in this section we analyzed a single vectorlike top partner model, which is
the simplest vectorlike extension of the MSSM that can significantly help with the little
hierarchy problem. We calculated and compared different experimental constraints the
model will face after 300 fb−1 of data are gathered at the HL-LHC. Our key result is
that the most constraining of the discussed bounds is modification of the Higgs boson
properties. An exception to that is the case of large tan β and small mixing where the
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Figure 2.13: Region of vectorlike mass and mixing parameter space, where direct de-
tection is the strongest constraint. The unmarked regions corresponds to precision Higgs
measurements being the strongest constraint.

direct detection probes of the heavy vectorlike states at the collider are slightly more
stringent, a sdiscussed at the ednd of previous subsection.

After including all the constraints achievable at the HL-LHC, the resulting MSUSY

can still be as low as 1.2 to 2.4 TeV for the simplest possible supersymmetry spectrum.
These results are 3 to 5 times smaller compared to what otherwise would be allowed in the
MSSM. Thus even a very simple vectorlike quark extension can greatly reduce the little
hierarchy problem of the MSSM, and careful measurements of Higgs boson observables
would likely give first evidence of this scenario.

2.7 Five dimensional SUSY models

In this section we turn to a very different extension of MSSM which can help in solving
the hierarchy problem. Namely we explore the phenomenological predictions of a super-
symmetric standard model, with a large extra dimension and unifying gauge couplings.
The modified five dimensional renormalisation group equations make it possible to obtain
light, maximally mixed stops, with a low scale of supersymmetry breaking and a low uni-
fication scale. This allows the fine-tuning to be lowered right down to the barrier coming
directly from experimental lower limits on the stop masses. We also show that modifying
the SUSY breaking pattern to obtain lighter stops at the high scale does not result in
fine-tuning relaxation, and only RGE effects turn out to be effective in generating a lower
fine-tuning.

In our analysis we used renormalisation group equations outlined in [107, 108] and
adapted a C++ based spectrum generator originally intended for the (four dimensional)
MSSM [1]. A similar modification may be carried out with any publicly available spectrum
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generator [37, 38, 39] 1. The RGEs used in this paper may be found in [108] and further
conventions in [107] and [111, 112, 113, 114, 115]. For earlier phenomenological studies of
five dimensional theories see for example [116].

2.7.1 The 5D-SSM+(F±) Model

Hu,d, F
+/−

Q,U,D,

L, E

SU(3)c × SU(2)L

×U(1)Y

Hu,d, F
+/−

3rd gen.

1st, 2nd gen.

SU(3)c × SU(2)L

×U(1)Y

Figure 2.14: Pictorials to represent the location of matter in the five dimensional model.
In Model 1 (left), all generations of matter live on a brane. In Model 2 (right), only the
3rd generation lives on a brane

The first model that we wish to explore is a five dimensional supersymmetric theory
with the field content outlined in table 2.4 and is pictured in figure 2.14 (left). In this
model the Higgs fields (Hu, Hd), gauge fields and additionally F± are bulk fields [117]. This
matter content is necessary for the gauge couplings unification, as we shall explore further
later. All five dimensional bulk matter fields are supersymmetric Hypermultiplets which
due to even and odd boundary conditions lead to a four dimensional Chiral multiplet as a
zero mode of the Kaluza-Klein expansion: such details are well documented, for instance
in [111, 112, 113, 114, 115]. The second model we wish to explore is outlined in table 2.5
and pictured in figure 2.14 (right). In model 2 only the third generation is located on a
brane and the first and second generation are in the bulk along with the Higgs multiplets
and F± fields.

The superpotential for both models is given by

W =Yu û εij q̂
i Ĥj

u − Yd d̂ εij q̂i Ĥj
d − Ye ê εij l̂i Ĥj

d + µHuHd + µ́F−F+ . (2.126)

It would be very worthwhile to consider the generation of the term µ́F−F+ in the su-
perpotential, although for this analysis we will not need to consider it, and postpone that
to later work. We will now explore the running parameters of these two theories as one
changes the scale of the extra dimension.

1To date, five dimensional theories are one such class of models that cannot yet be explored using
SARAH [109, 91, 110, 92] although it can still be a powerful tool to determine the RGEs of the low energy
four dimensional effective theory that the five dimensional theory runs to [108].
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Superfields Brane Bulk U(1)Y × SU(2)L × SU(3)c
q̂f X - (1

6
,2,3)

d̂f X - (1
3
,1,3)

ûf X - (−2
3
,1,3)

l̂f X - (−1
2
,2,1)

êf X - (1,1,1)

Ĥd - X (−1
2
,2,1)

Ĥu - X (1
2
,2,1)

F̂− - X (−1,1,1)

F̂+ - X (1,1,1)

B̂V - X (0,1,1)

ŴV - X (0,3,1)

ĜV - X (0,1,8)

Table 2.4: The matter content of model 1. All superfields of chiral fermions live on
a brane and all Higgs-type superfields and gauge vector fields live in the bulk. The
superscript f = 1, 2, 3 denotes the generations. Neutrino superfields may be included
straightforwardly.

Superfields Brane Bulk U(1)Y × SU(2)L × SU(3)c
q̂1,2 - X (1

6
,2,3)

d̂1,2 - X (1
3
,1,3)

û1,2 - X (−2
3
,1,3)

l̂1,2 - X (−1
2
,2,1)

ê1,2 - X (1,1,1)
q̂3 X - (1

6
,2,3)

d̂3 X - (1
3
,1,3)

û3 X - (−2
3
,1,3)

l̂3 X - (−1
2
,2,1)

ê3 X - (1,1,1)

Ĥd - X (−1
2
,2,1)

Ĥu - X (1
2
,2,1)

F̂− - X (−1,1,1)

F̂+ - X (1,1,1)

B̂V - X (0,1,1)

ŴV - X (0,3,1)

ĜV - X (0,1,8)

Table 2.5: The matter content of model 2.
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2.7.2 Running parameters

It is particularly interesting to understand and compare the behaviour of the various
running parameters of these theories compared to the more usual four dimensional MSSM.
The behaviour of the various parameters as a function of renormalisation scale for model
1 is pictured in figure 2.15. Of particular note is that unification happens much earlier if
the size of the extra dimension is large [118] , than the usual four dimensional case. One
also finds that the top Yukawa reduces rather significantly and becomes of similar order to
the other Yukawa couplings near the unification scale. In addition one finds that even for
initially vanishing A-terms the At term may become multi-TeV in value at the electoweak
scale, which is encouraging from the perspective of obtaining the observed 125 GeV Higgs
mass. It is also the case (bottom left) that the gluino mass can become much hearvier
than the other gauginos allowing for the theory to still have a light bino and wino whilst
allowing for a gluino above current exclusions.

The first model may be compared with model 2 similarly presented in figure 2.16 and
in table 2.5. In these figures it is notable that that gauge couplings quite nearly unify but
the gauge couplings rise rather than fall, after the KK modes start to take effect in the
RGEs. The Yt still decreases in value, although now rather interestingly the At becomes
so quickly negative that it can quickly overcompensate the effect of the gluino soft mass,
and for very large radius, the At running may even return on itself. Again the wino and
bino soft terms can be much smaller than that of the gluino, even starting from the same
initial value.

2.7.3 Supersymmetry breaking in benchmark models

So far our exploration has been reasonably agnostic about how supersymmetry is broken,
since the main feature of the models presented in the previous sections are their RGEs.
In what follows we will simply refer to sets of RGEs we used, as models.

There are however a number of ways that have been proposed for the parametrisation of
supersymmetry breaking in a five dimensional scenario. In this section we wish to identify
these scenarios and look at their patterns of supersymmetry breaking which define their
possible high scale spectra.

Our first benchmark scenario is the simple CMSSM spectrum, however since easier
generation of A-terms during running is a key feature of five dimensional running, we
will always take Ai = 0 case for which the difference between five and four dimensional
theories is the most visible. This implies a very simple type of spectrum with just two
free parameters M 1

2
and m0:

Mi = M 1
2
, m2

f̃
= m2

0 , Ai = 0, (2.127)

defined at the unification scale.
The second benchmark model is gauge mediation (GMSB). in this type of models

there is an additional characteristic scale at which SUSY is broken, which for brevity we
will labelled M . For the five dimensional RGEs to have an impact on the spectrum and
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Figure 2.15: Model 1 running of gauge coupling constants gi(µ) (top left panel), 3rd
generation Yukawa couplings (top right panel), trilinear soft terms (bottom right panel)
and gaugino soft terms (bottom left panel) with compactification scales 1/R ∼ 104 GeV,
108 GeV& 1012 GeV, as a function of Log10(µ/ GeV). In this example all soft terms were
set to MSUSY = 1 TeV at the unification scale (defined by g1 = g2), except the trilinear
soft terms (Ai) which were set to 0.

to not simply be an effective four dimensional theory with a low SUSY breaking scale we
wish that M is at least O(1/R) and possibly nearer Munification. The soft terms in five
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Figure 2.16: Model 2 running of gauge coupling constants gi(µ) (top left panel), 3rd
generation Yukawa couplings (top right panel), trilinear soft terms (bottom right panel)
and gaugino soft terms (bottom left panel) with compactification scales 1/R ∼ 104 GeV,
108 GeV& 1012 GeV, as a function of Log10(µ/ GeV). In this example all soft terms were
set to MSUSY = 1 TeV at the unification scale (defined by g1 = g2), except the trilinear
soft terms (Ai) which were set to 0.

dimensional GMSB, at the breaking scale, are then given by

Mr =
(αr

4π

)( F
M

)
, m2

f̃
' 2

∑
r

Cr
f̃

(αr
4π

)2
(
F

M

)2(
1

MR

)2

, Ai = 0, (2.128)

where F and M are the free parameters we will scan over. This analysis is the first
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implementation of five dimensional GMSB soft masses [119, 120, 112, 113, 121], with five
dimensional RGEs [108, 107]. In both model 1 and 2 we will take the supersymmetry
breaking to be on the opposite brane to the matter, and both brane and bulk matter are
essentially suppressed by the effect of the extra dimension, as in the above equation.

Our final benchmark scenario comes from an attempt to create a natural SUSY break-
ing scenario using new features possible in a five dimensional theory. The renormalisation
group equations of model 1 may be used to explore a scenario as pictured in figure 2.17.
In this model the 3rd generation is located on one brane and the 1st and 2nd generation
on another, along with the supersymmetry breaking sector. The effects of supersymmetry
breaking are mediated by gauge forces [122] (but one can also easily consider gravity me-
diation too in this context) and the result is that the 1st and 2nd generation and also the
gauginos will receive normal (4D) GMSB soft mass contributions but the 3rd generation
will be heavily suppressed [121, 113, 107, 108]. The soft mass matrix for squarks and
sleptons takes the form

m2
f̃
(M���SUSY ) ∼ Λ2

 1 0 0
0 1 0
0 0 0

+ ... (2.129)

leading to an interesting natural SUSY spectrum of lighter 3rd generation squarks. This
scenario suggests that natural SUSY softer terms are imprinted due to the ‘geometry’
of the theory. We will consider such a natural spectrum in context of minimal gauge
mediation, the resulting soft terms are similar to those in(2.128), however now only third
generation sfermions are suppressed by 1/(MR)2. In the text we will refer to this as
an nMGM spectrum. Needless to say, a similar model may be constructed using brane
to brane gravity mediation. It would also be interesting to discuss models with Hu and
Hd localised alongside the 3rd families, however it would require a much more serious
modification of the RGEs of our Model 1 and 2, consequently we postpone that discussion
to future work.

2.7.4 Electroweak symmetry breaking and naturalness

One important feature of a model is whether its parameter space can accommodate elec-
troweak symmetry breaking. Figure 2.18 shows regions in the parameter space of our
models where the breaking does not occur or which violate direct detection bounds sum-
marised in table 2.6 [63]. Exclusions corresponding to varying size of the extra dimension
(including the 4D case) are plotted together. For standard CMSSM and MGM bound-
ary conditions Model 1 predicts rather standard spectra of sparticles quite similar to the
4D case. However Model 2 due to much lower gaugino masses compared to the A-terms
allows us to obtain very light stops and maximal mixing even despite A-terms vanishing
at the unification scale. In fact for large R = 10−4 the peculiar shape of the CMSSM
excluded region in model 2 comes from obtaining too light stops that would have already
been observed.

The MGM excluded region comes from the interplay between large scalar masses we
obtain at the scale M when M = 1/R, and when they are generated during 5D modified
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Hu,d, F
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3rd gen. 2nd gen.

SU(3)c × SU(2)L

×U(1)Y

1st gen.

✘✘✘✘✘SUSY

Figure 2.17: Pictorial to represent the location of matter in the five dimensional model
resulting in a natural SUSY breaking scenario with GMSB (nMGM spectrum) and model
1 RGEs.

particle mass bound in GeV
g̃ 1200
q̃1,2 800
t̃ 700

b̃ 650
χ̃±1 92
χ̃0

1 46

Table 2.6: Experimental exclusion limits used

running between 1/R and M >> 1/R. The minimal stop mass is obtained between
these two situations and results in excluded part on the left hand side of middle row in
Figure 2.18 where the small stop soft mass fails to push mHu to negative values and break
electroweak symmetry.

This is also visible in nMGM plot on the bottom row of Figure 2.18. However here
the problem is more severe since mHu is not suppressed by 1/(MR) at the SUSY breaking
scale, and a much bigger part of the parameter space is excluded. For nMGM spectrum
this problem appears also for very small 1/(MR), because in this part of the parameter
space the difference between Higgs and stop soft masses is the largest. These two effects
lead to appearance of a window of allowed parameter space which is very interesting, since
it is in that window, that we obtain the highest Higgs mass.
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Figure 2.18: Striped regions of the CMSSM (top row) MGM (middle row) and nMGM
(bottom row) parameter space cannot accommodate electroweak symmetry breaking or are
already excluded by direct searches. Left hand side plot shows results for model 1 and right
hand side for model 2. Both show different sizes of the extra dimension and CMSSM shows
the 4D case as well.
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2.7.5 Naturalness in benchmark scenarios

In MSSM-like theories, at a finite loop order, electroweak symmetry breaking is radiatively
induced. The up-Higgs soft mass is driven to negative values, leading to

−1

2
M2

z = m2
Hu(Λ) + δm2

Hu + |µ|2 +O
(
tan β−2

)
(2.130)

At leading order, the running of this soft mass in four dimensions follows

δm2
Hu ∼ −

3

8π2
y2
t (m

2
Q3

+m2
U3

+ A2
t )Log

(
MSUSY

MS

)
(2.131)

In five dimensional models the RGEs are rather different due to the power law contribu-
tions and one finds

δm2
Hu ∼ −

3

8π2
y2
t (m

2
Q3

+m2
U3

+ A2
t )

[
Log

(
1

RMS

)
+MSUSYR

]
(2.132)

One might have expected a significant contribution to fine tuning from the power law
contribution. However four and five dimensional theories actually have similar fine tuning
as the much faster power law contribution can dominate the running for only a very small
range of scales if the spectra we are comparing are similar. And so the final amount of
fine-tuning for a given scenario depends mostly on the resulting spectrum rather than on
the amount of power law running. This is quantified in figure 2.19, where in numerical
calculations we use a standard fine-tuning measure with respect to parameter a defined
in (2.69).Figure 2.19 shows resulting fine-tuning as a function of Higgs mass for different
sizes of the extra dimension as well as the result one would obtain from 4D running.
the top row shows results obtained assuming CMSSM-like soft terms (with Ai = 0), the
middle row shows gauge mediated boundary conditions and the bottom plot shows the
nMGM ones.

The results in left panel show model 1 which gives a rather standard prediction despite
power law contribution to running. However model 2 shown on the right hand side allows
us to reduce fine-tuning very significantly. The reason are the gaugino masses that decrease
during 5D part of the running (as shown in Figure 2.16). This protects the soft terms from
the usual increase due to the heavy gluino. Since the A-terms do not grow proportionally
to scalar masses we can easily achieve maximal mixing scenario for the light stops as
shown in Figure 2.20. We can see that its their direct detection bound is precisely what
gives us the lower bound on fine-tuning we can see in model 2 with R = 10−4.

The bottom plot shows nMGM result which turns out quite similar to MGM and
CMSSM model 1 results. The reason for this is that in model 1 the least fine tuned
results are those for which M >> 1/R. Thus the scalar masses are initially very small
and have to be generated with modified running. Consequently the 3rd family part of
the spectra are very similar. The correction introduced by nMGM relies only on larger
subleading corrections to the Higgs mass from first two families and other Higgs sector
scalars. Unfortunately fine-tuning price of these corrections is larger than their contri-
bution to the Higgs mass and the results are slightly more fine tuned than those from
standard MGM or CMSSM soft terms.
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CMSSM
Model: 1 2 4D

R: 10−4 10−6 10−8 10−4 10−6 10−8 4D
q̃1,2 3.14 3.45 3.84 1.76 2.40 3.23 4.58
t̃1 2.44 2.82 3.1 0.75 1.1 2.2 3.59
χ̃0

1 0.85 1.02 1.23 0.21 0.38 0.81 1.26
m̃A 1.82 2.20 2.50 2.1 2.3 2.4 2.77

∆/103 3.5 4.0 4.6 0.9 1.5 3 5.3

MGM
Model: 1 2 4D

R: 10−4 10−6 10−8 10−4 10−6 10−8 4D
q̃1,2 3.12 3.45 3.84 1.76 2.40 3.23 4.59
t̃1 2.57 2.77 3.18 0.81 1.47 2.2 3.92
χ̃0

1 0.80 0.91 1.08 0.17 0.37 0.81 1.32
m̃A 1.82 2.20 2.44 1.43 1.8 1.90 2.31

∆/103 3.6 4.0 4.6 0.95 1.85 3.19 6.01

nMGM
Model: 1 4D

R: 10−4 10−6 10−8 4D
q̃1,2 3.81 4.41 5.69 6.41
t̃1 2.33 2.64 3.15 3.69
χ̃0

1 0.79 0.93 1.01 1.05
m̃A 1.92 2.36 2.92 3.31

∆/103 3.7 4.2 5.2 6.0

Table 2.7: Masses of superpartners (in TeV) for spectra which minimize fine-tuning for
mh = 125 GeV

A large qualitative difference between MGM and nMGM becomes visible for Higgs
masses slightly higher than the observed one. This comes from the part of parameter
space which predicts successful electroweak symmetry breaking in nMGM. As explained
in the beginning of this section, the problem is a result of the exclusion appearing in
nMGM for very small 1/MR. Where we cannot break electroweak symmetry because
radiative correction to the unsuppressed soft Higgs mass coming from highly suppressed
stop mass is to small, and the former never runs negative. This becomes visible for higher
Higgs masses because very small 1/MR is the part of the parameter space where we obtain
highest Higgs masses. Another very important feature of 5D models is the possibility to
bring superpartner masses within the LHC reach for points predicting minimal fine-tuning.
This is illustrated in Table 2.7 which shows spectra corresponding to lowest obtained fine
tuning for mh = 125 GeV.
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Figure 2.19: Fine-tuning as a function of Higgs mass for different sizes of the extra
dimension for models 1 (left hand side) and 2 (right hand side) with CMSSM (top row),
MGM (middle row) and nMGM (bottom row) spectra as well as the 4D results.
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Figure 2.20: minimal possible lighter stop mass as a function of Higgs mass for different
sizes of the extra dimension for models 1 (left hand side) and 2 (right hand side) with
CMSSM (top row), MGM (middle row) and nMGM (bottom row) spectra as well as the
4D result.
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2.7.6 Summary

In this section we explored the implementation of the five dimensional renormalisation
group equations in a number of supersymmetric extensions of the MSSM, into a full C++
spectrum generator, along with self energy corrections for the Higgs mass.

Our key result is showing that modified five dimensional RGEs can result in spectra
very different from the usual 4D case. This is because in 5D the heavy gluino does
not necessarily dominate running of other soft terms during power law running, as in
our model 2. Thus we can easily obtain maximal stop mixing and much less fine-tuned
spectra, even with standard sets of soft terms at the SUSY breaking scale.

This is also very interesting because in 5D models the least fine tuned spectra with
correct Higgs mass can easily predict soft superpartner masses within LHC reach, even
for standard patterns of soft terms. Curiously, this means the most interesting parts of
the parameter space can be probed during next run of the LHC, which is not usually the
case in 4D models.

We explored models where the 1st and 2nd generation are in the bulk and a model in
which the 1st and 2nd generation is on the same brane as the supersymmetry breaking
sector and the 3rd generation is located on an opposite brane, resulting in a spectrum of
stops lighter than other squarks. Obtaining lighter stop soft terms at the SUSY breaking
scale did not result in a more natural spectrum. The reason is the non negligible fine-
tuning price of heavier first two generations and heavier Higgs sector which give only a
subleading correction to the light Higgs mass.

The final advantage is a low scale of unification of gauge couplings and a low supersym-
metry breaking scale. And also much better unification of Yukawa couplings (especially
in model 2) which gives hope for a very interesting five dimensional UV completion of
such models.



Chapter 3

Vacuum stability

3.1 Introduction

The discovery of the 125 GeV Higgs boson, and absence of experimental signature of a
new physical state in the LHC experiments makes it very important to search for possible
windows towards new phenomena within the SM itself. One of such possible windows is
the investigation of the structure of the effective potential in the SM which has already
been the subject of considerable activity [123, 124, 125, 126, 127, 128, 129, 18, 130].

The study of the renormalisation group improved SM effective potential reveals an
interesting structure at field strenghts higher than approximately 1011 GeV. These new
features depend critically on the precise value of the Higgs mass and the top quark Yukawa
coupling. In particular, one finds that for the central value of the top mass and for the
central value of the measured Higgs mass the physical electroweak symmetry breaking
minimum is not the global minimum of the potential. Thus the electroweak minimum
is unstable with respect to the tunneling from the physical EW minimum to the deeper
minimum located at very large Higgs field strength values. The computed lifetime of the
metastable SM vacuum turns out larger than the presently estimated age of the Universe,
however the instability border in the SM parameter space looks uncomfortably close. This
suggests that the result is rather sensitive to various types of modifications that can from
various BSM extensions.

We will begin by reviewing the well known standard model stability calculation, and
subsequently move towards finer issues connected with this computation such as the issue
of gauge invariance and gravitational corrections to the lifetime estimation. Finally we
will discuss the impact of new physics on the vacuum stability.

3.2 Lifetime of the Standard Model vacuum

The starting point in this discussion is the effective potential of the SM which we dis-
cussed in Section 1.3.2. As noted there, the potential of SM has another very deep
minimum separated from the electroweak one by a potential barrier shown in Figure 3.1.
The electroweak vacuum is unstable due to possible tunnelling through the barrier. In

59
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Figure 3.1: RGE improved Standard Model potential at the tree level and including one
loop correction

this situation the superplanckian global minimum is called the true vacuum while the
electroweak one is called false vacuum. In this section we will review the semi-classical
method of computation of the vacuum’s lifetime, describing the tunnelling as nucleation
of true vacuum bubbles within the false vacuum [131, 132].

Based on analogy with usual quantum mechanics, the method is based on finding a
so called bounce solution describing the nucleating bubble. The bounce is a solution to
the euclidean version of the equation of motion which interpolates between the false and
true vacua. As in case of quantum mechanics the nucleation probability is exponentially
suppressed with the action of the bounce. Thus finding a bounce with minimal action is
equivalent to obtaining the usual variational solution needed in all tunnelling problems.

It was shown in [133] that the solution of lowest action is spherically symmetric. In
the euclidean metric an O(4) symmetric solution depends only on s =

√
~x2 + x2

4. This
means solving the scalars equation of motion of the form

φ̈+
3

s
φ̇ =

∂V (φ)

∂φ
, (3.1)

with a dot denoting a derivative with respect to s.

φ̇(0) = 0

φ(∞) = φfv
(3.2)

The first boundary condition is necessary for the solution to be non-singular at s = 0. The
second one means our solution corresponds to a bubble forming within the homogeneous
configuration of metastable vacuum, without this the solutions would not match at infinity
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the action would diverge. The euclidean action of the bounce is simply given by

SE =

∫
d4x

{
1

2

4∑
α=1

(
∂φ(x)

∂xα

)2

+ V (φ(x))

}
= 2π2

∫
dss3

(
1

2
φ̇2(s) + V (φ(s))

)
, (3.3)

which allows us to calculate decay probability

dp = dtd3x
S2
E

4π2

∣∣∣∣ det′[−∂2 + V ′′(φ)]

det[−∂2 + V ′′(φmin)]

∣∣∣∣−1/2

e−SE . (3.4)

To obtain the expected lifetime we simply integrate that probability over the volume
of the universe. It is a valid assumption to approximate this size as that of a cube of
size TU = 1010yr. We define the expected lifetime τ as time at which the integrated
decay probability is equal to 1. For now we can also approximate the determinant and
normalization prefactor by another dimensionfull quantity encountered in our problem,
namely the width of the barrier φ0 = φ(0). The error introduced that way is small
compared to uncertainty in determination of action, because lifetime depends only on
fourth power of φ0 while its dependence on action is exponential. Our final approximation
of the vacuum’s lifetime reads

τ

TU
=

1

φ4
0T

4
U

eSE . (3.5)

In the following subsections we will present the known analytical approximations of the
bounce and compare them results with our precise numerical solution.

3.2.1 Analytical approximation

Possibly the most simplified estimate for the lifetime of electroweak vacuum reads

τ

TU
∼ 1

Λ4T 4
U

e
8π2

3|λ(Λ)| , (3.6)

where λ(µ) is the running Higgs quartic coupling. The scale Λ is chosen to minimize the
negative value of λ(Λ) so that our result is actually a lower bound on the lifetime. The
rationale behind the above formula is as follows. The classical Lagrangian

L =
1

2
(∂φ)2 − λc

4
φ4 , (3.7)

where this time λc is just a negative constant, admits a bounce solution describing the
decay of φ = 0 configuration, whose action is S = 8π2

3
1
λc

[134]. Hence, after reinter-
pretation of the Lagrangian (3.7) as a quantum Lagrangian, our formula (3.5) describes
space-density of the tunneling rate. Due to classical scale invariance of the Lagrangian,
one has no dimensionfull quantity to fill in above except the renormalization scale Λ at
which we calculate the quartic coupling λ.

Thus using this approximation and neglecting the explicit mass term in the standard
model Lagrangian the whole calculation requires only finding the minimum of the Higgs
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quartic coupling λ. The key here is very precise determination of the quartic since the
value of the minimum is often very close to zero and even a small correction used in (3.6)
can change the result dramatically. We use NNLO order initial conditions for the running
couplings calculated at the top mass scale µ = mt from top and Higgs physical masses
[123]

g1 =

√
5

3
(0.3583 + 0.00011× (mt − 173.34)) ,

g2 = 0.64779 + 0.00004× (mt − 173.34) ,

g3 = 1.1666− 0.00046× (mt − 173.34),

yt = 0.93690 + 0.00556× (mt − 173.34),

m = 131.55 + 0.94× (mh − 125.15) + 0.17× (mt − 173.34),

λ = 0.12604 + 0.00206× (mh − 125.15)− 0.00004× (mt − 173.34).

(3.8)

We calculate the evolution using three loop renormalisation group equations from [123].
Figure 3.2 shows the SM phase diagram calculated using (3.6), using only running Higgs
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Figure 3.2: Phase diagram of the electroweak vacuum calculated using only Higgs quar-
tic coupling and the full one-loop potential (dashed lines). Green region corresponds to
absolute stability, the yellow region to metastability while the red region is unstable.

Quartic λ and the effective Higgs potential λeff described in Section 1.3.2. We also plot
the experimental ellipsis showing the observed top and Higgs masses at one two and three
sigma significance. We can see that the SM vacuum is most likely metastable (yellow
region) which means the other minimum exists within the potential but the expected
lifetime of the electroweak vacuum is longer than the observed lifetime of the Universe.
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This result means the standard model does not need to be modified due to vacuum
instability, the current situation is phenomenologically acceptable. However the uncom-
fortably small distance to the instability border makes it very important to check the
impact of any extension of SM on the vacuum stability. We will discuss such examples in
the following sections.

We can also see that the correction coming from using a full one loop potential instead
of the tree level approximation, is small and makes the potential slightly more stable.

3.2.2 Gauge independence

Our next step is verifying the gauge independence of the above results. Even though
we know an observable such as the lifetime has to be gauge independent, verifying this
feature explicitly can lead to better understanding of the approximations we have to take
during the calculation.

We will now use gauge invariance to further justify approximations from the previous
subsection. After renormalisation the effective Lagrangian would be rather

L =
1

2
Z(µ) (∂φ)2 − λ(µ)

4
Z(µ)2φ4 . (3.9)

This form is correct only at the lowest level of perturbative calculation, when logarithmic
loop correnctions are not yet included. Simply using the coefficient before φ4 as our
effective coupling would result in a lifetime different than in the previous subsection,
namely

τ

TU
∼ 1

Λ4T 4
U

e
8π2

3
1

|Z2(Λ)λ(Λ)| , (3.10)

where
Z(µ)

1
2 = e−

∫ µ
Mt

γ(µ̃) d log(µ̃) (3.11)

Going to higher loop orders introduces more complicated dependence on φ. Now we
notice that, for one, the full coefficients in front of both the kinetic and quartic terms
are dimensionless and thus, absent any dimensionfull parameters in the theory, they may
depend on µ only via φ/µ. Also the running of Z and Z2λ captures these coefficients’
dependence on µ, so it cancels between running couplings and explicit dependence of loop
corrections. In conclusion, it is justified to replace µ from (3.9) with the field, µ→ φ, and
claim that the resulting µ-independent function of φ well approximates the full effective
quantum Lagrangian. This leaves us with

L =
1

2

(
∂
(
Z

1
2 (φ)φ

))2

− λ(φ)

4
Z2(φ)φ4 . (3.12)

This brings us to our point. |Z2λ| in (3.10) should be replaced by |λ| alone bringing us
back to (3.6). From the point of view of the Lagrangian (3.12), it makes sense to redefine

the field variable by φ̃ = Z
1
2 (φ)φ, thus eliminating Z(µ). There is a way to show that this

is in fact the correct approach. Namely, the anomalous dimension is gauge-dependent,

γ =
1

16π2

(
3

20
ζg2

1 +
3

4
ζg2

2 +
9

4
g2

2 +
9

20
g2

1 − 3y2
t − 3y2

b − y2
τ

)
(3.13)
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,where ζ is the gauge fixing parameter in the Fermi gauge [135]. This makes (3.10) very
sensitive to the values of gauge fixing parameters, however, absence of Z trivially makes it
gauge-independent again. Simple as it sounds, throwing away Z’s may seem controversial,
because it means treating µ, substituted by φ, as a spacetime dependent configuration,
and thus hitting Z(φ(x)) with ∂µ in (3.12).

In our present case of the Standard Model, difference between (3.6) and (3.10) is
significant. Z2(µ) changes from 1 at the scale of the top quark mass, mtop, to about
0.8 closer to the Planck scale. This translates to the exponent in (3.10) increasing from
1800 to roughly 2100. Correspondingly the lifetime of the vacuum computed via (3.10)
is only around 10529 as compared to 10676 when using (3.6). Figure 3.3 illustrates gauge
dependence of the action, for the Fermi gauges, with ξ = ξW (mtop) = ξB(mtop) [135]. The
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Figure 3.3: Solid curve: gauge dependence of the bounce action obtained neglecting Z
factor in front of the kinetic term. Dashed line: the bounce action after the redefinition
φ̃ = Z

1
2 (φ)φ. ξ is the gauge fixing parameter.

most commonly used Landau gauge belongs to this this class, and corresponds to the
choice of ξ = 0.

The crucial result here is that using (3.10) with field renormalisation even in Landau
gauge results in an action which is significantly bigger than the correct result with Z = 1.
Thus these results would predict a vacuum far more stable than the correct treatment of
(3.6).

3.2.3 Numerical calculation

In this section we will discuss the validity of the simple approximation obtained in the
previous subsections. The only way to make sure that our analytical approximation is
accurate is through numerically finding the full bounce solution.

As noted already in [131], our EOM (3.1) can be thought of as an equation of motion
of a praticle in potential −V with an uncommon friction term 3/s and s playng the role
of time. Very schematically our boundary conditions (3.2) correspond to our particle
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starting with zero speed on the slope of the higher maximum (true vacuum in terms of
+V ). To satisfy the second boundary condition we have to find a starting point such
that at infinite s the particle comes to rest at the lower maximum (false vacuum). This
is sketched on Figure 3.4.

Figure 3.4: Illustration of the boundary conditions (3.2).

The numerical procedure we used is based on an overshot/undershot method. First
we solve starting from the true vaccuum at very small s = ε and expanding the solution
into a series to get

φ ≈ φ0 +
ε2

8

∂V (φ)

∂φ

∣∣∣∣
φ=φ0

, (3.14)

φ̇ ≈ ε

4

∂V (φ)

∂φ

∣∣∣∣
φ=φ0

.

Now we simply have to find the correct starting point φ0. Stating infinitely close to the
top of the higher maximum, the particle can spend infinitely long time there, so it is
always possible to eliminate the friction and overshot the other maximum. Conversely
starting to low we wont have enough energy to climb the lower minimum. From continuity
of the solutions we know our desired result lies somewhere between the two and we can
use a simple bisection in φ0 to find the correct value for which φ(∞) is the electroweak
minimum.

To double check we solve the equation of motion again, this time starting from the
electroweak minimum. To begin, we expand the field and potential around the minimum

φ ≈ φmin + φ∞, (3.15)

∂V (φ)

∂φ
≈ m2φ∞.
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Thus we get a simplified EOM which is solved by modified Bessel functions, so we can
express our initial conditions as

φ∞ = A
K1(s)

s
, (3.16)

φ̇∞ = −A K2(s)

s
. (3.17)

Next we solve these to obtain φ̇∞ as a function of φ∞. We then again use simple bisection
to find φ∞ which minimizes the field derivative at a very small s = ε near the true vacuum.

The case of the Standard Model is still numerically challenging because the are very
far away and we have to solve the equation of motion through sixteen orders of magnitude
in the field φ. Nevertheless this only means we need enough precision in setting the initial
conditions, before we are able to find the desired solution. Figure 3.5 shows the resulting
bounce solutions.
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Figure 3.5: Field configuration corresponding to the bounce solution in the Standard Model
(left panel) and the derivative of the field (right panel) (3.2).

The results from our numerical procedure turn out to be in perfect agreement with the
Analytical approximation discussed in the previous sections, the difference in the resulting
lifetime is of order of a few percent. The exact value we obtain is τ = 9.84× 10528. This
confirms that the Standard Model is a consistent theory. No modification is required to
explain why the electroweak vacuum live as long as it did already.

3.3 The impact of new physics on vacuum stability

Now we can proceed to include extensions of the standard model, with the goal of dis-
cussing their impact on the stability of the electroweak vacuum. We will describe such
extension in its generic form of nonrenormalisable operators. Specifically we will supple-
ment the SM potential with two higher dimensional interactions λ6 and λ8 suppressed by
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a large mass scale M :

V = −m2φ2 +
λ

4
φ4 +

λ6

6!

φ6

M2
+
λ8

8!

φ8

M4
. (3.18)

In previous section we discussed that effects of radiative corrections to SM couplings on
the vacuum decay are large and so these couplings require precise determination. In order
to include RGE effects of the new couplings we computed one-loop corrections associated
with the new interactions. The correction to the running of the quatric Higgs coupling is
of the form

∆βλ =
λ6

16π2

m2

M2
, (3.19)

and its contribution is negligible for m << M . One-loop beta functions of new couplings
take the form

16π2βλ6 = λ8
m2

M2
+ 15λ66λ− 6λ6

(
9

4
g2

2 +
9

20
g2

1 − 3y2
t

)
, (3.20)

16π2βλ8 = 35λ2
6 + 28λ86λ− 8λ8

(
9

4
g2

2 +
9

20
g2

1 − 3y2
t

)
.

Figure 3.6 shows an example of running of the new couplings. We can see that while
λ6 varies only by roughly twenty percent, the running of λ8 is very fast and can have
significant consequences. Figure 3.7 shows the resulting potential with λ6(Mp) = −1,

Figure 3.6: Example solution of RGEs for couplings λ6(Mp) = −1 and λ8(Mp) = −0.1.

λ8(Mp) = −0.1 and suppression scale M = Mp. As we see the result of negative λ6 is
a new very deep minimum forming close to the cut-off scale M . We could use a more
common electroweak basis used in SM [136] which means nonrenormalisable couplings of
the form

Vnonr =
λ6

6!

|H†H|3
M2

+
λ8

8!

|H†H|4
M4

. (3.21)
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Figure 3.7: Potential corresponding to couplings from Figure 3.6 (blue line) together
with the Standard Model potential (purple line).

This gives slightly different coefficients than those in (3.20) due to contributions from
three additional scalars in the Higgs doublets

16π2βλ6 =
10

7
λ8
m2

M2
+ 18λ66λ− 6λ6

(
9

4
g2

2 +
9

20
g2

1 − 3y2
t

)
, (3.22)

16π2βλ8 =
7

5
28λ2

6 + 30λ86λ− 8λ8

(
9

4
g2

2 +
9

20
g2

1 − 3y2
t

)
,

which agrees with [137]. However we have checked that difference between (3.20) and
(3.22) has negligible impact on our results here and in the following sections.

3.3.1 Analytical solution

As discussed in the previous section the simplest scheme for estimating the vacuums
lifetime, amounts to calculating the quantity in (3.5) as

τ

TU
=

1

Λ4
BT

4
U

e
8π2

3|λeff (ΛB)| , (3.23)

where
λeff (φ)

4
=

Veff (φ)

φ4 , Veff being the effective potential, and ΛB denoting the renormal-
isation scale for which λeff is minimised. This approach is based on the fact that in the
Standard Model the minimum of λ is very flat and so, for a wide range of energy scales,
λeff is close to a negative constant λc ≈ −0.013. Now we have to incorporate the new
couplings which gives λeff = λSM

eff (φ)+ 4
6!

λ6

M2
P
φ2 + 4

8!
λ8

M4
P
φ4. We will discuss two approaches.

Firstly we also completely ignore the RGE-running of λ6 and λ8. Then we include them
in the set of our RGE equations and calculate their scale dependence according to (3.20).

For constant λ6 and λ8, the effective λeff does not have a global minimum for λ8 < 0,
and we can calculate the value (3.23) only for the range of positive λ8’s. The left panel of
Figure 3.8 shows a contour plot of the resulting lifetime, or more precisely log10

τ
TU

. In the
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region where λ6 is negative enough, λeff develops new minimum (as compared to SM) at
scales close to MP and the exponent in (3.23) becomes small, rendering the vacuum short-
lived. Our next step is to include the running of λ6 and λ8. As we can see in the right hand

Figure 3.8: Decimal logatihm of lifetime of the universe in units of TU as a function of
the nonrenormalisable λ6 and λ8 couplings, calculated with formula (3.23). For λ6 and
λ8 kept constant (left panel) and λ6 and λ8 scale dependent and satisfying their one-loop
RGE’s (right panel).

side panel of Figure 3.8 it has small influence on the position of the log10
τ
TU

= 0 contour.
The most significant change is that now, even when we set a negative value of λ8 at the
Planck scale, it eventually becomes positive and so λeff possesses a global minimum, thus
enabling us to use the formula (3.23). The region where λeff does not develop a global
minimum at the renormalisation scale lower than M2

P was excluded (white color). Another
analytical approximation allowing us to find an approximate bounce solution (originally
presented in [134] and recently used in [130]) would be to aproximate the potential with
a constant sewn together with a linear function at a certain point, as in

Vη(φ) =

{
− bη

4
φ4 , φ 6 η

− bη
4
η4 −K (φ− η) , φ > η

, (3.24)

where bη
4

=
−Veff (η)

η4 =
−λeff (η)

4
. The problem is that one always needs to choose the sewing

point η and the slope parameter K, to approximate the effective potential so the results
are more arbitrary than in the previous method.

The solution exists if the ratio of derivatives at η, −γ = bη η3

K
, obeys 0 < −γ < 1,

[134]. Then the action of a bounce is given by Sη =
8π2

3

1

bη
(1− (γ + 1)4), and its starting

point, φ0 = η(2 + γ), lies in the linear part of Vη. In the case when −γ > 1, all the
bounce solutions lie in the quartic part of Vη only and the effect of sewing it with the
linear function amounts to arbitrarily choosing the value of quartic coupling λeff (η).

Generally to for Vη to reproduce the shape of Veff near the global minimum, one has to
chose −γ close to 1 and η of the order of MP . Thus, the main effect of lowering the action
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in (3.5) by the nonrenormalisable operators comes from the increase of |λeff |, exactly as
in the previously described simpler scheme. To check this, we have calculated the log10

τ
TU

,
putting −K = V ′eff (η) and η equal to the potentials inflection point (V ′′eff (η) = 0. The
results were very similar to the ones presented above, particularly the log10

τ
TU

= 0 contour
remained unchanged.

3.3.2 Numerical result

The numerical procedure we used is exactly the same as the one we used in case of the
Standard Model as described in Section 3.2.3. The only difference is a different form of
the potential including the new interactions.

The resulting lifetimes are shown in Figure 3.9 for constant couplings λ6 and λ8. Its

Figure 3.9: Decimal logarithm of lifetime of the universe in units of TU as a function of
constant couplings λ6 and λ8.

important to distinguish 3 areas in Figure 3.9. The first one with both new couplings
positive corresponds to the SM potential stabilised by new interactions at the Planck
scale. The resulting lifetimes are very close to SM one, because the bounce solution
within SM probes field values much smaller than Planck mass (φ0 < Mp). The second
region with λ8 < 0 corresponds to a potential unbounded from below, and this whole
region predicts very unstable potentials. The last important region has positive λ8 but
negative λ6, and corresponds to a potential with a new minimum around the Planck scale.

To increase the accuracy of above prediction we solved the equation of motion (3.1)
numerically taking into account the 1-loop running of λ6 and λ8 from equation (3.20)
together with 3-loop Standard Model RGEs. The resulting lifetimes are shown in Fig-
ure 3.10.
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Figure 3.10: Decimal logarithm of lifetime of the universe in units of TU as a function of
running couplings λ6 and λ8 calculated at the scale M .

Examples of running of new couplings in Figure 3.6 show that their values, especially
λ8 can change significantly. The most important qualitative difference comes from the
λ2

6 contribution to the running of λ8 (see equation (3.20)). In the Figure 3.6 we see that
for large enough λ6 it can stabilize the potential by pushing λ8 to positive values not far
above the Planck scale, when λ8(Mp) is negative but has small enough modulus. This
effect bends the metastability curve in Figure 3.10 towards more negative λ8 near edges
of the plot where |λ6| is large.

3.3.3 Accuracy Comparison

Figure 3.11 shows comparison of metastability/instability boundaries obtained using the
methods described in previous subsections. The analytical approximation is accurate
enough for qualitative discussion, however more careful numerical analysis results in a
larger metastability region. The same can be said about the impact of the running of
nonrenormalisable couplings.

3.3.4 Standard Model phase diagram

To illustrate effects of new nonrenormalisable operators on Standard model vacuum sta-
bility in Figure 3.12 we show the well known standard model phase diagram (see for ex-
ample [123]) and the same diagram after including new operators, respectively λ6(Mp) =
−1/2,−1 and λ8(Mp) = 1, 1/2. Above results clearly show that nonrenormalisable inter-
actions suppressed by the Planck mass can drastically change the SM phase diagram, by
pushing electroweak vacuum towards the instability region.
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Figure 3.11: Contours corresponding to metastability boundary (τ = Tu) obtained using
four different methods.
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Figure 3.12: Standard Model phase diagram (left panel), the same diagram after including
new operators λ6(Mp) = −1/2 and λ8(Mp) = 1 (middle panel) and λ6(Mp) = −1 and
λ8(Mp) = 1/2 (right panel). The green region corresponds to absolute stability, the yellow
region is metastable and the red one corresponds to rapid instability.

3.3.5 Magnitude of the suppression scale

In this section we will discuss how lowering the suppression scale of our nonrenormalisable
interactions M in (3.18) changes the results from previous subsections. To analyse this
problem qualitatively it is enough to use the analytical approximation we presented in
section 3.3.1 . When the nonrenormalisable couplings are positive, lowering the suppres-
sion scale M corresponds simply to making the potential positive not far above the scale
M . The action (exponent in (3.23)) increases because the position of the minimum of
λeff shifts towards smaller energy scales and the value of |λeff | decreases, which is shown
in Figur 3.13. In the case with positive λ8 and negative λ6 this dependence is smaller as
shown in Figure 3.14. The new minimum is much deeper and changing the scale, changes
λeff by a small fraction of its value. Thus the resulting lifetimes are much less scale de-
pendent. In fact, in this case scale dependence of lifetime comes mostly from the prefactor
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Figure 3.13: Scale dependence of
λeff

4
= V

φ4 with λ6 = λ8 = 1 for different values of

suppression scale M . The lifetimes corresponding to suppression scales M = 108, 1012, 1016

are, respectively, log10( τ
TU

) =∞, 1302, 581 while for the Standard Model log10( τ
TU

) = 540.

in (3.23), because the size of the bounce is φ0 ≈ µmin ∝M .

The last possibility is a potential unbounded from below which again corresponds to
unstable potentials, that depend on M very weakly as in the previous case. The conclusion
is that changing the suppression scale cannot save an unstable solution.

3.4 Summary

We prepared a map of the vacua in the SM extended by nonrenormalisable scalar cou-
plings, taking into account the running of the new couplings and going beyond the stan-
dard assumptions taken when calculating the lifetime of the metastable vacuum. We
verified the correctness of quasi-analytic approximations of the effective potential widely
used in the literature for calculatinon the tunneling rate, [134]. It is important to check
the validity of such approximation and to search through a relatively wide scope of new
couplings to find the actual behaviour of the scalar potential. The tool we used in this case
is direct numerical analysis, which however is not so straightforward due to large separa-
tion of scales. Our result is that the simplified analytical approach represents reasonably
well the actual numerical results.

In general, we also confirm that it is relatively easy to destabilise the SM with the
help of the Planck scale suppressed scalar operators. In fact its possible to destabilise the
electroweak vacuum by new interactions at any scale while making it absolutely stable
requires cut-off scales lover than roughly 1011 GeV.
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Figure 3.14: Scale dependence of
λeff

4
= V

φ4 with λ6 = −1 and λ8 = 1 for different
values of suppression scale M . The lifetimes corresponding to suppression scales M =
108, 1012, 1016, are, respectively, log10( τ

TU
) = −45,−90,−110 while for the Standard Model

log10( τ
TU

) = 540.

3.5 Gravitational corrections

In this section we will discuss gravitational corrections to the vacuum decay process. We
begin by discussing the gravitational backreaction on a simple toy model.

3.5.1 Toy Model

We will consider a very simple model describing a single neutral scalar field. Our La-
grangian takes the form

L =
R

2κ
+

1

2
(∂φ)2 − 1

2
ξRφ2 − V, V = −a2(3b− 1)φ2 + a(b− 1)φ3 +

1

4
φ4 + C. (3.25)

The potential is intentionally very simple with two minima at φ = 0 and φ = 2a. We will
always consider a scenario when the field is initially in a homogeneous configuration in
the false vacuum at φ = φf = 0 which we will denote by Vf . And consider tunnelling to
the true vacuum at φ = φt = 2a denoted by Vt.

In the previous sections we could always shift the whole potential by a constant. Now
including gravity gives the value of the potential an interpretation of the vacuum energy
and thus a very significant role. We will see that the character of our background solution,
so the false vacuum energy is crucial in these considerations. To discuss this effect we will
use the constant C to change the character of our initial false vacuum.

We will focus on two examples of potentials, first with a de Sitter false vacuum (for
C > 0) and the second one with a Minkowski false vacuum (for C = 0). These example
potentials are plotted in Figure 3.15 with a = 1/2 and C = 1/100 such that the true
vacuum is positioned at the Planck scale, for different values of b. We also use natural
units where Mp = 1.
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Figure 3.15: Our toy model potential. Left panel: dS false vacuum and AdS true vacuum.
Right Panel: Minkowski false and vacuum AdS true vacuum.

3.5.2 Gravitational impact on bubble formation

We will consider and compare thwo different methods of obtaining the vacuums lifetime

• Numerical determination of instanton action neglecting gravity with a thin wall
approximation of gravitational correction [138].

• Full numerical calculation including gravitational effects.

We will be most interested in the third case, where we will use the standard formalism
of Coleman and De Luccia (CDL) [138], assuming that vacuum decay proceeds through
nucleation of true vacuum bubbles within our false vacuum. We will also compare a
precise numerical result with results of the thin wall approximation [131, 138].

Action of an CDL instanton is the difference between the instanton solution and the
background. That is a homogeneous solution of the field residing in the false vacuum,

S = S[φCDL]− S[φf ]. (3.26)

We are interested in an O(4) symmetric scalar field configuration φ = φ(τ), with the
metric given by ds2 = dτ 2 + r(τ)2(dΩ)2. Here dΩ is an infinitesimal element of the 3D
sphere, and r(τ) is the radius of that sphere. The resulting metric tensor is of the form
of the FRW metric with the curvature parameter k = +1. Euclidean action in Einstein
frame takes the form

SE = 2π2

∫
dτρ3

(
1

2
φ̇2 + V +

1

2

R

κ

)
, (3.27)
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since as in the usual FRW case R = 6

(
ρ̈
ρ

+
(
ρ̇
ρ

)2

− 1
ρ2

)
and φ̇ = dφ

dτ
. The equation of

motion of the scalar field reads

φ̈+ 3
ρ̇

ρ
φ̇ =

∂V

∂φ
, (3.28)

the second EOM is the Friedmann equation

ρ̇2 = 1 +
κρ2

3

(
1

2
φ̇2 − V

)
. (3.29)

One can show that scale factor ρ crosses zero at least once [139]. Without loss of generality
we chose value of τ of the first one to be τ = 0, the other boundary is set at τend. The
appropriate boundary conditions then are

φ̇(0) = φ̇(τend) = 0

ρ(0) = 0 (3.30)

ρ(τend) = 0, (for dS)

ρ(τend) = ρend 6= 0, (for Minkowski) .

We can also simplify the action using EOMs and integrating by parts

SE = 2π2

∫ τmax

0

dτρ3

(
1

2
φ̇2 + V +

1

2

R

κ

)
= 2π2

∫ τmax

0

dτ

(
ρ3

(
1

2
φ̇2 + V

)
+

3

κ

(
ρ̈ρ2 + ρ̇2ρ− ρ

))
= 4π2

∫ τmax

0

dτ

(
ρ3V − 3ρ

κ

)
+

6π2

κ
ρ2ρ̇

∣∣∣∣
τ=τmax

.

Now we can proceed and find the solutions we need to compute the action. To find the
simpler background solution we will use the first Friedmann equation (3.29) assuming a
constant field configuration φ̇ = 0, which gives a solution for ρ,

ρ =
1√
κVf

3

sin

(
t

√
κVf

3

)
, (for dS)

ρ = t, (for Minkowski)

(3.31)

For dS and Minkowski false vacua false vacua of interest to us we have

S[φf ] = −24π2

Vf

, (for dS) (3.32)

S[φf ] = 0, (for Minkowski)

The next step is the calculation of S[φCDL] which we will discuss in the following subsec-
tions.
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3.5.3 Thin-wall approximation

We now proceed to the thin-wall inclusion of gravity. This method, described in detail
in [138] assumes the true vacuum bubble stretches to some ρ̄ taking a constant value Vt

and beyond that our solution is identical to the false vacuum Vf . To integrate up to an
arbitrary ρ which will play the role of the size of the bubble, we change the variables using
(3.29)

dτ = dρ

(
1− κV

3
ρ2

)− 1
2

(3.33)

And perform the integral in (3.31) to obtain action of the bubble

S = 2π2

(
Swρ

3 +
2

κ2

[
1

Λt

((
1− Λtρ

2
) 3

2 − 1
)
− 1

Λf

((
1− Λfρ

2
) 3

2 − 1
)])

, (3.34)

where Sw is the action of the bubble wall, and Λi = κVi/3. Next we find ρ̂ such that the
above action is stationary,

ρ̂2 =
1

Λt +
(

γt

κSw

)2 =
1

Λf +
(

γf

κSw

)2 , (3.35)

where γt =
(
κSw

2

)2 − Λt + Λf and γf =
(
κSw

2

)2 − Λf + Λt. For this solution to exist we
require γt > 0 and γf < 0. Using these results in 3.34 we finally obtain

S = 2π2

 Sw(
Λt +

γ2
t

κ2S2
w

) 3
2

+
2

κ2

 1

Λt


 1

1 + Λtκ2S2
w

γ2
t

 3
2

− 1

− 1

Λf


 1

1 + Λfκ2S2
w

γ2
f

 3
2

− 1



 .

(3.36)

Within the thinn-wall approximation, the bubble tension can be expressed through size
of the bubble in flat spacetime ρ0 as Sw = (Vf − Vt)ρ0/3. Thin-wall result neglecting
gravity for parameter ρ0 reads [131]

ρ0 =
3

Vt − Vf

∫ φt

φf

dφ
√

2 (V − Vf) . (3.37)

To improve the thin-wall gravity correction we numerically solve the EOM neglecting
gravity to find the correct ρ0 and the correct bubble wall tension. This procedure is
identical to the one discussed in Subsection 3.2.3, the difference is using the toy potential
(3.25) instead of the SM one. Figure 3.16 shows the resulting difference between the
simple thin-wall approximation of ρ0 in flat spacetime and our numerical result taking
ρ0 = ρ(φ = (Vf − Vt)/2).

Results for the bounce action neglecting gravity and the thin-wall correction are both
presented and discussed together with the full numerical results including gravity, dis-
cussed in the next subsection.
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Figure 3.16: Left panel: Size of the bounce ρ obtained using thin-wall and by numerically
solving the full EOM. Right Panel: Action of the bounce obtained using thin-wall and
using numerical solution of the full EOM. Both results neglect any gravity corrections.

3.5.4 Numerical CDL instanton calculation

For practical purposes, numerically it is more its more convenient to solve the second
Friedmann equation,

ρ̈ =
κρ

3

(
−φ̇2 − V

)
, (3.38)

rather than the first one. Its also very useful to express the curvature using the scalar
field,

R = 6

(
ρ̈

ρ
+

(
ρ̇

ρ

)2

− 1

ρ2

)
= κ

(
φ̇2 + 4V

)
(3.39)

which allows us to avoid numerical problems when ρ approaches zero.
We find initial values for our numerical EOM solutions by expanding the functions φ

and ρ for very small t = ε around φ̇(0) = ρ(0) = 0 as in (3.30) obtaining

φ(ε) ≈ φ0 +
ε2

2

∂V

∂φ

∣∣∣∣
φ=φ0

,

ρ(ε) ≈ ε+
ε2

2

κV

3

∣∣∣∣
φ=φ0

.

The final initial condition needed for our equations is the initial field value φ0. We
find the correct value of this parameter corresponding to a CDL instanton by a simple
undershoot/overshoot method just as in the flat spacetime. Figure 3.17 shows the resulting
bubble profiles.
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Figure 3.17: CDL bubble profiles. Left panel: tunnelling from dS false vacuum to AdS
true vacuum. Right Panel: tunnelling from Minkowski false vacuum to AdS true vacuum.
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After finding the CDL solution for φ(τ) and ρ(τ) we numerically perform the action
integral in a form (3.31). Now we have all the elements needed to obtain our final result for
the action (3.26). Figure 3.18 shows the action of our CDL instantons with various false
vacuum energy densities parametrised by c parameter (c = 0 corresponds to a Minkowski
background). Flat background bounce action and thin-wall approximation of gravity
discussed in Subsection 3.5.3 are also shown.
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Figure 3.18: Left panel: action of CDL instanton tunnelling from a dS false vacuum to an
AdS true vacuum. Right Panel: action of CDL instanton from Minkowski false vacuum
to an AdS true vacuum.

As we can see tunneling from a Minkowski false vacuum is heavily suppressed. There is
a minimal splitting between vacua below which gravitational effects disable the tunnelling
completely.

Tunneling from an AdS false vacuum is completely different. Gravitational effects fa-
cilitate the bubble nucleation. This happens because a CdL instanton does not necessarily
need to connect the two vacua it only connects different sides of the barrier. The horizon
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shrinks with increasing c (look at lower left panel of Figure 3.17) so our instanton which
needs to fit inside does the same, which results in smaller action. This effect is illustrated
in Figure 3.19 showing instantons for several values of constant added to the potential c.
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Figure 3.19: Top row: CDL bubble profiles and their derivatives. Bottom row: scale fac-
tors (left panel) and potentials with dashed out parts probed by CDL instantons tunneling
through the barrier.

3.5.5 Summary and situation in the SM

The first problem in discussion of the SM case is the uncertainty of the depth of the vac-
uum. Looking at (3.32) we see that this is an important issue since the vacuum positioned
at V ≈ 10−120 introduces yet another very different scale in the problem. However, based
on our discussion from the previous section its not difficult to discuss the effect quantita-
tively. The SM case is similar to our toy potential with very small cosmological constant
c and very large separation of energies of the vacua (large b). Looking at the top row
of 3.18 we can safely say that the correction will be a very small increase of the action.
The same conclusion comes from applying the simple thin-wall correction in SM. This
happens because in the SM the bubble which forms is of subatomic size (see Figure 3.5)
vastly smaller than the scale at which the spacetime curvature becomes important or even
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observable. Thus our bounce is very similar to the flat spacetime case, because at the
scale of its size the background is to a great approximation flat.



Chapter 4

Electroweak baryogenesis in
modified cosmologies

4.1 Introduction

Now we turn to another problem of the Standard Model, namely explaining the observed
matter-antimatter asymmetry. Creating such asymmetry requires the so called Sakharov’s
conditions to be fulfilled [24]. These are:

• baryon number violation,

• C and CP violation,

• departure from thermal equilibrium.

We now know that electroweak symmetry is broken due to the vacuum expectation value
(vev) of a scalar field. However, the symmetry was restored in the early Universe due to
high temperature modifications of the Higgs boson properties. We will study a baryoge-
nesis scenario [20, 21, 22, 23] in which the observed baryon asymmetry of the Universe
is created during the phase transition between the symmetric phase and the phase with
broken electroweak symmetry.

The last of Sakharov’s conditions can be fulfilled if the electroweak phase transition
is first order. However, in the Standard Model (SM) it is second order for a Higgs mass
of 125 GeV, and the field transitions smoothly into its new non-symmetric minimum
which develops as the temperature drops. Thus, models of electroweak baryogenesis
require new physics near the electroweak scale in order to generate a barrier between the
symmetric phase and the broken phase [25, 26]. Figure 4.1 illustrates this point, showing
the thermally corrected potentials in the SM an its extension which we will discuss in
this chapter. The dynamics of a phase transition from a symmetric phase in the hot
early Universe to the present-day broken phase at low temperature is described by finite-
temperature field theory. While the high-temperature Higgs dynamics is not directly
measurable at a collider, it is tightly related to the currently probed zero-temperature
potential.

83
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Figure 4.1: Thermally corrected potential of the SM (left panel) and its modification
through 2 |H|6 operator that we will discuss in this chapter.

Models realising EWBG gained renewed attention recently, as the experimental accu-
racy with which we know the Higgs properties increases and models predicting modifica-
tion to its potential can be probed [27, 28].

We will discuss modification of SM in its generic form of nonrenormalisable inter-
actions. Specifically we will supplement the SM Higgs potential with non-renormalisable
dimension six operator, suppressed by a cutoff scale Λ. It has already been shown that this
model can facilitate a first-order phase transition, depending on the value of Λ [140, 141].
Such modifications arise naturally from any UV complete model once the heavy states are
integrated out and can describe the theory at energies below the mass of the heavy state
Λ. However, here we will not discuss a particular high energy model, but try to discuss
all of their possible modifications of the Higgs potential by including a nonrenormalisable
modification of the Higgs potential through |H|6 operator.

We will be most interested in how the bounds one can put on EWBG models depend
on the cosmological history of the universe. In the standard cosmological model, the
Universe is radiation-dominated from the end of reheating following inflation, to the time
of matter-radiation equality, around 400, 000 years after the Big Bang. During this time,
a plethora of phase transitions occurred, among them the EWPT at a scale around T ∼
100 GeV. While the good agreement between Big Bang nucleosynthesis (BBN) models
and measurements of the primordial elemental abundances imply that the Universe was
radiation-dominated during and after BBN (T . 1 MeV), the expansion history before
BBN is still very poorly constrained. This means that the energy density in the early
Universe could have been dominated by components which have sufficiently decayed or
transformed into radiation, hence their presence may not show up through measurements
of the energy density at later epochs. Virtually all extensions of the SM predict new
particles or energy constituents, and so the question of how those will impact the early
Universe arises naturally.
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The difficulty for electroweak baryogenesis (EWBG) that we will discuss arises when
the Universe returns to thermal equilibrium after the phase transition. Then, the same
sphaleron processes that could have created the baryon asymmetry during the transition
can wash it away, if their damping in the broken phase is not sufficient. One way to
avoid this problem is to generate a large potential barrier, such that these processes
are sufficiently damped after the transition. However, cosmological freeze-out due to a
fast expansion of the Universe works in the same direction, see [142, 143]. In order to
obtain a higher expansion rate of the Universe than in the standard case, we require that
the dominant energy density during EWBG decreases faster than radiation which has to
dominate the Universe later during BBN. We will remain agnostic to what cosmological
model modifies the evolution of the Universe during this early epoch. Indeed, our results
are applicable to a large class of cosmological models and do not depend on the detailed
implementation of such models.

4.2 Description of the model

In order to facilitate a first-order phase transition of electroweak symmetry breaking
(EWSB), we need to extend the Standard Model. There are numerous models in the liter-
ature that accomplish this. We will discuss the simplest and most generic idea which does
not introduce new propagating degrees of freedom, but only a single higher-dimensional
operator |H|6. This can create a potential barrier between two local minima at the critical
temperature, thereby achieving the first-order phase transition as the temperature drops.
In this section we review the details of this model and also the finite temperature field
theory formalism needed to investigate the phase transition.

4.2.1 SM with a φ6 coupling

We will now describe the particle physics dynamics of an extension of SM with additional
|H|6 coupling suppressed by a certain energy scale Λ. Above that scale, new degrees of
freedom become fully dynamical, and the underlying particle model cannot be described
in the language of our effective theory. Restricting ourselves to processes around the
electroweak scale, we will consider the following potential

V (H) = −m2|H|2 + λ|H|4 +
1

Λ2
|H|6, (4.1)

with HT = (χ1 + iχ2, ϕ+ iχ3) /
√

2. We assume only the real part of the neutral compo-
nent has a vev: ϕ = φ + v. The physical Higgs boson is φ, which leads to the following
tree level potential

V (φ)tree = −m
2

2
φ2 +

λ

4
φ4 +

1

8

φ6

Λ2
. (4.2)
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The field-dependent masses take the form

m2
h(φ) = −m2 + 3λφ2 +

15

4

φ4

Λ2
,

m2
χi

(φ) = −m2 + λφ2 +
3

4

φ4

Λ2
,

m2
W (φ) =

g2

4
φ2, m2

Z(φ) =
g2 + g′2

4
φ2, m2

t (φ) =
y2
t

2
φ2,

(4.3)

where g, g′ and yt are the gauge boson and Yukawa couplings, respectively.
Following the prescription from [141], where a very similar potential was considered,

we include thermal and loop corrections as follows,

Veff (φ, T ) = −m
2

2
φ2 +

λ

4
φ4 +

1

8

φ6

Λ2
+

∑
i=h,χ,W,Z,t

ni
m4
i (φ)

64π2

[
log

m2
i (φ)

µ2
− Ci

]
+

∑
i=h,χ,W,Z

niT
4

2π2
Jb

(
m2
i (φ)

T 2

)
+
∑
i=t

niT
4

2π2
Jf

(
m2
i (φ)

T 2

)
+

∑
i=h,χ,W,Z,γ

n̄iT

12π

[
m3
i (φ)−

(
m2
i (φ) + Πi(T )

)3/2
]
.

(4.4)

The coefficients read n{h,χ,W,Z,t} = {1, 3, 6, 3,−12}, n̄{h,χ,W,Z,t} = {1, 3, 2, 1, 1}, and the
functions J are given by

Jb/f

(
m2
i (φ)

T 2

)
=

∫ ∞
0

dk k2 log

[
1∓ exp

(
−
√
k2 +m2

i (φ)

T 2

)]
. (4.5)

The thermal mass corrections Πi in (4.4) result from the ring-improvement of the finite
temperature potential, which is a resummation of the so-called daisy diagrams that become
enhanced at high temperature in the limit of zero boson mass. In our model, these mass
shifts read [144, 141]

Πh,χi(T ) =
T 2

4v2
0

(
m2
h + 2m2

W +m2
Z + 2m2

t

)
− 3

4
T 2 v

2
0

Λ2

ΠW (T ) =
22

3

m2
W

v2
0

T 2

(4.6)

and the resulting masses of Z and γ (m2
Z/γ + ΠZ/γ(T )) are eigenvalues of the following

mass matrix, including thermal corrections(
1
4
g2φ2 + 11

6
g2T 2 −1

4
g′2g2φ2

−1
4
g′2g2φ2 1

4
g′2φ2 + 11

6
g′2T 2

)
. (4.7)

There are certain conditions our model must fulfil to correctly predict known observations.
Namely we require correct masses of the Higgs boson mh =125.09 GeV , as well as those
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of the gauge bosons via the Higgs ground state of v0 := 〈φ(T = 0)〉 = 246.2 GeV. These
conditions predict the values of our model parameters λ and m, such that

V ′eff (φ, T = 0)|φ=v0 = 0, V ′′eff (φ, T = 0)|φ=v0 = mh . (4.8)

The resulting values of the parameters m and λ, as well as examples of potentials, are
shown in Figure 4.2.

We will limit our considerations to cutoff scales smaller than Λ ≈ 1100 GeV. Above
that scale, the phase transition is as weak as in the Standard Model (SM) with mh ≈
80 GeV. For this value the barrier between vacua is negligible and lattice simulations show
results characteristic for a second-order phase transition [145]. In that case, even if the
sphalerons can be decoupled after the phase transition, no asymmetry will be created to
begin with, so the model is ruled out anyway.
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Figure 4.2: The left panel shows examples of potentials at their critical temperatures for
several values of Λ. The right panel depicts the values of m and λ as functions of Λ (all
values except for the dimensionless λ are expressed in GeV).

4.2.2 Experimental observables

While all UV complete models realizing EWBG predict various modifications of the Higgs
properties, our effective theory differs from the SM only in terms of the Higgs potential.
This approach is the simplest way to discuss the dynamics of the phase transition without
specifying a UV completion. In the language of an effective theory, all other modifications
of Higgs properties are simply unrelated. Thus, in this approach, the only modified
measurable Higgs property is the triple-Higgs coupling. This observable is defined by the
third derivative of the zero-temperature potential (4.4),

λ3 =
1

6

d3Veff (φ, T = 0)

dφ3

∣∣∣∣
φ=v0

. (4.9)
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Figure 4.3: Values of the triple Higgs coupling λ3 as a function of the cutoff scale (dark
blue line), along with the SM value (light blue) and HL-LHC experimental sensitivity at
1, 2 and 3σ (dashed lines). The thin vertical lines point to cutoff values corresponding to
these bounds which are Λ ≈ 1102, 783 and 641 GeV, respectively.

Unfortunately this coupling can be measured only in double Higgs production events.
Thus their measurement requires high-luminosity experiments, because the cross-section
for producing a single Higgs boson is roughly three orders of magnitudes larger.

Even the future high-luminosity phase of the LHC (HL-LHC) will be able to determine
the value of λ3 with only about 40% accuracy [146, 147, 148, 149].

Figure 4.3 shows the value of λ3 in our model as a function of the cutoff scale Λ,
together with the SM value and the HL-LHC experimental sensitivities at 1, 2 and 3σ,
respectively. As we can see, the smaller the cutoff scale (i.e., the larger the deviation from
the SM), the larger the resulting λ3 coupling. This observation allows us to explicitly
calculate the reach of HL-LHC through λ3 measurements, in terms of the cutoff scale of
new physics. The resulting scales are Λ ≈ 1102, 783 and 641 GeV, corresponding to 1, 2
and 3σ deviations in the measurement, respectively.

4.2.3 Dynamics of the phase transition

Below the critical temperature Tc, the minimum that breaks electroweak symmetry be-
comes the global minimum of the potential. This new minimum is still separated from the
symmetric one by a potential barrier so the field resides in the symmetric local minimum.
The phase transition proceeds via thermal tunnelling, described in terms of nucleation
of bubbles of the broken phase (with non-zero vev) in the symmetric phase background.
After nucleation the bubbles grow, converting false vacuum into true one, until the whole
Universe transitions into the broken phase.

In the early Universe the dominant mechanism responsible for the phase transition is a
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high temperature sphaleron effect. We basically ask the question, what is the probability
that the field will be pushed over the barrier by thermal fluctuations. First we must find
the field configuration connecting the different sides of the barrier, which has the smallest
action and so, requires the least energy to create. Such configuration is static, since any
kinetic term contribution would be positive and could only increase the action. It is also
the most symmetric one. With these assumptions the action reads

S3(T ) = 4π

∫
drr2

[
1

2

(
dφ

dr

)2

+ V (φ, T )

]
. (4.10)

The resulting equation of motion for the field takes the form

d2φ

dr2
+

2

r

dφ

dr
+
∂V (φ, T )

∂φ
= 0. (4.11)

The boundary conditions necessary to obtain a finite action read

φ(r →∞) = 0 and
dφ

dr

∣∣∣∣
r=0

= 0, (4.12)

then the solution describes an O(3) symmetric bubble of the non-symmetric vacuum
appearing in the symmetric vacuum background.

The crucial value for finding the temperature of the phase transition is the probability
of nucleation of such a bubble. Assuming a Boltzmann distribution this probability per
volume V is simply given by [150, 151]

Γ/V ≈ T 4 exp

(
−S3(T )

T

)
, (4.13)

Still the question at what temperature the phase transition will proceed and the bubbles
will percolate also depends on the expansion rate of the Universe. We will assume that
the phase transition occurs at a temperature Tn, at which at least one bubble appears in
every horizon.

The usual assumption used in the literature is that for T ≈ O(100 GeV) the Universe
is dominated by radiation [152], whose energy density redshifts with scale factor a as

ρ̃R =
ρR
a4
. (4.14)

Neglecting all the sub-dominant energy density components, we can solve the Friedmann
equation (see Appendix A)

H2 =

(
ȧ

a

)2

=
8π

3M2
p

ρR
a4
, (4.15)

and calculate the volume of the Universe as

VH(T ) =

(
a

∫
dt

a

)3

= 8ζ3
M3

p

T 6
, (4.16)
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where ζ = 1
4π

√
45
πg∗
≈ 2×10−3, assuming the SM number of degrees of freedom g∗ = 106.75,

which is approximately constant in the range of temperatures we are considering. Using
(4.13), our condition for one bubble to be nucleated within each horizon then translates
to ∫ ∞

Tn

ΓdT =

∫ ∞
Tn

dT

T

(
2ζMp

T

)4

exp

(
−S3(T )

T

)
= 1. (4.17)

We are now ready to calculate the nucleation temperature. We first numerically find the
bubble profiles (4.11) using an overshoot/undershoot algorithm. The procedure is identical
to the one discussed in the SM vacuum instability case discussed in the previous Chapter
in Section 3.2.3. In fact the EOMs we now solve differ only by a constant coefficient, and
the boundary conditions are identical. This allows us to determine the action S3(T ) via
(4.10) as a function of temperature. Finally, we can integrate (4.17) to find the nucleation
temperature Tn for all values of the cutoff scale Λ. Figure 4.4 shows an example of this
procedure for Λ = 750 GeV. Left panel shows numerically obtained S(T )/T function while
right panel shows the corresponding potential in appropriate temperature range. Above
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Figure 4.4: Left panel: Numerically obtained S(T )/T function, red points are results
of the overshot/undershot algorithm and the blue line results from interpolation between
them. the vertical line shows the resulting nucleation temperature. Right panel: The
corresponding potential in appropriate temperature range

results clearly rely on our assumptions concerning radiation domination. Our next step
will be introduction of a modification of the cosmological history.

4.2.4 Modification of the cosmological history

Now we will generalize the calculation from the previous section by including a modified
expansion epoch before the usual radiation-dominated epoch. Our generalised cosmologi-
cal model simply assumes a new energy density constituent ρS which redshifts faster than
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radiation, namely

ρ̃S =
ρS
an
, (4.18)

with n > 4. As we move towards earlier times, the new component quickly dominates the
total energy density. Thus, at EWBG we can use a simplified Friedmann equation (see
Appendix A), including only the new dominating component

H2 =

(
ȧ

a

)2

=
8π

3M2
p

ρS
an
. (4.19)

We performed the full calculation in which we include both radiation and the new com-
ponent. However, the results can only be expressed using special functions, and we have
found that the correction coming from not including the radiation component is completely
negligible. Thus, for the sake of clarity we will present only the simplified calculation.
Assuming that the new energy component does not interact with SM degrees of freedom,
we can use the standard relationship between temperature and scale factor, namely

ρ̃R =
ρR
a4

=
π2

30
g∗T

4, (4.20)

which allows us to obtain the scale factor as a function of temperature. Analogously to
the previous subsection, we now calculate the horizon volume

VH(T ) =

(
a

∫
dt

a

)3

=
M3

p2
3
8

(5n−4)
(
π
3

) 3(n−4)
8 ξ

3n
4 ρR

3n/8

(n− 2)3T
3n
2 ρS3/2

. (4.21)

Using (4.13), the condition for one bubble to be nucleated within each horizon now reads

∫ ∞
Tn

ΓdT =

∫ ∞
Tn

dT

T

M4
p2

5n−6
2

(
3
π

) 4−n
2 ξnρR

n
2

(n− 2)3T 2n−4ρS2
exp

(
−S3(T )

T

)
= 1. (4.22)

Our goal is to parametrize the cosmological modification. We are able to do this using
the Friedmann equation, that allows us to express the new energy density as a function
of the ratio of the modified Hubble parameter to the standard radiation-dominated case
H/HR, as follows

ρS =

((
H

HR

)2

− 1

)
ρR

(
π2T 4

30

)n−4
4
(
ρR
g∗

) 4−n
4

, ρR =
π2

30
g∗T

4. (4.23)

From now on we will use H/HR as a measure of modification of cosmology. Of course
there are also experimental bounds we can put on such modification and consequently on
H/HR. We will discuss these bounds in the next section.

Our next step is determination of the nucleation temperature. The steps are identical
as those described in the previous subsection except for using (4.22) instead of (4.17).
Figure 4.5 shows the resulting critical temperature Tc and the nucleation temperature Tn,
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as well as the ratio of the Higgs vev v(T ) := 〈φ(T )〉 to those temperatures, v(Tc)/Tc and
v(Tn)/Tn, as functions of the cutoff scale Λ, for the radiation-dominated case (H = HR)
and n = 6 (as for SFDM-domination) with H = 103HR and H = 106HR, respectively.
Also, values of the ratio of the vev to temperature (v/T )Sph required in each of these cases
by the sphaleron freeze-out which we will discuss in Subsection 4.2.6 are marked in the
right panel.
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Figure 4.5: left panel: The critical and nucleation temperatures (Tc and Tn) of our model
with n = 6. The thin vertical lines highlight cutoff scales corresponding to experimental
sensitivities, as shown in Figure 4.3, while the horizontal lines point to the tempera-
tures corresponding to these values of Λ. Right panel: The ratios of vevs to the tempera-
tures (v(Tc)/Tc and v(Tn)/Tn), as a function of Λ (dashed lines). Also indicated are the
sphaleron bounds on v/T for different expansion rates, as described in Sec.4.2.6 (solid
lines).

In the literature Tn is often approximated by Tc which does not require the computa-
tionally complicated nucleation calculation. The modification due to the proper calcula-
tion of the nucleation temperature can change the resulting bounds significantly, since the
difference between these cases increases with the importance of the modification, which
is largest in the most interesting range of small cutoff scales. However, the correction
in (4.22) due to the modified expansion rate only appears in the factor in front of the
exponential. Therefore, the results are nearly identical for very different ratios of H/HR

and different values of n.

4.2.5 Experimental bounds on cosmological modification

In this section, we will derive very generic bounds which have to be respected by cosmo-
logical models. These bounds come from our knowledge of the nucleosynthesis. Obtaining
observed abundances of light elements precisely defines when the neutrons have to move
out of thermal equilibrium to then recombine with protons and recreate observed abun-
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dances of light elements. We know this result quite precisely since neutrons decay very fast
as long as they remain in equilibrium and interact with other particles. This practically
gives us the expansion rate at the time of nucleosynthesis (see e.g. [153, 63]). However
current measurements allow for some additional energy density components [154], tra-
ditionally given in terns of effective number of neutrinos. We start by translating this
number the modification of the Hubble rate [155],

H

HR

∣∣∣∣
BBN

=

√
1 +

7

43
∆Nνeff

. (4.24)

We will assume ∆Nνeff
is the difference between the SM radiation contribution N =

3.046 and the observed central value Nνeff
= 3.28 from [153, 63] which corresponds to

H/HR|BBN = 1.0187. It is straightforward to calculate HR,BBN using (4.20),

ρR,BBN =
π2

30
g∗,BBNT

4
BBN (4.25)

and the SM values, TBBN = 1 MeV and g∗,BBN = 43/4.
The next step is to simply compute the energy density of the new component at

the EWBG scale. We assume that ρR,BBN is composed of the SM radiation, while the
remaining contribution corresponds to the new component ρS,BBN. Again since the new
componen quickly dominates in earlier times using the simplified Friedmann equation
(4.19), we calculate H/HR at the electroweak phase transition
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4
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(4.26)
As before, all values without subscript BBN should be calculated at Tn. The resulting
maximal modification of the expansion rate for different cosmological models in the in-
teresting temperature range T ∈ [100, 150] GeV is shown in Figure 4.6. For the n = 6
example, this corresponds to a maximal H/HR ratio between 6 × 105 and 9 × 105. This
particular value of n is interesting because most of the usual models assuming the new
energy density comes from a scalar field predict this value[156, 157, 143]. Above this value
the speed of sound in the new medium would exceed the speed of sound if we assumed it
is perfect fluid, so a more contrived explanation would be needed.

4.2.6 Modification of the sphaleron bound

We will not discuss the production of baryons during the phase transition, but rather
the necessary condition for the baryon asymmetry not to be washed out after the phase
transition. While the SU(2) sphalerons can generate baryon asymmetry during the phase
transition [21], they also dilute it after the phase transition is completed, and the system
is returning to thermal equilibrium.

The SU(2) sphalerons are suppressed in the broken phase due to the W bosons ob-
taining mass, and the weak interactions being able to act only on very short distances.
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Figure 4.6: Maximal modification of the Hubble parameter calculated at the nucleation
temperatures Tn = 100 GeV and Tn = 150 GeV, as a function of the parameter n which
determines our cosmological model.

Hence, this suppression is proportional to the gauge boson masses and consequently to
the Higgs vev right after the phase transition. If the barrier separating the vacua is too
thin and the broken phase vev is too small, all the generated asymmetry can be washed
out. This gives rise to the famous sphaleron bound usually expressed as [152]

v

T
& 1 , (4.27)

where the precise value varies in the literature depending on the approximations used in
a particular paper.

Here we will use simple criterion for sphaleron freeze-out obtained by assuming that
the sphaleron processes decouple when their rate becomes smaller than the expansion rate
of the Universe, i.e., when Γ / H. The sphaleron rate is given by [152]

Γ = 2.8× 105T 4κ
g

4π

( v
T

)7

exp

(
−Esph

T

)
, (4.28)

where the parameter κ is the functional determinant associated with fluctuations about
the sphaleron. This parameter has been estimated to be in the range 10−4 . κ . 10−1.

The sphaleron energy Esph is modified due to the cutoff Λ [140]. Due to the exponential
dependence of the sphaleron rate on the energy, this can have a significant impact on the
bounds we can place on Λ. In order to accurately calculate the sphaleron energy we find
the sphaleron solution. We start with the ansatz [158] for the SU(2) gauge field W and
the scalar field φ,

W a
i σ

adxi = −2i

g
f(ξ)dU U−1, φ =

v0√
2
h(ξ)U

(
0
1

)
,
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ξ → 0 ξ →∞
f ≈ ξ2/a2

0 f ≈ 1− a∞ exp(−ξ/2)

h ≈ ξ/b0 h ≈ 1− (b∞/ξ) exp(−
√

2λ
g2 ξ)

Table 4.1: Analytic solutions of the asymptotic equations of motion (4.30) describing the
sphaleron solution near the boundaries.

where ξ = gv0r, σ
a are the Pauli matrices and U =

1

r

(
z x+ iy

−x+ iy z

)
, while f and h

are unknown functions of the single variable ξ. We will compute only the SU(2) sphaleron,
neglecting small corrections from U(1)Y , as in [158]. With the above assumptions, the
action of the sphaleron reads Esph = (4πv0/g)E0 with

E0 =
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(4.29)

Varying this action, we find the field equations for the functions f and h,

ξ2d
2f

dξ2
= 2f(1− f)(1− 2f)− ξ2

4
h2(1− f) (4.30)
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g2Λ2
ξ2h(h2 − 1)2.

These are subject to the boundary conditions f(0) = h(0) = 0 and f(∞) = h(∞) = 1. In
order to find the exact solutions, we start with the analytical solutions of the asymptotic
equations, valid near the boundaries as shown in Table 4.1. Using these solutions to find
our initial conditions at a certain very small and very large value of ξ, we numerically solve
the full equations to a certain ξmatch where we compare the two solutions. Our procedure
consists of randomly varying the initial parameters a0, b0, a∞ and b∞ and updating them
if solutions with the new values match more closely. When both functions and their
derivatives at ξmatch match with an accuracy of 10−6, we consider the equations solved,
and use that solution to calculate the resulting sphaleron energy, Esph = (4πv/g)E0

from (4.29). Figure 4.7 shows the resulting sphaleron solutions for Λ = 500 GeV and
Λ = 2000 GeV as well as the plot of resulting E0 as a function of Λ. The solutions are
nearly identical for very different cutoff scales shown. This is also reflected in the energy
as E0 changes only by a few percent over the whole range of Λ of interest to us.

We now have all the elements to rewrite the freeze-out condition Γ ≤ H as

v

T
≥ g

4πE0

ln

(
2.8× 105κ g

4π

(
v
T

)7

H

)
, (4.31)

where H is the Hubble rate calculated at the nucleation temperature Tn when the phase
transition ends. We will choose κ = 10−1, which gives the most stringent constraints. Fig-
ure 4.8 shows the resulting bound on v/T . For H = HR we obtain the standard sphaleron
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Figure 4.7: SU(2) phaleron solutions for Λ = 500 GeV(left panel) and Λ =
2000 GeV(middle panel) and E0 as a function of Λ (right panel)

bound (4.27) yet this bound lowers quickly and for H = 106HR the required value is less
than half of that value. Thus for perfectly reasonable and acceptable experimentally value
of the expansion rate the bounds can be changed very significantly. We also show two
different bounds due to the weak dependence of E0 on Λ, however the difference between
them is not significant.

We are finally in position to combine the v/T value required to decouple the sphalerons
and preserve the asymmetry (4.31) with the v/T value we obtain as a function of the cutoff
from Figure 4.5, along with the experimental constraints on the cutoff from Figure 4.3.
Thus, we can determine the scale of new physics required to preserve the asymmetry as
a function of the modified expansion rate H/HR. We can also translate the maximal
possible modification of the Hubble rate, discussed in Section 4.2.5, to an explicit bound
on Λ for a wide class of cosmological models. Figure 4.9 shows the required value of Λ
as a function of n, along with the experimental constraints, and the specific cosmological
example for n = 6.

Our key result is that for n = 6, the minimal Λ required by the sphaleron bound is
already very close to the value required for the first order phase transition (as discussed
in Section 4.2.1). Thus, the modified cosmological history allows us to circumvent the
sphaleron bound altogether, and the only bound given by current experiments is equivalent
to the requirement of departure from thermal equilibrium.

4.3 Summary

In this chapter we studied the implications of a modified cosmological history for the elec-
troweak baryogenesis scenario. We adopted a generic model in which the Higgs potential
is modified by a non-renormalizable dimension six operator, suppressed by an appropriate
new mass scale Λ.

We discussed a very generic model of cosmological modification with a single new
energy density component which does not interact with SM degrees of freedom.
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Figure 4.8: Minimal value of v/T required to avoid wash-out of baryon asymmetry, as a
function of the modified expansion rate H/HR for several values of the cutoff Λ.

We carefully computed the temperature at which the phase transition takes place,
instead of using the approximation coming from the critical temperature, often used in
the literature. This allowed us to include small corrections to the nucleation temperature
due to a modification of the cosmological history. In all, using the nucleation temperature
in the full calculation, rather than the critical temperature approximation, can change
the final results significantly for the allowed parameter space.

Next, we described the modification of Standard Model SU(2) sphalerons. This is the
main source of modification resulting from the increased expansion rate. A higher expan-
sion rate leads to a more readily achieved freeze-out of the sphalerons, thus preserving
any baryons remaining after the phase transition. This in turn increases the scale of new
physics Λ which is required for successful baryogenesis.

We find that this modification of the required Λ’s, while numerically seemingly small
(about 20% for ρS ∝ a−6), actually means circumventing the sphaleron bound altogether,
because it brings us to the cutoff values required for a first order phase transition to
begin with. The value n = 6, proves to be very interesting, since this is the smallest
value allowing us to avoid the sphaleron bound. This particular value of n is important
because most of the usual models assuming the new energy density comes from a scalar
field predict this value[156, 157, 143]. Above this value the speed of sound in the new
medium would exceed the speed of sound if we assumed it is perfect fluid, so a more
contrived explanation would be needed. However more exotic models with even higher
expansion rates (i.e., whose energy density would decay even faster than ∝ a−6) would
not increase the allowed parameter space much further. On the particle experimental side
cosmological modification with n = 6 means that our model can remain consistent within
1σ of the SM result, even with the bounds provided by the high luminosity stage of the
LHC.
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Figure 4.9: Left panel: cutoff scale Λ required to preserve the baryon asymmetry (solid
blue line) as a function of n which determines our cosmological model. Here we assumed
maximal experimentally allowed assistance from cosmology. Right panel: cutoff scale Λ
required for successful EWBG as a function of the expansion rate (solid blue curve) for
n = 6. Both panels also show HL-LHC experimental constraints on Λ from its modification
to λ3 (horizontal dashed lines, 1σ (top) to 3σ (bottom)).



Chapter 5

Summary of the thesis

Discovery of the Higgs boson has finally confirmed the Standard Model as the correct
description of physics at the electroweak scale. We discussed its implications for the
possible SM extensions needed at energy scales higher than the Fermi scale. Firstly,
motivated by the hierarchy problem we discussed supersymmetric extensions of the SM.
In our second step, taking a more pragmatic approach we discussed issues connected
with vacuum stability of SM and its extension described by nonrenormalisable operators.
Finally, we turned to baryon asymmetry using one of the simplest explanations utilising
the electroweak phase transition itself.

5.1 Suprsymmetry

Supersymmetry remains the technically most attractive extension of the Standard Model
motivated by its naturalness problem, which offers perturbativity and calculability up to
the Planck scale. However, due to high Higgs boson mass, minimal realisations of such
an extension suffer from a different, so called little, hierarchy problem. The issue arises
because in minimal realisation of SUSY the Higgs mass is bounded from above by the Z
boson mass. Raising it requires large quantum corrections which, in turn, require heavy
supersymmetric particles, thus creating a new hierarchy between the electroweak scale
ant the scale of superpartner masses.

We begun by discussing severity of the problem on the example of gauge mediated
SUSY breaking models. These models are well motivated theoretically for example due
to automatic limitation of flavour violation. However they are often believed to exhibit
more severe hierarchy problem than other SUSY breaking models, due to their particular
pattern of SUSY breaking parameters. Our key result was that fine-tuning in gauge medi-
ated supersymmetry models is not larger than in a more standard gravity mediated case.
The only drawback is the necessity to abandon the minimal realisation of gauge mediation
in favour of more elaborate models with richer hidden sectors. Next we discussed bounds
which can be put on supersymmetric theories due to one experimental result which does
not fit SM prediction, namely the measurement of the anomalous magnetic moment of
the muon. Assuming that SUSY is responsible for the (g − 2)µ anomaly leads to severe
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constraints on chargino and smuon masses. These in turn can be used to obtain a lower
bound on tan β, which we have finally translated into upper bound on the stop masses.
This comes from the requirement that the predicted Higgs mass does not overshoot the
experimental value. The LEP limits on the smuon and chargino masses result in an upper
bound on the stop masses exceeding 103 TeV. However, even mild improvement of the LEP
limits results in a significant improvement of this upper bound. Current LHC limits on
smuon and chargino masses obtained for not too compressed gaugino and higgsino spectra
reduce the upper bound on the stop masses to about 10 TeV. Future electron-positron
collider operating at

√
s = 500 (1000) GeV would allow to set a solid upper bound on

the stop masses of about 10 (5) TeV. Such stops should be discovered at the 100 TeV
hadron collider. Thus our main conclusion is that, with the help of the discussed future
colliders, SUSY should be discovered, if superpartners are responsible for the explanation
of the (g−2)µ anomaly. Next we turned to non-minimal supersymmetric models to verify
to what extent the hierarchy problem of MSSM can be ameliorated. First we analyzed
a single vectorlike top partner model, which is the simplest vectorlike extension of the
MSSM. We showed that it can significantly help with the little hierarchy problem. After
including all the constraints achievable at the HL-LHC, the resulting SUSY scale can be
as low as 1.2 to 2.4 TeV for the simplest possible supersymmetry spectrum. These results
are 3 to 5 times smaller compared to what otherwise would be allowed in the MSSM.
We calculated and compared different experimental constraints the model will face after
300 fb−1 of data are gathered at the HL-LHC. Our key result is that in majority of the
parameter space the most constraining of the discussed bounds is the modification of the
Higgs boson properties. Thus even a very simple vectorlike quark extension of MSSM can
greatly reduce the little hierarchy problem of the MSSM, and careful measurements of
Higgs boson observables would likely give first evidence of this scenario.

Our next step was modifying the minimal setup of the MSSM by introducing a large
extra dimension. The biggest effect comes from the modification of the RGEs which
exhibit power-like behaviour near the scale where the extra dimension becomes important.
We implemented the modified RGEs for several models of the five dimensional extensions
of the MSSM, into a full C++ spectrum generator, along with self energy corrections for
the Higgs mass.

Our key result is showing that modified five dimensional RGEs can result in spectra
very different from the usual 4D case. The reason is that in 5D the heavy gluino does not
necessarily dominate running of other soft terms during power law running. Thus we can
easily obtain maximal stop mixing and much less fine tuned spectra, even with standard
sets of soft terms at the SUSY breaking scale.

This is also very interesting because in 5D models the least fine tuned spectra with
correct Higgs mass can easily predict soft superpartner masses within LHC reach, even
for standard patterns of soft terms. Thus in such models, the most interesting parts of
the parameter space can be probed during next run of the LHC, which is not usually the
case in the standard 4D case.

We also attempted creating a model of SUSY breaking predicting a more natural
spectrum at the high scale utilising the extra dimension. We explored models where the
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1st and 2nd generation are in the bulk and a model in which the 1st and 2nd generation
is on the same brane as the supersymmetry breaking sector and the 3rd generation is
located on an opposite brane, resulting in a spectrum of stops lighter than that of the
other squarks. Obtaining lighter stop soft terms at the SUSY breaking scale did not result
in a more natural spectrum. The reason is non negligible fine-tuning price of heavier first
two generations and heavier Higgs sector which give only a subleading correction to the
light Higgs mass.

The final advantage is a low scale of unification of gauge couplings and a low supersym-
metry breaking scale. And also much better unification of Yukawa couplings is possible,
giving hope for a very interesting five dimensional UV completion of such models.

5.2 Vacuum stability

In the next chapter we discussed and reviewed the vacuum stability issues in the Standard
Model. We extended the discussion existing in the literature by explicitly finding the
tunneling solution numerically, without using any analytical approximations. While the
electroweak vacuum turns out to be unstable due to a new deeper minimum appearing in
the potential for very large Higgs field values, the time it would take for the vacuum decay
due to quantum fluctuations is much longer than the observed lifetime of the universe.
Thus, while not very comforting, this situation is completely acceptable experimentally
and no new physics is immediately necessary to save the consistency of the theory.

The next very interesting topic we addressed is how this situation changes once we
include new physics. Our hope was to discuss as large class of models as possible and
show the constraints resulting from requiring that they do not shorten the lifetime of
the SM vacuum to much. To this end we focused on generic models parametrising the
modification of SM using nonrenormalisable operators. We prepared a map of the vacua
in the SM extended by nonrenormalisable scalar couplings also taking into account the
running of the new couplings and going beyond the standard assumptions taken when
calculating the lifetime of the metastable vacuum. Again we verified the correctness of
quasi-analytic approximations of the effective potential widely used in the literature for
calculation the tunnelling rate in modifications of SM.

In general, we also confirm that it is relatively easy to destabilise the SM, even with
the help of the Planck scale suppressed scalar operators. In fact its possible to destabilise
the electroweak vacuum by new interactions at any scale while making it absolutely stable
requires sufficiently low cut-off scales not much larger than roughly 1011 GeV.

Our last step in this chapter was discussion of the impact of gravitational interactions
on the vacuum decay. This issue has been discussed in the literature since the seventies.
However, the curved background case is still quite poorly understood and explored as it
is much more complicated than the usual flat space-time case.

We started by exploring the possible extent of such modification in a very simple
and generic particle model describing a single scalar field with a simple potential. In
the case when the unstable minimum has zero energy the gravitational correction usually
quenches the vacuum decay due to gravitational back reaction. However the opposite
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effect is also possible, this happens when we have a large vacuum energy in our unstable
minimum. Then the size of our de Sitter universe is finite and the size of the horizon limits
the forming bubble. This affects bubbles for very small energy differences between the
two vacua, which are usually very large, to overcome the wall tension with their interior
negative energy contribution. Limiting the size of the bubble to the horizon volume also
lowers its action accordingly.

We next turned to discussion of this impact in the SM case. The first problem in this
discussion is the uncertainty of the position of the vacuum. This is an important issue
since the vacuum positioned at V ≈ 10−120 introduces yet another very different scale in
the problem. However we can still discuss the effect qualitatively. The SM case is similar
to our toy potential with very small cosmological constant and very large separation of
energies of the vacua. Thus we can safely say that the correction will be a very small
increase of the action. The same conclusion comes from applying the simple thin-wall
correction, also discussed in that chapter, to the SM. The simple explanation of this effect
is as follows. In the SM the forming bubble is of subatomic size, vastly smaller than the
scale at which the spacetime curvature becomes important or even observable. Thus our
bounce is very similar to the flat spacetime case because at its scale the background is to
a very good approximation flat.

5.3 Electroweak baryogenesis

In the next chapter we turned to yet another problem which is not accommodated in the
SM. Namely the generation of matter anti-matter asymmetry required to correctly explain
the experimental results. More specifically, we studied the implications of a modified
cosmological history for the electroweak baryogenesis scenario.

On the particle physics side we adopted a generic model in which the Higgs potential
is modified by a non-renormalizable dimension six operator, suppressed by an appropri-
ate new mass scale Λ. On the cosmology side we used a generic model of cosmological
modification with a single new energy density component which does not interact with
SM degrees of freedom.

We carefully computed the temperature at which the phase transition takes place,
instead of using the approximation coming from the critical temperature, often used in
the literature. This allowed us to include corrections to the nucleation temperature due to
a modification of the cosmological history. In general, using the nucleation temperature
in the full calculation, rather than the critical temperature approximation, can change
the final results significantly for the allowed parameter space, while the modification of
said temperature from cosmological effects can safely be neglected.

Next, we described the modification of Standard Model SU(2) sphalerons responsible
for creation of the asymmetry during the phase transition. The same sphalerons on
the other hand wash out the created asymmetry as the universe goes back to thermal
equilibrium after the phase transition. This is the source of the most stringent constraint
on such scenarios and also the main source of modification resulting from the increased
expansion rate. A higher expansion rate leads to a more readily achieved freeze-out of
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the sphalerons, thus preserving any baryons remaining after the phase transition. This in
turn increases the scale of new physics Λ which is required for successful baryogenesis.

We find that this modification of the required Λ’s, while numerically seemingly small
(about 20% for the new enegy component red-shifting as ρS ∝ a−6), actually means
circumventing the sphaleron bound altogether, because it brings us to the cutoff values
required for a first order phase transition.

The value n = 6 is particularly interesting, since not only it is the smallest value
allowing us to avoid the sphaleron bound. It is also important because most of the typical
models, assuming the new energy density comes from a scalar field, predict this value.
Above this value the speed of sound in the new medium would exceed the speed of sound if
we assumed it is perfect fluid, so a more contrived explanation would be needed. However
more exotic models with even higher expansion rates (i.e., whose energy density would
decay even faster than ∝ a−6) would not increase the allowed parameter space much
further. On the particle experimental side cosmological modification with n = 6 means
that our model can remain consistent within 1σ with the SM result, even with the bounds
provided by the high luminosity stage of the LHC.
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Appendix A

Introduction to FRW cosmology

We will begin our discussion with the cosmological principle, which states that, when
viewed on a large enough scale, the universe is homogeneous and isotropic. Under this
assumption also including the possible time dependence of the spatial component of the
metric leads to the Friedman-Robertson-Walker (FRW) metric

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
dr2
(
dθ2 + sin2 θdφ2

)]
(A.1)

where a(t) is the dimensionless scale factor and k is the curvature of space. Thus the
metric tensor is given by

gµν =

(
−1, a(t)2 dr2

1− kr2
, a(t)2r2, a(t)2r2 sin2 θdφ2

)
(A.2)

The spatial part of the metric is the most symmetric isotropic and homogeneous solution
and can describe three different geometries of a spherical (k > 0), flat (k = 0), or hy-
perbolic (k < 0) space. All the physical distances change with the scale factor while the
coordinate distances remain constant in time dph = a(t)dco.

The matter can be described as a perfect fluid for which the energy-momentum tensor
takes the form

T µν = (−ρ(t), p(t), p(t), p(t)) (A.3)

where ρ is the density and p pressure. These also have to satisfy the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ p) (A.4)

where a dot denotes a derivative with respect to time and we do not explicitly write out
the time dependence. The last thing we need is the equation of state for our particular
fluid. This is usually expressed as

ρ = ωp, (A.5)

where ω is the so called barotropic parameter. Together with the continuity equation
(A.4) this gives

ρ ∝ a−3(1+ω), (A.6)
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and assuming that different components of the energy momentum tensor do not interact
we obtain the same equation for each of them separately.

Using all above results in the Einstein equation we obtain the two Friedman equations.
First of them governs the evolution of the scale factor(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
(A.7)

where Λ is the cosmological constant. In the early universe case both the curvature and
cosmological constant terms are much smaller than SM radiation contribution (and any
additional perfect fluid) and can safely be neglected.
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