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Abstract

A search for supersymmetry in final states with jets and missing transverse energy is

performed in pp collisions at a centre-of-mass energy of
√
s = 7TeV. The data sam-

ple corresponds to 4.98fb−1 collected by the CMS experiment at the LHC in 2011. A

dimensionless kinematic variable is used as the main discriminant between genuine and

misreconstructed signal events. The search is performed in a signal region binned accord-

ing to the scalar sum of the transverse energy of jets and the number of jets identified

as originating from a bottom quark. The limits are presented in the parameter space of

the Constrained Minimal Supersymmetric Standard Model (cMSSM) as well as in sim-

plified models with particular attention paid to compressed spectra and third-generation

models.

Global frequentist fits to the cMSSM and a non-universal Higgs model are also performed

using the Mastercode framework incorporating recent experimental constraints, similar

to those those presented here. Global likelihood contours are presented in the parameter

planes of both the cMSSM and NUHM1, as well as a selection of 1D likelihood functions

for observables.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics has proved immensely successful in accu-

rately describing and predicting the varied phenomenology discovered in particle physics

over the last several decades. There are however several areas where the SM is incompat-

ible or incongruous with observation. As such, models of Supersymmetry (SUSY) have

been proposed to remedy these issues and have been met with enthusiasm from both

the theoretical and experimental communities. Detailed in this document is a search for

SUSY performed at the Large Hadron Collider (LHC) as well as a detailed analysis of

the impact of such searches on the parameter space of supersymmetric models.

In Chapter 2 a brief introduction and overview of the constituent particles of our universe

and their governing rules is given,this is developed into an overview of the construction of

the SM of particle physics. Particular attention is paid to the areas in which the SM may

be either insufficient or inaccurate. These are used to motivate the existence of Beyond

Standard Model (BSM) theories, of which SUSY is introduced as a key example to solve

the problems facing the SM. A discussion of the minimal supersymmetric extension to

the SM is given, along with derived types of supersymmetric models to be analysed in

the latter portions of this document.

Chapter 3 details the specification and design of the LHC in general and the experimental

components involved in the analysis of Chapter 4. Specifically the design objectives and a

breakdown of the components of the Compact Muon Solenoid (CMS) detector and their

13



14 CHAPTER 1. INTRODUCTION

performance is presented component by component with particular emphasis on their

involvement in the measurement of Missing Transverse Energy (Emiss
T ) signals.

Chapter 4 describes the experimental analysis carried out, in which the author was

involved in the statistical analysis and limit setting procedure. The Chapter provides

a background on the event selection procedures, breakdown of montecarlo samples used

and the methods employed for background estimation. The results and impact of this

Emiss
T SUSY search are shown in a full SUSY model as well as several phenomenologically

simplified models.

In Chapter 5 a method for the exploration and analysis of the parameter space of su-

persymmetric models is presented. Two models are extensively sampled and explored

applying electroweak precision constraints in the first instance. In the second instance

the state of the models are compared before and after applying constraints originating in

the LHC-era and those coming from direct dark matter searches. The impact on the vi-

able area of parameter space and the agreement of the models with observation is shown

as well as the likelihood functions for various observables.

Finally Chapter 6 gives a brief discussion on the state of searches for SUSY and the

prospects for further encroachment upon the parameter space of the benchmark mod-

els.



Chapter 2

Theory

This introductory chapter gives the necessary theoretical context for the work described

in the subsequent chapters and details the current state of the Standard Model of par-

ticle physics as well as possible extensions. In particular, models of Supersymmetry are

discussed and their possible phenomenology detailed.

2.1 The Standard Model

The SM describes the behavior of particles at the subnuclear scale, the scale at which

the constituent particles of a nucleus become apparent.

2.1.1 Overview of particle content and phenomenology of the

Standard Model

The SM contains both types of particles described in Quantum Mechanics (QM), that is

fermions and bosons, and describes the interaction of these through the electromagnetic,

weak and strong forces which are in turn described in detail in Sections 2.1.3, 2.1.5, and

2.1.4 respectively.

Fermions, which have half integer spin and hence obey the Pauli Exclusion Principle,

15



16 CHAPTER 2. THEORY

make up the matter of the universe. They are subdivided into leptons and quarks, which

can each be divided again into three generations. Each generation of leptons contains an

electromagnetically charged particle (ℓ) and a neutral neutrino (νℓ). The charged leptons

participate in both electromagnetic and weak interactions, where as the neutral neutrinos

only interact through the weak force. All three generations of quarks interact through the

electromagnetic and weak forces as well as carrying colour charge and therefore strongly

interacting.

The chirality of a particle is defined by whether a particle transforms in a right or

left-handed representation of the Poincaré group1. One can also define handedness,

the projection of a particle’s spin along its momentum vector. In the massless limit

chirality and handedness are identical. When left-handed particles are referred to in the

text, this refers to left-chiral particles. In the case of spinors, i.e. those transforming

under the SU(2) symmetry, a particle can have both left and right-handed component.

Therefore to separate the components it is necessary to define projection operators for

handedness.

To define a projection operator of handedness we start by introducting the Gamma

Matrices, a set of matrices that form a set of basis vectors for Minkowski space, defined

by the anti-commutation relation

{γµ, γν} = γµγν + γµγν = 2ηµν (2.1)

where ηµν is the metric for Minkowski spacetime. We can further define γ5,

γ5 = iγ0γ1γ2γ3 (2.2)

though this does not form part of the set of basis vectors. Defining projection opera-

tors,

1This is the group of all possible isometries of Minkowski space-time, i.e. a 3 space-like 1 time-like
dimension manifold.
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Per Generation Q Colour

Leptons
(
νℓ
ℓ

)
L
ℓR

0
1

-

Quark
(
U
D

)
L

UR

DR

+2/3
−1/3

RGB

Table 2.1: List of SM particles, where there are three generations ℓ ∈ {e, µ, τ}, U ∈
{u, c, t} and D ∈ {d, s, b}

PL =
1− γ5

2
(2.3)

PR =
1 + γ5

2
(2.4)

which satisfy

P 2
L,R = PL,R, PLPR = PRPL = 0 (2.5)

it can be shown that these are indeed the projection operators for chirality[99].

The electroweak force (unified electromagnetic and weak forces) distinguishes between

Left Handed (LH) and Right Handed (RH) particles resulting in each generation con-

taining LH particles in doublets and RH particles in singlets, as shown in Table 2.1. In

addition to lepton flavour the only difference between the generations of particles are the

masses of the leptons and quarks.

In the SM the interactions of the fundamental forces are described by the exchange

of intermediate integer spin particles called bosons, each force having one or more of

these bosons mediating the interactions. The electromagnetic force is mediated by the

photon γ. The weak force can be split into two separate groups of interactions: the

charged and neutral current interactions, which are mediated by the W± boson and

linear combinations of the Z0 boson and the photon respectively. The strong force is

mediated by eight gluons, denoted gi=1,...,8.

Naively one may expect all interactions to conserve quantum numbers: parity P , charge

conjugation C, time reversal T , lepton number L, baryon number B and the various other
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flavour quantum numbers. These quantum numbers are conserved in the case of the elec-

tromagnetic, photon mediated, and strong, gluon mediated, forces; the interactions for

these forces only occur between particles of the same generation. While the combination

of Z0 and γ means that the weak neutral current interactions behave identically for LH

and RH particles, the charged current interacts only with LH particles. This means that,

for the charged current, parity and charge conjugation are violated maximally.

The fact that only some of forces have massive bosons (the charged and neutral bosons of

the weak force) indicates that a difference in phenomenology may be expected between

these forces and those with massless mediators. The photon being massless leads to the

prediction of an infinite range for the electromagnetic forces, whereas the massive W±

and Z0 predict that the range of the weak force is between 10−17 and 10−16m.

Though the strong force is mediated by massless gluons, it too is range limited. While any

non-abelian force can self interact, gluons are unique in the SM as they also carry charge

for the force that they mediate and so self-interact alogn their propagators. Gluon-gluon

self-interactions constrain the colour fields to string-like objects which exert constant

attractive force between the gluons regardless of their separation distance. Because of

this constant force gluons are confined to composite particles, hadrons, effectively limiting

the range of the strong force to ∼ 10−15m, which is approximately the size of an atomic

nucleus.

Each of the forces have a characterizing coupling constant α. These are dependent on the

energy scale µ. In Quantum Electrodynamics (QED) electrons can emit virtual photons

which in turn can decay to electron-positron pairs, this means that the original electron is

surrounded by a ‘cloud’ of other electrons that screen its bare charge. This means that the

measurement of the charge of the electron Q depends on the distance of test charged used

in measuring. Once the test charge is sufficiently close it penetrates the cloud that screens

the electrons bare charge and soQ is measured at an increased value. This screen charging

effect applies similarly, but in an opposite fashion, in Quantum Chromodynamics (QCD).

Self-interactions of the gluon leads to “asymptotic freedom”. For instance, if there were

two quarks each with color C they would interact asymptotically via colour fields of

reduced strength resulting in a state where they behave as essentially free, non-interacting

particles[72].
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2.1.2 Development of Quantum Electrodynamics

Attempts to describe atomic processes using the non-relativistic Schrödinger equation[106]

yielded accurate results, but failed to described fine and hyperfine structures[107]. This

led to attempts to combine QM and (relativistic) classical electromagnetism, resulting

in Dirac formalizing Relativistic Quantum Mechanics (RQM)[54]. One test of this was a

prediction of the electron’s magnetic moment ~µe,

~µe = −ge
e

2me

~S (2.6)

The prediction for this from RQM was well known and gave a value of the gyromagnetic

ratio ge = 2 exactly. This led to the characterization of what is known as the anomalous

magnetic moment of a lepton
(
gℓ − 2

)
. Unfortunately measurement showed a significant

deviation from ge = 2, i.e. a non-zero
(
gℓ − 2

)
. This, in turn, led to the combination of

electromagnetism and Quantum Field Theory (QFT) into QED and solved the
(
gℓ − 2

)

problem for electrons, giving one of the most accurately verified predictions in history[67,

96].

2.1.3 Quantum Electrodynamics

Quantum Electrodynamics, and the SM as a whole, is formulated as a gauge theory.

That is, there exist redundant degrees of freedom in the Lagrangian, transformations

under which form a symmetry group. Starting from the Lagrangian used to describe a

Dirac field,

LDirac = ψ̄(i✓✓∂ −m)ψ (2.7)

where ψ denotes the Dirac field, ψ̄ ≡ ψ†γ0 is the adjoint of the field, ✚✚X ≡ γσXσ and the

γσ matrices are the same as those defined in equation (2.1).

This Lagrangian is not invariant under the local gauge transformation of the U(1) sym-

metry group,
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ψ → ψ′ = e−iα(x)ψ (2.8)

By introducing the gauge field Aµ and defining

Dµ = ∂µ + ieAµ (2.9)

equation (2.7) will be invariant under the gauge transformation of equation (2.8) if

Aµ → Aµ +
1

e
∂µα. (2.10)

This implies that there is a coupling between electrons and Aµ the electromagnetic force

which arises naturally when local gauge invariance is required.

To complete the QED Lagrangian we also need to include a term for the electromagnetic

field tensor Fµν which describes the kinematics of the free fields,

Fµν = ∂µAν − ∂νAµ (2.11)

which is gauge invariant. This gives the QED Lagrangian

LQED = −1

4
FµνF

µν + ψ̄(i✓✓∂ − e��A−m)ψ (2.12)

2.1.4 The strong force

Analogous to the fashion of how the electromagnetic force (QED) is formalized using the

symmetry of the U(1) group, the strong force’s description uses the SU(3) group and is

denoted SU(3)C .

In the same way as for electrodynamics, we need to satisfy a local gauge invariance[116],

q(x) → eiαa(x)Taq(x) (2.13)
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Where a = 1, . . . , 8 and enumerates the eight gluons and Ta are the generators of the

symmetry group SU(3)C .

Since gluons carry colour charge and self-interact, an additional term is required to

maintain gauge invariance of the Lagrangian

Ga
µ → Ga

µ −
1

g
∂µαa − fabcαbG

c
µ (2.14)

Giving the QCD Lagrangian as

LQCD = q̄(γµ∂µ −m)q − gs(q̄γ
µTaq)G

a
µ −

1

4
Ga

µνG
µν
a (2.15)

Where the first term describes free quarks, the second gluon-quark interactions and the

final term describes gluon self-interaction.

2.1.5 Electroweak unification

The first attempt at describing the weak interactions came about via attempts to explain

beta-decays through a four-body interaction involving electrons, neutrinos, protons, and

neutrons[64],

LFermi =
GF√
2

(
ψ̄pγµψn

)(
ψ̄eγ

µψν

)
(2.16)

However, this Lagrangian is neither gauge invariant nor renormalizable[71], hence can-

not give predictions at energy scales E ∼ O(100GeV). The theory can be rescued by

introducing intermediate vector bosons, the weak interaction’s equivalent of the photon

in electromagnetism.

At this point it can be useful to have a description combining both the electromagnetic

and weak interactions. The gauge theory for QED used the U(1) symmetry group and

it is necessary to preserve this behavior after the symmetry imposed for unification is

broken. As such, we form a cross product of two symmetry groups, SU(2) and U(1)

denoted,
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SU(2)L ⊗ U(1)Y (2.17)

where the subscript L denotes that the SU(2) symmetry is for LH particle components,

and the subscript Y denotes weak hypercharge which is defined via

Q = T3 +
Y

2
(2.18)

where Q is the electric charge and T3 is the third component of the weak isospin, a

quantum number for the weak force that delineates identically behaved particles that

have different electrical charge. This relationship is known as the Gell-Mann Nishijima

relationship[95, 68],

The gauge fields that arise from these groups are,

SU(2)L → W 1,2,3
µ (2.19)

U(1)Y → Bµ (2.20)

Particles are now organized in LH doublets and RH singlets, as in Table 2.1, e.g. for the

first generation

L =

(
νe
e

)

LL

, R = eR (2.21)

The result of this arrangement is that the neutrino of the LH doublet has the third

SU(2) isospin projection T3 = +1
2
, the electron has T3 = −1

2
and both LH particles have

hypercharge Y = −1, whereas the RH singlet has Y = −2 and substituting these values

into equation (2.18) gives the correct charge for the various particles.

To write down the Lagrangian for this theory the covariant derivative needs to be defined

as well as the gauge bosons’ stress tensor. The covariant derivative is defined differently

for LH and RH states,
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DµL =

(
∂µ − ig1

τa

2
W a

µ − ig2
YH
2
Bµ − ig

)
(2.22)

DµR =

(
∂µ + ig2

YH
2
Bµ

)
(2.23)

where g1 and g2 are the coupling constants associated with the symmetry group and τa

are the SU(2) generators.

The gauge fields’ stress tensors are W i
µν and Bµν defined as,

W i
µν ≡ ∂µW

i
ν − ∂νW

i
µ + gǫijkW j

µW
k
ν , (2.24)

Bi
µν ≡ ∂µBν − ∂νBµ (2.25)

where ǫijk is the Levi-Civita symbol, the fully anti-symmetric matrix.

We can now write down the full electroweak Lagrangian for one lepton family,

.LEWK = R̄i��DR + L̄i��DL+
1

4
W i

µνW
µνi − 1

4
BµνB

µν (2.26)

While this is considerably more complex than the simple QED case given in equa-

tion (2.12), the charged gauge bosons of the weak interaction can be defined such that

LFermi, equation (2.16), is the low energy limit of LEWK (equation (2.26)).

In the limit of low energy the physical states are defined by

W±
µ =

1√
2

(
W 1

µ ∓W 2
µ

)
(2.27)

and the coupling constant g is defined relative to GF ,

g2

4
√
2
=M2

WGF (2.28)
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The the theory must also produce the heavy neutral boson Zµ and the electromagnetic

force’s Aµ,

(
Aµ

Zµ

)
=

(
cos θW sin θW

− sin θW cos θW

)(
Bµ

W 3
µ

)
(2.29)

where θW is the weak mixing angle[124],

cos θW =
g1√
g21 + g22

(2.30)

The electromagnetic coupling constant (i.e. charge) is then

e = g sin θW (2.31)

The extension of the electroweak symmetry group SU(2)L ⊗U(1)Y described here, with

SU(3)C described in Section 2.1.4 giving SU(3)C⊗SU(2)L⊗U(1)Y gives the gauge group

of the SM.

2.1.6 The Higgs mechanism

One of the main missing pieces of the SM so far is the origin the particles’ masses. The

electroweak Lagrangian, equation (2.26), does not contain mass terms for the particles

because these would violate the symmetry. Mass terms would be of the form

m2ψ̄ψ (2.32)

and since these would contain both ψL and ψR which transform differently the gauge

invariance would be broken.

However, scalar fields could have mass terms which do not break gauge invariance. The

Higgs mechanism[62, 77, 85, 74, 78] is based on inserting a scalar doublet into the
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SM to create mass terms, making use of spontaneously breaking the symmetry of the

lagrangian.

The spontaneous breaking of a global symmetry of the lagrangian results in the appear-

ance of massless spinless particles, named the Goldstone bosons[69, 70]. If a local gauge

symmetry is spontaneously broken, the degrees of freedom associated with the Goldstone

bosons become longtudinal degress of freedom, meaning that these bosons become mas-

sive. There is a massive vector boson that corresponds to each of the Goldstone bosons.

It should be noted that, in the SM while we require massive W± and Z vector bosons,

we also require that the photon, γ, remain massless. Therefore the symmetry breaking

pattern must preserve the U(1) symmetry, that is

SU(2)L ⊗ U(1)Y → U(1)EM, (2.33)

To achieve this we start by looking at the lagrangian for a scalar field Φ

LHiggs = (DµΦ)
†(DµΦ)− V

(
Φ†,Φ

)
(2.34)

where Dµ is the covariant derivative

Dµ = ∂µ − ig2
τa
2
W a

µ − ig1
YH
2
Bµ − igs

λa
2
Ga

µ (2.35)

and V
(
Φ†,Φ

)
is the potential

V
(
Φ†,Φ

)
= µ2Φ†Φ + λ

(
Φ†Φ

)2
(2.36)

which is termed the mexican hat potential and can be seen in Figure 2.1,

To break the SU(2)L ⊗ U(1)Y symmetry, we must choose Φ to have a non-vanishing

hypercharge and weak isospin. As we are attempting to give three vector bosons mass,

this is the number of Goldstone bosons required. Hence we can choose to decompose Φ

as
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Φ
i

Φ j

V
(Φ

,Φ
)

V=µ2Φ Φ+λ(Φ Φ)2

Figure 2.1: A view of a version of the potential in Lhiggs where we only use two components
for simplicity. The continuous circular group of minima is clearly visible

Φ =

(
Φ+

Φ0

)
=

1√
2

(
Φ1 + iΦ2

Φ3 + iΦ4

)
(2.37)

where Φi are all real fields. We must ensure that the potential term of Φ’s lagrangian

is bounded from below therefore restricting λ > 0. Further choosing µ2 < 0 results in

the potential shown in Figure 2.1 where there is an infinite number of minima present,

occuring at the value

Φ†Φ = −µ
2

2λ
(2.38)
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Recalling that

Φ†Φ =
1

2

(
Φ2

1 + Φ2
2 + Φ2

3 + Φ2
4

)
=

1

2
ΦiΦ

i (2.39)

These minima correspond to an infinite number of arrangement of the components of Φ,

and the spontaneous breaking of the SU(2)L ⊗ U(1)Y symmetry will occur once one of

these minima is chosen. We can this make the simplest choice of

Φ1 = Φ2 = Φ4 = 0,Φ2
3 = −µ

2

λ
≡ ν2 (2.40)

such that the vacuum expectation value of Φ is now,

〈Φ〉0 ≡ 〈0|Φ|0〉 = 1√
2

(
0

ν

)
(2.41)

Recalling we can express the field Φ in the exponential form,

Φvacua(x) =
1√
2
eiθa(x)τ

a(x)/ν

(
0

ν + h(x)

)
(2.42)

then, making use of the unitary gauge[125]

Φ(x) → Φ′(x) = e−iθa(x)τa(x)/νΦ(x) =
1√
2

(
0

ν + h(x)

)
(2.43)

we can see that we have removed the three θa fields, chosen a specific direction for the

minima, and broken three of the four global symmetries of the Lagrangian in equa-

tion (2.39).

We can now take our gauge transformed field Φ′(x) and put this back into the La-

grangian equation (2.34). Concentrating on the kinetic term, and dropping the ′ for
convenience

(DµΦ)†(DµΦ) ≡ |DµΦ|2 =
∣∣∣∣
(
∂µ − ig2

τa
2
W a

µ − ig1
YH
2
Bµ

)∣∣∣∣ (2.44)
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Expanding this around the minimum we get

|DµΦ|2 =
1

2
(∂µh)2

+
g22
8
(ν + h)2(W µ

1 + iW µ
2 )(W

1
µ − iW 2

µ)

+
1

8
(ν + h)2 (g2W

µ
3 − g1YHB

µ)2 (2.45)

And collecting together relevant terms,

|DµΦ|2 =
g22ν

2

8

(
W µ

1 + iW 2
µ

) (
W 1

µ − iW 2
µ

)

+
ν2

8
(g2W

µ
3 − g1YHB

µ)2

+
1

2
(∂µh)2 + . . . (2.46)

We can see that the first term is (M2
W )W+

µ W
−µ where we have made the identifica-

tion

W± =
1√
2

(
W 1

µ ∓ iW 2
µ

)
(2.47)

MW =
g2ν

2
. (2.48)

Making use of equation (2.28) we can solve for ν in terms of known parameters

ν =
1

(
√
2G

1/2
F

≃ 246GeV (2.49)

Finally the second term of equation (2.46) involves the two neutral components of the

gauge fields. If we construct the following linear combinations of W µ
3 and Bµ,
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Aµ =
g1Bµ + g2W

3
µ√

g21 + g22
(2.50)

Zµ =
−g1Bµ + g2W

3
µ√

g21 + g22
(2.51)

we can then see that second term of equation (2.46) is actually of the form (1
2
M2

Z)ZµZ
µ

with

MZ =
1

2
ν
√
g21 + g22 (2.52)

In a similar fashion to this, mass is given to the leptons and gauge invariance is maintained

by using Yukawa couplings[127, 99] between the leptons and the higgs field,

−Gℓ

[
R̄
(
Φ†L

)
+ h.c.

]
= −Gℓ(ν + h)√

2

(
ℓ̄RℓL + ℓ̄LℓR

)
(2.53)

where Gℓ is the Yukawa constant, ℓ is one of the lepton generations ℓ ∈ e, µ, τ and h.c.

denotes a hermitian conjugate of the previous term. From this it can be shown that

mν = 0 and mℓ = Gℓν
√
2. And the value of the Yukawa coupling of the lepton with the

Higgs is specified as,

CℓℓH =
Mℓ

ν
(2.54)

and hence the coupling is proportional to the mass of the lepton.

2.1.7 Beyond the Standard Model

While the lack of terms for neutrino masses indicates physics beyond the SM there is

other significant evidence for entirely new regimes of physics at or above the TeVenergy

scale. These are summarised in this section.
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W−

W+ W+

W−

(a)

W−

W+

W−

W+

(b)

W−

W+

W−

W+

(c)

Figure 2.2: The tree-level (a) s-channel, (b) t-channel, and (c) quartic W scattering
processes involving only the W-boson

W-scattering cross-section

One of the key motivations for including a scalar boson in models of new physics comes

from the WW scattering cross-section, σ(WW → WW).

The tree-level contributions for this process arising from processes involving only the

W-boson are shown in Figure 2.2. Considering only these diagrams, the total amplitude

can be shown to be[82],

ΣMWW =
g2P 2

2m2
(1 + cos θ) +O

(
P 0
)
, (2.55)

where P is the three-momentum and P >> m, θ is the angle between the initial and

final state W+ particles, and MWW is the matrix element for this process.

If these are the only diagrams contributing to the WW scattering process it is clear that

equation (2.55) diverges as P → ∞ and unitarity is violated.

It is possible to reconcile this and recover unitarity by introducing a new mediator for

the process and so additional diagrams are included in the calculation. By including a

complex scalar doublet the original diagrams are preserved while two new diagrams are
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introduced with a scalar propagator φ and a coupling mφW+
µW

−µ
. These diagrams are

shown in Figure 2.3.

W−

W+

φ

W+

W−

(a)

W−

W+

φ

W−

W+

(b)

Figure 2.3: The tree-level (a) s-channel and (b) t-channel W scattering processes involv-
ing a scalar propagator φ

These diagrams contribute to the amplitude as[82],

M2s =
g2P 2

2m2
(1− cos θ) +O

(
P 0
)

(2.56)

M2t =− g2P 2

2m2
+O

(
P 0
)
, (2.57)

such that these scalar-mediated diagrams’ amplitude cancel the divergence of those in

Figure 2.2 and hence unitarity is recovered.

By use of the Higgs mechanism to provide masses to the particles, as in Section 2.1.6, a

complex scalar doublet is indeed introduced into our model and hence the addition of the
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Higgs to the SM provides a solution for preserving unitarity in W W scattering.

Divergence of the Higgs mass and the hierarchy problem

In introducing the Higgs doublet and thereby providing mass terms for the SM particles

and fixing unitarity for the W W-scattering process, unfortunately a further problem is

also introduced.

In calculating the mass term for the Higgs particle the loop contributions, see Figure 2.4,

quadratically diverge.

For a Dirac fermion ψ the Higgs coupling is described by the term −λfHψ̄ψ, where λf is

the Yukawa coupling for the particle, and hence the loop correction to m2
H coming from

the diagram in Figure 2.4a is[90],

H

f

(a)

H

φ

(b)

Figure 2.4: One-loop corrections to the Higgs mass parameter m2
h0 arising from (a)

fermion and (b) scalar particles

∆m2
h = −|λf |2

8π2
Λ2

UV + . . . (2.58)

where ΛUV is called the ultra-violet cut off and is equal to or greater than the energy

at which the SM can be considered valid. While any of the fermions of the SM can

be substituted in here the Yukawa couplings λf are proportional to mass and as such

the contributions will be dominated by the top quark for which λf ≃ 1. If the SM is

considered a valid description of all particle physics up to the Planck scale, MP these
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corrections, and hence the Higgs mass, explode. Since all of the quarks, leptons, and

massive gauge bosons in the SM have mass terms involving H, e.g. equation eqs. (2.48)

and (2.53), all of them become sensitive to the cut off ΛUV. This means that there must

exist some scale below MP where physics beyond the SM becomes apparent. Not only

this, but however that new regime is described, it must regulate the loop integral as

well as include new propagators for the loops and not reintroduce instabilities (as there

will exist ∆mh terms similar to equation (2.58) for the virtual contributions from any

arbitrarily massive particles that couple to the Higgs).

Even in a theory where any new particles do not couple to the Higgs, if they share gauge

interactions with the Higgs field they will create corrections to the Higgs mass. This

means that contributions to ∆m2
h are sensitive to both the heaviest particles that share

gauge interactions with the SM and the ultraviolet cutoff of the theory. In this system

one would therefore expect the natural mass of the Higgs to be m2
h ∼M2

P [90]. To realize

an electroweak scale Higgs mass2 and hence reconcile theory with the experimentally

favored regions for mh a theory must, ideally, create a systematic cancellation between

the various contributions.

Dark Matter

Current gravitational measurements[113] of the content of the universe provide significant

evidence for the existence of matter, and energy, which emit little to no electromagnetic

radiation and make up the majority of our universe’s mass-energy.

This content is generally broken down into two categories: dark energy, which is beyond

the scope of this document, and Dark Matter (DM).

The vast majority of DM is thought to be non-baryonic, interact extremely weakly with

the electromagnetic force, and be travelling relatively slowly with respect to the speed

of light[56]. This is largely due to the lack of direct observation of dark matter. If DM

were highly energetic or eletromagnetically charged then observation would likely follow.

2This is related to what is know as the hierarchy problem; that if the Higgs mass is to be of the
electroweak scale we either require exceptionally fine tuned cancellations between the radiative correction
and the bare mass, or that these corrections naturally cancel within the theory of BSM physics
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Hence this type of matter is termed Cold DM (CDM). Searches[56] currently report

measure of the CDM content to be

ΩCDMh
2 = 1.1120± 0.0057 (2.59)

where Ω is the matter density parameter defined as ρCDM

ρcrit
and ρcrit is the critical density

of the Universe, and h = H0

100km/s/Mpc
where H0 is Hubble’s constant.

The SM provides no particle(s) which can possibly fulfill the role of CDM. Though

neutrinos are massive and weakly charged, they travel at ultrarelativistic velocities and

hence are candidates for what is termed Hot DM (HDM). HDM alone cannot account

for early galactic formation[30] and as such CDM is still required.

Anomalous magnetic moment of the muon

In Section 2.1.2 the magnetic moment of the electron was presented as motivation for

the development of QED as well as a precision test of the SM. In a similar fashion, the

anomalous magnetic moment of the muon acts as a precision test of the SM and shows

a discrepancy between the predicted and observed values.

The anomalous magnetic moment of the muon is defined as

aµ =
gµ − 2

2
(2.60)

and the SM diagrams contributing to this are shown in Figure 2.5.

The SM prediction for aµ disagrees with the experimental value[26] by approximately

3.4σ

The naturalness problem

The naturalness problem is concerned with the relative scales of the various inputs into

the SM.
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µ µ

γ, Z0

ℓ̄ ℓ̄

γ

(a)

µ µ

ν

W W

γ

(b)

µ µ

γ γ

hadronic

γ

(c)

Figure 2.5: Example SM diagrams contributing to the anomalous magnetic moment of
the muon for (a) QED, (b), weak, and (c) hadronic processes

In a natural theory all terms that preserve the symmetries of the action of the system

have natural coefficients[79], defined as having the form[110]

C = cΛ4−d (2.61)

where Λ is, again, the cutoff scale of the theory, d is the dimensionality of the quantum

mechanical operator, and c is a number with c . 1. Further, naturalness requires that the

dependence of c on the energy scale Q must be proportional at most to logQ/Λ[79].

In the SM both the coefficient of the Higgs mass term, see Section 2.1.7, and the phase θ of

the Lagrangian terms leading to CP violation in the strong force seem to be unnaturally

small and in the case of the former have a quadratic dependence on the energy scale, see

equation (2.58).

2.2 Supersymmetry

While the SM, along with extensions to incorporate neutrino masses, provides a precise

and accurate description of physics at the electroweak scale sections 2.1.7 to 2.1.7 in-

dicate that there are obviously physical phenomena that the SM does not predict, or

predicts inaccurately. Not only this, but attempts to calculate the Higgs mass in the

SM, Section 2.1.7, suggests that there must be new physics at some scale between the
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(s)particles spin
[u, d, c, s, t, b]L,R [e, µ, τ ]L,R [νe,µ,τ ]L

1
2

[ũ, d, c, s, t, b]L,R [e, µ, τ ]L,R [νe,µ,τ ]L 0
g(W±, H±) (γ,H0

1 , H
0
2 ) 1/0

g̃χ̃±
1,2 χ̃

0
1,2,3,4

1
2

Table 2.2: The particle content of a supersymmetric theorys

electroweak and the Planck scale.

Supersymmetry is a symmetry proposed in addition to those incorporated in the SM

in an attempt to resolve these issues. This symmetry relates fermions and bosons and

ultimately leads to the prediction of a new generation of partner particles to those of the

SM, called sparticles originating from the defining transformation:

Q̂ |Boson〉 = |Fermion〉 (2.62)

where Q̂ is the supersymmetric operator. A table of these particle is given in Ta-

ble 2.2

Hence, the mutliplets (doublets and singlets) of the SM are replaced with supermultiplets

each containing both fermionic and bosonic states that are partners of each other under

the symmetry, where each member of the fermion-boson supermultiplet are a combination

of the supersymmetric operators Q̂ and Q̂†.

In unbroken theories of SUSY, i.e. where the symmetry is exact, the sparticles are

identical to their SM partners in all quantum numbers other than differing by half-integer

spin, and as such have the same mass. In these theories the quadratic divergences in the

Higgs mass squared, equation (2.58), are cancelled exactly by the existence of the new

couplings.

If SUSY were unbroken then sparticles would have been detected in many previous

searches for instance [12, 13], due to their low masses. This requires that if sparticles do

exist, they must arise from a model of broken SUSY. That is, there is a scale between

the universal scale and the electroweak scale at which the new symmetry is broken.

Broken models of SUSY allow the masses of the sparticles to differ significantly from
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those of their SM partners, and hence allow these sparticles to have escaped detection

therefore reconciling the existence of SUSY with observation.

The Higgs boson, if it is to be included in such a theory, must reside within one of the

supermultiplets, and to avoid a gauge anomaly[90] it is necessary to have at least two of

these Higgs supermultiplets such that their weak hypercharge values, Y = ±1/2, cancel

each other out. This existence of two Higgs supermultiplets leads the prediction of five

physical higgses denoted h0, H0, A0, H± where h0 is the SM-like Higgs.

2.2.1 Supersymmetry and solving the problems facing the Stan-

dard Model

If the addition of an extra symmetry to the SM is to be justified it must resolve the

outstanding issues with the SM. We have already seen, in the previous section, that the

fermion-boson symmetry resolves the issues with the correction to the Higgs mass if the

symmetry is exact. The hierarchy problem, though not solved, is reduced to the little

hierarchy problem[90]. What remains is a for a mechanism for SUSY to produce Dark

Matter and resolve the theoretical-experimental discrepancy of the anomalous magnetic

moment of the muon.

(g − 2)µ in Supersymmetry

The superpartner particles present in SUSY contribute to (g − 2)µ through diagrams

similar to those shown in Figure 2.6. The specific contributions are dependent on the

mass of the sparticles involved, and so will be dependent on the parameter values of the

supersymmetric terms in the Lagrangian. Therefore, since SUSY does not explicitly fix

the value of (g − 2)µ, the experimental value becomes useful in constraining the possible

values of the parameters of SUSY.

Dark Matter in Supersymmetry

As discussed in Section 2.1.7, DM is required to interact extremely weakly with the

electromagnetic force, and be stable. If one imposes a condition on models of SUSY
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Figure 2.6: One-loop Supersymmetry diagrams contributing to the anomalous magnetic
moment of the muon

that the Lightest Supersymmetric Particle (LSP) cannot decay to two SM particles,

then it must by definition be stable. If this particle is also electromagnetically neutral

then, assuming it also satisfies the cosmological constraints, it is a candidate particle for

DM.

2.2.2 Softly broken Supersymmetry

In Section 2.2 it was noted that SUSY must be a broken symmetry. If broken models

of SUSY are to accurately represent nature then the symmetry may not be arbitrarily

broken, but must be only softly broken. That is, the process of breaking the symmetry

must not lead to a reappearance of ultraviolet divergences in the theory[53], e.g. similar

to the issues described in Section 2.1.7.

The effect of insisting on softly-broken supersymmetry is that supersymmetry must be

explicitly broken. Terms are introduced to the supersymmetric Lagrangian that break

the symmetry, where it is assumed these terms originate in some unknown sector where

SUSY is broken spontaneously[53] (i.e. all the terms in the Lagrangian respect the
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symmetry).

2.2.3 R-Parity

Part of the impact of SUSY is that lepton number and baryon number are no longer

explicitly conserved. However, since the conservation of these has been experimentally

tested to a high precision, any theory of SUSY must not lead to a violation of the

conservation rules incompatible with experimental data. To this end a new symmetry,

called R-Parity, is imposed on the SUSY fields that forbids such couplings. R-Parity is

defined by the multiplicatively conserved quantity,

Pr = (−1)2s+3B+L (2.63)

where s, B and L denote spin, baryon number, and lepton number respectively. This

means that for the SM particles Pr = 1, whereas SUSY particles have Pr = −1. Therefore

the LSP, in R-Parity respecting models, is stable as once the decay chain reaches the

LSP, which is still heavier than any SM particle, it is impossible for this particle to decay

to two SM particles and still conserve R-Parity.

Alongside reconciling R-Parity conserving models of SUSY with observation, R-Parity

leads to models having a natural candidate particle for dark matter in the form of

the now stable LSP if this is the neutralino χ̃0
1, meeting the criteria discussed in Sec-

tion 2.1.7.

2.3 Minimal Supersymmetry

The Minimal Supersymmetric Standard Model (MSSM) is the minimal extension to

the SM that describes a supersymmetric model. This model is both softly broken and

includes R-Parity conservation3.

3Extensions of the MSSM allow for varying degrees of R-Parity violation[90] however the terms that
cause this are excluded in the MSSM
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Figure 2.7: Gauge couplings as a function of the energy scale Q in the (a) SM and (b)
MSSM

2.3.1 Gauge unification in the Minimal Supersymmetric Stan-

dard Model

The behavior of a coupling constant g varies with the energy scale Q according to its

respective beta function[115] defined as,

β(g) =
∂g

∂ logQ
(2.64)

where the implicit dependence of β(g) on the scale Q is contained within the evolution

of g with Q. The calculation of the β functions in the SM do not converge at any scale,

however when calculated in the MSSM assuming TeV scale superpartners, they converge

at a scale Q ∼ 1016GeV[52]. This can be seen in in Figure 2.7. The unification of the

gauge couplings in the MSSM has been one of the motivations for both the MSSM and

low-mass SUSY in general.
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2.4 Models of Supersymmetry

Though the MSSM was constructed to solve many of the problems facing the SM, the

parameter space and breadth of phenomenological behavior contained within are diverse

and hence non-trivial to analyse. The minimum number of parameters needed to define

a point in the parameter space of the MSSM is ∼ 100[90]. Hence it is necessary to

apply constraints to the MSSM in order to reduce the parameter space and make specific

predictions of the phenomenology.

2.4.1 Constrained Minimal Supersymmetric Standard Model

By imposing the unification of some of the parameters of the MSSM at the Grand Unified

Theory (GUT) scale (mGUT ) the number of input parameters is immediately reduced

and all other parameters can be calculated at the electroweak scale by solving the

Renormalization Group Equations (RGEs)[91].

Hence at mGUT the following relationships are imposed,

At = Ab = Aτ ≡ A0,

m2
H1

= m2
H2

= m2
L = m2

R ≡ m2
0,

m2
Q = m2

U = m2
D ≡ m2

0,

M1 =M2 =M3 ≡ m1/2.

Here Ai denotes the trilinear coupling of i, mH1,2 are the masses associated with each

of the Higgs doublets, mL,R are the masses of the leptonic multiplets, mQ,U,D are the

masses of quark multiplets and M1,2,3 are the masses of the gauginos corresponding to

U(1), SU(2), and SU(3) respectively.

This reduces the number of free parameters of the model to five, m0 , m1/2 , A0, sign(µ)

(the sign of the Higgs mixing parameter), and tan β (the ratio of the Higgs vacuum

expectation values). This defines the Constrained Minimal Supersymmetric Standard

Model (cMSSM).
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It is important to note that, by insisting on a CDM candidate the relationship between

the mass parameters, m0 and m1/2 , is restricted. To achieve a possible CDM candidate

the LSP must be a neutralino, as such for any value of m0 that is picked, there is a

corresponding maximum value of m1/2 (or vice versa) for which the lightest neutralino

and the stau have similar mass and beyond which the LSP is no longer a neutralino.

2.4.2 The Very Constrained Minimal Supersymmetric Stan-

dard Model and Minimal Super Gravity

One can further constrain the parameter space by enforcing a relationship[59],

A0 = B0 +m0, (2.65)

where A0 and B0 are the unified trilinear and bilinear coupling values respectively, and

m0 is the unified scalar mass. This reduces the number of free parameters to three,

namely m0, m1/2, and A0. tan β is now fixed by the radiative Electroweak Symmetry

Breaking (EWSB) conditions[57]. This model is known as the Very Constrained Minimal

Supersymmetric Standard Model (vcMSSM)[60].

By making an assumption about the existence of a gravitino G̃ (partner of the graviton),

and constraining its mass to be m3/2 = m0, we can define a further sub-model termed

Minimal Super Gravity (mSUGRA)[59, 61]. mSUGRA shares the same input parameters

as the vcMSSM however there is a constraint on the relative values of m0 and m1/2 if the

lightest neutralino, χ̃0
1, is to remain the LSP. The mass of the lightest neutralino, mχ̃0

1
,

can be approximated as mχ̃0
1
∼ 0.4×m1/2[61]. If we wish to ensure that the gravitino is

not the LSP then we require m3/2 > mχ̃0
1
or, in terms of m0 and m1/2 ,

m1/2 < 2.5m0 (2.66)
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2.4.3 Non-Universal Higgs Models

Rather than imposing more constraints, we can relax the unification rules of the cMSSM

for the Higgs sectors. Assuming that all other relationships are kept, we can then define

two other models: Non-Universal Higgs Model (NUHM) 1 and NUHM 2[58].

In the NUHM 1 the Higgs doublet masses are both equal, but are not required to be

equal to the unified scalar mass m0 , such that we gain an input parameter mH1,2 .

In the NUHM 2 the Higgs doublet masses are not required to be equal to m0 nor each

other, therefore we gain two input parameter mH1 and mH2 .

Due to this extra freedom present in NUHMs the strict relationship betweenm0 andm1/2

to maintain a neutralino CDM candidate is modified. In both NUHM1 and NUHM2 the

masses of the neutralinos depend on the degrees of non-universality and so it is possible

to go to lower values of m1/2 (for a particular m0 ) and still maintain a neutralino LSP.

Also this extra degree of freedom allows for a wider range of the mass-scale parameter

space to provide reasonable relic dark matter abundance. By tuning the non-universality

parameter it is possible to maintain rapid annihilation funnels to the LSP by maintaining

mX ∼ 2×mχ̃0
1
.

Specifically, this arises because one can choose to use as the extra two independent

parameters m2
A(Q) and µ(mZ) where Q ≡

(
mt̃R

mt̃L

)1/2
. These relate back to mH1,2

through the electroweak symmetry breaking conditions[58] giving

m2
A(Q) = m2

H1
(Q) +m2

H1
(Q) + 2µ2(Q) + ∆A(Q) (2.67)

µ2 =
m2

H1
−m2

H2
tan2 β + 1

2
m2

Z(1− tan2 β) + ∆
(1)
µ

tan2 β − 1 + ∆
(2)
µ

(2.68)

where ∆X are loop corrections. Hence by moving through the parameter space of mH1,2

for fixed m0 ,m1/2 it is possible to find inputs where mA ∼ 2×mχ̃0
1
.
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Chapter 3

The Large Hadron Collider and the

Compact Muon Solenoid detector

3.1 The Large Hadron Collider

The LHC[63, 31] is a two-ring circular synchrotron with a circumference of 26.7 km

located on the Franco-Suisse border, in the tunnel originally used to house the Large

Electron Positron Collider (LEP) collider[94]. It is designed to collide beams of protons

resulting in proton-proton collisions with a maximum center of mass energy
√
s = 14TeV

and with a luminosity L ∼ 1034 particles cm−2s−2.

The LHC is a discovery machine for which the main design objectives were the discovery

of the Higgs particle as well as detection of BSM physics, e.g. particles originating

from supersymmetric models or the measurement of branching ratios inconsistent with

the SM. In both of these cases for these effects and particles to have evaded detection

the processes must have small cross-sections and/or involve particles with high masses,

hence the LHC’s high center of mass energy and design luminosity; Figure 3.1 shows

the production cross-section as a function of center of mass energy for a selection of

processes.

As well as searching for new physics the aims include the study of known phenomena

and to allow precise determination of effects already included in the SM, such as CP

45
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Violation (CPV).

The collider uses two counter-rotating beams of protons, arranged in bunches that are

roughly cylindrical in shape, orbiting the LHC and producing a collision rate of approx-

imately 40MHz.

3.1.1 Beams at the Large Hadron Collider

Figure 3.2: A schematic of the LHC accelerator complex[87]

The protons that the beam consists of begin their life at the LHC as a hydrogen gas

which is then ionized to produce free protons. These protons are then fed into the linear

accelerator, LINAC2. Here they are accelerated up to energies of 50MeV per proton

and subsequently injected into the Proton Synchrotron Booster (PSB) where they are

further accelerated up to 1.4GeV. The Proton Synchrotron (PS) and Super Proton

Synchrotron (SPS) are the next stages where the protons are accelerated to energies

of 25GeV and 450GeV respectively. Once these stages are complete the protons are

transferred into the LHC and accelerated up to the running center of mass energy, either

3.5TeV(2011) or 4.0TeV(2012). The components of this accelerating process are shown

in Figure 3.2.
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Once at the designated center of mass energy, the beams are deflected at the inter-

action points around the ring of the LHC. At each of these interaction points sits a

detector. There are four main experiments present at the LHC; Large Hadron Collider

Beauty (LHCb)[2] which deals with precision b-physics interactions, A Large Ion Col-

lider Experiment (ALICE)[117] which is used for the study of heavy ion physics, and

two general purpose detectors designed to study TeV scale physics, A Toroidal LHC

Apparatus (ATLAS)[46] and Compact Muon Solenoid (CMS)[120].

3.1.2 Center of mass energy

While the maximum design center of mass energy of the LHC is
√
s = 14TeV the

decision was made, following an incident in 2009, to begin data-taking runs with a center

of mass energy of
√
s = 7TeV starting in March 2010. This was subsequently increased

to
√
s = 8TeV in March 2012. These high energy and luminosity environments require

carefully designed detectors.

3.1.3 Detecting Supersymmetry

The decays of supersymmetric particles, such as squarks and gluinos, in R-parity conserv-

ing models of SUSY result in cascades always containing a stable LSP. As discussed in

Section 2.2.3 the LSP interacts very weakly, and hence passes through detectors without

interacting. For an SM-like event one expects the vector sum of the transverse compo-

nents of momentum (pT) of the final state particles to be balanced, i.e. zero, within the

precision of the detector if all particles are measured accurately. However in an event

where one or more particles escape the detector without measurement there should be

a degree of imbalance in the transverse plane characterized by the Missing Transverse

Energy (Emiss
T ) term. To achieve good resolution of the Emiss

T it is necessary to have a

high degree of hermeticity and absorption for all particles involved in the events.

The remaining parts of these supersymmetric cascades result in many leptons and jets

(b-quark and τ jets in particular) as well as hard isolated1 photons for instance, from

1An object is isolated when the energy associated with the object is above a object type-dependant
fraction of the total energy within a cone surrounding the object.



CHAPTER 3. THE LHC AND CMS 49

Gauge Mediated Symmetry Breaking (GMSB) like models of SUSY).

As well as the signal processes it is necessary to have good understanding and control of

the SM process that produce the background to the signal. These originate mainly from

QCD and Electroweak (EWK) processes and are specific to the particular analysis being

undertaken (see Section 4.6 for examples).

3.2 Compact Muon Solenoid

The CMS detector[120] is one of the two general purpose detectors situated at the LHC. It

is comprised of, from outermost to innermost component, four muon chambers interleaved

with iron return yokes, an outer Hadronic Calorimeter (HCAL), a 3.8T superconducting

electromagnet, a sampling brass-plastic HCAL, an active lead tungstate Electromagnetic

Calorimeter (ECAL), a silicon strip tracker, and a pixel tracker.

Over the two year running period 2011-2012 operating at both 7TeV and 8TeV center

of mass energy CMS has recorded a total of 5.55fb−1 and 21.79fb−1 respectively; see

Figure 3.3 for the cumulative luminosity for the two operating periods.
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Figure 3.3: Cumulative luminosity over time for 2011 (7TeV, left) and 2012 (8TeV,
right), showing both the total delivered by the LHC and the total recorded by the CMS
detector.
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3.2.1 Coordinates

Many features and design requirements of the CMS detector are given with respect to a

specific coordinate system, detailed below:

• z-axis: points along the beam pipe

• y-axis: points vertically upward

• x-axis: points towards the center of the LHC ring with the origin being at the

interaction point of the two beams

• φ (Azimuthal angle): extends from the x-axis in the x− y plane

• θ (Polar angle): extends from the z-axis and is expressed in terms of the Lorentz

invariant quantity pseudo-rapidity defined as

η = − log

[
tan

θ

2

]
(3.1)

3.2.2 Design Requirements

The design requirements laid out at the point of design [120] were:

• Strong muon identification and momentum resolution over a large range of mo-

menta in the region |η| < 2.5, and a mass resolution of a dimuon system of 1% at

100GeV/c2 and unambiguous determination of the charge of muons with momen-

tum less than 1TeV.

• Good momentum resolution and reconstruction efficiency for charged particles;

efficient triggering and offline identification of b-quark and τ jets.

• High resolution for electromagnetic energy, di-photon and di-electron mass resolu-

tions of similar order to those required of the di-muon systems. Wide geometric

coverage |η| < 2.5 and measurement of the direction of photons as well as the

correct localizations of the primary interaction vertex.

The most relevant for the searches laid out here is the requirement of good Emiss
T and

di-jet mass resolution, requiring high hermeticity over the range |η| < 5 and fine lateral
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segmentation in the detector components (∆η ×∆φ < 0.1× 0.1).

3.3 Components of CMS

To meet the design requirements there are multiple special purpose sub-detectors that

comprise CMS as laid out in Section 3.2 and shown in Figure 3.4

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

PRESHOWER
Silicon strips ~16m2 ~137,000 channels

SILICON T!CKERS
Pixel (100x150 μm) ~16m2 ~66M channels
Microstrips (80x180 μm) ~200m2 ~9.6M channels

MUON CHAMBERS
Barrel: 250 Dri" Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz #bres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight
Overall diameter
Overall length
Magnetic "eld

: 14,000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

CMS DETECTOR

Figure 3.4: Cutaway view of the CMS detector[104]
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3.3.1 Muon chambers

Muons do not interact via the strong force, and are too massive for Bremsstrahlung to

have a significant effect2, hence their energy is lost via ionisation. Muons are detected

via three types of gaseous chambers that comprise part the muon system, chosen to cover

the different radiation environments in which they operate.

Drift Tube (DT) chambers cover the region |η| < 1.2, where the muon and background

rates are low. In the high background low muon rate region (0.8 < |η| < 2.4) Cathode

Strip Chambers (CSCs) are used. Overlapping both of these regions are the Resistive

Plate Chambers (RPCs), deployed in the |η| < 1.6 range[3].

These three sections are used complementarily for triggering and reconstruction. The

best performance is achieved when the data from these is combined with other systems

that identify or measure muons e.g. those described in Section 3.3.5.

3.3.2 Superconducting magnet

Inside the muon chambers sits a large superconducting solenoid[120]. The bending effect

of a solenoid begins at the primary vertex, i.e. the centre of the magnet. Superconducting

magnets provide a large bending power to size ratio[122].

The size and structure of this magnet are essential to the structure and layout of CMS.

The magnet must be large enough to contain the calorimetry and provides the structural

base for the outer systems.

The bending power of the magnet is determined by the performance requirements of the

muon systems e.g. the unambiguous determination of sign and a resolution of ∆p
p

≃ 10%

for momenta of ∼ 1TeV. The relationship of the length and radius of the magnet is also

tuned to provide good momentum resolution in the forward regions.

The conductor lining the magnet carries a current of 20kA through an overall cross-

section of 64 × 22mm2. The solenoid consists of five modules, each wrapped with four

lengths of conductor.

2For acceleration perpendicular to the direction of motion the power radiated as a result of
Bremsstrahlung goes as P ∼ m−4
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Parameter Value

Field 3.8T
Inner Bore 5.9m
Length 12.9m
Number of Turns 2168
Current 19.5kA
Stored energy 2.6GJ
Hoop stress 64atm

Table 3.1: Parameters of the CMS magnet[120]

3.3.3 Hadronic Calorimeter

The majority of the hadronic calorimetry, and all the non-hadronic calorimetry in CMS,

is located inside the magnet coil[121]. There is a layer of scintillators outside the magnet

that make up the hadron outer (HO) detector and are part of the HCAL system. The

HO scintillators are arranged to match the φ segmentation of the muon system’s DT

chambers and this helps to minimize punch-through from penetrating particles into the

muon systems.

The HCAL found inside the magnet coil is broken down into three sections, the hadron

barrel (HB), the hadron endcap (HE), and the hadron forward (HF)

Hadron barrel

The HB covers the region |η| < 1.4 with a segmentation of ∆η×∆φ = 0.087×0.087.

Using a 100GeVtest beam the resolution was determined to be[120]

σ(E)

E
=

94.3%√
E

⊕ 8.4% (3.2)

This is compared to the design resolution of σ(E)
E

= 100%√
E

⊕ 4.5%.
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Hadron endcap

Each of the two HEs covers the region 1.3 < |η| < 3.0 with a similar segmentation in η to

the HB for the outermost towers (low η), but a higher segmentation (0.09 < ∆η < 0.34)

at higher values of η. These are constructed of brass, again for high absorption and non-

magnetic properties, reinforced with stainless steel back plates and are approximately 10

absorption lengths thick.

Hadron forward

The HF calorimeter provides coverage of the range 3.0 < |η| < 5.0. Its main purposes

are to aid in identification and reconstruction of very forward jets (hence its position)

and improve the overall coverage of the HCAL system thereby improving measurements

of Emiss
T .

The HF is constructed as a block of copper with quartz fibers embedded within which

run parallel to the beam axis. Because of its location it is subject to very high particle

fluences; incident particles will create showers that lead to high neutron flux in the

calorimeter. However the quartz fibers are able to be used as charge collectors via the

Cherenkov effect, as being neutral neutrons will not contribute to this. This allows the

HF to function in the very high radiation environment to which it is subjected.

Combined

Each of these components act together to maximise the geometric hermeticity of the

hadronic calorimetry, as well as bring the total depth to 11 radiation lengths (including

the HO). These two design features maximise the absorption of particles from hadronic

showers enabling a high resolution for Emiss
T measurements which are, as discussed, es-

sential to direct searches for the presence of SUSY.
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3.3.4 Electromagnetic Calorimeter

The ECAL[119] is designed to measure the energy of electrons and photons which lose

energy via electromagnetic processes, e.g. Bremsstrahlung in the case of the electron.

The CMS ECAL covers a region of |η| < 3 for which it has higher precision in the region

|η| < 2.5.

The ECAL is constructed from more than 75000 lead tungstate crystals. This material

scintillates when particles deposit energy. These scintillation photons are then collected

and amplified by photo diodes (PDs). Within the CMS ECAL there are two types of

PDs: silicon avalanche photodiode which are located in the barrel, and vacuum pho-

totriodes located in the endcaps. The latter have a lower gain, but a higher radiation

hardness.

Lead tungstate is selected as, along with being radiation hard, it has a short radiation

length (∼ 0.9cm) and its Molierè radius is low (∼ 2.1cm) leading to a high degree

of absorption. Each crystal is approximately 26 radiation lengths long transversely3

meaning that on average all the energy from incident electrons can be absorbed and 90%

of the shower arising from a photon can be contained within a single crystal.

With the same test system as used to determine the resolution of the HCAL, see equa-

tion (3.2), the energy resolution of the ECAL was determined to be[120],

σ(E)

E
=

2.8%√
E

⊕ 124MeV

E
⊕ 0.26% (3.3)

which, notably, is better than the design resolution of σ(E)
E

< 0.6% at 100GeV.

3.3.5 Tracker

The aim of the CMS tacker[83] is to determine the trajectories and momenta charged

particles. In particular, the bending effect of the magnet, and the fact that the tracker

resides within it, enables the measurement of particle momenta.

3The dimensions are 22× 22× 230mm
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Figure 3.5: Projection of a section of the CMS tracker in rz showing the regions of
coverage in η. Lighter segments are single sided, darker segments are double sided[120].

The CMS tracker is split into two main parts, an inner pixel detector which is closest to

the beam pipe, and an outer strip tracker which is itself split into several parts. Between

these two the tracker covers a region of |η| < 2.5.

Both sections of the tracker are constructed from silicon, which release charge as particles

pass through them. This charge can be collected, enabling high precision reconstruction

of praticle tracjectories.

Pixel Detector

The silicon pixel detector is the component of the CMS detector that is closest to the

beam pipe, occupying the space between 4.3−10.2cm, and as such experiences the highest

particle fluences of any of the detector subsystems.

The resolution of the pixel detector is ∼ 10µm in rφ and 15 − 20µm in z and there

are approximately 45 × 106 readout channels used to enable the pixel detector to seed

particle track reconstruction.
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Strip Detector

The silicon strip tracker is comprised of several parts, the tracker inner barrel (TIB),

the tracker outer barrel (TOB), the tracker inner disks (TID), and the tracker outer

endcaps (TEC).

The TIB occupies the space |z| < 65cm. The first two layers provide measurements in

both rφ and rz planes, with resolutions of 23− 34µm and 230µm respectively.

The TIB extends out from the pixel detectors up to |z| < 110cm. In this region it is

possible to use thicker silicon strip due to lower radiation levels

Thicker silicon strips can be used here than in the TIB as the radiation levels are lower.

These provide resolutions of 35−42µm in the rφ plane and 530µm in the z direction.
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Chapter 4

Exploring models of Supersymmetry

with the αT variable

As detailed in Section 3.1.3, in models of R-parity conserving SUSY, supersymmetric

particles are pair produced and decay to the LSP which, in many models, is a Weakly

Interactive Massive Particle (WIMP). These models of SUSY, when combined with the

initial proton-proton (pp) interactions, result in production of coloured sparticles which

decay producing event signatures consisting of jets and significant Missing Transverse

Energy (Emiss
T ).

The high energy pp collisions at the LHC result in a significant proportion of multi-

jet events originating from QCD. Given that the signal events characteristic of the

presence of SUSY-like physics are also multijet events it is essential to be able to dis-

criminate between the signal multijet events with an LSP that escapes the detector, and

the background multijet events caused by SM QCD. To this end, there are two possible

approaches. Either developing an accurate model of the behavior of the significant QCD

events in the analysis’s signal region, or choosing a signal discriminant which rejects the

vast majority of these QCD events.

Though most models of R-Parity preserving SUSY naturally give rise to events with

significant Emiss
T further consideration can be given to the details of the other properties

and content of events originating from SUSY signal models.
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As discussed in Section 2.1.7, to prevent quadratically divergent corrections to the Higgs

mass one hopes for a low energy (∼ TeV scale) realisation of SUSY. The driving terms in

the corrections to the Higgs mass come from the mass of the superpartner to the top, as

well as the top quark Yukawa coupling. The magnitude of the corrections increases with

increasing stop mass, hence to avoid large diveregences one requires a sufficiently light

stop, e.g. not significantly heavier than the top[126]. Also, given the recent discovery of

a Higgs-boson candidate[41, 5] at mh0 ∼ 125GeV this further motivates the presence of

light third generation squarks due to the low mass window of the result.

The existence of these low mass third generation squarks would result in events with

final states that are rich in jets originating from a bottom quark.

4.1 Events with Emiss
T : The αT variable

Given the exceptional complexity and difficulty involved in accurately modelling QCD

events, in the analysis presented here we make use of the αT variable[101] to efficiently

reject multijet events without genuine Emiss
T .

For the purpose of the analysis presented here the transverse energy, ET, is defined as

the scalar sum of the transverse projections of the calorimetry energy deposits. Emiss
T is

the vector which balances the vectorial sum of these transverse projections.

sum of the magnitude of the calorimetry read outs projected in the transverse plane, and

the Emiss
T is defined as the vector which balances the vectorial sum of the ET values.

The QCD multijet background is characterized mostly by low total Emiss
T . Large Emiss

T

values exist largely due to statistically small fluctuations, and detector mismeasurement

effects.

The kinematic variable αT can be defined which selects high Emiss
T events and selects

against mismeasured events, for instance when mutliple jets from the event fall below

some energetic threshold imposed for selection.

In a dijet system αT is defined as
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αT =
Ej2

T

MT

(4.1)

where j2 denotes the jet with the lowest ET and MT is the transverse mass of the dijet

system defined as

M2
T =

(∑
Eji

T

)2
−
(∑

P ji
x

)2
−
(∑

P ji
y

)2
(4.2)

where the sums are carried out over Njet, which in this case is two.

For an event where the jets are back to back in φ but one jet is mismeasured, so the

event is unbalanced, αT < 0.5; when there is no mismeasurement in the back to back

case αT = 0.5; for di-jet systems that are not back to back, and hence have the two jets

recoiling against genuine Emiss
T , αT > 0.5.

The definition of αT can be extended beyond the dijet case. Where when Njet > 2 the

jets are clustered into two pseudo-jets where the ET of the pseudo-jet is the scalar sum

of the jets clustered to form it.

Defining the total visible transverse energy associated with all jets as

HT =
∑

j

Ej
T, (4.3)

i.e. the scalar sum of the transverse energy of jets enumerated by j. The two pseudo-

jets are formed of jet combinations such that they minimize the difference in total jet

ET between the two systems (∆HT). This provides the maximum separation between

multi-jet background events and events with genuine Emiss
T .

For the case of Njet ≥ 3 αT is defined as
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αT =
1

2

HT −∆HT√
H2

T −Hmiss
T

2

=
1

2

1− (∆HT/HT)√
1− (Hmiss

T /HT)
2

(4.4)

(4.5)

Extremely rare fluctuations in the measurments from the calorimetry can lead to values of

αT & 0.5. Such events can be removed by raising the cut on αT to require αT > 0.55. An

example distribution of the number of events as a function of αT is shown in Figure 4.1,

where the rapid drop off of QCD multijet events at αT ≥ 0.55 is clear.

Rather than using the total missing transverse energy, we can define a quantity to char-

acterize the missing momentum in the transverse plane,

Hmiss
T =

∣∣∣∣∣∣

Njet∑

i=0

~pT

∣∣∣∣∣∣
(4.6)

the absolute value of the vector sum of the jets’ Transverse Momentum (pT) where Njet

is the number of jets that are considered in the event. By only considering the jet

component of an event (i.e. the part of the event measured in the HCAL) the Hmiss
T acts

as an estimator for the total Emiss
T of the event. This provides a tool to deal with the case

where multiple jets fall below the minimum energy required and so fake a Hmiss
T signal.

This can be accounted for by comparing the Hmiss
T to the total Emiss

T which is measured

across all calorimetry systems and has no miminum energy requirement imposed. A

significant discrepancy would suggest that it was likely the event contained multiple jets

that were missed.
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Figure 4.1: Distribution of events with αT . An Hmiss
T cut has been applied to the SM

MC to more accurately reflect the data which has an implicit HT cut due to triggering

4.2 Events with jets originating from a b-quark

A jet that originates from a bottom quark is identified through a secondary vertex dis-

placed with respect to the primary interaction vertex. The Combined Secondary Vertex

algorith with Medium working point (CSVM)[27] attempts to distinguish between jets

originating from bottom quarks and jets originating from other sources (e.g. light flavour

quark jets). The CSV algorithm provides a discriminator variable for which this analysis

selects the medium working point value > 0.679 which leads to a quark miss-tag rate

of 1% for pjetT = 80GeV and b-tagging efficiency of between 60 and 70% which is pjetT

dependent.
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HT range (GeV) Trigger efficiency (%)

275–325 83.3+0.5
−0.6

325–375 95.9+0.7
−0.9

375–475 98.5+0.5
−0.9

475–∞ 100.0+0.0
−4.8

Table 4.1: Efficiencies of the offline αT triggers used in the 7TeV αT analysis on 5fb−1of
LHC data, relative to the Mu HT triggers

4.3 Triggers

The efficiency of a trigger is defined with respect to some inclusive sample. It is the

fraction of the number of events remaining in the signal region after the trigger is ap-

plied.

This analysis uses a specialised joint αT -HT trigger[92], HT AlphaT, which is designed to

have high analysis efficiency and low rate.

For an event with n-jets, each with Ejet
T > 40GeV, where the jets are ordered by pT,

the trigger algorithm forms the two pseudo jets from the k highest pT jets where k ∈
[2, n]. If for some value of k the event passes the HT-αT requirements then the event is

accepted. If k = n is reached and the event has failed for all values of k then the event is

rejected. If however there are more than 15 jets with Ejet
T > 40GeV the event is accepted

regardless.

The thresholds for the trigger are HT > 250GeV and αT > 0.53 where the threshold on

αT was increased to αT > 0.6 towards the end of the 2011 run.

The efficiency for this trigger, with respect to the Mu HT trigger, is given in Table 4.1.

4.4 Event selection

Due to the large and varied background composition it is necessary to define strict cuts

and vetoes while still selecting for a variety of SUSY all hadronic topologies.
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For the purpose of this analysis a jet is defined to be a collection of clustered particles1

reconstructed from energy deposits in the calorimetry towers. The energy of the jets are

corrected to produce a uniform response in pseudo-rapidity η (to account for the different

depths in radiation lengths the particles travel through before reaching the calorimeter

towers). The energy of the jets is also corrected to take account of pile-up effects; here

the L1Offset [44] jet energy corrections are applied. The jets are also calibrated for

absolute response in pT.

A jet energy threshold is imposed, requiring Ejet
T > 50GeV. The jet with the highest

ET in the event is required to be in the region |η| < 2.5, i.e. in the central tracker

acceptance region, so that it is well measured in the tracker and likely highly boosted.

The two highest ET jets are further required to have Ejet
T > 100GeV as this ensures a

sufficiently small background level for Z → νν + jets which is a source of genuine Emiss
T

in the SM (see Section 4.6.1).

A suppression of SM processes with Emiss
T caused by neutrinos escaping the detector can

be achieved by vetoing events with isolated electrons or muons which have pT > 10GeV;

note that this does not reduce the sources outlined in Section 4.6.2 as they deal with a

hadronically decaying τ , detector effects, or where this cut veto is not relevant.

A further veto is applied if any jet passing the jet ET threshold falls in |η| > 3 as a way

of preserving the Hmiss
T resolution as jets ouside of this range are not inclued in the Hmiss

T

calculation (this region roughly represents the change between the HB and HF sections

of the HCAL).

Isolated photons which have pT > 25GeV are vetoed to reduce the ensure that we are

considering events arising solely from multijet topologies.

Finally significant hadronic activity is required for an event to be considered, defined as

the event satisfying HT > 275GeV.

1specifically clustered using the anti-k-t algorithm[38] with with a distance parameter of R = 0.5
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4.4.1 Hadronic control sample

An independent data set is formed by inverting the requirement on αT (i.e. αT < 0.55),

leading to a data set rich in QCD multijet events. This is used in the modelling of

any remaining background originating from QCD that may enter the signal region. The

process of this modelling is described in Section 4.11.2.

4.5 Signal Region

As discussed in Section 4.4 and Section 4.1 respectively, we define the region of interest

to have HT > 275, and αT > 0.55. The HT requirement is chosen to be as low as

reasonably possible to allow for inclusion of softer jets. The signal is then separated into

eight bins in HT, in GeV: 275-325, 325-375, 375-875 in steps of 100, and > 875GeV.

This binning allows for cross-correlations and determination of shape information, and

hence improved sensitivity to higher HT events.

The jet energy threshold is lowered in the first two bins of HT (to 36.7 and 43.3GeV for

the lowest and second lowest bins respectively). This maintains a higher event HT to jet

energy threshold ratio, and maintains event jet multiplicities.

The signal region is further separated into bins of the number of jets identified as origi-

nating from a bottom quark, nb. These bins are nb = 0, 1, 2 and nb ≥ 3. By doing this

we improve the sensitivity to a variety of signal models. For instance, the highest b-tag

multiplicity bins have exceptionally low SM rates, and as such by binning in this fashion

it is possible to easily identify high b-tag multiplicity signal events (e.g. from light-stop

signal models).

As well as being binned, the signal region has several cleaning filters applied to reduce the

effects of the pre-selection requirements and detector effects in generating background.

These are detailed in Section 4.5.1 and 4.5.2

The acceptance for an identified object is defined as the set of kinematic requirements

for the object to be included in the signal or control region
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4.5.1 Dead ECAL cut

There exist some regions of the ECAL where there are either dead or mis-reporting read-

outs. These regions have been masked. Alongside these there is the gap between the

barrel and the endcap regions of the detector at |η| = 1.5; this region is also masked.

The vectorial ~Hmiss
T is used to identify jets most likely to be associated with the Hmiss

T by

selecting the jet closest in φ to the resulting total ~Hmiss
T when that jet is subtracted from

the event. The separation in φ from ~Hmiss
T is denoted ∆φ∗.

Any event with minimum ∆φ∗ < 0.5 rejected if the distance in (η, φ) between the jet

and the nearest masked ECAL region meets ∆RECAL < 0.3 or if the jet lies in the

surrounding ∆η < 0.3 region of the barrel-endcap. This effectively vetos events where

the possible cause of significant Hmiss
T in an event is from a jet which has been measured

in a problematic area of the detector.

4.5.2 Hmiss

T
/Emiss

T
cut

The Hmiss
T calculated from the jets passing our selection criteria is compared to the Emiss

T

measured in the calorimeters, i.e. Emiss
T coming from all objects detected after vetoes have

been applied. A ratio is defined and required to be Rmiss = Hmiss
T /Emiss

T
calo

< 1.25 else

the event is rejected. This reduces the contamination of events where there are multiple

jets under the jet energy threshold which lead to a fake Hmiss
T signal, where because the

Emiss
T calculation imposes no such jet energy threshold the value of R increases.

4.6 Sources of background

The SM production of tt, W → ℓν and Z → νν can all produce significant missing energy

signals which form part of the background to this search.
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4.6.1 Z → νν

Events with a Z produced with high pT along with jets, where the Z decays to a neutrino

anti-neutrino pair can form a genuine SM Emiss
T signal.

Notably the kinematics of Z → νν events and γ+jets are expected to be similar in cases

where the photon has pT > mZ0. This is discussed in further detail in Section 4.8.1. The

rate of this process falls with rising ET [49].

4.6.2 W → ℓν

In a similar fashion to Z → νν events, events with a high pT W that decays to a neutrino

and a lepton form a background to the search. Three mechanism make up the majority

of the background originating from W → ℓν;

• A lepton (e− or µ−) can fail the requirements used to identify this process (isolation,

for example) or can fail to be reconstructed

• A lepton (τ ) can decay hadronically

• A lepton (e− or µ−) can fall outside our defined detector acceptance range or

otherwise not be included (e.g. if its pT is under the minimum pT required)

4.6.3 tt

Direct pair production of top quarks decaying semi-leptonically can produce a significant

background to Emiss
T analyses. This occurs when the the pair decay through t → bW

decays, and the W decays as W → ℓν for one of the top-pair and hadronically for the

other. This contributes significantly to the background as the single lepton can be missed,

and hence one of the entire W decays is missed.
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4.7 Background composition

In the case of dijet events, the largest contribution comes from W → ℓν (Section 4.6.2)

and Z → νν (Section 4.6.1). For higher jet multiplicities one also has to consider tt

(Section 4.6.3) production that results in a semileptonic weak top quark decay.

All composition percentages below are given as inclusive values summed over b-tag mul-

tiplicities, and originate from an MC study of the signal region[109].

Though the rate of Z → νν falls with rising ET, the proportion of the background in the

signal region rises with HT; for the lowest HT bin it forms 43% of the total background,

rising to 53% for the highest inclusive HT bin. Because this is a genuine source of Emiss
T

in the SM, it forms part of the irreducible background.

Another significant contribution comes from associated production of W or Z decaying to

electrons or muons where the veto fails to exclude the event. These contribute between

25% to 13% of the background, from low to high HT.

Hadronically decaying τ leptons form 22% to 27% of the background from low to highHT.

Leptonically decaying τ leptons, which are also missed by the leptonic vetoes, account

for 10% of the background.

In the b-tag dimension, nb, for low b-tag multiplicities the dominant contribution comes

from both W+jets and Z+jets, and with increasing multiplicity begins to be dominated

by tt decays.

4.8 Background estimation from data control sam-

ples

Within the defined signal region for this analysis the QCD multi-jet events are expected

to give negligible contributions.

On top of the major backgrounds described in Section 4.6, contributions are also expected

from Drell-Yan, single top and di-boson production.
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To accurately estimate the contributions of these and the other sources of background,

three control samples are selected. These are data control samples chosen to be kinemat-

ically similar to the processes they are modelling and binned identically such that subtle

effects that are not modelled in MC can be accounted for.

The Z → νν + jets contribution is estimated from an SM-enriched combination of

µµ + jets and γ + jets samples where in both samples at least two jets are required and

they are binned identically to the signal sample. These are used as they are kinematically

similar to Z → νν +jets . The remaining background, formed mainly by W+jets and tt

is estimated from a single µ+jets sample, where again at least two jets are required.

To make use of these control samples translation factors are used, these are functions

of both signal binning variables (HT and nb) and are calculated independently for each

control sample. Hence we have one translation factor per bin per sample.

The expectation of an SM background process in a bin of the signal region (HT,nb) is

given by:

N signal
pred (HT, nb) = N control

obs (HT, nb)×
N signal

MC (HT, nb)

N control
MC (HT, nb)

(4.7)

where N control
obs (HT, nb) is the observed yield in a control sample bin, and the fraction is the

translation factor defined as the ratio of simulated yields in the signal bin, N signal
MC (HT, nb),

to the corresponding bin of the control sample, N control
MC (HT, nb).

This definition means that yields originating in MC are not used directly but only in

ratios, where any systematics arising from mismodelling will largely cancel.

When building up the total control MC the following proceesses are considered: W+jets,

tt + jets, Z → νν + jets , DY+ jets, single top + jets and di-bison (WW, WZ, ZZ +jets)

denoted NW , Ntt , NZ→νν , NDY , Ntop and Ndi-boson respectively. These are produced in

the following way. The W + jets and Z → νν + jets are simulated using MADGRAPH V5

[17] event generator. The tt + jets and single-top events are generated using POWHEG [66].

The di-boson events are produced with PYTHIA 6.4 [112]. All parton showering and

hadronisation processes are simulated using PYTHIA 6.4, and the detector simulation

is handled by the GEANT4 [15] tool. Each set of calculations is normalized the most
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accurate available cross-section calculations, usually at Next to Leading Order (NLO)

accuracy.

The total MC control sample yield is then

N control
MC (HT, nb) = NW +Ntt +NZ→νν +NDY +Ntop +Ndi-boson (4.8)

4.8.1 Control Samples

µ+ jets

This control sample is used to estimate the background from W + jets and tt processes

that are in the hadronic signal sample due to leptons that have failed acceptance, or are

not reconstructed, or contain hadronically decaying taus.

In this sample events are selected to find W → µν events. The same cuts on HT, H
miss
T

and αT from the signal region are applied, and the same HT binning is used, but the

muon is ignored in all such calculations.

Events are required to have one isolated muon with pT > 10GeV and in the region

|η| < 2.5. Multi-jet QCD events are suppressed by requiring MT

(
µ,Emiss

T

)
> 30GeV.

If the muon falls within ∆R(µ, jet) < 0.5 of any jet or if a second muon candidate is

detected that fails the same requirements placed on the first muon and the two muon

system has an invariant mass in the range mZ − 25 < mµ1µ2 < mZ + 252 then the event

is vetoed.

The statistical power of this sample can be increased by removing the αT requirement,

as the kinematic selection criteria mean that there is little QCD contomination in this

sample. However, removing the αT requirements means that the HT AlphaT trigger can

no longer be used and instead a Mu HT cross-trigger is used in place. Due to the pT

requirement in the muon-leg and the threshold in the HT-leg, this trigger cannot be used

in the lowest two HT bins (HT < 375GeV). For these two bins we make use of the

HT AlphaT cross-trigger again, and hence impose the αT requirement offline.

2Suppresses likely Z → µµ events
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µµ+ jets

As discussed in Section 4.6.1, Z → νν + jets forms a significant proportion of the

background. However these events have similar kinematic properties to those of Z →
µµ + jets only with a different branching ratio. Since the muons are required to be

in our |η| acceptance range and for real Z → νν + jets no such requirement can be

made on the neutrinos, a small difference in the kinematic properties of the samples is

introduced.

Using the µµ + jets control sample it is possible to estimate the contribution to the

irreducible background coming from Z → νν + jets .

As with the µ + jets control sample the two muons are not considered when calculating

HT, H
miss
T and αT ; the same cuts and binning are used as in the hadronic signal region,

with the same HT > 375GeV and nb ≥ 1 regions making use of the Mu HT trigger as

opposed to the HT AlphaT trigger. The same requirements on pT, |η|, and ∆R are placed

on the muons as in the µ+ jets sample, however the di-muon system is required to have

an invariant mass within mZ − 25 < mµ1µ2 < mZ + 25 as to select a sample containing

Z bosons.

γ + jets

As well as using the µµ+jets sample to estimate Z → νν +jets , we can also make use of

a γ + jets sample. This is formed of events requiring exactly one tightly isolated photon

with pT > 150GeV3 and in |η| < 1.45. If the photon falls within ∆R(γ, jet) < 1.0 the

event is vetoed.

Again, when calculating HT, H
miss
T , and αT the photon is discarded, and the same cuts

and binning as in the hadronic signal region are used. This control sample is only

used in the region HT > 375GeV due to the high pT requirement of the trigger for the

photon.

3This value is selected based on the Hmiss
T implied by the αT cut, which results in Hmiss

T /HT ≈ 0.4
which when combined with the HT region considered, gives 0.4× 375GeV = 150GeV
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4.8.2 QCD multijet background

After defining the signal region as HT > 275, αT > 0.55 and applying the pre-selection

cleaning filters (i.e. the Hmiss
T /Emiss

T and ∆φ∗ cuts) the QCD multi-jet background is

expected to be reduced to negligible levels. However if non-zero, it can be modelled and

taken into account in the likelihood calculations.

A variable, RαT
, is defined as the ratio of events above and below the cut value of αT

(αT = 0.55) in each HT bin.

An exponentially decaying form with respect to HT is assumed for RαT
. This can be

motivated by the increasing jet energy resolution with increasing HT, the reduction of

pathological effects with increasing energy, and finally the narrowing of the αT distribu-

tion in the region HT > 375 due to increasing jet multiplicity. Therefore RαT
is assumed

to fit,

RαT
(HT) = Anb

e−kHT (4.9)

Where the decay constant k is assumed to be fixed for all b-tag multiplicities, and the

normalization factor Anb
has a per b-tag multiplicity value.

The value of, and error on, k is constrained through the use of side-bands where anti-

selections of the different cuts are taken. These side-bands can be seen in Figure 4.2,

where the labelled signal region corresponds to αT > 0.55, Hmiss
T /Emiss

T < 1.25. Region B

corresponds to the side-band obtained by inverting the αT cut only. Region C is defined

by inverting both the αT and the Hmiss
T /Emiss

T cut, i.e. selecting events with αT < 0.55

and Hmiss
T /Emiss

T > 1.25. Region C is then binned in αT in steps of 0.1 in the range

0.52 < αT < 0.55 and labelled C1, C2, C3 for decreasing values of αT . This creates a

significantly enriched QCD sample, where the binning allows for determination of the

behavior of this sample with respect to αT . By inverting the Hmiss
T /Emiss

T cut Region D

is obtained, which again is a mutli-jet enriched sample, which is used in a cross-check on

the exponential model of RαT
.

The αT anti-selection, Region B, is used to constrain the central value of k, and the

variation between αT slices in the Hmiss
T /Emiss

T anti-selection, Regions C1,2,3, is used to
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Figure 4.2: Pictorial representation of the QCD side-bands[109]

estimate a systematic uncertainty on k, giving a result of k = −2.96 ± 0.61(stat) ±
0.46(syst) which is used to constrain terms in the likelihood, see Section 4.11.2.

4.9 Improving estimates for high b-jet multiplicity

events

As discussed in Section 4.8.1, the µ+jets data sample provides estimates for the dominant

tt and W+jets production in the SM. In the case of high b-tag multiplicity (i.e. nb = 2,

nb ≥ 3), the contribution to the background from Z → νν is negligable. In this region

then, the µ + jets sample is used to estimate the Z → νν sample, as the µµ + jets

and γ + jets data samples become increasingly statistically limited with increasing b-tag

multiplicity. So for events in the nb = 2 and nb ≥ 3 bins the total SM background is
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estimated using only the µ + jets sample; in all other bins all three µ + jets, µµ + jets

and γ + jets samples are used.

4.9.1 Formula method for translation factor prediction

Since only the one data sample is used to estimate the total SM background for high

b-tag multiplicities it is necessary to make maximum use of the statistical power of the

available simulations.

We can estimate the distribution of b-tag multiplicity by comparing reconstructed and

generator level simulations. For each event in the MC sample the generator level jets are

looped over and matched to the nearest reconstructed jet within ∆R < 0.5, where ∆R =√
∆η2 +∆φ2 and provided that 0.5 < pgenT /precoT < 1.5. The number of reconstruction

level jets that are matched to generator level b, c, and other light flavour quarks are

denoted ngen
b , ngen

c and ngen
q respectively. The total number of matched jets per HT bin

is N
(
ngen
b , ngen

c , ngen
q

)
. MC is also used to determined the b-tagging efficiency and mistag

probabilities, ǫ and fq respectively, for each HT bin. These values are correct with respect

to data on a per-jet basis as described in [40]. From these values it is possible to predict

the event yield in a given HT bin[43],

N(nb) =
∑

nb

(
N
(
ngen
b , ngen

c , ngen
q

)
× Pb × Pc × Pq

)
(4.10)

where Px ≡ P (ntag
x ;ngen

x , fx) and n
tag
x is the number of times that a reconstructed b-jet’s

assocatied generator level jet is of type x ∈ {b, c, q} and fb ≡ ǫ. Px are the probabilities

for these arrangements to happen. Finally, the sum is performed over all values of possible

ntag
b , ntag

c and ntag
q such that nb =

∑
x∈{b,c,q} n

tag
x

The accurate determination of fc and fq is essential as nb ≥ 3 is likely to be dominated

by events with two real b-jets with a further mis-tagged jet (e.g. tt), as genuine three

b-jet events are rare in the SM.
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4.9.2 Signal scans

Each phenomenological model considered, the cMSSM and the various simplified models,

is broken down into individual signal models, representing a single point in the model’s

parameter space. For each signal model considered 10000 events are generated. These are

reconstructed using fast-simulation which requires scale-factor corrections to be brought

into line with full-simulation reconstruction, which again needs corrections to be brought

into line with data. To accomplish this two-step re-weighting, the scans have point-by-

point corrections applied.

Consider an event in which there are two generator level b-jets, and two generator level

non-b-jets all matched to reconstruction level jets, but one of each pair is b-tagged. The

probability of mis-tagging a non-b-jet, and missing one of the b-jets is[109],

p = ǫ
(
pjetT

1
, ηjet1

)

×
(
1− ǫ

(
pjetT

2
, ηjet2

))

×m
(
pjetT

3
, ηjet3, IDjet3

)

×
(
1−m

(
pjetT

4
, ηjet4, IDjet4

))
(4.11)

where ǫ and η are the b-tagging efficiency and mis-tagging rates, and the lines of the

equation correspond to a b-jet that tags correctly, a b-jet that is not b-tagged, a non-bjet

that is mis-tagged and a non-b-jet that is not mis-tagged respectively.

For this example event the re-weighting factor, w is given by,

w =
SFbǫ× (1− SFbǫ)× SFc,lightm× (1− SFc,lightm)

ǫ× (1− ǫ)×m× (1−m)
(4.12)

where SFb is the scale-factor for b-tag efficiency, and SFc,light are the mis-tagging scale

factors for c quarks or other light flavors where the values of these are specific to the

b-tagger used in the analysis (CSVM)[118] and are multiplicatively made from the fast-

simulation to full-simulation and the full-simulation to data scale factors[109].



CHAPTER 4. EXPLORING SUSY WITH αT 77

4.10 Systematic Uncertainties

While the use of translation factors reduces the effect of systematics from mis-modelling

it is important to understand any possible uncertainty on them. The fit used to predict

the total background through the yields in the hadronic signal sample and the control

samples also makes use of the translation factors. As such, having well motivated sys-

tematic uncertainties on the translation factors is essential to the accuracy of the fitting

procedure.

Uncertainties on the translation factors can be motivated through the use of closure tests

where a control sample is used to mimic signal; that is for a well closed translation factor

one would expect

Rclosure =
Nobs −Npred

Npred

∼ 0 (4.13)

where Nobs is the observed yield and Npred is the predicted yield. The statistical error

from the translation factor, based on the MC sample size, is combined with the error

on the number of events in the sample being used as a predictor. This gives the final

error on the closure ratio and means that the value of R gives the level of closure of the

translation factors as a predictor per bin.

The set of closure tests shown here are used to test various aspects of the background

modelling and test the MC’s modelling of the kinematics. That is that it correctly

reproduces the αT , µ and γ acceptance. It also tests the modelling of the production

and decay cross-sections and how they contribute to the total SM background as well as

testing the modelling of reconstruction efficiencies.

The closure of the tests that take µ + jets and the µµ + jets with no αT requirement to

the same selection but with αT > 0.55 show that the MC correctly models the depedence

of these events on αT .

Note that reference is made to closure tests in the form X → Y , where this denotes the

X sample being used to predict the Y sample.

The µ+jets → µµ+jets closure tests of the ratio of Z and W cross-section (σZ/σW ) and
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Figure 4.3: A set of closure tests overlaid on top of grey bands representing the systematic
uncertainties assigned for use in three HT regions in the simultaneous fit[43].

any effect of the acceptence difference due to selecting muons. The µµ+ jets → γ + jets

is used to check the ratio of the production cross-sections of Z + jets to γ + jets, and

again any acceptence difference between the photon and the muons.

Dedicated closure tests on the b-tag multiplicity bins is done, where the µ+ jets sample

with nb = 0 → nb = 1, nb = 1 → nb > 1 and finally nb = 0 → nb > 1 where in

all three tests the sample being translated to has no αT requirement. These along side

the two closure tests of µ + jets → µµ + jets each with nb = 0 and nb = 1 check that

the re-weighting method described in Section 4.9.1 is correct, and that it is possible to

translate between the different b-tag multiplicity bins.

The results of these closure tests are shown in Figure 4.3.

Figure 4.3 also shows that the HT distribution of the systematic uncertainty associated

with the closure tests is split into three regions: 275 < HT < 575GeV, 575 < HT <
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775GeV, and HT > 775GeV. This splitting is done to decorrelate the systematic uncer-

tainties, and results in a more conservative approach to the values of the systematics. For

each region the weighted mean and variance is calculated using each of the values and

uncertainties of each closure test contained in the region. Then a systematic is assigned

for the translation factors in that region that gives 95% coverage. This conservative

choice of systematic uncertainty ensures coverage of any possible small biases in the MC

modelling. These uncertainties are assumed to be completely uncorrelated when used

in the fit, though one should expect strong correlations between adjacent bins in HT.

The results of this method are then rounded up to 10%, 20%, and 40% for each of the

respective HT regions.

4.11 Likelihood model

A likelihood model is developed to interpret the signal and control samples. It is broken

down into components representing the hadronic sample, electroweak control sample,

and signal samples respectively.

4.11.1 Hadronic sample

Assume there are N bins in HT, in this case N = 8, not necessarily of equal width.

Then ni is the number of events passing the selection requirements in HT bin i, bi is the

number of expected SM background events in HT bin i, and si is the expected yield of

signal events in i. The likelihood for the hadronic sample can then be defined as

Lhadronic =
∏

i

Pois
(
ni|bi + si

)
(4.14)

where it is assumed bi ≡ EWKi + QCDi where EWKi is the expected number of back-

ground electroweak events and QCDi is the expected number of background QCD events

in HT bin i.
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4.11.2 Parameters evolving with HT

As discussed in Section 4.8.2 it is hypothesized that for for any process p the ratio between

events above and below the αT cut value αT = 0.55 falls exponentially with HT, that

is

RαT
(HT) = Ae−kHT (4.15)

and the parameters A and k have their values determined from a fit. In an HT bin i we

denote the number of events below the αT threshold as mi, and their mean HT values as

〈HT〉i. Then the expected background bip from the process p is

bip =

∫ xi+1

xi

dN

dHT

RαT
dHT (4.16)

where the integral is performed over the lower and upper bin edges, dN
dHT

is the distribution

in HT of events failing the αT cut. In this analysis it is assumed that the per-bin

distribution of events all occur at the mean value of HT, 〈HT〉i.

Equation 4.16 can then be rewritten as

bip =

∫ xi+1

xi

miδ
(
x− 〈HT〉i

)
Ae−kxdx = miAe−k〈HT〉i (4.17)

where we identify

EWKi = miAEWK (4.18)

QCDi = miAQCDe
−kQCD〈HT〉i (4.19)

i.e. the EWK background is a constant scale and the QCD multijet background falls

with HT.
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4.11.3 Electroweak samples

As discussed in Section 4.7 the only irreducible SM background comes from Z → νν+jets

. A good fit to the proportion of EWK background that comes from Z → νν is to model

it as a linear function of HT. That is,

f i
Zinv ≡

EWKi
Zinv

EWKi
(4.20)

such that f i
Zinv ∈ [0, 1]. Since we model the HT dependence of fZinv as linear, two floating

parameters can be defined f 0
Zinv and f

N−1
Zinv . These are the proportion of EWK background

that is from Z → νν in the first bin, and the last bin respectively. Hence, the contribution

of Z → νν in any bin i can be calculated,

f i
Zinv = f 0

Zinv +
〈HT〉i − 〈HT〉0

〈HT〉N−1 − 〈HT〉0
(
fN−1
Zinv − f 0

Zinv

)
(4.21)

One can also define ttWi, that is the expected number of events from SM W-boson

production which also includes decays from top quarks which are in the signal sample,

such that

ttWi ≡
(
1− fZinv

)
× EWKi (4.22)

EWKi ≡ ttWi + Zinvi (4.23)

where Zinvi is the raw number of Z → νν events expected in HT bin i of the signal

sample, defined as Zinvi ≡ f i
ZinvEWKi.

For each bin of the photon and muon control samples we define ni
ph, n

i
µ, nµµ, MC i

ph,

MC i
µ, and MC i

µµ where nX are the event counts in the X control sample, and MCX is

the corresponding yield in the MC.

The MC simulation also provides expected compositions of Zinv and ttW in the signal

sample denoted MCZinv and MCttW. The MC simulations used on CMS analyses have
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been validated extensively [14].

One can subsequently define ratios,

riph =
MC i

ph

MC i
Zinv

(4.24)

riµµ =
MC i

µµ

MC i
Zinv

(4.25)

riµ =
MC i

µ

MC i
ttW

(4.26)

which are then used to define the likelihood functions

Lph =
∏

i

Pois
(
ni
ph|ρjphZriphZinvi

)
(4.27)

Lµµ =
∏

i

Pois
(
ni
µµ|ρjµµZriµµZinvi

)
(4.28)

Lµ =
∏

i

Pois
(
ni
µ|ρjµWriµttWi + siµ

)
(4.29)

where Pois(n|λ) denotes the Poisson distribution function f(n|λ) = λne−λ

k!
.

These can then be used to cross-predict the composition of our sample. For example,

equation (4.27) can be used to estimate the value for Zinvi given knowledge of the photon

control sample. Zinvi can also be estimated from the di-muon control sample and the

single muon control sample can be used to estimate ttWi. Note, that these ratios rX are

the inverses of the translation factors (equation (4.7)).

The parameters denoted ρX are correction factors to accommodate the systematic un-

certainties associated with the control-sample background constraints as described in

Section 4.10. Further, the relative systematic uncertainties for the control sample con-

straints can be taken account with likelihood functions,
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LEWK syst =
∏

j

Gauss
(
1.0|ρjµW, σj

µW

)
×Gauss

(
1.0|ρjµµZ, σj

µµZ

)
×Gauss

(
1.0|ρjphZ, σ

j
phZ

)

(4.30)

where Gauss(x|µ, σ) is the Gaussian distribution function f(x|µ, σ) = 1
σ
√
2π
e−

(x−µ)2

2∗σ2 and

σX are the uncertainties on their respective ρX terms.

As detailed in Section 4.8.1, at high b-multiplicity (nb ≥ 2) the statistics of some of the

MC samples are insufficient to use the same method, as such the single muon control

sample is used to predict the total electroweak background. Defining the ratio

r′ ≡
MC i

µ

MC i
ttW+Zinv

(4.31)

and hence the likelihood term

Lµ =
∏

i

Pois
(
ni
µ|ρjµWr′iµEWKi + siµ

)
(4.32)

In this case, the likelihood terms from the photon and di-muon likelihoods are ignored,

and the parameters fZinv are also dropped.

4.11.4 Signal contribution

For a particular HT bin i, our analysis has an efficiency ǫihad (ǫiµ) for the hadronic signal

(single muon control) sample. There is a relative uncertainty, δ, on the signal yield which

is assumed to be fully correlated among theHT bins, and hence there is a correction factor

ρsig to accommodate this uncertainty.

If there is a particular signal model with cross section x and the analysis considers a

recorded luminosity l, then the expected yield in the hadronic signal selection is de-

fined
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si ≡ fρsigxlǫ
i
had (4.33)

and the signal contamination in the muon control sample is defined similarly

siµ ≡ fρsigxlǫ
i
µ (4.34)

where f is a multiplicative factor on the cross section of the signal model which shall

have a range determined.

The likelihood model then requires a term to account for the systematic uncertainty on

the signal,

Lsig = Gauss(1.0|ρsig, δ) (4.35)

4.11.5 Combined likelihood

For any selection k the likelihood is given as

Lk = Lk
hadronic × Lk

µ × Lk
ph × Lk

µµ (4.36)

Each selection has 3+N associated nuisance parameters: the QCD normalization factor

AQCD, the fractional values of Zinv in the EWK background f 0
Zinv and fN−1

Zinv , and the

N electroweak background yields {EWKi}N−1
i=0 , where N is the number of bins in the

selection (e.g. the eight HT bins).

There are 11 parameters used to describe the SM background, constructed from the sum

of the EWK and QCD contributions: the QCD HT evolution decay constant kQCD, the

signal correction factor ρsig and the sets of the three correction factors ρjphZ, ρ
j
µµZ and

ρjµW with j ∈ {0, 1, 2}. So the total likelihood is then given by,

L = Lsig × LEWK sys ×
∏

k

(
Lk
hadronic × Lk

µ × Lk
ph × Lk

µµ

)
(4.37)
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4.12 Fitting models

For a particular signal model, the likelihood is maximised over all parameters thus pro-

viding parameter values and yields from the fit with uncertainties that are determined

from pseudo-experiments.

Further, a goodness of fit can be determined following the procedure laid out in [103]. For

a particular data set Lmodel
max is noted. Then treating the likelihood function at the Max-

imum Likelihood (ML) values as an Probability Distribution Function (PDF) pseudo-

experiments can be created. For each pseudo-experiment the maximisation routine is

repeated and the value of Lmax
pseudo is noted. A histogram of the values of Lmax

pseudo is then

constructed and the p-value of the model being tested is the quantile of Ldata
max in this

histogram.

In the case of testing the SM the same procedure is carried out but the signal terms in

the likelihood function are ignored.

4.13 Testing signal models

The CLs method, described in [102], is used to test signal models. A test statistic, fully

described in [47], is selected to rank models in terms of their signal-like properties,

qµ =




−2 log λ(µ) µ > µ̂

0 otherwise
(4.38)

where µ is the same multiplicative factor on the signal cross-section as f in equa-

tion (4.34), λ(µ) is the profile likelihood ratio defined as

λ(µ) =
L(µ, θµ)

L
(
µ̂, θ̂
) (4.39)

where µ̂ is the ML value of µ, θ̂ is the set of ML valued nuisance parameters, and θµ

is the set of conditional ML values of the nuisance parameters for a given value of the
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signal strength µ.

For a given model treated at nominal cross-section (µ = 1), pseudo-experiments are

produced in a similar manner as described in Section 4.12. The values CLs+b and CLb are

defined as one minus the quantile of the observed value of q1 in the signal+background and

background-only distributions respectively. Further CLs is defined as CLs ≡ CLs+b/CLb.

Hence a model can be said to be excluded at X% if the CLs ≤ 1.− (X/100).

4.14 Results

4.14.1 Standard Model Fit

The fit described in Section 4.12 is carried out for the SM. Figures 4.4, 4.5, 4.6 and 4.7

show comparisons of observed yields and SM expectations given by this fit in the bins

of HT with zero, one, two, and more than two b-tagged jets per event respectively for

the signal region in αT > 0.55. Across all b-tag categories good agreement is observed

between the SM expectation and the observed yields in data. There is no significant

excess above the SM expectation. More quantitative details of the fit and yields are

summarised in Table 4.2. It should be noted that the shape difference in the nb ≥ 1

slices in the µ+ jets and µµ+ jets samples is due to the different trigger requirements in

the HT ≶ 375 regions, described in Section 4.8.1.

HT (GeV) 275–325 325–375 375–475 475–575 575–675 675–775 775–875 875–∞
0 b jets SM 2933+56

−52 1139+17
−40 783+17

−27 261+14
−8 81.5+6.5

−6.5 34.2+4.0
−3.8 10.4+2.8

−1.8 5.3+1.7
−1.1

0 b jets Data 2919 1166 769 255 91 31 10 4

1 b jet SM 630+26
−25 271+10

−16 202+10
−6 78.0+6.9

−1.9 24.2+2.9
−2.0 10.6+1.7

−1.3 2.9+0.9
−0.5 2.2+0.7

−0.4

1 b jet Data 614 294 214 71 20 6 4 0

2 b jets SM 162+13
−12 61.8+4.8

−6.3 58.8+4.8
−2.6 28.0+3.5

−1.1 9.0+1.4
−1.0 7.1+1.4

−1.0 0.6+0.3
−0.2 0.9+0.4

−0.2

2 b jets Data 160 68 52 19 11 7 0 2

≥ 3 b jets SM 10.5+3.5
−2.2 7.1+2.2

−1.8 5.8+1.4
−0.9 3.1+1.0

−0.7 1.7+0.5
−0.4 0.7+0.5

−0.4 0.1+0.1
−0.1 0.2+0.1

−0.1

≥ 3 b jets Data 10 8 8 1 0 0 0 0

Table 4.2: Comparison of the measured yields in the different HT and b jet multiplicity
bins for the hadronic sample with the SM expectations and combined statistical and
systematic uncertainties given by the simultaneous fit.
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Figure 4.4: Comparison of the observed yields and SM expectations given by the si-
multaneous fit in bins of HT for the (a) hadronic, (b) µ + jets, (c) µµ + jets, and (d)
γ + jets samples when requiring exactly zero reconstructed b-jets. The black dots show
the observed event yields in data, and the light blue solid line with dark banding shows
the expectation and uncertainty determined by the simultaneous fit. A sample signal
model is superimposed as the magenta solid line[43].

4.14.2 Model limits

This analysis sets limits in the cMSSM parameter space as well as in various Simplied

Model Spectra (SMS).

cMSSM

In the case of the cMSSM a signal model is defined to be a single point in the cMSSM

parameter space defined by four continuous parameters and one binary parameter. In
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Figure 4.5: Comparison of the observed yields and SM expectations given by the si-
multaneous fit in bins of HT for the (a) hadronic, (b) µ + jets, (c) µµ + jets, and (d)
γ+jets samples when requiring exactly one reconstructed b-jet. The black dots show the
observed event yields in data, and the light blue solid line with dark banding shows the
expectation and uncertainty determined by the simultaneous fit. A sample signal model
is superimposed as the magenta solid line[43].

this analysis, we consider the binary parameter, sign(µ), to be fixed along with two of

the four continuous parameters. Specifically,

tan β = 10, A0 = 0, sign(µ) = 1 (4.40)

and the remaining two mass-scale parameters are scanned. m0 is scanned in steps of

20GeV in the range [0, 2TeV], and m1/2 is scanned in steps of 20GeV in the range

[0, 800GeV]. At each point in the scan the mass spectrum is calculated and signal events
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Figure 4.6: Comparison of the observed yields and SM expectations given by the si-
multaneous fit in bins of HT for the (a) hadronic, (b) µ + jets, (c) µµ + jets, and (d)
γ + jets samples when requiring exactly two reconstructed b-jets. The black dots show
the observed event yields in data, and the light blue solid line with dark banding shows
the expectation and uncertainty determined by the simultaneous fit. A sample signal
model is superimposed as the magenta solid line[43].

are generated. These simulated events are reweighted such that the distribution of the

number of reconstructed vertexes per beam crossing matches between simulation and

data.

Signal contributions to each of the four data samples are allowed but this contribution

is only significant in the cMSSM for the hadronic signal sample.

Figure 4.8 shows the observed and expected exclusion limit for the cMSSM using the

CLs method in the m0 ,m1/2 plane. For this set of fixed input parameters this analysis

excludes mq̃ < 1250GeV at 95% CL. For the region m0 < 600, mg̃ < 1250 is also
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Figure 4.7: Comparison of the observed yields and SM expectations given by the simul-
taneous fit in bins of HT for the (a) hadronic and (b) µ + jets samples when requiring
exactly two reconstructed b-jets. The black dots show the observed event yields in data,
and the light blue solid line with dark banding shows the expectation and uncertainty de-
termined by the simultaneous fit. A sample signal model is superimposed as the magenta
solid line[43].

excluded at the same confidence. For m0 in the region 600 < m0 < 3000GeV this

analysis excludes mg̃ < 700GeV and mq̃ < 1250 − 2500 depending on m0 , again all at

95% CL.

Simplied Model Spectra

Though the cMSSM provides varied particle spectra it is, by its definition, restricted from

representing the full range of possible phenomenology within the MSSM. In particular

the cMSSM has a near-fixed relationship between the gluino mass and the LSP (χ̃0
1)

(mg̃ ∼ 6×mχ̃0
1
). To account for this several SMS are selected. These are models which

consist of only a few particles, where the remaining SUSY spectra is considered to be at

sufficiently high masses that they have negligible contribution to any process, and hence

have a low number of input parameters.

To account for fixed mass ratios in the cMSSM SMSs are selected where the mass splitting

between the produced g̃ or q̃ and the LSP is small and the rest of the sparticles are

decoupled. The models T1 and T2 characterize the pair production of gluinos and 1st and

2nd generation squarks respectively, and the mass splitting between these pair produced
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Figure 4.8: Exclusion contours at 95% CL in the cMSSM m0 ,m1/2 plane (tan β =
10, A0 = 0, µ > 0) using the CLs method. The solid black line indicates the observed
exclusion region. The dotted-dashed black lines represent the observed excluded region
when varying the cross-section by its theoretical uncertainty. The green dashed line and
green band represent the expected median exclusion and the ±1σ region respectively[43].

particles and the LSP. T2tt, T2bb, T1tt, and T1bbbb described various production an

decay modes in the context of 3rd generation squarks. Each SMS under consideration,

and their respective production and decay modes, are summarized in Table 4.3.

In general SMS with names beginning T1 have direct pair-produced gluinos which decay

via offshell quarks of the relevant flavour to the final states listed. For SMS with names

beginning T2 we get direct pair production of the squarks, and these decay directly to

the listed final states.

Again, as in the cMSSM, the yield on signal events in the control samples is negligi-

ble.
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Model Production and decay modes
T1 g̃g̃ → qqχ̃0qqχ̃0

T2 q̃ q̃ → qχ̃0qχ̃0

T2tt t̃t̃ → tχ̃0tχ̃0

T2bb b̃b̃ → bχ̃0bχ̃0

T1tttt g̃g̃ → ttχ̃0ttχ̃0

T1bbbb g̃g̃ → bbχ̃0bbχ̃0

Table 4.3: Production and decay modes for various simplified models.

The mass of both inputs is varied in steps of 25GeV, and at each model point 10000

events are generated and processed through the detector simulation and reconstruction

chain. For a given mass pairing, an observed upper limit on the cross-section is computed,

i.e. the value of the multiplicative factor on the cross-section (µ) for which CLs = 0.05

is calculated following the method described in Section 4.13.

These observed cross-section limits are shown in Figure 4.9 for each of the simplified

models. The thicker solid black lines enclose the observed exclusion region, and the

thinner black lines show the observed excluded region when the cross-section is varied

by its theoretical uncertainty. The thick and dashed purple lines indicate the median

expected exclusion and the ±1σ experimental uncertainty regions respectively.

The general trend of the worsening limit on the cross-section as the mass of the parent

particle decreases for fixed LSP mass is due to decreasing expected Emiss
T in the events.

As the difference between the daughter and parent particle masses is reduced one expects

the resulting sparticles that escape the detector to be less boosted and hence produce a

smaller Emiss
T signature, thereby reducing the limit that can be put on the cross-section

for processes in this region of parameter space.

The highest impact regions of the limits on the pair production of sparticles are observed

at low LSP masses, where as the LSP mass increases and the spectra becomes compressed

the limit on the pair produced sparticles weakens. This is due to the nature of compressed

spectra, as the daughter and parent particles mass separation decreases, the decay pro-

duces significantly softer jets. For all models considered there is a value of the LSP mass

for which the limit falls off entirely. For example, in the T1 model (Figure 4.9a) for low
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LSP masses gluinos masses of 950GeV are excluded and this falls to below 900GeV when

mLSP > 350GeV. The limit rapidly disappears and for mLSP > 400GeV no limit can be

placed on mq̃ .

In the case of direct squark pair production Figure 4.9c shows that there is no expected

exclusion for mLSP > 50GeV. However a small exclusion is observed. Figure 4.10 shows

this observed upper limit at 95% CL as a function ofmt̃ for a fixedmLSP = 50GeV.
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Figure 4.9: Upper limit on cross section at 95% CL as a function of mq̃ or mg̃ and mLSP

for various simplified models. The solid thick black line indicates the observed exclusion
region. The thin black lines represent the observed excluded region when varying the
cross section by its theoretical uncertainty. The dashed purple thick and thin lines
represent the median expected and ±1σ exclusion regions respectively[43].
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4.15 Summary of analysis

A search for supersymmetry was carried out based on a data sample corresponding to

an integrated luminosity of 4.98fb−1 recorded at
√
s = 7TeV. Events were selected with

final states consisting of at least two jets and significant Emiss
T , characteristic of the decay

of high-mass pair produced sparticles. This search bins the signal region in HT and the

number of jets identified as originating from a bottom quark nb. The SM background

for each bin is estimated from a simultaneous binned likelihood fit to hadronic, µ+ jets,

µµ + jets and γ + jets samples. The observed data show no significant excess over

the expected SM yields. Limits have been calculated in the cMSSM in the m0 ,m1/2

plane while the other parameters remained fixed as tan β = 10, A0 = 0, µ > 0. In this

selection of signal models this analysis excluded mg̃ < 700GeV at 95% CL, increasing

to mg̃ < 1250 when mg̃ ∼ mq̃ .

Limits in simplified models are also calculated, where these models are selected to more

fully cover possible phenomenology in the MSSM and also provide a special emphasis on

third generation and compressed spectra scenarios. In the case of simplified models with

squark pair production 1st and 2nd generation squarks are excluded for mq̃ < 750GeV

for low mLSP, and bottom squarks are excluded up to approximately 500GeV. It should

be noted that in all simplified models presented the limit on mLSP is significantly below

1TeV indicating that there still exists significant portions of SUSY parameter space not

yet probed at the LHC. Though these results show the early stages of sensitivity to

TeVscale supersymemtry, and we should expect future results to probe models at this

scale aggressively.



Chapter 5

Constraining models of

Supersymmetry

The most simple extensions of the Standard Model, discussed in Section 2.4, have at

minimum four dimensions. However, it is common to see experimental results, as well

as preferred regions of supersymmetric parameter space, described solely by the mass

parameters. That is, the impact of the results are given in the
(
m0,m1/2

)
plane while

fixing tan β and A0, for example see Figure 4.8 where the exclusion contour is shown

with tan β = 10, A0 = 0.

When discussing preferred regions of a model’s parameter space it is essential to incor-

porate the effect of all input parameters on observables, as many observables will have

conflicting preferred regions for each parameter. Therefore, to fully quantify the possi-

ble range of phenomenological behaviour that these models can produce, as well as the

impact of a combination of modern searches, it is necessary to scan over the full space

of input parameters, calculating the value of observables at each point. It is then pos-

sible to assign a weighting to each point dependent on the consistency with any given

list of measured observables. This allows statements to be made about the preferred

regions of parameter space across all dimensions of the model account for any number of

constraints, and hence assess the fit of the model to current experimental data.

In this analysis two models are considered, the cMSSM and the NUHM1 the details of

97
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which are disucssed in Section 2.4.1 and Section 2.4.3 respectively.

5.1 Statistical model

There are two fundamentally different approaches to quantifying this consistency, the

Bayesian and frequentist interpretations of probability.

The Bayesian view is that the probability of a hypothesis H, given some data D, can be

estimated given incomplete knowledge of the population and system, i.e.

P (H|D) =
P (D|H)P (H)

P (D)
, (5.1)

where P (H) is the probability of the hypothesis prior to the data, P (D) is the probability

of the data, P (D|H) is the probability of the data D given the hypothesis H is true,

and P (H|D) is the probability of the hypothesis being true once the data D has been

seen.

The frequentist approach is to interpret probability as the expected “frequency of occur-

rence” of an event defined by the hypothesis, that is

P (A) = lim
nt→∞

nA

nt

(5.2)

where nt is the total number of events and nA is the total number of events where A

occurred.

In this analysis the frequentist interpretation is used as, while there is a drawback of

only being valid in the limit nt → ∞, it removes the dependence on priors inherent to

the Bayesian interpretation (e.g. trying to specify a probability of the hypothesis being

true). This is important as there is evidence that the calculations are sensitive to the

choice of priors, at least for some models [123]. It is also possible to motivate the choice

of frequentism in the case of a well sampled parameter space whose dependent variables

are smoothly varying and define the likelihood for a given point, as in this case it becomes

reasonable to assume the sample mean is in fact the true mean.
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5.1.1 Chi-squared function

One can define a simple global χ2 function to combine the constraints and the impact of

the Standard Model parameters,

χ2 =
N∑

i

(Ci − Pi)
2

σ (Ci)
2 + σ (Pi)

2 (5.3)

where N is the number of observables, Ci is a measured value and Pi is the corresponding

value predicted by the model being tested.

5.1.2 Standard Model inputs

The predictions of these minimal models of SUSY are also sensitive to SM parameters,

and so in scanning over the parameter space of the models and determining the true

range of phenomenological behavior, it is necessary to treat the most relevant of these

inputs as nuisance parameters in the calculation of the χ2,

χ2
SM =

M∑

i

(
f obs
SMi

− fSUSY
SMi

)2

σ (fSMi
)2

(5.4)

The three Standard Model parameters which need to be handled this way are denoted

fSM = {∆αhad,mt,mZ}, and the current precision of their experimental measurement is

σ (fSMi
) where ∆αhad is the hadronic contribution to the shift in the electromagnetic fine

structure constant, evaluated at scale Q2 =M2
Z , and mt and mZ are the mass of the top

quark and Z-boson respectively. Originally these three parameters were chosen as they

encapsulate the vast majority of the sensitivty of the observable in the early analyses as

well as being well controlled experimentally. Now that the analysis is more mature and

more observables are included it will become necessary to re-examine and extend this set

of parameters, including e.g. αS the strong coupling constant to which for instance the

B-physics observables would be sensitive. However at this time, a full resampling with a

new nuisance parameter was computationally prohibitive.
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5.1.3 Model scanning

A Markov Chain Monte Carlo (MCMC) method is employed to scan the parameter

spaces of the models. Specifically, a Metropolis-Hastings algorithm[93] MCMC is used to

perform the sampling. An initial point, q0, is chosen and an arbitrary proposal density

is selected Q(q|j) where j is the previous sample and Q(q|j) is the probability density of

q given j on which the only requirement is that Q be symmetric, i.e. Q(q|j) = Q(j|q).
In this implementation the standard choice is taken where Q is chosen to be a multi-

dimensional Gaussian distribution centered around the previous sample j. To make a

step t, a candidate qc is selected from the distribution Q(qc|qt), where qt is the previous

accepted candidate, and then an acceptance ratio is calculated;

α =
f(qc)

f(qt)
=
P (qc)

P (qt)
(5.5)

where P is the desired underlying distribution to be sampled, and f is some function

which is proportional to the density of P . If α > 1 it is automatically accepted, else it

is accepted with probability α. Here we adjust the width of Q to keep the points with

α < 1 at an acceptance rate of 20 − 40% to ensure a broad sample while remaining

efficient.

It should be noted at this point that no use of the density of sampling is made to infer the

underlying probability distribution P ; rather, the MCMC method is used to construct

a global χ2 function that receives contributions from our constraints dependent on its

position in parameter space.

For a single chain an initial point in the region of interest1 is selected at random. The

RGEs are solved to produce the mass spectrum and couplings at the EWK scale. These

are then fed into a selection of programs to calculate the various observables of inter-

est.

In this case SoftSUSY [16] is used to solve the RGEs. This result is then passed on to

FeynHiggs [65] which modifies the Higgs sector. Finally this modified set of inputs is

1The region of interest is usually defined to be m0 < 4TeV, m1/2 < 4TeV, −5 < A0 < 5TeV,
2 < tanβ < 60
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Predictor Observables
SoftSUSY Couplings and sparticle mass spectrum
FeynHiggs Higgs sector, aEXP

µ − aSMµ , MW

MicrOMEGAs Ωch
2, cross-check on σSI

p

SuperIso Cross-checks on b → sγ and (g − 2)µ
SSARD σSI

p and cross-check on Ωch
2

Bphysics R(BR(b → sγ)), BR
(
B0

s → µµ
)
, R(BR(B → τν)), BR

(
B0

d → µµ
)
,

R(BR(B → Xsℓℓ)), R(BR(K → µν)), R(BR(K → πνν)), R(∆ǫK),

R
(
∆MB0

s

)
, R
(
∆MB0

s

)
/R
(
∆MB0

d

)

FeynWZ σ0
had, Rl, Afb(ℓ), Aℓ(Pτ ), Rb, Rc, Afb(b), Afb(c), Ab, Ac, Aℓ(SLD),

sin2 θℓw(Qfb), mW

Table 5.1: Listing of the observables obtained from each code-base

fed to MicrOMEGAs [25], SuperIso [89], SSARD [1], Bphysics2, and FeynWZ3 in turn. The

list of observables retrieved from each program is given in Table 5.1. The values of these

observables are then compared with measured values to calculate a χ2 value for the point.

This is then passed back to the controlling MCMC algorithm as the value of the target

distribution at that point, and the next point is then selected. In general all attempts

are made to make use of the most up to date values for all observables at the time of

sampling / re-sampling.

5.1.4 Minimization

Once the parameter space has been sampled a minimization routine, for instance MINUIT

[81], can be used to determine the best-fit point by minimization of the χ2 with respect to

the constraints. The point with the lowest χ2 in the MCMC sampling is used as the seed

point for the minimizer, and the program is run iteratively, with each point examined

by the minimizer being added to the total sampling. Once the minimizer has completed,

the parameter values are used to calculate a full χ2 breakdown of the best fit point.

It should be noted that the LHC-era χ2 contributions are not implemented when running

the minimization routine, and as such only the pre-LHC minima have been calculated

2Private code
3Private code; based on the work in [76]
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through use of minimization. For the post-LHC the minimum is defined to be the MCMC

sampling point with lowest χ2. This is due to the tools used to assess the contribution of

the LHC-era constraints not having an interface with any of the available minimization

routines.

P-Values

Using the χ2 breakdown it is then possible to determine an effective p-value for the best

fit point, and hence the lower limit of the fit of the model to current data.

The p-value for a chi-squared value of χ2 with n degrees of freedom is calculated as,

Dr

(
χ2
)
=
γ
(
1
2
n, 1

2
χ2
)

Γ
(
1
2
n
) , (5.6)

where γ(a, x) is the incomplete gamma function and Γ(x) is the gamma function[18].

While the total χ2 is easily calculated, due to the nature of some of the constraints the

number of degrees of freedom, n, is not necessarily well known. In a simple case n is

counted as

n = nC − nI , (5.7)

where nc is the number of constraints that produce a non-zero contribution to the total

χ2 at the point in question, and nI is the number of inputs to the model. Some of the

constraints implemented have non-zero values everywhere due to their asymptotic nature,

for instance the χ2 function approximations described in Section 5.3.1, . However, for

some sets of input values the contribution to the total χ2 is infinitesimally small and

effectively flat for the neighborhood of the point.

For all other observables with non-asymptotic χ2 functions, i.e. those given a Gaussian-

like distribution (Table 5.2), the χ2 calculation described in equation (5.3), when imple-

mented programmatically, is unlikely to produce a χ2-value of exactly zero due to the

floating point representations used in the calculation.
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Increasing the number of degrees of freedom for small or negligible increases in the total

χ2 causes a fall in the p-value. Hence, it is possible to arbitrarily lower the p-value of

any point simply by increasing the list of observables that are used to calculate the χ2.

It therefore becomes necessary to impose a lower bound on the contribution to the χ2

arising from a constraint for it to be included in the counting of nC and hence the number

of degrees of freedom. In this case this lower bound is chosen to be χ2(q) > 0.1 as in [33,

34, 32, 35].

5.2 Before the LHC

While the LHC has and will continue to significantly increase our sensitivity and ability to

directly probe areas of supersymmetric parameter space, the existing constraints coming

from searches for BSM physics can be applied to the parameter space of the models

considered. This also allows a benchmark to be formed to assess the impact of LHC era

searches for BSM physics.

Our full pre-LHC χ2 function is constructed of several terms,

χ2 =
N∑

i

(Ci − Pi)
2

σ (Ci)
2 + σ (Pi)

2

+
M∑

i

(
f obs
SMi

− fSUSY
SMi

)2

σ (fSMi
)2

+χ2(SUSY search limits)

+χ2
LEP

(
mh0

)
. (5.8)

The first two terms have been discussed in Sections sections 5.1.1 and 5.1.2, respectively.

The details of the measurements comprising the first term are given in Section 5.2.1. The

final two terms are discussed in Sections 5.2.2 and 5.2.3 respectively.
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5.2.1 Electroweak Precision Observables and B-Physics Observ-

ables

The precision to which the electroweak scale observables have been measured, for instance

Flavour Changing Neutral Currents (FCNCs), and the degree to which they agree with

the predictions of the SM allow constraints to be placed on the parameter space of any

BSM theory. These are included through the first term of the χ2 function described

in equation (5.3). A listing of these observables and their values, along with other

observables, is given in Table 5.2

5.2.2 Tevatron direct Supersymmetry searches

The direct searches for SUSY carried out at the Tevatron [13, 12] provided early lower

bounds on the lightest of the sparticle masses,

min
(
mχ̃±

)
> 103.0GeV/c2

min
(
mℓ̃

)
> 90.0GeV/c2

min
(
mν̃

)
> 90.0GeV/c2

min
(
mq̃

)
> 90.0GeV/c2

mχ̃0
1
> 50.0GeV/c2 (5.9)

where mχ̃± , mℓ̃ , mν̃ and mq̃ are the masses of the charginos, sleptons, sneutrinos and

squarks respectively.

Each of these is treated as a one-sided Gaussian lower limit with σ = 1GeV. That is, for

each point, if the relevant particle falls below this lower limit it takes a contribution

χ2 = G(m|limit, 1.0GeV) (5.10)

Each point is checked for consistency with these limits and a term appears in the χ2



CHAPTER 5. CONSTRAINING SUSY 105

Observable Source Constraint

mt [GeV] [73] 173.2± 0.90
∆αhad(Z) [50] 0.02749± 0.00010
mZ [GeV] [4] 91.1875± 0.0021

ΓZ [GeV] [76]/[4] 2.4952± 0.0023± 0.001SUSY

σ0
had [nb] [76]/[4] 41.540± 0.037
Rl [76]/[4] 20.767± 0.025

Afb(ℓ) [76]/[4] 0.01714± 0.00095
Aℓ(Pτ ) [76]/[4] 0.1465± 0.0032
Rb [76]/[4] 0.21629± 0.00066
Rc [76]/[4] 0.1721± 0.0030

Afb(b) [76]/[4] 0.0992± 0.0016
Afb(c) [76]/[4] 0.0707± 0.0035
Ab [76]/[4] 0.923± 0.020
Ac [76]/[4] 0.670± 0.027

Aℓ(SLD) [76]/[4] 0.1513± 0.0021

sin2 θℓw(Qfb) [76]/[4] 0.2324± 0.0012
mW [GeV] [76]/[4] 80.399± 0.023± 0.010SUSY

aEXP
µ − aSMµ [100]/[26, 50] (30.2± 8.8± 2.0SUSY)× 10−10

mh0 [GeV] [65]/[24, 105] > 114.4[±1.5SUSY]

R(BR(b → sγ)) [48]/[23] 1.117± 0.076EXP

±0.082SM ± 0.050SUSY

BR
(
B0

s → µµ
)

[80]/[11, 108, 9, 45] LHCb, CMS, ATLAS, CDF

R(BR(B → τν)) [80]/[23] 1.43± 0.43EXP+TH

BR
(
B0

d → µµ
)

[80]/[23] < 4.6[±0.01SUSY]× 10−9

R(BR(B → Xsℓℓ)) [28]/[23] 0.99± 0.32
R(BR(K → µν)) [80]/[19] 1.008± 0.014EXP+TH

R(BR(K → πνν )) [36]/[22] < 4.5

R
(
∆MB0

s

)
[36] /[29, 88] 0.97± 0.01EXP ± 0.27SM

R
(
∆MB0

s

)
/R
(
∆MB0

d

)
[80]/[23, 29, 88] 1.00± 0.01EXP ± 0.13SM

R(∆ǫK) [36] /[29, 88] 1.08± 0.14EXP+TH

Ωch
2 [25]/[86] 0.1120± 0.0056± 0.012SUSY

σSI
p [20] (mχ̃0

1
, σSI

p ) plane

jets + Emiss
T [7] (m0,m1/2) plane

H/A,H± [42] (mA, tanβ) plane

Table 5.2: List of experimental constraints used in this work, including experimental and
(where applicable) theoretical errors. The theoretical uncertainties in the interpretations
of one-sided experimental limits are indicated by [...]. All constraints excluding the
bottom three marked with “plane” in the final column are implemented as described in
equation (5.3) note: R(x) is used to denote xEXP/xSM
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function to represent this,

χ2(SUSY search limits) (5.11)

5.2.3 LEP Higgs searches

Direct searches for the light neutral Higgs boson from LEP [24, 105] already impose

strong limits on constrained minimal SUSY models, requiring for cMSSM-like models

that

mh0 > 114.4GeV/c2 at 95% CL. (5.12)

In other models in the MSSM this bound can be significantly lower due to more Higgs

decay modes being available or reduced Higgs di-boson couplings [105], however models

with these properties are not considered here.

The contribution to the χ2 function can then be reconstructed from the χ2 distribution of

the measurement given in [24], and represented in the global χ2 function by the term

χ2
LEP

(
mh0

)
(5.13)

5.2.4 Pre-lhc state of models

The global χ2 function, equation (5.8), is applied, per point, to the parameter space scan

of the models discussed in Section 2.4. In all presented parameter space plots, while a

full scan is carried out, a global cut of ∆χ2 < 45 with respect to the minimum is applied

to the sample to allow for efficient processing. The regions that have been excluded by

this cut are coloured white in the figures. Also it should be noted that the final ∆χ2 bin

is inclusive 9 ≤ ∆χ2 ≤ 45.

In both models considered, the NUHM1 and the cMSSM, the χ2 function is steep near

the global minimum. Figure 5.1 shows the
(
m0,m1/2

)
parameter-space for both models,
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(a) cMSSM
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(b) NUHM1

Figure 5.1: The 2-D χ2 parameter space for
(
m0,m1/2

)
for the (a) cMSSM and (b)

NUHM1 in the pre-LHC regime

with the color scale denoting ∆χ2 with respect to the minimum, and demonstrates the

strong preference of these models for lower mass scales. In particular in the case of

the NUHM1 (Figure 5.1b) m0 is near to the lowest allowed value while maintaining a

neutralino LSP. The strong preference for low masses is mostly driven by the
(
gµ − 2

)

constraint which has a functional form[114],

(
gµ − 2

)
∼ tan β

M2
SUSY

. (5.14)

where M2
SUSY is the mass scale of the lightest stop.

As the model moves to higher masses, SUSY begins to decouple and the value of
(
gµ − 2

)

is returned to the SM value which has a 3σ deviation from the experimental value (see

Table 5.2.

In the case of the NUHM1 there is a marginally deeper minimum, due to the ability

to tune the sparticle spectrum further through the extra free parameter mHu,d
. If one

were to artificially remove points from the NUHM1 sample with χ2
NUHM1 < min(χ2

CMSSM)

the shape and approximate extent in
(
m0,m1/2

)
of the cMSSM 68% CL and 95% CL
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(b) NUHM1

Figure 5.2: The 2-D χ2 parameter space for (m0, tan β) for the (a) cMSSM and (b)
NUHM1 in the pre-LHC regime

contours would be recovered[34].

An important feature evident in Figure 5.1 is the disfavored but present fixed m1/2 ∼
100GeV line. This is what is known as the light higgs funnel, where the mh0 ≃ 2×mχ̃0

1

and the resulting rapid annihilation is what allows this region of the model to satisfy

the constraint on the relic abundance of dark matter, Ωch
2
c[55]. In the NUHM1 a small

region of this enters into the 95% CL region between 300 . m0 . 400GeV.

Figure 5.2 and Figure 5.3 show the (m0, tan β) and
(
tan β,m1/2

)
planes respectively. In

both the cMSSM and NUHM1 we see that at higher values of tan β (≥ 40) higher masses

start to become allowed, though still outside the 95% CL region. This is, again, due

to the impact of
(
gµ − 2

)
, equation (5.14), where significant increases in tan β can be

accounted for by increases in the mass scale.

In the NUHM1 access to lower values of m0 is present due to the decoupling of the

non-universal mass parameters from m0 . For a fixed value of tan β in the NUHM1 the

value of m0 can be reduced while increasing mH1,2 effectively keeping MSUSY constant.

This extra freedom only applies to m0 as evidenced by the near identical shapes of the

68% CL and 95% CL contours in Figure 5.3a and Figure 5.3b.
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Figure 5.3: The 2-D χ2 parameter space for
(
tan β,m1/2

)
for the (a) cMSSM and (b)

NUHM1 in the pre-LHC regime

The low mass-scales preferred in the pre-LHC era are a large part of what led to the

cMSSM model being selected as the benchmark model for direct searches for SUSY (e.g.

similar to those presented in Chapter 4). A combination of low-mass and a stable LSP

leads to a strong Emiss
T signal, and the model provides a sufficiently broad parameter

space to include a wide range of BSM signals.

Figure 5.4 shows the
(
mA, tan β

)
parameter spaces for both models. The main difference

between the two models, is the preference for higher masses in the cMSSM. Again, this

comes from being able to adjust the extra mass parameter, mH1,2 , in the NUHM1.

Figure 5.5 shows the
(
mχ̃0

1
, σSI

p

)
parameter space. The apparent smearing here comes

from the error on the calculation of σSI
p . For a fixed set of inputs

{
m0,m1/2, A0, tan β

}

σSI
p and σ

(
σSI
p

)
are calculated, this is covered in more detail in Section 5.3.3. However, for

any value of σ
(
σSI
p

)
of similar order to σSI

p one should expect a strong visible downward

smearing due to the log-scale.

Also present in Figure 5.5b is the light higgs funnel at mχ̃0
1
∼ 60GeV contained within

an island in the 95% CL region.
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Figure 5.4: The 2-D χ2 parameter space for
(
mA, tan β

)
for the (a) cMSSM and (b)

NUHM1 in the pre-LHC regime
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Figure 5.5: The 2-D χ2 parameter space for
(
mχ̃0

1
, σSI

p

)
for the (a) cMSSM and (b)

NUHM1 in the pre-LHC regime

In summary, before the LHC era, fits in both the cMSSM and NUHM1 demonstrate a

preference for low mass scales, mostly driven by the
(
gµ − 2

)
constraint. Both models
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have well defined 68% CL and 95% CL regions and steep minima. They provide good

discovery prospects for direct Emiss
T direct searches, as well as direct higgs searches (e.g.

via decays H → ττ ). At this stage there is little to no impact on the parameter space

from B-physics constraints, for example BR
(
B0

s → µµ
)
, nor from precision electroweak

measurements. A break down of the values of the minima and the main contributions

can be found in Table 5.3 and Table 5.4 respectively, and these will be discussed in more

detail in Section 5.4

5.3 Constraints from the LHC era

The direct searches for SUSY carried out the LHC, such as those described in Chapter 4,

significantly increase our reach into the mass scale parameters of the models scanned. Not

only this, but the combination of precision and luminosity at the LHC has enabled the

probing of the rate of rare decay processes to an order of magnitude more than previously

possible, the constraints from which impact the other parameters of the models.

It is possible to modify the χ2 function described in equation (5.8) to include terms

describing the impact of the various searches carried out thus far;
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χ2 =
N∑

i

(Ci − Pi)
2

σ (Ci)
2 + σ (Pi)

2

+
M∑

i

(
f obs
SMi

− fSUSY
SMi

)2

σ (fSMi
)2

+χ2(SUSY search limits)

+χ2
LEP

(
mh0

)

+χ2(Direct Searches) (5.15)

+χ2
(
BR
(
B0

s → µµ
))

(5.16)

+χ2(H → ττ ) (5.17)

+χ2
(
G
(
mh0

))
(5.18)

+χ2
(
mχ̃0

1
, σSI

p

)
. (5.19)

The impact of direct searches performed at CMS and ATLAS4 is contained in the term

5.15 and is described in detail in Section 5.3.1. The combined results of searches for the

rare decay B0
s → µµ are described in the 5.16 term, and the details on the combination

as well as the χ2 function are given in Section 5.3.2. The impact of searches for the

decay of heavy Higgs particles through the process H → ττ , at CMS, are discussed in

Section 5.3.2 and included in the term 5.17. Also included is the impact of the reported

observation of an SM-like Higgs boson with mh0 ∼ 126GeV discussed in Section 5.3.2 and

described by the term 5.18. Finally term 5.19 is inserted to take account of the impact

of direct searches for dark matter which put constraints on the mass of the LSP as well

as its scattering cross-section with protons. This term is detailed in Section 5.3.3.

5.3.1 Direct searches at the LHC

Direct searches, such as the one discussed in Chapter 4, have the greatest impact on the

mass scale parameters of a model. In the case of the search being a combined Emiss
T and

leptonic search a degree of sensitivity to the value of tan β is introduced to the limit.

4In the analysis presented here a single result from ATLAS is considered
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However, for Emiss
T only searches the dependence on tan β is negligible [84].

Multiple methods can be used to construct an approximation of the likelihood function

reported by an experiment. The choice of these methods is governed by the amount of

information provided by the authors.

In the case of the authors providing a single exclusion contour in the
(
m0,m1/2

)
plane

and reporting the value of their expected and observed number of events, an attempt is

made to reconstruct the likelihood function beyond the range of the reported contour.

This approach follows [111] in which an estimate is made of the required integrated

luminosity, L, for discovery of sparticles of varying masses. The relationship, determined

empirically, is

M ∝ L1/4, (5.20)

where M denotes a radial parameter formed of the squark and gluino masses e.g. M2 ∼
m2

0 +m2
1/2. This implies for radial lines in the m0 ,m1/2 plane the effective event rate

scales as M−4. This relationship means it is possible to estimate the effective number

of events for the scanned points in the
(
m0,m1/2

)
plane and, using the reported number

of events, assign a χ2 penalty. It is also possible to take account of any excess observed,

i.e. an observation for which the SM should receive a penalty. A second term in the χ2

function function is therefore provided to allow for a χ2 penalty at large masses when

SUSY decouples,

χ2 =

(
MC

Mpoint

)4

,No excess

χ2 =χ2
∞

∣∣∣∣
MC

Mpoint

− 1

∣∣∣∣
4

,Excess (5.21)

whereM2
point = m2

0+m
2
1/2 andMC is chosen to ensure the χ2 penalty at the experimental

contour corresponds to the two-dimensional χ2 value for the percentage Confidence Level

(CL) exclusion at the contour and χ2
∞ is the χ2 penalty associated with the excess

observed (if any).
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Figure 5.6: An illustrative plot of a variably binned grid of event numbers in the(
m0,m1/2

)
plane used to partially reconstruct the likelihood[6]

When multiple contours are provided, for example the observed 95% CL and 68% CL,

it is possible to improve the approximation by perofmring a fit for the exponent in

equation (5.21).

Previously other results [6] have provided a grid of effective event numbers for the sen-

sitive regions in the
(
m0,m1/2

)
plane. An illustrative example of such a grid is given in

Figure 5.6. In this case a contour is constructed spanning the outer edge of the gridded

region. Any point lying on the outside of this region is handled by the method described

above using the contour inscribing the gridded region. Any point lying in the grid has

an effective event number calculated by interpolating between the nearest three grid

entries.

In most cases results are published with several limiting constraints, beyond the amount

of data provided, such as providing exclusion contours in the context of only the cMSSM
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where A0 = 0 and tan β = 10 and where a limited range of m0 and m1/2 values are

used. In these cases it is important to complete steps to validate the insensitivity of these

results to A0 and tan β as well as their relevance to the NUHM1. Also, in the cases of

results presented in the
(
m0,m1/2

)
plane it is common for the exclusions contour(s) to

extend only to some value5 of m0min > 0, and so it is necessary to validate the behavior of

these contours for lower values of m0 that may be accessible in the NUHM1. To achieve

these validation steps a generic detector simulation, Delphes [97], is used and loaded

with a “card” that provides performance similar to either CMS or ATLAS. This is then

used in general to verify the M−4 scaling law used (see equation (5.21)), and specifically

to recreate the CL values for each of the contours provided. Figure 5.7 shows the results

of this validation procedure for the M−4 scaling law. Along side this simulations are

run to verify that the results display insensitivity to A0 and tan β as well as test the

sensitivity of the results to the non-universality parameter in the NUHM1. The searches

implemented here demonstrate insensitivity to the non-universality parameter as well as

A0 and tan β [35].

Delphes simulations can further be made use of to extend the range in m0 for exclusion

contours provided in the cMSSM such that they can be applied for the lower values

accessible in the NUHM1. In all cases tested so far the behavior at lowm0 is independent

of the value of m1/2 .

Here the ATLAS jets + Emiss
T search using 5fb−1 of data at 7TeV is implemented [8].

5.3.2 Other searches at the LHC

Other searches for BSM physics have been performed at the LHC. These include searches

by the dedicated B-physics experiment LHCb, constraints on B0
s → µµ from multiple

experiments and both searches for heavy Higgs and for the light Higgs from CMS and

ATLAS. For each of these a term can be constructed to add to the global χ2 function in

conjunction with the direct searches described above.

5The value at which the neutralino is no longer the LSP, see Section 2.4.1
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Figure 5.7: Confidence levels for a selection of cMSSM points with tan β = 10, A0 = 0
with varying values of R ≡ M/M0, where M0 is the value of M at the point on the
95% CL exclusion line with the same ratio of m0/m1/2. The red squares, blue circles
and green triangles are taken from rays in the

(
m0,m1/2

)
with m0/m1/2 = 1/3, 1, 3

respectively. The solid line is the % CL value calculated assuming that the number of
signal events scale as M−4[35]
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CMS and ATLAS: B0
s
→ µµ

The decay B0
s → µµ is a particularly rare decay for which the branching ratio predicted

in the SM is well known[37]. Any deviation from this value would indicate the presence

of interference from diagrams originating from non-SM particles. In the case of SUSY the

diagrams in Figure 5.8 contribute, indicating that BR
(
B0

s → µµ
)
is particularly sensitive

to the presence of charged and neutral Higgs particles.

While CMS is not designed as a B-physics specific experiment there are several design

and operational aspects that allow a competitive measurement of BR
(
B0

s → µµ
)
. These

include a high tracking resolution, the hermeticitie of the detector itself, and the ability

to reconstruct and match tracks to a large number of primary vertexes. This last point

is particularly important as the offline tagging of jets with displaced secondary vertexes

allows discrimination between heavy and light flavour jets, and the ability to deal with

large number of primary vertexes enables CMS to cope with pile-up effects and thus

achieve a high integrated luminosity.

The most recent of these results [108] reports an upper limit of BR
(
B0

s → µµ
)
< 7.7×10−9

at 95% CL

The ATLAS experiment also released results of a search for the B0
s → µµ decay[9] quoting

their limits as BR
(
B0

s → µµ
)
< 2.2(1.9)× 10−8 at 95% CL ( 90% CL).

Finally, the CDF experiment also publish searches for B0
s → µµ, citing a value BR

(
B0

s → µµ
)
<

3.1(1.0)× 10−8 at 95% CL ( 90% CL)[45].

LHCb: B0
s
→ µµ

The LHCb experiment recently published the first evidence for the B0
s → µµ decay and

consequently the first measurement of the branching ratio BR
(
B0

s → µµ
)
[11]. They

report an excess of events in the B0
s search window with a significance of 3.5σ and

subsequently perform a fit producing a result BR
(
B0

s → µµ
)
=
(
3.2+1.5

−1.2

)
× 10−9. This is

consistent with the SM expectation of (3.23± 0.27)× 10−9 [37].
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Combination: B0
s
→ µµ

Making use of the signal and background expectations provided in [11], [108], [9], and

[45] toy experiments were generated to recreate the quoted measurement and constraints

respectively. The χ2 functions derived from this method can then be combined and

used to estimate the impact and behavior of the combination of these constraints for

any value of BR
(
B0

s → µµ
)
. Again this gets added to the global χ2 function as a term

denoted

χ2 = χ2
(
BR
(
B0

s → µµ
))

(5.22)

The probability distribution and log-likelihood function for this combination can be seen

in Figure 5.9.

There is an important distinction between the value of BR
(
B0

s → µµ
)
measured by ex-

periment and that calculated for the SM by theoretical means. In the case of experiment,

the Time Averaged (TA) value is measured, denoted BRSM,TA, which is not equal to the

theoretically calculated value BRSM,TH due to the difference in lifetimes between the

heavier and lighter B0
s mesons. We can translate between BRSM,TA and BRSM,TH using

the relationship[51]

BR
(
B0

s → µµ
)
SM,TH

=
1− y2s

1 +A∆Γys
× BR

(
B0

s → µµ
)
TA

(5.23)

where ∆Γ ≡ Γ
(s)
L − Γ

(s)
H ; Γ is the decay width and L and H denote the light and heavy

mass eigenstates of the B0
s ; ys ≡ ∆Γs

2Γs
and Γs is the average decay width of the two mass

eigenstates and A∆Γ ≡ RH−RL

RH+RL
where the R values are decay coefficients for the two mass

eigenstates. In the SM A∆Γ = 1 and ys = 0.088± 0.014.

Given BR
(
B0

s → µµ
)
SM,TH

= (3.2± 0.2)× 10−9 we have,

BR
(
B0

s → µµ
)
SM,TA

=
BR
(
B0

s → µµ
)
SM,TH

1− ys
= (3.5± 0.2)× 10−9 (5.24)

Using this translation we can then accurately compare calculated ratios with the SM
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value and the experimental results.

CMS: H → ττ

Searches for a heavy Higgs boson have been carried out at CMS[42] and ATLAS[10]. For

the most recent results the search from CMS appears to have the higher degree of sensi-

tivity (see [42] Figure 4 and [10] Figure 4(d)), and so is selected to be the representative

constraint applied to the parameter spaces.

Results for heavy Higgs searches are usually presented in two planes, a single contour in

the
(
mA, tan β

)
plane and multiple contours in the

(
mH, σ × BR

)
plane. The scan used

does not include the value of (σ × BR) for each point, however the relationship

(σ × BR) ∝ tan2 β, (5.25)

allows the translation of the parameter of the likelihood function into the
(
mA, tan β

)

plane. This relationship has been checked by evaluating σ × BR for a representative

grid of points6 in the models considered by using the SM result for σ
(
bb → HSM

)
[75]

modified by the effective couplings calculated in FeynHiggs which are then also used to

calculate BR(H → ττ ) (including a factor two to take into account the production of the

CP-even H and the CP-odd A boson as these have approximately the same production

cross-section and decay widths). On top of this it should be noted that the region in

which this approximation begins to break down, at higher value of mA and tan β, is out

of the range of the impact of the search considered here[34] hence this approximation is

valid and verified for all regions important to the analysis presented here.

Assuming the χ2 function takes the form

χ2 = A(σ × BR)p(mH) (5.26)

where p
(
mH

)
is a function ofmH where each value is determined by fitting equation (5.26)

6Comparing Figure 3 in [42] with the pre-LHC
(
mA, tanβ

)
plane, Figure 5.4, it is apparent that the

region of highest impact is for mA ∼ 400 and large tanβ, it is for this region that a grid of points were
evaluated
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through the contours provided in
(
mH, σ × BR

)
space for a given fixed mH, and A is

chosen to normalize the function to the χ2 value associated with the CL value at each

exclusion curve provided.

Using equation (5.25) we can replace (σ × BR) in equation (5.26) giving

χ2 = χ2
contour

(
tan2 β

tan2 βcontour

)p(mH)
(5.27)

where A has been replaced with χ2
contour to make the χ2 boundary condition on the single(

mA, tan β
)
plane more clear.

CMS: SM-like Higgs search

In November 2012 both the CMS and ATLAS collaborations reported observations consis-

tent with a SM-like Higgs boson with a mass of 126 GeV/c2. As discussed in Section 2.2

minimal models of SUSY can support a light SM like Higgs (h0) in the mass range

85 < mh0 < 135GeV/c2 and so an observation of mh0 = 125GeV/c2 is entirely consistent.

However, the nature of the measurement may significantly constrain the viable regions

of parameter space for the models considered.

This measurement can be accommodated in the global χ2 function with a Gaussian term

G(µ, σ),

χ2 = G
(
µ = 125, σexp = 1.0GeV, σtheo = 1.5

)
(5.28)

5.3.3 Dark Matter

As discussed in Section 2.2 one of the benefits of R-parity conserving SUSY is that it

provides a natural dark matter candidate in the form of a stable LSP, the neutralino

χ̃0
1. Both direct constraints on the mass of the neutralino and its interactions as well as

cosmological constraints can be placed on the parameter space of models of supersym-

metry.
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Analysis of the Cosmic Microwave Background (CMB), such as in [113], yields mea-

surements of the parameters of a Λ CDM (LCDM) model of the universe [113]. These

parameters include Ωch
2, the relic density of cold dark matter in the universe, which

can be calculated for each model and added to the global function as a term in equa-

tion (5.3).

Direct searches for DM interactions provide constraints parameterized by the mass of the

LSP (mχ̃0
1
) and the spin-independent scattering cross-section of protons with the LSP

(σSI
p ). The current most sensitive of these comes from the Xenon experiment [21]. These

can be added to the global χ2 function via a term,

χ2
σSI
p
= χ2

(
mχ̃0

1
, σSI

p

)
, (5.29)

Assuming that a search produces an observation of nobs events, with an expectation of

µ±σ, it is possible to construct a Gaussian likelihood L(µ′ ± σ′) using a CLs calculator
7

and therefore calculate the 90% CL upper limit on the number of events, np=0.9.

The χ2 value for any particular point can then be calculated by finding the value of σSI
p ,

corresponding to a particular mχ̃0
1
, of the point, for which the measurement reports an

exclusion of (p = 0.9). Then assuming that,

npoint

np=0.9

=
σp
point

σp
pi=0.9

, (5.30)

the number of events expected at the point, npoint, can be calculated and the χ2 calculated

in the regular fashion,

χ2
σSI
p
=

(
npoint − µ′

σ′

)2

(5.31)

There is some uncertainty in the calculation of σSI
p due to uncertainty in the value of

the π − N σ term. In this analysis a value of ΣπN = 50MeV is used to account for the

case where 〈N | ss̄ |N〉 = 0 and hence ΣπN = σ0 ∼ 30MeV while also allowing for higher

7Implemented in the previously mentioned Delphes framework
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values that other analyses report[98].

In this case the results implemented are from 225 active days[21], where the collaboration

report an observation of nobs = 2 events where they expected nexp = 1.0 ± 0.2. They

report a 90% CL upper limit of σSI
p < 2 × 10−45cm2 for mχ̃0

1
= 55GeV, as well as

providing a 90% CL contour in
(
mχ̃0

1
, σSI

p

)
parameter space. Using the CLs calculator a

90% CL upper limit on nobs < 5.1 is calculated, corresponding to a Gaussian distribution

G(µ = 1.0, σ = 2.7) where µ = 1 is the mean excess (nobs − nexp) and σ = 2.7 is chosen

to recreate the 90% CL upper limit. These values are then used in equation (5.31) to

calculate a χ2 punishment per point. However, for any particular point in the scan, the

value of σSI
p is allowed to float within a Gaussian defined by the calculated value of σSI

p

and σ(σSI
p ), that is the uncertainty on σSI

p coming from the calculation of σSI
p using ΣπN

and translating the uncertainties through.

As in the case of the direct searches for SUSY the results presented for direct DM

searches make some model specific assumptions, i.e. that the local DM density ρ(DM) ∼
0.3GeV/cm3 as well as model specific assumptions about the DM velocity distributions.

To account for this a fractional uncertainty on σSI
p of

√
2 is included, though the effect is

negligible[35].
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Figure 5.8: Examples of the (a), (c) box and (b), (d) electroweak penguin diagrams for
the SM and SUSY respectively, that contribute to BR

(
B0

s → µµ
)
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(
B0

s → µµ
)
from ATLAS, CDF, CMS,

and LHCb
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χ2/nd P (χ2, nd) m0 m1/2 A0 tan β mH1,2

cMSSM pre-LHC 21.9/20 0.35 75.93 350.53 84.67 11.80 N/A
cMSSM post-LHC 32.8/23 0.08 300.53 905.00 -1324 16.26 N/A
NUHM1 pre-LHC 19.9/18 0.34 130.37 301.09 -1176 9.50 -9.843×105

NUHM1 post-LHC 31.3/22 0.09 237.47 968.81 -1859 15.65 -6.5×106

Table 5.3: Listing of the best fit points for the cMSSM and NUHM1 models before and
after applying LHC era constraints

cMSSM
pre-LHC

cMSSM
post-LHC

NUHM1
pre-LHC

NUHM1
pre-LHC

R(BR(b → sγ)) 1.19 1.19 0.21 0.18
R(BR(B → τν)) 1.12 1.03 1.11 1.08
BR
(
B0

s → µµ
)

0 1.22 0 1.70

aEXP
µ − aSMµ 1.06 8.48 0.43 7.82
mW 0.47 1.50 0.34 1.54
Afb(b) 8.67 6.64 8.18 6.43
Aℓ(SLD) 2.20 3.51 2.47 3.68
σ0
had 2.32 2.50 2.37 2.50
Rl 0.92 1.09 1.04 1.12

Direct Searches - - 1.73 1.18
DM Searches - - 0.12 0.13

H → ττ - - 0.00 0.00

Table 5.4: Leading contributions to the χ2 at the best-fit points in the cMSSM and
NUHM1 before and after applying the LHC-era constraints

5.4 Impact on models from the LHC

It is useful to break down the impact of individual searches on the models as well as the

overall impact of the combined post-LHC χ2 function.

5.4.1 Parameter spaces

For each parameter space two sets of figures are shown in the subsequent sections. Firstly

a global ∆χ2 plot for each model is shown with the global minimum after application

of the LHC-era constraints marked with a star, and the ∆χ2 ≤ 2.3 and ∆χ2 ≤ 5.99
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Figure 5.10: The 2-D χ2 parameter space for
(
m0,m1/2

)
for the (a) cMSSM and (b)

NUHM1 in the post-LHC regime

contours shown in red and blue respectively. Secondly a comparison of the ∆χ2 = 2.3

and ∆χ2 = 5.99 contours between the pre-LHC and the post-LHC regimes is shown,

with the former lines dotted, and the latter solid. These serve to clarify the impact of

the LHC-era constraints.

(
m0,m1/2

)

In this plane we expect the main impact of the direct ATLAS jets + Emiss
T search to

be present. In both models we now see a rapid rise in χ2 for values of m1/2 < m1/2min
.

However the global behavior of the χ2 function is relatively flat, with 100 < m0 <

4000TeV and 500 < m1/2 < 2500GeV included within 95% CL in both models. Hence

it should be noted that the overall structure is more important than the specific best-fit

points.

Figure 5.10 shows the individual parameter spaces after application of the LHC-era

constraints, and Figure 5.11 compares the 68% CL and 95% CL contours for before

and after the application of the LHC-era constraints. In the cMSSM a bifurcation in

the 68% CL region is now evident. This bifurcation arises due to the impact of the
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Figure 5.11:
(
m0,m1/2

)
parameter space comparing pre-LHC (dotted) and post-LHC

(solid) 68% CL (red) and 95% CL (blue) regions for the (a) cMSSM and (b) NUHM1

dark matter relic density constraint. In the low mass island this is satisfied through τ̃ -χ̃0

co-annihilation, in the higher mass region,
(
m0,m1/2

)
∼ (1000, 1700GeV) the requisite

relic density is achieved through a rapid annihilation funnel where MA ∼ 2mχ̃0. The

bifurcation appears to a lesser extent in the NUHM1 because here the rapid annihilation

funnel can appear at lower m1/2 for the same m0 as in the cMSSM because MA can be

tuned with the non-universality parameter. This also gives rise to the greater extent of

the 68% CL contour in m0 in the NUHM1 with respect to the cMSSM.

It should be noted that small islands are present between the two larger 68% CL islands

in the cMSSM containing points with ∆χ2 < 2.3 which indicates that it may be possible

to reduce or even remove the visually bimodal nature of these contours with a more dense

sampling in this region.

In the NUHM1 the 68% CL region is contained in a single contour, and the 95% CL

region extends beyond the τ̃ -χ̃0 co-annihilation region, i.e. into very low m0 for high

m1/2 . In the cMSSM this region is excluded due to not having a neutralino LSP.

In the NUHM1 a neutralino LSP can be maintained, and the constraint on the relic

density can be satisfied through the combined effect of multiple neutralino and chargino
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Figure 5.12: The 2-D χ2 parameter space for (m0, tan β) for the (a) cMSSM and (b)
NUHM1 in the post-LHC regime

co-annihilation processes[35]. The existence of this region as being both valid by the

presence of a neutralino LSP as well as satisfying the relic density constraints has been

confirmed by testing a selection of the points with multiple public codes for dark matter

calculations8.

While in the cMSSM the 95% CL region appears to extend to higher m0 (as it did in

the pre-LHC results) this is due to the marginally higher minimum χ2, as the NUHM1

shows a near identically shape in high m0 χ2 variation but with respect to a different

minimum value.

The light higgs funnel is, while still disfavored, clearly present in the cMSSM for all

m0 > 700GeV, but is only visible in the NUHM1 for m0 > 3200GeV.

The impact of the direct searches is then to push the models to much higher values of

m1/2 for intermediate m0 (. 1500GeV), as shown in Table 5.3.
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Figure 5.13: The 2-D χ2 parameter space for
(
tan β,m1/2

)
for the (a) cMSSM and (b)

NUHM1 in the post-LHC regime

(m0, tanβ) and
(
tanβ,m1/2

)

These two planes, Figure 5.12 and Figure 5.13, show that the bifurcation in the cMSSM

is also present in tan β, though the separation is proportionately smaller with respect to

the scale of the variable. It is therefore expected that with dedicated sampling in the

intervening region (tan β ∼ 45) that this separation could be removed, though a bi-modal

behavior of the χ2 function would still be present.

The high m1/2 low m0 region in the NUHM1 can be identified as the separate but large

grouping of points in the 95% CL region for 5 < tan β < 30, again suggesting bimodal

behavior and therefore different processes satisfying the DM constraints.

Figure 5.13 shows the presence of the light higgs funnel in both models, importantly now

separate from the main mass of points, but these figures demonstrate the independence

of this funnel from tan β. This independence of both m0 and tan β explains why such a

funnel is not clearly evident in Figure 5.12.

Figure 5.12 demonstrates that if the models are constrained to m0 > 2000GeV then

8MicrOMEGAs, DarkSUSY, SuperIso, SSARD
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Figure 5.14:
(
tan β,m1/2

)
parameter space comparing pre-LHC (dotted) and post-LHC

(solid) 68% CL (red) and 95% CL (blue) regions for the (a) cMSSM and (b) NUHM1
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Figure 5.15: (m0, tan β) parameter space comparing pre-LHC (dotted) and post-LHC
(solid) 68% CL (red) and 95% CL (blue) regions for the (a) cMSSM and (b) NUHM1

correspondingly high tan β is required in range 45 < tan β < 55, with the χ2 rising

rapidly on the edges of this region.
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Figure 5.16: The 2-D χ2 parameter space for
(
mA, tan β

)
for the (a) cMSSM and (b)

NUHM1 in the post-LHC regime

(
mA, tanβ

)

In Figure 5.16 we expect to see combined impacts from the heavy higgs searches, con-

straints on BR
(
B0

s → µµ
)
, and the direct searches for SUSY. The direct searches for

SUSY being independent of tan β push the mass scale for MA up. For higher masses we

require a correspondingly higher value of tan β. The heavy higgs search from CMS rules

out regions of high tan β and low MA, though after the application of the direct search

constraints most of this parameter space is already disfavored and so these searches only

impact the edges of the contours. Finally the BR
(
B0

s → µµ
)
combination places upper

bounds on a combination of MA and tan β as evidenced by the cut off for high tan β and

high MA in both models where the 68% CL and 95% CL contours closely follow the

same line.

At 95% CL the cMSSM is comparatively quite restrictive, allowing 1000 < MA <

2000GeV, but the extra freedom of the NUHM1 allows for 400 < MA < 3500GeV.
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Figure 5.17:
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parameter space comparing pre-LHC (dotted) and post-LHC

(solid) 68% CL (red) and 95% CL (blue) regions for the (a) cMSSM and (b) NUHM1

(
mχ̃0

1
, σSI

p

)

In Figure 5.18 we expect to see the major changes with respect to the pre-LHC era,

i.e. the difference between contours in Figure 5.19, originating from a combination of

the direct searches and the Xenon direct dark matter searches. The direct searches,

by pushing the sparticles to higher masses in m1/2 directly raise the preferred masses

of the χ̃0
1 while also reducing the cross-section σSI

p . The Xenon constraint, while most

sensitive to neutralinos withmχ̃0
1
∼ 100GeV has an impact up tomχ̃0

1
< 1000GeV, though

the collaboration does not provide results beyond this, as such the displayed region is

truncated here.

In the cMSSM, Figure 5.18a, the light higgs funnel is visible for mχ̃0
1
∼ 60GeV where

the least disfavored region corresponds to the m0 ∼ 4000GeV region in the
(
m0,m1/2

)

plane. In both models we see a strong preference for σSI
p < 10−46cm2, though in the

NUHM1 for mχ̃0
1
∼ 1000GeV there is an upper region extending to σSI

p . 10−44cm2 with

the upper limit of this being consistent with the highest impact of the Xenon limit for

these values of mχ̃0
1
. It should also be noted that this light higgs funnel region continues

to exist up to high values of m0 where the conditions for EWSB break down. Noting
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Figure 5.18: The 2-D χ2 parameter space for
(
mχ̃0

1
, σSI

p

)
for the (a) cMSSM and (b)

NUHM1 in the post-LHC regime

that mh0 ≃ 121GeV in the funnel, this region is not strongly disfavored by the LHC

light higgs constraints, as such one expects this funnel to continue to be present in future

analyses.

The bifurcation noted in the cMSSM is not as strongly present replaced by a bimodality

in the 68% CL region, due to the log-binning of the plot.

5.4.2 Observables

The figures presented in this section are made up of two contours. One dashed, represent-

ing the global χ2 function without the LHC-era constraints, and one solid representing

the global χ2 function after the LHC constraints have been applied.

The bifurcation of the 68% CL region in the cMSSM is apparent in Figure 5.21, and

the bimodality is present in Figures figs. 5.22 to 5.24. For values such as mg̃ , which are

determined by m1/2 , the ∆χ2 in the region between the two focal points is sufficiently

large to mean there are no points within the 68% CL. Whereas, one can find points

in this intermediate region that are contained in the 68% CL contour for observables
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Figure 5.19:
(
mχ̃0

1
, σSI

p

)
parameter space comparing pre-LHC (dotted) and post-LHC

(solid) 68% CL (red) and 95% CL (blue) regions for the (a) cMSSM and (b) NUHM1

determined by m0 . This is because for all values of m0, up to the highest edge of the

upper 68% CL contour in Figure 5.10a, there exist points with ∆χ2 < 2.3.

As suggested it seems likely that dedicated sampling in this region could find points with

∆χ2 < 2.3 and hence restore the 68% CL region to a single contour. However these

figures also show the bimodality exists in both models, where there are two distinct

preferred regions: one low mass region where the global minimum resides, and a second

higher mass region where the ∆χ2 value declines. The separation of these two regions

of the χ2 function is mainly driven by the dark matter constraint and hence is more

strongly present in observables dependent on m1/2 as this input determines mχ̃0
1
.

mh0

In Figure 5.20, it is important to note that the ∆χ2 functions are generated without the

constraints on mh0 from LEP and the LHC experiments. This allows the assessment of a

models natural preference for the lightest higgs mass. The ∆χ2 functions after the LHC

constraints have been applied is shown with a red-band denoting the 1.5GeV theoretical
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Figure 5.20: The 1-D ∆χ2 functions for mh0 pre-LHC (dashed) and post-LHC (solid)
for (a) cMSSM and (b) NUHM1

uncertainty in the calculation of mh0 . The provisional measurement of 125 ± 1GeV

is shown with a green band, and the yellow region demarcates the LEP lower limit of

114.4GeV.

In the case of the NUHM1, Figure 5.20b, we see that the model tolerates a broad range

of mh0 for ∆χ2 < 4, where 90 < mh0 < 127GeV, before the LHC constraints are applied.

Though after the constraints, while the range has significantly tightened (110 < mh0 <

127GeV), the preferred value has dropped. There should not be too much significance

attached to this, as there are values with ∆χ2 < 0.5 in the range 113 < mh0 < 126GeV

due to the ∆χ2 function being relatively flat across large regions of parameter space.

In the cMSSM the preferred value begins around mh0 = 109GeV, and allows a much

narrower range 93 < mh0 < 116GeV than in the NUHM1. After the search exclusions

are applied a similar width band of 109 < mh0 < 126GeV centered aroundmh0 = 118GeV

is allowed at ∆χ2 < 4.

Both models show the ability to produce a light higgs with a mass consistent with the

LHC results with ∆χ2 < 2.
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Figure 5.21: 1-D ∆χ2 functions formg̃ , pre-LHC constraints (dashed lines) and post-LHC
constraints (solid lines) for (a) cMSSM and (b) NUHM1

mg̃

Figure 5.21 shows the one-dimensional ∆χ2 function for the gluino mass. For the cMSSM

and the NUHM1 in the pre-LHC regime, the preferred value of m1/2 is ∼ 300GeV and

corresponds to the favored value of mg̃ ∼ 700GeV. After the LHC constraints have been

applied and the bimodality emerges, the low mass global minimum is at mg̃ ∼ 2TeV,

with the higher mass secondary minimum at mg̃ ∼ 4TeV and mg̃ ∼ 5.5TeV in the

cMSSM and NUHM1 respectively. While the χ2 rises steeply after this second minimum

in the cMSSM, the NUHM1 tolerates mg̃ & 6TeV with ∆χ2 < 2. The steep rise in the χ2

in the cMSSM suggests the possibility of future tension in the model arising from direct

searches at higher center of mass energies and the direct dark matter searches. However

in the NUHM1 the extra freedom allowing the adjustment of MA allows regions which

maintain MA ∼ 2mχ̃0
1
and thereby remove the χ2 impact of the constraint on Ωch

2.

In both models there is a small region at mg̃ ∼ 400GeV where 5.99 < ∆χ2 < 9. This is

the remnants of the light higgs funnel, discussed earlier in Section 5.2.4, and is the only

region with mg̃ < 1TeV remaining where ∆χ2 < 9.
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Figure 5.22: 1-D ∆χ2 functions for mq̃R
, pre-LHC constraints (dashed lines) and post-

LHC constraints (solid lines) for (a) cMSSM and (b) NUHM1

mq̃
R

Figure 5.22 displays the 1D ∆χ2 function for the average mass of the super-partners

of the five lightest right handed quarks. In both models the preferred value before the

LHC constraints are applied is mq̃R
∼ 700GeV with the post-LHC global minimum

being mq̃R
∼ 2TeV, and the higher mass secondary minimum at mq̃R

∼ 5TeV and

mq̃R
∼ 4TeV in the NUHM1 and cMSSM respectively. In both models the χ2 rises

rapidly at mq̃R
∼ 5.5TeV, corresponding to the similar allowed range of m0 . 4TeV as

in Figure 5.1. All regions of the parameter space with mq̃R
< 1TeV are disfavored with

∆χ2 > 9.

mt̃
1

The ∆χ2 functions for the lightest of the two stop-quarks is shown in Figure 5.23. As

with the ∆χ2 function for mq̃R
both models have a similar preferred value, before the

LHC constraints are applied, of mt̃1
∼ 500GeV. Once the LHC constraints have been

applied the models show different preferred masses. The NUHM1’s global minimum
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Figure 5.23: 1-D ∆χ2 functions for mt̃1
, pre-LHC constraints (dashed lines) and post-

LHC constraints (solid lines) for (a) cMSSM and (b) NUHM1

is mt̃1
∼ 2TeV, whereas the cMSSM has a lower preferred value mt̃1

∼ 1TeV. The

NUHM1 and cMSSM have higher mass secondary minima of mt̃1
∼ 4TeV and mt̃1

∼
3TeV respectively. At ∆χ2 < 9 both models tolerate mt̃1

> 500GeV, with the NUHM1

having all points with ∆χ2 > 9 for mt̃1
> 4.8TeV and the similarly the cMSSM for

mt̃1
> 4.2TeV.

mτ̃
1

Figure 5.24 shows the ∆χ2 function for the τ̃ 1. In this observable, an almost direct

correspondence to the preferred and allowed ranges of m0 is present. The minima begin

at mτ̃ 1
∼ 150GeV for both models, with the lower mass global minima after the LHC

constraints atmτ̃ 1
∼ 400GeV and the secondary minima atmτ̃ 1

∼ 1TeV. In both models

mτ̃ 1
& 3TeV is disfavored with ∆χ2 > 9.
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Figure 5.24: 1-D ∆χ2 functions for mτ̃ 1
, pre-LHC constraints (dashed lines) and post-

LHC constraints (solid lines) for (a) cMSSM and (b) NUHM1

BR
(
B0

s
→ µµ

)

The one dimensional ∆χ2 for the value of BR
(
B0

s → µµ
)
as a fraction of the SM value

is shown in Figure 5.25. Both models, both before and after application of the LHC

constraints, prefer values of BR
(
B0

s → µµ
)
∼ 1×BR

(
B0

s → µµ
)SM

. The main impact of

the searches is to constrain the upper values allowed in the models. Before constraints are

applied, the NUHM1 has a very shallow minima, tolerating values of BR
(
B0

s → µµ
)
>

3 × BR
(
B0

s → µµ
)SM

for ∆χ2 < 2. Similarly the cMSSM allows for a more compressed

range, though allowing similar values at ∆χ2 < 5. After the application of the constraints

both models disfavor BR
(
B0

s → µµ
)
> 2.25 × BR

(
B0

s → µµ
)SM

at ∆χ2 > 9. There

remains no significant discriminating feature between the two models in this observable,

and both show a steep minimum around the SM value.
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Figure 5.25: 1-D ∆χ2 functions for BR
(
B0

s → µµ
)
, pre-LHC constraints (dashed lines)

and post-LHC constraints (solid lines) for (a) cMSSM and (b) NUHM1

5.5 Impact of LHC-era constraints

In the pre-LHC regime both models strongly prefer low masses, mostly driven by the(
gµ − 2

)
constraint. Though low values of tan β are preferred, there is a broad al-

lowed range of values. As a result the models favour squarks and gluinos with m ∼
700GeV.

The direct SUSY searches rule out a great deal of the low mass parameter spaces, forcing

the masses of both squarks and gluinos up above 1TeV in both models. The main culprit

of Emiss
T signatures that SUSY could produce, the neutralino, is also disfavored strongly

for masses mχ̃0
1
< 200GeV. There is current strong interest in compressed spectra and

third generation models within the experimental and theoretical communities9 with some

interest in the possibility of light stops. In both models stops with mt̃1
< 500GeV are

also strongly disfavored.

The Xenon constraints on the combination of
(
mχ̃0

1
, σSI

p

)
compounds the effect of the

direct SUSY searches by pushing the models to higher neutralino masses and lower cross-

9see the presentation of results in these models in Section 4.14.2



CHAPTER 5. CONSTRAINING SUSY 141

sections ruling out σSI
p > 2× 10−44(1× 10−45) in the NUHM1(cMSSM).

The combined effect of the direct searches for SUSY and DM is to strongly disfavour all

low mass regions other than a small region of the light higgs funnel which remains. As

the models are pushed to higher masses a bimodality forms caused by the necessity of

satisfying the constraint on Ωch
2. This bimodality is less obvious in the NUHM1 where

we have explicit control ofMA and so can maintain the rapid annihilation funnel through

a larger region of the
(
m0,m1/2

)
parameter space.

The heavy higgs searches serve to limit the maximum value of tan β that is reasonable for

a particular massMA, however a large portion of the parameter space that these searches

would impact is also excluded by the direct SUSY searches ruling out low masses. Again

due to the added freedom of mH1,2 in the NUHM1 these searches serve to rule out regions

where the decoupling would have allowed the NUHM1 to keep lower mA than allowed

in the cMSSM due to the direct SUSY searches.

While we have seen the first measurement of BR
(
B0

s → µµ
)
this largely serves to increase

the cost in χ2 for going to higher values of tan β without significantly impacting the

preferred region of parameter space, given that the preferred region has a value consistent

with the observation.

Interestingly, when looking at the models without the constraints on the Higgs mass,

Figure 5.20, it is clear that the models can be entirely consistent with the recent Higgs

search announcements, and in the case of the NUHM1 a secondary local minimum is

found at mh0 ≃ 125GeV. In the case of the cMSSM the impact of the other searches is

to push the preferred Higgs mass closer to mh0 = 125GeV.

In a more general sense the strongest impact of the searches of the LHC-era is to sig-

nificantly reduce the P-values associated with the best-fit points of each of the models,

Table 5.3. Using just the pre-LHC constraints, both models have P = 0.35 with well

defined minima. However in the post-LHC regime this falls to P ≃ 0.08 with the minima

being flat over large ranges of all input parameters. While, as discussed in Section 5.1.1

the frequentist interpretation does not support the statement that the model is excluded

at 92% CL, only that the model has P = 0.08. It should also be noted that as discussed

in Section 5.1.4 the specific value of P should not given undue weighting, only compar-

ative values of P in the same analysis where the same set of constraints have been used
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between models should be considered. As mentioned it is possible to drastically alter

the value of P by adding arbitrary constraints that the model may have zero sensitivity

to. However by adding these constraints into consideration the value of ndof is increased

with no corresponding change to χ2 thereby forcing P to decrease.

While there exists tension in these models, between for instance mh0 ,
(
gµ − 2

)
, and the

direct searches, it is clear that even at full design energy the LHC is unlikely to be able

to probe the outer extents of the current 95% CL regions in either model and therefore

is unlikely to further reduce the P-value to any great extent. The usefulness of these

models as benchmarks for future searches and analyses is therefore in question.
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Conclusion

This document has detailed a search for supersymmetry in all hadronic final states using

the kinematic variable αT with 4.98fb−1of data recorded by the CMS detector at center

of mass energy
√
s = 7TeV splitting the signal region by the scalar sum of the transverse

energy of jets and the number of jets identified as originating from a b-quark. A fit to

the SM background expectation was performed, and no significant excess was observed.

The results of this search have been presented in the context of the cMSSM where we

set A0 = 0 and tan β = 10 and find that at 95% CL m1/2 . 630GeV for low m0 and

m1/2 . 300GeV at high m0 are excluded. Also, the result have been shown in multiple

third-generation and compressed spectra simplified models. With squark pair production

1st and 2nd generation squarks are excluded for mq̃ < 750GeV for low mLSP, and bottom

squarks are excluded up to approximately 500GeV.

This analysis shows no apparent evidence of SUSY in the 7TeVdataset, however the

limits imposed do not significantly reduce the hopes of discovering SUSY with a Emiss
T

signature due to a large regions of parameter space with mLSP < 1TeV still being un-

constrained.

Following this an analysis of the parameter space of both the cMSSM and NUHM1 has

been presented. Both electroweak precision measurement and LHC-era direct searches

have been applied to the parameter spaces, with particular attention paid to the impact

of the LHC-era searches. While obviously the lack of a significant SUSY signal in the

143
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searches means that the fit probability of the models is significantly reduced (∼ 9% in

both models) the main result is the flattening of the likelihood and the emergence of a

bimodality. We see that in both models the main tension defining this bimodality comes

from the constraints on the relic dark matter abundance, combined with the higher mass

scales enforced by the direct searches. One would expect that further encroachment into

the lower mass regions of the parameter space to begin to remove the lower section of the

bimodality leaving only the heavy higgs rapid annihilation funnel region, and thereby

further flattening the likelihood. It should be noted that with sufficient further sampling

the obvious delineation of the two modes would likely disappear due to the flattening

of the global χ2 function. Given that the NUHM1 provides a region at low m0 not

accessible in the cMSSM, where multiple processes combine to satisfy the relic abundance

constraint, it would be prudent, though computationally complex, to investigate the

NUHM2. Here the decoupling ofmH1,2 allows for even greater control over the neutralino

masses (allowing us to exchange the bino-like neutralino LSP for a higgsino-like neutralino

LSP) and hence is likely to open up a much richer variation of phenomenology that

remaining consistent with other constraints.

In short, though there has been no direct evidence of SUSY-like BSM physics thus far,

and the impact of the LHC-era searches on models like the cMSSM and the NUHM1

have been significant, even these constrained sub-models of the MSSM still provide rich

enough phenomenology to allow for regions of parameter space that could be still com-

patible with current observations while remaining out of reach of the current generation

of searches.
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