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The momentum of inertia is calculated for the 240Pu alpha decay process within
the cranking model. The alpha decay is treated as a superasymmetric fission pro-
cess within the macroscopic-microscopic model. The microscopic part is based on the
Woods-Saxon two center shell model. The moment of inertia exhibits a rapid variation
in the vicinity of the ground state of the parent configuration.
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1. INTRODUCTION

Usually, the alpha decay is treated in the framework of the Gamow model.
It is considered that the alpha particle is preformed on the surface of the emitting
nucleus and penetrates the potential barrier [1–4]. Up to now, only few attempts
were published that treats the alpha decay within fission models [5–7]. In these recent
investigations, it was emphasized that the alpha decay is formed on the surface of the
parent in the case of superheavy elements, that the fine structure is due to the Coriolis
effect and that the dissipation for superasymmetric fission is much lower than that of
the symmetric fission. For the first time, the rearrangement of the single particle
levels from the initial ground state of the parent up to the asymptotic configuration
were calculated. Fragmentation potentials for all mass asymmetries, including alpha
decay were also reported [8–10]

The theoretical study of binary disintegration processes in a wide range of mass
asymmetries, including fission and alpha decay, was limited by the difficulties en-
countered in the calculations of single-particle levels for very deformed one-center
potentials. These difficulties were surpassed by considering a mean field generated
by nucleons moving in a double center potential. A two-center model allows the
description of single-particle energy evolutions from the ground-state up to the for-
mation of two separated fragments [11]. Recently, a Woods-Saxon two center model
was developed [12] and its validity for superasymmetric fission processes was tested
for cluster decay [13–15], fission [16–22] and even for β-decay [23, 24]. The choise
of the 240Pu nucleus was motivated by an intriguing behavior of the relative branch-
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ing ratios of the process [25, 26]. A pronounced maximum of the branching ratios
for the 4+ state is an intriguing feature in this region of nuclei.

2. FORMALISM

In the macroscopic-microscopic method, the whole system is characterized by
some collective coordinates that approximately determine the behavior of many other
intrinsic variables [27–29]. The basic ingredient in such an analysis is the shape
parametrization that depends on several macroscopic degrees of freedom. The ge-
neralized coordinates associated with these degrees of freedom vary in time leading
to a split of the nuclear system into two separate fragments or to the synthesis of
the compound nucleus. The macroscopic deformation energy is calculated within
the liquid-drop model. A microscopic potential must be constructed in order to be
consistent with this nuclear shape parametrization. A microscopic correction is then
evaluated using the Strutinsky procedure. We use an axial symmetric nuclear shape
that offers the possibility to obtain a continuous transition from one initial nucleus to
the separated fragments. This parametrization is obtained by smoothly joining two
spheroids of semi-axis ai and bi (i= 1,2) with a neck surface generated by the rota-
tion of a circle of radius R3 around the axis of symmetry. The distance between the
centers of the fragments is denoted R and has the meaning of an elongation. The
probability to obtain a binary partition 236U+α is ruled by the barrier penetrability.
Using the least action principle, it is possible to obtain the path in the configuration
space followed by the fissioning system, and furthermore the associated probability
of penetrating the barrier.

In the framework of the cranking model the expression for the momentum of
inertia J is [30]

J = 2ℏ2
∑
i,j

< ν|jx|µ >2

Eν +Eµ
(uνvµ−uµvν)

2 (1)

where uν and vν are the vacancy and occupation amplitudes of the level described
by the wave function | ν . The x component of the total angular momentum is

jx = Lx+sx (2)

where

L⃗= (r⃗− r⃗cm)× p⃗ (3)

is the orbital momentum of a particle and s is the spin.
This model can be extended to include statistically the temperature of the sys-

tem [31].
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Fig. 1 – (a) The potential barrier V for alpha decay as function of the distance between the centers of
the fragments. (b) The effective mass B along the superasymmetric fission trajectory. (c) The moment
of inertia J along the alpha decay trajectory. (d) The centrifugal energy for different values of the total
angular momentum.
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3. RESULTS AND DISCUSSION

The barrier for the α-decay is represented in Fig. 1 (a). The ground state of
the 240Pu parent is located in the vicinity of a distance between the centers of the
fragments of about 4 fm. Increasing the elongation R, a barrier is formed almost
monotonically, without additional minima. That means, no quasistationary states are
possible. The effective mass B is displayed in Fig. 1 (b), being computed in the frame
of the cranking model [29, 32]. It exhibits a structure along the superasymmetric
fission path, with a strong peak close to scission at R ≈ 10 fm. After R=10 fm the
system reaches the reduced mass of the 236U+α combination.

The moment of inertia J is plotted in Fig. 1 (c). A thin horizontal line marks
the value of the rigid body moment of inertia. As expected, in the ground state con-
figuration, the cranking moment of inertia has a value of 70 ℏ2/MeV , much lower
that the rigid body one. After the scission, the moment of inertia increase with a
small slope, as expected for two separated bodies. An unexpected fluctuation of the
moment of inertia is produced at R ≈ 6 fm, along the superasymmetric fission tra-
jectory. In order to investigate the influence of this strong variation of the moment of
inertia, the centrifugal barrier term l(l+1)ℏ2/2J is calculated. This term is repre-
sented in Fig. 1 (d) for different values of l. The strong fluctuation of the moment of
inertia produce a region where the difference between the collective levels associated
to rotations are very small. In this region, where the residual interaction between the
collective rotational levels is small, it is possible to create a mixing of configuration
as those produced by the Landau-Zener effect. Such a promotion mechanism can
modify the population of each state during the disintegration.

In conclusion, the level schemes, the potential barrier and the inertia were de-
termined for alpha decay in the framework of the macroscopic-microscopic model.
The alpha decay process was treated as a superasymmetric fission process. Moment
of inertia were reported for Nilsson two center shell models in the past [33], but it is
tor the first time that the moment of inertia for alpha-decay is reported. This work is
a step towards an unitary treatment of fission, cluster and alpha decay.
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