
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Quantum dynamics of bound states under
spacetime fluctuations
To cite this article: Teodora Oniga and Charles H-T Wang 2017 J. Phys.: Conf. Ser. 845 012020

 

View the article online for updates and enhancements.

Related content
Gravitational decoherence, alternative
quantum theories and semiclassical
gravity
B L Hu

-

Letter to the Editor
Charles H-T Wang, Robert Bingham and J
Tito Mendonça

-

Metric fluctuations and the weak
equivalence principle
Ertan Göklü and Claus Lämmerzahl

-

Recent citations
Quantum interactions between a laser
interferometer and gravitational waves
Belinda Pang and Yanbei Chen

-

Quantum principle of sensing gravitational
waves: From the zero-point fluctuations to
the cosmological stochastic background of
spacetime
Diego A. Quiñones et al

-

Gravitational decoherence
Angelo Bassi et al

-

This content was downloaded from IP address 131.169.5.251 on 09/03/2019 at 23:16

https://doi.org/10.1088/1742-6596/845/1/012020
http://iopscience.iop.org/article/10.1088/1742-6596/504/1/012021
http://iopscience.iop.org/article/10.1088/1742-6596/504/1/012021
http://iopscience.iop.org/article/10.1088/1742-6596/504/1/012021
http://iopscience.iop.org/article/10.1088/0264-9381/23/18/L01
http://iopscience.iop.org/article/10.1088/0264-9381/25/10/105012
http://iopscience.iop.org/article/10.1088/0264-9381/25/10/105012
http://dx.doi.org/10.1103/PhysRevD.98.124006
http://dx.doi.org/10.1103/PhysRevD.98.124006
http://dx.doi.org/10.1103/PhysRevD.96.044018
http://dx.doi.org/10.1103/PhysRevD.96.044018
http://dx.doi.org/10.1103/PhysRevD.96.044018
http://dx.doi.org/10.1103/PhysRevD.96.044018
http://iopscience.iop.org/0264-9381/34/19/193002
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/882777939/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

IARD10  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 845 (2017) 012020  doi :10.1088/1742-6596/845/1/012020

Quantum dynamics of bound states under spacetime

fluctuations

Teodora Oniga and Charles H-T Wang

Department of Physics, University of Aberdeen, King’s College, Aberdeen AB24 3UE, United
Kingdom

E-mail: t.oniga@abdn.ac.uk, c.wang@abdn.ac.uk

Abstract. With recent developments in high-precision quantum measurements, the question
of whether observations of decoherence from spacetime fluctuations are accessible experimentally
arises. Here we investigate the dynamics of bound states interacting with an environment of
gravitons under the Markov approximation. The corresponding Lindblad master equation is
presented that enables gravitational decoherence and dissipation due to zero-point spacetime
fluctuations to be analyzed. Specifically, we consider a one-dimensional cavity of massless scalar
particles that models a light beam with negligible spin polarizations being reflected between two
free masses. Numerical simulations have been performed to illustrate the wave-modal dependent
decoherence and dissipation of such a configuration. We further demonstrate the existence
of nontrivial collective effects akin to superradiance, providing amplifications of gravitational
decoherence for a large number of identical bosonic particles.

1. Introduction

Over the past few decades, quantum decoherence has become an ever more important field of
physics. Given the universal nature of the matter-gravity interaction, spacetime fluctuations
constitute an inescapable environment which may cause decoherence to occur in physical
systems. Such effects may have an impact of high-precision measurements [1, 2, 3, 4, 5]
and astronomical observations [6] and, in addition, may also play a role in the classical
appearance of macroscopic objects [7, 8]. Thus it is important to understand the implications
of environmentally induced gravitational decoherence. In the existing literature, this has been
addressed mostly through phenomenological models, with different causes of decoherence, such
as semiclassical metric fluctuations [9, 10, 11], quantized Newtonian gravity [12], a thermal
spacetime foam [13], weak gravity [14, 15] etc. These approaches have typically been limited by
their specific requirements, including the Markov approximation, the use of single non-relativistic
particles and assuming classical stochastic spacetime fluctuations.

Recently, a new theory of decoherence due to the entanglement of bosonic matter with
spacetime fluctuations was developed from first principles [16, 17]. This approach is based
on Dirac’s constraint quantization of linearized gravity coupled with matter that allows to
derive a gauge invariant influence functional technique used to obtain a general gravitational
master equation for the reduced density matrix of the matter system by averaging over the
environmental degrees of freedom. It was found that when this master equation is applied
to a broad class of free bosons including scalar particles, for long times and with the Markov
approximation, the nonunitary part of the master equation vanishes, suppressing completely
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decoherence. However, while the decoherence terms in the master equation disappear for free
fields, for bound fields this may not be the case. Furthermore, it has been suggested that when
a large number of identical particles is considered, nontrivial collective decoherence phenomena
occur. Motivated by the above developments, in this paper we will apply the formalism in
[16, 17] to scalar particles confined in a finite box, with discrete modes and zero boundary
conditions, where we are indeed able to observe decoherence. The scalar particles provide a
useful initial description of the behaviours of other bosonic particles in a similar configuration,
which is physically analogous to photons inside a reflective cavity when spin polarizations are
negligible.

In the following we will use the relativistic units with the speed of light c = 1 and rescale
the gravitational constant G→ Gc4 and the reduced Planck constant h̄→ h̄/c as well as other
physical quantities accordingly. Time derivatives will be denoted by an overdot ˙ and Hermitian
conjugates by an superscript dagger †. Spatial indices running from 1 to 3 are denoted by Latin
letters and spatial and temporal indices running from 0 to 3 are denoted by Greek alphabets.
Coordinates are given by xµ = (x0, x1, x2, x3) = (x0,x) = (x) where the zeroth coordinate is
time. When indices are repeated, a summation is implied. The background metric is given by
the Minkowski metric ηµν = diag(−1, 1, 1, 1) .

2. The gravitational master equation

Let us consider an ensemble of environmental gravitons in a Gaussian state weakly interacting
with a system of bosonic particles. We will further assume that the gravitational field follows a
Planck distribution N(ω) = 1/(eh̄ω/kBT − 1) at temperature T , with graviton frequency ω and
the Boltzmann constant kB , although in principle it is not required that the gravitational field
state be thermal and as such, the same formalism can be used to investigate decoherence for a
Gaussian state environment with a general distribution function N(ω). The interaction picture
evolution of the reduced density matrix of the bosonic system is then given by the exact master
equation [16]:

d

dt
ρ(t) = − i

h̄
[Hself(x), ρ(t)] −

8πG

h̄

∫

d3k

2(2π)3k
{

[

τ †ij(k, t), τ̃ij(k, t)ρ(t)
]

+N(ωk)
[

τ †ij(k, t),
[

τ̃ij(k, t), ρ(t)
]]

+ h.c.
}

. (1)

The gravitational self-interaction of the matter field is described by the Hamiltonian

Hself = −2G
∫

d3xd3x′
T µν(~x, x0)T̄µν(~x

′, x′0)

|~x− ~x′| (2)

where T µν is the stress energy tensor of the system of interest and T̄µν is the trace-reversed
stress energy tensor. Here we have denoted by τij(k, t) the normal ordered and particle number
preserving stress energy tensor of the system of interest, in momentum space and in the
transverse-traceless (TT) gauge. The TT projection operator

Pijkl =
1

2
PikPjl +

1

2
PilPjk −

1

2
PijPkl (3)

where we have the transverse projection operator Pij = δij − ∂i∂j
∂k∂k

gives the TT stress tensor

τij(k, t) = Pijkl(k)T
kl(k, t). The time integration from the initial time taken to be 0 to a final

time t is denoted by:

τ̃ij(k, t) =

∫ t

0
dt′e−iωk(t−t′)τij(k, t

′). (4)
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As the gravitational self-interaction Hamiltonian part of the master equation corresponds to a
unitary time evolution, it does not cause decoherence. Therefore, from now on we will only
consider the dissipative part of the master equation.

3. Discrete mode scalar field master equation

A massive scalar field with dispersion relation ω2
k = k2+µ2 and nonnegative ωk has the following

expression for its field operator in position space:

φ(x, t) =

∫

d3k

√

h̄

2(2π)3ωk

[

ake
ikx + a†

k
e−ikx

]

. (5)

The spatial components of the stress energy tensor

Tij = φ,iφ,j +
1

2
δij(φ,0φ,0 − φ,kφ,k − µ2φ2) (6)

lead to the transverse-traceless stress energy tensor and its Hermitian conjugate

τij(k, t) = Pijkl(k)

∫

d3k′
h̄

2
√
ωk′

k′kk
′
l

[

1
√
ωk

′−k
a†
k
′−kak′e

−i(ω
k′
−ω

k′−k
)t +

1
√
ωk

′+k

a†
k
′ak′+ke

−i(ω
k′+k

−ω
k′
)t

]

(7)

τ †ij(k, t) = Pijkl(k)

∫

d3k′
h̄

2
√
ωk′

k′kk
′
l

[

1
√
ωk

′−k
a†
k
′ak′−ke

i(ω
k′
−ω

k′−k
)t +

1
√
ωk

′+k

a†
k
′+k

ak′e
i(ω

k′+k
−ω

k′
)t

]

. (8)

The operators ak and a
†
k
are time-independent and satisfy the following commutation relations:

[

ak, a
†
k
′

]

= δ(k − k
′) (9)

[

ak, ak′
]

=
[

a†
k
, a†

k
′

]

= 0. (10)

In a box of volume V with zero boundary conditions, such that particles are reflected at the
boundary, with τij(x, t) = 0 if x is outside the box, in terms of discrete momenta k:

τij(k, t) =

∫

V
d3x τij(x, t)e

−ik·x. (11)

We can express the stress energy tensor in terms of continuous momenta k as

τij(k, t) =

∫

V
d3x τij(x, t)e

−ik·x

=
∑

k

∆(k − k)τij(k, t) (12)

where

∆(k) =
1

V

∫

V
d3x e−ikx (13)

with the limit limV→∞ V∆(k) = (2π)3δ(k).
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4. Decoherence of an idealized light beam cavity

As a one-dimensional reduction of the above discussion, it is interesting to consider next in some
detail a situation analogous to a light beam bouncing between two end mirrors. Physically,
these mirrors may be considered to be attached to classical free masses that average out metric
fluctuations and so do not move in the TT coordinates currently adopted. The spin polarizations
of the light are not taken into account by modelling the light as a massless scalar field. We then
have the following field operator inside the light beam with 0 < x < L, 0 < y < ∆y and
0 < z < ∆z:

φ(x, t) =
∑

n

√

h̄

Lωn

(

ane
−iωnt + a†ne

iωnt
)

sin
πnx

L
(14)

where V = L3 and n1, n2, n3 = 1, 2, · · · such that

k =
(πn1
L
,
πn2
L
,
πn3
L

)

. (15)

This leads to the following creation and annihilation operators an and a
†
n′ :

[an, a
†
n′ ] = δn,n′ , [an, an′ ] = 0 = [a†n, a

†
n′ ]. (16)

Inside the light beam, the stress energy tensor takes the following effective 3-dimensional form:

TTT
ij (x, t) =

1

∆y∆z
Pij11φ,x(x, t)φ,x(x, t).

For a small beam width limit with ∆y,∆z ≪ L ∼ 1/k and by normal ordering and neglecting
the terms of TTT

ij (k, t) not conserving particle numbers, we obtain τij(k, t):

τij(k, t) = Pij11(k)
∑

n,n′

F (n, n′,k) a†n′ane
−i(ωn−ωn′ )t (17)

τ †ij(k, t) = Pij11(k)
∑

n,n′

F ∗(n, n′,k) a†nan′e
i(ωn−ωn′)t (18)

with

F (n, n′,k) :=
2π2nn′h̄

L3√ωnωn′

∫ L

0
dx cos

πnx

L
cos

πn′x

L
e−ikx cos θ (19)

where the continuous wave vector k of modulus k forms a small angle θ with the x-axis. For the
time evolution of this system neglecting memory effects, we can apply the Markov approximation.
The time variable in the integration is changed from t′ to s using t′ = t − s, taking the limit
∫ t
0 ds→

∫∞
0 ds. After applying the Sokhotski-Plemelj theorem

∫∞
0 ds e−iǫs = πδ(ǫ)− iP1

ǫ where
P denotes the Cauchy principal value, we can neglect the terms containing P which do not give
rise to decoherence to obtain:

τ̃ij(k, t) =

∫ ∞

0
ds τij(k, t

′)e−iks

= πPij11(k)
∑

n≥n′
F (n, n′,k) a†n′ane

−i(ωn−ωn′ )t δ(k − ωn + ωn′). (20)
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After applying the customary rotating wave approximation and adopting the following notation:

ω(n,∆n) = ωn+∆n − ωn
∑

n,m,∆n,∆m

=
∑

n,m,∆n,∆m
ω(n,∆n)=ω(m,∆m)

where k(n,∆n) denotes k with k = ω(n,∆n) and ∆n,∆m ≥ 0, we arrive at the master equation
in Lindblad form [18]:

d

dt
ρ(t) =

∑

n,n′,∆n,∆n′

Γ(n, n′,∆n,∆n′)

[

(1 +N(ω(n,∆n)))
(

A(n′,∆n′)ρA†(n,∆n)− 1

2
{A†(n,∆n)A(n′,∆n′), ρ}

)

+N(ω(n,∆n)))
(

A†(n,∆n)ρA(n′,∆n′)− 1

2
{A(n′,∆n′)A†(n,∆n)), ρ}

)

]

. (21)

in terms of the operators A(n,∆n) = a†nan+∆n and with the transition rate coefficient

Γ(n, n′,∆n,∆n′) =
G

2πh̄
ω(n,∆n)

∫

dΩ(k(n,∆n))P 2
11(k(n,∆n))F

∗(n+∆n, n,k(n,∆n))F (n′ +∆n′, n′,k(n,∆n))(22)

related directly to the rate of decoherence and dissipation.
To investigate the influence of zero-point spacetime fluctuations on a photon reflected by

the boundaries of this light beam, let us consider a massless scalar master equation at zero
gravitational temperature with N(ω) = 0. For massless particle ∆n = ∆n′ and the resulting
transition rate coefficient Γ(n, n′,∆n) takes the form

Γ(n, n′,∆n) =
4π3h̄G

L3
Γ̂(n, n′,∆n) (23)

in terms of the dimensionless coefficients

Γ̂(n, n′,∆n) = ∆n
√

n(n+∆n)
√

n′(n′ +∆n)

∫ 1

−1
dσ (1− σ2)2

∫ 1

0
ds cos(πns) cos(π(n +∆n)s) eiπσ∆ns

∫ 1

0
ds′ cos(πn′s′) cos(π(n′ +∆n)s′) e−iπσ∆ns′ .

(24)

As an illustrative numerical example in units where c = 1 and 4π3h̄ G/L3 = 1 displayed in
the Fig. 1, we take a one-photon system with density matrix ρn,n′(t) = 〈n|ρ|n′〉(t) truncated
for modes with 1 ≤ (n, n′) ≤ 20 and hence 1 ≤ ∆n ≤ 19. As shown, the initial density matrix
at t = 0 has a chosen 2-dimensional Gaussian profile centred at (n, n′) = (10, 10). Under the
nonunitary evolution, its centre moves towards the ground state with (n, n′) = (1, 1) due to
energy dissipation through spontaneous emissions of gravitons, with a gradually reduced off-
diagonal width as a result of decoherence.

Fig. 2 shows a similar evolution where the photon density matrix is initially diagonal,
having no superposition between different n-modes, with constant diagonal elements up to the
truncation mode n = 20. The diagonality is dynamically preserved. It can clearly be seen that
the higher decay rates for larger n-modes cause the formation of a peak off the smaller n-modes
while this peak settles towards the ground state at a decelerated pace.
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Figure 1. As explained in the main text, under the nonunitary evolution, the centre of the density

matrix profile with an initial Gaussian shape moves towards the ground state due to energy dissipation,

with a gradually reduced off-diagonal width as a result of decoherence. The evolution of the cavity

photon beam density matrix ρn,n′(t) is represented in side views (a)–(d) and in top views (e)–(h) where

the matrix value is the height and matrix indices (n, n′) are along the horizontal axes.

Figure 2. Here plots (a)–(f) demonstrate the evolution of the photon density matrix, which is initially

diagonal, with constant diagonal elements = 0.05 for 1 ≤ n ≤ 20. It can clearly be seen that the higher

decay rates for larger n-modes cause the formation of a peak (rather like traffic congestion) off the smaller

n-modes while this peak settles towards the ground state in a slowing fashion.
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5. Collective decoherence and radiance processes

We would now like to consider the collective quantum dynamics of massless scalar particles at
zero gravitational temperature using the master equation (21) with N(ω) = 0 and transition rate

coefficient Γ(n, n′,∆n) given by (23). To start with, for one particle states given by |m〉 = a†m|0〉,
the density matrix will decay into lower energy states as Γ(n, n,∆n) > 0. Let us look at
a diagonal density matrix that at some point in time takes the form ρ =

∑

m ρ(m)|m〉〈m|
normalized so that

∑

m ρ(m) = 1. Then we have

ρ̇ =
∑

m

∑

n<m

ρ(m)Γ(n, n,m− n)
[

|n〉〈n| − |m〉〈m|
]

with the matrix elements given by

〈m|ρ̇|m〉 =
∑

m′

∑

n<m′

ρ(m′)Γ(n, n,m′ − n)〈m|
[

|n〉〈n| − |m′〉〈m′|
]

|m〉

= −
∑

m′

∑

n<m′

ρ(m′)Γ(n, n,m′ − n)δm,m′ +
∑

m′

∑

n<m′

ρ(m′)Γ(n, n,m′ − n)δm,n

= −
∑

n<m

ρ(m)Γ(n, n,m− n) +
∑

n>m

ρ(n)Γ(m,m,n−m).

Note that the density matrix stays diagonal throughout the time evolution. For comparison, let
us also consider a many particle state, given by N particles found in the |m〉, normalized such
that |Nm〉 = 1√

Nm!
(a†m)N |0〉, with a multiple particle diagonal density matrix ρ = |Nm〉〈Nm| at

a given time. Then, at that time, the master equation becomes:

ρ̇ =
N2

m

Nm!

∑

n<m

Γ(n, n,m− n)a†n(a†m)Nm−1|0〉〈0|(am)Nm−1an

− Nm

Nm!

∑

n<m

Γ(n, n,m− n)(a†m)Nm |0〉〈0|(am)Nm

−Nm(Nm − 1)

2Nm!

∑

n<m

Γ(m,n,m− n)a†2m−na†n(a†m)Nm−2|0〉〈0|(am)Nm

−Nm(Nm − 1)

2Nm!

∑

n<m

Γ(n,m,m− n)(a†m)Nm |0〉〈0|(am)Nm−2ana2m−n.

This reduces to the above one particle case when ρ = |m〉〈m|. However, we can see that for
many particle states we have addition factors equal to the number of particles in the state, so
that we have a collective, i.e. superradiant-like, decay of elements of the density matrix of the
form:

〈Nm|ρ̇|Nm〉 = −Nm

∑

n<m

Γ(n, n,m− n). (25)

More specifically, as with the description of electromagnetic superradiance [19, 20], the above
relation shows the rate of spontaneous emission of gravitons by N identical particles in the same
state |m〉 increases by a factor of the particle number N while the radiation intensity is increased
by a further factor of N resulting in an N2 intensity amplification.

To investigate collective decoherence, we now consider a superposition state

|ψ〉 = 1√
2
(|Nm〉+ |Nm′〉)
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with m 6= m′ and

ρ = |ψ〉〈ψ|

=
1

2

(

|Nm〉〈Nm|+ |Nm〉〈Nm′ |+ |Nm′〉〈Nm|+ |Nm′〉〈Nm′ |
)

. (26)

Therefore, we have arrived at a collective effect on the decoherence of the superposition of states
|Nm〉 and |Nm〉 described by

〈Nm′ |ρ̇|Nm〉 = −1
4

[

Nm′
∑

n<m′

Γ(n, n,m′ − n) +Nm

∑

n<m

Γ(n, n,m− n)
]

(27)

where the decay rate of the off-diagonal element 〈Nm′ |ρ|Nm〉, increases with the particle numbers
of the superposition states.

6. Conclusion

Motivated by recent theoretical and experimental developments in gravitational decoherence
and quantum measurements, we have carried out an investigation of the open quantum
dynamics of certain bound states subject to a fluctuating gravitational environment. Their
non-free nature allows such systems to be formulated in terms of relatively well-understood
Lindblad master equations, through which the gravitational decoherence and dissipation due
to zero-point spacetime fluctuations have been analyzed. In a simplified resemblance to a
(gravitationally noisy) laser interferometer, we then consider a one-dimensional cavity of massless
scalar particles that models a light beam with negligible spin polarizations being reflected
between two free masses. Numerical simulations have been performed to illustrate the wave-
modal dependent decoherence and dissipation of such a configuration where a strong wave-
modal dependence has been identified. Finally, we demonstrate the existence of novel collective
quantum effects akin to superradiance originally formulated with electromagnetic interactions.
This new collective process may eventually provide important amplification of normally weak
gravitational decoherence for a large number of identical bosonic particles.
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