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Abstract

In this thesis we address two remaining open questions in loop quantum gravity. The
first deals with the low-energy limit of the theory. We illustrate some of the conceptual
difficulties and their resolution through the study of a toy model: the quantum mechanics of
a point particle. We then find that this model can also be applied to the quantum mechanics
of spatially isotropic, homogeneous cosmology within the framework of loop quantum cos-
mology (LQC). This leads us to extend our results to investigate, for the quantum constraint
in LQC, the effective classical dynamics of the quantum theory. We find that we can calcu-
late an effective Hamiltonian constraint, and we employ this to calculate the modifications
to Friedmann’s equations for a dust filled, spatially flat, isotropic universe.

We then turn to a mathematical question, investigating the extension of integration
theory on spaces of connections to connections with non-compact structure group. For
groups that are the direct product of a compact group with a non-compact Abelian group,
we demonstrate a fully satisfactory theory based on the almost periodic compactification of
the group. This approach fails for other non-compact groups, and for the case of SL(2,R)
and SL(2,C) we present a partial ‘no-go’ theorem that demonstrates that any successful
integration theory for such spaces of connections with these gauge groups will of necessity
be different in essential structure from the theory for compact and non-compact, Abelian
groups.
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Chapter 1

Introduction

Both quantum mechanics and general relativity have radically reshaped our conception
of the physical world. Both were born in the first half of the twentieth century, and almost
since their birth there have been efforts to unify them into a single theory that could be
properly called a quantum theory of gravity.

Such a unification has turned out to be extremely elusive. Naive attempts to unite the
theories along the approach normally taken in quantum field theories fail; in particular, gen-
eral relativity is by now well known to be perturbatively non-renormalizable. On a closer
examination of the foundations of each theory, deep reasons for this discord become appar-
ent. Quantum theory in its usual framework expects a background geometry on which the
dynamics of the theory unfolds; general relativity, on the other hand, insists that geometry
itself should be dynamical. Moreover, as we have already alluded, any quantum theory of
gravity should possess the usual features of a quantum field theory, since the classical theory
has an infinite number of degrees of freedom. Yet quantum field theories are well known
to possess many difficulties of their own even in the presence of a background geometry.
Removing this background might make the task seem entirely hopeless.

Remarkably, however, over the past fifteen years or so an approach has emerged that
takes seriously the central lesson of general relativity: gravity is geometry. This approach
(for a recent review, see [1]), pioneered by a number of researchers, starts from a reformu-
lation of general relativity as a theory of connections, rather than a theory of metrics. The
resulting theory, called variously non-perturbative quantum general relativity, background-
independent quantum gravity, or loop quantum gravity, preserves the central feature of
general relativity mentioned above: the absence of any a priori background geometry. This
theory has had a number of remarkable successes:

• The theory is rigorously well-defined, developing a functional analysis on spaces of
connections, a Hilbert space, and well-defined operators on that space, all without
relying on any background metric [2, 3].

• A number of interesting geometrical observables have been defined in the resulting
quantum theory, among them an area operator [4, 5] and volume operator [4, 6], and
these operators have discrete spectrum. Thus, a picture emerges of quantum geometry,



2

in which observables that classically may have continuous spectrum in the quantum
theory turn out to have discrete spectrum. Moreover, this discreteness extends to the
basic nature of space itself: the fundamental excitations of the theory are not three
dimensional, but one-dimensional spin-networks.

• The constraints of canonical general relativity can be promoted to well-defined oper-
ators in the quantum theory, both the spatial diffeomorphism constraint [7], and the
scalar constraint [8–11]. The theory can also be coupled to matter fields [12].

• There are interesting and tantalizing connections to mathematics, in particular to knot
theory [13].

• The theory appears to admit not only the Hamiltonian formulation in which it was
originally derived, but also a covariant formulation, the spin foam approach (for a
recent review, see [14]).

• There is an explanation of the microscopic states of a black hole, and a resulting
derivation of the entropy [15] that (for appropriate choice of a parameter of the theory)
agrees with the Hawking-Bekenstein value.

• There is a notion of ‘symmetry reduced sectors’ of the theory which in particular have
allowed concrete results in the subject of loop quantum cosmology. The most striking
of these is the avoidance of the initial singularity in big bang cosmologies [16].

Despite these successes, however, many outstanding issues remain. This thesis will ad-
dress two of them. The first is the question of the low-energy limit of the theory: does it
resemble, in any appropriate limit, classical general relativity, and can the corrections in-
duced by the quantum theory on the classical theory be controlled in a systematic fashion?
The second question deals with the mathematical structure of the theory: is it possible to
formulate it in terms of connections based on non-compact gauge groups, in particular the
gauge group SL(2,C) that naturally emerges from the classical theory?

1.1 Contact with low-energy physics

Among all of the successes listed above, we noted that loop quantum gravity provides a
rigorous, background-independent theory in which basic geometric operators are well defined,
and in particular there are operators corresponding to the quantized constraints of the theory.
Thus, in a mathematical sense it does provide a quantum theory of gravity.

To be physically viable, however, more is needed. In general there is no guarantee
that a ‘quantization’ of a given classical system will reduce to the classical behavior of



3

that system in the low-energy limit; that depends upon the existence of suitable semi-
classical states with appropriate dynamical behavior in the quantum theory. Thus, a central
question is whether or not loop quantum gravity admits states that are semi-classical, well
approximating classical solutions to Einstein’s equation. However, we would like an even
stronger result, since we would like to reproduce not only the classical behavior of general
relativity, but also the low-energy quantum behavior of perturbative quantum theory. That
is, we should like also to find a suitable sector of our theory that contains states that
approximate the graviton Fock space.

At first sight, such a hope may seem unrealistic. The basic excitations of quantum
geometry are one-dimensional and polymer like, whereas in conventional low-energy quan-
tum physics on a (commonly flat) background geometry the basic excitations are three
dimensional. In quantum geometry a convenient basis is the spin network basis, whereas in
ordinary quantum field theory one generally works with Fock states. However, because the
perturbative approach to quantum gravity (based on the aforementioned Fock states) breaks
down quickly because of graviton loops, the low energy results are not likely to emerge as
first terms in a systematic expansion of a finite, full theory. Hence the differences between
the frameworks of the two theories need not be fatal, but one expects it to be a subtle matter
to extract semi-classical or Fock-like states—if they exist—from the full quantum theory.
Thus, the central question remains: what is the precise sense in which low-energy states
arise from the full theory?

As explained in more detail in the next chapter, this disparity between conventional
perturbative quantum gravity and quantum geometry becomes sharper when one examines
the theories in mathematical detail: the basic sets of operators of the two theories seem
disjoint. Thus, one might worry that this is an indication that the theories describe different
phases, and hence we must also ask: can we find the well-tested, macroscopic Coulomb phase
of low-energy gravity emerging from the Planck scale discreteness inherent to quantum
geometry?

These questions are being systematically tackled in loop quantum gravity, beginning
with an approach outlined in [17], which in turn built on the work of [18, 19]. In this thesis
we will examine in detail the first step of this program: an application of the basic ideas
and constructions of [17] to the quantum mechanics of a point particle. Specifically, we
shall exhibit a representation of a quantized point particle (that we call the polymer particle
representation) that is unitarily inequivalent to the standard Schrödinger representation, but
which in certain key respects mimics the structure of loop quantum gravity. In particular we
will see a similar disparity between the basic operators of this model and those of the usual
Schrödinger representation as is found between the basic operators of quantum geometry
and those of perturbative quantum field theory. Given this disparity, and the inequivalence
of the representations, we may justly wonder whether they can describe similar physics at
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any energy scale.
Remarkably, we shall find that they do. We examine this from a kinematical standpoint

in chapter 2, where we also introduce the polymer particle representation. Key to the proof
that the low-energy kinematics of this representation coincides with that of Schrödinger
quantum mechanics is the notion of a shadow state. This is a basic mathematical tool
introduced in [17] and expected to play a central role in the investigation of the low-energy
limit of loop quantum gravity itself, and we demonstrate the utility of shadow states in
analyzing the low-energy limit of the polymer particle representation.

In chapter 3 we consider the relationship between the dynamics of the polymer parti-
cle and Schrödinger representations. In particular, we find that the machinery of shadow
states lets us conclude that, in a precise sense, the eigenstates and eigenvalues of the two
representations are close to each other at low energies. However, we will find that there are
small corrections that grow to become large at sufficiently high energies, where heuristically
one is probing the fundamental discreteness of space at finer and finer scales. Thus, while
in the regime of validity of non-relativistic quantum mechanics the two representations are
experimentally indistinguishable, at sufficiently high energies the fundamental discreteness
of space manifests itself and the physical predictions of the two theories diverge. This is
analogous to what one expects and indeed desires in full quantum gravity: because the stan-
dard perturbative treatment breaks down at high energies, the fundamental theory should
diverge from it in this regime. Moreover, we shall also see in this chapter that there are
some important subtleties arising in the construction of the Hamiltonian for the polymer
particle, pointing to the fact that even in this simple model there are a priori reasonable
choices (from a purely mathematical standpoint) that lead to physically wrong predictions
in the low energy limit; it is therefore all the more nontrivial that there is any choice of
Hamiltonian that coincides with the Schrödinger representation at low energies.

In chapter 4 we shall find that the polymer particle model considered thus far is of more
than just illustrative value: it has physically relevant predictions of its own to make. These
occur in the context of loop quantum cosmology, a symmetry reduced model of the full
theory. In the particular case of a spatially homogeneous and isotropic model, the degrees
of freedom of general relativity become finite dimensional—in fact, two dimensional. This
means that at some level the quantization of this theory should lead to a simply quan-
tum mechanical system. Remarkably, in the context of loop quantum gravity, one is led to
precisely the polymer particle model considered in this thesis. The key change over what
was done in chapters 2 and 3 is in the Hamiltonian: this is now dictated by considerations
from the quantization of the scalar constraint in the full theory. The kinematical consid-
erations of chapter 2 therefore go over unchanged, as was found in [20]. That paper also
began the investigation of the low-energy dynamics of loop quantum cosmology, but here
we develop that much more fully. Specifically, we look for an effective classical description
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of the quantum dynamics that can therefore be thought of as the quantum corrections to
Friedmann’s equation. Such a description can be found from the expectation value of the
scalar constraint. Unlike [20], we do not limit ourselves to just the leading classical term
but find the corrections to all orders. We use these corrections to find, for the case of a
dust-filled universe, the corrections to the equations of motion themselves. Thus, the results
of this section do justify the claim that the polymer particle itself contains information on
the low-energy ramifications of loop quantum gravity.

1.2 Integration on spaces of connections with non-compact
gauge group

In the final chapter of this thesis, we turn from the more physical questions considered in
earlier chapters to a question of a more mathematical nature. As we have already mentioned,
general relativity is traditionally seen as a theory of a dynamical metric. In particular, this
has often been the viewpoint adopted in attempted quantizations of general relativity. This
puts gravity in apparently stark contrast to the other fundamental forces of nature, all of
which are described in terms of a quantum theory of connections for gauge fields.

A fundamental tenet of the loop quantum gravity program is that this apparent contrast
is in fact illusory. General relativity can be formulated as a theory of connections, and indeed
the impetus for the entire loop quantum program was the observation of [21, 22] that general
relativity may be recast as a theory of self-dual (or anti-self-dual) SL(2,C) connections. The
use of such (anti-) self-dual connections is particularly appealing not only because of the
resulting simplification of the mathematical structure of the theory, but also because of the
appearance of (only) left-handed spinors in the standard model, and the similarity to the use
of self-dual and anti-self dual fields in Penrose’s nonlinear graviton construction on twistor
space [23], as well as to the H-space construction of [24].

However, none of the achievements in the quantum domain listed above were made for a
theory based on such (anti-) self-dual connections. That is because thus far the functional
analysis on spaces of connections which lies at the heart of the successes of loop quantum
gravity has been rigorously developed only for the case of compact gauge groups. It is
possible to make a canonical transformation on the phase space of general relativity and
recast the theory in terms of SU(2) connections [25], and while the resulting theory is indeed
still a theory of Lorentzian gravity, the physical interpretation of the connection is less direct.
For instance, the connection (which is defined on a three-dimensional hypersurface) is no
longer the pull-back to that hypersurface of a four-dimensional connection [26]. Nonetheless,
the physical interpretation can be obtained and the above cited results of loop quantum
gravity are based upon it; however one would still like to be able to construct the quantum
theory using the more natural SL(2,C) connections.
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Another reason for this, aside from the aesthetic considerations above, is that the canon-
ical transformation which enables the use of SU(2) connections also introduces a real pa-
rameter, the Barbero-Immirzi parameter, into the theory. This parameter enters into the
physical predictions of the theory, such as the spectrum of the area and volume opera-
tors and the value of the entropy of a black hole. The latter calculations, when compared
with the Hawking-Bekenstein value of the entropy, indeed suggest a particular value of this
parameter—ln 2/

√
3π—but this particular value is certainly rather mysterious. In the case

of SL(2,C) connections, there is a natural choice of the corresponding ambiguity: the one
leading to either self-dual or anti-self-dual connections. If one had a theory in terms of such
connections, then, one would certainly like to investigate the corresponding ambiguity: are
physically viable results obtained for the mathematically preferred connections? Finally,
there has also been much work lately in the development of spin foam models with SL(2,C)
gauge groups, and one would like to understand how these relate to the canonical picture in
terms of spin-networks. This seems impossible without an understanding of the integration
theory on spaces of connections with non-compact gauge group, in particular with gauge
group SL(2,C).

Thus, in the final chapter of this thesis we take up the extension of this integration
theory to connections with non-compact gauge groups. Such an extension has already been
attempted [27], but the resulting construction has major physical drawbacks [28]. We outline
a construction that is based on a certain algebraic compactification of the gauge group, and
which therefore allows one to handle non-compact gauge groups on the same footing as
compact groups. The particular construction we examine first works only for groups that
are the direct product of a compact group with a non-compact Abelian group, and so do
not include SL(2,C). We examine several alternate compactifications and find them also to
be unsuitable, and indeed we are able to produce a partial ‘no-go’ theorem. Thus, while the
complete picture for such groups is still not available, it seems increasingly likely that the
canonical transformation to compact groups is in fact necessary and not just mathematically
convenient.
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Chapter 2

Kinematics of the polymer particle and shadow

states

In this chapter and the next we take up the general discussion of the polymer particle
representation as a toy model of the low-energy limit of loop quantum gravity. The work
reported in these chapters is joint with Abhay Ashtekar and Stephen Fairhurst, and has
appeared in [29].

2.1 Overview of the basic issues

As we have already explained in the introduction, a central feature of loop quantum gravity
is that it preserves, in the quantum theory, the distinguishing feature of classical general
relativity: the absence of any background geometry. This means that in its fundamental
structure the full quantum theory will use physical concepts and mathematical tools that are
quite different from those normally used in low energy quantum physics. A major challenge,
then, is to show that this low energy description does arise from the pristine, Planckian
world in an appropriate sense.

Given the importance and difficulty of this question, it is being approached in a series of
stages. In the work described in this chapter and the next, we illustrate, through a simple
example, both the tension between the two frameworks and the new physical notions and
mathematical techniques that are being used to resolve it. This work follows the program
outlined in [17], which itself was motivated by [18, 19]. For related ideas see also [30–33].
The program described in these two chapters will be significantly extended in a series of
papers [34–36]; the present work is just the first step on that road.

There are two reasons for beginning with this kind of ‘toy model.’ First, in embarking
on a complex program such as the present program to examine the low-energy limit of
loop quantum gravity, one expects that there will be subtleties arising that are not easily
anticipated at the outset. The more complex the theory, the more of these subtleties that
are expected to arise, and the more technically demanding will be their resolution. It thus
makes sense to begin with a simple system to try and gain some insight into the nature of
such issues.
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Second, we are proposing new techniques and physical concepts in order to address the
central question—the low-energy limit of loop quantum gravity. Any time one introduces
such new techniques, it is wise to explore their application and success in simpler systems
where, in some sense, one already knows the answer. This is to develop confidence, when
the same methods are applied to more complex systems, that results obtained from these
methods are believable. We stress this point because at various places in the next two
chapters the reader may have the feeling that the results are all ‘exactly what one would
expect.’ But that is precisely the point: if the methods used for the quantum mechanics of
a point particle lead to semi-classical states or operators with no obvious connection to the
corresponding states and operators in standard quantum mechanics, then we would hardly
have confidence that the approach could yield meaningful insights into as complex a theory
as non-perturbative, quantum general relativity.

Of course, any time one studies a toy model, it must not be too simple: it must still
preserve essential aspects of the difficulties of the complex theory one is ultimately interested
in, and must allow application of the techniques to be applied in that theory. Thus, to
understand in what sense the present toy model meets these criteria, we must first review
the outstanding conceptual and technical issues present in analyzing the low-energy limit of
loop quantum gravity itself.

Before discussing briefly some of the central issues surrounding the low energy limit of
loop quantum gravity, let us say a little bit more about the general problem of the low
energy or semi-classical limit of a quantum theory. We pointed out in the introduction that
loop quantum gravity already provides a rigorous quantum theory in which the dynamical
equations of classical general relativity are promoted to operators of the quantum theory, so
that, at ‘zeroth order’ it does provide a quantization of gravity. How then might it be that
the classical limit of the theory is incorrect?

We give two examples where just such a phenomenon can occur. The first is elementary.
Consider ordinary non-relativistic quantum mechanics of a point particle in three dimensions.
From the three coordinate functions and their conjugate momenta we may construct in the
usual fashion the angular momentum observables, which as is well known form a closed
Lie algebra under the Poisson brackets. Suppose now that we take this algebra as our
starting point, rather than the usual canonical algebra among the coordinate observables
and their conjugate momenta, and suppose that we look for representations of this algebra.
As is well known, we obtain both integral and half integral spin representations. In the
integral spin representations there is also a representation of the basic canonical variables and
their conjugate momenta as operators, but in the half integral representations there are no
operators corresponding to, for instance, x̂ and p̂x. Thus in the half integral representations
there is no limit of the theory which would behave like the classical theory with its usual
canonical variables.
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Of course, one can argue that this is an artifact of choosing the wrong variables as the
basic variables for quantization. But the point is that we may be doing an analogous thing
in loop quantum gravity by choosing fluxes and holonomies are our basic observables; we
shall comment more on the disparity between these observables and the observables one
needs for a semi-classical limit below.

The second example comes from constructive quantum field theory. In four dimensions,
classically the λφ4 theory is readily seen to be non-trivial (that is, interacting), and yet
it appears that in constructive quantum field theory quantizations the theory is free (see,
for instance, [37]). Again, most would argue that this shows simply that there is something
‘wrong’ about the quantization, and again, that is precisely the point. Without examination
of the low energy limit of loop quantum gravity, we cannot be sure that we have not made
a fundamental mistake in quantizing general relativity.

Thus, do we have reason to believe that similar phenomena to those we have just illus-
trated may be happening in the loop quantization of general relativity? At first sight, it
might appear that we do. That is because, as already mentioned in the introduction, there
is manifest disparity just between the conceptual frameworks of loop quantum gravity and
conventional perturbative quantum field theory. Loop quantum gravity is based on quantum
geometry, the essential discreteness of which permeates all constructions and results. The
fundamental excitations are 1-dimensional and polymer-like. A convenient basis of states is
provided by spin networks. Low energy physics, on the other hand, is based on quantum
field theories which are rooted in a flat space continuum. The fundamental excitations of
these fields are 3-dimensional, typically representing wavy undulations on the background
Minkowskian geometry. The convenient Fock-basis is given by specifying the occupation
number in one particle states labeled by momenta and helicities. As we have already ex-
plained, this difference in frameworks indicates that it will be a nontrivial matter to extract
semi-classical states from loop quantum gravity. Nonetheless, one would hope that the poly-
mer description admits semi-classical states which approximate classical space-times as well
as fluctuations on them represented by gravitons and other fields, and so one long term goal
of this program is to understand how such semi-classical states arise from the full theory, if
indeed they do.

There are further discrepancies between conventional low energy quantum gravity and
quantum geometry than just the difference in the interpretation of the fundamental states
highlighted above. From a mathematical physics perspective, the basic variables of quan-
tum geometry are holonomies (or Wilson loops) of the gravitational connection A along
1-dimensional curves and fluxes of the conjugate momenta (the triads) E across 2-surfaces.
In the final quantum theory, the connection A fails to be a well-defined operator(-valued
distribution); only the holonomies are well-defined. By contrast, in Fock space the vector po-
tential operators are distributions, whence, a priori, their holonomies fail to be well-defined
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operators. Similarly, fluxes of electric field operators across 2-surfaces also fail to be well-
defined on the Fock space of photons. Heuristically, then, it would appear that, even at a
kinematic level, loop quantum gravity describes a ‘phase’ of gauge theories which is distinct
from the one used in electrodynamics. Since it is generally believed that distinct phases
carry distinct physics, it is natural to ask whether or not the full quantum theory contains a
macroscopic ‘Coulomb phase.’ If so, in what sense; how does it emerge from loop quantum
gravity? Given the apparent deep differences, the procedure of extracting the ‘Coulomb
phase’ from the fundamental Planckian description should be rather subtle.

Finally, a further technical but important complication arises from the detailed treatment
of dynamics. Solutions to the quantum Einstein equations (i.e. quantum constraints) do
not belong to the so-called kinematical Hilbert space HPoly. This is not surprising: a
similar situation occurs already for simple, quantum mechanical constrained systems. The
kinematical Hilbert space provides the mathematical framework to construct well-defined
operators which can be regarded as the quantum analogs of the classical constraint functions.
If zero lies in the continuous part of the spectrum of these operators, none of the solutions to
the quantum constraints are normalizable with respect to the kinematic inner product. (This
is the case even for the simple constraint px = 0 in R3, and for the constraint gabpapb−µ2 = 0
satisfied by a free particle in Minkowski space-time.) The solutions are distributional; they
belong to the dual of a sub-space of ‘nice’ quantum states (e.g. the Schwartz space). The
situation is completely analogous in quantum gravity. The ‘nice’ quantum states are typically
taken to be finite linear combinations of spin network states and their space is denoted by
Cyl (the space of ‘cylindrical ’ functions of connections). Solutions to the quantum Einstein
equations belong to its dual, Cyl?. There is an inclusion relation (providing a ‘Gel’fand-
type’ triplet) Cyl ⊂ HPoly ⊂ Cyl?. While the kinematical spin network states belong to
Cyl, the physical states belong to Cyl?. Therefore, semi-classical states, capturing the low
energy physics, should also be in Cyl?. The problem is that, as of now, Cyl? does not have
a physically justified inner product; a definite Hilbert space structure is not yet available.
Can one nonetheless hope to extract low energy physics already at this stage? In particular,
can one test a candidate state in Cyl? for semi-classicality without access to expectation
values?

Thus, our goal in the next two chapters is to provide a simple model system that reflects
in essential fashion the issues, both conceptual and technical, outlined above. We shall find
such a model in the simple example of a non-relativistic particle, and we shall find that the
issues raised above can be resolved satisfactorily. (For an analysis with similar motivation,
but which emphasizes the role of constraints and discrete time evolutions, see [38].)

For readers who are not familiar with quantum geometry, this example can also serve
as an introduction to the mathematical techniques used in that framework. However, as
is typically the case with toy models, one has to exercise some caution. First, motivations



11

behind various construction often become obscure from the restrictive perspective of the
toy model, whence the framework can seem cumbersome if one’s only goal is to describe
a non-relativistic particle. Secondly, even within mathematical constructions, occasionally
external elements have to be brought in to mimic the situation in quantum geometry. Finally,
because the toy model fails to capture several essential features of general relativity, there
are some key differences between the treatment of the Hamiltonian and other constraints in
the full theory and that of the Hamiltonian operator in the toy model. With these caveats
in mind, the toy model can be useful in understanding the essential differences between
our background independent approach and the Fock-space approach used in Minkowskian,
perturbative quantum field theory.

We will begin with the usual Weyl algebra generated by the exponentiated position and
momentum operators. The standard Schrödinger representation of this algebra will play the
role of the Fock representation of low energy quantum field theories and we will construct
a new, unitarily inequivalent representation—called the polymer particle representation—in
which states are mathematically analogous to the polymer-like excitations of quantum geom-
etry. The mathematical structure of this representation mimics various features of quantum
geometry quite well; in particular there are clear analogs of holonomies of connections and
fluxes of electric fields, non-existence of connection operators, fundamental discreteness, spin
networks, and the spaces Cyl and Cyl?.1 At the basic mathematical level, the two descrip-
tions are quite distinct and, indeed, appear to be disparate. Yet, we will show that states in
the standard Schrödinger Hilbert space define elements of the analog of Cyl?. As in quantum
geometry, the polymer particle Cyl? does not admit a natural inner product. Nonetheless,
as indicated in [17], we can extract the relevant physics from elements of Cyl? by examining
their shadows, which belong to the polymer particle Hilbert space HPoly. This physics is
indistinguishable from that contained in Schrödinger quantum mechanics in its domain of
applicability.

These results will show that, in principle, one could adopt the viewpoint that the polymer
particle representation is the ‘fundamental one’—it incorporates the underlying discreteness
of spatial geometry—and the standard Schrödinger representation corresponds only to the
‘coarse-grained’ sector of the fundamental theory in the continuum approximation. Indeed,
this viewpoint is viable from a purely mathematical physics perspective, i.e., if the only
limitation of Schrödinger quantum mechanics were its failure to take into account the dis-
crete nature of the Riemannian geometry. In the real world, however, the corrections to
non-relativistic quantum mechanics due to special relativity and quantum field theoretic
effects largely overwhelm the quantum geometry effects, whence the above viewpoint is not

1Of course, since this is only a simple, ‘toy example’, it does not capture all the subtleties. In particular,
we will see that a number of distinct notions in quantum geometry often coalesce to a single notion in the
example. We shall remark on a few examples of this phenomenon throughout the next two chapters
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physically tenable. Nonetheless, the results for this toy model illustrate why an analogous
viewpoint can be viable in the full theory: Although the standard, low energy quantum
field theory seems disparate from quantum geometry, it can arise, in a systematic way, as a
suitable semi-classical sector of loop quantum gravity.

This chapter is organized as follows. Section 2.2 recalls a few essential notions from
quantum geometry which motivate our construction of the polymer particle representation.
This representation is constructed in detail in section 2.3. In section 2.4 we show that the
standard coherent states of the Schrödinger theory can be regarded as elements of Cyl?,
introduce the notion of ‘shadow states’ and use them to show that the elements of Cyl?

defined by the coherent states are, in a precise sense, semi-classical from the perspective
of the ‘fundamental’ polymer particle representation. Thus, at a kinematical level, the
relationship between the low-energy physics of the two representations is entirely satisfactory.
We take up the important question of the relationship between the dynamics of the two
representations in chapter 3.

Since the present work is just the first in a series that move progressively closer to
analyzing the low-energy limit of loop quantum gravity, we also introduce some technical
material that, though it can be defined in the present example, is of interest chiefly because
of its anticipated utility when the shadow state framework is extended to quantum field
theories. Because it therefore lies outside the main scope of the next two chapters, this
material is presented in appendix A, along with an important proof that it would be too
disruptive to include in the body of this chapter.

2.2 Quantum geometry

This summary of quantum geometry will enable the reader to see the parallels between
quantum geometry and the polymer particle representation constructed in section 2.3. It
will be used primarily to motivate our constructions in subsequent sections. Our discussion
will be rather brief and, in particular, we will omit all proofs. (These can be found, e.g., in
[2–7, 39–44].)

In diffeomorphism invariant theories of connections, the phase space consists of pairs of
fields (A,E) on a 3-manifold Σ, where Ai

a are connection 1-forms which take values in the
Lie-algebra of the structure group G, and Ea

i are ‘electric fields’ which are vector densities
with values in the dual of the Lie algebra. For the purpose of this chapter and the next, it
suffices to restrict ourselves to two special cases: i) G = SU(2), used in quantum geometry,
and, ii) G = U(1) used in quantum Maxwell theory. In either case, the ‘elementary’ classical
observables are taken to be holonomiesAe along paths e defined byA and fluxes ES of electric
fields across 2-surfaces S. From the perspective of the standard Hamiltonian formulation
of field theories, these functions are ‘singular’: Since they are supported on 1-dimensional
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curves and 2-dimensional surfaces, respectively, we are in effect using distributional smearing
functions. Nonetheless, the symplectic structure on the classical phase space endows them
with a natural Lie bracket and the resulting Lie-algebra is taken as the point of departure
in quantum theory.

The Hilbert space of states can be constructed in two ways. In the first, one uses the
fact that, as usual, the configuration variables Ae give rise to an Abelian C? algebra HA,
called the holonomy algebra. One then introduces a natural (diffeomorphism invariant)
positive linear functional on it and uses the Gel’fand-Naimark-Segal (GNS) construction to
obtain a Hilbert space HPoly of states and a representation of HA on it. Finally, self-adjoint
electric flux operators are introduced on HPoly using the heuristic idea that E should be
represented by −i~ δ/δA.2 The second approach is more explicit. One begins by specifying
the space Cyl of ‘nice’ functions of connections. Fix a graph γ on the 3-manifold Σ with
N edges. A connection A associates to each edge e a holonomy Ae ∈ G. The space of
N -tuples (A1, . . . , AN ) defines a configuration of the gauge theory restricted to the graph
γ and will be denoted by Aγ . Clearly, Aγ is isomorphic with GN . Now, given a smooth,
complex-valued function ψ on GN , we can define a function Ψ of connections in an obvious
fashion:

Ψ(A) = ψ(A1, . . . , AN ).

The space of these functions is denoted Cylγ . Elements of Cylγ have knowledge only of the
connection restricted to γ. The space Cyl of all cylindrical functions is obtained by simply
considering all possible graphs γ:

Cyl =
⋃
γ

Cylγ .

Thus, each element of Cyl depends only on holonomies of the connection along edges of
some finite graph γ but the graph can vary from one function to another. Had we restricted
ourselves to a fixed graph γ, the theory would have been equivalent to a lattice gauge theory
on a (generically irregular) ‘lattice’ γ. However, since we allow all possible graphs, we are
dealing with a field theory, with an infinite number of degrees of freedom, of all connections
on Σ.

The next step is to introduce an inner product on Cyl. For this, we simply use the
induced Haar measure µ(N)

H on Aγ ≈ GN : Given any two functions Ψ1 and Ψ2 on Cylγ , we
set

(Ψ1,Ψ2) =
∫
Aγ

ψ̄1 ψ2 dµ
(N)
H . (2.2.1)

2From the viewpoint of the algebraic approach, which has been so successful in quantum field theory in
curved space-times, working with a specific Hilbert space representation may seem restrictive. However, the
algebraic approach is not so well-suited for systems, like general relativity, with non-trivial constraints. More
importantly, there is no loss of generality in working with the above representation because it is singled out
essentially by the requirement of diffeomorphism covariance [45].
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Using properties of the Haar measure one can verify that this definition is unambiguous,
i.e., if Ψ1 and Ψ2 are cylindrical with respect to another graph γ′, the right side of (2.2.1)
is unchanged if we replace γ with γ′. This prescription provides us with an Hermitian inner
product on all of Cyl because, given any Ψ1,Ψ2 ∈ Cyl, there exists a (sufficiently large)
graph γ such that Ψ1,Ψ2 ∈ Cylγ . The Cauchy completion of Cyl with respect to this inner
product provides the required Hilbert space HPoly of all quantum states, obtained in the
first method via the GNS construction.

Because we consider all possible graphs on Σ in its construction, HPoly is very large.
However, it can be decomposed into convenient finite dimensional sub-spaces. Each of
these subspaces is associated with a labeling of edges of a graph γ by non-trivial irreducible
representations of G. Thus, in the case when G = SU(2), let us label each edge e of γ with a
non-zero half-integer (i.e., spin) je. Then, there is a finite dimensional sub-space Hγ,~j such
that

HPoly =
⊕
γ,~j

Hγ,~j . (2.2.2)

This is called the spin network decomposition of HPoly. Although HPoly is very large, prac-
tical calculations are feasible because each of the sub-spaces Hγ,~j can be identified with
the Hilbert space of a spin-system which is extremely well understood. In the case when
G = U(1), we label each edge e with a non-zero integer ne. The Hilbert space Hγ,~n is now
1-dimensional, spanned by the function

Ψ(A) = ein1θ1 · · · einNθN

where eiθm is the holonomy of the connection A along the edge em. These functions are called
flux network states and by replacing ~j by ~n in (2.2.2) one now obtains a decomposition of
HPoly in terms of 1-dimensional orthonormal subspaces.

As in any Schrödinger description, quantum states in HPoly can be regarded as square
integrable function on the quantum configuration space. In systems with finite number of
degrees of freedom, the quantum configuration space is normally the same as the classical
one. However, for systems with an infinite number of degrees of freedom, there is typically
a significant enlargement: while classical configurations are represented by smooth fields,
quantum configurations are distributional. This occurs also in our case: HPoly = L2(A, dµo),
where A is a suitable completion of the space A of smooth connections and µo, a regular
measure on it. An element Ā of A is called a generalized connection. It associates with
every oriented path e in Σ an element Ā(e) of G, the holonomy along e subject only to two
conditions: i) Ā(e1◦e2) = Ā(e1) Ā(e2); and, ii) Ā(e−1) = [Ā(e)]−1. Note that the assignment
e −→ Ā(e) can be arbitrarily discontinuous, whence the quantum configuration space A is a
genuine extension of the classical configuration space A. Nonetheless, in a natural topology,
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A is dense in A, whence A can be regarded as a suitable completion of A. However, as is
typically the case in field theories, the measure µo is concentrated on genuinely generalized
connections; all the smooth configurations in A are contained in a set of zero measure.

The measure µo is completely defined by the family of measures µ(N)
H on Aγ ≈ GN :

because µ(N)
H are mutually consistent in a precise sense, they can be ‘glued together’ to

obtain µo. Indeed, every measure on A arises as a consistent family of measures on Aγ .
More generally, structures in the full quantum theory are constructed as consistent families
of structures on Aγ or Cylγ . In particular, many of the physically interesting operators
on HPoly—such as the holonomies Âe, the fluxes ÊS of Ê across S, area operators ÂS

associated with 2-surfaces S, and volume operators V̂R associated with spatial regions R—
arise as consistent families of operators on Cylγ . Therefore, their properties can be explored
in terms of their actions on finite dimensional spaces Hγ,~j (or Hγ,~n).

While the above structures suffice to discuss quantum kinematics, as pointed out in
the Introduction, an additional notion is needed in the discussion of quantum dynamics:
solutions to the quantum Einstein’s equations do not belong H because they fail to be
normalizable. Their natural home is Cyl?, the algebraic dual of Cyl. We have a natural
inclusion:

Cyl ⊂ HPoly ⊂ Cyl?.

To discuss physical states and explore the physically relevant semi-classical sector, then, we
are led to focus on Cyl?.

We will see in section 2.3 that the essential features of these constructions and results are
mirrored in a transparent way in the ‘polymer particle representation’ of a non-relativistic
point particle.

2.3 Schrödinger and polymer particle frameworks

The physical system we wish to consider is a particle moving on the real line R. (It is
straightforward to extend our discussion to Rn.) The kinematics of this system are ordinarily
described in terms of a position operator3 x and a momentum operator p satisfying the
canonical commutation relation

[x, p] = i~. (2.3.1)

From a technical standpoint, however, the commutation relation (2.3.1) is inconvenient
as a starting point for two main reasons. First, in a concrete representation the x and p

operators will be self-adjoint operators that are unbounded, and hence only densely defined.
3Our conventions are that only operators with a concrete representation on some Hilbert space will be

denoted with a hat. Thus, at this point the x and p operators are unhatted since they are considered as
abstract operators not tied to any particular representation.
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Thus, it is not obvious that the composition of these operators needed to define the com-
mutator in (2.3.1) is well defined. Second, and for our purposes ultimately more important,
we shall soon be looking at a representation for which the p operator does not exist, and
the canonical commutation relation (2.3.1) is then certainly nonexistent.

Therefore, we will take instead as out starting point an algebra that is derived from
exponentiating the x and p operators. Accordingly, define:

U(λ) := eiλx and V (µ) := ei
µ
~ p. (2.3.2)

Then the canonical commutation relations (2.3.1) imply the following relations among the
U and V operators:

U(λ1)U(λ2) = U(λ1 + λ2), V (µ1)V (µ2) = V (µ1 + µ2),

U(λ)V (µ) = e−iλµ V (µ)U(λ) . (2.3.3)

Since we expect the x and p operators to be self-adjoint, the U(λ) and V (µ) operators should
be unitary. But as we are not yet considering any particular representation of the algebra
of (2.3.3), such a requirement has no meaning as yet. What we should instead say is that
we wish to make the algebra into a star algebra by introducing an involution ? on it. We
then require that [U(λ)]? = U(−λ), [V (µ)]? = V (−µ) in this star algebra. This in turn will
mean that in any concrete representation of the U and V operators on a Hilbert space, they
are unitary.

We can abstract this still further, to arrive at the algebra normally used in the math-
ematics literature. Observe that the parameter λ must have the physical dimensions of
inverse length, and the parameter µ the dimensions of length. If we introduce a length scale
d, then we may combine these two parameters into a single, complex dimensionless number
ζ, defined to be λd+ i(µ/d). We then make the following definitions. To each complex num-
ber ζ associate an abstract operator W (ζ) and consider the free vector space W generated
by them. Introduce a product on W via:

W (ζ1)W (ζ2) = e
i
2

Imζ1ζ̄2 W (ζ1 + ζ2), (2.3.4)

and an involution ? via
[W (ζ)]? = W (−ζ) . (2.3.5)

These two equations define the Weyl-Heisenberg ?-algebra of non-relativistic quantum me-
chanics.

This algebra is completely equivalent to the algebra of the U and V operators, since we
can undo the above construction by introducing a length scale d and ‘splitting’ the operators
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W (ζ) by setting
W (ζ) = e

i
2
λµ U(λ)V (µ)

with (as before) ζ = λd + i(µ/d). Thus, U(λ) = W (λd) and V (µ) = W (iµ/d). The
involution and product rule (2.3.4) then imply that the U(λ) and V (µ) operators satisfy
(2.3.3) and the involution given above for those operators.

Thus, from a mathematical perspective we shall be looking at different representations of
the Weyl-Heisenberg algebra as defined above, and examining the similarities and differences
in the physical systems described by those different representations. We begin by considering
the Schrödinger representation.

2.3.1 The Schrödinger representation

Why is it that most introductory textbooks on quantum mechanics make no mention of the
construction of the Weyl-Heisenberg algebra as we have sketched it above? Aside perhaps
from a desire not to over burden students with functional analytic details, a more significant
reason is the Stone-von Neumann theorem. This celebrated result ensures us that every
irreducible representation of W which is weakly continuous in the parameter ζ is unitar-
ily equivalent to the standard Schrödinger representation, where the Hilbert space is the
space L2(R, dx) of square integrable functions on R (where x is dimensionless). W (ζ) are
represented via:

Ŵ (ζ)ψ(x) = e
i
2
αβ eiαx ψ(x+ β), (2.3.6)

where ζ = α + iβ. This is an irreducible representation of W. Furthermore, the Ŵ (ζ) are
all unitary (i.e., satisfy [Ŵ (ζ)]† = [Ŵ (ζ)]−1) and weakly continuous in ζ (i.e., all matrix
elements of Ŵ (ζ) are continuous in ζ).

In physics terms, the Hilbert space HSch is the space of square integrable functions of
x = xd and the action of these operators is given by

Û(λ)ψ(x) = eiλx ψ(x) and V̂ (µ)ψ(x) = ψ(x+ µ) (2.3.7)

for all ψ ∈ HSch. Now, the 1-parameter unitary groups Û(λ) and V̂ (µ) are weakly continuous
in the parameters λ, µ. This ensures that there exist self-adjoint operators x̂ and p̂ on HSch

such that
Û(λ) := eiλx̂ and V̂ (µ) = ei

µ
~ p̂ . (2.3.8)

The action of those operators (which follows from (2.3.8)) is the familiar one:

x̂ ψ(x) = xψ(x), p̂ ψ(x) = −i~ d

dx
ψ(x). (2.3.9)

We conclude with two remarks:
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1. The Schrödinger representation can be obtained using the Gel’fand-Naimark-Segal
(GNS) construction with the positive linear (or, ‘expectation-value’) functional FSch

on W:
FSch(W (ζ)) = e−

1
2
|ζ|2 . (2.3.10)

The expectation values of Û and V̂ are given by:

FSch(U(λ)) = e−
1
2
λ2d2

and FSch(V (µ)) = e−
1
2

µ2

d2 . (2.3.11)

The corresponding GNS ‘vacuum’ (i.e., cyclic) state ψSch is simply

ψSch(x) = (πd2)−
1
4 e−

x2

2d2 ,

i.e., the ground state of the simple harmonic oscillator with fundamental length scale
d.

2. For definiteness, we have presented the Schrödinger representation using position wave
functions ψ(x). In terms of momentum wave functions ψ(k), which will be more useful
in the next subsection, we have:

Û(λ)ψ(k) = ψ(k − λ), and V̂ (µ)ψ(k) = eiµk ψ(k) (2.3.12)

and the GNS cyclic state is given by:

ψSch(k) =
( π
d2

)−1
4
e−

k2d2

2 .

2.3.2 The polymer particle representation

We are now ready to introduce the polymer particle representation of the Weyl-Heisenberg
algebra which is unitarily inequivalent to the Schrödinger. This construction must, of course,
violate one or more assumptions of the Stone-von Neumann uniqueness theorem. It turns
out that only one assumption is violated: in the new representation, the operator V (µ)
will not be weakly continuous in µ, whence there will be no self-adjoint operator p̂ such
that V (µ) = exp (iµp̂). While the unavailability of the standard momentum operator seems
alarming at first, this is just what one would expect physically in the absence of a spatial
continuum. More precisely, if the spatial Riemannian geometry is to be discrete (as, for
example, in loop quantum gravity), one would not expect the operator p = −i~ d/dx to
exist at a fundamental level. The key question is whether one can nonetheless do quantum
mechanics and reproduce the well-tested results. This is a difficult question with many
technical subtleties. But, as we will see in section 2.4 and chapter 3, the answer is affirmative:
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by adopting the viewpoint that the natural arena for quantum theory is the analog of Cyl?,
one can recover results of Schrödinger quantum mechanics in the domain of its validity.

To bring out the similarity and differences with quantum geometry, we will construct the
Hilbert space of states, HPoly, in steps, using the same terminology. A graph γ will consist
of a countable set {xi} of points on the real line R with the following two properties:

1. The xi do not contain sequences with accumulation points in R.

2. There exist constants `γ and ργ such that the number n(I) of points in any interval I
of length `(I) ≥ `γ is bounded by n(I) ≤ ργ`(I).

The two technical conditions will ensure convergence of certain series; see section 2.4 for the
application and appendix A.1 for the needed proofs.4

Denote by Cylγ the space of complex valued functions f(k) of the type:

f(k) =
∑

j

fj e
−ixjk (2.3.13)

on R, where xj are real and fj are complex numbers with a suitable fall-off. To simplify
the later specification of domains of operators, we will choose the fall-off to be such that∑

j |xj |2n|fj |2 < ∞ for all n. Cylγ is a vector space (which is infinite dimensional if the
number of points in γ is infinite). We will say that functions f(k) in Cylγ are cylindrical
with respect to γ. Thus, each cylindrical state is a discrete sum of plane waves; it fails to
belong to the Schrödinger Hilbert space. The real number k is the analog of connections in
quantum geometry and the plane wave exp (−ikxj) can be thought of as the ‘holonomy of
the connection k along the edge xj ’.

Next, let us consider all possible graphs, where the points (and even their number) can
vary from one graph to another, and denote by Cyl the infinite dimensional vector space of
functions on R which are cylindrical with respect to some graph. Thus, any element f(k) of
Cyl can be expanded as in (2.3.13), where the uncountable basis exp (−ixjk) is now labeled
by arbitrary real numbers xj . Let us introduce a natural, Hermitian inner product on Cyl
by demanding that exp (−ixjk) are orthonormal:

< e−ixik|e−ixjk >= δxi,xj . (2.3.14)

(Note that the right side is the Kronecker δ and not the Dirac distribution.) Denote byHPoly

the Cauchy completion of Cyl. This is the Hilbert space underlying our representation.
To summarize, HPoly is the Hilbert space spanned by countable linear combinations

4In an earlier version of this work, I only had condition 1. I thank Jacob Yngvasson for pointing out that
it does not suffice and Chris Fewster and Jerzy Lewandowski for the precise formulation of 2.
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1 fj exp (−ixjk) of plane waves in the momentum space, subject to the condition

∞∑
1

|fj |2 <∞,

where {xj} is an arbitrary countable set of real numbers, which can vary from one state
to another. Even more succinctly, HPoly = L2(Rd, dµd), where Rd is the real line equipped
with discrete topology and µd is the natural discrete measure on it.

The Weyl-Heisenberg algebra W is represented on HPoly in the same manner as in the
Schrödinger representation:

Ŵ (ζ)f(k) = [e
i
2
λµ U(λ)V (µ)] f(k) (2.3.15)

where, as before, ζ = λd+ i(µ/d) and the action of Û and V̂ is given by (see (2.3.12))

Û(λ)f(k) = f(k − λ) and V̂ (µ)f(k) = eiµk f(k). (2.3.16)

It is straightforward to check that these operators provide a faithful, irreducible representa-
tion of W on HPoly. Each Û(λ) and V̂ (µ) is unitary.

The structure of this representation becomes more transparent in terms of eigenkets
of Û(λ). Let us associate with the basis elements exp (−ixjk) a ket |xj〉 and, using the
textbook heuristic notation, express exp (−ixjk) as a generalized scalar product:

(k, xj) = e−ixjk

Then, { |xj〉 } is an orthonormal basis and the action of the basic operators Û and V̂ is given
by:

Û(λ)|xj〉 = eiλxj |xj〉 and V̂ (µ)|xj〉 = |xj − µ〉. (2.3.17)

One may easily verify that Û(λ) is weakly continuous in λ whence there exists a self-
adjoint operator x̂ on HPoly with Û(λ) = exp(iλx̂). Its action can now be expressed as:

x̂|xj〉 = xj |xj〉 (2.3.18)

just as one would expect. However, there is an important difference from the Schrödinger
representation: The eigenkets of x̂ are now normalizable, and hence elements of the Hilbert
space itself. In this sense the eigenvalues are ‘discrete’.

By contrast, although the family V̂ (µ) provides a 1-parameter unitary group on HPoly, it
fails to be weakly continuous in the parameter µ. This follows from the fact that, no matter
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how small µ is, |xj〉 and V̂ (µ)|xj〉 are orthogonal to one another, whence

lim
µ 7→0

〈xj |V̂ (µ)|xj〉 = 0 ,

while V̂ (µ = 0) = 1 and 〈xj |xj〉 = 1. Thus, there is no self-adjoint operator p̂ on HPoly

satisfying the second of eqs. (2.3.8).
Finally, this representation can be obtained via Gel’fand-Naimark-Segal construction,

using the following positive linear (or expectation value) functional on the Weyl-Heisenberg
algebra W:

FPoly(W (ζ)) =

1 if Im ζ = 0,

0 otherwise.
(2.3.19)

In terms of U(λ) and V (µ), we have:

FPoly(U(λ)) = 1 ∀λ,

FPoly(V (µ)) =

1 if µ = 0,

0 otherwise.
(2.3.20)

The corresponding cyclic state is simply |ψo〉 = |xo = 0〉. Note that, in contrast to the
Schrödinger positive linear functional FSch, no scale had to be introduced in the definition
of FPoly. This is the analog of the fact that the corresponding positive linear functional in
quantum geometry is diffeomorphism invariant.

We conclude this section with a few remarks.

1. The step by step procedure used above brings out the fact that the polymer particle
description captures many of the mathematical features of quantum geometry, but
now for a very simple physical system. Our notation is geared to reflect the analo-
gies. Thus, sets γ = {xk} are the analogs of graphs of quantum geometry; individual
points xj , the analogs of edges; the continuous momentum variable k, the analog of
connections; exp (−ixjk) the analog of the holonomy along an edge; Cylγ the analog
of the space of cylindrical functions associated with a graph and Cyl the space of all
cylindrical functions of quantum geometry; and the |xj〉 the analogs of spin network
states. Indeed, we again have the Hilbert space decomposition analogous to (2.2.2):

HPoly =
⊕

x

Hx

where Hx are the 1-dimensional subspaces spanned by our basis vectors |x〉. (The
decomposition is thus analogous to that in the U(1) case).

2. What is the situation with operators? The basic operators of quantum geometry—
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holonomies and fluxes of the electric field—are respectively analogous to the operators
V̂ (µ) and x̂ on HPoly. The commutator between x̂ and V̂ (µ),

[x̂, V̂ (µ)] = −µV̂ (µ), (2.3.21)

is completely parallel to the commutator between electric fields and holonomies in
quantum geometry. Just as V̂ (µ) are unitary but p̂ does not exist, holonomies are uni-
tarily represented but the connection operator does not exist. Like x̂, the electric flux
operators are unbounded self-adjoint operators with discrete eigenvalues. (However,
in the case of electric fluxes, the set of eigenvalues is a discrete subset of the real line,
equipped with its standard topology.) It is this discreteness that leads to the loss of
continuum in the quantum Riemannian geometry which in turn ‘justifies’ the absence
of the standard momentum operator −i~ d/dx in the polymer particle example.

Note also that the analogy between the x̂ operators in the polymer particle and
Schrödinger frameworks and the flux operators in quantum geometry provides us with
an example of how concepts that are distinct in the full theory coalesce in the toy
model. In quantum geometry, the flux operator corresponds to an integration of the
electric field on a two-dimensional surface; this operator is not well defined in Fock
space, as we have mentioned. Conversely, the three-dimensionally smeared electric
field operators of Fock space are not well defined as operators in HPoly. There are
therefore two distinct notions of electric field operators between the two frameworks.
In the polymer particle and Schrödinger representations, however, the x̂ operator has
the same action on each space.

3. Recall that in quantum geometry, elements of HPoly can be represented as functions
on a compact space A, the quantum configuration space obtained by a suitable com-
pletion of the classical configuration space A. What is the situation with respect to
HPoly? Now, the classical configuration space is just the real line R (of momenta k).
The quantum configuration space turns out to be the Bohr compactification bR of
R (discovered and analyzed by the mathematician Harald Bohr, Niels’ brother). All
quantum states are represented by square integrable functions on bR with respect to
a natural measure µo; HPoly = L2(bR, dµo). Finally, as in quantum geometry, bR is
also the Gel’fand spectrum of the Abelian C?-algebra of ‘holonomy’ operators V (µ).
(For details on the Bohr compactification, see [46, 47].)
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2.4 Relationship between the Schrödinger and polymer parti-
cle descriptions: kinematics

Elements of the polymer Hilbert space HPoly consist of discrete sums

f(k) =
∑

j

fj exp (−ixjk)

of plane waves. Therefore, it follows that the intersection of HPoly with HSch consists just
of the zero element. While each provides an irreducible, unitary representation of the Weyl-
Heisenberg algebra, the two Hilbert spaces are ‘orthogonal’. Therefore, one might first think
that the standard physics contained in the Schrödinger representation cannot be recovered
from the polymer framework. We will now show that this is not the case.

As explained in the introduction, the key idea is to focus on Cyl?, the algebraic dual5 of
Cyl. Since Cyl ⊂ HPoly, it follows that we have:

Cyl ⊂ HPoly ⊂ Cyl? .

We will denote the elements of Cyl? by upper case letters, e.g., (Ψ|, and their action on
elements |f〉 of Cyl simply with a juxtaposition, e.g. (Ψ| maps |f〉 to the complex number
(Ψ|f〉.

The Weyl-Heisenberg algebra has a well-defined action on Cyl, and hence by duality, on
Cyl?: [

(Ψ|Ŵ (ζ)
]
|f〉 = (Ψ|

[
(Ŵ (ζ))†|f〉

]
(2.4.1)

However, this representation is far from being irreducible. In particular, HPoly is contained
in Cyl? and provides us with an irreducible representation. More importantly for what
follows, the Schwartz space S, a dense subspace of HSch consisting of smooth functions on R
which, together with all their derivatives fall off faster than any inverse polynomial in x, is
also embedded in Cyl?. (This follows from the two technical conditions in the definition of
a graph and, of course, the definition of Cyl.) Since all coherent states belong to S and they
form an over-complete basis in HSch, Schrödinger quantum mechanics is somehow encoded
in Cyl?. Our task is to analyze this encoding.

We will often use the fact that S is stable under Fourier transform; i.e., ψ(x) ∈ S if and
only if its Fourier transform ψ̃(k) ∈ S. The embedding of S in Cyl? is given just by the

5As in quantum geometry, we are taking the algebraic dual just for simplicity. When the framework is
further developed, one would introduce an appropriate topology on Cyl (which is finer than that of HPoly)
and define Cyl? as the space of linear functions on Cyl which are continuous in this topology. The algebraic
dual is ‘too large’ but this fact is not relevant here: since our main goal is to represent all semi-classical
Schrödinger states by elements of Cyl? we can just ignore the fact that the algebraic dual also contains other
‘unwanted’ states.
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Schrödinger scalar product: each element ψ ∈ S defines an element (Ψ| of Cyl? via

(Ψ|

∑
j

fj |e−ixjk〉

 =
1√
2π

∑
j

fj

∫
dk ˜̄ψ(k)e−ixjk =

∑
j

fj ψ̄(xj) (2.4.2)

where ψ̃(k) is the Fourier transform of ψ(x). Thus, although elements of Cyl fail to be
normalizable in the Schrödinger Hilbert space, their Schrödinger inner product with elements
of S is well-defined and naturally leads to a linear map from Cyl to C.

Can we exploit the fact that S is embedded in Cyl? to extract the physics of Schrödinger
quantum mechanics from Cyl?? At first sight, there appears to be a key problem: Cyl? is not
equipped with a scalar product. We could restrict ourselves just to S ⊂ Cyl? and introduce
on it the Schrödinger scalar product by hand. But this would just be an unnecessarily
complicated way of arriving at the Schrödinger representation. More importantly, in non-
perturbative quantum gravity, we do not have the analog of the Schrödinger Hilbert space
and, furthermore, indications are that its perturbative substitute, the graviton Fock space,
is ‘too small’. Therefore, for our polymer particle toy model to be an effective tool, we
should not restrict ourselves to a ‘small’ subspace of it such as S. Rather, we should
work with the full Cyl? and use only that structure which is naturally available on it.
Thus, our challenge is to show that standard quantum physics can be extracted from Cyl?

directly, without making an appeal to the Schrödinger Hilbert space. Known facts about
the Schrödinger representation can be used only to motivate various constructions, but not
in the constructions themselves.

In quantum gravity, a principal open problem is that of the existence of semi-classical
states. Therefore, in the rest of this chapter we will focus on the problem of isolating elements
of Cyl? which correspond to the standard coherent states of Schrödinger quantum mechanics
and extracting their physics using only those structures which are naturally available in the
polymer framework. Hamiltonians and their various properties will be discussed in the next
chapter.

2.4.1 Isolating semi-classical states

Fix a classical state, i.e., a point (xo, po) in the classical phase space. In Schrödinger quan-
tum mechanics, the corresponding semi-classical states are generally represented by coherent
states peaked at this point. In these states, the product of uncertainties in the basic ob-
servables x̂ and p̂ is minimized, (∆ x̂) (∆ p̂) = ~/2, and furthermore, in suitable units, these
uncertainties are distributed ‘equally’ among the two observables. To obtain a specific coher-
ent state, one has to specify these units, or, in physical terms, ‘tolerance’—the uncertainties
in x and p we can tolerate. Let us therefore introduce a length scale d and ask that the
uncertainty ∆x in x̂ be d/

√
2 and that in p̂ be ~/(

√
2 d). (In the case of an harmonic



25

oscillator, d is generally taken to be
√

~/mω. However, in this section on kinematics, it is
not necessary to restrict ourselves to a specific system.) Set

ζo =
1√
2d

(
xo + i

d2

~
po

)
=

1√
2d

(
xo + ikod

2
)

where, from now on, we will use ko := po/~. Then, the standard coherent state ψζo is
generally obtained by solving the eigenvalue equation

â ψζo(x) ≡
1√
2 d

(
x̂+ i

d2

~
p̂

)
ψζo(x) = ζo ψo(x), (2.4.3)

whose solution is
ψζo(x) = c e−

(x−xo)2

2d2 eiko(x−xo), (2.4.4)

where â is the annihilation operator and c is a normalization constant. Since ψζo ∈ S, it
canonically defines an element Ψζo of Cyl?. Our first task is to isolate this Ψζo using just
the polymer framework. The second task, that of analyzing its properties and specifying the
sense in which it is a semi-classical state also from the polymer perspective, will be taken
up in the next subsection.

Now, in the polymer framework, the operator p̂ fails to be well-defined. Therefore, we
cannot introduce the creation and annihilation operators used in the above construction.
However, recall that the operators Û(λ), V̂ (µ) and x̂ are well-defined on Cyl and hence
also on Cyl?. We can therefore reformulate (2.4.3) by an equivalent eigenvalue equation in
terms of these operators. Since the equation is now to be imposed on Cyl?, we have to
replace the annihilation operator â by its adjoint, â†, the creation operator. Now, using the
Baker-Hausdorff-Campbell identity in HSch, we have:

e
√

2αâ† = e
α
d

x̂ V (−αd) e−
α2

2 .

where the factor of
√

2 is introduced just for technical simplification and α is an arbitrary
real number. Note that the operators on the right side are all well-defined on Cyl?.

Collecting these ideas motivated by results in the Schrödinger representation, we are
now led to seek the analog of coherent states in Cyl? by solving the eigenvalue equation:

(Ψζo |
[
e

α
d

x̂ V (−αd) e−
α2

2

]
= e

√
2α ζ̄o (Ψζo |. (2.4.5)

for all real numbers α. Note that, to capture the full content of the original eigenvalue
equation (2.4.3), it is essential to allow arbitrary α in the exponentiated version (2.4.5).

To obtain the solution, it is convenient to use a basis in Cyl?. Recall first that any
element f of Cyl can be expanded out as a discrete sum, f =

∑
j fj |xj〉, where the fj are
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complex coefficients and the xj real numbers. Therefore, the action of any element (Ψ| of
Cyl? is completely determined by the action (Ψ|x〉 = Ψ(x) of (Ψ| on all basis vectors |x〉.
That is, (Ψ| can be expanded as a continuous sum

(Ψ| =
∑

x

Ψ(x)(x| (2.4.6)

where the dual basis (x| in Cyl?, labeled by real numbers x, is defined in an obvious fashion:

(x|xj〉 = δx,xj .

Note that, although there is a continuous sum in (2.4.6), when operating on any element of
Cyl only a countable number of terms are non-zero.

Using (2.4.6) in (2.4.5), it is straightforward to show that the coefficients Ψζo(x) must
satisfy:

Ψζo(x+ αd) = exp
[√

2αζ̄o −
αx

d
+
α2

2

]
Ψ(x) (2.4.7)

for all real numbers α. It is easy to verify that this equation admits a solution which is
unique up to a normalization factor. The general solution is given by:

(Ψζo | = c̄
∑

x

[
e−

(x−xo)2

2d2 e−iko(x−xo)

]
(x| . (2.4.8)

As we would desire, the coefficients in this expansion are the same as the expression (2.4.4)
of the coherent state wave function in the Schrödinger representation. Note that, to obtain
a unique solution (up to a multiplicative constant), it is essential to impose (2.4.7) for all
real numbers α.

To summarize, by using the standard procedure in the Schrödinger representation as
motivation, we wrote down an eigenvalue equation directly in Cyl? to single out a candidate
semi-classical state (Ψζo | peaked at a generic point (xo, po) of the classical phase space.
Since this is a linear equation, one cannot hope to restrict the overall normalization of the
solution. Up to this trivial ambiguity, however, the solution is unique. We will refer to it
as a polymer coherent state. As one might have hoped, this polymer coherent state is just
the element (Ψζo | of Cyl? defined by the standard coherent state ψζo ∈ S in HSch. Note,
though, that this is not an assumption, but the result of a self-contained calculation that
was carried out entirely in Cyl?. However, at this stage, it is not a priori obvious that (Ψζo |
is a semi-classical state from the polymer perspective, especially because we no longer have
access to the Schrödinger scalar product. This issue will be discussed in the next subsection.
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2.4.2 Shadow states

For simplicity, in this subsection we will restrict ourselves to the candidate semi-classical
state (Ψo| corresponding to ζ = 0. (The general case is completely analogous and discussed
in subsection 2.4.3.) Our task is to show that this state is sharply peaked at x=0 and p=0
using only the polymer framework. However, right at the outset we encounter two difficulties.
Firstly, the operator p̂ is not defined in the polymer framework. We will therefore have to
define a ‘fundamental operator’ on HPoly which is approximated by p̂ of the Schrödinger
representation. The second difficulty is that, since there is no inner product on Cyl?, the
required expectation values cannot be defined on it. To overcome this obstacle, we will use
graphs as ‘probes’ to extract physical information from elements (Ψ| of Cyl?. More precisely,
we will ‘project’ each (Ψ| to an element |Ψshad

γ 〉 in Cylγ and analyze properties of (Ψ| in
terms of its shadows |Ψshad

γ 〉. Each shadow captures only a part of the information contained
in our state, but the collection of shadows can be used to determine the properties of the
full state in Cyl?.

Let us begin by defining the required projection P̂γ from Cyl? to Cylγ :

(Ψ| P̂γ :=
∑
xj∈γ

Ψ(xj) |xj〉 ≡ |Ψshad
γ 〉 . (2.4.9)

The ket |Ψshad
γ 〉 defines the shadow cast by the element (Ψ| of Cyl? on the graph γ in the

sense that
(Ψ|fγ〉 = 〈Ψshad

γ | fγ〉

where the left side is the result of the action of an element of Cyl? on an arbitrary element
fγ of Cylγ and the right side is the scalar product on Cylγ . Our task is to analyze properties
of the shadows

|Ψshad
o,γ 〉 := (Ψo| P̂γ .

of our candidate semi-classical state. The essential idea is to say that (Ψo| is semi-classical
if physical observables of interest have expected mean values with small uncertainties in its
shadows |Ψshad

o,γ 〉 on sufficiently refined graphs γ.
To make this notion precise, we need to select: i) A suitable family of graphs; ii) a class of

observables of interest; and, iii) acceptable ‘tolerances’ for mean-values and uncertainties of
these observables. We will restrict ourselves to shadows on regular lattices 6 with sufficiently
small lattice spacing (as discussed below). For definiteness, as in Schrödinger quantum
mechanics, the class C of observables of interest will consist just of position and momentum

6Quantum geometry considerations imply that, to probe semi-classicality, we should only use those graphs
in which the number of points in any macroscopic interval is proportional to the length of the interval.
Regular lattices offer the simplest way to achieve this. A priori one may be concerned that this is ‘too small
a class’. But the results of this section show that it suffices.
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operators. Tolerances τ will be determined by the physical parameters of the system under
consideration (i.e., the length scale d of subsection 2.4.1).

We will say that a state (Ψ| ∈ Cyl? is semi-classical with respect to C and peaked at
a point (x, p) of the classical phase space, if within specified tolerances τ , the ‘expectation
values’ of any operator Â ∈ C equals the classical value A(x, p) and the fluctuations are
small; i.e., if

(Ψ|Â|Ψshad
γ 〉

‖Ψshad
γ ‖2

= A(x, p)(1 + τ
(1)
A ) and

(Ψ|Â2|Ψshad
γ 〉

‖Ψshad
γ ‖2

−

(
(Ψ|Â|Ψshad

γ 〉
‖Ψshad

γ ‖2

)2

≤ τ
(2)
A (2.4.10)

for all sufficiently refined graphs γ. Here ‖f‖ is the norm of the state |f〉 in HPoly, and τ (i)
A

are the tolerances assigned to the observable A. The meaning of the equation is clearer if the
operators are thought as acting on the candidate semi-classical state (Ψ| in Cyl? by duality.
Thus, in the first equality, the ‘expectation value’ of Â in the candidate semi-classical state
(ψ| is evaluated by the action of (Ψ|Â (∈ Cyl?) on the shadow |Ψshad

γ 〉 of (Ψ| on the graph
γ. If the action of the operator Â leaves Cylγ invariant, as one might hope, this ‘expectation
value’ reduces to the more familiar expression 〈Ψshad

γ |Â|Ψshad
γ 〉. However, for more general

operators, the two expressions do not agree and (Ψ|Â|Ψshad
γ 〉 turns out to be the better

measure of the expectation value.
Let us then work with infinite regular lattices with spacing `, where ` is chosen to be

sufficiently small (see below). The shadow of our candidate semi-classical state (Ψo| on the
regular graph is given by:

|Ψshad
o,` 〉 = c

∑
n∈Z

e−
n2`2

2d2 |n`〉 , (2.4.11)

where c is an arbitrary constant. We can now compute the expectation values and fluctua-
tions of various operators in detail and examine if the state can be regarded as semi-classical.
On general grounds, one would hope to obtain good agreement with the standard coherent
state of Schrödinger quantum mechanics provided the lattice spacing ` is much smaller than
the length scale d that defines our tolerance. We will show that, although there are sub-
tleties, this expectation is borne out. However, let us first pause to examine whether this
requirement is physically reasonable. As an example, consider the vibrational oscillations
of a carbon monoxide molecule. These are well described by a harmonic oscillator with
parameters

m ≈ 10−26 kg and ω ≈ 1015 Hz

The textbook treatment of the harmonic oscillator implies that we cannot require the toler-
ance d for x̂ to be smaller than

dmin =

√
~
mω

≈ 10−12 m ;
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if we did, the resulting state would spread out quickly under quantum evolution. On the
other hand, since no evidence of spatial discreteness has been observed at particle accel-
erators, the quantum geometry viewpoint requires us to choose ` < 10−19m, and we may
even wish to move ` all the way down to the Planck scale (`p = 1.6 × 10−35 m). Thus, our
assumption that `� d is well justified. Working in this regime, we will now show that the
quantities computed using (2.4.11) agree to leading order with the standard Schrödinger
coherent state. The corrections are of order `2/d2 < 10−14 and, furthermore, appear in
the regime in which Schrödinger quantum mechanics is inapplicable due to, e.g., relativistic
effects.

Let us begin with the norm of the shadow of the polymer coherent state:

〈Ψshad
o,` |Ψshad

o,` 〉 = |c|2
∞∑

n=−∞
e−

n2`2

d2 . (2.4.12)

Here, we have used the fact that 〈xi |xj〉 = δxi,xj to simplify the double sum to a single one.
Now, since ` � d, the exponential on the right hand side of (2.4.12) decays very slowly,
whence we can not estimate the norm by keeping just a few terms in the sum. Fortunately,
however, we can use the Poisson re-summation formula:

∑
n

g(x+ n) =
∞∑

n=−∞
e2πi x n

∫ ∞

−∞
g(y)e−2πi y ndy , (2.4.13)

for all functions g(y) which are suitably well behaved for the sums to converge. This re-
summation will allow us to replace the slowly convergent sum in (2.4.12) by a rapidly
convergent one; it is an important technique that we shall use frequently. We will take

g(y) = e−
y2`2

d2 and x = 0 .

Then it is straightforward to calculate

〈Ψshad
o,` |Ψshad

o,` 〉 = |c|2
√
πd

`

∞∑
n=−∞

e−
π2n2d2

`2 ≈ |c|2
√
πd

`

(
1 + 2e−

π2d2

`2

)
, (2.4.14)

where we have used (d/`) � 1 to truncate the series after the second term.
Next we turn to the expectation value of and fluctuations in x̂. For semi-classicality,

the expectation value should be close to zero and the fluctuations of the order d/
√

2. For
expectation values, we obtain

(Ψo|x̂|Ψshad
o,` 〉 = |c|2

∑
n

(n`) e−
n2`2

d2 = 0 , (2.4.15)
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due to antisymmetry in n. This result agrees exactly with that obtained from the Schrödinger
coherent state. Let us turn to the calculation of fluctuations. We have

(Ψo|x̂2|Ψshad
o,` 〉 = |c|2

∑
n

(n`)2 e−
n2`2

d2

= |c|2
√
πd3

2`

∑
n

e−
π2n2d2

`2

(
1− 2π2n2d2

`2

)
, (2.4.16)

where we have once again made use of the Poisson re-summation formula. By combining
the results of (2.4.16) and (2.4.14), we can obtain the fluctuations in x̂,

(∆x)2 :=
(Ψo|x̂2|Ψshad

o,` 〉
‖Ψshad

o,` ‖2
−

(
(Ψo|x̂|Ψshad

o,` 〉
‖Ψshad

o,` ‖2

)2

≈ d2

2

(
1− 4π2d2

`2
e−

π2d2

`2

)
, (2.4.17)

where we have made use of the fact that the expectation value of x̂ is zero. Hence, we see
that the fluctuations in x̂ satisfy our ‘tolerance’ requirement. Indeed, to leading order, they
agree with the those in the standard coherent states of the Schrödinger framework and the
sub-leading terms are extremely small, going to zero as `/d tends to zero. Interestingly,
these corrections actually decrease the uncertainty in x for the discrete case.

Thus, we see that our candidate semi-classical state (Ψo| is indeed sharply peaked at
x = 0. What about the momentum? As mentioned above, there is no natural analog of
the Schrödinger momentum operator p̂ on HPoly. Thus, the viewpoint is that the standard
p̂ operator is a ‘low energy’ construct. There are several operators in the ‘fundamental
description’ whose action on ‘low lying states’ is approximated by p̂. Here, we will choose one
and test for semi-classicality of (Ψo|. As one might hope, the difference between candidate
choices is manifest only at such high energies that the Schrödinger quantum mechanics is
inapplicable there.

To define an analog of the Schrödinger momentum operator, we will use a standard
strategy from lattice gauge theories. We first note that, classically, if kµ is small then we
can expand exp(−ikµ) as

exp(−ikµ) = 1− ikµ− k2µ2

2
+ · · · (2.4.18)

whence
exp(−ikµ)− exp(ikµ)

−2iµ
= k +O(k2µ) . (2.4.19)

In quantum theory, then, it seems natural to define the analog of the momentum operator
in a similar way. Choose a sufficiently small value µo of µ (with ` ≤ µo � d) and define the
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momentum operator on HPoly as p̂ = ~K̂µo , with

K̂µo :=
i

2µo

(
V̂ (µo)− V̂ (−µo)

)
. (2.4.20)

(The simpler definition K̂µo = (i/2µo)(V̂ (µo) − 1) is not viable because this operator fails
to be self-adjoint.) With this definition in hand, let us examine the expectation value and
fluctuations in K̂µo . (Ψ| will be semi-classical also for momentum if the expectation value
of K̂µo is close to zero and the fluctuation is of the order 1/

√
2d.

Now, a direct calculation in the polymer Hilbert space yields

〈V̂ (µ)〉 :=
(Ψo|V̂ (µ)|Ψshad

o,` 〉
‖Ψshad

o,` ‖2
≈ e−

µ2

4d2

(
1 + 2 e−

π2d2

`2
[
cos
(πµ
`

)
− 1
])

, (2.4.21)

for any value of µ. Using this result, it is straightforward to show that

〈K̂µo〉 = 0 (2.4.22)

because of the antisymmetry between V̂ (µo) and V̂ (−µo) in our definition (2.4.20). Next,
let us analyze the fluctuations

〈K̂2
µo
〉 =

1
4µo

2

(
2− 〈V̂ (2µo)〉 − 〈V̂ (−2µo)〉

)
. (2.4.23)

Substituting µ = ±2µo in the above expression (2.4.21), we obtain

〈K̂2
µo
〉 ≈ 1

2µo
2

[
1− e−

µo
2

d2

]
≈ 1

2d2

[
1−

(
µo

2

2d2

)]
, (2.4.24)

where we have used the fact µo � d to expand in powers of (µo/d) in the last step. Recalling
that the expectation value of K̂ in the state |Ψ`

o〉 is zero, we obtain the fluctuations in K̂ as

(∆Kµo)
2 ≈ 1

2d2

[
1−

(
µo

2

2d2

)]
. (2.4.25)

Since the approximate momentum operator is given by ~K̂µo , we conclude that the state is
sharply peaked at p = 0 and the fluctuations are within the specified tolerance.

Finally, collecting the results for ∆x and ∆ k, we obtain the uncertainty relations for
the shadow of the polymer semi-classical state:

(∆x)2(∆Kµo)
2 =

1
4

[
1−

(
µo

2

2d2

)
+O

(
µo

4

d4

)]
. (2.4.26)

Note that the corrections to the standard uncertainty relations at order (µo/d)2 decrease
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the uncertainty. This can occur because the commutator between the position and the
approximate momentum operator is not simply a multiple of identity. Such modifications
of the uncertainty relations have also been obtained in string theory. Our discussion shows
that the effect is rather generic.

To summarize, in subsection 2.4.1, we found candidate semi-classical states (Ψζo | in
Cyl? working entirely in the polymer particle framework. In this sub-section, we showed
that the polymer coherent state (Ψo| is semi-classical in the polymer sense: its shadows
on sufficiently refined lattices are sharply peaked at the point (x=0, p=0) of the classical
phase space. Furthermore, the fluctuations in x and p are essentially the same as those in
the Schrödinger coherent state ψo of (2.4.4). There are deviations, but in the regime of
applicability of Schrödinger quantum mechanics, they are too small to violate experimental
bounds.

2.4.3 General coherent states

Let us now analyze the properties of general polymer coherent states (Ψζ | with

ζ =
1√
2d

(
x+ id2k

)
.

Calculations of expectation values and fluctuations proceed in a very similar manner to those
described above for (Ψo|. (The only difference arises from the fact that we may not have
a point in our graph at the position x. However, this affects only the sub-leading terms.)
Therefore, we will simply state the final results:

1. The norm of the state is given by

〈Ψshad
ζ,` |Ψshad

ζ,` 〉 = |c|2
√
πd

`

(
1 +O

(
e−

π2d2

`2

))
. (2.4.27)

2. The expectation value of the x̂ operator is

〈x̂〉 :=
(Ψζ | x̂ |Ψshad

ζ,` 〉
‖Ψshad

ζ,` ‖2
= x

[
1 +O

(
e−

π2d2

`2

)]
. (2.4.28)

Thus, the expectation value of position is x within the tolerance τ (1)
x = e−

π2d2

`2 .

3. The fluctuation in x is

(∆x)2 =
d2

2

[
1 +O

(
e−

π2d2

`2

)]
. (2.4.29)

So, the leading term, d/
√

2, in the fluctuation in x is the same as in the Schrödinger
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coherent states. Also, the sub-leading terms are independent of ζ, i.e., are the same
for all polymer coherent states.

4. One can evaluate the K̂µo operator on an arbitrary coherent state. The result is,

〈K̂µo〉 = k

(
1 +O(k2µ2

o) +O
(
`2

d2

))
. (2.4.30)

Thus, we now encounter a new situation. The tolerance τ (1)
Kµo

is acceptably small only if
kµo � 1. In this case, we obtain an uncertainty relation similar to the one in (2.4.26).
However, for kµo ∼ 1 our states do not satisfy the semi-classicality requirement. But
note that the non-relativistic approximation —and hence the motivation for including
K̂µo in the list C of observables— breaks down long before one reaches such high
momenta. (In the case of the CO molecule, for example, this would correspond to the
energy level n ≥ 1014.)

To summarize, we have introduced polymer coherent states (Ψζ | and investigated their
properties using their shadows |Ψ`

ζ〉. Given a tolerance d for x̂, an uniform graph can serve
as a suitable ‘probe’ provided the lattice spacing ` is chosen so that `/d � 1. As far as
semi-classical states are concerned, systems which can be treated adequately within non-
relativistic quantum mechanics can also be well-described by the polymer particle framework,
without any reference to the Schrödinger Hilbert space.

Remark : Recall that the normalized Schrödinger coherent states |ψζ〉 form an overcom-
plete basis in HSch providing a convenient resolution of the identity:∫

dk

∫
dx |ψζ〉〈ψζ | = I . (2.4.31)

Does a similar result hold for the shadow coherent states |Ψshad
ζ,` 〉 in the Hilbert space H`

Poly

restricted to the graph? A priori, it would appear that there is a potential problem. Since

|Ψshad
ζ,` 〉 = c

∑
n

(
e(n`−x)2 eik(n`−x)

)
|n`〉

where ζ = 1√
2d

(x+ id2k), it follows that the projection operators

Pζ :=
|Ψshad

ζ,` 〉〈Ψshad
ζ,` |

‖Ψshad
ζ,` ‖2

defined by the shadow coherent states are periodic: Pζ = Pζ′ where k′ = k + (2πN)/`.
Thus, while the label k took values on the entire real line in (2.4.31), with shadow coherent
states in H`

Poly, it can only take values in [−π/`, π/`]. Therefore, one might be concerned
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that, because of the ‘effective momentum cut-off’ we may not have ‘sufficient’ coherent
states for the standard over-completeness to hold. However, it turns out that this concern
is misplaced. H`

Poly is sufficiently small because of the restriction to a fixed lattice for an
exact over-completeness of the desired type to hold [48, 49] :∫ π/`

−π/`

dk

2π

∫ ∞

−∞
dxPζ =

∑
n

|n`〉 〈n`| = I` , (2.4.32)

where I` is the identity operator on H`
Poly.

2.5 Discussion

We began this chapter by raising three conceptual issues of a rather general nature that
arise in relating background independent approaches to quantum gravity with low energy
physics: i) What is the precise sense in which semi-classical states arise in the full theory? ii)
Is the fundamental Planck scale theory, with an in-built fundamental discreteness, capable of
describing also the low energy physics rooted in the continuum, or, does it only describe an
entirely distinct phase? iii) Can one hope to probe semi-classical issues without a canonical
inner product on the space of physical states Cyl?? To probe these issues in a technically
simpler context, we introduced the ‘polymer framework’ in a toy model—a non-relativistic
particle—where the same questions arise naturally. In the context of the model, we found
encouraging answers to all three questions: although at first the polymer description seems
far removed from the standard Schrödinger one, the second can be recovered from the former
in detail.

Specifically, we have, so far in this thesis, given a criterion to select the coherent states
entirely within the polymer framework and, using their shadows, demonstrate in detail
that they are sharply peaked about the corresponding classical states. Thus, at the level of
kinematics, we have a concrete mathematical model, inspired by loop quantum gravity, which
realizes the idea that a fundamental theory can be radically different from the continuum
theory both conceptually and technically and yet reproduce the familiar low energy results.

While it may seem ‘obvious’ that calculations on sufficiently refined graphs should re-
produce the continuum answers, even at the kinematical level that we have addressed in this
chapter we have seen that this is a subtle point. A priori, it is not at all obvious that any
calculation to select semi-classical states (Ψ| in Cyl?, carried out entirely within the polymer
framework, will reproduce the standard coherent states. One could indeed be working in
an inequivalent ‘phase’ of the theory and thus find that there are no semi-classical states
at all or discover states which are semi-classical in a certain well-defined sense but distinct
from the standard coherent states (as in, e.g., [30]). The fact that the Schrödinger semi-
classical states can be recovered in the polymer framework is thus non-trivial and suggests
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how standard low energy physics could emerge from the polymer framework.
To be confident of this, however, we must also investigate dynamical questions. If it

should happen that our semi-classical states, though kinematically well suited for low-energy
physics, quickly evolve away from semi-classicality, or evolve in a manner that is radically
different from the standard low-energy behavior, then we should be forced to conclude that
the low-energy behavior of this model is in fact not compatible with observed physics.

To actually perform such evolutions is a complicated matter. We shall make steps toward
this in chapter 4, in the somewhat more limited context of an effective classical description
of the quantum dynamics. However, even before we tackle this there is a more tractable
approach to answering dynamical questions. That is to examine the Hamiltonians for both
the polymer particle and Schrödinger representations, and compare their eigenstates and
eigenvalues. We turn therefore to that question in the next chapter.
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Chapter 3

Dynamics of the polymer particle: Hamiltonians and

eigenstates

We saw in the last chapter that the coherent states in Cyl? are indeed kinematically semi-
classical: they have expectation values peaked around the corresponding classical values
with small fluctuations. This allowed us to conclude that, kinematically, the low-energy
behavior of the polymer particle representation is experimentally indistinguishable from that
of the standard Schrödinger representation, within the regime of validity of non-relativistic
quantum mechanics.

We now turn in this chapter to a comparison of the dynamics of the two representations.
Since we again wish our simple model to parallel the more complicated situation in quantum
geometry, to define the kinetic energy term in the Hamiltonian, we mimic the procedure used
to define the Hamiltonian constraint operator in quantum general relativity. However, in the
toy model, this requires the introduction of a new structure by hand, namely a fundamental
length scale, which can be regarded as descending from an underlying quantum geometry.
The resulting dynamics is indistinguishable from the standard Schrödinger mechanics in
the domain of applicability of the non-relativistic approximation. Deviations arise only at
energies which are sufficiently high to probe the quantum geometry scale. In particular,
shadows of the Schrödinger energy eigenstates are excellent approximations to the ‘more
fundamental’ polymer eigenstates.

3.1 Motivation and framework

Since a secondary goal of this chapter and the previous is to illustrate strategies used in loop
quantum gravity, let us begin by recalling the situation with the Hamiltonian constraint of
quantum general relativity [8–11]. The main term in the classical constraint is of the form
TrEaEbFab, where, as explained in section 2.2, the triad fields E are the analogs of x
in the polymer particle example and Fab is the curvature of the gravitational connection
A, the analog of k. While E’s and holonomies of A are well-defined operators on the
quantum geometry Hilbert space, connections are not. Therefore, Fab has to be expressed
in terms of holonomies. Given a spin network state, at each vertex, one introduces new
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edges, creating ‘small’ loops and expresses Fab in terms of holonomies along these small
loops (taking care of appropriate ‘area factors’). The resulting operator initially depends on
the choice these new edges. However, while acting on diffeomorphism invariant states (in
Cyl?), the dependence on the details of these edges drops out. Thus, on states of physical
interest, the final Hamiltonian constraint does not make explicit reference to details such as
the lengths and ‘positions’ of the new edges.

Let us now turn to the polymer particle. Now, the classical Hamiltonian is of the form

H =
p2

2m
+ V(x) , (3.1.1)

where V(x) is a potential. Since the operator x̂ is well-defined in the polymer framework, the
main technical problem is that of defining the operator analog of p2. Thus the situation is
analogous to that with the Hamiltonian constraint, described above. Again, we will need to
introduce some extra structure (which is invisible classically), this time to define the analog
of p2 in terms of ‘holonomies’ V (µ) of the ‘connection’ k on the full Hilbert space HPoly.
From a mathematical viewpoint, the obvious choice is an ‘elementary length’ µo. Physically,
this is motivated by the expectation that such a scale will be provided by a deeper theory
(such as quantum geometry) through an underlying discreteness. From now on, we will
adopt the viewpoint that this discreteness is fundamental, whence observationally only those
V (µ) are relevant for which µ = Nµo, for an integer N .

Given µo, we will set

Ĥ =
~2

2m
K̂2

µo
+ V(x̂) where K̂2

µo
=

1
µ2

o

(2− V (µo)− V (−µo)) (3.1.2)

Unfortunately, in this example, we do not have a useful analog of the diffeomorphism invari-
ance of loop quantum gravity which can help remove the dependence on this extra structure.
Therefore, the final Hamiltonian operator on HPoly will continue to depend on µo; the refer-
ence to the additional structure does not go away. This is simply a consequence of the fact
that a toy model can not mimic all aspects of the richer, more complicated theory, whence,
to carry out constructions which are analogous to those in the full theory, certain structures
have to be introduced ‘externally’. However, we will see that, if one chooses the discreteness
scale µo < 10−19m as in Section 2.4.2, in the domain of validity of non-relativistic quantum
mechanics, predictions derived from (3.1.2) are indistinguishable from those of Schrödinger
quantum mechanics and therefore in agreement with experiments. In contrast to results of
section 2.4, this holds for fully quantum mechanical results, not just the semi-classical ones.
At first sight, this may seem obvious. However, the detailed analysis will reveal that certain
subtleties arise and have to be handled carefully. These issues provide concrete hints for
the precise procedure required to compare the polymer and continuum theories in the much
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more complicated context of quantum geometry. Thus, while the toy model is constructed
to mimic the situation in the full theory, its concrete results, in turn, provide guidance for
the full theory.

Since the key difficulties in the polymer description involve the kinetic term, to illustrate
the similarity and differences between the polymer and Schrödinger dynamics it suffices to
work with a fixed potential. To facilitate the detailed comparison, in this chapter we will
focus on the harmonic oscillator potential. We shall study another Hamiltonian—not of the
form p2/2m + V(x)—in the next chapter when we consider the dynamics of loop quantum
cosmology.

We close this section with two remarks:

1. In the semi-classical considerations of the last section, we had to find a ‘fundamen-
tal’ operator on HPoly which is the analog of the Schrödinger momentum operator.
Technically, the situation with the kinetic term in the Hamiltonian, discussed above,
is completely analogous. However, there is a conceptual difference: whereas the op-
erator K̂µo was used only for semi-classical purposes, Ĥ is to govern ‘fundamental
dynamics’ on HPoly. Therefore, it has to be constructed and analyzed more care-
fully. In particular, K̂2

µo
6= K̂2

µo
; we will see that the latter choice gives an unwanted

degeneracy in the eigenvalues of Ĥ.

2. Since the final Hamiltonian now depends on µo, in the polymer description, µo now
has a fundamental significance. This strengthens the viewpoint that the algebra of
physical observables is generated only by V̂ (Nµo) and x̂.

3.2 Eigenvalues and eigenstates of Ĥ in HPoly

Recall that a general element |Ψ〉 of HPoly can be expanded out as |Ψ〉 =
∑

x Ψ(x)|x〉 (where
Ψ(x) is non-zero only at a countable set of points). Therefore, the eigenvalue equation
Ĥ|Ψ〉 = E|Ψ〉 becomes a difference equation on the coefficients Ψ(x):

Ψ(x+ µo) + Ψ(x− µo) =
[
2− 2E

~ω
µ2

o

d2
+
x2

d2

µ2
o

d2

]
Ψ(x) . (3.2.1)

The form of this equation implies that a basis of solutions is given by states of the type

|Ψxo〉 =
∞∑

m=−∞
Ψ(m)

xo
|xo +mµo〉 ∈ Cylαxo ,
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where αxo is the regular lattice consisting of points xo + mµo with xo ∈ [0, µo). For these
states, the difference equation reduces to a recursion relation

Ψ(m+1)
xo

+ Ψ(m−1)
xo

=
[
2− 2E

~ω
µ2

o

d2
+

(xo +mµo)2

d2

µ2
o

d2

]
Ψ(m)

xo
. (3.2.2)

The full polymer Hilbert spaceHPoly can be decomposed as a direct sum of separable Hilbert
spaces Hxo

Poly,

HPoly =
⊕

xo∈[0,µo)

Hxo
Poly ,

and the above energy eigenstates belong to the sub-space Hxo
Poly of HPoly. Note that since

the observable algebra is now generated by x̂ and V̂ (Nµo), observables can not mix states
belonging to distinct Hxo

Poly; each of these Hilbert spaces is superselected. Hence, we can
focus on one at a time and find all eigenvalues and eigenstates of the Hamiltonian in it.

3.2.1 The case xo = 0

Let us consider the xo = 0 case first. If E is to be an eigenvalue of Ĥ, the coefficients Ψ(m)
0

must fall off sufficiently fast for |Ψ0〉 to be normalizable. It turns out that the simplest way
to get a control on this fall-off is to make a ‘Fourier transform’ and go to the momentum
representation. Recall from section 2.3.2 that for each real number k, there is an element
(k| of Cyl? defined by: (k|x〉 = e−ikx. Given any energy eigenstate |Ψ0〉 ∈ H0

Poly, we can
evaluate its ‘Fourier transform’

ψ(k) := (k|Ψ0〉 =
∞∑

m=−∞
Ψ(m)

0 e−ikmµo (3.2.3)

where k ∈ (− π
µo
, π

µo
); by construction ψ(k) is periodic in k with period 2π/µo. The eigenvalue

equation (3.2.2) now becomes

d2ψ0(k)
dk2

+ 2d2

(
E

~ω
+
d2

µ2
o

[
cos(kµo)− 1

])
ψ0(k) = 0 . (3.2.4)

Thus, the difference equation (3.2.1) in the position space becomes a differential equation in
the momentum space. Setting

φ :=
kµo + π

2
, h :=

4d2

µ2
o

, and b := h · 2E
~ω

, (3.2.5)

the equation simplifies to:

d2ψ0(φ)
dφ2

+
(
b− h2 cos2(φ)

)
ψ0(φ) = 0 . (3.2.6)
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This is precisely the well-studied Mathieu’s equation. From basic theory of differential
equations we conclude that (3.2.6) does admit solutions. However, since the Fourier trans-
forms (3.2.3) of states in the position representation are necessarily periodic, the question
is whether the solutions ψ0(φ) are periodic (with period π, in terms of the variable φ, as is
easily checked). If they are, we may take the inverse Fourier transform and recover a state
|Ψ0〉 ∈ H0

Poly; by Parseval’s theorem this state must be normalizable. Thus, the question

of whether ψ(m)
0 have appropriate fall-off reduces to whether solutions ψ0(φ) to Mathieu’s

equation are periodic.
We can now appeal to the general theory of ordinary differential equations with peri-

odic coefficients—specifically, Floquet’s theorem—to conclude that: i) there is a discrete
infinity of periodic solutions with the required period π; and ii) each of the corresponding
energy eigenvalues is non-degenerate. (See [50] for the general theory; [51] for application to
Mathieu’s equation. We also discuss this issue further in the next subsection, and [52] is a
comprehensive reference on Mathieu’s equation.) Let us denote the allowed eigenvalues by
E0,n and the corresponding eigenstates in H0

Poly by |Ψ0,n〉 =
∑

Ψ(m)
0,n |mµo〉. The question

now is how these eigenvalues and eigenstates are related to those of the Schrödinger theory.
By examining our definition of parameters in (3.2.5), we see that the ratio of µo/d in

which we are interested corresponds to very large values of h. We can then employ an
asymptotic formula [51] for the b coefficients:

b ∼ (2n+ 1)h− 2n2 + 2n+ 1
4

+O(h−1). (3.2.7)

By substituting this expansion back into our definition (3.2.5) of the b coefficients we obtain
the following expansion for the energy eigenvalues E0,n:

E0,n ∼ (2n+ 1)
~ω
2
− 2n2 + 2n+ 1

16

(µo

d

)2 ~ω
2

+O
(
µ4

o

d4

)
. (3.2.8)

Thus, in the limit µo/d → 0, the E0,n reduce to the Schrödinger eigenvalues, but for the
‘physical’ nonzero value of µo/d, there is a correction introduced by the ‘fundamental’ dis-
creteness. We see from this equation that the first correction to the eigenvalue is negative
and of order µ2

o/d
2. Using the very conservative value 10−19m of µo, for a carbon monoxide

molecule we conclude that these corrections are significant only when n ≈ 107, i.e., when
the vibrational energy of the oscillator is ≈ 10 MeV, or, in classical terms, the average vibra-
tional velocity is 1014 ms−1. Thus, while the corrections are conceptually important, in the
domain of validity of non-relativistic quantum mechanics they are too small to have been
observed.

Next, let us compare the eigenstate |Ψ0,n〉 with the shadow |Ψshad
0,n 〉 of the nth Schrödinger

eigenstate on the graph α0. Unfortunately, we cannot carry out this task analytically be-
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cause closed form expressions for the Mathieu functions are not available. Therefore, let us
calculate the norm of

|∆Ψ0,n〉 := |Ψshad
0,n 〉 − |Ψ0,n〉 (3.2.9)

numerically and study its behavior as a function of n and µo/d.
This turns out to be computationally feasible for small values of n and relatively large

µo/d. Let us begin with the ground state. Figure 3.1 shows a plot of this norm as a function
of `/d for the ground state, on a log-log scale. From the highly linear behavior we can infer
that the norm follows a power law, at least over the range of µo/d studied, and from the
least squares fit to the data in the figure we can estimate:

〈∆Ψ0,0 |∆Ψ0,0〉
1
2 ∼ 0.069

(µo

d

)1.10
. (3.2.10)

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

‖∆Ψ0,n‖

µo/d

×

×

×

×

×

×

Figure 3.1: Plot of the norm of |∆Ψ0,0〉 vs. the dimensionless ratio µo/d.

If we perform a similar analysis for the lowest few excited states, we will again see very
linear behavior on a log-log plot and it is therefore natural to study the coefficients mn and
tn of the least squares fits to these graphs. Thus, when mn and tn are defined as the best
fit values such that

1
2

log 〈∆Ψ0,n |∆Ψ0,n〉 ∼ mn log (µo/d) + tn (3.2.11)

then we observe the behavior that is shown in Figures 3.2 and 3.3.
We can see from these figures that mn scales linearly with n, and tn linearly with

ln (n+ 1). When we calculate least squares fits to mn as a function of n and tn as a function
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Figure 3.2: Plot of the coefficients mn vs. energy level number n.
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Figure 3.3: Plot of the coefficients tn vs. energy level number n+ 1
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of ln (n+ 1) we obtain

mn ∼ 0.0060n+ 1.099 (3.2.12)

tn ∼ 1.345 ln (n+ 1)− 2.692 (3.2.13)

Since the coefficient of n in the fit for mn is so small, we in fact assume that mn is roughly
constant with n. We can then infer that at least for 10−6 < (µo/d) < 1 and n ≤ 10,

〈∆Ψ0,n |∆Ψ0,n〉
1
2 ∼ (n+ 1)1.35

(µo

d

)1.10
. (3.2.14)

These numerical results together with the analytic knowledge that the difference equa-
tion (3.2.1) with which we began is itself a standard discretization of Hermite’s equation
strongly suggest that for n � 107, the exact eigenstates are experimentally indistinguish-
able from the shadows of the Schrödinger eigenstates on the graph α0. However, since this
evidence is not as mathematically clear-cut as other results of this chapter, we will examine
this issue from a different angle in sub-section 3.3.

3.2.2 General xo

Let us now consider the energy eigenstates in the Hilbert space Hxo for a general value of
xo ∈ (0, µ0). Now, the momentum wave function is given by

ψxo(k) := (k|Ψxo〉 =
∞∑

m=−∞
Ψ(m)

xo
e−ikxo e−ikmµo (3.2.15)

Thus the momentum space wave function ψxo(k) is no longer periodic in k but instead
satisfies:

ψxo

(
k +

2π
µo

)
= e−2πixo/µo ψxo (k) . (3.2.16)

The differential equation that an energy eigenstate must satisfy continues to be (3.2.4) and
using the same definitions (3.2.5) of our parameters we are again led to Mathieu’s equation
(3.2.6). Thus, the only difference between the xo = 0 and xo 6= 0 cases lies in the boundary
conditions that the solutions are to satisfy. Again, thanks to the very exhaustive literature
available on Mathieu’s equation [50–52], we conclude that: i) there is a discrete infinity
of solutions satisfying (3.2.16); ii) each of the corresponding energy eigenvalues is non-
degenerate; and iii) the eigenvalues are very close to those in the Schrödinger theory with
corrections which become O(1) only for energy levels corresponding to n ≈ 107.

Let us elaborate a little on the reasoning behind these statements. In so doing we closely
follow [52]. As we shall need a figure from that reference, we must introduce the notation
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of that reference as well. It considers Mathieu’s equation in the form

ψ′′ + (a− 2q cos (2φ))ψ = 0 (3.2.17)

so that the parameters a and q are related to our parameters b and h through:

a = b− 1
2
h2, q =

1
4
h2. (3.2.18)

In order to fully explain the case of general xo, we must back up somewhat and say
a little more about the case xo = 0. That case corresponds, in the terminology of [52],
to solutions of Mathieu’s equation of integral order. These are by definition solutions to
Mathieu’s equation with period either π or 2π. For a given value of q, there is, as we
have mentioned, a discrete infinity of values of a for which (3.2.17) has a (normalizable)
solution that is periodic with period π. In the limit q → 0, the eigenvalues a tend toward
m2 for integral m and the corresponding solutions tend toward either sin (mφ) or cos (mφ).
Reference [52] somewhat confusingly decides to call the corresponding eigenvalues of a either
am if the eigenfunction is even, reducing to cos (mφ) when q = 0, or bm if the eigenfunction
is odd and becomes sin (mφ) whenever q = 0. These bm should not be confused with b as
we have defined it in equations (3.2.5) and (3.2.6).

While it is true that am = bm = m2 when q = 0, for q > 0 this no longer holds, and the
am and bm are distinct. Asymptotically, however, am ≈ bm+1 in the limit where q → ∞.
At first sight this might seem to imply a double degeneracy of eigenfunctions; however,
it can be shown that only one of am, bm+1 corresponds to an eigenfunction periodic with
period π in φ; the other has period 2π. So as we stated in the previous subsection, there
is a one-to-one correspondence between the eigenvalues of the oscillator in the Schrödinger
representation and the eigenvalues in the polymer particle representation, with the corre-
sponding eigenvalues approaching one another as µo → 0. This is demonstrated graphically
in figure 3.4

Thus, we have so far fleshed out somewhat the behavior of solutions to Mathieu’s equa-
tion that are relevant when xo = 0, but we have still not addressed the behavior of solutions
for non-zero xo. We have, however, laid the necessary background. As noted above, we re-
quire solutions that have the boundary condition (3.2.16). In terms of the form of Mathieu’s
equation as given in equation (3.2.17) and in terms of the variable φ, this means that we
require

ψ(φ+ π) = e−2πixo/µoψ(φ) (3.2.19)

where we remind the reader that xo is constrained to lie in an interval of length µo.
Now, chapter 4 of [52] is concerned exclusively with the solution of Mathieu’s equation
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Figure 3.4: Characteristic values of a as a function of q for integral order solutions to
Mathieu’s equation (taken from [51], figure 20.1)
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subject to the condition
ψ(φ+ π) = eπλ ψ(φ) (3.2.20)

for some complex number λ. When λ has a nonzero real part, the resulting solution diverges
at infinity, and hence cannot be normalizable. These are referred to as unstable solutions
of the equation, and for certain points in the (a, q) plane they are the only solutions to
the equation. However, it may be shown that there are always solutions (termed stable
solutions) satisfying (3.2.20) with λ purely imaginary, in which case following the notation
of [52] we define λ = iβ. There are such solutions for each value of β between zero and one.
Comparing to (3.2.19) we see that we must have β = −2xo/µo. We observe right away that
as xo ranges over an interval of length µo, β ranges over an interval of length two rather
than one. We return to this subtlety in a moment, but for now focus on what happens as
we allow β to range from zero to one, corresponding to xo ranging from (say) zero to −µo/2.

Then it is possible to show that there is a stable solution of Mathieu’s equation subject
to the condition (3.2.20) for each value of β between zero and one between the two curves
in the a–q plane that correspond to am and bm+1. This is shown graphically in figure 3.5.
These curves of constant β never cross each other and it therefore follows that at any fixed
q there is an eigenvalue corresponding to each value of xo between zero and −µo/2 that
lies between am(q) and bm+1(q). But we also know that as q → ∞, am(q) and bm+1(q)
approach each other and are given by the formula (3.2.7) (when the latter is adjusted to the
different form (3.2.17) of Mathieu’s equation used in reference [52]). Hence it follows that
for sufficiently large q—that is, sufficiently small µo as compared to d—that the eigenvalues
for the non-zero xo, though distinct, nonetheless approach each other and the corresponding
Schrödinger eigenvalues.

What of values of xo between−µo and−µ0/2? First observe what happens for xo = µ0/2,
corresponding to β = 1. Inspection of equation (3.2.20) shows that then we are simply
looking for a solution that is periodic, but with period 2π rather than π; in other words,
one of the integral solutions we have discussed already. The other values of xo occur in the
following manner. As a second order differential equation, Mathieu’s equation for any given
values of its parameters must always have exactly two independent solutions, and it can
be shown that the other independent solution that occurs in conjunction with the solution
satisfying (3.2.20) (for λ = iβ) is a solution that satisfies

ψ(φ+ π) = e−iπβ ψ(φ) (3.2.21)

and therefore corresponds to a value of xo in the interval (−µo,−µ0/2). For integral order
solutions the second solution is never periodic, and so there also we have no degeneracy of
the eigenvalues.

Thus, we have found that for each allowed value of xo there is a non-degenerate eigenvalue
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Figure 3.5: Characteristic values of a as a function of q for non-integral order solutions of
Mathieu’s equation (taken from [52], figure 11)
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and corresponding normalizable eigenstate such that in the limit of large d/µo, the eigenvalue
is indistinguishable from one of the eigenvalues of the simple harmonica oscillator in the
Schrödinger representation. This is true for each eigenvalue of the Schrödinger oscillator.

To summarize, the full polymer Hilbert space HPoly can be decomposed in to orthogonal,
separable subspaces Hxo

Poly, each left invariant by the algebra of observables. The energy
eigenvalue equation can therefore be solved on these subspaces independently. In all cases,
there is a discrete infinity of eigenvalues; they are very close to the eigenvalues of the
Schrödinger theory in its domain of validity; and each eigenvalue is non-degenerate. There
is numerical evidence that the eigenstates in Hxo

Poly are very close to the shadows of the
Schrödinger eigenstates (which naturally belong to Cyl?) on graphs αxo .

Let us close with several important observations:

1. Recall that for the kinetic energy term Ĥkin in the Hamiltonian, we used the operator
K̂2

` of (3.1.2) rather than the square K̂2
µo

of the operator K̂µo of (2.4.20). Both al-
ternatives appear to be viable from the classical standpoint. However, had we chosen
K̂2

µo
in place of K̂2

` , we would have found a 2-fold degeneracy in the eigenvectors irre-
spective of how small n is because, in effect, the coefficients ψ(m)

xo for even and odd m
would have decoupled in the eigenvalue equation. Hence, from a quantum mechanical
perspective, only the choice K̂2

` is experimentally viable. This situation is familiar
from lattice gauge theories but brings out the fact that the polymer framework has to
be set up rather delicately; small µo/d does not automatically ensure that the polymer
results would be close to the continuum ones.

2. While all ‘low lying’ eigenvalues are very close to ~ω(n + 1
2), eigenvalues in differ-

ent sectors Hxo
Poly differ from one another slightly. Suppose for a moment that the

only limitation of Schrödinger quantum mechanics comes from the fact that it ignores
the inherent discreteness implied by quantum geometry. Since the polymer particle
model accounts for this discreteness, it would then be the ‘fundamental’ theory un-
derlying Schrödinger quantum mechanics. Then, we would be led to conclude that
the detailed energy levels of physical harmonic oscillators would be sensitive to the
physical, underlying quantum geometry; i.e. depend on the graph which best captures
the fundamental discreteness along the line of motion of the oscillator.

3. Our construction was motivated by the way the Hamiltonian constraint is treated in full
general relativity. Note however, a qualitative difference. Solutions to the Hamiltonian
constraints fail to belong to the polymer Hilbert space of quantum geometry because
zero fails to be a discrete eigenvalue of those operators. In the case of a harmonic
oscillator, by contrast, the full spectrum is discrete. Therefore, now the eigenvectors
belong to the polymer Hilbert space and Cyl? is relevant only in making contact with
the Schrödinger quantum mechanics. Had we considered a free particle instead, as in
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the Schrödinger theory, the spectrum of the polymer Hamiltonian operator

ĤFree = (~2/2m) K̂2
µo

would have been continuous. The eigenvectors would no longer be normalizable in
HPoly but belong to Cyl?. For energies E � ~2/(2mµ2

o), they are practically indis-
tinguishable from plane waves in the sense that their shadows on sufficiently refined
regular graphs (with separation ∼ µo) are very close to those of plane waves. How-
ever, as one would expect, for higher energies, the ‘fundamental description’ introduces
major corrections.

3.3 Shadows of Schrödinger eigenstates

We saw in section 3.2.1 that there is strong numerical evidence that for sufficiently small
µo/d, the eigenstates of the fundamental polymer particle Hamiltonian differ only slightly
from the shadows of the eigenstates of the continuum Hamiltonian. In this sub-section we
will further explore that relationship further, by asking to what extent the shadows of the
continuum eigenstates are eigenstates of the polymer Hamiltonian. We are thus in a sense
asking the ‘converse’ question to that asked in section 3.2.1. For definiteness we restrict
ourselves to the xo = 0 case, i.e., to the Hilbert space H0

Poly associated with the graph α0.
The shadows on α0 of the Schrödinger eigenstates (Ψn| are given by

|Ψshad
0,n 〉 = cn

∑
m

Hn

(mµo

d

)
e−

m2µ0
2

2d2 |mµo〉. (3.3.1)

where cn is the normalization constant. The main result of this sub-section is that these
shadows satisfy the eigenvalue equation of the polymer Hamiltonian (3.1.2) to an excellent
degree of approximation if n� 107.

The action of the Hamiltonian (3.1.2) on an arbitrary state |Ψ〉 =
∑

m ψ(m)|mµo〉 can
be easily calculated. The result is:

Ĥ |Ψ〉 =
~ωd2

2µo
2

∑
m

[(
2 +

m2µo
4

d4

)
ψ(m)−

(
ψ(m+ 1) + ψ(m− 1)

)]
|mµo〉 . (3.3.2)

Let us begin with the shadow ground state |Ψshad
0,0 〉. We have:

Ĥ |Ψshad
0,0 〉 =

~ωd2

2µo
2
c0
∑
m

e−
m2µo

2

2d2

[(
2 +

m2µo
4

d4

)
− e−

µo
2

2d2

(
e−

mµo
2

d2 + e
mµo

2

d2

)]
|mµo〉 .

(3.3.3)
To make the structure of the right side more transparent, let us expand the last three
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exponentials and keep the lowest few terms:

Ĥ |Ψshad
0,0 〉 =

~ωd2

2µo
2
c0
∑
m

e−
m2µo

2

2d2 ×[(
2 +

m2µo
4

d4

)
−
(

2− µo
2

d2
+
µo

4

4d4
+
m2µo

4

d4
− µo

6

24d6
− m2µo

6

2d6
+ · · ·

)]
|mµo〉

=
~ω
2
|Ψshad

0,µo
〉+

~ω
2
c0
4

∑
m

e−
m2µo

2

2d2

[
−µo

2

d2
+
µo

4

6d4
+

2m2µo
4

d4
− · · ·

]
|mµo〉 .

(3.3.4)

Thus, we have

Ĥ |Ψshad
0,0 〉 =

~ω
2

[
|Ψshad

0,0 〉+ |δΨ0,0〉
]

(3.3.5)

where |δΨ0〉 is c0/4 times the last sum in (3.3.4). Since this ‘remainder’ proportional to
µo

2/d2, in the series in square brackets only terms with large m make significant contribu-
tions and these terms are severely damped by the exponential multiplicative factor. Hence
it is plausible that 〈δΨ0 | δΨ0〉 � 1, i.e., that the shadow state is very nearly an eigenstate
of Ĥ. We will first establish that the situation is similar for all excited states and then show
that the expectation on smallness of the remainder term is correct for all eigenstates.

Let us then act on the shadow (3.3.1) of the n-th excited state with the Hamiltonian.
We obtain:

Ĥ |Ψshad
0,n 〉 =

~ω
2

(µo

d

)−2
cn
∑
m

e−
m2µ2

o
2d2

{[
2 +m2

(µo

d

)4
]
Hn

(mµo

d

)
− e−

µ2
o

2d2

[
e−

mµ2
o

d2 Hn

(mµo

d
+
µo

d

)
+ e

mµ2
o

d2 Hn

(mµo

d
− µo

d

)]}
|mµo〉 (3.3.6)

This expression can be simplified using the basic recurrences satisfied by the Hermite
polynomials and by expanding the exponentials using Taylor’s theorem. As with the ground
state, we can then conclude

Ĥ |Ψshad
0,n 〉 =

2n+ 1
2

~ω |Ψshad
0,n 〉+

~ω
2
|δΨn〉. (3.3.7)

where the state |δΨn〉 is given by the following (rather unpleasant) expression:

|δΨn〉 =
(µo

d

)−2
cn
∑
m

e−
m2µ2

o
2d2

{[
2 +m2

(µo

d

)4
− (2n+ 1)

(µo

d

)2
]
Hn

(mµo

d

)
−e−

µ2
o

2d2

[
e−

mµ2
o

d Hn

(mµo

d
+
µ0

d

)
+ e

mµ2
o

d Hn

(mµo

d
− µo

d

)]}
|mµo〉 (3.3.8)

We may fix the normalization constant cn by requiring that the norm of |Ψshad
0,n 〉 be one,
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at least in the limit where µo/d→ 0. This then implies that

cn =
(
µo

d

1√
π 2nn!

) 1
2

(3.3.9)

With this value of cn, we then find that we may write:

〈δΨn | δΨn〉 =
(µo

d

)−4∑
m

f
(mµo

d

) µo

d
. (3.3.10)

We have not written out the exact expression for the function f , though it may readily be
calculated from (3.3.8). Our main point is that it depends on m only in the combination
mµo/d. It is for this reason that we have pulled an additional factor µo/d inside the sum
in (3.3.10), for then we see that the sum (ignoring the prefactor of (µo/d)−4) is a Riemann
sum for the integral

∫
f(x) dx. Since we have an explicit expression for for f , we can perform

this integral and find the limiting value (as µo/d→ 0) of the sum.
Of course, the expression for the norm of |δΨn〉 does contain the prefactor of (µo/d)−4,

and that obviously diverges as µo/d→ 0. Thus, to conclude that the norm of |δΨn〉 is small
in this limit it must happen that

∫
f(x) dx has a multiplicative factor of (µo/d)n with n > 4.

This is a delicate condition, and it is here that we are really putting to the test the hope
that the shadows of Schrödinger eigenstates are themselves very closely eigenstates of the
exact polymer Hamiltonian.

Remarkably, this condition is satisfied and so our hope is met. Specifically, we find that:

〈δΨn,µo | δΨn,µo〉
1
2 =

√
35

48
(
2n4 + 4n3 + 10n2 + 8n+ 3

) 1
2

(µo

d

)2
+O

(
n3
(µo

d

)4
)
.

(3.3.11)
We see immediately that 〈δΨn | δΨn〉1/2 approaches zero if we let µo/d approach zero. For
finite µo/d, its value depends on n and, as one would expect on physical grounds, is of
order unity when n ∼ d/µo. In the case of the molecular vibrations of carbon monoxide
considered above, this corresponds to n ∼ 107. It is obvious that (among other things) the
approximation that V (x) can be described by the simple harmonic oscillator potential will
break down long before this energy level n is reached.

For the bound (3.3.11) to be useful, we must know when the O(n3 (µo/d)4) term is
negligible. This can easily be investigated numerically, again for moderate values of n and
µo/d.

We see in figure 3.6 a representative plot in which n is held fixed (here at n = 0) and
µo/d is allowed to vary. Conversely, in figure 3.7 we hold µo/d fixed at 0.001 and allow n to
vary. In each case we see that the asymptotic behavior (3.3.11) is attained almost as soon
as µo/d < 1. To give some examples, one finds that for the ground state, even when µo/d
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is as large as 0.1, equation (3.3.11) is accurate to less than a percent and the magnitude of
the norm of |δΨn〉 is about 2.2 × 10−3. For n = 9 and µo/d = 10−3, equation (3.3.11) is
accurate to one part in 3×10−5 when µo/d = 10−3, and the magnitude of the norm of |δΨn〉
is 2.13 × 10−13. Thus, not only does the norm of |δΨn〉 approach zero as µo/d approaches
zero, but it also quickly approaches the asymptotic behavior of equation (3.3.11).

To summarize, we have shown that the shadows of the Schrödinger energy eigenstates on
the graph α0 are eigenstates of the polymer Hamiltonian Ĥ to a high degree of approximation
at ‘low’ energies. Quantum geometry effects manifest themselves only at energy levels as
high as n ∼ 107, i.e., long beyond the validity of non-relativistic approximation. This result
complements our findings in Section 3.2 where we compared the exact eigenstates of the
polymer Hamiltonian with the shadows of the Schrödinger Hamiltonian.

3.4 Time evolution of states

We have titled this chapter ‘Dynamics of the Polymer Particle,’ and yet thus far we have
not actually discussed the time evolution of any states. As we mentioned at the close of the
last chapter, this is in general a quite difficult question, as it does not seem easy to evolve
the polymer particle states in time exactly in closed form.

However, having found that the shadows of Schrödinger eigenstates are close to the
exact polymer eigenstates, and having found that the corresponding eigenvalues of the two
representations are close for low enough quantum number n, we might expect that we can
draw some conclusions about time evolution. After all, the eigenstates are stationary states,
and any state in the Hilbert space may be expanded in terms of them. Thus, if both states
and eigenvalues are close to each other, we might hope that the time evolutions would also
agree, at least for some length of time.

Let us make this more precise. What we would like to see is whether it is true that if we
take a certain state |Ψ〉 ∈ L2(R) and evolve it under the Schrödinger time evolution, and
then take its shadow state |Ψshad(t)〉, the result is close to what we obtain if we first take the
shadow state |Ψshad〉 and evolve that under the polymer particle evolution. For definiteness,
choose xo = 0, and consider the shadow |Ψshad

0,0 〉 of the ground state of the Schrödinger
Hamiltonian. Under the unitary time evolution operator ÛSchr(t) = exp (−itĤSchr/~) this
state is stationary, so we obtain:

ÛSchr(t)|Ψshad
0,0 (t)〉 = e−iE0t/~|Ψshad

0,0 〉 (3.4.1)

Here we use En = (2n + 1)~ω/ to denote the eigenvalues of the Schrödinger Hamiltonian.
We denote the eigenvalues of the polymer Hamiltonian by E′n, to distinguish them from
these; the E′n are given by equation (3.2.8), where we referred to them as E0,n.
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How does this compare to the evolution of the shadow state in the Schrödinger represen-
tation? We found that we could relate the polymer eigenstates to the shadows of Schrödinger
eigenstates through

|Ψ0,n〉 = |Ψshad
0,n 〉 − |∆Ψ0,n〉 (3.4.2)

where the norm of |∆Ψ0,n〉 is small compared to the norm of |Ψ0,n〉. For convenience we fix
the norm of each |Ψ0,n〉 to be one. Then we have:

ÛPoly(t)|Ψshad
0,0 〉 = ÛPoly(t)

(
|Ψ0,0〉+ |∆Ψ0,0〉

)
= e−iE′0t/~|Ψ0,0〉+ ÛPoly(t)|∆Ψ0,0〉

= e−iE′0t/~
(
|Ψshad

0,0 〉 − |∆Ψ0,0〉
)

+ ÛPoly(t)|∆Ψ0,0〉

= e−iE′0t/~|Ψshad
0,0 〉+

(
ÛPoly(t)− e−iE′0t/~

)
|∆Ψ0,0〉.

(3.4.3)

Equations (3.4.1) and (3.4.3) allow us to calculate the difference in the evolution of the
states that we are looking for. We have:

(
ÛPoly(t)− ÛSchr(t)

)
|Ψshad

0,0 〉 = 2
(
e−iE′0t/~ − e−iE0t/~

)
|Ψshad

0,0 〉

+
(
ÛPoly(t)− e−iE′0t/~

)
|∆Ψ0,0〉. (3.4.4)

Thus, we see there are two contributions to the difference in evolution. The second term on
the right of (3.4.4) may be bounded by a term that is always of small norm. The first term,
however, has small norm only so long as E0t ∼ E′0t, which in turn implies (from (3.2.8))
that t � 32(d/µo)2/ω. For our continuing example of the carbon monoxide molecule, and
with the conservative value of µo = 10−19 m, this gives t� 1 s. While this may seem like a
very short time, note that it corresponds to 1015 oscillations of the system; for a molecule,
one second is practically an eternity. Nonetheless, such differences might be observable
experimentally and it would perhaps be interesting to look for them. Moreover, if we adopt
not the largest allowed value of µo but instead the Planck scale, then we find that (3.4.4)
requires t � 1032 s, which is roughly 1015 times the present age of the universe. Thus, the
time evolution of the polymer ground state will be indistinguishable from its evolution under
the Schrödinger time evolution for long times scales, provided we choose the fundamental
length scale µo sufficiently small.

What about states that are truly semi-classical? Consider for instance a macroscopic
oscillator, for instance a mass on a spring. Then reasonable ‘laboratory’ values correspond
to taking m ∼ 1 kg and ω ∼ 1 Hz. Note that then the ‘fundamental’ length scale of this
oscillator is of order 10−17 m. We should certainly not take the state of the system to be the
ground state of this system, since that would imply that we have localized our macroscopic
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mass to much less than the size of a proton. Instead, we should choose a semi-classical
shadow state corresponding to a Gaussian with uncertainty in x that is much larger, say
10−7 m, roughly the wavelength of visible light. We must then expand this wavefunction
in terms of the eigenstates of our simple harmonic oscillator. Unfortunately, though it is
possible to find this expansion analytically, it is not easy to examine the time evolution in a
straightforward fashion, since there are many states of high quantum number contributing
to the sum.

Instead, we shall perform such an analysis for a different Hamiltonian: the free particle
Hamiltonian. It is well known [53] that in the Schrödinger representation coherent state
wavefunctions as we are considering spread out over a time scale of order

tc ∼
md2

~
. (3.4.5)

For instance, if we choose a particle of mass 10−3 kg and a value of d corresponding to 10−7 m
(roughly the wavelength of visible light), then (3.4.5) implies that the state is sharply peaked
in both momentum and position for a timescale of order 1010 years, roughly the present age
of the universe. We would like to verify that a similar result holds in the polymer particle
representation.

The Hamiltonian we are considering is simply (~2/2m) K̂2
µo

, and we first would like
to identify the eigenstates and eigenvalues of this Hamiltonian. As we note in a remark
above, the spectrum of this Hamiltonian will be continuous, and so its eigenstates will
not be normalizable. The eigenstates and eigenvalues are again most easily found in the
momentum representation. Then the eigenvalue equation corresponding to (3.2.4) becomes:(

Eλ +
~2

mµ2
o

[cos (kµo)− 1]
)
ψλ(k) = 0 (3.4.6)

and indeed we see that it has no normalizable, non-zero solutions. However, we also see
that δ(k − kλ) will be a solution, for each kλ ∈ (− π

µo
, π

µo
), provided the coefficient vanishes

at k = kλ. Thus, the eigenstates are δ(k − kλ), and the corresponding eigenvalues are

Eλ =
~2

mµ2
0

[1− cos (kλµo)] . (3.4.7)

In the limit where kλ is small compared to π/µo, this result agrees with the usual formula
of ~2k2

λ/2m, but as |kλ| → π/µo, the discrepancy in eigenvalues approaches 60 %.
Now we must expand our coherent state in the basis of eigenstates of the Hamiltonian;

this just amounts to finding the Fourier transform of our general coherent state peaked at
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(xo = µoN, ko), where N is some integer. Then, again using Poisson re-summation we find:

ψ(Nµo,ko)(k) :=
∞∑

n=−∞
Ψ(N,ko)(n)e−iknµo

=
d√
π

∞∑
n=−∞

e−
(n−N)2µ2

o
2d2 eiko(n−N)µoe−iknµo

=
d√
π

∞∑
l=−∞

∫ ∞

−∞
e−

(y−N)2µ2
o

2d2 eiko(y−N)µoE−ikµoye−2πilydy

=
√

2e−ikµoNe−
(k−ko)2d2

2 +O
(
e
−π2d2

2µ2
o

)
.

(3.4.8)

In reaching the last equality, we have had to assume that ko � π/µo, since only then can
we conclude that the dominant term in the Poisson re-summation is the l = 0 term. We
also note that the formula (3.4.8) is, in its leading term, exactly the same as the Fourier
transform1 of the Schrödinger coherent state.

We can now trivially time evolve the states in the momentum representation, and
Fourier transform back to the position representation to find that (dropping terms of order
e−π2d2/2µ2

o):

Ψ(Nµo,ko)(n, t) =
1√
2π

∫ π/µo

−π/µo

eik(n−N)µoe−
(k−ko)2d2

2 e
− i~t

mµ2
o
(1−cos (kµo))

dk (3.4.9)

whereas the evolution of the same state in the Schrödinger representation is:

Ψ(xo,ko)(x, t) =
1√
2π

∫ ∞

−∞
eik(x−xo)e−

(k−ko)2d2

2 e−
i~k2t
2m dk. (3.4.10)

Because µo � d, the Gaussian term in the integrand of (3.4.9) will be suppressed by an
order of e−π2d2/2µ2

o at the limits, and so we may to that order of accuracy extend the limits
of integration to (−∞,∞). Thus, we see that the two evolutions will agree for so long as the
difference in their phases is negligible for the k dominating the integral. Hence we conclude
that the evolutions agree so long as

t� md2

~

(
d

µo

)2

. (3.4.11)

Thus, comparing with (3.4.5), we see that the two evolutions agree for much longer than the
coherence time scale; in particular, for our earlier example of a 1 kg mass with d = 10−7 m,
we find that the evolutions agree for roughly 1030 years, even for the very conservative value

1Provided we define the Fourier transform as f̂(k) =
∫∞
−∞ f(x)e−ikxdx, so that the inverse Fourier

transform is given by f(x) = 1
2π

∫∞
−∞ f̂(k)eikxdk.
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of µo = 10−19 m.
Hence, we find that not just eigenstates and eigenvalues, but the time evolutions as well of

the polymer particle and Schrödinger representations agree, for time scales long compared to
the typical time scale of the quantum system under consideration. In particular, for the free
particle evolution we have shown that semi-classical states for macroscopic objects remain
semi-classical and indistinguishable from the corresponding states in standard quantum
mechanics, for at least as long as those states remain semi-classical under the Schrödinger
time evolution.

3.5 Discussion

In the previous chapter we demonstrated the utility of shadow states in probing the kinemat-
ics of the low-energy limit of the polymer particle, showing how we could extract coherent
states entirely from within the polymer particle representation, and then study their expecta-
tion values and fluctuations using shadow states find them to be kinematically indistinguish-
able from the Schrödinger coherent states. In this chapter we have extended our analysis of
the relationship between the two theories questions centered on their dynamics. In particu-
lar, we found that we could introduce the Hamiltonian operators in the polymer framework
and show that their eigenvalues and eigenfunctions are indistinguishable from those of the
continuum, Schrödinger theory within its domain of validity. Taken together with the re-
sults of the previous chapter, this implies that logically one can forgo the continuum theory,
work entirely with the polymer description, and compare the theoretical predictions with
experimental results. However, since we already know that Schrödinger quantum mechanics
reproduces the experimental results within its domain of validity, it is simpler in practice
to verify agreement with the Schrödinger results. As one might physically expect, since the
polymer framework ‘knows’ about the underlying discreteness, it predicts corrections to the
Schrödinger framework which become significant when the energies involved are sufficiently
high to probe that discreteness.

The broad strategy we followed, including the use of shadow states, was already outlined
in the general program [17]. Notions needed in this analysis are all available in field theories
as well as full quantum gravity. The details of the polymer particle toy model provide con-
crete hints for these more complicated theories. The study of dynamics illustrates further
that it is nontrivial to reproduce the results of the continuum, even when working with a
very refined lattice. For instance, naively, one would have used the operator (~2/2m)K̂2

as the kinetic part of the quantum Hamiltonian. However, this choice would have given a
two-fold degeneracy for all eigenstates of the polymer Hamiltonian including the ‘low en-
ergy’ ones, while in the Schrödinger theory, all eigenstates are non-degenerate. This is a
concrete illustration of how the requirement that the theory should reproduce predictions
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of well-established theories in the low energy regime can be used to discriminate between
choices available in the construction of the ‘fundamental’ framework. A second example
arises from a cursory examination of the form of the polymer particle Hamiltonian. While
the potential continues to be unbounded as in the Schrödinger theory, the kinetic part of
the Hamiltonian is now bounded. Therefore, at first, it seems that the kinetic term will
not be able to ‘catch up’ for large x to produce normalizable solutions to the eigenvalue
equation ((~2/2m)K̂2

` + x2)|Ψ〉 = E|Ψ〉. Furthermore, this expectation can be ‘confirmed’
by numerical solutions to the difference eigenvalue equation (3.2.2). However the careful ex-
amination of section 3.2, involving the Mathieu equation in the momentum representation,
showed that the expectation is incorrect and the divergence of |Ψ〉 one encounters in com-
puter calculations is just a numerical artifact. Thus, our analysis provides useful guidelines
for more realistic theories, pointing out potential pitfalls where care is needed and suggesting
technical strategies.

Finally, there are also some conceptual lessons. First, we saw concretely that recov-
ery of semi-classical physics entails two things: isolation of suitable states and a suitable
coarse graining. In the toy model, the coarse graining scale was set by our tolerance d and
continuum physics emerges only when we coarse grain on this scale. A second lesson is
that the availability of a scalar product on the space of physical states is not essential at
least for semi-classical considerations: The framework of shadow states—with its Wilsonian
overtones—provides an effective strategy to recover low energy physics. This will be further
borne out in the next chapter, where we shall see how these same ideas and constructions
can be applied to loop quantum cosmology.
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Chapter 4

Quantum corrections to Friedmann’s equations from

loop quantum cosmology

In the previous two chapters we have found that even as simple a system as a quantized
non-relativistic point particle can serve as a useful model of as complex a system as quantum
general relativity. For its purposes as a model, essentially all of the likely benefit has been
examined already, and the next step in understanding the low energy limit of loop quantum
gravity is to move on to more complex systems that mirror more features of general relativity.
There is indeed work in progress on such models, presently a quantized version of Maxwell
theory that parallels the quantization in loop quantum gravity, as well as an examination of
linearized general relativity.

Remarkably, however, the polymer particle model is useful not simply as a toy model of
more complicated systems. There is a regime of quantum general relativity whose dynamics
seems to reduce to that of the polymer particle, and thus a study of this model can tell us
something about aspects of quantum gravity that may have direct physical relevance.

This occurs in the context of symmetry reduced models, specifically in loop quantum
cosmology. That is a program pioneered by Bojowald to study loop quantum gravity after
imposing symmetries at the quantum level. Classically, such an approach is well-known:
most of the solutions to general relativity that are known are solutions with a high degree
of symmetry. In particular the usual Friedmann-Robertson-Walker universes are solutions
with a high degree of symmetry, so much so that the number of degrees of freedom becomes
finite. Thus, one would expect that on quantization such a symmetric model would, in some
sense, correspond to quantum mechanics. Indeed, this approach has been studied for many
years, and leads to the concept of a midi-superspace model, in which one first reduces the
degrees of freedom of general relativity classically, and then quantizes the resulting model.
What is unique about loop quantum cosmology, however, is that the symmetry reduction is
performed at the quantum level, through the concept of symmetric states. Moreover, it is
consciously patterned after loop quantum gravity, to mimic the procedures employed there.

What is important for our purposes is that the particular form of quantum mechanics
encountered in loop quantum cosmology is not the conventional Schrödinger representation,
but rather the polymer particle representation we have studied in earlier chapters. Therefore
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in particular one expects that the shadow state framework may be able to tell us something
about the low energy limit of loop quantum cosmology.

That approach was already taken as a part of the work in [20]. The work in this present
chapter extends it in several directions. We shall comment in some detail on these as we
progress, but we briefly summarize the main extensions here:

• In [20], only the lowest order of the expectation value of the Hamiltonian constraint
was explicitly considered; here we find that expectation value to all orders.

• It was stated in [20] that one expects the series obtained for the expectation value of
the Hamiltonian constraint to be asymptotic, but this was not proven. In this work
that is rigorously shown.

• Only the Hamiltonian constraint was considered in [20]; the expectation values of
the time derivatives of the canonical variables and the need to go beyond Erhenfest’s
theorem in order to establish semi-classicality was not addressed. Here we outline in
section 4.1.3 a general framework for effective classical dynamics (taken largely from
[54]) that does include such considerations, and we apply that framework to loop
quantum cosmology.

• Finally, the Hamiltonian constraint operator used in [20] was that generally used in
loop quantum cosmology. However, that operator is not symmetric, and its expectation
value is not real. Here we work with a symmetrized version of that operator, to obtain
a real expectation value. The particular choice of operator used is dictated by the
requirement that one still avoid the singularity in loop quantum cosmology, and this
in turn has implications for the Hamiltonian constraint in full quantum gravity.

The outline of this chapter is as follows. In the first section we review basic material
we shall need about loop quantum cosmology. In particular we review the connections to
the polymer particle representation, and also the Hamiltonian formulation of cosmology
in general, since the Hamiltonian framework is not typically what one sees in textbook
treatments of cosmological models. We then close our overview by defining what we mean
by an effective classical dynamics for a quantum system, and when we might expect such
a thing to exist. Then in the following section we take up the corrections to Friedmann’s
equations. First we calculate the expectation values of the quantum constraint and the
time derivatives of the canonical variables, giving asymptotic series for all of these. In the
following subsection we combine these results with the considerations of section 4.1.3 to
derive modifications to Friedmann’s equations for a dust-filled FRW universe. Since we
shall find there are many interesting questions still to be addressed, we close this chapter
with a discussion of the outlook for this approach.
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4.1 Overview

In this section we review the background material needed for an understanding of the main
results of this chapter. This material is divided into three parts: a review of loop quantum
cosmology as a whole, a summary of Hamiltonian cosmology and the Hamiltonian con-
straint in loop quantum cosmology, and a general overview of effective classical dynamics
for a quantum system. In the middle subsection we shall also discuss the need to adopt a
different form of the Hamiltonian constraint than that ordinarily employed in loop quantum
cosmology.

4.1.1 Review of loop quantum cosmology

Let us begin by reviewing the central ideas of loop quantum cosmology. In so doing we shall
closely follow [20], to which we refer the reader for more details. We shall be particularly
interested in making clear the connection between loop quantum cosmology and the polymer
particle model considered in chapters 2 and 3.

As we have already mentioned in section 2.2, loop quantum gravity is built on a classical
phase space in which the basic canonical variables are a connection Ai

a and an electric field
Ea

i . When one passes to the quantum theory, certain functions of these basic variables
become fundamental operators of the theory, in terms of which all other operators are
constructed. These basic operators are the holonomies of the connection along curves,
and the flux of the electric fields across two-surfaces. How does one introduce a symmetry
reduction into this framework? Clearly we must first examine what it means for a connection
and an electric field to be symmetric, and then we must examine the implications of this for
our basic observables.

We shall in this chapter, just like reference [20], restrict ourselves to the case of a spatially
flat, homogeneous, and isotropic universe, all though more general cases can be considered
within loop quantum cosmology. Now, in the metric based approach to general relativity
as exemplified, for instance, in [55], one typically defines symmetric solutions as those pos-
sessing a certain group as their isometry group. In other words, for some symmetry group
it must be the case that every action on the manifold by that symmetry group carries the
metric into itself. When we work with connections and electric fields, however, we do not
want to require that they be exactly invariant under the symmetry group, only that ev-
ery element of the symmetry group carries the connection and electric field variables into
connection and electric field variables that are related to those with which we started by a
gauge transformation. That is, if S is our symmetry group, if for every s ∈ S we have

(s∗A, s∗E) = (g−1Ag + g−1dg, g−1Eg) (4.1.1)
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for some local gauge transformation g on the spatial manifold M , then we will say that the
pair (A,E) is symmetric, with respect to S. For our purposes in this chapter (since we focus
on spatially flat, homogeneous, and isotropic cosmologies) we are assuming that S is the
group of Euclidean motions of the plane, and that it acts simply and transitively on M .

This defines for us a certain subset of the phase space of full general relativity; the space
of all symmetric solutions for a certain symmetry group, in our case the Euclidean group.
For further progress we need a more concrete description of this space than that afforded
by equation (4.1.1). This is easy to obtain. The Euclidean group of motions selects on
M an equivalence class of positive definite, flat metrics, all related to one another by a
multiplicative constant. Choose some particular element oqab in this class as a fiducial flat
metric; we shall take care that no physical quantities depend upon which metric we choose.
We also pick a constant orthonormal triad oeai and its dual co-triad oωi

a, both compatible
with oqab. Finally, for reasons that we shall explain momentarily, we also pick within M

a fiducial ‘cell’ V which for simplicity we assume to be cubical with respect to oqab. Let
Vo be its volume with respect to oqab. Then it is possible to show that every symmetric
pair (A′, E′) that satisfies the gauge and diffeomorphism constraints is equivalent to a pair
(A,E) of the form:

Aa = c V
− 1

3
o

oωi
aτi, Ea = p V

− 2
3

o
√

oq oeai τ
i. (4.1.2)

In these equations the matrices {τi} form a representation of SU(2) and are normalized so
that [τi, τj ] = εijkτ

k; that is, τi = 1
2iσi in terms of the Pauli matrices σi. We have also

absorbed the density weight of E into the determinant oq of the fiducial metric.
We have thus solved the Gauss and diffeomorphism constraints of Hamiltonian general

relativity, and as a consequence we are left with only two degrees of freedom, parameterized
by the variables c and p. That is, the phase space of our theory is two dimensional: all
physical predictions of the theory may be cast in terms of the variables c and p. In fact,
it was partly to achieve this that we introduced the cell V. The first reason for doing
so, however, is that the symplectic structure of the full theory is defined as an integral of
various fields constructed from A and E over M ; because of the homogeneity this integral
will diverge for our case. By introducing the cell V we may take the needed integral over
this cell, and one may then show that the symplectic structure of our reduced phase space
is given by

Ω =
3
κγ

dc ∧ dp. (4.1.3)

In this equation we have defined κ = 8πG, where G is Newton’s constant. The symplectic
structure (4.1.3) in turn means that the Poisson brackets of any two functions f and g on
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our phase space is given by:

{f, g} =
κγ

3

(
∂f

∂c

∂g

∂p
− ∂g

∂c

∂f

∂p

)
. (4.1.4)

It was because we introduced the powers of Vo into the definitions (4.1.2) that the
symplectic structure does not depend on Vo. Another desirable consequence of the precise
definition in (4.1.2) is that the variables c and p do not change if we rescale the fiducial flat
metric; they therefore have physical meaning. For instance, it is not hard to verify that the
physical volume of the cell V is |p|

3
2 ; i.e., it does not depend at all on the volume Vo of that

cell relative to the fiducial metric oqab.
Before considering the quantization of this phase space, we pause to make some brief

comparisons between the variables we have introduced here and the variables more usual
in cosmology. Any spatially flat, isotropic, and homogeneous spacetime metric may be
expressed in the form [55]:

ds2 = −dτ2 + a2(τ)(dx2 + dy2 + dz2). (4.1.5)

Here a is the scale factor, and in solving Einstein’s equation starting from (4.1.5) the task is
to determine a as a function of τ (note that τ is the proper time as measured by observers
co-moving with the cosmic flow). How does a relate to the variables c and p as we have
defined them? If we choose for our spatial manifold M surfaces of constant τ , then it is
possible to show directly from the usual definitions of the Ashtekar connection in terms of
the Levi-Civita connection and extrinsic curvature that c = γȧ/2, where γ is the Barbero-
Immirzi parameter. Likewise, starting from the definition of the electric field E as a partially
densitized triad one may show that |p| = a2. Thus, starting from a single variable that is
a function of time, we obtain two canonical variables, one determined by the value of the
variable at a given instant, the other by its time derivative.

How is the quantization of this symmetric phase space accomplished? As we have already
explained, in loop quantum gravity states are complex valued functions of the connection. In
a symmetry reduced model, we seek states that have support only on symmetric connections;
those satisfying (4.1.1). Because of the decomposition (4.1.2), this means that any such state
is in fact a function of c.

However, it cannot be any function of c: since our approach is to mimic loop quantum
gravity we should consider functions that arise as holonomies of connections of the form
(4.1.2). In the full theory, we must consider holonomies along all possible paths. In our
symmetry reduced model, however, it is sufficient to consider only holonomies along straight
lines in M (where ‘straight’ is defined relative to the fiducial metric oqab). One can then
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show that the holonomy of a symmetric connection along such an edge is given by:

he(A) = cos
µc

2
+ 2 sin

µc

2
(ėaoωi

a)τ
i. (4.1.6)

In this equation the oriented length of the edge e is given by µV
1
3

o . Then the algebra
generated by sums and products of matrix elements of such holonomies is simply the algebra
of functions of c of the form:

f(c) =
∑

j

fje
iµjc

2 . (4.1.7)

This is precisely the algebra of almost periodic functions of momentum k considered in
chapters 2 and 3 for the polymer particle: thus we see already a strong similarity to the
polymer particle representation. However, in the polymer particle model, we found that the
functions of the form (4.1.7) were analogous to holonomies; here we find that they actually
are holonomies.

For the relation to the polymer particle to be complete, we must examine the canonically
conjugate variable as well. From the Poisson brackets in (4.1.4) we see that this variable is
just p, as we might expect. When we come to the quantum theory, loop quantum gravity
dictates that we should choose as our functions of momentum the electric field smeared
across two surfaces. As with holonomies above, we find that because of homogeneity and
isotropy we need not consider all possible surfaces, but rather may restrict ourselves to
squares (relative to oqab) that are tangent to the fiducial triad oeai , and may use smearing
functions f that are constant over those squares. One then finds that the electric flux
operators are of the form

E(S, f) = p V
− 2

3
o AS,f (4.1.8)

where AS,f is the oriented area of the square S relative to oqab, with the orientation de-
pendent on f . Thus, just as for the polymer particle, the fundamental classical observables
depending on the canonically conjugate variable, which will be promoted to operators in
the quantum theory, are simply multiples of that observable. Here, it is p; in the polymer
particle representation it was x.

We see therefore that the representation of our basic observables will be the same as it
was for the polymer particle. States are functions of the form (4.1.7), with the inner product
given by

〈f | g〉 =
∑

j

f jgj (4.1.9)

On the Hilbert space all functions of the form (4.1.7) act unitarily by multiplication, but
there is no self-adjoint operator corresponding to the classical phase space variable c. The
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p̂ operator has the action:

p̂|f〉 =
γ`2Pl

6

∑
j

fjµje
iµjc

2 (4.1.10)

It is evident from (4.1.10) that functions of the form exp (iµc/2) are eigenstates of the p̂
operator, and we denote these eigenstates by |µ〉. We can also use the relation (mentioned
earlier) V = |p|

3
2 to define an operator corresponding to the volume of our fiducial cell V,

and the |µ〉 will be eigenstates of this operator as well:

V̂ |µ〉 =
(
γ|µ|
6

) 3
2

`3Pl|µ〉 ≡ Vµ|µ〉. (4.1.11)

The volume eigenvalues defined by this equation will be important to us shortly.
What can we say about coherent states for loop quantum cosmology? Because we are

in fact working with the polymer particle representation, it follows immediately that all
of the conclusions of section 2.4 carry over. In particular, given any point (c′, p′) of the
classical phase space, we can using only operators defined in loop quantum cosmology select
a coherent state (Ψ(c′,p′)| peaked about (c′, p′):1

(Ψ(c′,p′)| =
∑
µ∈R

e−
(µ−µ′)2

2d2 e
i(µ−µ′)c′

2 (µ|. (4.1.12)

Here µ′ is related to p′ through p′ = 1
6γ`

2
Plµ

′; note that this implies that µ and hence
also d is dimensionless. We should like to check that the state (Ψ(c′,p′)| is indeed sharply
peaked around the point (c′, p′). As in section 2.4, in order to make statements about the
expectation value of c we must define a replacement for the nonexistent c operator in the
quantum theory; this replacement is given by:

ĉµo =
1
i~

(
e

iµoc
2 − e−

iµoc
2

)
(4.1.13)

so that the action of ĉµo on our volume eigenstates is given by:

ĉµo |µ〉 =
1
i~

(|µ+ µo〉 − |µ− µo〉) . (4.1.14)

At the moment, µo is simply a parameter that we are free to choose, but in the next subsec-
tion we shall see that once we incorporate dynamics, it acquires a fundamental significance,
just as it did for the polymer particle.

We can then verify, through shadow state calculations similar to those of section 2.4,
1The relative minus sign between the imaginary exponentials of (4.1.12) and (2.4.8) arises because we

define |µ〉 to be eiµc/2 whereas in chapter 2 we defined |x〉 to be e−ikx.
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that the following are true (all expectation values are taken in the state (Ψ(c′,p′)|):

〈p〉 = p′, (4.1.15)

〈c〉 =
2
µo
e−

ε2

4 sin
(
µoc

′

2

)
, (4.1.16)

∆p2 =
γ2µ2

o`
4
Pl

72ε2
, (4.1.17)

∆c2 =
2
µ2

o

[
(1− e−

ε2

2 ) + (e−
ε2

2 − e−ε2) cos (µoc
′)
]
≈ 2ε2

µ2
o

. (4.1.18)

Here, as we did in section 2.4, we have defined the quantity ε to be the ratio µo/d, where d
is as before the width of the Gaussian. Then so long as ε is much smaller than one, we find
as before that our coherent states are indeed sharply peaked about the point (c′, p′) of the
classical phase space, so long as µoc

′ � 1. When µoc
′ approaches (or exceeds) unity, however,

the expectation value of our replacement operator no longer agrees with the value of c′ at the
phase space point. In the context of the polymer particle this reflected a difference between
expectation values in the polymer particle and Schrödinger representations for phase space
points with high momenta; we shall comment on the physical meaning of the discrepancy
in the context of quantum cosmology below.

We have therefore shown that kinematically there is a well-defined notion of the low
energy limit of loop quantum cosmology, but we need also to investigate the dynamics.
Since we have already solved both the gauge and diffeomorphism constraints of general
relativity, we need only to impose the scalar constraint. For our goal of understanding
the effective classical dynamics of the quantum theory, it is important to have a good
understanding of this constraint and the method by which the equations of motion arise
from it, both classically and quantum mechanically. We therefore turn to a careful review
of these questions in the next subsection.

4.1.2 Hamiltonian cosmology

In textbook treatments of cosmological models (see for instance [55]), one typically shows
that the assumptions of spatial flatness and isotropy lead to the form (4.1.5) for the spacetime
metric. It then becomes the task of Einstein’s equation (as we have already mentioned) to
determine a as a function of τ .

In order to complete this approach, some choice must be made for the form of matter
appearing in the stress-energy tensor that stands on the right hand side of Einstein’s equa-
tion. For cosmological models, one typically focuses on perfect fluids, whose stress tensor is
given by:

Tab = ρuaub + P (gab + uaub). (4.1.19)
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In this equation ua is the four velocity of the matter field, which by homogeneity and isotropy
is easily seen to be proportional to ∂τ . It is then possible to show that Einstein’s equation
implies the following two equations for a [55] (recall that we have defined κ = 8πG):

3ȧ2

a2
= κρ, (4.1.20)

3ä
a

= −κ
2
(ρ+ 3P ) (4.1.21)

which are Friedmann’s equations. It is modifications to these equations induced by quantum
gravity effects that we wish ultimately to study.

In fact, one typically specializes even further to two particular forms of perfect fluid:
dust (for which P = 0) and radiation (for which P = ρ/3). It is then easy to integrate the
equations (4.1.20) and (4.1.21) to find:

a(τ) =
(

9C
4

) 1
3

τ
2
3 for dust, (4.1.22)

a(τ) =
(
4C ′
) 1

4 τ
1
2 for radiation. (4.1.23)

The constants C and C ′ are related to the energy density ρ of the matter through C = κa3/3
and C ′ = κa4/3; we thus see that for dust the density scales inversely to the volume, while
for radiation there is an additional factor of the scale factor a because of the redshift.

We will in this thesis also restrict ourselves to these two forms of matter sources. We only
expect to have a valid semi-classical description of loop quantum cosmology at times late
compared to the Planck time, and so we need only consider matter sources applicable at such
times. One might therefore also like to consider a cosmological constant term, in addition
to dust and radiation. However, with a positive cosmological constant ȧ does not remain
bounded with increasing time, and therefore neither would c, in terms of the variables we
are using. This makes it a more subtle matter to apply our coherent states since as we have
just seen they are only closely peaked around c′ when that quantity is small. We therefore
defer investigation of this important question to future work.

We would like now to understand how the results above for dust and radiation filled
universes arise classically in a Hamiltonian framework. We can derive this by using the
Hamiltonian form of general relativity. Loop quantum gravity is derived from a Hamiltonian
framework in terms of connection and triad variables, but it will be possible (and easier) for
us to use the ADM formulation commonly encountered in numerical relativity, which uses
as basic variables the spatial metric and a field constructed from the extrinsic curvature. In
the ADM formulation one finds that the gravitational part of the Hamiltonian constraint
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may be written as (for the case of vanishing shift vector, as we have here):

Cgrav = −
∫

M
d3xN

√
h(3R+K2 −KabK

ab). (4.1.24)

In this equation, h is the determinant of the spatial metric hab, and 3R is the Ricci curvature
scalar of that three dimensional metric. Kab is the extrinsic curvature of the three manifold
M , K is the trace of Kab, and N is the lapse function.

For the metric (4.1.5), we choose our time evolution to be that given by the vector field
∂τ . This leads, as we have already said, to a vanishing shift vector; it also leads to a constant
lapse function N . We will then find that the integral over M in (4.1.24) diverges, so we
make it finite by restricting it to our fiducial cell V. Since our spatial metric is flat, 3R = 0.
We also clearly have hab = a2δab if we choose Cartesian coordinates on M , and from this we
find the extrinsic curvature directly from its definition in terms of the Lie derivative of hab

along ∂τ :

Kab :=
1
2
Lτhab = aȧδab =

(
ȧ

a

)
hab (4.1.25)

Thus,
√
h = a3 and K = 3ȧ/a. Using these we find:

Cgrav = −6aȧ2. (4.1.26)

Now, this expresses only the gravitational part of the Hamiltonian constraint; the full
constraint is the sum of the gravitational and matter terms of the constraint. How do we
find the matter terms? This is most easily accomplished by noting that

3R+K2 −KabK
ab = −2Gabn

anb (4.1.27)

where Gab is the Einstein tensor and na the unit normal to our spatial slice (for us, it is
just ∂2

τ ). Thus, since Einstein’s equation tells us that Gab − κTab = 0, we see that the full
constraint should be given by:

C = −6κ−1aȧ2 + 2
∫
V
d3x

√
hTabn

anb. (4.1.28)

We have here divided by κ, since it will turn out that this is necessary to obtain the correct
equations of motion from the Hamiltonian. Since na = ua—i.e., the unit normal to M is
parallel to the four velocity of the fluid—we may use (4.1.19) to obtain:

C = −6κ−1aȧ2 + 2a3ρ (4.1.29)

Finally, we may use the relations |p| = a2, c = γȧ/2 to rewrite this in terms of our basic
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canonical variables, c and p:

C = −6κ−1γ−2c2
√
|p|+ 1

2
|p|

3
2 ρ. (4.1.30)

In arriving at (4.1.30), we have divided the expression of (4.1.29) by four. This of course
does not change the constraint surface (i.e., the points (c, p) for which H(c, p) = 0), but
it does affect the dynamics, which depends on the Poisson brackets of the constraint with
observables. We have chosen our normalization of the constraint so as to obtain the correct
dynamics with the Poisson brackets of equation (4.1.4); we shall show momentarily that our
normalization is correct. We could in fact have derived this normalization by checking how
the relationship between our canonical variables c and p and the ADM variables relates the
Poisson bracket of our phase space to that of the ADM phase space; it is simply easier to
adjust the normalization at the end so as to obtain the correct equations of motion.

How do we obtain the equations of motion? In order to do this we must make one
more improvement on our expression (4.1.30) for the Hamiltonian constraint. It contains
the density ρ, but that is not a constant on phase space. So we must express it in terms
of something that is constant, and it proves most convenient to choose the total energy E0

‘initially’ in our fiducial cell; i.e., at some fixed time τ0. Then we obtain:

C = −6κ−1γ−2c2
√
|p|+ 1

2
E0 for dust, (4.1.31)

C = −6κ−1γ−2c2
√
|p|+ 1

2
E0

(
p0

p

) 1
2

for radiation, (4.1.32)

where p0 is the value of p at τ = τ0.
With these definitions of the Hamiltonian constraint, we may calculate the equations of

motion. Let us illustrate this for the case of a dust filled universe. We know that we must
impose the vanishing of the constraint, and we must also express ċ and ṗ using the Poisson
brackets. Since for any observable O we have Ȯ = {O,C}, we have three relations that must
hold:

C(c, p) = 0, (4.1.33)

ċ = {c, C} =
κγ

3
∂C

∂p
, (4.1.34)

ṗ = {p, C} = −κγ
3
∂C

∂c
. (4.1.35)

Consider equation (4.1.35) first. In the regime p > 0 it gives:

ṗ = 4γc
√
|p|. (4.1.36)
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But using p = sgn a a2 we find that this simplifies to c = γȧ/2. This illustrates an important
point: in general, c is not defined by any particular relation to the time derivative of a; rather,
this relationship comes from the equations of motion. That is because the Hamiltonian
equations of motion have ‘built in’ the definition of what time with respect to which they
are evolving. When we come to the modifications of Friedmann’s equations induced by loop
quantum cosmology, this will be important because we shall find that the relation c = γȧ/2
no longer holds exactly. What this means, therefore, is that we have quantum corrections
not just to the equations of motion, but to the lapse function as well.

Continuing on, we can use this expression for c in equation (4.1.33). That equation then
becomes:

−3
2
κ−1ȧ2a+

1
2
E0 = 0. (4.1.37)

Upon some rearrangement, this becomes

3ȧ2

a2
= κ

E0

a3
(4.1.38)

which we easily see to be equivalent to the first of Friedmann’s equations, (4.1.20). When
we use our expression for c in equation (4.1.34), we find that it in turn is equivalent to the
second of Friedmann’s equations, (4.1.21).

A similar analysis to that just outlined shows that the three equations (4.1.33–4.1.35)
also give us the expression for c in terms of ȧ (which is the same) and the two Friedmann’s
equations when we use the constraint (4.1.32) appropriate for a radiation filled universe.
Thus, summarizing we have found that classically the dynamics of a spatially flat, isotropic
universe can be incorporated into the single Hamiltonian constraint2

C = −6κ−1γ−2c2 sgn p
√
|p|+ Cmatter (4.1.39)

where:

Cmatter =


1
2E0 for dust,
1
2E0

√
|p0|
|p| for radiation.

(4.1.40)

We have not derived the factor of sgn p in (4.1.39) since in our analysis we only considered
positive p, but it is not hard to verify. Note that negative values of p in the evolution
correspond to electric fields oriented opposite to that of the fiducial triad.

We now turn to the quantization of this dynamics, which amounts to a quantization of
2Note that [20] incorrectly has this as

C = −6γ−2c2 sgn p
√
|p|+ κCmatter

in equation (11) of that reference. But this normalization is inconsistent with the Poisson brackets used in
[20], which are the same as those we use here.
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the constraint (4.1.39). We may be tempted to follow the lines used in the polymer particle,
defining a substitute operator for c2 and attempting to define an operator for √p directly in
terms of its action on the volume eigenstates |µ〉. However, this approach would be rather
ad hoc from the point of view of quantum geometry: we are no longer trying just to model
general features of the full theory (as we were in the previous two chapters) but to follow as
closely as possible the strategies used in the full theory.

In fact, it is possible to apply the procedure used in defining the operator corresponding
to the gravitational part of the constraint directly to the case at hand; this is carried out in
section 4.1 of [20]. Since our concern in this chapter is not so much with the precise origins
of the quantum constraint as in the implications of that constraint for low energy physics,
we will not repeat those arguments here but will instead just quote the result. One finds for
the operator:

Ĉ(µo)
grav = 96i(κγ3µ3

o`
2
Pl)

−1 sin2 µoc

2
cos2

µoc

2
×
(
sin

µoc

2
V̂ cos

µoc

2
− cos

µoc

2
V̂ sin

µoc

2

)
. (4.1.41)

In this equation V̂ is the volume operator introduced in (4.1.11) above. The action of this
constraint operator on eigenstates of p̂ is given by:

Ĉ(µo)
grav |µ〉 = 3(κγ3µ3

o`
2
Pl)

−1(Vµ+µo − Vµ−µo)
(
|µ+ 4µo〉 − 2|µ〉+ |µ− 4µo〉

)
. (4.1.42)

This operator depends upon a parameter µo. The origin of this parameter is as a regulator
in the derivation of the constraint and has an analogue in the full theory as well, discussed
in [20]. For our purposes in this chapter what is important is that once again we will have
a restriction of our lattice to integer multiples of µo, so that we consider the Hilbert space
spanned by the kets |nµo〉 for all natural numbers n.

Also important to us, however, is that comparing the origin of µo to the corresponding
ambiguity in the full theory (the ‘j’ ambiguity as to what spin to assign to the new edges
introduced by the constraint) one is led to the conclusion that there is a natural choice for
its value, unlike the parameter (denoted by the same symbol) that we considered in chapter
3. That is because the value of µo affects the value of areas of squares considered as part
of the constraint regularization. While in the reduced model itself these areas may assume
arbitrarily small (positive) values, in the full theory the discreteness of the area spectrum in
quantum geometry dictates a smallest area. If we use this same value as the smallest area in
the regularization of the constraint for the reduced model, then we are led to the conclusion
that µo can be no smaller than

√
3/4. Henceforth we shall assume this value.

The constraint operator (4.1.40) is the operator normally used in the loop quantum
cosmology literature, and in particular in [20], where the semi-classical limit of loop quantum
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cosmology was previously considered. However, it suffers from a serious limitation, whose
full significance has not been previously appreciated: it is not symmetric. What this means
is that in general its expectation value in a given state need not be real. Since we would like
to interpret just such an expectation value as an effective classical Hamiltonian, we must ask
if we know how to handle a situation where this expectation value is not real. This problem
was not noticed in [20] because it turns out that the leading order term of the expectation
value—which is all that was calculated explicitly in that paper—is real. This in itself is
rather remarkable, as there is no a priori reason that it need have happened.

However, we are still left with the problem of what to do with a complex effective
Hamiltonian. While some attempt was made to understand such a thing (for instance, in
terms of particle creation) no successful strategy was found. Therefore we must ask if there
is any modification of the constraint so that it is symmetric.

Now, given any operator on a Hilbert space, we may form a symmetric operator from
it by adding it to its adjoint. Certainly this is the simplest strategy to employ here as
well. While that does indeed give us a symmetric operator, the resulting operator has a
serious deficiency of it own. One of the reasons that the operator (4.1.41) has been used
in the literature is that it ensures that the classical singularity is avoided (see, for instance,
[16]). What is meant by this is two things. First, as we shall see in a moment, quantities
that diverge classically remain bounded in the quantum theory as the initial singularity is
approached (note that the initial singularity corresponds to p = 0); in particular this holds
for the inverse scale factor to which classically the curvature is proportional. Second, and
more important for the considerations at hand, the quantum evolution does not break down
at the singularity. That is because when (4.1.42) is applied to a state and then interpreted
as a difference equation for that state, the coefficient of |µ = 0〉 in the expansion of the state
decouples from the rest of the coefficients of the state.

This decoupling is very sensitive to the precise form of the constraint; while it holds for
the constraint (4.1.41) it does not hold for the constraint formed by adding this operator to
its adjoint3 . There is however a way to form a constraint that is singularity avoiding and
yet also is symmetric. To do so, take the full constraint (i.e., Ĉgrav + Ĉmatter), multiply it by
sgn p, and add this operator to its adjoint. Then the resulting operator is symmetric, and
the singularity decouples from the quantum evolution.

While the strategy sketched above is successful in the context of loop quantum cosmology,
we must also take care that we are not making an adjustment in the symmetry reduced
theory that we shall be unable to make in the full theory. After all, we were led to the
(non-symmetric) constraint (4.1.41) in the first place by following the construction used for
the scalar constraint in the full theory. Fortunately, the remedy we have prescribed may be

3I am grateful to Abhay Ashtekar and Martin Bojowald for pointing out this difficulty to me, as well as
the resolution discussed below.
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carried over in natural fashion to the full theory as well: one simply multiplies the constraint
by the sign of the determinant of the electric field operator E.

We saw already in chapter 3 that certain operators that seemed mathematically plausible
as part of the Hamiltonian had to be eliminated as they would give the wrong low-energy
limit for the theory. Here we find something similar, only stronger: the low energy con-
siderations of loop quantum cosmology predict an adjustment to a central aspect of the
full theory. We thus have a concrete example of how studying a (very) reduced model can
nonetheless tell us something nontrivial about the full theory.

We have therefore adequately covered the gravitational term of the Hamiltonian con-
straint; what about the matter terms? For a dust filled universe, the matter Hamiltonian is
trivial to implement: it is simply a constant multiple of the identity. For the radiation filled
universe, we must be more careful, since the classical expression contains |p|−

1
2 . Fortunately,

this corresponds precisely to the inverse scale factor whose quantum operator analogue has
been well studied in loop quantum cosmology. As we alluded to above, the main reason for
studying this operator thus far in loop quantum cosmology is because classically it is related
to the curvature scalar and becomes unbounded as the initial singularity is approached. A
certain quantum operator has been developed which is bounded as an operator; the con-
struction of this operator also parallels the construction of the Hamiltonian constraint in
the full theory. The resulting operator is:[ ̂sgn p√

|p|

]
= − 12i

γ`2Pl

(
sin

c

2
V̂

1
3 cos

c

2
− cos

c

2
V̂

1
3 sin

c

2

)
. (4.1.43)

Even though this operator contains both configuration and momentum operators, it com-
mutes with p̂, so its eigenstates are also |µ〉 and the action of the operator (4.1.43) on such
states is: [ ̂sgn p√

|p|

]
|µ〉 =

6
γ`2Pl

(
V

1
3

µ+1 − V
1
3

µ−1

)
|µ〉. (4.1.44)

One might be tempted to work instead with an operator that is simply defined to act on
eigenstates of p̂ and return |p|−1/2 as an eigenvalue, on the grounds that in the late universe
regime that we are interested in, the difference between such an operator and (4.1.43) would
be small. If all we were interested in were finding that the theory has the correct classical
limit, such reasoning would indeed be justified. However, we have a more ambitious goal:
besides studying the leading order classical terms emerging from the quantum theory, we also
wish to find the (hopefully) small corrections arising from quantum effects. Thus, ‘small’
differences can indeed be important, and we should stick with the operator (4.1.43) that is
well defined in all regimes of loop quantum cosmology.

Summarizing, we have arrived at the following prescription for defining the Hamiltonian
constraint as a quantum operator in loop quantum cosmology. First, start with the operator
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given by (4.1.41) and add to it the corresponding operator for Ĉmatter. Then multiply that
sum by sgn p, add the result to its adjoint as an operator, and take half. This is a rather
unwieldy description in the way we have described it. As a practical calculational matter
it is generally simpler to calculate quantities for the non-symmetrized constraint and then
simply take the real part of the resulting expression at the end of the calculation, and that
is what we shall do for the remainder of this chapter. Thus, (4.1.41) really does serve as the
fundamental calculational starting point.

So, now that we have kinematically semi-classical states and a natural prescription for
the scalar constraint as a quantum operator, we must combine those two elements to derive
the effective classical dynamics for our quantum theory. But before we can do that, we
must define what we mean by that, and to that we turn in the next and final introductory
subsection.

4.1.3 The general framework for the effective Hamiltonian

We saw in the first part of the last subsection that classically we can generate the full
dynamics of the FRW cosmological models by prescribing a Hamiltonian constraint function
C(c, p) on phase space. The constraint surface consists of those (c, p) such that C(c, p) = 0,
and the time evolution of c and p is determined in the usual fashion by taking the Poisson
brackets of these observables with the constraint.

We should like now to find a similar, though in general slightly modified, constraint
that does the same thing for the effective dynamics of the quantum theory. Since we have
a quantum operator that represents the constraint, and since we have a candidate semi-
classical state, a natural approach is simply to take the expectation value of this constraint
in that state, and see if the result is close to the classical value. This is in fact what was
done in [20], where it was found that the lowest order expression for the expectation value
was indeed the classical constraint function for the gravitational term of the constraint.

On closer reflection, however, it is not so clear what this means. We are finding a
constraint function on phase space; that means that we are taking the expectation value
of the quantum operator not in one semi-classical state, but a family of them: one for
each point in at least some region of phase space. How do we know that we should use
the same coherent state for each point of phase space (as was effectively done in [20])?
More importantly, what quantum process—if any—does the dynamics of this Hamiltonian
function correspond to?

In order to better understand this, it is helpful to back up somewhat. What is usually
meant by the statement that ordinary quantum mechanics has the correct semi-classical
limit? In many textbook treatments, an argument is made based on Ehrenfest’s theorem.
For a particle with a Hamiltonian of the form p2/2m + V (x) for some potential V (x), this
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is the result [53] that:

m
d2

dt2
〈x〉 = −

〈
∂V (x)
∂x

〉
. (4.1.45)

However, despite the apparent similarity to Newton’s second law, as pointed out in [56], this
is really not sufficient to establish semi-classicality; for one thing, it is true for all states,
not just semi-classical ones. Instead, what one needs is for the state to be such that instead
we have:

m
d2

dt2
〈x〉 ≈ −∂V (〈x〉)

∂x
. (4.1.46)

In other words, we may take the derivative outside of the expectation value.
In fact, what we would like is something even stronger. We would like to know:

m
d2

dt2
〈x〉 = −∂V (〈x〉)

∂x
− ∂(δV (〈x〉))

∂x
+ smaller corrections. (4.1.47)

In other words, we would like to be able to incorporate the corrections from the exact
classical result into a small ‘corrected potential.’

It is not at all clear whether we can do this. We are asking, in effect, whether the full
quantum dynamics can be encapsulated in dynamics on the classical phase space, expressed
in terms of expectation values. Even for semi-classical states, there is in general no reason
to believe that the full quantum dynamics can be described on the classical phase space.

There is, however, a framework in which the full quantum dynamics can be described
in terms of symplectic dynamics on an appropriate phase space. This is the geometric
formulation of quantum mechanics, and not only does it allow us to describe full quantum
mechanics in fashion structurally similar to the classical theory, but it also provides the
appropriate framework to answer semi-classical questions. Therefore, we shall spend some
time in this subsection reviewing a few key elements of this framework; for more details the
reader is referred to [54].

The geometrical formulation of quantum mechanics starts by describing the Hilbert space
H of quantum theory as a symplectic space itself.4 This is possible because the imaginary
part of the inner product is in fact a symplectic form on the phase space. Moreover, the
real part forms a Riemannian metric, and the two structures are related so that together
they comprise a Kähler structure on the Hilbert space. Explicitly, what we have for any two
states |Ψ〉 and |Φ〉 is:

〈Ψ |Φ〉 =:
1
2~
G(Ψ,Φ) +

i

2~
Ω(Ψ,Φ) (4.1.48)

withG the Riemannian metric and Ω the symplectic form. The Kähler structure is completed
by selecting a preferred linear operator J on H such that when H is regarded as a real vector

4In fact, the true quantum phase space is not H itself, but rather a projective space constructed from it.
This difference is not crucial for our considerations, however, so we gloss over; for a complete discussion the
reader is again referred to [54]
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space, J2 = −I for the identity operator I. The triple (J,G,Ω) makes H a Kähler space
because

G(Ψ,Φ) = Ω(Ψ, JΦ). (4.1.49)

While the Riemannian metric is important for measurement theory, as indeed is the Kähler
space nature of H, for our limited considerations in this thesis all we shall need is the fact
that H is a symplectic space, and henceforth that is all we shall refer to.

Now, the nature of H as a symplectic space is important because we may naturally
incorporate the evolution under Schrödinger’s equation as Hamiltonian evolution. First, we
observe that any self-adjoint observable F̂ defines a vector field on H, since it assigns to
each point in H a vector (where we use the canonical identification of the tangent space of
H with H itself). Schrödinger’s equation then, in terms of the Kähler space structure on H,
becomes:

Ψ̇ = −1
~
JF̂Ψ. (4.1.50)

What is important for us is that the vector field defined by the right hand side is globally
Hamiltonian, and moreover the Hamiltonian function that generates it is simply the expec-
tation value of F̂ on H [54]. Moreover, it is also possible to show that the Poisson brackets
(with respect to the symplectic structure Ω) between two observables are given by the ex-
pectation value of 1/i~ times the commutator of the corresponding observables. Thus, these
two facts together trivially imply Ehrenfest’s theorem.

We emphasize that despite the strong similarities what is going on here is much more
than the usual classical dynamics: the phase space manifold and symplectic structure are
quite different, in general, from the phase space of the analogous classical system. Already,
however, we see that we are justified in calculating the expectation value of the Hamiltonian
and treating it as the Hamiltonian function on a phase space. However, in general it is not
a Hamiltonian on the classical phase space.

We are making progress though. To complete our understanding of the role of semi-
classical states, we rely on another set of related observations from [54]. Consider the
expectation values of the basic canonical observables that coordinatize the classical phase
space. These provide a natural projection from the quantum phase space to the classical
phase space, and it is possible then to show that the quantum phase space has the structure
of a bundle whose base space is the classical phase space. Vertical vectors are those that
are tangent to the fibers; that is, which have only components in directions along which the
expectation values of the canonical observables does not change. The symplectic form allows
us to construct a notion of horizontal vectors (those orthogonal, with respect to Ω, to the
vertical vectors), and hence horizontal sections. The key property of these horizontal sections
is that if we pull back the symplectic form to any such section, it gives precisely the classical
symplectic form. Since each horizontal section is coordinatized entirely by the canonical
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observables, this means that each horizontal section may be viewed as an embedding of the
classical phase space into the quantum phase space. There is additionally a close connection
between such horizontal sections and generalized coherent states; but as we shall not need
this connection we refer the interested reader instead to [54]. The one fact we do take away
from that analysis is that every horizontal section has the property that the uncertainties
in each of the canonical variables is constant on the section.

So, we see then that since horizontal sections can provide us a natural embedding of the
classical phase space in the quantum phase space, from which we can recover the classical
symplectic structure as simply the horizontal part of the quantum symplectic structure,
that we are in an excellent position to ask about effective semi-classical dynamics. Since
(Gaussian) coherent states of any (given) fixed width have the property that the quantum
uncertainties of each of the basic canonical observables are constant, it follows that each such
collection of coherent states (one coherent state for each point in the classical phase space)
comprises a horizontal section that is naturally viewed as an embedding of the classical
phase space. At the moment, of course, there are many such embeddings; one of course
for each possible width of a Gaussian, but also for all other generalized coherent states.
This ambiguity comes about because we have so far considered only the kinematics of the
problem. Once we consider the dynamics, however, there is a natural criterion to apply: we
look for horizontal sections that are preserved by the Hamiltonian flow. Such sections will
provide not only an embedding of the classical phase space into the quantum phase space,
but the quantum dynamics on such a section can be described through an effective classical
Hamiltonian on the classical phase space; the value of that effective classical Hamiltonian
will be simply the expectation value of the quantum Hamiltonian operator.

Of course, we have a priori no guarantee that there will be any horizontal sections
that are preserved under the quantum evolution. In [54] the existence of such sections is
considered for the simplest possible Hamiltonian: the simple harmonic oscillator. There, it is
found that there is precisely one such horizontal section: the section consisting of Gaussian
coherent states whose width is that given by the length scale d of the Hamiltonian. All
other sets of Gaussian coherent states of fixed width, while necessarily forming horizontal
sections, are not preserved by the dynamical flow since the Hamiltonian flow on such sections
has a vertical as well as horizontal component. On the unique preferred section, where the
dynamical flow is purely horizontal, the expectation value of the simple harmonic oscillator
Hamiltonian turns out to be exactly equal to the classical harmonic oscillator Hamiltonian,
yielding the expected result that the effective classical dynamics for the quantum system in
fact corresponds precisely with the classical dynamics.

For so simple a system as the simple harmonic oscillator, this is not a surprising result
(indeed, the only problem would have been to not obtain this result, as it is well known).
Our real question is how far we can carry this program forward for more complicated Hamil-
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tonians, particularly those relevant to loop quantum cosmology. That is, is it the case that
we can find a horizontal section of the quantum phase space (viewed as a bundle over the
classical phase space) that is preserved by the quantum evolution of the system? There
either may be no such section, or it may be difficult to determine whether there is. In either
case, as a first attempt at addressing the problem we may seek some form of approximation.
Heuristically, we seek either a section that is almost horizontal and preserved by the quan-
tum evolution, or a horizontal section that is almost preserved by the evolution, or both. In
each case, we have not quantified what we mean by ‘almost,’ and doing so remains an impor-
tant open question. For loop quantum cosmology we shall, however, present some evidence
to support the claim that there is an almost horizontal section that is almost preserved by
the Hamiltonian evolution; specifically, we shall find a consistent approximation scheme (at
least for dust filled universes) where this is true.

Also, we wish to emphasize that the failure of some semi-classical state to lie on a
horizontal section preserved under evolution does not mean that the quantum evolution
of such a state is far from semi-classical. It only means that the full quantum evolution
cannot be incorporated entirely in terms of an effective Hamiltonian on just the classical
phase space. In terms of equation (4.1.47), a horizontal section for that is preserved by
the quantum evolution is one for which the ‘smaller corrections’ on the right hand side
vanish entirely: the complete dynamics can be encoded into a Hamiltonian (in this case,
more specifically a potential) defined on the classical phase space. But even if these smaller
corrections are not exactly zero, it can still be the case that they are very much smaller than
the leading classical term (at least) and so we still have approximately classical behavior.
It may even be the case that the corrections are smaller than the ‘corrected potential,’ in
which case we can even meaningfully find corrections to the classical equations of motion
that are induced by quantum effects. In effect, this is what we are claiming occurs when we
make the approximations sketched above.

Indeed, exactly such behavior was found in at least one other investigation of the semi-
classical dynamics of quantum cosmology. In [56] it was found, within the framework of the
consistent histories approach to quantum mechanics, that the quantum dynamics in suitable
regimes of quantum mechanics did follow the classical dynamics, plus the addition of small
effective forces. However, these forces were generally non-local in time, depending upon the
entire history of the quantum state. Such non-local forces are simply an indication that the
true phase space of the system is not the classical one, but a larger space. As long as such
terms are small, however, we may still be near a domain where we can use and effective
Hamiltonian. Part of our goal, therefore, is to ‘split’ these terms into corrections that come
from an effective Hamiltonian on the classical phase space, and still smaller corrections that
cannot be so incorporated.
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4.2 Calculating the corrections

Having outlined in the last section the general strategy that we wish to follow, we turn now
to implementing it in the specific case of loop quantum cosmology.

While the general strategy requires us to find a horizontal section of the quantum phase
space that is preserved by the quantum evolution, we shall, as we indicated at the end of
the last section, not satisfy this requirement exactly. Instead, following [20], we shall first
restrict attention to sections comprised of Gaussian coherent states of the form (4.1.12).
We see immediately that unless these coherent states remain coherent under the quantum
evolution, there is no hope that the section is exactly preserved by the quantum evolution.
Clearly this is at best an approximation; the question is just how good the approximation
is.

It will not be perfect, but for the case of the Hamiltonian constraint in loop quantum
cosmology we have particular reason to think it may be better than average. That comes
from the following. If we multiply the expectation values given in (4.1.17) and (4.1.18)
together, we find that to lowest order our coherent states satisfy:

∆c∆p =
γκ

3
~
2
, (4.2.1)

that is, they saturate the Heisenberg uncertainty bound. This is not surprising, as it is true in
the Schrödinger representation as well and indeed is a well known property of coherent states.
What is surprising is that if we time evolve this product of uncertainties, to lowest order
the time derivative of the left hand side of (4.2.1) vanishes, for our particular Hamiltonian
(for the proof of this result, see appendix B.3). This strongly suggests that coherent states
evolve to other coherent states, at least to a high level of approximation.

Thus, our task becomes deciding how to choose the width of those coherent states as a
function of phase space. To be an exactly horizontal section, it must be the case that this
width is in fact constant. So here again we shall make another approximation, whose validity
we examine later, and we will allow the width to vary as a function on the (classical) phase
space, in order to have evolutions valid for all time (we will see why this is necessary shortly).
Such sections therefore cannot be exactly horizontal, but we shall argue in section 4.2.2 that
they are ‘approximately’ horizontal. Quantifying and proving this assertion is again an
important question deserving of more study than we shall be able to give it here.

So once we have decided to allow the width of the Gaussian to vary over phase space,
what restrictions can we place on it? Because we are now considering the dynamics of the
Hamiltonian constraint, we no longer work in Cyl? but, as in chapter 3, restrict ourselves to
the Hilbert space associated to a regular lattice. This time we focus on the regular lattice
|nµo〉 determined by the fundamental length scale µo. Suppose we pick some point (c,Nµo)
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of the classical phase space; then the appropriate coherent state in the Hilbert space is:

|ψ〉 =
∑

n

e−
1
2
ε2(n−N)2e−

iµoc
2

(n−N) |nµ0〉 (4.2.2)

Here we have defined as before the parameter ε := µo/d, where d is the characteristic ‘width’
of the coherent state.

What restrictions do we want on N , c, and ε? We do not expect even approximately
semi-classical behavior for all regions of phase space, so we must have some restrictions on
c and N . We first list all of these restrictions (they are the same as those used in [20]) and
then comment individually on their physical motivation:

1. N � 1

2. c� 1

3. Nε� 1

4. ε� c.

Because of the definitions of our variables, the first requirement physically corresponds
to p � `2Pl. That is, we want a large scale factor. This may seem intuitively obvious
given that we are concerned with times late compared to the Planck scale, but recall that
because we are in an open universe, the total volume is infinite and it is not as clear what
this requirement means. However, returning to (4.1.11) we see that this is equivalent to
requiring that the volume of our fiducial cell be much larger than the Planck volume.

The second requirement is that the extrinsic curvature integrated over the fiducial cell
should be small; this again corresponds to late times. We already know that if we do not
have c� 1, then in general the expectation value of ĉ will not be close to its classical value.
We can gain a little more insight into this requirement by noting that for a dust or radiation
filled universe, this requirement reduces to requiring ȧ� clight. In terms of the scale factor
at some initial time τ0, this in turn means that a0 � τ0, since ȧ0 = a0/τ0 for both dust
and radiation. Thus, we see that for dust and radiation filled universes requirement two is
equivalent to the requirement that the total volume of the fiducial cell be much less than the
volume of the observable universe. This, together with requirement one, tells us that the
time τ0 must be much greater than the Planck time. Moreover, for the evolutions of dust or
radiation filled universes, if requirements one and two hold at some initial time, then they
continue to hold at all later times.

In requirements three and four we first meet restrictions on ε. These two requirements
can be motivated by noting that they are equivalent to requiring

∆N
N

� 1,
∆c
c
� 1. (4.2.3)
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That is, we want the uncertainties in our canonical variables to be much less than the
expectation values of those variables. We can meaningfully apply this criteria because
unlike the case, for instance, of a simple harmonic oscillator, at no time in our evolution
(in a semi-classical domain) do either of N or c become zero. The variable c asymptotically
approaches zero for late times in dust and radiation filled universes, but still never reaches
it.

We can combine these restrictions into the single series of inequalities:

1
N
� ε� c� 1 (4.2.4)

In this form we see that in particular we must have 1/N � c� 1.
We also note that it is this equation which tells us that we cannot have an exactly

horizontal section if we want to consider evolution for all times, because c approaches zero
as the time approaches infinity, and so there is no constant value we can assign for ε that
satisfies (4.2.4) for all sufficiently late times.

With these restrictions in mind, we may now make the necessary calculations of our
needed expectation values, and use these restrictions as we make our approximations.

4.2.1 Asymptotic expansions for 〈Ĉ〉, 〈ċ〉, and 〈ṗ〉

We know that we need the expectation value of the Hamiltonian constraint, since that is
what gives us our effective classical Hamiltonian. However, in order to apply our criteria
that the vector field on phase space generated by our assignment of semi-classical states be
Hamiltonian, we shall also need the expectation values of ċ and ṗ. We calculate all three in
this subsection, but we only outline the calculation of 〈Ĉgrav〉 in any detail, since the other
calculations are similar.

A word on notation: for simplicity, from here onward we drop the notation to indicate
that Ĉgrav depends on µo, but of course the dependence is still there.

We remind the reader that the way we calculate the necessary expectation values is to
use the non-symmetrized constraint, and then take the real part of the resulting expression
at the end of the calculation. Starting from the state (4.2.2) and the result (2.4.14) that
〈Ψ |Ψ〉 =

√
π/ε, we find from our expression for the action of the Hamiltonian constraint
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(4.1.42) (with the appropriate factor of sgn p = sgnn included) that:

〈Ĉgrav〉 =
3ε√
π

(κγ3µ3
o`

2
Pl)

−1
∑
n,n′

e−
1
2
ε2[(n′−N)2+(n−N)2]e

iµoc
2

(n′−n) sgnn

×
(
V(n+1)µo

− V(n−1)µo

) [
〈n′µo | (n+ 4)µo〉 − 2〈n′µo |nµo〉+ 〈n′µo | (n− 4)µo〉

]
=

3`Plε

κ
√
π

(6γµ3
o)
− 3

2

[
e2iµoc

∑
n

e−
1
2
ε2[(n+4−N)2+(n−N)2]

(
|n+ 1|

3
2 − |n− 1|

3
2

)
sgnn

+
∑

n

e−ε2(n−N)2
(
|n+ 1|

3
2 − |n− 1|

3
2

)
sgnn

+e−2iµoc
∑

n

e−
1
2
ε2[(n−4−N)2+(n−N)2]

(
|n+ 1|

3
2 − |n− 1|

3
2

)
sgnn

]

=
3`Plε

κ
√
π

(6γµ3
o)
− 3

2

[
e2iµoce−4ε2

∑
n

e−ε2(n−N)2
(
|n− 1|

3
2 − |n− 3|

3
2

)
sgn (n+ 2)

+
∑

n

e−ε2(n−N)2
(
|n+ 1|

3
2 − |n− 1|

3
2

)
sgnn

+e−2iµoce−4ε2
∑

n

e−ε2(n−N)2
(
|n+ 3|

3
2 − |n+ 1|

3
2

)
sgn (n− 2)

]

=
3`Plε

κ
√
π

(6γµ3
o)
− 3

2

[
e−4ε2+2iµ0c

(
S−1,2(N, ε)− S−3,2(N, ε)

)
− 2

(
S1,0(N, ε)− S−1,0(N, ε)

)
+ e−4ε2−2iµ0c

(
S3,−2(N, ε)− S1,−2(N, ε)

)]
(4.2.5)

In going from the first equality to the second we have used the value (4.1.11):

Vµ = `3Pl

(γ
6

) 3
2 |µ|

3
2 . (4.2.6)

of the volume eigenvalues Vµ; in going from the second equality to the third we have com-
pleted the squares in the real exponentials and shifted the indices of summation; and in
going from the third equality to the last we have defined:

Sm,k(N, ε) :=
∑

n

e−ε2(n−N)2 |n+m|
3
2 sgn (n+ k). (4.2.7)

We emphasize that the expression (4.2.5) is exact ; no approximations have been made,
nor have we had to use any of our assumptions (4.2.4) about what states and phase space
points (c,Nµo) should correspond to semi-classical behavior. If we do use the assumption
that ε is small (as we must, for a sharply peaked state) then we see from (4.2.5) and (4.2.7)
that it is not at all clear what the ‘leading order’ behavior of this expression is. That is
because for small ε, the sums of (4.2.7) converge very slowly, and so once again we cannot
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approximate them well by keeping only the first few terms.
We have encountered this problem several times before in this thesis, and we shall apply

the solution that has been so successful before: Poisson re-summation to convert the slowly
convergent sums of (4.2.7) into rapidly convergent sums that we may easily approximate by
using the first few terms (actually, simply the first).

Now, however, we will encounter several new technical complications when we attempt
to apply the Poisson re-summation formula. We recall that this formula is premised on the
identity ∑

n

f(n) =
∑

n

∫ ∞

−∞
e2πinyf(y) dy, (4.2.8)

valid whenever the sums and integrals all converge. An inspection of (4.2.7) shows that now
we will obtain integrals that we will not be able to evaluate in any (useful) closed form; we
shall have to approximate these integrals. We will do that by using the method of steepest
descents, and that in turn introduces an additional complication, because to apply that
technique (which requires us to move the contour of integration) we must have an analytic
integrand and f(n) for the sums (4.2.7) is not analytic anywhere, because of the absolute
values in its definition.

Thus, we shall proceed in two steps. We break up each sum Sm,k into a sum of a function
that is analytic, and another sum whose magnitude will turn out to be exponentially small
in comparison. We then apply Poisson re-summation to the sum with analytic summand,
and evaluate the integrals appearing in the re-summation using the method of steepest
descents. This in turn will lead us to an asymptotic expansion for the analytic sum, and
hence ultimately for 〈Ĉgrav〉 as well.

Thus, we begin by defining:

Sm,k(N, ε) = Sm(N, ε) + δSm,k(N, ε) (4.2.9)

where:

Sm(N, ε) =
∞∑

n=−∞
e−ε2(n−N)2(n+m)

3
2 (4.2.10)
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and:

δSm,k(N, ε) =
∞∑

n=−∞
e−ε2(n−N)2 |n+m)|

3
2 sgn (n+ k)

−
∞∑

n=−∞
e−ε2(n−N)2(n+m)

3
2

=
max (−m,−k)∑

n=−∞

(
e−ε2(n−N)2 |n+m)|

3
2 sgn (n+ k)− e−ε2(n−N)2(n+m)

3
2

)
(4.2.11)

We show in appendix B.2 that we may bound |δSm,k| by an exponentially suppressed
term, so we set aside that contribution to Sm,k for the moment and focus on calculating
Sm(N, ε).

Applying Poisson re-summation to Sm(N, ε) we get:

Sm(N, ε) =
∑

n

∫ ∞

−∞
e−ε2(y−N)2e2πinx(y +m)

3
2 dy

= N
5
2

∑
n

∫ ∞

−∞
e−N2ε2(x−1)2e2πinNx

(
x+

m

N

) 3
2
dx

(4.2.12)

In order to evaluate this integral we apply the method of steepest descents, which in our
case is the same as completing the square in the (complex) exponential:

−N2ε2(x− 1)2 + 2πinNx = −N2ε2
(
x− 1− iπn

Nε2

)2

+ 2πinN − π2n2

ε2
, (4.2.13)

so that:∫ ∞

−∞
e−N2ε2(x−1)2e2πinNx

(
x+

m

N

) 3
2
dx

= e−
π2n2

ε2

∫ ∞

−∞
e
−N2ε2

(
x−1−m

N
− iπn

Nε2

)2

x
3
2 dx (4.2.14)

We are therefore seeking to move the contour from the real axis to the line:

z = 1 + x+
iπn

Nε2
(4.2.15)

for real x. Now, equation (4.2.10)—and hence equation (4.2.11)—requires us to make a
choice of branch cut in order to complete its definition. We now see that this choice of
branch cut is dictated by the requirement that we be able to move the contour to the
steepest path without crossing the branch cut. Thus, inspection of (4.2.15) shows us that
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we must choose the branch cut below the real axis if n > 0, and above the real axis if n < 0.
Accordingly, we choose the branch cut to be the negative imaginary axis for positive n, and
the positive imaginary axis for negative n. When n = 0 there is no need to move the contour
at all, and we choose the branch cut to lie along the negative real axis.

With this convention, we see that

Sm(N, ε) = N
5
2

∑
n

e−
π2n2

ε2 In(N,m, ε) (4.2.16)

where:

In(N,m, ε) :=
∫ ∞

−∞
e
−N2ε2

(
x−1−m

N
− iπn

Nε2

)2

x
3
2 dx (4.2.17)

and our task is now to evaluate, or at least estimate, the integrals In(N,m, ε).
After we move the contour of integration to the steepest path,5 these integrals are:

In(N,m, ε) =
∫ ∞

−∞
e−N2ε2(x−m

N )2
(
x+ 1 +

iπn

Nε2

) 3
2

dx. (4.2.18)

These integrals do not have any (useful) closed form expression. What we seek instead is
an asymptotic series expansion of this integral, in terms of the parameter Nε, which we
know to be large. We can obtain such an asymptotic series by Taylor series expanding the
function

gn(x) :=
(
x+ 1 +

iπn

Nε2

) 3
2

(4.2.19)

in x and integrating the resulting series term by term.
As we prove in appendix B.1, this approach does indeed lead to an asymptotic series

for In(N,m, ε) for each n. However, inspection of equation (4.2.16) shows us that all but
the n = 0 terms will be strongly suppressed, provided that the integral In(N,m, ε) does
not grow too rapidly with n. We therefore also prove in appendix B.1 that we may bound
In(N,m, ε) by:

|In(N,m, ε)| ≤
√

2π
Nε

(
2 +

π2n2

N2ε4

)
e27ε2 . (4.2.20)

Thus, since we will obtain a power series in ε for I0(N,m, ε), we see that we may safely neglect
the contributions from all non-zero values of n, since they are suppressed exponentially
compared to any finite power of ε. Hence we do not use the asymptotic series expansion of
In(N,m, ε) for non-zero n, even though it is available.

5It proves more convenient to keep the term m
N

in the exponential rather than the radical, as this
eliminates the need to further expand the Taylor series coefficients in order to combine the sums appearing
in the expectation value of the constraint.
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We do however need the asymptotic series for I0(N,mε). We find:

I0(N,m, ε) ∼
√
π

Nε

∞∑
l=0

gl

(2iNε)l
Hl(imε). (4.2.21)

Here the Hl(x) are the Hermite polynomials, and the gl are the Taylor series coefficients of
the expansion of (1 + x)

3
2 . Explicitly, the latter are:

gl =

1 for l = 0,
3
2
· 1
2
···( 3

2
−l+1)

l! for l ≥ 1.
(4.2.22)

We now return to the question of the correction term δSm,k. As we have mentioned, we
show it in appendix B.2 to be exponentially suppressed, compared to any finite power of Nε.
This allows us to make use of a property of asymptotic series: they do not uniquely identify
a function, since two functions may have the same asymptotic series if their difference goes
to zero faster than any polynomial in the asymptotic parameter. This is clearly the case for
us, and thus we can simply drop the term δSm,k; it is subsumed by the ‘∼’ relationship.

Hence, when we plug back in all of our expansions, we obtain:

〈Ĉgrav〉 ∼
3`Pl

κ
(6γµ3

o)
− 3

2N
3
2

∞∑
l=0

gl

(2iNε)l

{
e−4ε2+2iµ0c

[
Hl(−iε)−Hl(−3iε)

]
− 2
[
Hl(iε)−Hl(−iε)

]
+ e−4ε2−2iµ0c

[
Hl(3iε)−Hl(iε)

]}
(4.2.23)

Then making use of the parity of the Hermite polynomials:

Hl(−x) = (−1)lHl(x) (4.2.24)

we can re-express this as:

〈Ĉgrav〉 ∼
3`Pl

κ
(6γµ3

o)
− 3

2N
3
2

{ ∞∑
l=0

ig2l

(2iNε)2l

[
e−4ε2 sin (2µ0c)

(
H2l(iε)−H2l(3iε)

)]

+
∞∑
l=0

g2l+1

(2iNε)2l+1

[
e−4ε2 cos (2µ0c)

(
H2l+1(3iε)−H2l+1(iε)

)
− 2H2l+1(iε)

]}
(4.2.25)

We see explicitly from (4.2.25) that because we have not used the symmetrized constraint,
we have obtained a complex expectation value. However, as we have mentioned the solution
to this is simply to drop the imaginary terms; this corresponds to replacing the operator Ĉgrav

with which we calculated (4.2.25) with the operator 1
2(Ĉgrav + Ĉ†grav), which is manifestly
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symmetric. When this is done we obtain for our final expression:

〈Ĉgrav〉 ∼
3`Pl

κ
(6γµ3

o)
− 3

2N
3
2

{ ∞∑
l=0

g2l+1

(2iNε)2l+1

×
[
e−4ε2 cos (2µ0c)

(
H2l+1(3iε)−H2l+1(iε)

)
− 2H2l+1(iε)

]}
(4.2.26)

Equation (4.2.26) gives us a systematic asymptotic expansion of 〈Ĉgrav〉 to all orders.
As we shall soon see, its lowest order term is in fact the classical term, as we should desire.
Before examining this leading order behavior, though, we summarize the results one obtains
not just for 〈Ĉgrav〉, but for 〈Ĉ〉 itself, as well as 〈ċ〉 and 〈ṗ〉, for the cases of both dust
and radiation. To find the time derivative expectation values, we calculate the commutator
of the operator in question with the full quantum constraint, find the expectation value
of this quantity, and then multiply that by −i/~. The sums appearing in the expectation
values can be handled in the same manner as those for 〈Ĉgrav〉 above, by splitting off an
exponentially small, non-analytic sum, applying Poisson re-summation to the remaining
sum, and asymptotically expanding the resulting integral. For completeness the needed
asymptotic expansions are all listed at the end of appendix B.1.

When this is done, we obtain for dust:

〈C〉 ∼ 3`Pl

κ
(6γµ3

o)
− 3

2N
3
2

{ ∞∑
l=0

g2l+1

(2iNε)2l+1

×
[
e−4ε2 cos (2µ0c)

(
H2l+1(3iε)−H2l+1(iε)

)
− 2H2l+1(iε)

]}
+

1
2
E0, (4.2.27)

〈ċ〉 ∼ N
3
2

µ0`Pl

√
6(γµo)

3
2

{[
e−

25ε2

4 cos
(

5µoc

2

)
+ e−

9ε2

4 cos
(

3µo

2

)]

×

( ∞∑
l=0

g2l

(2iNε)2l

[
H2l

(
7iε
2

)
−H2l

(
5iε
2

)
−H2l

(
3iε
2

)
+H2l

(
iε

2

)])

−4e−
ε2

4 cos
(µoc

2

) ∞∑
l=0

g2l

(2iNε)2l

[
H2l

(
3iε
2

)
−H2l

(
iε

2

)]}
, (4.2.28)

〈ṗ〉 ∼ 2`PlN
3
2 e−4ε2

3(6γµo)
1
2

sin (2µoc)
∞∑
l=0

g2l+1

(2iNε)2l+1
[H2l+1(3iε)−H2l+1(iε)] . (4.2.29)

For notational simplicity, we have omitted the hats over operators, and generally shall for
the rest of this section.

To obtain the results for radiation we must use for the matter constraint 1
2E0

√
p0 times
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the inverse scale factor operator, as discussed in section 4.1.2. When we do this, we obtain:

〈C〉 ∼ 3`Pl

κ
(6γµ3

o)
− 3

2N
3
2

{ ∞∑
l=0

g2l+1

(2iNε)2l+1

×
[
e−4ε2 cos (2µ0c)

(
H2l+1(3iε)−H2l+1(iε)

)
− 2H2l+1(iε)

]}

+ E0
√
p0

(
6µo

γ`2Pl

) 1
2

N
1
2

∞∑
l=0

f2l+1

(2iNε)2l+1
H2l+1

(
iε

µo

)
, (4.2.30)

〈ċ〉 ∼ N
3
2

µ0`Pl

√
6(γµo)

3
2

{[
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25ε2

4 cos
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5µoc

2

)
+ e−

9ε2

4 cos
(

3µo

2
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×

( ∞∑
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g2l

(2iNε)2l

[
H2l

(
7iε
2

)
−H2l

(
5iε
2

)
−H2l

(
3iε
2

)
+H2l

(
iε

2

)])

− 4e−
ε2

4 cos
(µoc

2

) ∞∑
l=0

g2l

(2iNε)2l

[
H2l

(
3iε
2

)
−H2l

(
iε

2

)]}

+
12E0

√
p0

γµo`Pl~

(γµo

6

) 1
2
N

1
2 e−

ε2

2 cos
µoc

2

×
∞∑
l=0

f2l

(2iNε)2l

[
H2l

(
iε

2
+
iε

µo

)
−H2l

(
iε

2
− iε

µo

)]
(4.2.31)

〈ṗ〉 ∼ 2`PlN
3
2 e−4ε2

3(6γµo)
1
2

sin (2µoc)
∞∑
l=0

g2l+1

(2iNε)2l+1
[H2l+1(3iε)−H2l+1(iε)] . (4.2.32)

In these equations, fl are the coefficients of the Taylor expansion of f(x) = (1 + x)
1
2 about

x = 0. Observe from (4.2.32) that the expression for 〈ṗ〉 is the same for both dust and
radiation filled universes; this is because the matter term of the Hamiltonian constraint
commutes with p̂.

Equations (4.2.27) to (4.2.29) and (4.2.30) to (4.2.32) represent a complete solution to
the problem of systematically expanding the leading classical terms and corrections to all
orders of the expectation values of the constraint and time derivatives of the canonical
variables. Of course, to actually verify that the leading order term is the classical one, and
to gain some insight into the corrections, we need to look not at these complete expansions,
but just the lowest order terms.

Moreover, as they stand these expansions are not in terms of very useful variables. It
is easy enough to convert the variable N to the canonical variable p using p := 1

6γµ0`
2
PlN .

However, this still leaves us with expressions in terms of p and c, and neither of these is
directly observable. That is because according to our strategy, what we should be treating
as basic observables for the corrected equations of motion are not c and p themselves, but
rather their expectation values. So we define p = 〈p〉 and c = 〈c〉; then from (4.1.15) and
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(4.1.16) we see that p and c are related to the (unobservable) p and c through:

p = p, c =
2
µo
e−

ε2

4 sin
(µoc

2

)
. (4.2.33)

We can then solve the second of these for c in terms of c, and use various trigonometric
identities to replace the trigonometric functions of c appearing in the asymptotic expansions
above with algebraic functions of c.

When we do this, and keep only the leading order and next to leading order terms in
our expansions, we obtain for dust filled universes:

C = −6κ−1γ−2e−
7ε2

2 c2
√
p+

3
2
κ−1γ−2µ2

oe
−3ε2c4

√
p

+ 3κ−1γ−2µ−2
o (e−4ε2 − 1)

√
p+

1
2
E0, (4.2.34)

ċ =
e−

ε2

4

4γµ2
o

√
p

√
1− µ2

o

4
e

ε2

2 c2

[
−
(

3e−
11ε2

2 + e−
3ε2

2

)
µ2

oc
2

+ µ4
0e
−5ε2c4 +

(
e−6ε2 + e−2ε2 − 2

)]
, (4.2.35)

ṗ = 4γ−1e−
15ε2

4

√
p

√
1− µ2

o

4
e

ε2

2 c2 c

(
1− µ2

o

2
e

ε2

2 c2
)

; (4.2.36)

whereas for radiation filled we obtain:

C = −6κ−1γ−2e−
7ε2

2 c2
√
p+

3
2
κ−1γ−2µ2

oe
−3ε2c4

√
p

+ 3κ−1γ−2µ−2
o (e−4ε2 − 1)

√
p+

1
2
E0
√
p0 p

− 1
2

+
E0
√
p0γ

2µ2
o`

4
Pl

384
p−

5
2

ε2
, (4.2.37)

ċ =
e−

ε2

4

4γµ2
o

√
p

√
1− µ2

o

4
e

ε2

2 c2

[
−
(

3e−
11ε2

2 + e−
3ε2

2

)
µ2

oc
2

+ µ4
0e
−5ε2c4 +

(
e−6ε2 + e−2ε2 − 2

)]

−
κγEo

√
p0

6
e−

ε2

4

√
1− µ2

o

4
e

ε2

2 c2

[
1
2
p−

3
2 +

5
384

γ2µ2
0`

4
Pl

p−
7
2

ε2

]
, (4.2.38)

ṗ = 4γ−1e−
15ε2

4

√
p

√
1− µ2

o

4
e

ε2

2 c2 c

(
1− µ2

o

2
e

ε2

2 c2
)
. (4.2.39)

Observe that there are no terms coming from higher orders in the asymptotic expansion
for dust; it it possible to show that all terms from the next order in the asymptotic expansion
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are much smaller than the corrections already included. The same is not true for radiation,
however; there are terms proportional to ε−2 that come from the next order in the asymptotic
expansion and are not obviously smaller than the terms of order ε2 or c4 that also appear
as corrections.

It is also possible using these expansions to see that the leading order behavior is indeed
the classical behavior. So long as ε � c, the leading term in 〈Ĉgrav〉 is the term of order
c2
√
p. When we keep only such terms, we find exactly the classical expressions of (4.1.39) and

(4.1.40), only written in terms of c and p instead of c and p. Moreover, the time derivatives
are given exactly by (4.1.34) and (4.1.35), again provided we make the substitutions of c for
c and p for p. Thus, to leading order the Poisson brackets are not modified either.

It was also shown in [20] that the correct classical equations of motion arise as the leading
order, but that analysis was less thorough than what we have just shown in several respects.
First, that work did not consider the expressions in terms of c and p, but rather c and p,
which as we have noted is not a consistent approach, if one is taking expectation values to
be what a ‘classical’ observer sees. Second, that reference considered only the expectation
value of the Hamiltonian constraint, and did not consider at all the time derivatives or verify
that the Poisson brackets were unmodified. Finally, there was no explicit calculation of the
next to leading order terms, nor verification that the series was in fact asymptotic.

Our ultimate goal, however, is not simply a technically better proof that the correct
classical behavior is obtained from the leading order equations of motion, but a calculation
of the corrections to that behavior as well. That is a more subtle calculation, and we turn
to it next.

4.2.2 Effective classical dynamics: results for a dust filled universe

In this subsection we take up the question of whether the next to leading order behavior of
the dynamics of loop quantum cosmology affords an effective classical description, according
to the program sketched in section 4.1.3. For simplicity, we focus here only on the case of a
dust filled universe, leaving radiation filled universes to future work (we shall comment below
on the difficulty that prevents the radiation filled universe from being straightforward).

As we have already explained, we shall be choosing a section that corresponds to choosing
a Gaussian coherent state for each point in the classical phase space, with ε allowed to vary
from point to point in our phase space, so long as it satisfies all of the restrictions of (4.2.4).
We wish to find a consistent order of approximation such that to that order of approximation
both of the following are true:

1. The section is horizontal,

2. The section is preserved by the quantum evolution.
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For our purposes, we shall say that the section is approximately horizontal if we can (to
our order of approximation) consistently use the classical symplectic structure on the phase
space; as noted earlier it is always the case that the pull back of the quantum symplectic
structure to a horizontal section agrees exactly with the classical symplectic structure.

We shall say that the second criterion holds to our order of approximation if it is true
that

ċ = {c, C}, ṗ = {p, C}. (4.2.40)

In these equations, C is the expectation value of the constraint operator, and the Poisson
brackets are calculated using the classical brackets. On the left hand side we use the expres-
sions found from the exact expectation values of the time derivatives of our basic variables,
as calculated in the preceding subsection.

Now, the order of approximation we wish to make is the following: we will simply neglect
all terms of order ε2 or higher. We must verify that we can do this consistently and still
satisfy the requirements of (4.2.4). For a dust filled universe we shall see that we can; for
radiation we cannot and that is why we defer examination of the radiation filled universe to
future work.

To see that this is consistent for a dust filled universe, we observe that inspection of
equations (4.2.34) through (4.2.36) tells us that we may consistently neglect ε2 terms com-
pared to all others if, in addition to the restrictions contained in (4.2.4), we have ε � c2.
But comparing this with (4.2.4), we see that we would then need 1/N � c2, and so our con-
sistency boils down to verifying that if this inequality holds at an initial time, it is preserved
under time evolution.

But this is easy to check using the classical equations of motion for a dust filled universe.
These imply (setting the constraint for a dust filled universe to zero) that c2 ∝ 1/

√
N , and

so if we have 1/N � 1/
√
N initially, then since N grows without bound as τ increases, this

inequality will continue to hold.
For a radiation filled universe we would again need to have ε� c2, and we would again

find that if this criterion holds initially it continues to hold for all time. The problem,
however, is that from equations (4.2.37) to (4.2.39) we see that we have another term ap-
pearing in the constraint, proportional to p−5/2/ε2. If we require this term to be smaller than
the correction term proportional to c4

√
p, we arrive at an inequality that even if satisfied

initially, will not continue to hold for all time, under the classical evolution.
So, we obtain results in this thesis only for the case of dust filled universes. We are

almost ready to verify that equation (4.2.40) holds, and thus that we have a consistent
approximation, but we have one further subtlety to deal with. As we have mentioned, we
are assuming that we may use the classical symplectic structure to determine the Poisson
brackets. However, this symplectic structure is naturally expressed in terms of the variables
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c and p, rather than the variables c and p that we have available to us, so we should like to
re-express it in the latter variables. Since p = p to within our order of approximation, that
is no problem; we can then calculate:

Ω =
3
κγ
dc ∧ dp

=
3
κγ

(
∂c

∂c

)
dc ∧ dp

=
3
κγ

1√
1− µ2

o
4 c

2
dc ∧ dp.

(4.2.41)

where we have used equation (4.2.33) to calculate the necessary partial derivative. We then
have for the Poisson brackets between any two functions:

{f, g} =
κγ
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)
. (4.2.42)

Thus, we now have all of the ingredients in place to try to verify that equation (4.2.40)
holds, if in fact it does. If we return to equations (4.2.34) to (4.2.36) and insert our approx-
imation, we find:
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Then, using these equations and the definition (4.2.42), we see that (4.2.40) does indeed
hold. Thus, we can make a systematic approximation, and for the dust filled universe,
equation (4.2.43) gives us our effective Hamiltonian constraint function. Note that it is the
classical constraint function plus a small correction term, proportional to c4. Also observe
that this correction comes with a factor of µ2

o, so that it vanishes in the limit where µo → 0.
This corresponds precisely to the limit in which quantum geometry effects are ignored, so we
see that our corrections do indeed represent an effect of the underlying quantum geometry.

Finally, we should say something about the solution of the system given by equa-
tions (4.2.43) to (4.2.45). If we set equation (4.2.43) equal to zero we can solve for c2;
when we do this and keep only the leading and next to leading terms, we can then substi-
tute the result into (4.2.45) and integrate that to find p as a function of time. Again keeping
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only the lowest and next to lowest order terms, we find when we do so that:

√
p ≈

(
3
4
β

) 2
3

t
2
3 − 3γµo

8
β (4.2.46)

where in this equation:

β = 4

√
κE0

6
(4.2.47)

Comparing to equation (4.1.22), we see that we have the same leading order time de-
pendence, plus a small correction that is constant in time and negative. Again we note that
as µo → 0, this correction vanishes, implying its origin in quantum geometry.

Thus, we see that for dust filled universes we are able to carry through our program
and obtain small corrections to the classical equations of motion that are the corrections
induced by quantum gravity effects, within the framework of loop quantum cosmology.
However, there is much that still needs to be understood about this result. Can we quantify—
and verify—the assertions that the section we have studied is ‘approximately’ horizontal
and ‘approximately’ preserved by the quantum dynamics? If so, can we improve on the
approximations, and perhaps find higher order corrections? Finally, can similar techniques
be applied to other forms of matter, particularly a radiation dominated universe? These
questions form the basis of ongoing research.

4.3 Outlook

We have, in this chapter, seen that the polymer particle representation considered in the
preceding two chapters is in fact the representation at the basis of loop quantum cosmology.
Thus, we can apply the techniques and results of those chapters to study the low energy
limit of loop quantum cosmology. We find, for instance, that there is a large supply of
kinematically semi-classical states, as indeed was already noted in [20].

Our main focus, however, has been to study the dynamics of such semi-classical states.
In particular, we found that we could:

• Calculate the expectation value of the quantum Hamiltonian constraint, expanding it
as an asymptotic series whose terms were found to all orders. This was also done for the
time derivatives of the expectation values of the two canonical variables coordinatizing
the phase space.

• Introduce a general framework of when the quantum dynamics of a system admits an
effective semi-classical Hamiltonian description.

• Apply, within certain approximations, this framework to the case of a dust filled uni-
verse to verify both that the leading order effective dynamics coincides with the clas-
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sical dynamics, and also to find the next leading order correction.

It seems widely believed that because loop quantum gravity proceeds by quantizing Ein-
stein’s equations exactly, there are no corrections to the classical equations of motion induced
by the quantum theory. We have shown concretely that this is not the case. Moreover, we
also learned an important lesson for the full theory: in order to have a real expectation value
for the constraint, it was necessary to use a different quantum operator than that ordinar-
ily used in loop quantum cosmology, and this in turn suggests a modification of the scalar
constraint in the full theory. Thus, we see even more directly than in the previous chapters
that even an apparently simple finite dimensional system can have concrete implications for
the full theory.

There are also important questions still unanswered, which will be the subject of ongoing
research. The derivation of the quantum correction to the classical equation of motion
relied on certain approximations; how good are these approximations, and how far can the
correction be trusted? It would also be useful to know how precisely the general definition of
effective Hamiltonian dynamics given relates, for instance, to more familiar notions such as
an effective action: does the definition given allow the construction of an effective action, and
if so does it agree with what is normally obtained? Additionally, we have considered thus
far the corrected equations of motion only for a dust filled universe; can this be extended to
a radiation filled, or to a universe with cosmological constant?

Finally, and most importantly, if the corrections can be robustly established as theo-
retical predictions of loop quantum cosmology, then the key question is what observational
consequences these might have.
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Chapter 5

Integration theory on A for non-compact groups

In this chapter we turn from the questions of the low-energy limit of LQG which have
comprised most of this thesis to questions of a more mathematical nature. In particular,
we look at ways of extending the definition of integration theory on A to the situation
where the gauge group G is non-compact. In doing this we are concerned not only to
develop an integration theory, but more specifically an integration theory that supports a
diffeomorphism invariant measure on A/G such that the flux operators are well defined,
essentially self-adjoint operators.

Although the motivation of the material in this chapter is substantially different from
that in the rest of this thesis, one key construction will carry over: the use of the Bohr
compactification. In fact, for general topological groups a slightly different compactification
known as the almost periodic compactification turns out to be much more relevant. We will
briefly discuss the difference between the two compactifications in subsection 5.2.1; for more
details the reader should consult, for instance, chapter 4 of [57]. We shall not be greatly
concerned with these differences and in particular it is important to observe that for the
only group considered thus far in this thesis—that of the additive real numbers—the two
compactifications coincide.

We begin with a brief review of the construction for the case of compact G, and then
move into a terse review of previous work on this subject, with the central aim of motivating
the use of an algebraic compactification G when G itself is non-compact. Then we illustrate
a viable construction (making use of the almost periodic compactification of the group) in
some detail for two particular cases: the real line (R,+) and the complex unitary group
UC(1).

Next, we turn to more general questions. We show that the construction carried out for
R and UC(1) is possible for any group of the form G × Rn (for compact G), again using
the almost periodic compactification of the group, and that this is the most general case
for which the almost periodic compactification is useful. We then consider the use of other
compactifications for more general non-compact groups, with particular emphasis on the
groups SL(2,R) and SL(2,C) of relevance to 2+1 and self-dual 3+1 gravity respectively. We
find that of several compactifications commonly considered by algebraists, none is effective
in this case, and we outline a set of criteria that any potential compactification must have
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in order to be both physically and mathematically plausible. Finally, we conclude with a
partial ‘no-go’ theorem for the case of SL(2,R) and SL(2,C), which shows that any definition
of measure theory on A with these gauge groups (by way of a compactification) that also
supports flux operators must at the least be quite different from the construction for both
compact gauge groups (using Haar measure on the group) and the construction for G×Rn

(using Haar measure on the almost periodic compactification).
Certain of these ideas have been obtained independently by Lewandowski and Okołów;

also the original motivation for this idea comes from the letter by Ashtekar, Lewandowski,
and Sahlmann [34]. We also include a comparison of our construction with that of Freidel
and Livine [27] for non-compact groups and that of Baez [40] for amenable groups.

5.1 Background material

In this section we first review the construction of A and measure theory on it for the case
of compact gauge groups G, and then next consider previous work on extending the theory
to non-compact gauge groups.

5.1.1 Measure theory on A for compact gauge groups

In section 2.2 we have already briefly reviewed the construction of the space A for quantum
geometry. Here we recall some aspects of that overview, as well as some other considerations
in the construction of measure theory on a compact gauge group that will be important as
we examine ways to extend this construction to non-compact gauge groups. Our purpose is
not to give a thorough review of all aspects of the construction, nor even all major aspects
of the construction. For a thorough but pedagogical review we instead refer the reader to
section IV of [1]; for representative earlier work see [2, 3, 40].

So, let G be a compact, connected, semi-simple Lie group, and consider a smooth man-
ifold M with a G-bundle over it. For simplicity (and because it is the case relevant to
quantum gravity) we assume that the bundle is globally trivial and choose some global triv-
ialization (the case of non-trivial bundles may also be handled [40, 58]). In this case, we
may equate smooth connections to smooth g-valued one forms Ai

a globally defined on M .
Here i is an internal index labeling a basis of g and a is a spacetime index. The canonically
conjugate variables will then be smooth g-valued1 vector densities Ea

i on M (often called
electric fields as they are the analogue of the Yang-Mills electric field), and the Poisson

1Technically, the electric field takes values in the dual g∗ of g. However, because the Killing form on g

is non-degenerate (since we have assumed G semisimple) we can move freely between g and g∗ and shall
frequently do so.
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bracket between any two classical observables f1 and f2 is given by:

{f1(A,E), f2(A,E)} =
∫

M
d3x

(
δf1

δAi
a

δf2

δEa
i

− δf2

δAi
a

δf1

δEa
i

)
. (5.1.1)

The gauge transformations can be identified with the group of G-valued functions g on
M , and they act in the usual ways on our canonical variables:

(A · g,E · g) = (g−1Ag + g−1dg, g−1Eg). (5.1.2)

Our goal is to construct a Hamiltonian quantum theory preserving (for at least a dis-
tinguished set of basic observables) the commutation relations (5.1.1). Moreover, we are
looking for a ‘connection representation,’ where the Hilbert space may be thought of as a
space of functions on the space A of connections, with observables that classically are func-
tions of connections acting by multiplication in this representation. We would then expect
that observables that classically are functions of the canonically conjugate field will act by
differentiation.

As in section 2.2, we proceed by choosing as our basic ‘connection’ observables functions
of the holonomies of a connection along the edges of a graph embedded in M . Let γ be
such a graph, with N analytic edges that meet only in zero-dimensional vertices. Orient
these edges arbitrarily. Every connection A ∈ A determines for each edge e ∈ γ a holonomy
Ae ∈ G (recall that we have fixed a global trivialization). A function ψ(A) is said to be
cylindrical with respect to the graph γ if it depends on A only through the values of the N
holonomies {Aen}; i.e., it is of the form

Ψ(A) = ψ(A1, . . . , An). (5.1.3)

As before, the space of all such functions for a particular γ is denoted by Cylγ : those
functions cylindrical with respect to the graph γ. We can form the space of all cylindrical
functions simply as the union of the Cylγ over all closed, piecewise analytic graphs with a
finite number of edges:

Cyl =
⋃
γ

Cylγ . (5.1.4)

Again, as we found in section 2.2, we may use the Haar measure on the group G to
introduce a natural inner product on Cyl; for any two Ψ1,Ψ2 ∈ Cyl we put:

(Ψ1,Ψ2) =
∫

γ
ψ1ψ2 dµ

(N)
H . (5.1.5)

On the right hand side, we are integrating over some graph γ that contains both the of the
graphs γ1 and γ2 on which Ψ1 and Ψ2, respectively, are based. To extend the definition of
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Ψ1 and Ψ2 to such a graph, we simply define them to be constant on the edges which must
be added to γ1 or γ2 to obtain γ. The right hand side of (5.1.5) is independent of which
such graph γ precisely because we are using the normalized Haar measure; it is possible to
normalize the Haar measure precisely because the constant functions are integrable. This
crucial difference between the case of compact groups (that we consider in this subsection)
and non-compact groups (to which we wish to extend the construction) underlies much of
what we do in the remainder of this chapter.

When we complete Cyl with respect to the inner product (5.1.5) we obtain the polymer
Hilbert space HPoly already considered in this thesis. It is then easy to see that every
cylindrical function Ψ(A) gives rise to a bounded operator Ψ̂(A) that acts on HPoly by
multiplication; the set of all such operators forms the Abelian subalgebra of holonomy
observables. Moreover, it is possible to regard this Hilbert space as L2(A, dµAL) for a
compact, Hausdorff space A and a regular Borel measure µAL on that space. Since the
space of connections on a fixed graph is isomorphic to GN , it is possible to show that the
space A is in fact an uncountable direct product of copies of the gauge group G, one for
each edge in each possible graph. Despite the fact that the product is uncountable, since
each space is compact and Hausdorff the resulting product space is, by Tychonoff’s theorem,
itself compact and Hausdorff.

Also important for our considerations are the operators canonically conjugate to the
connection operators. These, as we indicated in section 2.2, are the flux operators. They
depend upon a smooth two dimensional surface S and associated smooth, g∗-valued function
fi on S. The action of any such flux operator on a cylindrical function Ψ based on a graph γ
depends upon the nature of the intersection of γ and S and the value of fi at isolated points
of intersection of γ and S. We will not discuss the construction of these operators in any
further detail (see [1] for such details), except to note one crucial fact: they are constructed
out of left and right invariant vector fields on the group G. One such operator Ĵe acts on
each edge e of a given graph, with the choice of left or right invariant operator determined
by the orientation of the edge.

These left and right invariant vector fields may be defined by their action on an arbitrary
smooth function f on G. That action is:

Li(f(g)) =
d

dt
f(getτi), Ri(f(g)) =

d

dt
f(e−tτig) (5.1.6)

and one readily checks that either of {Li} or {Ri} is isomorphic to g. For the Hilbert
space L2(G, dµH) on the group (note that the Hilbert space Hγ for a given graph is simply
the direct sum of one copy of L2(G, dµH) for each edge in the graph), the corresponding
quantized operators are easily constructed; one simply includes an i on the right hand side
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of (5.1.6):

L̂i(f(g)) = i
d

dt
f(getτi), R̂i(f(g)) = i

d

dt
f(e−tτig). (5.1.7)

The important fact for us is that the operators of (5.1.7) are self-adjoint when acting
on the Hilbert space L2(G, dµH). This in turn is what allows the flux operators (acting on
HPoly) to be self-adjoint. It is easy to check this directly, but for our purposes a more useful
verification is to note that these operators exponentiate to continuous, unitary operators
implementing left and right translations on the group. Unitarity follows because we are
using Haar measure to define our Hilbert space. Continuity follows from the following.
Let f be any smooth function on G. Then the Haar measure defines a continuous linear
functional on the algebra C(G) of all continuous functions on G via:

µH(f) :=
∫

G
f dµH . (5.1.8)

Now, for an arbitrary element g ∈ G let gf denote the left translate of f , and fg the right
translate. Weak continuity of the unitary action of left and right translations is equivalent
to the assertion that for any one-parameter subgroup gt of G, the following are continuous
functions of t:

µH(h gtf) and µH(h fgt) (5.1.9)

for any continuous functions h and f on G. This continuity holds because for a compact
group, any continuous function is in fact uniformly continuous under both left and right
translations [59], and the mapping µ : C(G) → C is continuous by the Riesz representation
theorem.

Finally, we note one more important fact about the construction of integration theory on
A: the spin-network decomposition. This is a decomposition of the polymer Hilbert space
HPoly into orthogonal subspaces. We have already noted that this can be done in section
2.2 for the specific case of G = SU(2); there we found the decomposition

HPoly =
⊕
γ,~j

Hγ,~j (5.1.10)

where the symbol ~j denotes a labeling of the edges of γ by irreducible unitary representations
of SU(2), i.e., by spins. For a general compact group G, a similar decomposition applies in
terms of the irreducible unitary representations of G, or what will be more useful for us,
the matrix elements of such unitary representations. This decomposition for L2(A, dµAL)
follows from the decomposition of L2(G, dµH) that is given by the Peter-Weyl theorem [1].

We have thus briefly reviewed the salient features of the construction of L2(A, dµAL) and
important operators on it. For convenience, we now list the crucial properties of integration
on the gauge group G itself that were used in this construction. We formulate these in an
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‘algebraic’ form that will be better suited to our use in the rest of this chapter. This requires
the concept of a mean, which may be defined for any regular, positive Borel measure µ on
G in the same manner as µH was defined in (5.1.8):

µ(f) =
∫

G
f dµ (5.1.11)

This mapping is usually termed a positive linear functional in the physics literature, but we
shall use the terminology mean both because it is common in the mathematical literature
on which we shall rely, but more importantly because it is more specifically suited to our
case, being a special case of a positive linear functional. That is because a positive linear
functional is defined for any C∗-algebra, whereas the term mean is generally reserved for
Abelian C∗ sets of functions. Moreover, a mean is required to be bounded; i.e., to satisfy
inf f ≤ µ(f) ≤ sup f .2 This in turn means it is automatically normalized if the C∗-algebra
in question is unital.

The important properties of the mean µH and the algebra C(G) of all continuous func-
tions on the group G (on which µH is defined) are therefore the following:

1. The constant function 1G is an element of C(G), and the mean is normalized, µH(1) =
1 (as we have noted the latter is a consequence of the definition of a mean, but we
repeat it for emphasis). This is needed to allow the definition in (5.1.5) of the inner
product between functions defined on different graphs, and to ensure that that inner
product does not depend on the choice of the larger graph γ containing both γ1 and
γ2.

2. The mean is invariant under both left and right translations; µH(gf) = µH(f) =
µH(fg) for all f ∈ C(G) and all g ∈ G. This is needed both to ensure unitarity
of left and right translations in the Hilbert space (and therefore ultimately the self-
adjointness of flux operators on HPoly), and also to ensure that the construction does
not depend on the choice of trivialization made at the outset.

3. For any f, h ∈ C(G), and any one-parameter subgroup gt in G, both µH(h gtf) and
µH(h fgt) are continuous functions of t. The importance of this property is that it
guarantees that the unitary representations of left and right translations provided
in item 2 are in fact continuous, and therefore by Stone’s theorem have self-adjoint
generators. Therefore, this property is also necessary for the existence of the flux
operators on HPoly.

2In fact, the complete definition of a mean on a linear subspace F of the algebra Cb(X) of all bounded,
continuous functions on some topological space X is that it is a linear functional from F to C with the
further property that inf f ≤ µ(f) ≤ sup f whenever f ∈ F is real-valued.
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We shall soon see that analogues of all three of these properties seem necessary for any
successful construction of an integration theory on A when G is non-compact.

5.1.2 Previous work

Now we consider what goes wrong when we try to extend the construction outlined in the
previous subsection to spaces of connections with non-compact gauge group.

The construction of A itself goes through without difficulty: it is still the case that for
each graph we can identify the space of connections restricted to that graph with GN . We
can then consider the projective limit of all graphs [2, 3] which still exists as a topological
space. It is no longer compact, but that is a priori not a problem; after all, why should A
be compact when G itself is not?

The difficulties occur, however, when we attempt to construct a measure on A. For a
given, fixed graph γ there is still no difficulty: we can construct the Hilbert space Hγ of
all square integrable functions with respect to (dµH)N on GN . Note, however, that the
constant functions are no longer integrable, since G is not compact. And therein lies the
problem: when we attempt to define an inner product between functions based on distinct
graphs γ1 and γ2, as we did in the compact case in equation (5.1.5), we can no longer ensure
that the inner product is independent of the larger graph γ (such that γ1, γ2 ⊂ γ); indeed,
we can no longer even define the product for arbitrary γ containing γ1 and γ2.

A major attempt around this difficulty was made in [27] by Freidel and Livine. We will
not review this work in any real depth, but will just highlight the central ideas and then
comment on the difficulties associated with their construction.

First, they abandoned the idea of constructing the total Hilbert space as a measure
space—that is, something of the form L2(A, dµ) for some suitable A and µ—and instead
aim to directly generate a Hilbert space by generalizing the spin network construction.
Second, they work only and directly with the space of gauge invariant functions on the
space of connections, so that at the level of a single graph they consider not Aγ but Aγ/Gγ .

On Aγ/Gγ they can indeed construct a Hilbert space and that Hilbert space is an L2

space, at least for G = SL(2,C) or G = SL(2,R). This space is defined as the completion in
an L2 norm of the space of continuous functions on Aγ/Gγ of compact support. As we have
just seen (and passing to the quotient space Aγ/Gγ does not affect this, as that space is still
non-compact), the difficulty comes in patching together functions based on different graphs.
If all we are aiming for is a Hilbert space, then all we need find is the inner product between
states based on different graphs; it is only by considering different graphs that we probe the
full infinite dimensional configuration space of general relativity. What Freidel and Livine
do is to set all such inner products between distinct graphs to zero; one then obtains a well
defined Hilbert space that is proposed as the analogue of HPoly for non-compact groups.

However, there is a serious defect remaining. We must now consider the action of our
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basic observables in this Hilbert space. When one considers the action of the Abelian part
of the algebra—corresponding to multiplication by cylindrical functions—one finds [28, 60]
that the action is trivial unless the function f is based on the same graph as the state Ψ on
which it acts. Thus, in this representation the holonomy operators leave the states based
on a particular graph invariant; as the flux operators also have this property the resulting
representation of the basic algebra of observables is very reducible: any single graph suffices.

This problem can be directly traced to the assumption that distinct graphs give rise to
orthogonal Hilbert spaces, and one might think that by relaxing this one could eliminate
the reducibility of the representation. However, other problems remain. In particular, it is
possible to show the following [28, 60]:

1. If one assumes that the total Hilbert space may be decomposed as an orthogonal
direct sum of the form H = ⊕γHγ , and if further there is a mild assumption on the
representation π of the ?-algebra of configuration observables, then π(fγ1)fγ2 = 0 if γ1

and γ2 are distinct graphs. Note that no assumption is made that the inner product
comes from a measure on Aγ/Gγ , nor that π acts by multiplication.

2. If instead one does assume that the inner product onHγ comes from a measure (satisfy-
ing a mild condition), and further that π acts by multiplication, then without assuming
orthogonality of the Hilbert spaces corresponding to different graphs, one may show
that the resulting inner product is not positive definite when G is non-compact.

3. Furthermore, if one drops the assumption that π acts by multiplication, but does
assume that the measure is diffeomorphism covariant, then it is still possible to show
that the inner product is not positive definite.

The arguments establishing both of the last two points rely crucially on the assumption
that the measure on Aγ/Gγ is not normalized; i.e., that there are sets with measure greater
than one. As long as the constant functions are not integrable, there seems no natural way to
normalize the measure, and simply choosing some probability measure on G will in general
also fail, as such a measure will not have the right invariance properties.

Thus, at each turn a critical difficulty is the inability to integrate the constant functions
with respect to Haar measure when the group is non-compact, and so it seems natural to
seek for some modification that would allow us to do so.

5.2 Constructing A for non-compact, Abelian groups

In this section we present a construction that can overcome the difficulties mentioned at the
close of the last section, for a class of non-compact Abelian groups. The construction is based
on the use of the almost-periodic functions on the group G, and a resulting compactification
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of the group. It may indeed seem odd to compactify the gauge group if it is initially non-
compact. However, as we saw in the last section, most of the difficulties in constructing a
successful integration theory seem to stem from the fact that the constant functions are not
integrable with respect to the Haar measure. If we seek some algebra of functions that does
include the constant functions, then we are lead, by the Gel’fand-Naimark theorem, to a
compact space, whether we sought such a space or not.

In this section we therefore outline the construction based on the almost periodic com-
pactification of the gauge group. For clarity, we begin slowly, with two simple groups: the
real line, and the complexified circle group, UC(1). We next discuss the approach in its great-
est generality, and then in the final subsection make a comparison with earlier approaches
in the literature.

5.2.1 The real line

Consider first the situation where the gauge group is simply the real line. Before moving
directly to the space of generalized connections, we first review the Bohr compactification
of R and the structures on it that we will need.

We have used the Bohr compactification of R repeatedly in this thesis. As pointed out
earlier, it can be viewed as the spectrum of the C∗-algebra of almost-periodic (AP) functions
on the real line, AP(R). We have not, however, given a general definition of almost periodic
functions, and for completeness we do so now.

In fact, the Bohr compactification is technically the compactification resulting from
the algebra of Bohr almost periodic functions BAP; it just so happens that for Abelian
topological groups this algebra coincides with the AP functions [57]. The compactification
resulting from the almost periodic functions AP in the general case (where AP and BAP
do not coincide) is then normally called the AP-compactification; we shall often use this
terminology for the Bohr compactification as well in cases where the two compactifications
are the same.

So, let us give definitions of both classes of functions. A function f on a topological
group G (in complete generality, we could even consider a semitopological semigroup [57])
is said to be left almost periodic if the set of its left translates is relatively compact in the
norm topology on the algebra Cb(G) of all continuous bounded functions on the group.
Since Cb(G) with the uniform norm is a complete metric space, this definition of left almost
periodicity is equivalent to the assertion that the set of left translates of f is totally bounded.
This in turn means that for any ε > 0 there exists a finite set of points {gi} such that

min
gi

|gf − gif | < ε (5.2.1)

for every point g ∈ G; that is, that each left translate of f is within ε of at least one of the
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left translates of f by an element of the finite set {gi}. Right almost periodicity is defined
analogously, and a function is almost periodic if it is both left and right almost periodic.

The definition of Bohr almost periodic functions is quite similar, except that now instead
of requiring the set {gi} to be finite, we merely require that it be compact. The set of almost
periodic functions is always a C∗-algebra (satisfying moreover some stronger conditions such
as admissibility, which we shall define later in this chapter); in general the Bohr almost
periodic functions do not even form a linear space [57].

However, as we have indicated, for Abelian topological groups the two algebras (and
hence the corresponding compactifications) can be shown to coincide; historically, therefore,
that is why Bohr almost periodic functions were studied first even though in general they
are not well behaved: they were first studied in the context of the additive group of the reals
where they do form a C∗-algebra.

Moreover, for Abelian groups it can be shown [61] that the AP functions are the same
as the algebra generated by the characters of the group; that is, the set of continuous
homomorphisms from the group G to the group U(1). Since the ‘algebra generated’ by a
subset of Cb(G) is simply the set of all functions that can be uniformly approximated by
finite linear combinations of sums and products from that subset, and since for the reals the
characters are precisely the functions of the form exp iλx, we are led back to the definition of
the almost periodic functions that we have used before: they are those bounded continuous
functions whose Fourier series converge uniformly. Thus, they are functions that are the
limit, in the sup norm, of finite linear combinations of functions of the form:

eλ(x) = eiλx (5.2.2)

where λ is any real number. These exponential basis functions clearly separate the points of
R, so the canonical continuous map φ : R → bR is in fact one-to-one (here bR is the Bohr
compactification of R).

The general theory of almost periodic functions assures us that the almost periodic
compactification of any topological group is itself a compact, Hausdorff topological group.
As we are attempting to define a generalization of integration theory on A from the compact
case based on the almost periodic compactification, it is reassuring to know that for a
compact group the almost periodic functions consist precisely of all continuous functions
on the group, and the resulting ‘compactification’ simply gives us back the original group
itself. Hence the approach based on almost periodic functions that we shall develop in this
chapter will automatically give us the familiar construction of measure theory on A if it is
applied when the gauge group is compact.

Since for R the map φ is one-to-one, we know that bR is not trivial. By virtue of being a
compact topological group, bR has a unique, normalized Haar measure µ. We can use this
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measure to construct the Hilbert space L2(bR, dµH) of square integrable functions on bR.
For practical purposes, however, the following two ways of characterizing the measure tend
to be more convenient.

First, let f ∈ AP(R) be any almost-periodic function on the real line, and let µ(f)
denote the mean on AP(R) that corresponds to integration against dµ. Then one may show
that [57]:

µ(f) = lim
t→∞

1
2t

∫ t

−t
f(x) dx. (5.2.3)

From this definition it is obvious that µ is indeed positive; that is, that µ(f) ≥ 0 whenever
f ≥ 0. Moreover, note that the constant functions are integrable and that the measure is
normalized: µ(1) = 1. This is in sharp contrast to the situation where one uses L2(R, dx);
there none of the constant functions are integrable. This in turn will have important impli-
cations when we consider the space of connections in the next subsection.

Alternatively, one may specify µ by giving its action on the basis functions eλ(x):

µ(eλ) = δ0,λ. (5.2.4)

It is not difficult to see that this definition agrees with that in (5.2.3). This definition is
often more convenient for calculations though it is not as straightforward to see that µ is
indeed a mean on the algebra (though of course it is still true).

This mean then enables us to define an inner product between any two AP functions f
and g:

〈f | g〉 = µ(fg). (5.2.5)

For the exponential basis functions eλ this yields:

〈eλ1 | eλ2〉 = δλ1,λ2 . (5.2.6)

When we complete AP(R) with this inner product we obtain the Hilbert space L2(bR, dµH).
Having now a Hilbert space, we naturally look for operators on that Hilbert space. It is

not hard to see that any f ∈ AP(R) gives rise to an operator f̂ that acts by multiplication.
Moreover, the action of these operators respects the ?-structure of the algebra AP(R): for
any f ∈ AP(R) we have f̂ † = f̂ . In particular, for any real λ one can define the ‘holonomy’
operator ĥλ to be multiplication by the function eλ. These {ĥλ} operators are then readily
verified to be unitary.

We can also define a derivation operator through its action on the basis functions eλ:

k̂ eλ = λ eλ. (5.2.7)

This definition is what one would obtain from the definition on the space L2(R, dx), where
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k̂ = (1/i) (d/dx). We can now extend the definition (5.2.7) to all of AP(R) by linearity,
and so obtain an operator that is densely defined on L2(bR, dµ). This operator is easily
seen to be symmetric, and a simple calculation shows that it is essentially self adjoint and
therefore has a unique self adjoint extension to L2(bR, dµ). Finally, it is easy to check that
the commutation relations between ĥλ and k̂ are:

[k̂, ĥλ] = λ ĥλ (5.2.8)

just as they are when the Hilbert space is L2(R, dx).
Thus, we can construct a suitable harmonic analysis on bR to support a non-trivial

Hilbert space with operators corresponding to our basic canonical variables. We must now
‘piece these together’ in a consistent fashion in order to obtain a Hilbert space space that
we may think of as L2(A, dµ).

Accordingly, let M be a manifold with a real line bundle sitting over it. Let γ be an
analytic graph with N edges immersed in M . Given any connection A ∈ A we can associate
a corresponding holonomy, which is an element of R, to each edge of γ. We now want to
define a certain class of functions on A determined by the graph γ. We call a function f

cylindrical with respect to the graph γ if it is of the form

f(A) = f(he1(A), . . . , heN (A)). (5.2.9)

Here hei(A) is the holonomy determined by the connection A along the edge ei of γ. However,
it is not sufficient simply for f to be of the form (5.2.9); it must further have the property
that it is smooth3 and moreover that, if all of the holonomies except hei are fixed at any
real values and f is regarded as a function only of hei , then f is an AP function. This must
hold for any way of fixing the other N − 1 holonomies and for each edge ei in γ.

This definition is precisely the same as used in the compact case, except that in the
compact case there is no need to insist that the restrictions of cylindrical functions to each
edge of a graph be almost periodic. However, as we have already noted, in the compact
case that is because all continuous functions on the group are almost periodic; the usual
construction of A in the compact case coincides with the construction outlined here. Note
that because the constant functions are in AP(R), our cylindrical functions include functions
which are constant on any subset of the edges of γ; this will be important momentarily. We
can now use the inner product on L2(bR, dµ) to define an inner product on our cylindrical
functions. For any two cylindrical functions f and g put:

〈f | g〉 =
∫

(b R)N

f g (dµ)N (5.2.10)

3Since we have not defined a smooth structure on b R, we shall call a function f ∈ AP(R) smooth if
(k̂)n f ∈ AP(R) for each nonnegative integer n.
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We can complete the space of cylindrical functions with respect to this inner product to
obtain a space that we shall refer to as L2(Aγ , dµ). It is then easy to check that any smooth
cylindrical function f defines an operator that acts by multiplication and preserves the ?-
algebra structure of the space of cylindrical functions. Moreover, in complete analogy with
the compact case we may define momentum operators. The operator Ĵe is defined to act
as the identity on the copy of the gauge group corresponding to every edge except the edge
e; on that edge it has the action of the k̂ operator defined in the previous subsection. It is
therefore easy to see that this operator is self adjoint acting on L2(Aγ , dµ).

We note that there is an alternative way of viewing this construction. We have in the
previous paragraphs emphasized an ‘algebraic’ point of view in which we focus on certain
algebras and means defined on them, and then the operators on the corresponding Hilbert
space. However we can instead view things in terms of the Bohr compactification. Then
we would say the following. To each edge we are associating not a copy of the gauge group
R, but rather a copy of its Bohr compactification bR. Since R is canonically embedded in
bR, for any connection on our graph the holonomy will in fact naturally lie also in bR. But
we see now that, unlike the compact case, we must consider ‘generalized connections’ for a
single graph, since we can have holonomies along some edges which lie in bR \R. We are,
from this point of view, restricting ourselves to functions in AP(R) because it is only these
functions that have continuous extensions to bR. We are then using the Haar measure on
bR an proceeding exactly as one does for the case of a compact gauge group.

We therefore finally come to the case of the full Hilbert space of functions on A. To
define this we first define a function f to be cylindrical if it is cylindrical with respect to
some graph γ. We then define the inner product between two cylindrical functions f and g
by finding a graph γ with respect to which both are cylindrical and setting:

〈f | g〉 =
∫
Aγ

f g (dµ)N (5.2.11)

Because of the invariance and normalization of the Haar measure, just as for the compact
case this definition is independent of the graph γ (so long as both f and g are cylindrical
with respect to it). It is then immediate to see that we can define multiplication operators
corresponding to any cylindrical function and likewise electric flux operators constructed
from the momentum operators Ĵe defined on each graph. The electric flux operators are
essentially self adjoint because the momentum operators Ĵe are; and the multiplication
operators corresponding to holonomies are unitary operators.

We emphasize that this construction is possible only because the constant functions
are in AP(R). This means that a cylindrical function with respect to one graph is also
cylindrical with respect to any larger graph, and that we can integrate such functions when
defining our inner product.
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Thus, it appears that the use of the almost periodic compactification does allow one to
overcome significant obstacles encountered in other ways of defining integration on A for
non-compact groups, at least for the simplest case of R that we have considered here. We
turn next therefore to another non-compact Abelian group, UC(1), to see how general this
success might be.

5.2.2 The case of UC(1)

The complexified U(1) group UC(1) is the group of the complex numbers minus the origin
under multiplication; i.e., it is C ∗. It is isomorphic to the product of the group R ∗

+ of
positive reals under multiplication with the circle group U(1). Paralleling our treatment of
R, we first begin with an examination of the almost periodic compactification of C ∗.

In order to find this compactification, we need to know the almost periodic functions
on this group. As we have already observed, this is most easily found by noting that for
an Abelian group, the almost periodic functions are always the closure in the sup norm of
the algebra generated by the continuous characters of the group. Thus, we need to find the
characters of C ∗; that is, continuous homomorphisms from C ∗ to U(1) [62]. We do not wish
to go into the general theory here but we note that these can be found by using the notion
of the ‘dual’ of the group, and using the fact that the group C ∗ factors as R ∗

+×U(1). If we
express an arbitrary nonzero complex number z as ρeiθ for ρ ∈ (0,∞) and θ ∈ [0, 2π) then
one finds that any character of the group C ∗ is labeled by a real number α and an integer
n and is of the form

eα,n(z) = eiα ln ρeinθ = eiα ln |z|ein arg z (5.2.12)

Note in particular that e0,0 = 1, so the constant functions will again be among the almost
periodic functions on the group, as indeed is always the case for any topological group.

We can then define the inner product between two such functions as

〈eα1,n1 | eα2,n2〉 = δα1,α2 δn1,n2 . (5.2.13)

It is not hard to verify that this is indeed a mean on the algebra AP(C ∗), and hence we may
complete the algebra in this norm to obtain a Hilbert space. On this Hilbert space we will
again find that to any AP function there corresponds an operator acting by multiplication
and preserving the ?-structure of the algebra; the operators corresponding to the basis
functions eα,n are all unitary.

We lack therefore only a momentum operator. In order to see what momentum operator
we should use, we must look for invariant vector fields on the group. In our case it is
simple to apply the definition Xξ f(g) = (d/dt)f(getξ) to the basis functions to find, in the
(ρ, θ) coordinate system, the two operators k̂ρ and k̂θ by defining their action on the basis
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functions:

k̂ρ eα,n = α eα,n (5.2.14)

k̂θ eα,n = n eα,n (5.2.15)

We thus see that the basis functions eα,n are eigenstates of the k̂ρ and k̂θ operators. It is
simple to check that these operators are essentially self adjoint and therefore have a unique
self adjoint extension to the entire Hilbert space. This Hilbert space is again of the form
L2(bC ∗, dµ) for the Haar measure µ on the compact topological group bC ∗.

The construction of a Hilbert space with relevant operators for the space of C ∗ connec-
tions exactly parallels the construction for the real line considered earlier and we will not
dwell on it in detail. Once again we are considering connections whose holonomies take
values in the AP-compactification of C ∗ rather than just in C ∗ itself. This has the con-
sequence that since we deal with a compact space and have a unique invariant measure,
we can construct the projective limit just as is done for compact gauge groups. We again
get a representation of the ?-algebra of the cylindrical functions which is non-trivial and
irreducible. Our electric flux operators are again self adjoint; they now have an internal
index since the group is two dimensional.

5.2.3 General applicability of the AP-compactification

With two successful applications of the almost periodic compactification to the construction
of L2(A, dµH) for connections with non-compact structure group, we are naturally led to
ask how far this success can be extended.

Note first that since R ∗
+ is isomorphic as a topological group to R (under the homomor-

phism ln: R ∗
+ → R), in our construction for UC(1) we were actually looking at a group of

the form G×R for a compact group G. In fact, the most general group to which the almost
periodic construction can be applied is any group of the form G × Rn, for some integer n
and any compact (not necessarily Abelian) group G. This is because of the following result4

[63]: every connected locally compact group for which the AP functions separate the points
of the group is of the form G×Rn, for compact G. In particular, it is known that this class
includes all connected, non-compact, locally compact Abelian groups [62].

Thus, such groups of the form G × Rn are clearly the largest for which we can apply
the AP-compactification to construct L2(A, dµH), and it is not difficult to see that we
may apply this construction for every such group. The construction of L2(A, dµH) itself
is a trivial extension of what we have already covered; likewise the ?-algebra of holonomy
operators acts by multiplication. The only real question is to verify that we can construct
flux operators on this space.

4I am grateful to Andrzej Okołów for pointing out this reference to me.
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That in turn depends upon the existence of momentum operators on the AP compact-
ification. Given the form of the gauge group we are considering these are straightforward
to exhibit. Since any AP function on G× Rn is the uniform limit of a sum of functions of
the form f(g)eiα1x1 · · · eiαnxn , we may define our momentum operators acting on these. We
then get left and right invariant vector fields on G acting as usual on the first factor; for
each R factor we have a momentum operator k̂l such that

k̂lf(g)eiα1x1 · · · eiαlxl · · · eiαnxn = αlf(g)eiα1x1 · · · eiαlxl · · · eiαnxn . (5.2.16)

Thus, we have succeeded in giving a construction for all locally compact gauge groups
that are of the form G × Rn for compact (and possibly non-Abelian) groups G. However,
the class of gauge groups for which we have successfully applied the AP-compactification
does not include either of the two groups we are most interested in from the point of view
of quantum gravity: SL(2,R) and SL(2,C). We turn to such groups in the next section, but
first we pause to make a comparison of our work to that of earlier authors.

5.2.4 Comparison with earlier work

We begin by comparing the approach just developed to the approach of Freidel and Livine
[27] that we discussed briefly in section 5.1.2. First, recall that Freidel and Livine’s construc-
tion is based around the use of continuous functions of compact support, C0(G), whereas
ours is based on the algebra of almost periodic functions on a group G, AP(G). What is
the relation between these two algebras? One can show that for any non-compact, locally
compact topological group C0(G) ∩ AP(G) = ∅ [57]. Thus, the approaches are based on
‘orthogonal’ sets of functions.

More significantly, in the Freidel and Livine approach the constant functions are not
among the integrable functions. This means that a function which is cylindrical with respect
to one graph will not be cylindrical with respect to a larger graph. Likewise, when defining
the inner product, functions can only be integrated on the graph to which they ‘belong.’
These features are absent in our approach based on the almost periodic compactification; as
we pointed out, the definition (5.2.11) is independent of the graph used in its definition, so
long as it is sufficiently large that both f and g are cylindrical with respect to it. This means
that we are able to form the projective limit in exactly the same fashion as is done for the
case of compact gauge groups. Similarly, the representation of the ?-algebra is non-trivial
for our construction even when we consider two functions that are cylindrical with respect to
different graphs; this is not true for the Freidel and Livine approach and moreover appears
to be a general feature of any approach similar to theirs.

In summary, the success of the approach described here seems based on the use of
an algebra of functions (the almost periodic functions) that separates the points of the
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group and possesses a mean satisfying all three of the properties 1– 3 listed in section 5.1.1
above. One naturally wonders if there are other algebras and means on them satisfying
these properties. This in turn brings us to a comparison to another previous work that dealt
with non-compact gauge groups, that of Baez [40]. He considered the definition of A for
amenable groups. These are groups for which the C∗-algebra of all continuous, bounded
functions possesses an invariant mean. This class is known to include all compact groups,
all Abelian groups, and all direct products of amenable groups. In particular, therefore,
it contains all of the groups just considered in section 5.2.3. One may therefore justly ask
whether anything new has been accomplished in the present work.

In fact, the treatment of amenable groups in [40] is quite brief. All that is directly shown
is that for amenable groups the limits of G-invariant cylinder functions on A are precisely
the same as the G-invariant functions on A that are limits of cylinder functions. A measure
itself on A for non-compact groups is not actually constructed.

Nonetheless, such a construction is in some sense implicit. It is in fact easy to use any
invariant mean on C(G) to construct a measure onA along the lines we have developed in this
section; one is simply replacing theAP-compactification with the compactification generated
by the C∗-algebra of all bounded continuous functions (the Stone-Čech compactification,
denoted by βG). For any Lie group, at least, the algebra C(G) certainly suffices to separate
the points of G and therefore we have a one-to-one continuous mapping from G onto βG.
Moreover, this algebra will always contain the constant functions and since it is amenable,
the action of left and right translations will be unitary; the first two conditions of section 5.1.1
are met.

However, two difficulties remain, and the first of these is with the last condition of
section 5.1.1. We have no guarantee that an invariant mean on C(G) (whose existence is
guaranteed by the hypothesis of amenability) will be such that the mappings analogous to
those in Eq. (5.1.9) will be continuous. If they are not, then the action of left and right
translations on G, though unitary, will have no self-adjoint generators. Hence we have no
obvious way to construct flux operators. We emphasize that this is not an idle point: in
particular, if the algebra in question is not a subalgebra of the uniformly continuous func-
tions, then there is no guarantee that the unitary semigroups of left and right translations
have self-adjoint generators.

The second key difference is that in the general case of amenable groups, there is in
general not just one invariant mean, but many [57]. This contrasts sharply with the case
of the AP-compactification, whose invariant mean is guaranteed to be unique. While non-
uniqueness is clearly a much less serious problem in this context than non-existence, when
uniqueness is available, it seems desirable to take advantage of it. Moreover, as we have
already alluded, the AP-compactification itself is a compact topological group, and it is in
fact the largest compactification of a given topological group with this property (that is,



112

any other group compactification is a quotient of the AP-periodic compactification). In
particular, the Stone-Čech compactification will not even be a semigroup, for the case of
the real line. Again, while the physical necessity of having a group compactification is not
clear, it does at least suggest that the AP-compactification is the more natural of the two.

Thus, it appears that the use of the almost periodic compactification allows significant
advances over previous attempts to construct HPoly for spaces of connections with certain
non-compact gauge groups. Unfortunately, it has not allowed us to construct the space for
the gauge groups we are most interested in: SL(2,R) and SL(2,C). So in the next section
we consider some generalizations of the ideas considered in this section, to see what they
can tell us about such gauge groups.

5.3 Extension to more general non-compact groups

We know from section 5.2.3 that for groups such as SL(2,R) and SL(2,C) that are not
direct products of a compact group with Rn, the almost periodic functions fail to separate
the points of the group, and so the AP-compactification itself is not useful in constructing
A.

In fact, for the groups SL(n,R) and SL(n,C), with n ≥ 2, this failure is spectacular:
the almost periodic functions consist entirely of the constant functions [57], and so the
AP-compactification of these groups is trivial, consisting of just a single point.

The success we have achieved for locally compact Abelian groups and the nature of the
difficulties with previous work that we outlined in section 5.1.2 strongly suggest that we
should continue to work with a compactification of the gauge group; in other words, we
should insist that the constant functions be among the integrable functions so that we can
‘patch together’ different graphs appropriately. Thus, our task becomes one of identifying a
suitable unital C∗-algebra of functions on G.

That is the task we take up in this section. In the first subsection, we consider several
commonly studied C∗-algebras of functions on topological groups, and find that for various
reasons they are not suitable for the groups SL(2,R) and SL(2,C). We then identify a list
of requirements that any workable choice of algebra would appear to need. In the second
subsection we prove a partial ‘no-go’ theorem that shows that for these groups, at least,
something quite different must happen, if the compactification approach can be made to
work at all.

5.3.1 Difficulties with standard compactifications for SL(2, R) and SL(2, C)

Since the algebra of almost periodic functions is too small for the groups SL(2,R) and
SL(2,C), we need to try a bigger algebra and therefore one possible choice is the biggest of
them all: the algebra Cb(G) of all bounded, continuous functions on the group. Though we
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noted difficulties in using this algebra at the end of section 5.2.4, we may prefer to try to
live with those difficulties rather than have no measure theory on A at all.

Unfortunately, for the groups SL(n,R) and SL(n,C), with n ≥ 2, this approach is not
viable for another reason: these groups are not amenable [57]. They have no invariant means
at all on the algebra Cb(G). Thus, this algebra is too big.

Is there another algebra large enough to separate the points of the group, and yet small
enough to possess an invariant mean? There is at least one: the algebra of weakly almost
periodic functions. Since it would take us too far afield, we do not present the definition of
this algebra (which may be found among other places in [57]), but rather note important
properties that it has for our purposes.

We need two useful facts (both of which may be found in [57]) about the algebra of
weakly almost periodic functions (WAP) on a locally compact, non-compact group. The
first is that for any such group, the algebra WAP contains all of the continuous functions
vanishing at infinity, C0(G). The second is that WAP possesses a unique invariant mean.

This first property ensures that WAP(G) separates the points of the group, and since
it is easy to show that WAP(G) always contains the constant functions, by virtue of the
second fact the first two at least of the properties of section 5.1.1 are satisfied.

However, for the groups SL(2,R) and SL(2,C), at least, there is a catch. Because
the center of these groups is finite (consisting just of ±1) and the groups themselves are
semisimple, the main result of [64] applies: the WAP functions on these groups consist
entirely of the algebra C0(G)+C; i.e., the functions approaching a constant value at infinity.
The problem with this is that the unique invariant mean on this algebra consists simply of
evaluation at the point at infinity [64]. Hence, even though the algebra WAP(G) separates
the points of G, if G is the resulting compactification, we have found that the Hilbert space
L2(G, dµH) is one-dimensional. Physically, this is simply unworkable.

Notice that the AP-compactification of these groups consisted of a single point, and
that the invariant mean on the WAP-compactification consisted of evaluation at a single
point. This is not a coincidence. In general, for any topological group G, the invariant mean
on WAP(G) consists of integration over a group isomorphic to the AP-compactification of
G [65]. Thus, the approach based on WAP functions was in fact doomed as soon as the
approach based on the AP-compactification failed.

We may therefore consider other standard algebras. We shall here be even more terse
than we have been for the WAP algebra: we shall simply state the problem with each
choice, providing a reference to the results needed to establish the difficulty. Definitions of
all of these algebras and a much fuller discussion may be found in chapter 4 of [57]; see
particularly section 4.11 for a useful summary of results and inclusion relations between the
various algebras.

We have seen that for SL(2,R) and SL(2,C) none of AP(G), WAP(G), or Cb(G) are
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usable algebras for our purpose. For other algebras described in chapter 4 of [57] we have
the following results (throughout, G denotes either of SL(2,R) or SL(2,C)):

1. The strongly almost periodic functions SAP. For a topological group, these
coincide with the AP-functions, and so fail to separate the points of G

2. The uniformly continuous functions U . These are functions uniformly continuous
with respect to both the left and right uniform structures of G. By Theorem 2.4.7 of
[57] and the non-amenability of G, this algebra has no invariant mean.

3. The algebras LC ∩ RC, LMC ∩ RMC, and WLC ∩ WRC. By Remark 4.4.2 and
Theorem 4.5.7 of [57], for a locally compact topological group (as G is) each of these
algebras coincides with U , and hence possesses no invariant mean.

4. The set MIN of minimal functions. By Theorem 4.8.10 of [57], this set separates
the points of G. However, it is in general not even a vector space, much less an algebra,
and hence provides us with no useful compactification.

5. The almost automorphic functions AA. By Lemma 4.7.10 of [57] and the triviality
of the AP-compactification of G, the AA-compactification of G is also trivial.

6. The Bohr almost periodic functions BAP. We need functions that are both left
and right Bohr almost periodic, and by Problem 4.10.12 of [57] and the triviality of
the AP-compactification of G, the only such functions are the constant functions.

Several times above we have dealt with the intersections of algebras defined with respect
to some property for both left and right translations. That is because for our constructions,
we need an algebra that is closed under both left and right translations and possesses a
mean invariant under both types of translation.

In the above list, we have dealt with almost all of the algebras of functions considered
in chapter 4 of [57], and found them to be unsatisfactory for one reason or another. This
certainly does not give one much hope for the prospect of creating a useful integration theory
on A when G = SL(2,R) or SL(2,C) by means of an algebraic compactification, but it is
still far from a complete impossibility proof. However, we can first attempt to summarize
what we have learned by listing the properties any algebra A on G must have in order
to provide us with a physically plausible construction. It is assumed throughout that A
contains the constant functions and is closed under complex conjugation and both left and
right translation.

1. A must separate the points of G.

2. A must possess an invariant mean µ.
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3. The Hilbert space L2(G, dµ) must be infinite dimensional. (Here G is the compactifi-
cation of G resulting from the C∗-algebra A.)

We emphasize that all of these conditions are necessary; there are examples of algebras
satisfying any two of them which are each unusable for constructing a suitable integration
theory. In addition, we should also require that the unitary action of left and right transla-
tions (guaranteed by 2 and 3 above) be weakly continuous. This will always be the case if A
is a subalgebra of the uniformly continuous functions; it is not clear if it need hold in more
general settings. However, without it we have no momentum operators and hence no flux
operators onHPoly. It is perhaps conceivable that a theory could be constructed without this
(after all, we do not directly have a connection operator), but such a theory would certainly
be very different from the theory so successfully developed for compact gauge groups.

Thus, we find discouraging results for the gauge groups SL(2,R) and SL(2,C), but still
no definitive proof that a construction along these lines is impossible. Such a proof—or
alternatively, a successful construction—is still lacking, but there is a partial ‘impossibility’
proof available, and we turn to that next.

5.3.2 A partial ‘no-go’ theorem

As the results of the previous subsection indicate that none of the commonly studied algebras
of functions on G give a good construction when G = SL(2,R) or SL(2,C), we next consider
what functions we should like to see in out algebra, if we had the choice.

That question is fairly easy to answer. Recall from section 5.1.1 that when dealing
with measure theory on A for a compact gauge group G we could, by virtue of the Peter-
Weyl theorem, decompose the total Hilbert space into a direct, orthogonal sum over the
Hilbert spaces of each graph and each labeling of a given graph by irreducible unitary
representations of G. This in turn reflected the fact that an arbitrary element of L2(G, dµH)
can be decomposed into a sum of matrix elements of unitary irreducible representations
of G. These matrix elements have the further property that they are eigenfunctions of
the Casimir operator on the group (for SU(2) there is only one Casimir) and this has
important implications for quantum geometry: it is these eigenfunctions which determine
the eigenstates of the area operator, and the eigenvalues of the area operator are determined
from the eigenvalues of the SU(2) Casimir.

Thus, it would certainly be desirable—and would mimic closely the structure of A for
compact gauge groups—if in the non-compact case as well we found that these matrix
elements were among our integrable functions; that is, elements of the C∗-star algebra with
which we compactify the group. What we shall show in this subsection is that for SL(2,R)
and SL(2,C) they cannot be.

This in and of itself is a cause for concern, because a part of the motivation for con-
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sidering these groups comes from work on spin foams, where there are proposals to define
Lorentzian spin foams [66–68], and those are all premised on a labeling of edges with unitary
representations of SL(2,C).

Let us comment a little more on this. In both [66] and [68] it is argued that in Lorentzian
spin foam models the labels of faces by representations of SL(2,C) dictate the area eigen-
values of the corresponding faces. So long as one stays within the confines of spin foam
models, one may take this essentially as a definition, strengthened by the derivation of spin
foam model vertex amplitudes through geometric quantization of the space of assignments
of areas to the faces of a tetrahedron (see [69] for this derivation in the case of Euclidean
models).

As soon as one seeks to make contact with a Hamiltonian theory, however, it is no longer
sufficient to simply postulate such an interpretation, but instead one must construct an
appropriate Hilbert space of states on which there is a densely defined area operator; this
is just another way of looking at our goal of an extension of spin networks to non-compact
gauge groups. Starting from the proposal of Freidel and Livine, in [70] just such a definition
was made for the length and area operators in 2+1-dimensional Lorentzian gravity. However,
as we have already noted there are major physical difficulties with the construction of [27],
and consequently with the conclusions of [70] regarding area and length spectra.

The result of this subsection can be interpreted as showing that such difficulties are
rather generic, for even if one has a definition of a spin foam model for a Lorentzian signature
in which the faces are labeled by irreducible representations of SL(2,C), one cannot find a
corresponding Hamiltonian theory in which there are normalizable spin network states given
by matrix elements of the irreducible representations of SL(2,C).

Before discussing the main result of this subsection and its proof, we must mention several
subtleties that arise in harmonic analysis on a non-compact Lie group. For simplicity, we
shall restrict ourselves to semisimple Lie groups, which in particular are always unimodular;
that is, the left and right Haar measures coincide. This is a fairly broad class that in
particular includes SL(2,R) and SL(2,C), our groups of interest.

First, consider the right regular representation of the group. This is the representation
of the group acting on the Hilbert space L2(G, dµH) of square integrable functions on the
group by g 7→ U(g) where U(g0)f(g) = f(gg0) for all f ∈ L2(G, dµH). As in the case of
a compact group, this representation is unitary on account of the invariance of the Haar
measure. It can also be decomposed into a direct sum or direct integral over irreducible
unitary representations. Unlike the compact case, however, in general this decomposition
will not use all irreducible unitary representations, but only a certain subset, those of the
so-called principal series. Henceforth, we shall be exclusively concerned with the principal
series representations; these also are the only ones used in the existing Lorentzian spin foam
models.
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Another subtlety is that the Casimir operators on the group (the bi-invariant elements
of the enveloping algebra) will in general have a continuous spectrum; we already alluded
to this in the previous paragraph when we mentioned that the decomposition of the right
regular representation can involve a direct integral and not just a direct sum. A more serious
consequence of the continuous spectrum than just the appearance of a direct integral is that
in general the eigenfunctions of the bi-invariant operators may only be distributions, and
not functions on the group. Again, however, we are fortunate in the case of SL(2,R) and
SL(2,C): for these groups, and more generally for any semisimple Lie group with a maximal
compact subgroup, the eigenvectors are actual functions on the group [59].

Let us introduce some notation for these eigenfunctions; in so doing we follow [59] and
[71]. We denote an arbitrary eigenfunction by Dλ

pq(g); here λ denotes the eigenvalues
of the commuting, invariant elements of the enveloping algebra, and p and q label non-
invariant eigenvalues corresponding to the left and right representations. For semisimple
Lie groups with maximal compact subgroup, we then have the following [59]: any function
f ∈ L2(G, dµH) can be decomposed as:

f(g) =
∫

Λ
dρ(λ)

dimH(λ)∑
p,q=1

f̂pq(λ)Dλ
pq (5.3.1)

where the Fourier transform f̂ is given by

f̂pq(λ) =
∫

G
f(g)Dλ

pq(g) dµH . (5.3.2)

Here ρ(λ) is the Plancherel measure on the spectrum of the commuting invariant operators;
it vanishes for λ outside of the principal series, by definition.

These formulas generalize the usual harmonic analysis on compact groups. Note that
while our notation would tend to indicate that the set of eigenvalues {λ} is continuous and
the sets {p} and {q} are discrete, in general any of these sets may be continuous, discrete,
or mixed. For the particular case of SL(2,C), for example, λ corresponds to a pair (ν, ρ),
where ν is a half integer and ρ a nonnegative real number. In this case we then also have
p = (J,M) and q = (J ′,M ′) with J, J ′ = ν, ν + 1, . . . and −J ≤ M ≤ J , −J ′ ≤ M ′ ≤ J ′.
The Dλ

pq then correspond to matrix elements of the unitary representations of the principal
series in the so-called canonical basis [66, 67, 72].

Two facts about theDλ
pq(g) will be very important for us. First, they satisfy the relations:

Dλ
pq(gg

′) =
∑

r

Dλ
pr(g)D

λ
rq(g

′) (5.3.3)

Dλ
pq(g

−1) = D
λ
pq(g) (5.3.4)
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Second, at least for SL(2,R) and SL(2,C), the Dλ
pq(g) go to zero as g goes to infinity. This

fact can be checked directly from an asymptotic expression of the Dλ
pq for the principal series

[73].
That concludes the preliminary information we need about the Dλ

pq(g) themselves; now
we need a few more definitions in order to state and prove our theorem.

We have already defined a mean on a C∗-algebra A of bounded continuous functions on
a group as a positive linear functional on that algebra satisfying inf f ≤ µ(f) ≤ sup f when
f is real. Among the means are also a particular class that we shall need: the multiplicative
means, those for which µ(fg) = µ(f)µ(g) for all f, g ∈ A. Such means, for example,
may be found by evaluating functions at particular points of G. In fact, more generally
the multiplicative means correspond precisely to the spectrum of A [57]; they thus form a
compact Hausdorff space that is the canonical compactification of G by the algebra A.

Next, note that for any mean on A and any function f ∈ A we can define a new function
on G by way of the left introversion operator Lµ:

Lµf(g) := µ(gf) (5.3.5)

The right introversion operator Rµ is defined similarly, in terms of the right translates of
f . An algebra A is then said to be left introverted if Lµ(f) ∈ A for every mean µ on A

and every f ∈ A. Right introversion is defined analogously. An algebra A is then said
to be simply introverted if it is both left and right introverted. It is said to be left m-
introverted if it is closed under the left introversion operators for multiplicative means only;
right m-introversion and m-introversion are defined in the obvious fashion.

The concept of introversion is a central part of the definition of admissibility that we
shall need, and therefore now state:

5.3.1 Definition (Admissibility, m-admissibility) A subspace of the C∗-algebra
Cb(G) of all bounded, continuous functions on a topological group G is said to be an admis-
sible subspace if it satisfies each of the following properties:

1. It contains the constant functions,

2. It is closed under complex conjugation,

3. It is closed under the norm of Cb(G),

4. It is invariant under left and right translations, and

5. It is introverted.

If a subalgebra satisfies all of the above except that in the last requirement m-introversion is
substituted for introversion, then it is said to be an m-admissible subalgebra.
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Our need for this definition is the following theorem, which is 4.2.14 in [57]. We have
simplified its statement considerably as our needs are quite limited.

5.3.2 Theorem Let A be an m-admissible subalgebra of the WAP functions on a topo-
logical group. Then A has a unique invariant mean.

From this theorem, we can deduce the following, the main result of this subsection:

5.3.3 Theorem Let G be either SL(2,R) or SL(2,C). Let A be the C∗-algebra generated
by the constant functions and the matrix elements Dλ

pq of the principal series. If F is any
C∗-algebra containing A and possessing an invariant mean µ, then µ(Dλ

pqD
λ
pq) = 0 for all

matrix elements in the principal series. In other words, they have norm zero in the Hilbert
space L2(G, dµ), with G the F-compactification of G.

Put another way, if the matrix elements are to have non-zero norm, then they must in
fact have infinite norm, and so cannot be elements of the Hilbert space L2(Ḡ, dµ).

Proof: We prove this theorem by showing that the algebra A defined in the hypothesis is
an m-admissible subalgebra of WAP(G). This suffices to establish the theorem because we
already know that for SL(2,R) and SL(2,C) the unique invariant mean on WAP consists
of evaluation at the point at infinity. Theorem 5.3.2 assures us that the mean on A must
then be the same, and we already know that under that mean µ(Dλ

pqD
λ
pq) = 0, since we have

noted above that the matrix elements Dλ
pq go to zero at infinity.

Because of this asymptotic behavior, and because the WAP functions on a locally
compact group always contain the functions that are constant at infinity, we know that
A ⊂ WAP(G); we need only verify that A as defined is m-admissible. That it contains the
constant functions, is closed under conjugation, and is norm closed is immediate from its
definition. By virtue of equation (5.3.3), it is also invariant under left and right translations.

So we need only establish m-introversion. But this too follows from (5.3.3), since for any
multiplicative mean µ we have:

µ
(
Dλ1

p1q1
(g0g) · · · Dλl

plql
(g0g)

)
=(∑

r1

Dλ1
p1r1

(g0)µ
(
Dλ1

r1q1

))
· · ·

(∑
rl

Dλl
plrl

(g0)µ
(
Dλl

rlql

))
. (5.3.6)

Viewed as a function of g0, the right hand side is again in A. Since every element of A is
the uniform limit of expressions of the form on the left hand side of (5.3.6), this is sufficient
to establish left-introversion. Right introversion is handled similarly.

As a consequence of this theorem, any C∗-algebra of continuous functions that we might
try to use in constructing a compactification of G should in fact not contain the matrix



120

elements Dλ
pq, since if it does they would have norm zero in the Hilbert space. This in

turn would imply that all of the area eigenstates of HPoly had zero norm, a physically
unacceptable conclusion. But if the matrix elements are not integrable functions, then the
eigenstates of the area operator will not be normalizable either. Since we are considering a
non-compact group, this is perhaps not surprising; after all, typically when the spectrum of
an operator is a continuous segment of the real line, that segment inherits the usual topology
of R and so the eigenstates of that operator will include generalized eigenstates. However,
that is not what happens with the non-compact Abelian groups considered in section 5.2;
even though the momentum operator had all real numbers in its spectrum, its eigenstates
were still normalizable because the spectrum was in fact R with the discrete topology, not
its usual topology.

5.4 Discussion

Motivated by the desire to formulate loop quantum gravity with directly with SL(2,C) as
its gauge group, in this chapter we have attempted to extend the construction of measure
theory to spaces of generalized connections with non-compact gauge group. Because of the
difficulties encountered in existing approaches with the failure of the constant functions to
be integrable, we were led to look instead at compactifications of the gauge group that arise
as the spectrum of unital C∗-algebras of continuous functions on the gauge group.

For locally compact, connected Abelian groups this strategy is completely successful if
we adopt the almost periodic compactification. More generally, we may use this compactifi-
cation whenever the gauge group is of the form G×Rn for some compact G. However, this
strategy fails for the groups we are most interested in, since the almost periodic functions
fail to separate the points of SL(2,R) and SL(2,C). We likewise found that various other
standard algebraic compactifications failed, and formulated criteria that any successful com-
pactification must meet. Moreover, we were able to prove a partial ‘no-go’ theorem that
establishes that the most obvious generalizations of spin-network states cannot be normal-
izable.

Thus, a key open question is to see whether the no-go result can be extended to com-
pletely exclude any integration theory on A based on compactifying SL(2,R) or SL(2,C),
or whether in fact there is a workable approach along these lines. If the former should turn
out to be true, then in conjunction with the existing constraints on other approaches to
constructing measure theory on A (that do not rely on compactifying G) it would begin to
seem plausible that the passage to the real SU(2) variables is in fact unavoidable.
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Appendix A

Additional proofs and constructions for the polymer

particle

In this appendix we collect together various proofs and concepts related to the polymer
particle model studied in chapters 2 and 3. While useful, these concepts largely fall outside
the main development of the text. They are likely, however, to be of more importance as
the shadow state framework is extended to more complex systems, such as Maxwell fields
and linearized gravity.

A.1 Restrictions on graphs for the polymer particle

In this section we demonstrate that the two restrictions on the allowed graphs in the polymer
particle Cyl ensure that the functions in Schwartz space S are all in Cyl?. We therefore
recall the definition:

A.1.1 Definition A graph γ is a countable collection of points {xi} in the real line R
having no accumulation point. Furthermore, there exists a length `γ such that if I is any
interval whose length `(I) is greater than or equal to `γ, then the number of points n(I) of
γ lying in I satisfies

n(I) ≤ ργ `(I) (A.1.1)

for some constant ργ.

We would now like to show that this definition implies that all functions φ ∈ S are in
fact in Cyl?. Therefore, we assume that φ ∈ S; we now need to show that for any cylindrical
function f the inner product 〈φ | f〉 is a finite complex number.

To do this, let γ = {xj} be the graph with which f is associated. We use our restric-
tion (A.1.1) to group the points {xj} of our graph. We partition the real line into intervals
of the form [n `γ , (n+1)`γ). Then each point xj lies in precisely one such interval, and there
are at most ργ `γ such points in any given interval. We may therefore alternately label each
point xj of γ as xn,k, where the index n identifies in which of the intervals of length `γ the
point lies, and the index k specifies which of the points of the graph in this interval we have.
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Thus, in particular we always have:
k ≤ ργ `γ . (A.1.2)

By the assumption that f is a cylindrical function over our graph we must also have:∑
j∈N

|f(xj)|2 < ∞. (A.1.3)

This in turn implies that there exists some natural number N such that

|f(xn,k)| < 1 (A.1.4)

for all |n| ≥ N .
Finally, since φ ∈ S, it must be the case [74] that there exists some positive real number

Mφ such that

|φ(x)| <
Mφ

1 + x2
(A.1.5)

for every real number x.
With this observation we now have enough to prove our claim that 〈φ | f〉 is a finite

complex number. Indeed, we have:

|〈φ | f〉| :=

∣∣∣∣∣∣
∑
j∈N

φ(xj) f(xj)

∣∣∣∣∣∣ ,
≤
∑
j∈N

|f(xj)| |φ(xj)|, by the Schwarz inequality

=
∑

n

∑
k

|f(xn,k)| |φ(xn,k)|,

=
∑
|n|< N

∑
k

|f(xn,k)| |φ(xn,k)|+
∑
|n| ≥N

∑
k

|f(xn,k)| |φ(xn,k)|.

(A.1.6)

Since the sum over |n| < N is over a finite number of points and both f and φ are finite
everywhere, there is no question of convergence of the first sum on the last line above; it is
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manifestly of the form |CN,f,φ| for some complex number CN,f,φ and therefore we have:

|〈φ | f〉| ≤ |CN,f,φ|+
∑
|n| ≥N

∑
k

|f(xn,k)| |φ(xn,k)|, from (A.1.6)

< |CN,f,φ|+
∑
|n| ≥N

∑
k

|φ(xn,k)|, by (A.1.4)

< |CN,f,φ|+
∑
|n| ≥N

∑
k

Mφ

1 + x2
n,k

, by (A.1.5)

≤ |CN,f,φ|+ ργ `γ
∑
|n| ≥N

Mφ

1 + x2
n,0

, by (A.1.2)

≤ |CN,f,φ|+ ργ `γ Mφ

(
1 + 2

∑
n > 0

1
n2`2γ

)
,

= |CN,f,φ|+ ργ `γ Mφ

(
1 +

π2

3 `2γ

)
.

(A.1.7)

In arriving at the last equality we have used
∑

n > 0 n
−2 = π2/6.

Thus, 〈φ | f〉 is indeed finite, as we needed to show.
By entirely similar reasoning we may prove that for any φ ∈ S and any graph γ that

meets all of the conditions of Definition (A.1.1), the shadow state |φshad
γ 〉 has finite norm

with respect to the inner product on Hγ . Specifically, we have:

|〈φshad
γ |φshad

γ 〉| :=
∑

n

∑
k

|φ(xn,k)|2,

<
∑

n

∑
k

∣∣∣∣∣ Mφ

1 + x2
n,k

∣∣∣∣∣
2

,

≤ ργ `γ
∑

n

M2
φ

(1 + x2
n,0)2

,

≤ ργ `γ M
2
φ

(
1 + 2

∑
n > 0

1
n4`4γ

)
,

≤ ργ `γ M
2
φ

(
1 +

π4

45 `4γ

)
,

(A.1.8)

and this time we have used the sum
∑

n > 0 n
−4 = π4/90.

Finally, we would like to show that the definition of Cyl using graphs that satisfy Defi-
nition A.1.1 is independent of the length parameter `γ . In order to do this, we show that if
a graph γ meets the criteria of Definition A.1.1 for one value of `γ , then it does so for any
other (positive) value.



124

So, let γ be a graph meeting all the conditions of Definition A.1.1 for some particular
`γ . This means that of necessity there exists the positive number ργ of Equation (A.1.1).
Consider now some other length scale `′γ > `γ ; we want to show that there exists some
number ρ′γ such that

n(I) ≤ ρ′γ `(I) (A.1.9)

whenever `(I) ≥ `′γ . But if `(I) ≥ `′γ and `′γ > `γ , then certainly `(I) ≥ `γ and thus (A.1.9)
holds with ρ′γ = ργ .

So next we turn to the case where `′γ < `γ . Obviously (A.1.9) will continue to hold with
ρ′γ = ργ for any interval I such that `(I) ≥ `γ ; the only case we need have any worry about
is `′γ ≤ `(I) < `γ . But for this case we can always find another interval I ′ containing I that
is of length `γ . Then we know that `(I ′) ≤ ργ `γ . But, since we must also have n(I) ≤ n(I ′)
as I is contained in I ′, we know that:

n(I) ≤ ργ `γ

=
ργ `γ
`(I)

`(I)

≤ ργ `γ
`′γ

`(I).

(A.1.10)

Thus, (A.1.9) indeed holds, with

ρ′γ =
`γ
`′γ
ργ . (A.1.11)

Hence, the space Cyl is independent of the value of `γ used in Definition A.1.1.

A.2 The displacement operator V̂ (µ) and holonomies

Recall that the displacement operators V̂ (µ) are the analogs of holonomy operators in
Maxwell theory and quantum geometry. In this section we describe some properties of
displacement operators which will be useful in the discussion of holonomies in subsequent
work extending the shadow state framework to theories with holonomies.

We begin by recalling the commutator between x̂ and V̂ (µ):

[x̂, V̂ (µ)] = −µV̂ (µ) . (A.2.1)

This equation gives rise to interesting uncertainty relations, even though V̂ (µ) are unitary
rather than self-adjoint [75]. To obtain these, let us decompose V̂ into the sum of two
Hermitian operators,

V̂ (µ) = Ĉ(µ) + iŜ(µ) . (A.2.2)
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It is straightforward to obtain the commutation relations between Ĉ, Ŝ and x̂ from (A.2.1)
as

[x̂, Ĉ(µ)] = −iµŜ(µ) and [x̂, Ŝ(µ)] = iµĈ(µ) .

Therefore, we can obtain uncertainty relations between Ĉ, Ŝ and x̂:

(∆x)2(∆C(µ))2 ≥ µ2

4
〈Ŝ(µ)〉2 and (∆x)2(∆S(µ))2 ≥ µ2

4
〈Ĉ(µ)〉2 (A.2.3)

Now, it is natural to define the uncertainty in V̂ as

(∆V )2 := 〈V †V 〉 − |〈V 〉|2 = 1− (〈C〉2 + 〈S〉2) , (A.2.4)

where the second expression follows from the unitarity of V̂ and the definitions of Ĉ and Ŝ
(A.2.2). Finally, combining (A.2.4) and (A.2.3) we obtain the desired uncertainty relation

(∆x)2
(∆V (µ))2

1− (∆V (µ))2
≥ µ2

4
. (A.2.5)

It is natural to ask how close the semi-classical states of section 2.4.1 come to saturating
this bound. Let us begin by considering the state (Ψo| peaked at (x=0, k=0). The ‘expec-
tation value’ of V̂ (µ) in (Ψo| and its shadow |Ψshad

o,` 〉 on a regular lattice with spacing ` is
given in (2.4.21) as

〈V̂ (µ)〉 ≈ e−
µ2

4d2

(
1 + e−

π2d2

`2
[
2 cos

(πµ
`

)
− 2
])

.

Then, it is straightforward to evaluate the fluctuations of V̂ (µ) as

(∆V̂ (µ))2 := 1− |〈V̂ (µ)〉|2 ≈ 1− e−
µ2

2d2 , (A.2.6)

where we have neglected corrections of order exp(−π2d2

l2
). Combining (A.2.6) with the

fluctuations in x (2.4.17), we obtain:

(∆x)2 · (∆V (µ))2

1− (∆V (µ))2
≈
(
d2

2

)
·

1− e−
µ2

2d2

e−
µ2

2d2

 . (A.2.7)

Thus, for a general µ, we are not close to saturation. However, if µ� d, we can expand in
powers of µ/d to obtain:

(∆x)2
(∆V (µ))2

1− (∆V (µ))2
=
(
µ2

4

)(
1 +O

(
µ2

d2

))
. (A.2.8)
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Thus, in this case, the uncertainty relation (A.2.5) is indeed saturated, modulo terms of the
order (µ/d)2. If µ ∼ `, a similar result can be obtained for general coherent states peaked at
any value of momentum k, even when k approaches π/`. Note that this in marked contrast
to the uncertainty relation between x̂ and K̂µo which is similarly saturated only if kµo � 1.

Finally, a natural question is whether the ‘expectation value’ of V̂ (µ) can be used to
determine the momentum of the system when it is in a semi-classical state. In a semi-
classical state labeled by ζ = 1√

2d
(x+ id2k), the ‘expectation value’ of V̂ (µ) is given by

〈V̂ (µ)〉 = e−
µ2

4d2 e−ikµ

[
1 +O

(
e−

π2d2

`2

)]
. (A.2.9)

An obvious strategy is to just define the ‘expected momentum’ k̃ in the quantum state (Ψζ |
to be:

〈V̂ (µ)〉 = |〈V̂ (µ)〉| e−iµ k̃ , (A.2.10)

i.e., to associate the momentum k̃ with the phase of the V̂ operator. Clearly, modulo
corrections O(exp −π2d2/`2), k̃ equals k. Moreover, this result holds even if k ∼ π/`. The
|〈V̂ (µ)〉| factor in our expression (A.2.10) may seem surprising. However, it does not arise
because of the polymer nature of the Hilbert space we are considering; it is necessary also
in the Schrödinger representation. Note also that our expression (A.2.6) for the variation of
V , implies that |〈V̂ (µ)〉| must be less than one if µ 6= 0. Otherwise the fluctuation in V will
vanish, i.e., we will have a state of definite momentum and the uncertainty relation (A.2.5)
would imply that the state must have infinite spread in x.

Techniques introduced in this appendix will be useful when it comes to examining ex-
pectation values and fluctuations of holonomies in Maxwell and gravitational semi-classical
states.

A.3 Approximate consistency

In the main body of the thesis we introduced ‘fundamental operators’ such as K̂µo and Ĥ

on the entire polymer Hilbert space HPoly and analyzed their properties. In field theories,
by contrast, one often ties operators to the energy scale under consideration and constructs
from them ‘an effective field theory’ a la Wilson. Such constructions are likely to play an
important role in relating quantum field theories on quantum geometries with low energy
physics. Therefore, in this section, will extend some of the considerations of chapters 2 and 3
by allowing operators which are tied to the lattice spacing under consideration. For example,
by setting K̂` = (i/2`)(V̂ (`)− V̂ (−`)), we obtain a family of ‘momentum’ operators K̂`, one
for each regular lattice. The dependence of such operators on ` in the limit `→ 0 will enable
us to relate our constructions to the Wilsonian renormalization group flow. We will now
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examine properties of such families of operators and introduce the notion of ‘approximate
consistency in the low energy regime’, which will be useful in the analysis of field theories
in later papers.

As mentioned in section 2.2, operators on the full Hilbert space HPoly in quantum geom-
etry often arise from consistent families of operators on the Hilbert spaces {Hγ} associated
to graphs γ [3]. However, since we will be interested in ‘low energy’ states that lie in Cyl?

but not in HPoly, we will use as our starting point the consistency of families of operators
on Cyl?.1 This concept is defined naturally using the duality between Cyl and Cyl?. Specif-
ically, if we are given a family of operators {Ôγ} defined on each Hilbert space Hγ , then
this family is said to be consistent on Cyl? if, given any state (Ψ| ∈ Cyl?, any two graphs
γ and γ′ such that γ ⊆ γ′, and any state |φγ〉 ∈ Cylγ , the following holds:

(Ψ | Ôγ |φγ〉 = (Ψ | Ôγ′Π∗
γγ′ |φγ〉 . (A.3.1)

Here Π∗
γγ′ denotes the pull-back from Cylγ to the larger Hilbert space Cylγ′ . This condition

serves to ensure that the matrix elements of the operator are independent of the graph γ

used to calculate them, i.e., that there is a single operator Ô on Cyl? such that (Ψ | Ô |φγ〉 =
(Ψ | Ôγ |φγ〉 for all graphs γ. In the polymer particle example, several important operators
are consistent on Cyl?, including the position operator x̂ and the displacement operator
V̂ (µ).

However, the new families of operators such as K̂`, defined above, do not form a consis-
tent family. Neither do the family of Hamiltonian operators Ĥ` on H`, if their definitions are
similarly tied to the lattice spacing. (The Hamiltonians defined in lattice gauge theory are
typically of this type.) To examine such families of operators, we must weaken our definition
of consistency on Cyl?.

We do so in two directions. First, since the momentum operators are intimately con-
nected to differentiation, we cannot expect a weakened form of (A.3.1) to hold for arbitrary
states in Cyl?, but only for ‘low energy ones’, i.e., states that are elements of S. Second, we
do not require expectation values in (A.3.1) to be exactly equal, but instead only that the
norm of their difference should be small. Finally, as in the main text, we will only consider
regular lattices. We then say that a family of operators {Ôγ} defined on regular lattices γ is
approximately consistent on low energy states if, given a constant o0 (with same dimensions
as Ô), an ε > 0, and any two states ψ(x), φ(x) ∈ S, there exists a regular lattice γ such
that for any regular lattice γ′ that is a refinement of γ, the following holds:

|(Ψ | Ôγ |Φshad
γ 〉 − (Ψ | Ôγ′Π∗

γγ′ |Φshad
γ 〉|

‖Ψshad
γ ‖ ‖Φshad

γ ‖
< o0 ε. (A.3.2)

1I am grateful to Jerzy Lewandowski for pointing out the utility of this definition.
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Note that, in this definition, it is essential that we divide by the appropriate norms since
states in Cyl? are not normalized. The constant o0 is needed purely for dimensional reasons.

It is obvious from this definition that any consistent family of operators is automatically
approximately consistent on low energy states. However, important families of operators that
are not exactly consistent nevertheless are approximately consistent on low-energy states.
In particular, this holds for the family of momentum operators K̂` and the Hamiltonians
Ĥ`. We present the proof here for the case of the momentum operators K̂`; the proof for
the Hamiltonian operators is similar. The proof, though somewhat tedious, involves nothing
more than elementary real analysis.

On a regular lattice γ, with spacing `, the momentum operator K̂γ is defined as

K̂γ =
i

2`

[
V̂ (l)− V̂ (−l)

]
. (A.3.3)

Using this definition, it is straightforward to calculate:

(Ψ|K̂γ |Φshad
γ 〉 =

∑
xi∈γ

ψ̄(xi)
(
− i

2`

)
[φ(xi+1)− φ(xi−1)]

=
∑
xi∈γ

[
ψ̄(xi+1)− ψ̄(xi−1)

]( i

2`

)
φ(xi) . (A.3.4)

Next, we can make use of the mean value theorem to write

ψ̄(xi+1)− ψ̄(xi−1)
2`

= ψ̄′(ξi)

for some ξi ∈ (xi−1, xi+1). Thus,

(Ψ|K̂γ |Φshad
γ 〉 = i

∑
xi∈γ

ψ̄′(ξi)φ(xi) . (A.3.5)

We now make the following simple observation:

(Ψ | K̂γ |Φshad
γ 〉

‖Ψshad
γ ‖ ‖Φshad

γ ‖
=

` (Ψ | K̂γ |Φshad
γ 〉

‖
√
`Ψshad

γ ‖ ‖
√
`Φshad

γ ‖
. (A.3.6)

This is important because the various factors in the numerator and denominator on the right
hand side are (as we shall see) Riemann sums for suitable integrals.

Indeed, it is obvious that the two sums in the denominator form Riemann sums for
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suitable integrals, namely we have (as `→ 0):

‖
√
`Ψshad

γ ‖ =

( ∑
xi ∈ γ

|ψ(xi)|2 `

) 1
2

→
(∫

R
|ψ(x)|2 dx

) 1
2

, (A.3.7)

‖
√
`Φshad

γ ‖ =

( ∑
xi ∈ γ

|φ(xi)|2 `

) 1
2

→
(∫

R
|φ(x)|2 dx

) 1
2

. (A.3.8)

Thus, by elementary results of analysis for each ε > 0 there exists a length ˜̀
ε,Ψ,Φ such that

for every lattice γ with lattice spacing less than ˜̀
ε,Ψ,Φ both of the following are true:∣∣∣∣∣∣

( ∑
xi ∈ γ

|ψ(xi)|2 `

) 1
2

−
(∫

R
|ψ(x)|2 dx

) 1
2

∣∣∣∣∣∣ < ε, (A.3.9)

∣∣∣∣∣∣
( ∑

xi ∈ γ

|φ(xi)|2 `

) 1
2

−
(∫

R
|φ(x)|2 dx

) 1
2

∣∣∣∣∣∣ < ε. (A.3.10)

The sum in the numerator of (A.3.6) is trickier: it is equal to

i
∑
i∈N

ψ̄′(ξi)φ(xi) ` (A.3.11)

and it is not a priori clear that this is a Riemann sum for anything. There are two difficulties.
First, because we do not have ξi = xi in general, the summands in equation (A.3.11) are
not the function we seek to integrate—in this case ψ ′(x)φ(x)—evaluated at some point in
our intervals, but rather the product of two functions evaluated at two different points in
our intervals. Second, since we know only that ξi ∈ (xi−1, xi+1), we must have 2` and not `
as the length of the intervals in our Riemann sum, however we have ` and not 2` appearing
in (A.3.2). But we are also summing over ‘twice as many’ points, and this will cure that
difficulty. Specifically, we have:

i
∑
i∈N

ψ ′(xi)φ(ξi) ` =
i

2

∑
i∈N

ψ ′(xi)φ(ξi) 2`

=
i

2

(∑
i∈N

ψ ′(x2i)φ(ξ2i) 2` +
∑
i∈N

ψ ′(x2i+1)φ(ξ2i+1) 2`

)
.

(A.3.12)

Each of the two sums on the right hand side of (A.3.12) is separately a Riemann sum for
i
∫
ψ ′(x)φ(x) dx, as we shall soon show, and therefore the left hand side is as well.
To show that the sums appearing on the right hand side of (A.3.12) are indeed Riemann

sums, we must somehow deal with the fact that the we have a product of two distinct
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functions, each evaluated at different points in our interval. Indeed this is tractable, but we
must make a brief foray into some basic facts from real analysis. All of these may be found
in [76], or indeed just about any other introductory undergraduate analysis text.

What we wish to show is that a sum of the form
∑

i f(xi) g(ξi) ∆xi is in fact a Riemann
sum for the integral

∫
f(x) g(x) dx.

In order to do this, we will quickly review some of the techniques and terminology from
the Riemann definition of the integral, just so that we can more easily pass back and forth
between quoting theorems from texts and proving other statements.

First some terminology. Given a fixed closed interval I = [a, b], a partition of I is
collection of points x0, . . . , xn with

a = x0 < x1 < · · · < xn−1 < xn = b.

In our usage, we would just call such a partition a graph. If we are given one partition P of
[a, b] and we then consider another partition P ′ such that P ⊆ P ′ as sets, then we say that
P ′ is a refinement of P; this is exactly the same terminology we use for the polymer particle.
In obvious fashion we define ∆xi = xi+1 − xi, and we define the mesh of the partition P

to be the largest of all of the ∆xi, for the given P . Given a partition P of some interval
I, we mark the partition if we select precisely one point ti inside each interval of the form
[xi, xi+1]. Given a function f and a marked partition P , then we define the Riemann sum
S(P, f) to be:

S(P, f) =
∑

i

f(ti) ∆xi. (A.3.13)

Closely related to this Riemann sum S(P, f) are the upper sum U(P, f) and lower sum
L(P, f). These depend on the partition P and the function f , but not on how P is marked
(note that our notation does not distinguish between a marked and unmarked partition, but
the definition of a Riemann sum S(P, f) requires a marking of P ). These sums are defined
as:

U(P, f) =
∑

i

sup
t∈ [xi,xi+1]

f(ti) ∆xi, (A.3.14)

L(P, f) =
∑

i

inf
t∈ [xi,xi+1]

f(ti) ∆xi. (A.3.15)

Thus, the upper and lower sums are just special cases of Riemann sums where the points
in the marking of the partition are determined by the requirement that they be at maxima
and minima, respectively, of f over each interval.

The actual Riemann integral is defined in terms of convergence of these upper and lower
sums towards a common value in the limit as we refine the partition. It is then not hard
(and quite standard) to show that this definition is equivalent to the convergence of Riemann
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sums, regardless of how we mark the partition, and again as we take the limit of successively
refined partitions. In this form the standard theorems are almost identical to what we do
most of the time with the polymer particle, since usually we are taking successively refined
graphs. However, for the particular statements we prove in connection with approximate
consistency, this approach is not actually the most convenient. That is because we we do not
want to prove Cauchy convergence of Riemann sums only when one graph is a refinement
of another, but any time the lattice spacing of both is less than a certain level. For this it is
necessary to have some sort of convergence that depends not on refinement of lattices, but
rather on partitions whose mesh is less than a certain size. Fortunately, just such a theorem
is available. We quote a simplified version of Theorem 5.6 of [76]:

A.3.1 Theorem Suppose that f : [a, b] → R is bounded and integrable, with integral
∫ b
a f .

Then for each ε > 0 there exists a δ > 0 such that for any partition P of [a, b] which has
mesh less than δ, ∣∣∣∣S(P, f)−

∫ b

a
f

∣∣∣∣ < ε, (A.3.16)

regardless of how P is marked.

We can use Theorem A.3.1 to prove that
∑

i f(si) g(ti) ∆xi converges to
∫ b
a f(x) g(x) dx,

so long as both f and g are bounded and integrable, and each of the two points si and ti

lies in the interval [xi, xi+1], for each i. Since f is bounded by hypothesis, there exists some
constant M ≥ 1 such that |f(x)| ≤M for all x ∈ R.

Now let some ε > 0 be given. One consequence of Theorem A.3.1 is the following: for
any ε > 0 and any bounded, integrable function g : [a, b] → R, there is a δ > 0 such that
whenever the mesh of a partition P is less than δ,∑

i

|g(si)− g(ti)|∆xi < ε, (A.3.17)

for any points si, ti ∈ [xi, xi+1]. To see this, we note that by Theorem A.3.1 there exists a
δ such that whenever the mesh of P is less than this δ,∣∣∣∣∣∑

i

g(si) ∆xi −
∫ b

a
g dx

∣∣∣∣∣ < ε

2
(A.3.18)∣∣∣∣∣∑

i

g(ti) ∆xi −
∫ b

a
g dx

∣∣∣∣∣ < ε

2
. (A.3.19)

It is then a straightforward application of the Schwarz inequality to conclude (A.3.17).
Because of this, we know that, for our given ε, there exists some δ > 0 such that whenever
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the mesh of a partition is less than δ, both of the following are true:∣∣∣∣∣∑
i

f(si) g(si) ∆xi −
∫ b

a
f(x) g(x) dx

∣∣∣∣∣ < ε

2
, (A.3.20)∑

i

|g(si)− g(ti)|∆xi <
ε

2M
. (A.3.21)

Using this, we can now prove that
∑

i f(si) g(ti) ∆xi converges to
∫ b
a f(x) g(x) dx. In-

deed, so long as the mesh of P is less than δ:∣∣∣∣∣∑
i

f(si) g(ti) ∆xi −
∫ b

a
f(x) g(x) dx

∣∣∣∣∣ =

∣∣∣∣∣∑
i

f(si) g(si) ∆xi −
∫ b

a
f(x) g(x) dx

+
∑

i

f(si) (g(ti)− g(si)) ∆xi

∣∣∣∣∣
≤

∣∣∣∣∣∑
i

f(si) g(si) ∆xi −
∫ b

a
f(x) g(x) dx

∣∣∣∣∣
+
∑

i

|f(si)| |g(si − g(ti)|∆xi

<
ε

2
+M

∑
i

|g(si)− g(ti)|∆xi

= ε.

(A.3.22)

Armed with this, we now know that in fact i
∑

xi∈γ ψ
′(ξi)φ(xi)` is a Riemann sum for∫

ψ ′(x)φ(x) dx, and thus that for any given length scale L (needed simply for dimensional
reasons) and any ε > 0 there exists some ˜̀

ε,Ψ,Φ such that for every lattice γ with lattice
spacing less than ˜̀

ε,Ψ,Φ both of the following are true:∣∣∣∣∣i∑
xi∈γ

ψ ′(ξi)φ(xi)`−
∫
ψ ′(x)φ(x) dx

∣∣∣∣∣ < ε

L
(A.3.23)

We then need only some basic facts from the algebra of limits to conclude that for each
ε > 0 and any given length scale L there exists a lattice spacing `ε,L,Ψ,Φ such that whenever
the spacing of γ is less than `ε,L,Ψ,Φ, the following holds:∣∣∣∣∣∣ (Ψ | K̂γ |Φshad

γ 〉
‖Ψshad

γ̃ ‖ ‖Φshad
γ ‖

−
(1/i)

∫
R ψ ′(x)φ(x) dx(∫

R |ψ(x)|2 dx
) 1

2
(∫

R |φ(x)|2 dx
) 1

2

∣∣∣∣∣∣ < ε

2L
. (A.3.24)

Next, let us consider the refined lattice γ′ (whose points are labeled by x̃i) with spacing
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`′. It is straightforward to show that:

(Ψ|K̂γ′Π∗
γγ′ |Φshad

γ′ 〉 =
∑
x̃i∈γ

[
ψ̄(x̃i+1)− ψ̄(x̃i−1)

]( i

2`′

)
φ(x̃i) . (A.3.25)

It is important to notice that the sum in (A.3.25) is only over those x̃i which are in the
original graph γ. However, it is not necessary that x̃i±1 is a point in γ (although it will of
course be in γ′). We can once again apply the mean value theorem to conclude that

ψ̄(x̃i+1)− ψ̄(x̃i−1)
2`′

= ψ̄′(ξ̃i) . (A.3.26)

for some ξ̃i ∈ (x̃i−1, x̃i+1). Thus, (A.3.25) becomes:

(Ψ|K̂γ |Φshad
γ 〉 = i

∑
x̃i∈γ

ψ̄′(ξ̃i)φ(x̃i) . (A.3.27)

Because [x̃i−1, x̃i+1] ⊆ [xi−1, xi+1], (A.3.27) is, like (A.3.5), lacking only a factor of ` to
make it into a Riemann sum for i

∫
ψ ′(x)φ(x) dx. Hence we may multiply and divide by `

to conclude that so long as ` < `ε,L,Ψ,Φ, we have:∣∣∣∣∣∣ (Ψ | K̂γ′ Π∗
γγ′ |Φshad

γ 〉
‖Ψshad

γ̃ ‖ ‖Φshad
γ ‖

−
(1/i)

∫
R ψ ′(x)φ(x) dx(∫

R |ψ(x)|2 dx
) 1

2
(∫

R |φ(x)|2 dx
) 1

2

∣∣∣∣∣∣ < ε

2L
. (A.3.28)

Combining this equation with (A.3.24) we then finally conclude that∣∣∣∣∣ (Ψ | K̂γ |Φshad
γ 〉

‖Ψshad
γ̃ ‖ ‖Φshad

γ ‖
−

(Ψ | K̂γ′ Π∗
γγ′ |Φshad

γ 〉
‖Ψshad

γ̃ ‖ ‖Φshad
γ ‖

∣∣∣∣∣ < ε

L
(A.3.29)

as desired.
Thus, the key idea of the proof is that while we are dividing both expectation values by

the norms with respect to only the smaller graph, because we pull back the shadow on the
larger graph we ‘kill’ the points in the larger graph that are not in the smaller, and both
ratios (expectation values divided by product of norms) are close to being equal to each
other and to the Schrödinger value, for sufficiently fine regular lattices.

We see that we have generalized the usual notion of consistent families of operators to
important families of operators that do not form a consistent family, thus allowing us to use
techniques in analyzing such operators that are similar to those that have played such an
important role in quantum geometry. This generalization will be useful in subsequent work
on the relation between ‘polymer field theories’ on quantum geometry and the familiar low
energy field theories in the continuum.
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Appendix B

Further proofs for chapter 4

B.1 Asymptotic series expansion of the integral

In this section we shall prove that we can obtain an asymptotic series expansion of the
integrals we encounter in the Poisson re-summations of chapter 4 by Taylor expanding one
factor of the integrand and integrating term by term. Such techniques commonly lead to
asymptotic series, but there do not seem to be any standard theorems applicable to the case
that we need, so we shall prove this directly. We first begin with a review of some definitions
and a standard result in asymptotic series expansions of integrals, Watson’s lemma. We shall
base our proof on the proof of this lemma.

First, we recall Poincaré’s definition of an asymptotic series1 [80]. Since it is sufficient
for our purposes, we give the definition only for functions of a large, real variable z. If f(z)
is the function in question, then the series

a0 +
a1

z
+
a2

z2
+ · · · (B.1.1)

is said to be asymptotic to f(z) provided that

lim
z→∞

|zL
(
f(z)− SL(z)

)
| = 0 (B.1.2)

for all integers L. Here SL(z) is the partial sum of the first L+ 1 terms,

SL(z) :=
L∑

l=0

al

zl
. (B.1.3)

1We distinguish between three related but not identical concepts. Asymptotic series are as we define
above; related is the more general notion of an asymptotic expansion in which a set of functions other than
powers of z are allowed as the expansion basis functions. Finally, there is the notion of an asymptotic
approximation, in which f(z) is said to be asymptotic to φ(z) as z → ∞ if limz→∞ f(z)/φ(z) = 1. The
latter is perhaps more familiar to the reader, but note that it is in general weaker than the other two, and
moreover does not allow a concept of a function asymptotic to zero. See [77–79] for more details.
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When (B.1.2) holds, we write

f(z) ∼
∞∑
l=0

al

zl
. (B.1.4)

Thus, we see that for an asymptotic series, the error in approximating the function by
the sum goes to zero as the variable z is allowed to approach infinity. Contrast this with a
convergent series, where we hold the variable fixed and instead demand the error go to zero
as the number of terms summed goes to infinity. Note, however, that the factor of zL in
equation (B.1.2) means that as we take more and more terms in the sum, the error goes to
zero faster as z → ∞, so that for the series to be asymptotic a stronger statement is true
than simply that the error goes to zero as z →∞.

We are interested in an asymptotic series expansion of the integral

In(N,m, ε) =
∫ ∞

−∞
e−N2ε2(x−m

N
)2
(

1 + x+
iπn

Nε2

) 3
2

dx (B.1.5)

in terms of the parameter Nε, which we know to be large.
In order to achieve this, we first review a theorem which, though not strong enough to

prove what we need, will point us in the right direction. This is the result known as Watson’s
Lemma [80, 81], which states that if an integral function of a is defined by

I(a) =
∫ ∞

0
e−azf(z) dz (B.1.6)

then an asymptotic series for I(a) is obtained by power series expanding f(z) and integrating
the resulting series term by term.

Our integral (B.1.5) differs from the form of (B.1.6) in several respects; the limits of
integration are different, and also we have a damping factor of the form e−a(z−b)2 , rather
than e−az. More importantly, however, the proof of Watson’s lemma requires that the
function f(z) not depend on a, our large parameter. This is so that when f(z) is Taylor
expanded, we can be sure that there is no hidden dependence on a lurking in the coefficients
of the Taylor expansion. In our case, however, the function we wish to Taylor expand is
(1 + x+ iπn/Nε2)

3
2 , and this does depend on our large parameter, Nε.

Thus, while we will follow the same basic strategy as in proving Watson’s lemma (follow-
ing the proof given in [81]), we shall have to be more careful, explicitly calculating how the
Taylor expansion of our f(x) depends on Nε to ensure that the needed inequality (B.1.2)
still holds.

We begin with two lemmas.
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B.1.1 Lemma For all real x, if

gn(x) :=
(

1 + x+
iπn

Nε2

) 3
2

(B.1.7)

and if gn(x) is Taylor expanded as
∑

l gn, l x
l, then the partial sum Sn,L(x) of the first L+1

terms satisfies the inequality:

|gn(x)− Sn,L(x)| ≤ cL

(
2 +

π2n2

N2ε4

)
ex

2
. (B.1.8)

where the constant cL may vary with L, but does not depend on N , n, or ε.

Proof: We begin by establishing that

|gn(x)| ≤
(

2 +
π2n2

N2ε4

)
ex

2
. (B.1.9)

To do this, we note that

|gn(x)| =
(

(1 + x)2 +
π2n2

N2ε4

) 3
4

(B.1.10)

and we seek to bound this by a function of the form K ex
2 . This implies that(

(1 + x)2 +
π2n2

N2ε4

)
≤ K

4
3 e

4
3
x2
. (B.1.11)

To prove this, we note that from the Taylor expansion of ex2 it is sufficient to prove(
(1 + x)2 +

π2n2

N2ε4

)
≤ K

4
3

(
1 +

4
3
x2

)
(B.1.12)

and (B.1.11) then follows.
In order to prove (B.1.12), we rearrange it as(

1− 4
3
K

4
3

)
x2 + 2x+

(
1 +

π2n2

N2ε4
−K

4
3

)
≤ 0. (B.1.13)

The left hand side is a quadratic function of x, and it will be negative for all real x if and only
if the coefficient of x2 is negative, and the quadratic has no real roots. The first condition
is clearly satisfied whenever K ≥ 1; the second will be satisfied if the discriminant D of the
quadratic is negative.
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This discriminant is:

D = 4− 4
(

1− 4
3
K

4
3

)(
1 +

π2n2

N2ε4
−K

4
3

)
=

4
3

[
−4K

8
3 +

(
7 +

4π2n2

N2ε4

)
K

4
3 − 3π2n2

N2ε4

]
,

(B.1.14)

which is a quadratic function of the variable K
4
3 with negative leading coefficient. Hence its

graph opens downward and it will be negative whenever K
4
3 is greater than the largest of

the roots of this quadratic.
Those roots are:

K
4
3 =

(
7
8

+
π2n2

2N2ε4

)
± 1

8

√(
7 +

4π2n2

N2ε4

)2

− 48π2n2

N2ε4
(B.1.15)

and the largest of these is clearly the one with the plus sign.2 But this root satisfies the
inequality:

(
7
8

+
π2n2

2N2ε4

)
+

1
8

√(
7 +

4π2n2

N2ε4

)2

− 48π2n2

N2ε4
< 2

(
7
8

+
π2n2

2N2ε4

)
<

(
2 +

π2n2

N2ε4

)
.

(B.1.16)

Thus, it is sufficient to choose

K =
(

2 +
π2n2

N2ε4

)
(B.1.17)

and then (B.1.12), and hence (B.1.9), will hold.
Next, we show that the terms gn, l x

l in the Taylor expansion of gn(x) satisfy

|gn, l x
l| ≤ cl

(
2 +

π2n2

N2ε4

)
ex

2
. (B.1.18)

for some cl independent of N , n, and ε. It is trivial that for each l there exists a constant
c′l such that |xl| ≤ c′l e

x2 . To bound gn, l, we use (for l ≥ 1):

gn, l =
3
2 ·

1
2 · · ·

(
3
2 − l + 1

)
l!

(
1 +

iπn

Nε2

) 3
2
−l

. (B.1.19)

Since ∣∣∣∣1 +
iπn

Nε2

∣∣∣∣ ≥ 1, (B.1.20)

2Observe that the discriminant may be rewritten as 49 + 8π2n2

N2ε4
+ 16π4n4

N4ε8
, which is manifestly positive, so

that the roots of this quadratic are always real.
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we have: ∣∣∣∣1 +
iπn

Nε2

∣∣∣∣ 32−l

≤
∣∣∣∣1 +

iπn

Nε2

∣∣∣∣ 32 < (2 +
π2n2

N2ε4

)
(B.1.21)

and combining this with the bound on |xl| readily yields (B.1.18).
Finally, we combine (B.1.18) and (B.1.9) through a repeated application of the Schwarz

inequality to arrive at (B.1.8), as we needed to show.

For the second of our two lemmas, we prove a stronger bound on the remainder term
inside the interval of convergence of the Taylor series.

B.1.2 Lemma Let gn(x) and Sn,L(x) be as in lemma B.1.1, and let 0 < r < 1. Then for
x ∈ [−r, r] the following bound holds:

|gn(x)− Sn,L(x)| ≤ cL

(
2 +

π2n2

N2ε4

)
|x|L+1 (B.1.22)

for some cL that is independent of N , n, and ε.

Proof: We use the form of the remainder for Taylor’s theorem from Cauchy’s proof of the
same (see, for instance, [82]), which requires us to consider our function as a function of a
complex variable. Note that we are expanding about x = 0, since we have defined

gn(x) =
(

1 + x+
iπn

Nε2

) 3
2

. (B.1.23)

We will therefore consider a circular contour C about the origin of radiusR, where r < R < 1,
and we have [82]:

gn(x)− Sn,L(x) =
1

2πi

∮
C

xL+1f(z) dz
zL+1(z − x)

(B.1.24)

We now wish to bound the magnitude of this remainder. Observe that by virtue of the
Schwarz inequality,

|z − x| ≥ |z| − |x|

≥ R− r
(B.1.25)

whence:

|gn(x)− Sn,L(x)| ≤ |x|L+1

2π
· 1
RL+1(R− r)

· 2π(sup
C
|gn(z)|)

=
(
|x|
R

)L+1 supC |gn(z)|
R− r

.

(B.1.26)
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Thus, we need only bound supC |gn(z)|. Since z is of the form Reiθ for some θ, we have:

sup
C
|gn(z)| = sup

θ

[
(1 +R cos θ)2 +

(
R sin θ +

πn

Nε2

)2
] 3

4

= sup
θ

[
R2 + 2R cos θ + 1 + 2R sin θ

πn

Nε2
+
π2n2

N2ε4

] 3
4

≤
[
4
(

2 +
π2n2

N2ε4

)] 3
4

≤ 4
(

2 +
π2n2

N2ε4

)
.

(B.1.27)

In going from the second to the third line, we have used a quadratic inequality similar to
that used in the proof of lemma B.1.1.

Thus, we have:

|gn(x)− Sn,L(x)| ≤ 4
(R− r)RL+1

(
2 +

π2n2

N2ε4

)
|x|L+1, (B.1.28)

and since R and r are independent of N , n, and ε, we have established (B.1.22) as we needed.

With these two lemmas we are now able to establish the main result of this section: the
asymptotic series expansion of the integral (B.1.5).

B.1.3 Theorem Let In(N,m, ε) be as above, and likewise gn(x) and gn, l. Then:

In(N,m, ε) ∼
√
π

∞∑
l=0

gl
(2i)−lHl(imε)

(Nε)l+1
. (B.1.29)

Proof: The key to the proof is that

|gn(x)− Sn,L(x)| ≤ cL

(
2 +

π2n2

N2ε4

)
|x|L+1ex

2
(B.1.30)

for all real x, for a constant cL that (as always) is independent of N , n, and ε. Equa-
tion (B.1.30) is a direct consequence of lemmas B.1.1 and B.1.2. To see this, let r be as in
the proof of B.1.2, and suppose that c′L and c′′L are such that:

|gn(x)− Sn,L(x)| ≤ c′L

(
2 +

π2n2

N2ε4

)
|x|L+1 for x ∈ [−r, r] (B.1.31)

|gn(x)− Sn,L(x)| ≤ c′′L

(
2 +

π2n2

N2ε4

)
ex

2
for x ∈ (−∞,∞) (B.1.32)
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Then since r < 1, (B.1.31) trivially implies the bound (B.1.30) for x ∈ [−r, r] with
cL = e c′L. But (B.1.32) implies the same bound for x ∈ (−∞,−r) ∪ (r,∞), with cL =
c′′L/r

L+1. Hence (B.1.30) holds everywhere with cL = max{e c′L, r−(L+1)c′′L}. Note that here
it is crucial that r > 0, since if r were allowed to become zero then cL would not be finite. It
is therefore essential to have both of lemmas B.1.1 and B.1.2 available: lemma B.1.1 by itself
is not sufficient for precisely this reason. This point is important because, as the reader may
have noticed, the proof of lemma B.1.1 would go through for many series besides just the
Taylor series for gn(x). However, the same is not true of lemma B.1.2. Thus, we are able
to get the needed inequality (B.1.30) for all real x—and hence a series for In(N,m, ε) that
is asymptotic—only by using the Taylor expansion of g(x). The intuitive idea of the proof
is thus that we are able to approximate the function well somewhere with its Taylor series;
our inability to do so elsewhere will be compensated for by the Gaussian damping factor in
the integrand.

Now we use the integral (see [83], 3.462.4):∫ ∞

−∞
xl e−(x−β)2 dx = (2i)−l√πHl (iβ), (B.1.33)

where Hl(x) is the l-th Hermite polynomial,3 to write:

L∑
l=0

∫ ∞

−∞
e−N2ε2(x−m

N
)2 gn, l x

l dx =
L∑

l=0

gn, l(Nε)−(l+1)

∫ ∞

−∞
e−(x−mε)2 xl dx

=
√
π

L∑
l=0

gn, l
(2i)−lHl(imε)

(Nε)(l+1)
.

(B.1.34)

Hence to prove our theorem we need only bound the remainder term appropriately.
We have:∣∣∣∣∣In(N,m, ε)−

√
π

L∑
l=0

gn, l
(2i)−lHl(imε)

(Nε)(l+1)

∣∣∣∣∣
≤
∫ ∞

−∞
e−N2ε2(x−m

N
)2 |g(x)− Sn, L(x)| dx (B.1.35)

3Note that the l-th Hermite polynomial has the same parity as l, hence the right hand side of (B.1.33) is
always real, as it must be.
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and we have the following inequalities for the right hand side:∫ ∞

−∞
e−N2ε2(x−m

N
)2 |g(x)− Sn, L(x)| dx

≤ cL

(
2 +

π2n2

N2ε4

) ∫ ∞

−∞
e−N2ε2(x−m

N
)2 |x|L+1 ex

2
dx

≤ cL

(
2 +

π2n2

N2ε4

) ∫ ∞

−∞
e−

1
2
N2ε2x2+27ε2 |x|L+1 dx

= 2 cL e27ε2
(

2 +
π2n2

N2ε4

) ∫ ∞

0
e−

1
2
N2ε2x2

xL+1 dx

=
cL e

27ε2 2
L
2
+1 Γ

(
L
2 + 1

)
(Nε)L+2

(
2 +

π2n2

N2ε4

)
.

(B.1.36)

In going from the first to the second inequality we have again used a quadratic inequality,
this time4 that −N2ε2(x− m

N )2 + x2 ≤ −1
2N

2ε2x2 + 27ε2.
With this inequality, then, we have finally that

∣∣∣∣∣(Nε)L

(
In(N,m, ε)−

√
π

L∑
l=0

gn, l
(2i)−lHl(imε)

(Nε)(l+1)

)∣∣∣∣∣
≤
cL e

27ε2 2
L
2
+1 Γ

(
L
2 + 1

)
(Nε)2

(
2 +

π2n2

N2ε4

)
, (B.1.37)

and the limit of the right hand side as Nε → ∞ (for fixed ε) is indeed zero, so comparing
to (B.1.2) we see that we are done.

In passing, we note that in our original re-summation, the integral In(N,m, ε) always
occurs with a factor of e−π2n2/ε2 . Thus, we will in practice be neglecting all but the n = 0
terms in the re-summation. Since it is not as straightforward to “neglect” an asymptotic
series that is divergent as a series, we note that we can use the results of this section to
prove a somewhat more useful bound. Specifically, we may use equation (B.1.9) to get:

|In(N,m, ε)| ≤
(

2 +
π2n2

N2ε4

)∫ ∞

−∞
e−N2ε2(x−m

N
)2+x2

dx

≤
(

2 +
π2n2

N2ε4

)
e27ε2

∫ ∞

−∞
e−

1
2
N2ε2x2

dx

=
√

2π
Nε

(
2 +

π2n2

N2ε4

)
e27ε2

(B.1.38)

Thus, if we neglect the terms in the re-summation for which n 6= 0, we are neglecting
4In order for this inequality to hold, we must assume Nε >

√
2. Since we are in this proof only concerned

with the limit as Nε → ∞, this is valid; moreover, it will in general hold for the values of Nε that we are
interested in since we know that Nε � 1.
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terms that are O((Nε)−1e−π2/ε2) +O((Nε)−3ε−2e−π2/ε2). For small ε, these are suppressed
more than any finite power of ε, and we are thus justified in neglecting these in comparison
to all terms of the asymptotic series expansion of the integral for n = 0.

Finally, we have in this section dealt in some detail with the asymptotic expansion of
the sums appearing in the expectation value of the gravitational part of the Hamiltonian
constraint. However, in considering both the matter part of the constraint for radiation, and
the time derivatives of our basic canonical variables p and c and their squares, we encounter
sums similar to that considered here, but not identical. By reasoning entirely similar to that
presented here, one may show through Poisson re-summation and a bound on the resulting
integral for n 6= 0 that only the n = 0 term of the re-summed series need be considered, and
that integral may be expanded in an asymptotic series for large Nε. For completeness, we
list the results here.

First we define the various functions and their Taylor series that we shall need:

f(x) := (1 + x)
1
2 =

∞∑
l=0

flx
l for |x| < 1, (B.1.39)

g(x) := (1 + x)
3
2 =

∞∑
l=0

glx
l for |x| < 1, (B.1.40)

h(x) := (1 + x)
5
2 =

∞∑
l=0

hlx
l for |x| < 1. (B.1.41)

Then we have the following sums that appear, and the corresponding expansions:

∑
n

e−ε2(n−N)2 |nµo +m|
1
2 sgn (n+ k) ∼

√
πµoN

1
2

ε

∞∑
l=0

fl

(2iNε)l
Hl

(
imε

µo

)
, (B.1.42)

∑
n

e−ε2(n−N)2 |n+m|
3
2 sgn (n+ k) ∼

√
πN

3
2

ε

∞∑
l=0

gl

(2iNε)l
Hl(imε), (B.1.43)

∑
n

e−ε2(n−N± 1
2
)2 |n+m|

3
2 sgn (n+ k) ∼

√
πN

3
2

ε

∞∑
l=0

gl

(2iNε)l
Hl

(
imε∓ iε

2

)
, (B.1.44)

∑
n

e−ε2(n−N)2 |n+m|
5
2 sgn (n+ k) ∼

√
πN

5
2

ε

∞∑
l=0

hl

(2iNε)l
Hl(imε). (B.1.45)
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B.2 Bounding the correction to non-analyticity

In this section we consider the correction to analyticity noted in the main text. We recall
that this correction is:

δSm,k :=
∑

n≤−m

e−ε2(n−N)2
(
|n+m|

3
2 sgn (n+ k)− (n+m)

3
2

)
. (B.2.1)

In order to complete this definition, we must choose how we make the branch cut for
(n+m)

3
2 . We must, for consistency, use the same branch cut as in the sum to which we apply

Poisson re-summation. This cut, in turn, is dictated by two requirements: we must be able
to move the contour of integration as required for the steepest descents approximation, and
the cut must not interfere with the proof of the asymptotic series expansion in appendix B.1.
The latter requirement means that the branch cut must be to the left of a vertical line in the
complex plane starting at the branch point, since otherwise the integrand will not be analytic
on and inside the circles needed in the proof of lemma B.1.2. The first requirement means
that we must be able to move the contour upward for positive n, and downward for negative
n. This means in turn that for negative n, we are choosing (n+m)

3
2 = (−i)3|n+m|

3
2 .

Here we run into a slight difficulty, because when m is negative (either −1 or −3), this
means that the first few terms in of the sum defining δSm,k will need to have the contour
moved upwards, while all the rest will need to have the contour moved downwards. There
will therefore be one root of −1 used for the first one or three terms in the sum defining
δΣm, and a different root used for all the other terms. This difficulty can be remedied by
breaking off these first few terms, whose summed magnitude will be less than some fixed
constant times e−N2ε2 , and then adding and subtracting the terms with the same root of
−1 as the rest of the series. This same technique allows us to break off any terms for which
−m < n ≤ −k, should there be any. In this way we may use the branch cut appropriate for
negative n for any value of m, and we obtain:

δSm,k = δS′′m,k + (−1− i)
∑

n≤−m

e−ε2(n−N)2 |n+m|
3
2 (B.2.2)

where |δS′′m| ≤ c e−N2ε2 for a constant c that is independent of m, k, N , and ε.
Our focus is now on bounding the second sum in (B.2.2), which we call δS′m. We have:

δS′m =
∑
n≤0

e−ε2(n−m−N)2 |n|
3
2

=
∑
n≥0

e−ε2(n+M)2n
3
2

=
∑
n≥1

e−ε2(n+M)2n
3
2

(B.2.3)
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where for convenience we have defined M := m+N .
To bound this sum, we first express it using Euler-Maclaurin summation. This is the

result [82] that:

∑
a≤n<b

f(n) =
∫ b

a
f(x) dx+

p∑
k=1

Bk

k!
f (k−1)(x)

∣∣∣∣∣
b

x=a

+ (−1)p+1

∫ b

a

Bp({x})
p!

f (p)(x) dx. (B.2.4)

Here the Bk are the Bernoulli numbers, and the Bk(x) the Bernoulli polynomials. The
notation {x} indicates the fractional part of x. This result holds as long as f(x) is analytic
everywhere along the path of integration, and it was for this reason that we dropped the
n = 0 term (which we can do for free as it is zero anyway) in equation (B.2.3).

We now apply this result to δS′m, using f(x) = e−ε2(x−M)2x
3
2 . We may choose any value

of p that we like—equation (B.2.4) is an identity for any p > 0—and for us it will prove
most convenient to choose p = 1. Using the fact that B1 = −1

2 and f(∞) = 0 we obtain:

δS′m =
∫ ∞

1
e−ε2(x−M)2x

3
2 dx+

1
2
f(1) +

∫ ∞

1
B1({x}) f ′(x) dx. (B.2.5)

Since f(x) is positive over the range we consider, and since |B1({x})| ≤ 1
2 (see [83]) we

get: ∣∣δS′m∣∣ ≤ ∫ ∞

1
e−ε2(x−M)2x

3
2 dx+

1
2
f(1) +

1
2

∫ ∞

1
|f ′(x)| dx (B.2.6)

We can bound the second integral and f(1) by terms of the form e−N2ε2 . That we can do
so for f(1) is obvious. To see that we can do so for the integral of |f ′(x)|, we note that this
integral is equal to the sum, at the zeros {xi} of f ′(x), of ±f(xi) where the plus or minus
sign is used according to whether xi is the right endpoint of an interval on which f ′(x) is
positive or negative. Since

f ′(x) =
1
2
x

1
2
(
−4ε2x2 + 4ε2Mx+ 3

)
e−ε2(x−M)2 , (B.2.7)

the only zeros of f ′(x) on the interval (1,∞) are at

x± := M ± 1
ε2

√
M2ε4 + 3ε2. (B.2.8)

Since we readily verify that
f(x±) = x

3
2
±e

−M2ε2−3 (B.2.9)

we see that the needed bound on
∫∞
1 |f ′(x)| dx holds.
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Thus, for some positive constant c′ independent of N , m, or ε, we have:

∣∣δS′m∣∣ ≤ ∫ ∞

1
e−ε2(x−M)2x

3
2 dx+ c′e−N2ε2

<

∫ ∞

0
e−ε2(x−M)2x

3
2 dx+ c′e−N2ε2

= ε−
5
2

∫ ∞

0
e−(x−Mε)2x

3
2 dx+ c′e−N2ε2

(B.2.10)

where we have made the change of variables εx→ x in reaching the last line.
We can therefore bound the magnitude of δS′m by fairly simple integral, that, as we shall

soon see, is itself very easy to bound. To do so we need only observe that x
3
2 < ex

2 for
x ≥ 0; thus we have:

∣∣δS′m∣∣ < ε−
5
2

∫ ∞

0
e−(x−Mε)2+x2

dx+ c′e−N2ε2

= ε−
5
2 e−M2ε2

∫ ∞

0
e−2Mεx dx+ c′e−N2ε2

=
1

2Mε
ε−

5
2 e−M2ε2 + c′e−N2ε2 .

(B.2.11)

Now, these corrections to analyticity will be combined with the integrals that we have
shown may be asymptotically expanded in appendix B.1. Those integrals in turn occur
in the original problem multiplied by N

5
2 , so we should pull out such a factor from δS′′m,k

and δS′m. When we do this, combine our bounds on these sums, and insert the result back
into (B.2.2) we obtain:

|δSm,k| ≤ N
5
2

(
c′′N− 5

2 e−N2ε2 +
1

(Nε)
5
2 (N +m)ε

e−(N+m)2ε2

)
. (B.2.12)

We now come to the crucial point: if we multiply the right hand side of (B.2.12) by any
positive power of Nε and take the limit as Nε → ∞, that limit will be zero. This means,
from the definition of an asymptotic series given in appendix B.1, that δSm,k is asymptotic
to zero, and hence may be omitted entirely when we are combining it with a series that
is already only asymptotic, as we will be. Thus, in the main text we can simply drop the
corrections to analyticity altogether as soon as we reach the stage that we approximate the
integrals in our Poisson re-summation with an asymptotic series.

B.3 Time derivative of (∆c)2(∆p)2

In this section we prove the result, remarked on in the main text, that the time derivative
of (∆c)2(∆p)2 is, to lowest order, identically zero. This holds irrespective of how ε may be
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chosen as a function of c and p. Since to lowest order all of our coherent states saturate
the uncertainty bound on (∆p)2(∆c)2, this lends strong credence to our assumption that
we may well approximate the time evolution of coherent states by other coherent states, at
least for a fairly long portion of the integration.

Let us begin by noting what ∆p and ∆c are. By definition, we have5 :

(∆p)2 = 〈p2〉 − 〈p〉2, (B.3.1)

(∆c)2 = 〈c2〉 − 〈c〉2. (B.3.2)

Using the appropriate Poisson re-summation (there is no need for an asymptotic expansion
for these quantities) we then find:

(∆p)2 =
γ2µ2

o`
4
Pl

72ε2
, (B.3.3)

(∆c)2 =
2
µ2

o

[
(1− e−

ε2

2 ) + (e−
ε2

2 − e−ε2) cos (µoc)
]
≈ 2ε2

µ2
o

. (B.3.4)

In equation (B.3.4) we have, in the last step, written out the lowest order approximation to
(∆c)2. Note that there are no terms that are powers just of c; all terms with c in them come
also with a factor of at least ε2, so that (B.3.4) is indeed the lowest order contribution, even
though c2 � ε2, according to our criteria.

If we now multiply together (B.3.3) and (B.3.4) we obtain:

(∆c)(∆p) =
γκ

3
~
2

+O(c2). (B.3.5)

To leading order, this is the Heisenberg bound: the ~/2 factor is familiar; the factor of γκ/3
is needed as well because of the commutation relations between c and p. We therefore see
that as expected our coherent states saturate the bound, for any value of ε, just as they do
in the familiar Schrödinger relationship. Note, however, that now this saturation only holds
to lowest order (as indeed we also observed in section 2.4.2).

What about the time derivative of this product? We have:

d

dt

[
(∆c)2(∆p)2

]
=
(
〈ċ2〉 − 2〈c〉〈ċ〉

)
(∆p)2 + (∆c)2

(
〈ṗ2〉 − 2〈p〉〈ṗ〉

)
. (B.3.6)

To evaluate the time derivatives we simply use the fact, also used throughout chapter
4, that for any classical observable O with corresponding quantum operator Ô, we have
d
dt〈O〉 = − i

~〈[Ô, Ĉ]〉 where Ĉ is the constraint operator. Now, this operator is the sum of

5A word on notation. Throughout this section, for clarity we shall omit any hats on operators; thus
〈p〉 ≡ 〈p̂〉. Moreover, we shall use a dot over the argument of an expectation value to denote the time
derivative of that expectation value. Thus, 〈ṗ〉 = d

dt
〈p̂〉 and 〈ṗ2〉 = d

dt
〈p̂2〉.
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the gravitational part of the constraint and the matter constraint, and so we see that the
time derivatives will depend on what type of matter we are considering. Let us focus first
on dust, since it is simpler: we have just Ĉ = Ĉgrav + 1

2E0 and since the matter constraint
is a constant, it does not contribute to any commutators.

We may then use the following asymptotic expansions, which may be derived in the
same manner as that for the expectation value of the constraint in chapter 4 (throughout,
we have dropped any exponentially suppressed terms):

〈p〉 = p, (B.3.7)

〈ṗ〉 ∼ 2`PlN
3
2 e−4ε2

3(6γµo)
1
2

sin (2µoc)
∞∑
l=0

g2l+1

(2iNε)2l+1
[H2l+1(3iε)−H2l+1(iε)] , (B.3.8)

〈ṗ2〉 ∼ 2
9

(γµo

6

) 1
2
`3PlN

5
2 e−4ε2 sin (2µoc)

∞∑
l=0

g2l+1

(2iNε)2l+1

[
H2l+1(3iε)−H2l+1(iε)

−8l(2l + 1)
3− 4l

H2l−1(3iε) +
8l(2l + 1)

3− 4l
H2l−1(iε)

]
, (B.3.9)

〈c〉 =
2
µo
e−

ε2

4 sin
(µoc

2

)
, (B.3.10)

〈ċ〉 ∼ N
3
2

µ0`Pl

√
6(γµo)

3
2

{[
e−

25ε2

4 cos
(

5µoc

2

)
+ e−

9ε2

4 cos
(

3µo

2

)]

×

( ∞∑
l=0

g2l

(2iNε)2l

[
H2l

(
7iε
2

)
−H2l

(
5iε
2

)
−H2l

(
3iε
2

)
+H2l

(
iε

2

)])

−4e−
ε2

4 cos
(µoc

2

) ∞∑
l=0

g2l

(2iNε)2l

[
H2l

(
3iε
2

)
−H2l

(
iε

2

)]}
, (B.3.11)

〈ċ2〉 ∼ N
3
2

µ2
o`Pl

√
6(γµo)

3
2

{
e−9ε2 sin (3µoc)

∞∑
l=0

g2l

(2iNε)2l
[H2l(4iε)− 2H2l(2iε) +H2l(0)]

−e−ε2 sin (µoc)
∞∑
l=0

g2l

(2iNε)2l
[H2l(4iε) + 2H2l(2iε)− 3H2l(0)]

}
. (B.3.12)

From these rather horrific expressions we may calculate the necessary time derivatives of
(∆c)2(∆p)2. Let us begin with the time derivative of (∆p)2, which we denote as ∆ṗ2. We
keep only the lowest order of the asymptotic expansions above, as well as only the lowest
order terms in the Taylor expansions of the exponentials and trigonometric functions. Some
algebra then leads us to:

∆ṗ2 ≈
γµ2

o`
4
Pl

18
c

ε2
√
p

(B.3.13)

This turned out to be a rather simple expression. For calculating ∆ċ2, we must proceed
a little more cautiously. First, we keep again only the lowest terms in the asymptotic
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expansion, but do not as yet approximate the exponentials or trigonometric functions. We
then obtain:

∆ċ2 ≈ 3(γµo)−
3
2

µ2
o`Pl

√
6N

(
e−9ε2 sin (3µoc)− 3e−ε2 sin (µoc)− e−

13ε2

2 sin (3µoc)

+(e−
13ε2

2 − e−
5ε2

2 ) sin (2µoc) + (e−
5ε2

2 + 2e−
ε2

2 ) sin (µoc)
)

(B.3.14)

Now, the key point about this expression is that if we Taylor expand the exponentials in
ε2, the leading order constant terms all cancel exactly, without any Taylor expansion of the
sine terms. Thus, as with ∆c itself, the lowest order terms will be proportional to ε2; there
are no c2 terms. When we then do perform the Taylor expansions we get:

∆ċ2 ≈ − 8ε2c
γµ2

o
√
p
. (B.3.15)

If we now put equations (B.3.3), (B.3.4), (B.3.13), and (B.3.15) into equation (B.3.6),
then we find that to lowest order (as we have been calculating) the time derivative of
(∆c)2(∆p)2 vanishes identically, independent of ε. This is a highly nontrivial result, that
reflects that at least for infinitesimal time evolutions, the saturation property (B.3.5) is pre-
served. Therefore we expect that even though a state that is initially coherent will not evolve
exactly into another coherent state, it will evolve into another state that is well approxi-
mated by a coherent state. What chiefly then remains to be found is how the parameter of
the coherent states—that is, ε—evolves under time. This we restrict first by the requirement
that we be able to obtain an effective Hamiltonian formulation of the quantum dynamics,
as explained in more detail in the body of the thesis.

The result above was shown for the case where the matter constraint is that correspond-
ing to a dust filled universe. The other type of matter with which we have been concerned in
this thesis is radiation. We comment briefly on the changes needed in the above analysis for
that case. We know that the matter constraint for radiation is equal to a constant multiple
of the inverse scale factor operator. Now, this operator commutes with p̂ and so the result
(B.3.13) is unchanged for a radiation filled universe. The matter constraint however does
not commute with ĉ, and there are corrections to (B.3.15). However, it is possible to show
that they are of higher order than the result in (B.3.15), and so working to lowest order it
is again true that the time derivative of (∆c)2(∆p)2 vanishes identically, irrespective of the
value of ε.
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