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Abstract
We study properties of Q-balls in flat spacetime and in curved spacetime. (1) By
energy analysis with catastrophe theory we obtain a clear picture of stability change
of equilibrium solutions. (2) Numerical analysis of dynamical equations as a whole
confirms the stability obtained by the energy analysis. However, even if we give per-
turbed initial conditions with the same charge, a part of charge is radiated away and
approaches a different equilibrium solution with lower charge. (3) We study gravitat-
ing Q-balls as well. If the mass of the scalar filed is close to Planck mass, equilibrium
solutions are nonexistent; a Q-ball either approaches a stable configuration or col-
lapses to a black hole. We also argue that Q-ball inflation does not occur.

1 Introduction

Q-balls [1] are natural consequences of many models of a scalar field and could be dark matter [2]. To
understand basic properties of Q-balls, we address the following issues.

(1) In flat spacetime stability against infinitesimal perturbations is well understood both in the thin-
wall limit and in the thick-wall limit by energy analysis [1]-[6]. Here we investigate how stability changes
in between the two limits by numerical analysis and catastrophe theory.

(2) To explore the fate of Q-balls with finite perturbations, we numerically solve dynamical field
equations. We argue limitations of energy analysis in discussing finite perturbations.

(3) If the mass of the scalar field is so large, gravitational effects are not negligible. Therefore, we
extend our investigations to gravitating Q-balls in curved spacetime.

2 Q-balls in flat spacetime

Consider an SO(2)-symmetric scalar field, whose action is given by

S =

∫
d4x

[
−1

2
ημν∂μφ · ∂νφ− V (φ)

]
, (1)

with φ = (φ1, φ2) and φ ≡ √φ · φ =
√

φ2
1 + φ2

2. Due to the symmetry there is a conserved charge:

Q ≡
∫

Σt

d3x(φ1∂tφ2 − φ2∂tφ1), (2)

where Σt is the 3-hyperspace at t =const. Supposing homogeneous phase rotation,

φ = φ(r)(cos ωt, sin ωt), (3)

we obtain the field equation,
d2φ

dr2
= −2

r

dφ

dr
− ω2φ +

dV

dφ
, (4)

which is equivalent to the static field equation of a single scalar field with the potential V − (ω2/2)φ2.
Monotonically decreasing solutions φ(r) with the boundary condition dφ/dr(0) = 0, φ(∞) = 0 exist if
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Figure 1: Relation among ω2, Q and E for equilibrium solutions in flat spacetime.

ω2
min < ω2 < m2, with ω2

min ≡ min

(
2V

φ2

)
, m2 ≡ d2V

dφ2
(0). (5)

The condition ω2
min < m2 is not so severe because it is satisfied if the potential has the form,

V =
m2

2
φ2 − λφn + O(φn+1), m2 > 0, λ > 0, n ≥ 3 (6)

In the literature the stability of equilibrium solutions has been studied by energetics argument as
follows. The total energy of the system for equilibrium solutions is given by

E =
Q2

2I
+

∫
Σt

d3x

{
1

2

(
dφ

dr

)2

+ V

}
, Q = ωI, I ≡

∫
Σt

d3x φ2 (7)

Its first variation by fixing the integral boundary and charge yields the field equation (4). Analysis of
the second variation gives the stability of the equilibrium solutions; the main results which have already
been obtained are as follows.

• In the thin wall limit (ω2 → ω2
min) they are stable [1, 5, 6].

• In the thick wall limit (ω2 → m2) they are stable if n = 3 [3, 5, 6] and unstable if n ≥ 4 [5, 6].

• For any ω, if
ω

Q

dQ

dω
is negative (positive), equilibrium solutions are stable (unstable) [6].

Here we analyze equilibrium solutions for the whole range ω2
min < ω2 < m2 numerically and then

discuss their stability. For definiteness we assume a sextic function,

V (φ) =
φ6

M2
− λφ4 +

m2

2
φ2 with 0 < λ, M < ∞. (8)

By rescaling the field variables, we can set M = λ = 1 without loss of generality. Then the existing
condition (5) reduces to m2− 1/2 < ω2 < m2. Fixing m2 = 1, we numerically solve (4) for 0.5 < ω2 < 1,
and obtain a series of equilibrium solutions φ(r). For each equilibrium solution we calculate charge (2)
and energy (7). We depict the relation among ω2, Q and E in Figure 1. There is a minimum charge,
which we denote by Qmin, and near the minimum there are two equilibrium solutions for each Q.

To discuss the stability near Q = Qmin by analogy with a mechanical system, let us consider the
one-parameter family of field configuration φξ;Q(r) for each Q in such a way that φξ;Q(r) contains all
equilibrium solutions. Note that we do not impose any restriction on perturbation type. Then the
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Figure 2: Behavior of the “potential” E for Q ≈ Qmin.

Figure 3: Dynamics of a Q-ball with a perturbed initial condition. ω2 = 0.6 and Q = 718. The right
panel shows the evolution of the local charge, which is defined by q ≡ 4π

∫ r

0
drr2(φ1∂tφ2 − φ2∂tφ1).

energy is written as EQ(ξ) ≡ E[φξ;Q]. Equilibrium solutions are realized when dEQ(ξ)/dξ = 0, and their
stability is determined by the sign of d2EQ(ξ)/dξ2. Therefore, the system completely corresponds to a
mechanical system with the “potential” EQ(ξ), where ξ is a dynamical variable (or a “behavior variable”
in catastrophe theory) and Q is a “control parameter” which is given by hand. Because ω is a function
of ξ through Q = ωI[φξ;Q] for fixed Q, unless dξ/dω = 0, ω also can be regarded as a behavior variable.
Figure 2 shows how equilibrium points of EQ(ξ) change as Q varies near Q = Qmin. This behavior is just
a “fold catastrophe” in catastrophe theory.

Next, to explore the dynamics of Q-balls with finite deformation, we analyze numerically the dynamical
field equations with perturbed initial conditions. Figure 3 shows an example of dynamical solutions.
Although we give the initial configuration with the same Q and ∂tφ = 0, a part of charge is radiated
away together with energy dispersion, and the Q-ball approaches to a different equilibrium solution with
smaller Q. This shows a limitation of energy analysis with fixing Q when we discuss the dynamics of
Q-balls with finite perturbations.

Coleman claimed that Q-balls with large Q are absolutely stable, not just stable under small deforma-
tion. Mathematically his statement is correct within energy-variation analysis for fixed Q. In a physical
situation, however, charge is conserved but not necessarily confined in a local system. Therefore, we
should not discuss finite perturbations by energy analysis with fixing Q.

3 Q-balls in curved spacetime

In this section we consider gravitating Q-balls. The action is given by

S =

∫
d4x
√−g

[
mPl

2

16π
R− 1

2
gμν∂μφ · ∂νφ− V (φ)

]
. (9)

To obtain equilibrium solutions, we assume a spherically symmetric and static spacetime,

ds2 = −α2(r)dt2 + A2(r)dr2 + r2(dθ2 + sin2 θdϕ2). (10)
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Figure 4: (left) Parameters which allow equilibrium solutions. A square denotes the maximum of ω2 for
a fixed κ, and a circle denotes the minimum.

Figure 5: Evolution of a Q-ball for κ = 0.3. In this case the metric approaches a stable configuration.

Supposing homogeneous phase rotation (3) again, we numerically solve the field equations, which follows
from (9) and (10), with regularity conditions at the origin and at infinity. The model contains three
independent parameters: m2, ω2 and κ ≡ 8πλM2/mPl

2. Fixing m2 = 1, we survey equilibrium solutions.
The parameter range (ω2, κ) which allow equilibrium solutions are summarized in Fig. 3. As κ becomes
larger, the range of ω2 which allows equilibrium solutions becomes smaller. If κ >∼ 0.24, equilibrium
solutions are nonexistent regardless of ω2.

Next, we investigate the stability of the equilibrium solutions. Becuase the energy defined by (7) does
not have a definite meaning in curved spacetime, we adopt the gravitational (Misner-Sharp) mass, which
is defined by Eg ≡ mPl

2r(1 − a2)/2. We find the relation among ω2, Q and Eg of equilibrium solutions
are similar to that in Fig. 1. Therefore, we can understand their stability in the same way.

Finally, we consider the fate of Q-balls for κ > 0.24, where equilibrium solutions are nonexistent.
For several initial conditions we solve the dynamical field equations numerically. We obtain two types of
solutions: a Q-ball either approaches a stable solution (as shown in Fig. 5) or collapses to a black hole.

Contrary to the claim in [7], Q-ball inflation does not occur. In the core of an equilibrium Q-ball,
the effective potential V − ω2φ2/2 must be negative, and accordingly −T t

t + T i
i ∝ ω2φ2 − V > 0, which

induces attractive nature of gravity. Although inflation may occur if ω2φ2 is sufficiently small and the
slow-roll condition is satisfied, it is perhaps inappropriate to call such a configuration a Q-ball.
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