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ABSTRACT 

We study the few features of N = 1 supergravity coupled to the gauge inter- 

actions sum x U(l)y x SU(3)c of the standard model in the presence of heavy 

families. We assume the minimal set of Higgs fields, i.e., two sum doublets 

H1,2, the desert between Mw = 100 GeV and MG = 2.10“jGeV and perturbative 

values of the dimensionless parameters throughout this region. Using the numer- 

ical as well as the approximate analytic solution of the renormalization group 

equations, we study the evolution of all the parameters of the theory in the case 

of large (2 0.5) Y u k awa couplings for the fourth family. Yukawa couplings and 

certain mass parameters of the theory exhibit an interesting infrared behavior. 

We also investigate the implications of heavy families on the low energy structure 

of the theory. The desired spontaneous symmetry breaking of the electroweak 

symmetry with Mw = 100 GeV takes place only for a rather unnatural choice 

of the initial values of certain mass parameters at MG. The vacuum expectation 

pattern (HI) NN (Hz) M 123 GeV emerges necessarily in an interplay of the tree 

level Higgs potential and its quantum corrections. The quark masses of the fourth 

family are fiu N ?6D M 135 GeV, to an accuracy of lo%, while the mass of the 

fourth charged lepton has an upper bound 6~ 2 90 GeV. Further characteristic 

features of the model are one light neutral Higgs field of mass mH0 5 50 GeV 

and gluino masses rnA3 2 75 GeV. 



1. Introduction 

Locally supersymmetric gauge theories”’ provide an attractive way of linking, 

though not truly unifying gravity with other forces of nature. It is very intriguing 

that N = 1 supergravity (SG) in ten dimensions (d = 10) arises12’ as an effective 

field theory of superstrings,[” which naturally incorporate gravity. Dimension- 

ally reduced N = 1 SG models in d = 4 are therefore promising candidates for the 

effective theory which crosses the desert between the physics at grand unification 

mass scale and the physics at the presently accessible energies. Those theories 

are very attractive because they provide the most satisfactory mechanism for 

spontaneous breaking of local supersymmetry (SS).[” Realistic scenarios have 

been based on specific grand unified groups,“’ the left-right symmetric group 

SU(2)L x SU(2)R x U(1)&p71 and the left-handed electroweak symmetry 

SU(2)L x U(l)y?’ In these models the electroweak symmetry breaking is 

induced by the soft SS breaking terms which arise from the spontaneous break- 

down of local SS. Mass parameters in these terms are of the order of the gravitino 

mass m3i2 which therefore sets the weak scale, i.e., MW = 0 (m3i2). [4,5,W * 

If the soft SS breaking parameters do not evolve substantially from their ini- 

tial IdUeS at pR = 0 (Mpl) , one cannot break sum x U(l)r at the tree level of 

the Higgs potential unless one is willing to introduce a highly unattractive Higgs 

singlet chiral superfield. Here j.4~ is the renormalization scale and Mpl is the 

Planck mass where local SS is broken. However, it is reasonable that the renor- 

malization of these parameters is substantial and that it is this renormalization 

which at PR = 0 (Mw) triggers the spontaneous symmetry breaking (SSB) of the 

electroweak symmetry. In one class of such models[Q”0’61 a large Yukawa coupling 

of the top quark is responsible for this SSB. It also leads to a mass exceeding 

the mass of the top quark candidates seen by the UAl collaboration. Another 

class IlO, uses the idea that the parameters at Mw leave the vacuum expectation 

values (VEV’s) of the Higgs fields undetermined at the tree level of the potential 

* In Ref. 7 m3i2 sets the scale of the right-handed vector boson. 
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unless one also includes radiative corrections of the Coleman-Weinberg type[‘21 

in the effective potential. In this case one ends up with a light Higgs particle in 

the mass spectrum. 

The purpose of this paper is to study the effects of additional heavy families 

on the low energy N = 1 SG theory in d = 4 with the gauge group: 

G = SU(2)L x U(l)y x SU(3)c . (1.1) 

We assume the desert between Mw and the grand unification mass scale MG 

as well as perturbative values of the dimensionless parameters throughout this 

region. In particular we investigate the evolution of all the parameters according 

to the renormalization group equations (RGE’s) when in addition to the usual e-, 

CL- and r-families one has a heavier fourth family with larger Yukawa couplings.’ 

We assume a minimal Higgs sector with two sum doublet fields Hl,2. We also 

investigate the SSB pattern and the low energy mass spectrum of the theory. 

A supersymmetric model with additional heavy families may arise from the 

family unification models or from the Es x Es heterotic string theory.[13’ There- 

fore analysis of the influence of such additional families may have implications 

for the low energy phenomenology of such theories. 

In the non-supersymmetric theory based on the gauge group G a careful 

study’“’ of the RGE’s has shown that the Yukawa couplings of heavy families 

approach a stable infrared fixed point determined by the gauge couplings. As we 

shall see (see also Ref. 15) the supersymmetric case shows similar features. This 

in turn implies that the mass parameters of the theory evolve in a specific way, 

constraining the theory at the weak scale. Thus, the nature of the SSB pattern 

and the particle spectrum exhibit characteristic features which tightly constrain. 

t In the case of more than four families we lose asymptotic freedom for the strong interactions 
and gs diverges below MG. 
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The paper is organized as follows. In Sec. 2 we specify the model and the 

assumptions and fix the notation. We devote Section 3 to a study of the renor- 

malization group evolution of the parameters, comparing the numerical results to 

the approximate analytic solution. In Sec. 4, the SSB pattern of the electroweak 

symmetry is investigated while the low energy mass spectrum is presented in 

Sec. 5. Conclusions are drawn in Sec. 6. For the sake of completeness we give 

the complete set of the RGE’s for our model in Appendix A. The approximate 

analytic solution is presented in Appendix B. 

2. The Model 

In this section we shall present in detail the model and the assumptions used 

in the analysis. 

Desert Hypothesis 

We assume the group G of Eq. (1.1) to be the gauge symmetry of the theory 

between the weak scale Mw = 100 GeV and the grand unification scale MG = 2. 

10l”GeV. This enables us to study the undisturbed evolution of parameters over 

a wide range of energies from MG down to Mw. This allows certain parameters 

to reach an infrared fixed point to a good accuracy as ,!LR + Mw, independent 

of their initial values. 

Local SS is broken at Mpl - 1018GeV, thus giving rise to the soft SS breaking 

mass parameters. We assume that the values of these mass parameters do not 

change substantially from Mpl down to MG. In that way the number of the 

initial values of the free parameters in the theory does not proliferate. 

Perturbative Unification 

We assume that all the dimensionless parameters have perturbative values be- 

tween Mw and MG. We are then allowed to analyze the RGE’s using only 

one-loop beta functions. 

Particle Content 

We work with chiral superfields which transform under SU(2),5 x U(l)y x SU(3)c 
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as follows: 

(EL)f = (23-3) ;(ER)f =(l,l,l) N N (2.la) 

(QL)/ = (z,i,?) ;(UR)~ = (A -$,S) (DR)~ = (l,~,~) (2.lb) N N 

HI = (2 -+, I) Hz = (2,; I) . (2.lc) 

Here f = 1,2,3,4 denotes the family index. The fourth family therefore trans- 

forms in the same way as the first three families. The Higgs superfields (2.1~) 

are the minimal set for the supersymmetric extension of the standard model. 

Superpotential 

The most general renormalizable superpotential consistent with the particle con- 

tent (2.1) has the following form: 

0 1 
Here E = [ 1 -1 0 

and I?E,u,D are Yukawa matrices. Family indices are sup- 

pressed. 

We neglect flavor-changing effects and therefore set the off-diagonal elements 

of I?E,u,D to zero. The Yukawa couplings of the fourth family are assumed to be 

much larger than those of the other families. 

(rE,~D)44 = kT&J,D >> (rE,U,D)ii ; i = 1,2,3 P-3) 

However, (rE,U,D)ii, i = 1,2,3, are not neglected in the RGE’s. 

Soft Supersymmetry Breaking Terms 

In addition to the supersymmetric part of the Lagrangian we include the most 

general soft SS breaking terms as they arise from the spontaneous breakdown of 
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SG. These terms are of the following form: 

& = &I + &1+ &2 (2.4 

where 

47 = - e mx,X,X, 
a=1 

(2.5a) 

.csl = -[&+&)E$Hl + u R ( “Wh&?~~fb + DR(mDrD)Q$fh 

+ mH3 k@ &] (2.5b) 

ls2 = - LE?irnkEL + @p& ER + QLm$,QL + Dam&,DR 

+ uilm~RUR •I H!m&lHl + HlmLzH2] , (2.5~) 

The fields here denote the scalar components of the appropriate superfields. The 

subscript a = 1,2,3 refers to the gauge group U(l)y, sum and SU(3)‘, 

respectively and again we have suppressed the family indices. The mass matrices 

(mW,D x kWd and ITLi&&,U~,D~ are chosen to be flavor diagonal. Here 

mkl’ m&z and rnk3 denote the three mass parameters of the Higgs fields HI,~. 

In order to get as close as possible to the experimentally determined values 

for the gauge coupling constants as extracted from Ref. 16, we set 

g; = g; = g; = go = 0.96 (2.6) 

at MG = 2.10l’GeV. This value is determined to about 1% to 2% by integrating 

the RGE’s for our particle content. We also assume that at MG the soft SS 

breaking mass parameters have the following symmetry: 

mX1 = rnAz = mA3 = mO, (2.7~) 



mH3 = m$  (2.7b) 

mE=mU=mD=mO (2.7~) 

rngl = 2 - 2 - mk2 = mEL - mLR = mbL  = muR - m&, = rni,, . (2.7d) 

Here rng3 and mc  are of the order of the gravitino mass m3i2. The gaugino 

mass rng is a  free parameter, which can be naturally smaller than m3/2. This 

pattern of soft SS breaking mass parameters emerges from the hidden sector 

mechanism, “I which spontaneously breaks the local SS at Mpl; by assumption 

the pattern persists down to M G . 

3. Evolution of the Parameters 

The coupling constants and the masses of our model  evolve from the unifi- 

cation scale M G  to the weak scale Mw according to the renormalization group 

equations (RGE’s) given in Appendix A. Their exact solution for the gauge cou- 

plings and gaugino masses are examined in Sec. 3.1. Numerical results and the 

approximate analytic expressions for the parameters of the superpotential and 

for the soft SS breaking mass parameters are presented in Sec. 3.2 and 3.3, 

respectively. 

3.1 GAUGE COUPLINGS AND GAUGINO MASSES 

The solution of the RGE’s for the gauge coupl ings and gaugino masses with 

initial condit ions (2.6) and (2.7a) is of the following form: 

sy2 
” = 1  - 2  (y Nf + 1) gy2 

!g2 
” = 1  - 2(2Nf - 5) gi2 

(3.la) 

(3.lb) 
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9302 
gi = I- 2(2Nj - 9) 9302 

(3.lc) 

and 

0 99 
mAi = mA 902 

i = 1,2,3 (34 
i 

Here t is related to the renormalization mass scale PR in the following way: 

t=L - .&a pR 
16z2 MG P-3) 

and Nf denotes the number of families. If Nf > 4 we lose asymptotic freedom for 

the strong interactions and gs diverges below MC. This fact allows us to restrict 

our study to Nf = 4. 

In principle one can use the running gi’s as parameters of other RGE’s and 

numerically integrate those equations to find the evolution of other parameters. 

We have done that. But, we also find a way to approximate these equations. 

Figure 1 shows that gf and gz evolve slowly changing at most by a factor of 

two between MG and Mw. One may then expect to obtain a reasonably good 

approximate analytic solution of the RGE’s for other parameters of the theory if 

one set for all PR: 

91 = $1 (PR = Mw) + !$] = 6.55 (3.4a) 

92 = ; [g2(pR = Mw) + g;] = 0~31 (3.4b) 

93 = f [g3(pR = Mw) + t&i] = 1.09 (3.4c) 

and 

g;(pR = Mw) 

9y2 
+l m~=0.62m~ 

I 

g;(pR = Mw) 

s202 
+ 1 

I 
mO, = 0.73 rni 

(3.5a) 

(3.5b) 
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!&pR = Mw) 

s302 
+ 1 1 mO, = 1.31mi . (3.5c) 

One also has gf < gi,3 and gf usually appears in the RGE’s with a smaller 

coefficient than gi,3. In most cases we are allowed to neglect gf and gfrni, 

compared to gi,3 and gi,3mi, X3, , respectively. Together with (2.3) we also take 

the limits: 

I-7 = I hu - hD 
hu+d 

<< 1 , hE << hu,D . P-6) 

It is natural to assume that also for the fourth family h& < hb,D, where hg UD = 

hz,u,D (PR = MG)- Th en both approximations in Eq. (3.6) are justified from the 

evolution of hE,U,D as given in Sec. 3.2. This will allow us to solve the RGE’s 

for the other parameters analytically to an accuracy of 10% to 30%. In all cases, 

we have checked our analytic estimates against our exact numerical treatment. 

3.2 PARAMETERS OF THE SUPERPOTENTIAL 

For the Yukawa couplings of the fourth family hE,u,D one obtains the follow- 

ing analytic solution: 

517 

+ WI3 1 (3.74 

517 
+ WI3 1 (3.7b) 

h& = hF [($’ (;;:,I”‘+$ [1+ 0(&f)] (3.7~) 

where 

X = Xeexp(14g2t) ,X0 = 1 - $ 
0 

(3.8a) 
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h;+hO, 
ho= 2 

hO, - h; 
’ “= h;+h; (3.8b) 

i.j2 =; (yg:+3g;) rl = dg+lg: (3.8~) 

J(z) = {I+ f 97% [ ($-)- (-&)I”“}-’ (3.8d) 

X 

and t is defined in Eq. (3.3). H ere 0 refers to the initial values of parameters at 

MG. Evidently hU and hD approach the same infrared fixed point: 

pl~o hU,D = S = 1.09 . (3.9a) 

At PR = 100 GeV one has X/X0 = 0.031 < 1 and consequently as long as 

ho 2 0.5 (i.e., X0 2 A), hb,D assume their asymptotic values (3.9a) at Mw to 

an accuracy of 10%. Therefore we define a heavy family by requiring hb D 2 0.5. , 
For comparison (I’“,) 33, for the top quark is of order 0.2. 

For h,q from (3.7~) one obtains the following infrared fixed point: 

ho hE = 0 . (3.9b) 

This value is not reached at Mw because [ (X/XO)‘-~]~/~ - 0.75 - 0 (1). Instead 

we obtain the following estimate: 

h$(pR = Mw) = Min(h$?,ij2) x O(i) . (3.10) 

In Figs. 2 and 3 we compare the approximate formulae (3.7) to the numerical 

solution of the full one-loop RGE’s for hU,D and hE, respectively. One sees that 

the two solutions are in good agreement. 
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The evolution properties of hE,U,D also justify approximation (3.6) which we 

use in order to get the analytic solution for the evolution of the soft SS breaking 

mass parameters. 

The Yukawa couplings of the first three families are small compared to ?J = 

1.09, i.e., (rE,u,D);i < 9 where i = 1,2,3. Approximate expressions for these 

I”s are given in Appendix B; these have the characteristic feature that when 

j&R + Mw, (I’~)ii decrease while (ru,D)ii increase. 

The approximate analytic solution for the evolution of the mass parameter ~1 

of the superpotential (see Eq. (2.2)) has the following form: 

P = PO [ ($J ( ~I~)]3’7exp(-3&) (3.11) 

when X and Xc are defined in Eq. (3.8a) and ~0 = p (PR = MG). This result 

is in good agreement with the full numerical solution as seen in Fig. 4. From 

(3.11) it follows that p approaches the infrared fixed point p = 0. However, at 

PR = Mw, 1~ need not reach the fixed point, especially when ~0 is large compared 

to the other mass parameters and hb, are not much larger than 0 (a). In Sec. 

4 we show that this feature allows us ;o break sum x U(l)y down to U(l),, 

at PR" 100 GeV. 

3.3 SOFT SUPERSYMMETRY BREAKING MASS PARAMETERS 

The RGE’s for the soft SS breaking mass parameters are complicated (see 

Appendix A). In order to understand the structure of the numerical solutions it is 

necessary to study the approximate analytic results. The approximate equations 

are tractable if one makes use of (2.3), (3.4), (3.5) and (3.6). 

We are especially interested in the infrared behavior, i.e., /..&R + Mw, of those 

parameters which are relevant for the proper breaking of sum x U(l)y down 

to qqm. These are the mass parameters mu,, rnkl and rngz which appear 

in the terms with the doublet fields Hr,2, only (see Eqs. (2.5b,c)). However, we 
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shall also comment on the evolution of other SS breaking parameters which are 

relevant for the particle mass spectrum of sleptons and squarks. The complete 

set of approximate analytic solutions is given in Appendix B. 

The evolution of n-&H, is approximated by 

mH3 = m”H, -t [,-iii,- (TEA--$rnl,) &a ($-)I 

+ t $j [ Cl- X0) (m0 - =A) + XOmx .fh ($)I 

where X and X0 are defined in Eq. (3.8a), 

16 
7iiX = 3 g&x3 + 3&-h, )/(ygi+3&) =1.18mi, 

(3.12) 

(3.134 

and rngs, mo and rni are the initial parameters at MG given by Eqs. (2.7). The 

approximate analytic solution for m&I,Ha to leading order in 2 and hE (see (3.6)) 

has the following form: 

2 - 2 
mH1 -mka=-?m2 

3i2 -I- t 6i2tn 
( > 

g + 

where 

+ z { (1 - X0) [CO - (mo - Fii~)~ (’ ~~$T”) 

+ 2(m0 - FFi~)Bi~ &en g ( ) 

(3.14) 

-(m2-m;) 1 [ +x0 Fi2+m: & en ($)I en (g) } (W 
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and 

] / (ygi +3gi) = 2.89(mi)2 (3.13b) 

fi2 = 
[ 

16 2 2 
3 S3%, _ !$mia] / ($9: + 39:) = 1.30(mt)2 . (3-13C) 

Here m&YR,DR refer to the mass parameters corresponding to the fourth family. 

A subscript 0 denotes again the values of the corresponding parameters at MG 

and thus, Co = 3m2 3,2. fn Figs. 5 and 6 we plot the evolution of m& and m&l,Hz, 

respectively. One sees that both the numerical and the analytic solution are in 

good agreement. 

From Eq. (3.12) and (3.14) one observes that none of these parameters 

approach any infrared fixed point. They decrease as j.&R + Mw and assume the 

following value at j&R = 100 GeV: 

0 
mH3 k: mH3 - 0.86mo - 1.89mi (3.15a) 

m&I 
2 

Mm &a = -&a - 3.86 mi2 , (3.15b) 

The value of ??I& depends linearly on its initial value m”H, at MG. Since m’& 

does not appear in the evolution equations for other mass parameters and thus 

its value is not restricted; thus ?nH, remains a free parameter of the model. 

The mass parameters rnkl and rng2 approach the same value as ,!.LR + MW 

even if at MG one has hg # h& and h& - 0 (g). This is a consequence of the 

fact that as PR + Mw, hU and hD assume the same fixed point value and hE 

decreases. Also, in the RGE’s h$ appears with a smaller coefficient than the one 

in front of h&,D. The latter arises from the color degrees of freedom. Therefore 

if one assumed hU M hD and hE = 0 the RGE’s for rnkl and rn& become 

equivalent (see Appendix A) and then the evolution of these two parameters is 

the same. 
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From Eq. (3.16b) we also see that at j.AR C% 100 GeV, mkI,& are negative. 

This can be understood by examining the RGE’s for mkl,Ha and miL,URrDR. 

Let us assume first that the gaugino masses are zero. In this case the relation 

between the beta functions for m&,,H, and m$L,uR,DR is the following: 

(3.17) 

Since $mLl,& > ii mt2L,uR,uD it follows that m&,,H, decrease at a larger rate 

than m;,,U~,D~ and therefore mk,,H, < mtL,UR,& for all /JR < MG. On the 

other hand we see from Eq. (3.15) that 

as PR + Mw. This implies that at Mw, mkl,Ha - -2m$,,uR,& and therefore 

the Higgs masses mGl,Ha are necessarily negative while the squark masses are 

positive. This feature persists even in the case of nonzero gaugino masses because 

the beta function for m2 QL,UR,DR gets an additional negative contribution from 

gluino masses and it is therefore even smaller than the beta function for rnkl,H,. 

The above analysis is in agreement with the quantitative results of Fig. 6 and 

Fig. 7 where the evolution of m&,,H, and mtL,DR,uR) respectively, are shown. 

The result that at j&R = 100 GeV , m&l,Hs are approximately equal, negative 

and of order of the gravitino and/or gaugino masses has strong implications for 

the nature of SSB of SU(2)r, x U(l)y. We discuss this in Sec. 4. 

For the sake of completeness we also state the evolution of the soft SS breaking 

parameters mU,D for the fourth family: 

mUwmD=mA+ 3 [(l - Xo)(mo -mu) + X0men (g-1 - (3.18) 

Here mu is defined in Eq. (2.7c), ?‘?i~ in Eq. (3.13a) while X and X0 are defined 

in Eq. (3.8a). Thus, mU,D approach the infrared fixed point ??Zx = 1.81mi. 

Graphs of ?nU,D are given in Fig. 8. 
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The analytic expression for W&E and mgL,ER for the fourth family have a 

complicated form and are given in Appendix B. The value of ?nE decreases as 

PR + Mw. If hi = 0 (?j) and ?n”E >> m”ji&,ER it may be the case that at 

PR - 100 GeV one ends up with m&,ER < 0. In this case the solution which 

preserves U (1) em is a saddle point, because the slepton masses are imaginary. 

One may avoid such a pathological behavior by choosing the initial conditions 

hg 5 0 (3) and/or rn& 2 mgL,&. Numerical solution for ?nE and m&ER is 

presented in Figs. 9 and 10. 

We briefly comment on the evolution of the soft SS breaking mass parame- 

ters for the first three families. The mass parameters (mE,U,D X r&u,&;, i = 

1,2,3, are small compared to ?nE,U,D X hE,U,D because the Yukawa couplings 

(I&&, i = 1,2,3, are smaller than hE,U,D. The slepton and squark masses 

for the first three families (m&&&L,UR,DR)ii7 i = 1,2,3, evolve with a negative 

beta function which is in the leading order proportional to the product of the 

squares of gaugino masses and gauge couplings. Therefore at /1R = 100 GeV 

these masses are in general mi,, + 0 (mi2). Exph t ‘ci expressions are given again 

in Appendix B. 

4. Spontaneous Symmetry Breaking 

The fixed point behavior of large Yukawa couplings determines to a large 

extent the magnitude and the symmetry pattern of the mass parameters in our 

model. In this section we study the implications for the spontaneous breakdown 

of SU(2)L x U(l)y as they arise from the structure of the Higgs potential. 

The SSB pattern should be compatible with the low-energy phenomenology, 

therefore it should ensure Muz[(.@) , (@)I = 0 (Mw) while the VEV’s of other 

scalar fields must be zero. Here the superscript 0 denotes the neutral component 

of the field. For the sake of further discussion we shall give here the part of the 
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tree level potential which depends on the Higgs fields Hr,2 fields, only:* 

&L = (mkl + P”,H!HI -k (mL2 + p”)H~H2 - pm&(HT&2 + h.c.) 

922 
8 &(H$aHl - H,t,Hz)’ + $ (HfHl - H,tH2)” . (4-l) 

a=1 

The mass parameters p, m& and mLl,HZ are defined in Eqs. (2.2), (2.5b) and 

(2.5c), respectively, 7, are Pauli matrices and e = i72. Since the RGE’s lead to 

approximately equal values of rnkl and rng2 at PR = 0 (Mw ) (see Eq. (3.14))) 

the minimization of VTL yields the VEV pattern: 

1 (Hi? 1 = 1 (Hi) 1 = H/2 . (4.2) 

This pattern is correct up to order (rnkl - rnf& )/MI, + m&J =S 10% (see also 

Fig. 6). 

Potential VTL as a function of the real VEV H is then given by: 

1 
VTL = 5 miH2 (4.3a) 

where 

mi = f crnkl + m&2) + p2 - [pm& 1 . (4.3b) 

Obviously, if rni > 0 the system has a minimum at H = 0, while for rni < 0, 

VTL is unbounded from below. In such a situation one has to include quantum 

corrections to the tree level Higgs potential VTL. This may be achieved by re- 

garding mf,, as a function of H, i.e., rni = rn$(pR = H), or by improving the 

potential B la Coleman-Weinberg.“” We thus observe that the model determines 

* All the squarks and sleptons should have zero VEV’s. In the Higgs potential those fields 
appear in the bilinear combination, and therefore the extremum solutions are trivially sat- 
isfied. We shall prove later that such a VEV pattern for squarks and sleptons also satisfies 
constraints for the minimum. 
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the nature of the SSB of sum x U(l)y down to U(l),,; the SSB is necessarily 

radiative, i.e ., quantum corrections to the tree level Higgs potential determine 

the magnitude of H. 

The stable minimum of the potential occurs at the scale j&R where rni - 0 

and H = o(j.~R). From Eq. (3.14) one observes that at PR = Mw , rnkl,Hs are 

negative and large, i.e., of order of the gaugino and/or the gravitino mass. Also, ,Q 

approaches the fixed point value zero (see Eq. (3.11)). Therefore, rni is generally 

negative and large. This implies that the radiative SSB of Sum x U(l)y takes 

place typically at /JR >> Mw , yielding H = 0 (/JR) >> Mw . This of course con- 

tradicts H = 245 MeV which is obtained from the experimentally observed W* 

and Z”-boson masses. This implies that without careful udjustments of the mass 

parameters at M G, this model is not consistent with low energy phenomenology. 

In order to obtain a realistic scenario one has to choose ~0 = ,X(/JR = MG) 

in such a way that rnf,(pR = H) assumes a value close to zero, i.e., rnx < 

O(m;,m3/2) at Mw. From the expressions for rni, ~1, m& and mgl,H a as given 

in Eqs. (4.3), (3.11), (3.12) and (3.14), respectively, one obtains the following 

constraint on ~0 in terms of the initial values ho = (h& + hg)/2, rni, mg, rn& 

and m3j2 (see Eqs. (2.7)): 

p. M 2.85 (hO)6/7 3,2 i- 3.86 mi2 + 0.25m& -I- 0.5mH, 
> 

(4.4a) 

with m& being defined in Eq. (3.12). I n order to obtain the desired SSB pattern 

and to avoid the tuning of parameters one has to choose the following relations 

among the parameters at MG: 

(4.4b) 

Also, rn& has to be adjusted to ensure m& << rng3 at the weak scale. If we relax 

any of the above constraints we have to introduce additional mass hierarchies in 

the model. Different initial values of the parameters at MG which yield rnN - 0 

at Mw are given in Table I. 
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To our knowledge there does not exist any model that satisfies naturally 

constraint ~0 2 3 m3i2. For example theories”71 starting from a superpotential 

containing only dimensionless couplings cannot accommodate heavy families. 

In the following we shall present the form of the quantum corrections to VTL 

and the minimization of the total potential. In the case when H is larger than 

the soft SS breaking masses one can use the mass independent renormalization 

and sum all the powers of the leading logarithms. In this case one obtains the 

so-called renormalization group improved potential which is of the following form: 

VT = krn$(pR = H)H2 . (4-5) 

In the leading logarithm approximation, VT has the following form: 

where 

‘G = f m?/ (BR = pLL) H2 + VLL 

1 drni 
VLL = - - 

2 dt tLL 

(4.6) 

(4.7) 
and t = &l?nw. 

G 

At PR = I one may actually encounter a situation when H is of order 

of the largest soft SS breaking mass parameters. In this case the leading loga- 

rithm formula (4.6) is changed quantitatively and assumes the following Coleman- 

Weinberg form: 

vT” = i m$ (CLR = pLL)H2 + V&V 

where 

3 
2 

v - 
c 

rli 
cw = l&9 ?@?a - - - 1 h4H4.ba 

h2H2 

i=l &w 8 +4W 

and 

~13 = m$ + i h2H2 f rn$- -I i h2H2(m+ - psignmH,)2 
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P-8) 

(4.9) 

(4.10a) 



h= hu +b 
2 

(4.10b) 

m+ = mU+mD 

2 
(4.1oc) 

1 
rni* = z 

[ Mel f f (41, + m&J 1 (4.10d) 

The free parameter pew is related to ILL in such a way that V&T is identical 

to VLL when H is much larger than the soft SS breaking masses. In expression 

(4.9) we have included only the leading contribution to V&. All the parameters 

in VLL and VCW are taken at the renormalization scale ,ULL. 

We choose ,XLL to be a few TeV. Then we may safely assume the mass in- 

dependent RGE’s between /.LLL and MG while the leading logarithm potentials 

Vi or VI still provide a good approximation at Mw. We compare VT, Vi and 

VT” in Fig. 11. The location of the minimum is different in each case. However, 

this difference is not very significant: it can be countered by changing the initial 

value of the parameters at MG by a few percent. We may neglect the difference 

between VT, V$ and VI safely, since the two-loop corrections are expected to be 

of order 10%. The minimization of VT yields a local minimum for the values of 

the parameters at MG given in Table I. We have checked numerically that this 

minimum is also the global minimum. 

5. Mass Spectrum 

We compute the mass spectrum by diagonalizing numerically the tree level 

mass matrices with renormalization group improved parameters. These are read- 

ily obtained form the Lagrangian described in Sec. 2 and have been given in the 

literature. [la1 

Since we assume the Coleman-Weinberg mechanism to be operative, the neu- 

tral Higgs mass matrix calculated in that fashion has an imaginary eigenvalue 

which we replace by the square root of the curvature of the potential VT (see Eqs. 
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(4.5), (4.6) and (4.8)) t ‘t a 1 s minimum. Examples of mass spectra are presented 

in Figs. 12. 

Our model predicts the quark masses of the fourth family. In Sec. 3 we have 

seen that the Yukawa couplings hu and hD approach the same fixed point g = 

1.09 at the weak scale. Since the only possible spontaneous symmetry breaking 

pattern is 1 (HI) 1 M 1 (Hz) 1 = 123 GeV, we obtain up- and down-quark masses 

of 135 GeV to an accuracy of 10%. From Eq. (3.7~) for the evolution of hE we 

derive the inequality hE 5 0.65g and we get an upper bound on the mass of the 

fourth lepton of 90 GeV. In most examples this mass is below 50 GeV. 

Since Sum x U(l)y is broken radiatively, one neutral Higgs fields ends up 

light, i.e., in the range of 20-40 GeV. 

In our model we are able to accommodate photino masses 7 = O-40 GeV. As 

m’;; rises the unpleasant mass hierarchy p/m,,, > 3 at MG becomes even larger, 

as we easily see from Eq. (4.4). Th e model therefore prefers y 5 10 GeV. This 

in turn implies gaugino masses mAa 2 75 GeV. 

Barring any further fine-tuning of parameters all the other superparticles 

acquire masses of order rn,/,. The radiative symmetry breaking mechanism we 

employ decouples the value of (HI) from that of m3i2. This is illustrated by 

examples (a) and (e) of Table I and Figs. 12a and 12b where we have chosen 

m3/2 = 100 GeV and m3j2 = 200 GeV, respectively. In principle it is even 

possible to shift the masses of the superpartners of the ordinary particles into 

the TeV region. Apart from an increasingly difficult tuning of parameters we 

then have (HI) /m3i2 M 0.1 and two-loop effects must be taken into account. 

Also, since we may have rnkl - rn& = 0 (m&), we are faced with the formidable 

problem of the Coleman-Weinberg analysis of a potential that is stabilized by 

quantum corrections in more than one direction. 

It is also interesting to observe that for the case with m3i2 = 200 GeV the 

mass of the lightest neutral Higgs field can be larger than the mass of 2’ boson 

(see Fig. 12b). Th is is differs from the results of Ref. 19 where the lightest 
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neutral Higgs field cannot be heavier than 2’ even in the case of radiative SSB. 

However, in our example the relation (H) < m3j2 is different from the assumption 

of Ref. 19 where the soft super symmetry breaking parameters are all of order 

or smaller than Mw . 

6. Conclusions 

We have studied a standard model in the context of N = 1 supergravity when 

a heavy fourth family is present. The theory has a minimal set of Higgs fields 

with the two Higgs doublets. The fourth family is a replication of the first three 

families with the same gauge transformation properties, but its Yukawa couplings 

are chosen to be large, i.e., _ > 0.5. We also assume that a desert extends between 

MW = 100 GeV and MG = 2.1016 GeV and that dimensionless parameters are 

perturbative through this region. 

First we studied systematically the evolution of all the parameters of the 

theory from MG down to Mw. We obtained the numerical as well as approximate 

analytic solutions. The Yukawa couplings and certain other mass parameters of 

the theory have an interesting infrared behavior: (i) The Yukawa couplings hU 

and hD for the up and down quarks of the four family approach the same infrared 

fixed point s - 1.1, (ii) the masses rngl and rnk2 of the Higgs fields HI and H2 

decrease and approach the same negative value which is of order of the gravitino 

or gaugino mass, and (iii) the mass parameter p in the superpotential approaches 

the infrared fixed point 0. The fact that rngl M rn& < 0 at j.LR = Mw forces 

the spontaneous symmetry breakdown of the electroweak symmetry to occur in 

an interplay between the tree level Higgs potential and its quantum corrections. 

The spontaneous symmetry breaking pattern is then (HI) w (Hz). However, in 

order to obtain (HI) w 123 GeV one has to choose unnatural initial values of 

the parameters at MG: ~0 > 3m312, hb,D 2 5, rnt < O(m3i2) and rnLs has to 

be chosen so that jm& I << m”H, at Mw. It remains to be seen whether these 

constraints can be derived from a grand unified theory. 
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Our model also imposes interesting restrictions on the particle mass spectrum. 

The up and down quarks of the fourth family have the same mass 135 GeV to 

accuracy of lo%, while the mass of the lepton has an upper bound of 90 GeV. 

Because of the radiative nature of the spontaneous symmetry breaking one ends 

up with one relatively light neutral Higgs field with a mass below 50 GeV. The 

gluino masses tend to be light, i.e., below 75 GeV. Masses of other particles, 

except fermions of the first three families, are in general in the region of 100 GeV. 

We conclude that the large Yukawa couplings of the fourth family have strong 

implications on the low energy structure of the standard model within N = 1 

supergravity. They determine the spontaneous symmetry breaking pattern and 

restrict the particle mass spectrum. 
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APPENDIX A. R enormalization Group Equations 

In the following we present the renormalization group equations for the model 

described in Sec. 2. They have been partially given in the literature.[ao’al’ We 

have derived them by calculating the infinite parts of the one-loop diagrams 

in the superfield and component field formulation of the most general renor- 

malizable softly broken super-Yang-Mills theory with chiral matter fields. The 

regularization method employed was dimensional reduction which is equivalent 

to dimensional regularization for our purposes. The difference between the two is 

proportional to E = (4 - d) and hence has no effect on the residues of the simple 

poles in E. Higher poles do not appear in a one-loop calculation. 

Recently an independent evaluation using the effective potential approach 

has been given in Ref. 21, with identical results. 

In the following equations we regard rE,u,$, (mE,U,D x I&& and 

m~~,&,Q~,Whz as matrices with family indices. S is defined to be 

S = -m?fl + mL2 - trmiL + trmgR + trm$, + trmgR - 2trmhR , (A.la) 

and 

1 
t=- - .fh pR 

16~’ MG 

while Nf denotes the number of families. 

Gauge couplings 

-$ g2 = (2Nf - 5) g; 

; g3 = (2Nf - 9) s,” . 

(A.lb) 

(A-2) 

(A-3) 

(A.4 
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Yukawa couplings 

i rE = rE(trrErE+ + ztrrDrD+ - 391 - 3s;) + =ErE+rE (A-5) 

-$rD=r D 
( 

tr rErEt + 3tr rDrDt - g gf - 39; - y d 
> 

-t zrDrD+rD + rDrUtrU (A-6) 

g ru = ru ( 
3trruru+ - $I; - 3g,2 - Tgi 

> 

+ 3rUrUh-b + rUrD+rD (A.7) 

The supersymmetric mass parameter ~1 

1 j.k = p(3tr ruru+ + 3tr rDrD+ + tr rErE+ - gf - 3gi) (A-8) 

Gaugino masses 

-$rn,, =2(yNf+l) rnxlg: (A-9) 
d 

-jyXa = 2 (2Nf - 5) mx,s: 

d 
-g-h3 = 2 (2Nf - 9) w,,& 

(A.lO) 

(A.ll) 

The Mass parameters of the bilinear soft term 

d 
z 

m& = 2tr rEt (mErE) +6tr rDt (mDrD) + 6tr rut (muru) - 2m&gf - 6mx2gi 

(A.12) 

Mass parameters of the trilinear soft terms 

-$ (mErE) = 4rErEt (mErE) + s(mErE)rE+rE 
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+2r~ td?E+(~ErE) +3t~r~+(~~2~r~) - 3mxlgT -3mx2g,2 (~13) 1 

+ (muru) 
( 

3trruru+ - fgt - 39; - $I: +2r~ 
) [ 

3w~+(~r~) 

13 16 
- gm,gT - 3mx,gi - 3 mx& 1 (A.14) 

+ 5bdb)rD+rD + (mDrD)ru+ru 

+ (m$D)(3t r D Dt+trrErEt-agf-3g:--g932) r r 

2rD tr r&(mErE) + 3tr rDt(mDrD) - f mxlgf 

16 - 3mx,gi - ym&gi 1 (A.15) 

Soft mass squares 

d 
- rn& = 2rE*rET7&, + 
dt 2m&rE*rET +4(m~r~)*(m~r~)~ 

(A.17) 

+ 4mklrE*I'ET + 41’E*miLrET - 8gflmA, I2 + 2& 
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(A.18) 

+ 2b-d3+(mdb) + 2(mdk)+(mdb) 

d 
z mUR 2 = 2m~~rv*rvT+2rV*rVTm~~+4m~~rutrvT+4rUfrn~~rUT 

(A.19) 
d 

zm R !I =2m~Rr~*r~T+2r~*r~Tm~R+4m~lrD*rDT+4rD*m~~rDT 

d 

+ 4bdb)*(mdb)T - i 9flmx112 - y g~lmxa(2 + 5 gf S 
(A.20) 

-m& = 2m&(tr rErE+ + 3trrDrD+) 
dt 

+ 2tr (mEh)(m~rd + 6tr (morD)(mDrD)t 
(A.21) 

+ 2tr rE(m&L -t- miR)rEt + 6tr rD(mtL + mgR)rD+ 

- 2gflmx,12 - 6g$m,l” -d s 
d 

- 41~ = 6m&p ruru+ + 6tr (rnul?u) (muru)+ dt 
(A.22) 

+ 6trrdmiL + m&R)ru+ - 2g~lm~l12 - 6g~lm~,12 + gfs 



APPENDIX B. A pproximate Analytic Solution 

We give the approximate analytical solution for all the parameters of the 

model. The approximations are justified in Sec. 3 and are of the following form: 

(b,U,D)44 = b,U,D >> (rE,U,D)ii ; i = w3 (B.la) 

gi = ; [g&L, = Mw) + g;] ; i = 1,2,3 (B.lb) 

mAi = t &R = Mw12 + 1 
02 

gi 1 m. x; i = 1,2,3 (B.lc) 

\~I=~ 
hu - hD 
hu+hD 

l<l, hE<hu,D (B.ld) 

Here (T&u,&; denote the Yukawa couplings for the ith family while gr,z,s and 

rnA1,A2,Aa are the gauge couplings and the gaugino masses for U(l)y, sum 

and SU(3)c gauge groups, respectively. The renormalization mass PR spans the 

range form the unification scale MG down to the weak scale Mw. We use the 

following notation 

1 t=- - k3-i pR 
16~~ MG 

X= Xeexp(14g2t) , 

J(z)= lfy --f { 4 “[$ [($)‘-” (;.-:)]3”}-1 

Subscript 0 denotes the values of parameters at /JR = MG. 
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(B.2b) 

(B.2c) 

(B.2d) 

(B.Ze) 



Yukawa couplings of the fourth family hE,u,D 

hZ,=& [I+, [$-(;;z)]““] 

ha=& [I-z~[$(;;$)]““] 

h$=h0,2 [($-“(:--$)]3’7+) 

Yukawa couplings (rE,u,& of the first three families (i = 1,2,3) 

Mass parameter p of the superpotential 

P = PO [(z> ( ::g]3'7exPM&l 

(B.3a) 

(B.3b) 

(B.3c) 

(B.4a) 

(B.4b) 

(B-5) 

Mass parameters ml&, rnkl and rnL2 

mH3 =m$-: [m-TEA- (TEA--$m,,) .&z ($-)I 

(B.~u) 

+ f s [ (1 - X0) (m - TEA) + XoEzx ln ($-)I 

(B.6b) 



where 

C s t (mkl + m&J + m$, + i (rnLR + m&,) = (ES2 - 7$) 

+ f$j {(1-Xo)[Co-(m-Fiix)2 (‘TT$Y’) 

+ 2(m - %i$E~ 
1 

-en 6 
1-x ( > 

-(7ii2-mi) 
1 [ 

+x0 FL2+m; 
i+ ($)I en (g) > 

and 

y=jg = 32 
3 gi w$ + 6gim:2 I/( > 

jg2 = 16 2 2 
3 g3mx3 

P-7) 

(B.&z) 

(B.8b) 

(B.8c) 

Here parameters mtLIURIDR refer to the mass parameters corresponding to the 

fourth family. Subscript 0 denotes again the values of the corresponding param- 
1 

eters at MG. Thus, m&, mo and rni are the parameters defined in Eq. (2.7) 

and CO = 3m2 312’ 

soft supersymmetry breaking mass parameters mU,D and mtL,uRIDR corre- 

sponding to the fourth family 

mUmmD=mA+ g [(l - Xo)(mo - TEA) + Xo??‘i~.tn ($)](B.ga) 

(B.9b) 
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Mass parameters 5%~ and 65’ are defined in Eqs. (B.8). 

Mass parameters (mu,D)jj and (m$L,uR,DR)ji, i = 1,2,3, 

(mU)jj M (mD)jj = : ?fix •k f 

(1 - Xo)(mo - TEA) + XOKX i?n (B.lOa) 

(B.lOb) 

(mCR)ii = (m&,)ii = mz12 - & (YE2 + 12iii2) .&z 
( > 

5 
x0 

. (B.lOc) 

Mass parameters mE and msL,ER corresponding to the lepton of the fourth 

family 

mE =~TE*+mo[J(z)-i]+i (iii,-$mAS) l-(-$-J 

+fs [(1-X0)(m0-Fz~)+Xoiii~h($-)] (B.lla) 

miL = 42 
[ 

l + 5 J(s) 3/4 
I 

3 s; +;K(X)-T g X 
3 rnA, en - 

x0 
(B.12b) 

mfkR = 4,2 + $ J(z) 3/4 
I 

+ 5 K(X) (B.llc) 

where 

b& + m&) 

I 

dX 
2 l t& 7. 

Mass parameters (rnE)ii and (mgL,miR)ii, i = 1,2,3 

(mE)jj = $ mo + ; TEA + ; (75~ - $ rnAz) 4?n ($) 
s 

31 

(B.12d) 



I 



REFERENCES 

1. E. Cremmer, S. Ferrara, L. Girardello, and A. Van Proeyen, Phys. Lett. 

116B (1982) 231; A. H. Chamseddine, R. Arnowitt, and P. Nath, Phys. 

Rev. Lett. 49 (1982) 970; R. Barbieri, S. Ferrara, and C. A. Savoy, Phys. 

Lett. 119B (1982) 343; H. P. Nilles, M. Srednicki, and D. Wyler, Phys. 

Lett. 120B (1983) 346; for a complete list of references see: H. P. Nilles, 

Phys. Rep. 110 (1984) 1. 

2. M. B. Green and J. H. Schwarz, Phys. Lett. 149B (1984) 117 and CALT- 

68-1224, December 1984. 

3. J. H. Schwarz, Phys. Reports 89 (1982) 223; M. B. Green, Surveys in High 

Energy Physics 3 (1983) 127. 

4. A. H. Chamseddine, R. Arnowitt, and P. Nath, preprint NUB # 2579 

(1983); L. Hall, J. Lykken, and S. Weinberg, Phys. Rev. D27 (1983) 2359. 

5. A. H. Chamseddine et al., Ref. 1; B. A. Ovrut and J. Wess, Phys. Lett. 

112B (1982) 347; L. E. Ibiiiez, Phys. Lett. 118B (1982) 73; for a complete 

list of references see: H. P. Nilles, Ref. 1. 

6. M. CvetiE and J. C. Pati, Phys. lett. 135B (1984) 57. 

7. M. CvetiE, SLAC-PUB-3568, February 1985. 

8. J. M. Frkre, D. Jones and S. Raby, Michigan preprint UMHE-82-58. 

9. L. Alvarez-Gaumd, J. Polchinski, and M. B. Wise, Nucl. Phys. B221 (1983) 

499; J. Ellis, D. V. Nanopoulos, and K. Tamvakis, Phys. Lett. 121B (1983) 

123; L. E. Ibafiez and C. Lopez, Phys. Lett. 126B (1983) 94 and CERN 

preprint TH-2650 (1983); L. Ib Biiez, Madrid preprint FTUAM/83/4 (1983). 

10. J. Ellis, J. S. Hagelin, D. V. Nanopoulos, and K. Tamvakis, Phys. Lett. 

129B (1983) 275; C. K ounnas, A. Lahanas, D. Nanopoulos, and M. Quiros, 

Phys. Lett. 132B (1983) 95 and Nucl. Phys. B236 (1984) 438. 

33 



11. J. Ellis, A. B. Lahanas, D. V. Nanopoulos, and K. Tamvakis, Phys. Lett. 

134B (1984) 329; J. Ellis, C. Kounnas and D. V. Nanopoulos, CERN 

preprint TH-3768. 

12. S. Coleman, and E. Weinberg, Phys. Rev. D7 (1973) 1888. 

13. D. Gross, J. Harvey, E. Martinet and R. Rohm, Phys. Rev. Lett. 54 (1985) 

502. 

14. J. Bagger, S. Dimopoulos and E. Masse, SLAC-PUB-3437, September 1984. 

15. J. Bagger, S. Dimopoulos and E. Masso, work in progress; see also, J. 

Bagger, S. Dimopoulos and E. Masso, SLAC-PUB-3587, February 1985. 

16. M. Goldhaber and W. Marciano, BNL-3587, April 1985. 

17. J. P. Deredinger and C. A. Savoy, Nucl. Phys. B237 (1984) 307. 

18. See for example H. P. Nilles, Ref. 1. 

19. S. P. Li and M. Sher, Phys. Lett. 140B (1984) 339. 

20. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Prog. Theor. Phys. 

71 (1984) 413; see also Ref. 17 and L. Alvarez-Gaumd et al. in Ref. 9. 

21. N. K. Falck, DO-TH 85/5, February 1985. 

34 



TABLE I 

Examples for initial values of the parameters at MG = 2.1016 GeV which 

ensure the proper spontaneous symmetry breaking pattern I (JSF) I FZ I (Hi) I = 

123 GeV. Here h&,u,D denote the Yukawa couplings for the fourth family, ,QO is 

the mass parameter of the superpotential (see Eq. (2.2)), rni and m3/2 are the 

gaugino mass, and the gravitino mass, respectively while rn& and me denote the 

soft supersymmetry breaking mass parameters defined in Eq. (2.7b) and (2.7~). 

All the masses are in GeV. 

(a) 5 3 1 100 30 70 5 668 

(b) 5 3 1 100 30 70 50 908 
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FIGURE CAPTIONS 

1. Evolution of the gauge couplings for the case of four families. 

2. Evolution of hu (solid line) and hD (dotted line), the Yukawa couplings for 

the up- and down-quarks of the fourth family. The dashed line denotes the 

approximate analytic solution for h = (hu + hD)/2. The initial values for 

hu,D at MG are taken from examples (a-d) of Table I. 

3. Evolution of hE, the Yukawa coupling for the lepton of the fourth family. 

The numerical and approximate analytic solution are plotted with the solid 

and dashed line, respectively. The values for the Yukawa couplings at MG = 

2 . 1016 GeV are chosen from examples (a-d) of Table I. 

4. Numerical solution (solid line) and approximate analytic solution (dashed 

line) for ~1, the mass parameter of the superpotential (see Eq. (2.2)). The 

initial values for hE,u,D and ~1 at MG are chosen from the set (a), (c) and 

(d) of Table I. 

5. Numerical solution (solid line) and approximate analytic solution (dashed 

line) for m&, (see Eq. (2.5b)). Th e initial values for the parameters at MG 

are from examples (a) and (b) of Table I. 

6. Evolution of rnk (solid line) and rnkz (dotted line) (see Eq. (2.5~)) for the 

values at MG given in (a) and (b) of Table I. The dashed line denotes the 

approximate analytic solution for m&+ = (rnkl + m&J/2. 

7. Evolution of rntL (solid line), rnLR (dotted line) and rngR (dot-dashed line), 

corresponding to the squark masses of the fourth family. The approximate 

analytic solution for mi+ = i 
[ 
rntL + i(rncR + maR)] is plotted with the 

dashed line. The initial values of the parameters are taken from examples 

(a) and (b) of Table I. 

8. The trilinear soft supersymmetry breaking mass parameter mu (solid line) 

and mg (dotted line) corresponding to the squarks of the fourth family (see 

Eq. (2.5b)). The dashed 1’ me p resents the approximate analytic solution for 
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m+ = (mu + mD)/2. Th e values of parameters at MG are chosen from 

examples (a) and (b) of Table I. 

9. Numerical solution for W&E, the trilinear soft supersymmetry breaking mass 

parameter corresponding to the slepton of the fourth family (see Eq. (2.5b)). 

The initial parameter at MG are from examples (a) and (b) of Table I. 

10. Numerical solution for miL (solid line) and miR (dotted line), the slepton 

masses of the fourth family (see Eq. (2.5~)). Parameters at MG are taken 

from examples (a) and (b) of Table I. 

11. Potentials VT, Vi and VT” given by Eqs. (4.5), (4.6) and (4.8) as functions 

of H = 2/(H;) I M 2j(H,o)j. Th e scale ILL is chosen to be 7 TeV. For 

aesthetical reasons we subtract a constant from Vi and Vij? so that VT, 

Vi and Vi have the same value at H = 10 GeV. The initial values of 

parameters are taken from example (a) of Table I. 

12. Particle mass spectrum of the model. The initial values of the parameters 

are chosen from examples (a) and (e) of Table I, for Fig. 12a and Fig. 12b, 

respectively. 
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