
Chapter 1
An Introduction to Astrophysical Black Holes
and Their Dynamical Production

Luciano Rezzolla

Abstract Astrophysical black-hole candidates provide the most abundant, and
possibly the only, evidence of the existence of black holes in nature. These
lectures are aimed at providing a basic theoretical introduction to the mathematical
properties of astrophysical black holes and to the dynamical processes leading to
their formation. In particular, I will first concentrate on the process of gravitational
collapse as this will illustrate how an isolated black hole can be produced under
rather general physical conditions. Next, I will discuss how the properties of a black
hole can be investigated by studying the motion of test particles and the various
classes of orbits they follow. Finally, I will consider the process of formation of a
black hole from the merger of a binary system of black holes. In particular, I will
show that it is possible to predict the mass and spin of the final black hole simply in
terms of the properties of the two initial black holes.

1.1 Introduction

The investigation of the dynamical processes leading to the formation of an
astrophysical black hole has a long history and still represents one of the most
interesting and rich problems in general relativity. In this chapter I will present a
brief overview of this topic considering two rather difference processes, namely, the
gravitational collapse to a non-rotating self-gravitating object (either a dust cloud or
a star) and the merger of two black holes.

In the first part of this chapter I will show that gravitational collapse can, under
suitable conditions, be the inevitable end state of a self-gravitating object. Next,
I will illustrate the simplest and yet revealing model of gravitational collapse: the
Oppenheimer-Snyder collapse of a dust sphere to a black hole. Special attention will
be paid to the dynamics of trapped surfaces, such as apparent and event horizons.
I will then turn to the more realistic case of the gravitational collapse of a self-
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gravitating fluid sphere, exploiting all the insight gained with dust. Once the basic
features of the gravitational collapse have been discussed and the idea of black hole
introduced, I will briefly discuss how we can learn about the properties of black
holes, spherical and axisymmetric, considering the motion of test particles. The
second part of the chapter is instead dedicated to a rather difference route leading
to the formation of an isolated black hole: the merger of a binary of black holes. In
particular, I will show how it is possible to compute the mass and spin of the final
black hole simply in terms of an algebraic expression containing information on the
properties of the two initial black holes.

In the following I will use a spacelike signature .�;C;C;C/ and a system of
units in which c D G D Mˇ D 1 unless stated otherwise. Four-dimensional
covariant and partial derivatives will be indicated in general with r� and @�, while
vectors (either four or three-dimensional) will be marked with a boldface font.
Within the standard convention of a summation of repeated indices, Greek letters
will be taken to run from 0 to 3, while Latin indices run from 1 to 3.

A final word before starting is one of caution. It is quite obvious that the topics
potentially covered under such a title can be countless, but also that this would
not reflect what presented at the School. Hence, the ground covered in this chapter
is very limited and aimed at providing the most basic theoretical elements about
astrophysical black holes. Additional information on many of the topics covered
here can be found in [1–5].

1.2 Compact Stars and Black Holes

Within a realistic astrophysical context, any discussion concerning the gravitational
collapse to black holes would necessarily start from considering the existence of the
“progenitors”, i.e., of stars whose pressure, in the course of their evolution, would
fail to balance the gravitational attraction. However, I will not take this step here and,
rather, bypass the problem by assuming that it is possible to construct a spherical
stellar model compelled to collapse to a black hole.

The indication that this scenario is at least plausible if not realistic comes already
from considering the simplest possible example: a spherically-symmetric, uniform
density, perfect-fluid star. Before asking about the gravitational collapse and its
inevitability in this case, let us recall how to find the equations for a star made
by a perfect fluid described by a stress-energy tensor of the type

T�� D .e C p/u�u� C pg�� ; (1.1)

where e; u� and p are, respectively, the total mass-energy density, the fluid four-
velocity and the (isotropic) pressure. The conservation of energy-momentum tensor

r˛T˛ˇ D 0 ; (1.2)
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and of the baryon number density n WD �=m0

r˛.nu˛/ D 0 ; (1.3)

provides the hydrodynamic equations that the stellar configuration has to satisfy.
Here, m0 is the mass of the particles composing the fluid (assuming for simplicity
that there is of one kind of particles) and � the rest-mass density. In Eqs. (1.2)
and (1.3), the operator r represents the covariant derivative with respect to the
spherically symmetric line-element

ds2 D �e2˚dt2 C e2�dr2 C r2d˝2 ; (1.4)

where d˝2 D d�2Csin2 �d�2. Projecting now Eq. (1.2) in the direction orthogonal
to the fluid four-velocity through the projector operator

P˛ˇ D u˛uˇ C g˛ˇ : (1.5)

we obtain the general relativistic Euler equations

.e C p/a� D �P�
ˇ@ˇp ; (1.6)

where a� WD uˇrˇu� is the fluid four-acceleration. The similarity of Eq. (1.6) with
the corresponding Euler equations

�.@tv
i C vj@jv

i/ D �@ip � @i˚Newt ; (1.7)

for a fluid with three-velocity vi in a Newtonian gravitational potential ˚Newt is
rather transparent. Imposing the conditions of stationarity and spherical symmetry,
the only remaining non-trivial Euler equation is

.e C p/
d˚

dr
D �dp

dr
; (1.8)

where the metric potential ˚ is clearly related to the corresponding Newtonian
gravitational potential ˚Newt.

Next, we consider the Einstein field equations G˛ˇ D 8�T˛ˇ and introduce the
following parameterisation of the radial coefficient of the metric

grr WD e2� D 1

1 � 2m.r/=r
; (1.9)

so that

m.r/ D 1

2
r.1 � e�2�/ : (1.10)
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The non-zero components of the Einstein tensor are

G00 D e2˚

r
Œr.1 � e�2�/	0 ; (1.11)

Grr D �e2�

r
.1 � e�2�/C 2

r
˚ 0 ; (1.12)

G�� D r2e�2�
�
˚ 00 � .˚ 0/2 C ˚ 0

r
� ˚ 0�0 � �0

r

�
; (1.13)

G�� D G�� sin2 �; (1.14)

where the prime indicates the radial derivative. The Einstein equations become

dm.r/

dr
D 4�r2e ; (1.15)

dp

dr
D � .e C p/.m C 4�r3p/

r.r � 2m/
: (1.16)

Equations (1.8), (1.15), (1.16), supplemented by an equation of state relating, say,
p and �, are known as the Tolman, Oppenheimer and Volkoff (TOV) equations.
Solving the TOV equations requires, in general, a numerical integration; fortunately,
analytic expressions are available in the case of a spherically-symmetric star of
uniform density. The radius R of the star is defined as the locus where the pressure
vanishes: p.R/ D 0 whereas p.r/ 6D 0 for r < R i.e., in the interior of the
star. Recalling that Birkhoff’s theorem guarantees that the exterior solution is the
Schwarzschild solution [1, 2], one easily deduces that the metric components are
given by

grr D

8̂
<̂
ˆ̂:

�
1 � 2

r

4�r3

3
e0

��1
for r � R (interior),�

1 � 2M

r

��1
for r > R (Schwarzschild) ,

(1.17)

and

p�gtt D e˚ D

8̂
ˆ̂<
ˆ̂̂:

3

2

�
1 � 2M

R

�1=2
� 1

2

�
1 � 2Mr2

R3

�1=2
for r � R (interior),

�
1 � 2M

r

�1=2
for r > R (Schwarzschild).
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In the previous expressions, M is the “gravitational mass” of the star

M WD
Z R

0

4�r2e0dr D 4�

3
R3e0 ; (1.18)

so that the average energy density is

e0 D 3M

4�R3
: (1.19)

Needless to say, although the density is uniform within the star, the pressure is not
and is given by

p D p.r/ D e0

"
.1� 2Mr2=R3/

1=2 � .1 � 2M=R/1=2

3.1� 2M=R/1=2 � .1 � 2Mr2=R3/1=2

#
: (1.20)

For a given choice of M, the radius R of the star can be calculated explicitly from
the density e0 and the value of the pressure in the center of the star

pc WD p.r D 0/ D e0

"
1 � .1 � 2M=R/1=2

3.1 � 2M=R/1=2 � 1

#
; (1.21)

and by imposing the vanishing of the pressure at r D R

R D
vuut 3

8�e0

"
1 � .e0 C pc/

2

.e0 C 3pc/
2

#
: (1.22)

Overall, the uniform-density solution depends on a single parameter e0, but has
an important limit in the ratio M=R, which is also referred to as the compactness
of the star. In particular, Eq. (1.21) indicates that pc ! 1 for M=R ! 4=9; an
infinite pressures is therefore necessary to support a star with a radius R < 9=8RS,
where RS WD 2M is Schwarzschild radius. As a result, should a star reach such
compactness, its final fate can only be that of a black hole. This is sometimes
referred to as “Buchdal’s theorem” and applies also to more realistic equations of
state.

1.3 Oppenheimer-Snyder Collapse

So far we focused on stationary configurations but the gravitational collapse is
clearly a dynamical process involving considerable portions of spacetime. Also
in this case, it is useful to start studying a simplified scenario as the one offered



6 L. Rezzolla

by the collapse of a star made of uniform-density pressureless dust. This is also
known as the Oppenheimer-Snyder (OS) collapse [6]. In this case, in fact, the fluid
motion is particularly simple being that of collisionless particles having a highly
symmetric collective motion. In addition, the spherical symmetry (via Birkhoff’s
theorem) guarantees that the only portion of spacetime that is undergoing an
effective evolution is the interior of the star, the exterior always remaining that of a
Schwarzschild solution (albeit with a dynamical boundary).

Before looking at the details of the dynamics it is useful to consider the set
of equations, both Einstein’s and hydrodynamical, that describe the process; these
equations are also the starting point for the study of general relativistic cosmology.

We start considering a spherically symmetric, diagonal line element1 of the form

ds2 D �a2dt2 C b2dr2 C R2d˝2 : (1.23)

where a and b are functions of .r; t/. Here, R is a circumferential radial coordinate
since the proper circumference is calculated simply as

C D
Z

r; � D const:

p
ds2 D

Z p
g��d� D 2�R : (1.24)

Adopting a set of comoving coordinates, the fluid four-velocity is u˛ D .u0; 0; 0; 0/,
and since u˛u˛ D �1 so that

u˛ D .a�1; 0; 0; 0/ ; u˛ D .�a; 0; 0; 0/ : (1.25)

To cast the hydrodynamic equations in a form that resembles corresponding
Newtonian expressions, it is better to introduce differential operators that measure
variations with respect to the proper distance and time. In general

@

@.proper xˇ coordinate/
D @p

g˛ˇ@xˇ
; (1.26)

Dt D proper time derivative WD 1

a
@t ; (1.27)

Dr D proper radius derivative WD 1

b
@r : (1.28)

We may introduce the quantities

u WD DtR D 1

a
@tR; 
 WD DrR D 1

b
@rR ; (1.29)

1In spherical symmetry there is no loss of generality in doing this choice.
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where u is the radial component of a four-velocity in a coordinate system that has
R as the radial coordinate, while 
 measures the variation of the circumferential
radius with respect to the radial coordinate. With the above choices, the full set of
equations for the field and for the fluid is written as follows

Dte

e C p
D Dte0

e0
; (conservation of energy) ; (1.30)

Dte0
e0

D � 1

R2
@R.uR2/ ; (conservation of baryon number) ;

(1.31)

Dtu D � 


e C p
Drp � m

R2
� 4�pR ; (conservation of momentum) ; (1.32)

Dt
 D � u

e C p
Drp ; (1.33)

Dtm D �4�R2ue ; (1.34)


 2 D 1C u2 � 2m

R
: (1.35)

The last three equations are the only nonzero Einstein equations and the function 

represents the general-relativistic analogue of the Lorentz factor of special relativity
(
 D 1 in Newtonian physics). Equations (1.30)–(1.35), together with an equation
of state, represent the set of equations to be solved to compute the evolution of the
interior spacetime of a star that is collapsing.

In the case of dust, the fluid particles are collisionless and share the same
radial motion. The pressure vanishes and this simplifies the above set of equations
considerably. Furthermore, since the rest-mass does not change during the collapse,
we can introduce a new variable that labels the different shells with the rest-mass
they contain, i.e.

�.r/ WD
Z
4�R2�b dr : (1.36)

Clearly, this parameterisation is valid as long as each shell does not interact with the
neighbouring ones, i.e., there is no shell-crossing.

Let us consider now the consequences of the hypothesis that the fluid is
homogeneous, i.e., Drp D 0 D Dre. In this case, the first of Eq. (1.34) reduces
to Dt
 D 0, so that 
 D 
 .�/ only and

m D
Z R0

0

4�R2e dR D 4�

3
R30e : (1.37)

It is useful to adopt a “comoving-observer gauge”, i.e., a gauge in which the time
coordinate is the proper time on worldlines where dxi D 0; i D 1; 2; 3 and such that
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g00 D a D 1 or, equivalently, Dt D @t. Furthermore, because of the homogeneity
assumption, we can decompose R D R.�; t/ as R D F.t/ QR.�/, so that

PR WD @tR D u D PF QR D
PF
F

R : (1.38)

The Einstein Eq. (1.35) becomes


 2 D 1C u2 � 2m

R
D 1C R2

2
4
 PF

F

!2
� 8�e

3

3
5 D 1 � �R2.�; t/

S2.t/
; (1.39)

where � D 0;˙1 accounts for the sign of the term in square brackets and S, a
function of time only, is just a shorthand for what is contained in the square brackets.
Because of the decomposition of R, the ratio QR=S is a function of r only and thus we
can simply write


 2 D 1 � �r2 ; (1.40)

so that the line element (1.23) becomes

ds2 D �a2dt2 C b2dr2 C R2d˝2 D �dt2 C S2.t/

�
dr2

1 � �r2
C r2d˝2

�
: (1.41)

It is not difficult to recognize that the line element (1.41) is the metric of a
Friedmann-Robertson-Walker cosmological solution, where the function S (i.e., the
conformal factor of the spatial part of the metric) is simply the “scale factor”. Simi-
larly, it will not be surprising that, when expressed in this metric, the hydrodynamic
and Einstein equations will essentially reduce to the Friedmann equations

RS D �4�
3
.e C p/S ; (1.42)

PS2 � 8�

3
eS2 D �� : (1.43)

Stated differently, the spatial part of the line element (1.41) describes geometries
with different constant curvatures (i.e the curvature is the same everywhere but it is
not constant in time), with the different geometries being selected by the values of
the coefficient �. In other words, in spherical symmetry, the dynamical spacetime of
a collapsing (expanding) region occupied by homogeneous matter is a Friedmann-
Robertson-Walker (FRW)-universe.

In cosmological terms, there are three possible solutions according to the value
of � and thus on the constant curvature (� D �1, curved open universe; � D 0:
flat universe, � D 1; curved closed universe). Clearly, the relevant solution in the
context of an OS collapse is the one with positive constant curvature (i.e., � D 1) in
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which case the line element can be expressed in terms of comoving hyperspherical
coordinates .�; �; �/

ds2 D �d2 C S./Œd�2 C sin2 �d˝2	 ; (1.44)

where � D sin�1 r.
There is an important difference between the FRW universe and the spacetime

of an OS collapse, since in the latter case not all of the spacetime is occupied by
matter (the dust sphere has initially a finite radial size R0) and the vacuum region
corresponding to R > R0 is described by a Schwarzschild spacetime. The matching
between the two regions can be done at the surface of the star by requiring the
continuity of the metric via, say, the continuity of the proper circumference

CSchw: WD
Z p

g��d� D 2�R0 D CFRW WD 2�S sin�0 : (1.45)

Since (1.45) must hold at all times, we have that

R0 D S sin�0 : (1.46)

Let us now consider the equations of motion in the collapsing region of the
spacetime. In this case, Eq. (1.34), reduces to Dtm D 0, thus implying that m is
not a function of time but of radius only, i.e., m D m.�/ as it should be in the
absence of shocks. Similarly, Eq. (1.32) reduces to

Dtu D �m=R2 ; (1.47)

which is essentially the geodetic equation. The trajectory of any shell can therefore
be obtained through a time integration of (1.47) and is given by

PR WD dR

d
D DtR D

�
2m

R
� 2m

R0

�1=2
: (1.48)

In other words, a shell of dust will go from R0 to R D 0 in a finite proper time

 D �

2
R0

�
R0
2M

�1=2
: (1.49)

Note that this time will be the same for all initial radial positions R; this is a trivial
consequence of the uniformity in density, for which the ratio R3=m.R/ is constant.

Once expressed in the coordinate system (1.44) and after introducing the “cycloid
parameter” � 2 Œ0; �	 defined by d� D d=S, the equations of motion take the
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simpler form

R D R0
2
.1C cos �/ ; S.�.// D Sm

2
.1C cos�/ ;  D Sm

2
.�C sin �/ ;

(1.50)

where � is playing the role of a time coordinate (� D 0 at the beginning of collapse
and � D � at the end).

Using now Eq. (1.50) and the condition (1.45), we find that

Sm D
�

R30
2M

�1=2
; �0 D sin�1

�
2M

R0

�1=2
: (1.51)

It is particularly interesting to calculate the proper time  at which a shell initially
at R0 reaches R D 2M. This can be computed from (1.50) and is given by

2M D
�

R30
2M

�1=2
.�2M C sin �2M / ; (1.52)

where �2M WD cos�1.4M=R0 � 1/. These expressions will be useful in the following
section to discuss what happens to outgoing photons as the collapse proceeds. The
dynamics of OS collapse is summarised in Fig. 1.1.

Fig. 1.1 Schematic diagram
showing the worldlines of
different collapsing radial
shells in a .R; / spacetime
diagram. The various lines
refer to shells initially at
0; .1=4/R0; .1=2/R0; .3=4/R0 ,
and R0, and the lavender
shaded area represents the
stellar interior. Note that they
all reach the singularity at the
same proper time

 D �
2

�
R30
2M

�1=2
. Also

reported in the inset are the
same worldlines but shown as
a function of the cycloid
parameter � [figure taken
from [1]]
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1.4 OS Collapse: Trapped Surfaces

Assuming the cosmic censorship to hold, namely, that the physical singularity is
always hidden behind by a null surface that photons cannot leave, i.e., the event
horizon, the final result of the spherical collapse is a Schwarzschild black hole.
However, the Schwarzschild solution will be reached only asymptotically and is
interesting to ask how the event horizon is formed during the collapse. In practice
we need to study the trajectory of the outermost outgoing photon that was not able
to reach null infinity. Similarly, we can calculate where, at each instant during the
collapse, the last outgoing photon will be sent and reach null infinity. This surface
will mark the outermost trapped surface, i.e., the apparent horizon and by definition
it will always be contained within the event horizon.

Let us consider therefore the worldline of an radially outgoing photon. In this
case, ds2 D 0 D d� D d� and the line element (1.44) then yields the curves

d�

d
D ˙ 1

S./
; (1.53)

Using now the cycloid parameter � [cf. Eq. (1.50)], it is easy to show that these
photons propagate along straight lines in a .�; �/ plane

d�

d�
D ˙1 ; (1.54)

i.e., they follow curves of the type

� D �e ˙ .� � �e/ ; (1.55)

where �e and �e are the “place” and “time” of emission, respectively. A swarm of
outgoing photons will be trapped if their proper area will not grow in time, i.e., if

dA

d�
� 0 ; (1.56)

where A WD R p
g��g��d�d�. Writing out the condition (1.56) explicitly yields

�e � � � 2�e ; (1.57)

which indicates that any outgoing photon emitted at a position �e and at a time �e

will be able to propagate out if and only if �e is smaller that � � 2�e. In practice,
this condition singles out a region in a .�; �/ plane, which trapped photons cannot
leave.

Among all the possible trapped surfaces, the most important is certainly the
outermost one since it will discriminate between the photons that will propagate to
null infinity from the ones that will be trapped. Such a surface selects the apparent
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horizon and since �e � �0 (the emission takes place within the star) it is simply
expressed as

�ah D � � 2�0 D 2 cos�1
�
2M

R0

�1=2
; (1.58)

where we have used expression (1.51) to derive the last term in (1.58).
A natural question to ask this point is: when does the apparent horizon first form

and where is it located? Luckily, answering these questions in the case of an OS
collapse is particularly simple and reveals that the apparent horizons first forms
when the stellar surface crosses R D 2M. Note that this is true only in the OS
collapse.

Finally, we consider the evolution of the event horizon which is defined as the
surface for which the equality in condition (1.56) holds. Using the constraint that
the event horizon is always outside or coincides with the apparent horizon, we can
set �eh D �ah when � D �ah, so that the worldline for the event horizon is given by

�eh D �0 C .�� �ah/ ; (1.59)

for � � �ah. Using now the circumferential radial coordinate we can write that

Reh D 1

2

�
R30
2M

�1=2
.1C cos�/ sin.�0 C � � �ah/ : (1.60)

An important property to be deduced from (1.60) is that the event horizon starts
from a zero radius and then progressively grows to reach R D 2M; this is to be
contrasted with what happens for the apparent horizon, that is first formed with a
nonzero radial size.

The dynamics of the trapped surfaces is summarised in Fig. 1.2, which is similar
to Fig. 1.1, but where we have reported the worldline of the stellar surface R0./
(dark blue line), that of the event horizon (green dashed line) and of the apparent
horizon (orange solid line). Note that the event horizon grows from zero size and
reaches the value 2M when the stellar surfaces is at that position. This also marks the
time when the inward-expanding apparent horizon is formed, which then shrinks to
zero size as the dust star approaches the “covered” singularity. Note also that another
outward expanding apparent horizon is formed at 2M , but this then coincides with
the event horizon. The trapped regions inside the event horizon and outside the
shrinking apparent horizon are marked with a light-green and with an orange shaded
area, respectively. Much of what we have learnt about the dynamics of trapped
surfaces in the OS collapse continues to hold true also in the case of the collapse of
a perfect fluid, where however the apparent horizon is also formed earlier because
of the additional contribution of the fluid compression.
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Fig. 1.2 Schematic diagram showing the worldlines of the event horizon (EH), of the apparent
horizon (AH) and of the stellar surface (R0). The inset offers a magnified view, where it is possible
to note that the event and apparent horizons coincide after the stellar surface has reached R D 2M
[figure taken from [1]]

The two panels of Fig. 1.3 offer instead a summary of the dynamics of the most
relevant surfaces during the collapse of uniformly rotating fluid stars [7–11]. First,
in the case of a slowly rotating star, i.e., model D1 on the left panel, the differences
between the equatorial and polar circumferential radii of the two trapped surfaces
are very small and emerge only in the inset which offers a magnified view of
the worldlines during the final stages of the collapse. This is not the case for a
rapidly rotating star, i.e., model D4 on the right panel, for which the differences
are much more evident and can be appreciated also in the main panel. Second, the
worldlines of the stellar surface are very different in the two cases. In particular, for
the slowly rotating model, the star collapses smoothly and the worldline always has
a negative slope, thus reaching progressively smaller radii as the evolution proceeds.
By time t '0.59 ms, the stellar equatorial circumferential radius has shrunk below
the corresponding value of the event horizon. In the case of the rapidly rotating
model D4, on the other hand, this is no longer true and after an initial phase which
is similar to the one described for D1, the worldline does not reach smaller radii.
Rather, the stellar surface slows its inward motion and at around t � 0.6 ms the
stellar equatorial circumferential radius does not vary appreciably. Indeed, the right
panel of Fig. 1.3 shows that at this stage the stellar surface moves to slightly larger
radii. This behaviour marks the phase in which a flattened configuration has been
produced and the material at the outer edge of the disc experiences a stall. As
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Fig. 1.3 Evolution of the most relevant surfaces during the collapse for the cases of slowly and
rapidly rotating stars. Solid, dashed and dotted lines represent the worldlines of the circumferential
radii of the event horizon, of the apparent horizon and of the stellar surface, respectively. Note
that for the horizons we plot both the equatorial and the polar circumferential radii, while only
the equatorial circumferential radius is shown for the stellar surface. Shown in the insets are the
magnified views of the worldlines during the final stages of the collapse [figure taken from [1]]

the collapse proceeds, however, also this material will not be able to sustain its
orbital motion and after t � 0.7 ms the worldline moves to smaller radii again. By
a time t '0.9 ms, the stellar equatorial circumferential radius has shrunk below the
corresponding value of the event horizon.

1.5 Geodesic Motion in Schwarzschild and Kerr Spacetimes

Now that we have discussed that a fluid configuration can reach situations in which
an equilibrium is no longer possible and have investigated what happens when such
a configuration collapses to a black hole, we can move on and study geodesic
motion in black-hole spacetimes. Indeed, the study of “test-particle” motion in a
given spacetime geometry is very important since it allows one to highlight some of
the properties of the spacetime under investigation without having to resort to the
full system of Einstein equations. The particle needs to be a “test” particle (small
enough not to perturb the spacetime), neutral (not to react to electromagnetic forces)
spherical (so as not to be subject to torques), etc. From a pictorial point of view,
the study of the motion of test-particles is not very different from “probing” the
properties of a hole by throwing stones into it.

Test-particles move along “geodesics”. There are at least two different and
equivalent definitions of geodesics. According to the first definition, a geodesic in
affine geometry is a curve x� D x�.�/ that parallel transports its tangent vector
u˛ D dx˛=d�. I recall that a four-vector v is parallel transported along a curve x.�/
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with tangent u if ruv D 0. In component form this is equivalent to

uˇrˇv
˛ D uˇ.@ˇv

˛ C 
 ˛
ˇ�v

�/ D 0 ; (1.61)

where we introduced the covariant derivative. Hence, a geodesic curve should be
seen as the solution nonlinear system of equations

d2x˛

d�2
C 
 ˛

ˇ�

dxˇ

d�

dx�

d�
: (1.62)

In the (pseudo)-Riemannian case the coefficients of the affine connection are the
Christoffel symbols


 ˛
ˇ� D 1

2
g˛�

�
@�g�ˇ C @ˇg�� � @�gˇ�

	
: (1.63)

In flat space 
 ˛
ˇ� D 0 and the geodesics are straight lines. This is why it is commonly

stated that geodesics are the analogues of straight lines in curved space. This idea
is strengthened by the second possible definition of geodesics as the curves joining
two given events A and B that are of extremal length. Here one derives the geodetic
equations from a variational principle

ı

Z B

A
ds D 0 ; (1.64)

where

ds2 D g˛ˇdx˛dxˇ ; (1.65)

is the spacetime interval between A and B [2–4]. The above variational problem can
be shown to be equivalent to the following one

ı

Z �2

�1

1

2
g˛ˇ.x/Px˛ Pxˇd� D 0 ; (1.66)

where � is an affine parameter along the curve and the overdot indicates derivative
with respect to this parameter. The geodesic equations (1.62) then coincide with the
corresponding Euler-Lagrange equations

d

d�

@L

@Px˛ D @L

@x˛
; (1.67)

where the Lagrangian is given by

L D 1

2
g˛ˇ.x/Px˛ Pxˇ ; (1.68)
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and the momenta conjugate to the coordinates x˛ are introduced in the usual way

p˛ D @L

@Px˛ ; (1.69)

Obviously the momentum p˛ is conserved when the metric does not depend on the
coordinate x˛ .

For a Schwarzschild black hole in Schwarzschild coordinates, the metric reads

ds2 D �
�
1 � 2M

r

�
dt2 C

�
1 � 2M

r

��1
dr2 C r2

�
d�2 C sin2 �d�2

	
; (1.70)

and the Lagrangian describing geodesic motion of is given by

2L D �
�
1 � 2M

r

�
Pt2 C

�
1 � 2M

r

��1
Pr2 C r2

� P�2 C sin2 � P�2
�
: (1.71)

Because the metric does not depend on t and �, the corresponding Euler-
Lagrange equations express conservation laws of the conjugate momenta

� pt D
�
1 � 2M

r

�
Pt D E ; (1.72)

d

d�
pt D 0 ; (1.73)

p� D r2 sin2 � P� D l ; (1.74)

d

d�
p� D 0 ; (1.75)

where � D =m0, and with  being the proper time of a massive particle of rest
mass m0. Note that the equation corresponding to the � coordinate

d

d�
r2 P� D r2 sin � cos � P�2 ; (1.76)

is simply stating that the orbit is planar and hereafter I will take � D �=2 without
loss of generality.

In order to appreciate the physical meaning of the constants E and l it is useful to
consider how they are related to measurements made by locally static observers. To
this end we introduce an orthonormal tetrad such that

e Ǫ � e Ǒ D � Ǫ Ǒ ; Q! Ǫ � Q! Ǒ D � Ǫ Ǒ
; (1.77)

where Q!s are the corresponding one-forms and � Ǫ Ǒ D diag.�1; 1; 1; 1/ is the flat
Minkowski metric. Requiring orthonormality and stationarity, one easily obtains
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that

eOt D
�
1 � 2M

r

�� 1
2

et ; Q!Ot D
�
1 � 2M

r

� 1
2

Q!t ; (1.78)

eOr D
�
1 � 2M

r

� 1
2

er ; Q!Or D
�
1 � 2M

r

�� 1
2

Q!r ; (1.79)

e O� D 1

r
e� ; Q! O� D r Q!� ; (1.80)

e O� D 1

r sin �
e� ; Q! O� D r sin � Q!� ; (1.81)

(1.82)

where eˇ˛ D ı
ˇ
˛ . In special relativity, the invariant mass p � p D p2 D �m2, coincides

with the rest mass measured by a static observer

p � u D p0u
0 D �p0 D �m : (1.83)

The above identity may be rewritten as follows

E D �p˛u˛ D �p˛e˛t D �pt D ��ttp
t D pt : (1.84)

In a Schwarzschild spacetime

Eloc D �p˛e˛Ot D �p˛e˛t

�
1 � 2M

r

�� 1
2

D E

�
1 � 2M

r

�� 1
2

> E ; (1.85)

and the two energies are related by the redshift formula

E1
Eloc

D �1
�loc

D
�
1 � 2M

r

� 1
2

; (1.86)

where �1 and �loc are, for instance, the frequencies of a photon as measured at
spatial infinity and near the black hole, respectively.

Similarly, we can define the angular velocity measured by a locally static
observer

v
O� D

p˛e˛O�
p˛e˛Ot

D l

r sin �Eloc
(1.87)

so that the constant of motion

l D v
O�r sin �Eloc ; (1.88)

can be seen as the conserved relativistic angular momentum.
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1.5.1 Massive Particles

Hereafter, I will distinguish the motion of massive and massless particles, concen-
trating first on the former and leaving the latter to Sect. 1.5.2. In this case, the
Lagrangian is normalised by the mass by the relation 2L D �m2

0. In this way,
Eq. (1.71) becomes

dr

d
D ˙

"
QE2 �

�
1 � 2M

r

� 
1C

Ql2
r2

!# 1
2

; (1.89)

where Ql WD l=m0 and QE WD E=m0. When Ql D 0 and QE D .1� 2M=R/ < 1, Eq. (1.89)
can be integrated to give

 D
r

R3

8M

 
2

r
r

R
� r2

R2
C cos�1

�
2r

R
� 1

�!
; (1.90)

so that  D 0 when r D R. The remarkable fact is that the proper time to reach first
the horizon, i.e., r D 2M from any R > 2M, and then the singularity at r D 0 is
finite. To see this, one may introduce the cycloid parameter � as

r D R

2
.1C cos�/ : (1.91)

Equation (1.90) then becomes

 D
r

R3

8M
.�C sin �/ ; (1.92)

which obviously coincides with the result found in Eq. (1.52) for the OS collapse:
in both cases the motion is a free fall.

The situation is completely different when one integrates the equations of motion
in terms of the coordinate time t. In this case, in fact, one gets

t

2M
D log

ˇ̌̌
ˇ̌
p

R=2M � 1C tan �=2p
R=2M � 1 � tan �=2

ˇ̌̌
ˇ̌C

r
R

2M
� 1

�
�C R

2M
.�C sin �/

�
:

(1.93)

When r D 2M one has tan �=2 D p
R=2M � 1, so that it takes an infinite coordinate

time to reach the horizon from any R > 2M. This behaviour reflects the singular
properties of the event horizon and, at the same time, the fact that the singularity
comes from the coordinates and it is not physical. This is seen, for instance, by
calculating the curvature invariants, which are perfectly regular at the horizon and
only diverge at r D 0.
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The velocity measured by a static observer is

v Or D p Or

pOt D p Or
pOt D p˛e˛Or

Eloc
D pr

�
1 � 2M

r

	 1
2

Eloc
D pr

E
D m

E

dr

d
D

D 1

QE

vuut QE2 �
�
1 � 2M

r

� 
1C

Ql2
r2

!
: (1.94)

Note that v Or ! 1 on the horizon irrespective of the values of QE and Ql. In other
words, a particle will cross the horizon at the speed of light independently of the
initial conditions. In the case of radial fall from rest at infinity, i.e., QE D 1 and
Ql D 0, the above formula reproduces the Newtonian result

v Or D
r
2M

r
: (1.95)

Let us consider now more general non-radial orbits and rewrite Eq. (1.89) as

dr

d
D ˙ � QE2 � V.r; Ql/	 12 ; (1.96)

where

V WD
�
1 � 2M

r

� 
1C

Ql2
r2

!
; (1.97)

is the effective potential, which reduces to the Newtonian effective potential at large
distances, namely (see Fig. 1.4)

V.r/ �
�
1 � M

r

� 
1C

Ql2
2r2

!
D 1 � M

r
C

Ql2
2r2

C O

�
1

r3

�
WD VNewt :

(1.98)

The radial equation (1.96) is also useful to classify the different types of orbits
which are possible and which will essentially depend on the number of maxima and
minima the effective potential will have for a given value of the specific angular
momentum (if Ql D 0 the orbit is simply radial and will connect any radial point with
the origin). Let us assume, for the time being, that the specific angular momentum
is such that it yields an effective potential with a local maximum with V > 1,
and local minimum, just as illustrated in the left panel of Fig. 1.4, which refers to
Ql=M D 4:1. In this case, using the specific energy QE as a decreasing parameter, the
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Fig. 1.4 Left panel: effective potential V.r/ for a value Ql=M D 4:1 of the specific angular
momentum. Shown are the different types of orbits allowed: capture, marginally bound, marginally
stable, elliptic and circular, as determined by the different values of the energy above the green
dashed area. Shown as black shading is the region inside the horizon, with the radial scale set to be
logarithmic. Right panel: effective potential V.r/ of the Schwarzschild metric for some values of
the angular momentum Ql. The inset shows the value of the effective potential at the local extrema
and it should be noted that the radial scale is linear

orbits can be:

• capture orbit: no intersection is possible between the effective potential and
a constant-energy level. No matter how large the angular momentum, there is
always a value of the energy that makes the particle reach the origin. This is
to be contrasted with the Newtonian case, where the effective potential diverges
as r ! 0, and thus no matter how small (but nonzero) the angular momentum,
a particle in a Newtonian orbit will never reach the origin (i.e., the Newtonian
potential has a zero capture cross-section).

• circular, unstable orbit: this is located at the local maximum of the effective
potential, rcirc;u, where dr=d D 0, and is such that any perturbation will move
the particle either to smaller or to larger radii.

• hyperbolic, unbound orbits: these correspond to orbits of particles with energies
at spatial infinity larger than one (i.e., with positive velocity), that move towards
the origin till reaching a minimum radial position at which dr=d D 0, i.e., a
turning point, from where they return to infinity.

• parabolic, bound orbit: this corresponds to an orbit of a particle with energy
at spatial infinity equal to one (i.e., at rest), that moves towards the origin till
reaching a turning point, rb. For Ql=M D 4, the turning point coincides with the
unstable circular orbit rcirc;u and is located at 4M (see below).
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• “elliptic”, bound orbits: these correspond to orbits with energies at spatial
infinity less than one (i.e., bound particles) that have two turning points at r1
and r2.2

• circular, stable orbit: this is located at the local minimum of the effective
potential, rcirc;s, where dr=d D 0, and is such that any small perturbation away
from the stable orbit will move the particle back to it.

The values of the specific angular momentum for which the effective potential
shows both local minima and maxima, i.e., for which @rV.r/ D 0, and thus for
which circular orbits exist, is given by

Ql2 D Mr2

r � 3M
; (1.99)

with corresponding energies

QE2 D .r � 2M/2

r.r � 3M/
: (1.100)

To ensure that the right-hand side is positive, such extremal points exist only
for Ql=M � 2

p
3. Furthermore, for Qlms=M D 2

p
3 ' 3:46, the stable and unstable

circular orbits coincide, leading to an inflection point at the radius rms D 6M, which
is also called the marginally stable radius. The corresponding orbit is also known as
the innermost stable circular orbit or ISCO and because this represents the smallest
possible radius for a stable circular orbit, it is often taken to mark the inner edge of
an accretion disc around a black hole.

The variation of the effective potential with the specific angular momentum is
illustrated in the right panel of Fig. 1.4, while the inset shows the values of the
effective potential at the local extrema (which coincide with the energies of the
unstable circular orbits), and is given by

V2
extr.r/ D 4M2 .r=2M � 1/2

r.r � 3M/
: (1.101)

Setting Vextr.r/ D 1 will mark the position of the marginally bound orbit rmb D
4M, namely, the smallest radius for a bound, circular but unstable orbit. A particle
leaving spatial infinity at rest (i.e., with QE D 1), will move on a parabolic orbit down
to r D rmb, where it can remain on a circular orbit but in unstable equilibrium.

In summary, unstable circular orbits exist for

3M D rph � r < rms D 6M ; ” 2
p
3 � Ql=M < 1 ; (1.102)

2Note that these orbits are not closed because of the advance of the periastron, another general-
relativistic effect of the motion in a gravitational field [2]. Hence, the defining property of these
orbits is that of having two turning points and not that of being closed ellipses.
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while stable circular orbits exist for

6M D rms � r < 1 ; ” 2
p
3 � Ql=M < 1 : (1.103)

Using Eq. (1.101), it is not difficult to estimate that the energy corresponding to
the ISCO is QEms D p

8=9 ' 0:943, and this apparently simple result calls for
an important comment. Consider, in fact, a particle progressively moving from a
circular orbit to a neighbouring one and losing part of its energy in the transition
(e.g., a fluid element in an accretion disc). The total energy that can be lost when
inspiralling from spatial infinity down to the ISCO is �E D .1 � QEms/ ' 0:057,
implying an efficiency in the conversion of the binding energy of '6%. When
comparing this with the efficiency of nuclear fission (i.e., �0:1%) or of nuclear
fusion (i.e., �0:4%), it becomes clear that accretion onto a black hole represents
one of the most efficient processes to extract energy. As we will comment in the
following section, this efficiency can be further increased in the case of a rotating
black hole.

For a circular orbit it is also possible to compute the angular velocity as seen by
an observer at infinity

˝ D
P�
Pt D

Ql2
r2

�
1 � 2M=r

QE
�
: (1.104)

In the case of circular orbits, by using Eqs. (1.99) and (1.100) we get

˝ D
r

M

r3
; (1.105)

exactly as in Newtonian gravity. On the other hand

v
O� D l

rE

�
1 � 2M

r

� 1
2

! 0 for r ! 2M ; (1.106)

that is, all the particles, even those with angular momentum, enter the event horizon
on radial trajectories.

Let us now calculate the cross section for a particle flying by the black hole where
the maximum impact parameter is bmax D limr!1 r sin �. Since

�
dr

d�

�2
D
� Pr

P�
�2

D r4

 QE2 � .1 � 2M=r/

�
1C Ql2=r2

	�
Ql2 ; (1.107)

for r ! 1 and � � 1 we then have

�
dr

r2d�

�2
' 1

b2
' QE2 � 1

Ql2 D v21
Ql2.1 � v21/

; (1.108)
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or else

Ql D bv1p
1 � v21

' bv1 : (1.109)

If the particle is non-relativistic at infinity, then v1 � 1, QE ' 1 and the capture
occurs for Ql < 4M and therefore3 bmax D 4M=v1; in turn, this implies that

�capture D �b2max D 16�M2

v21
; (1.110)

This result may be compared with the Newtonian result �Newt D 2�MR=v21 relative
to a gravitating sphere of mass M and radius R; the comparison then suggests that a
black hole captures nonrelativistic particles as if it were a sphere of radius R D 8M.

1.5.2 Massless Particles

In the case of massless particles, the Lagrangian is normalised to zero and thus reads

2L D �
�
1 � 2M

r

�
Pt2 C

�
1 � 2M

r

��1
Pr2 C r2

� P�2 C sin2 � P�2
�

D 0 ; (1.111)

and the Euler-Lagrange equations relative to the coordinates t and � are conservation
laws, with E D �pt and l D p�

Pt D E

.1 � 2M=r/
; P� D l

r2
: (1.112)

The equation corresponding to the r coordinate comes from L D 0:

Pr2 D E2 � l2

r2

�
1 � 2M

r

�
: (1.113)

The equivalence principle implies that the photon trajectory is independent of its
energy. This can be seen by introducing a new affine parameter �0 D l� and the
photon impact parameter b D l=E, so that the previous equations can be rewritten

Pt D E

b .1 � 2M=r/
; (1.114)

3Note that 4M < bmax < 1 and that bmax ! 1 when v2
1

! 0. All particles are accreted or
deflected.
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P� D 1

r2
; (1.115)

Pr2 D 1

b2
� 1

r2

�
1 � 2M

r

�
D 1

b2
� Vph.r/ : (1.116)

The effective potential in this case has a maximum of 1=.27M2/ at r D 3M,
which corresponds to the critical impact parameter bc D 3

p
3M, so that the capture

cross section for a photon from infinity is

�ph D 27�M2 : (1.117)

The orbit at r D rph D 3M is the only circular orbit for a photon of impact parameter
bc and is usually referred to as the “light ring”.

An interesting question is whether the direction of emission plays a role in the
propagation of a photon in the vicinity of a black hole. Also in this case we need
to use the measurements made by locally static observers. For such observers the
photon will propagate to infinity if either if v Or > 0, or if v Or < 0 and b > 3

p
3 (a

photon can be shot towards a black hole and yet escape), where v Or is the local photon
velocity in the r direction and v Oav Oa D v OrvOr C v

O�v O� D 1. Let  denote the angle
between the direction of propagation and the radial direction, so that vOr D cos 
and v O� D sin . It then follows that an ingoing photon escapes to infinity if

v
O� D sin D b

r

�
1 � 2M

r

� 1
2

>
3
p
3M

r

�
1 � 2M

r

� 1
2

: (1.118)

Conversely, an outgoing photon emitted between r D 2M and r D 3M escapes to
infinity if

sin <
3
p
3M

r

�
1 � 2M

r

� 1
2

: (1.119)

1.5.3 Kerr Black Holes

In 1963, that is, almost 50 years after Schwarzschild’s work, Kerr found a stationary
solution to the Einstein equations in vacuum, which describes the spacetime of a
black hole of total mass M and angular momentum J [12]. This solution, which
is also known as the Kerr black-hole solution and was later proven to be unique,
reduces to the Schwarzschild solution in the limit of zero angular momentum.
Since it includes the contributions of rotation, the Kerr black hole is not spherically
symmetric, but axisymmetric about the direction of the angular momentum vector
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of the black hole; furthermore, it is no longer a static solution, but a stationary one.4

Due to the ubiquitous presence of rotation in astrophysical systems, this solution is
considered to be the most realistic for studying any physical process that takes place
in the vicinity of a black hole. Unfortunately, no analogue to exists for the Kerr
solution, which is unique in vacuum, but whose exterior in non-vacuum spacetimes
depends on the properties of the matter source, e.g., mass and angular momentum
distribution in the case of a relativistic star.

The line element for a Kerr black hole of mass M and angular momentum S in
Boyer-Lindquist coordinates is

ds2 D �
�
1 � 2Mr

˙

�
dt2 � 4aMr sin2 �

˙
dtd� C ˙

�
dr2 C˙d�2C

C
 

r2 C a2 C 2a2Mr sin2 �

˙

!
sin2 �d�2; (1.120)

where a WD S=M is the angular momentum per unit mass of the black hole (a=M 2
Œ�1; 1	) and

� WD r2 � 2Mr C a2 ; ˙2 WD r2 C a2 cos2 � ; (1.121)

Clearly, the metric (1.120) reduces to the Schwarzschild metric (1.70) when a D 0.
Unlike in the Schwarzschild solution, where the surfaces of infinite redshift and

of the event horizon coincide, the Kerr solution has two surfaces of infinite redshift,
again obtained by imposing gtt D 0, and are given by the condition

rS ;˙ D M ˙
p

M2 � a2 cos2 � : (1.122)

The event horizons, on the other hand, can be determined from the divergence of the
metric function grr and thus from setting � D 0, which then yields the two surfaces

reh;˙ D M ˙
p

M2 � a2 ; (1.123)

where the ˙ sign denotes the outer (C) and inner (�) event horizon, respectively.
Note that in the Schwarzschild limit reh;� D 0, and reh;C D 2M, as expected (see
also Fig. 1.5).

The region between rS;C, which is also called the ergosphere, and reh;C is
also referred to as the ergoregion, since no static observers (i.e., observers seen
as non-rotating from infinity) can exist and the whole spacetime is dragged into
synchronous corotation by the black hole. This purely relativistic effect, which is
also known as frame dragging, does not apply only to the ergoregion (where the

4The metric components are still independent of time but the solutions are affected by a time
reversal, i.e., by a coordinate transformation t ! �t.
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Fig. 1.5 Relevant radii for
equatorial orbits in a Kerr
spacetime. Shown as a
function of the dimensionless
spin of the black hole, a=M,
are respectively: the radii of
the outer and inner event
horizons reh;˙, the radii of
the marginally stable photon
orbits rph, the radii of the
marginally bound photon
orbits rmb, and the radii of the
marginally stable orbits rms.
Continuous and dashed lines
help distinguish between
prograde and retrograde
orbits, respectively [figure
taken from [1]]

corotation is unavoidable even for photons), but extends to the whole spacetime,
although it becomes progressively weaker far from the black hole. As a result,
an observer with zero angular momentum at infinity, or Zero Angular Momentum
Observer (ZAMO), will not move radially towards the black hole, but will be set into
rotation as seen from infinity. The importance of the ergosphere lies in that it can
host physical processes that extract rotational energy from the black hole [2]. To see
this, consider a particle with generic momenta

m
dt

d
D pt D gttpt C gt�p� ; (1.124)

m
d�

d
D p� D g�tpt C g��p� ; (1.125)

and thus with angular velocity

˝ WD d�

dt
D p�

pt
: (1.126)

If the particle has zero angular momentum at spatial infinity, then p� D 0 and using
the expression above it follows that

˝ D g�t

gtt
D !.r; t/ D 2Mra

.r2 C a2/2 � a2� sin2 �
: (1.127)
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In other words, the particle will acquire an angular velocity (1.127) as it approaches
the rotating black hole. The Lense-Thirring angular velocity !.r; t/ is therefore the
manifestation of the dragging of inertial frames and it decays as r�3, thus more
rapidly than the monopole component of the gravitational field.

As done for the Schwarzschild spacetime, it is possible to study the geodesic
motion of test particles in the Kerr metric to gain insight into its properties. The
particle motion in this case is far more complicated and, in addition to the energy and
angular momentum, pt D �E and p� D l, a new constant of motion appears, i.e., the
Carter constant [2]. Furthermore, the motion is planar only in the case of equatorial
orbits, whose qualitative properties remain similar to the ones already encountered
for a Schwarzschild spacetime. Hence, for simplicity I will concentrate here on the
simplest cases of (planar) equatorial orbits (i.e., with � D �=2) and considering
mostly massive particles. The corresponding Lagrangian is then given by

2L D �
�
1 � 2M

r

�
Pt2 � 4aM

r
Pt P� C r2

�
Pr2 C

�
r2 C a2 C 2a2M

r

�
P�2 D �m2

0 ;

(1.128)

so that the geodesic equations are

Pt D 1

�

��
r2 C a2 C 2a2M

r

�
E � 2Mal

r

�
; (1.129)

P� D 1

�

��
1 � 2M

r

�
l C 2Ma

r
E

�
: (1.130)

Equation (1.128) is then rewritten as follows

r3Pr2 D E2.r3C2Ma2Ca2r/�4aMEl�l2.r�2M/�m2r� D QV.E; l; r/ ; (1.131)

so that circular orbits correspond to energies and angular momenta

QE D r2 � 2Mr ˙ a
p

Mr

r.r2 � 3Mr ˙ 2a
p

Mr/
1
2

; (1.132)

Ql D ˙
p

Mr.r2 ˙ 2a
p

Mr C a2/

r.r2 � 3Mr ˙ 2a
p

Mr/
1
2

; (1.133)

where the plus sign correspond to co-rotating orbits and the minus to counter-
rotating ones. Circular orbits then exist from infinity to the limit radius where the
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energy diverges

rph D 2M

�
1C cos

�
2

3
cos�1

�
˙ a

M

���
; (1.134)

and these can even be at the horizon (i.e., rph D M) for corotating particles and a
so-called “extremal” Kerr black hole (i.e., one with a D M).

A marginally bound circular orbit is the orbit with the largest specific angular
momentum and at rest at infinity. For r > rph, circular orbits are bound for

r > rmb D 2M 	 a C 2
p

M.M 	 a/ ; (1.135)

For each value of the black-hole spin a=M, stable circular orbits exist from spatial
infinity down to the marginally stable orbit, or ISCO, given by

rms;˙ D rISCO D M
h
3C Z2 	p

.3� Z1/.3C Z1 C 2Z2/
i
; (1.136)

where

Z1 WD 1C .1 � a2/1=3


.1C a/1=3 C .1 � a/1=3

�
; (1.137)

Z2 WD
q
3a2 C Z21 : (1.138)

Special values for the marginally stable radii rms are simple to compute and are
given by (cf., Fig. 1.5)

rms D
8<
:
6M for a=M D 0 ;

M for a=M D 1 ;

9M for a=M D �1 :
(1.139)

Figure 1.5 shows a useful summary of the relevant radii for equatorial orbits in
a Kerr spacetime. Reported as a function of the dimensionless spin of the black
hole, a=M, are respectively: the radii of the outer and inner event horizons reh;˙, the
radii of the marginally stable photon orbits rph, the radii of the marginally bound
photon orbits rmb, and the radii of the marginally stable orbits rms. Continuous and
dashed lines help distinguish between prograde and retrograde orbits, respectively.
Note that for a=M D 1, i.e., for an extremal Kerr black hole, a number of radii for
prograde orbits tend to coincide, i.e., rms D rph D reh;C D M (obviously, the same
happens for retrograde orbits around black holes with a=M D �1).

As a final remark, I note that Kerr black holes are also much more efficient in
extracting energy. Indeed, since stable circular orbits exist down to the horizon,
they can have there extremely small energies and as small as QEms D 0:577. As a
result, a particle accreting from spatial infinity down to the ISCO of an extremal
Kerr black hole will have lost an amount of energy E D .1� QEms/ D 0:43, implying
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a conversion of �43% of the binding energy. This enormous efficiency explains
why models of accretion discs onto Kerr black holes represent the best candidates
to explain the vast amounts of energy radiated in active galactic nuclei (AGN).

1.6 Black Holes Produced from Binary Mergers

Despite the almost unnatural simplicity with which the problem can be formulated
(black holes are after all the simplest macroscopical objects we know), the final
evolution of a binary system of black holes is an impressively complex problem
to solve. At the same time, this very simple process plays a fundamental role
in astrophysics, in cosmology, in gravitational-wave astronomy, and of course in
general relativity. Recent progress in numerical relativity initiated by the works in
[13–15], have made it now possible to compute the different stages of the evolution,
starting from the inspiral at large separations, for which post-Newtonian (PN)
calculations provide an accurate description, through the highly relativistic merger,
and finally to the ringdown.

As long as the two black holes are not extremal and have masses which are not too
different from each other, no major technical obstacle now prevents the solution of
this problem in full generality and with an overall error which can be brought down
to less than 1% or less. Yet, obtaining such a solution still requires a formidable
computational power sustained over several days. Even for the simplest set of
initial data, namely those considering two black holes in quasi-circular orbits, the
space of parameters is too vast to be explored entirely through numerical-relativity
calculations. Furthermore, many studies of astrophysical interest, such as many-
body simulations of galaxy mergers, or hierarchical models of black-hole formation,
span a statistically large space of parameters and are only remotely interested in the
evolution of the system during the last few tens of orbits and much more interested
in determining the properties of the final black hole when the system is still widely
separated.

In order to accommodate these two distinct and contrasting needs, namely that
of sampling the largest possible space of parameters and that of reducing the
computational costs, a number of analytical or semi-analytic approaches have been
developed over the last couple of years. In most of these approaches the inspiral and
merger is considered as a process that takes, as input, two black holes of initial
masses M1, M2 and spin vectors S1, S2 and produces, as output, a third black
hole of mass Mfin, spin Sfin and recoil velocity vkick. Mathematically, therefore,
one is searching for a mapping between the initial seven-dimensional space of
parameters (i.e., the one containing the six spin components Sj

1;2 and the mass ratio
q WD M2=M1) to two a five-dimensional one, i.e., the one containing the three
components of the final spin vector, the magnitude of the recoil velocity, and the
mass of the final black hole. Clearly this is a degenerate mapping (two different
initial configurations can lead to the same final one) and it would seem a formidable
task to accomplish given the highly nonlinear features of the few last orbits. Yet, all
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of these studies have shown that the final spin vector and the final recoil velocity
vector, can be estimated to remarkably good accuracy if the initial parameters are
known [16–24].

The second part of this Chapter is therefore dedicated to illustrate how it is
possible to predict the spin and mass properties of the black hole produced in a
binary merger simply on the basis of the properties of initial black holes. The
discussion I will provide does not want to be exhaustive nor complete and some
of the most recent work, e.g., [25, 26], will not be presented in detail. Rather, the
presentation will be mostly pedagogical and aimed at providing a basic description
and a series of references where additional information can be found. In particular,
after adopting a specific recipe to describe how to compute such properties via a
simple algebraic expression [21, 27], I will explore its predictions in the large space
of parameters. All of the considerations made here apply to binary systems that
inspiral from very large separations and hence through quasi-circular orbits. Such
configurations are the ones more likely to occur astrophysically since any residual
eccentricity is lost quickly by the gravitational-radiation reaction. Much of the text
in the following has been taken from [25, 27, 28].

1.6.1 Modelling the Final Spin

A number of analytical approaches have been developed over the years to determine
the final spin from a binary black hole coalescence [29–33]. A first line of research
has exploited the motion of test particles in black hole spacetimes [17, 34]. A second
approach, instead, has focused on the derivation of analytic expressions which
would model the numerical-relativity data but also exploit as much information as
possible either from perturbative studies, or from the symmetries of the system when
this is in the weak-field limit [16, 18–21, 24, 35–37]. In this sense, these approaches
are not blind fits of the data, but, rather, use the numerical-relativity data to construct
a physically consistent and mathematically accurate modelling of the final spin.

The common ground shared by these second approaches is in the assumption
that the final spin vector afin, when seen as the function afin D afin.a1; a2; �/, where
a1;2 D S1;2=M2

1;2 are the two dimensionless spin vectors (ja1;2j 2 Œ0; 1	), can be
expressed as a Taylor expansion around a1 D a2 D � D 0. Given that ja1;2j �
1, this may seem as a mathematically reasonable assumption and the expectation
that the series is convergent over the whole space of parameters as a legitimate
one. However, this remains an assumption, and different routes have been chosen
to constrain the coefficients in the expansion invoking more mathematically-based
considerations [18, 23, 24], or more physically-based considerations [16, 20, 21].

Here, however, I will concentrate on reviewing the approach which, with a
five physically reasonable assumptions and with five free coefficients to be fixed
from the numerical data, leads to a formula that can model generic initial spin
configurations and mass ratios, thus covering all of the seven-dimensional space
of parameters [16, 20, 21]. In essence, the approach developed in [16, 20, 21, 27]



1 An Introduction to Astrophysical Black Holes and Their Dynamical Production 31

amounts to considering the dimensionless spin vector of the final black hole as given
by the sum of the two initial spins and of a “third” vector parallel to the initial orbital
angular momentum when the binaries are widely separated. This “third” vector is an
intrinsic “property” of the binary (it will be shown below that this is essentially the
orbital angular momentum not radiated), thus depending on the initial spin vectors
and on the black holes mass ratio, but not on the initial separation. The formula
for the final spin then simply describes the properties of this vector in terms of the
initial parameters of the binary and of a set of coefficients to be determined from a
comparison with numerical simulations.

Let us now consider in more detail how to derive such a formula and consider
therefore a generic binary of black holes with masses M1;M2, mass ratio q, spins
S1;S2 and orbital angular momentum L. Let also where ˛; ˇ and � be the vector
cosines among the different vectors, i.e.,

cos˛ WD Oa1 � Oa2 ; cosˇ WD Oa1 � OL ; cos � WD Oa2 � OL ; (1.140)

where the “hats” are used to represent unit vectors. A schematic representation of
the different vectors and angles is shown in Fig. 1.6.

As mentioned above, five assumptions are needed in order to make the problem
tractable analytically and these are listed in what follows. I recall that when the
black holes have spins that are aligned with the orbital angular momentum L, the
numerical-relativity results are accurately described by Rezzolla et al. [21]

afin D Qa C Qa�.s4 Qa C s5� C t0/C �.2
p
3C t2� C t3�

2/ ; (1.141)

Fig. 1.6 Schematic representation of the binary system and of the angles between the different
spin vectors S1, S1 and the orbital angular momentum L. The dynamics of the binary is summarised
on the left
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where � WD M1M2=.M1 C M2/
2 is the symmetric mass ratio and Qa WD .a1 C

a2q2/=.1Cq2/. The five coefficients t0, t2, t3, s4 and s5 in (1.141) can be determined
straightforwardly by fitting the results of the numerical-relativity calculations.
However, an additional condition can be employed by using the results obtained
by Scheel et al. [38] for equal-mass non-spinning black holes and thus enforce that
for a1 D a2 D 0; � D 1=4 and to the claimed precision

afin D
p
3

2
C t2
16

C t3
64

D 0:68646˙ 0:00004 : (1.142)

This leaves only four unconstrained coefficients, whose value can be fixed by a
comparison with numerical-relativity simulations to obtain

s4 D �0:1229˙ 0:0075 ; s5 D 0:4537˙ 0:1463 ;

t0 D �2:8904˙ 0:0359 ; t3 D 2:5763˙ 0:4833 ; (1.143)

with an agreement relative to the numerical-relativity (NR) data jaNR
fin � afit

finj �
0:0085. Using the constraint (1.142) we then also obtain t2 D �3:5171 ˙ 0:1208.
Note that because expression (1.141) provides information over only 3 of the 7
dimensions of the parameter space, I will next show how to cover the remaining
4 dimensions and thus derive an expression for afin for generic black hole binaries
in quasi-circular orbits. Following the spirit of [21, 27], we make the following
assumptions:

(i) The mass Mrad radiated to gravitational waves can be neglected i.e., Mfin D
M WD M1 C M2. The radiated mass could be accounted for by using
the numerical-relativity data for Mfin [39] or extrapolating the test-particle
behavior [40]. The reason why assumption (i) is reasonable is that Mrad is
largest for aligned binaries, but these are also the ones employed to fit the
free coefficients (1.143). Therefore, Mrad is approximately accounted for by
the values of the coefficients. In Section 1.6.3 I will discuss in detail how to
estimate Mrad.

(ii) The norms jS1j, jS2j, jQlj do not depend on the binary’s separation r, with Ql
being defined as

Ql.r/ WD Sfin � ŒS1.r/C S2.r/	 D L.r/ � Jrad.r/ ; (1.144)

where S1.r/, S2.r/ and L.r/ are the spins and the orbital angular momentum
at separation r and Jrad.r/ is the angular momentum radiated from r to the
merger. Clearly, S1, S2 and Ql can still depend on r through their directions.
While the constancy of jS1j and jS2j is a very good assumption for black holes,
which do not have an internal structure, the constancy of jQlj is more heuristic
and based on the idea that the merger takes place at an “effective” innermost
stable circular orbit (ISCO), so that jQlj can be interpreted as the residual orbital
angular momentum contributing to Sfin.
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(iii) The final spin Sfin is parallel to the initial total angular momentum J.rin/ WD
S1.rin/ C S2.rin/ C L.rin/. This amounts to assuming that Jrad.rin/ k J.rin/.
It replaces the assumption, made in [21], that Jrad.rin/ k L.rin/, which is
only valid for a smaller set of configurations. We note that this assumption
is motivated by PN theory: Within the adiabatic approximation, the secular
angular-momentum losses via gravitational radiation are along the total angular
momentum J [41]. This is because as L rotates around J, the emission
orthogonal to J averages out. Note that since afin k J.rin/, the angle �fin between
the final spin and the initial orbital angular momentum L.rin/ is given by

cos �fin D OL.rin/ � OJ.rin/ : (1.145)

(iv) The angle between L and S WD S1 C S2 and the angle between S1 and S1 are
constant during the inspiral, although L and S precess around J.

At 2.5 PN order, (iii) and (iv) are approximately valid for any mass ratio
if only one of the black holes is spinning, and for M1 D M2 if one neglects
spin-spin couplings. In both cases, in fact, S and L essentially precess around
the direction OJ, which remains nearly constant [41], and the angle between
the two spins remains constant as well. The only case in which (iii) and
(iv) are not even approximately valid is for binaries which, at some point
in the evolution, have L.r/ � �S.r/. These orbits undergo the so-called
“transitional precession” [41], as a result of which OJ changes significantly.
Because transitional precession happens only if L and S are initially almost
anti-aligned with jLj > jSj, it affects only a very small region of the parameter
space.

(v) When the initial spin vectors are equal and opposite and the masses are
equal, the spin of the final black hole is the same as for nonspinning binaries.
Besides being physically reasonable—reflecting the expectation that if the
spins are equal and opposite, their contributions cancel out—this assumption
is confirmed by numerical-relativity simulations and by the leading-order PN
spin-spin and spin-orbit couplings.

Making use of these assumptions, it is then possible to derive an expression for
the final spin. Let us first using (i) to write (1.144) as

afin D 1

.1C q/2
�
a1.r/C a2.r/q2 C l.r/q

	
; (1.146)

where afin D Sfin=M2 and l WD Ql=.M1M2/. Using (ii), the final-spin norm is

jafinj D 1

.1C q/2

h
ja1j2 C ja2j2q4 C 2ja2jja1jq2 cos˛

C 2
�ja1j cosˇ.r/C ja2jq2 cos �.r/

	 jljq C jlj2q2
i1=2

: (1.147)
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Note that because of the assumption (iv), the angle ˛ does not depend on the
separation and is simply the angle between the spins at the initial separation, rin,
of the numerical-relativity simulations. The angles ˇ and � are instead functions of
the binary’s separation, but this dependence cancels out in the linear combination
in which they appear in (1.147), which is indeed, within the assumptions made,
independent of the separation and which can therefore be evaluated at r D rin. To see
this, let us consider expression (1.147) at the effective ISCO, that is, a fictitious final
separation before the merger takes place. There, Jrad.rISCO / D 0 by definition and
therefore l.rISCO / D L.rISCO/. As a result, ˇ.rISCO / [�.rISCO/] are simply the angles
between S1 [S2] and L at the ISCO. Using now assumption (iv), we can write part
of (1.147) as

ja1j cosˇ.rISCO/C ja2jq2 cos �.rISCO / D .OL � S/ISCO=M2
1

D .OL � S/=M2
1 D ja1j cos Q̌.r/C ja2jq2 cos Q�.r/ ;

(1.148)

where Q̌ and Q� are the angles between the spins and L at any separation r and thus
also at r D rin

cos Q̌ WD Oa1 � Ol ; cos Q� WD Oa2 � Ol : (1.149)

This proves our previous statement: the dependence on r that ˇ and � have in
expression (1.147) is canceled by the linear combination in which they appear.
Stated differently, the final-spin norm is simply given by expression (1.147) where
ˇ.r/ ! Q̌.rin/ and �.r/ ! Q�.rin/. Thus, one does not need to worry about the
angles between Oa1;2 and Ol but simply about the angles between Oa1;2 and Ol at r D rin,
which are easy to compute.

Finally, we need to compute jlj and for this we proceed like in [21] and match
expression (1.147) at r D rISCO with (1.141) for parallel and aligned spins [˛ D
ˇ.rISCO/ D �.rISCO/ D 0], for parallel and antialigned spins [˛ D 0, ˇ.rISCO/ D
�.rISCO/ D �], and for antiparallel spins which are aligned or antialigned [˛ D
ˇ.rISCO/ D � , �.rISCO/ D 0 or ˛ D �.rISCO/ D � , ˇ.rISCO/ D 0]. As noted in
[21], this matching is not unique, but the degeneracy can be broken by exploiting
assumption (v) (i.e., by imposing that jlj does not depend on a1;2 when a1 D �a2
and q D 1) and by requiring for simplicity that jlj depends linearly on cos˛, cosˇ
and cos � . Using these constraints and (1.148) we obtain again an expression valid
for any separation and hence for r D rin

jlj D 2
p
3C t2� C t3�

2

C s4
.1C q2/2

�ja1j2 C ja2j2q4 C 2ja1jja2jq2 cos˛/
	

C
�

s5� C t0 C 2

1C q2

��
ja1j cos Q̌.rin/C ja2jq2 cos Q�.rin/

�
: (1.150)
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In summary, the combination of expressions (1.147) and (1.150) provide a simple
and algebraic route to compute the properties of the full spin vector of a black hole
resulting from the merger of a binary system in quasi-circular orbit.

1.6.2 Exploring the Space of Parameters

In what follows I discuss in some detail the predictions of expressions (1.147)
and (1.150) for some simple cases and highlight how to extract interesting physical
considerations.
– Unequal mass, aligned/antialigned equal spins –
If the black holes have unequal mass but spins that are equal, parallel and
aligned/antialigned with the orbital angular momentum, i.e., ja1j D ja2j D a,
˛ D 0 Iˇ D � D 0; � , the prediction for the final spin is given by the
simple expression (1.141) [20], where cosˇ D ˙1 for aligned/antialigned spins.
Note that since the coefficients in (1.141) are determined by fits to the numerical
data and the latter is scarcely represented at very large spins, the predictions of
expression (1.141) for nearly maximal black holes are essentially extrapolations
and are therefore accurate to a few percent at most. As an example, when a D 1,
the formula (1.141) is a non-monotonic function with maximum afin ' 1:029 for
� ' 0:093; this clearly is an artefact of the extrapolation.

The global behaviour of the final spin for unequal-mass and aligned/antialigned
equal-spin binaries is summarised in Fig. 1.7, which shows the functional depen-
dence of expression (1.141) on the symmetric mass ratio and on the initial spins.
Squares refer to numerical-relativity values as reported in [19, 20, 42–46], while
circles to the EMRL constraints. A number of interesting considerations can now be
made:

(a) Using expression (1.141) it is possible to estimate that the minimum and
maximum final spins for an equal-mass binary are afin D 0:3502 ˙ 0:03 and
afin D 0:9590 ˙ 0:03, respectively. While the value for the maximum spin is
most likely underestimated the minimum value is expected to be much more
accurate than the estimate in [22], which tends to underestimate the final spin
for a . �0:3.

(b) Using expression (1.141) it is straightforward to determine the conditions under
which the merger will lead to a final Schwarzschild black hole. In practice this
amounts to requiring afin.a; �/ D 0 and this curve is shown in Fig. 1.8 with a
blue dashed line (cf. also the red dashed line in Fig. 1.7). Binaries on the curve
produce Schwarzschild black holes, while binaries above the curve start with a
positive total angular momentum and end with a positive one; binaries below the
curve, on the other hand, start with a positive total angular momentum and end
with a negative one, i.e., with a global flip. Several numerical simulations have
been carried out to validate this condition [20, 46] and all of them have shown
to produce black holes with afin . 0:01 (cf. squares in Fig. 1.7 with � ' 0:16).



36 L. Rezzolla

-1
-0.5

 0
 0.5

 1

0
0.05

0.1
0.15

0.2
0.25

-1

-0.5

 0

 0.5

 1

 1.5

afin

numerical data
EMRL
afin=0

fitting formula
spin flip

a1=a2=a

ν

afin

Fig. 1.7 Global dependence of the final spin on the symmetric mass ratio and on the initial
spins as predicted by expression (1.141) for equal-mass, aligned/antialigned equal-spin binaries.
Squares refer to numerical-relativity values, while circles to the extreme mass-ratio limit (EMRL)
constraints. Indicated with a (red) dashed line is the locus of points leading to a Schwarzschild
black hole (i.e., afin D 0), while (green) solid lines mark the region leading to a “spin-flip”
(i.e., afina < 0) [figure taken from [28]]

Fig. 1.8 Set of initial spins and mass ratios leading to a final Schwarzschild black hole: i.e.,
afin.a; �/ D 0. Indicated with a star is a numerical example leading to afin D 0:005 [figure adapted
from [20]]

Overall, the behaviour captured by expression (1.141) shows that in order to
produce a nonspinning black hole it is necessary to have unequal-masses (the
largest possible mass ratio is � ' 0:18) and spins antialigned with the orbital
angular momentum to cancel the contribution of the orbital angular momentum
to the total one.

(c) Using expression (1.141) it is also straightforward to determine the conditions
under which the merger will lead to a “spin-flip”, namely when the newly
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Fig. 1.9 Critical values of
the initial spin and mass ratio
leading to a final black hole
having the same spin as the
initial ones i.e.,
afin.a; �/ D a. A
magnification is shown in the
inset, where the
dashed/non-dashed region
refers to binaries
spun-down/up by the merger
[figure taken from [20]]

formed black hole will spin in the direction opposite to that of the two initial
black holes. Mathematically this is equivalent to determine the region in the
plane .a; �/ such that afin.a; �/ a < 0 and it is shown in Fig. 1.9 as limited by
the red dashed line. Overall, it is clear that a spin-flip can take place only for
very large mass ratios if the black holes are initially rapidly spinning and that
small mass ratios will lead to a spin-flip only for binaries with very small spins.

(d) Finally, using expression (1.141) it is also possible to determine the conditions
under which the merger will lead to a final black hole with the same spin as the
initial ones. This amounts to requiring that afin.a; �/ � a D 0 and only a very
small portion of the .a; �/ plane does satisfy this condition (cf. Fig. 5 of [20]).
For equal-mass binaries, for instance, the critical value is acrit & 0:946 and no
spin-down is possible for � . 0:192. Because of the minuteness of the region
for which afin < a, black holes from aligned-spins binaries are typically spun-
up by mergers. As it will be shown also in the following Section, this statement
is true also for other configurations and is probably true in general.

– Equal-mass, aligned/antialigned unequal spins –
Equally interesting is to consider the prediction for the final spin in the case in which
the initial black holes have equal mass but unequal spins that are either parallel or
antiparallel to the orbital angular momentum, i.e., for q D 1 and ˛ D 0; � Iˇ D
0; � I � D 0; � . Setting 2ja1j cosˇ D a1 C a2 in expression (1.147) we obtain the
simple expression for the final spin in these cases [16]

afin.a1; a2/ D p0 C p1.a1 C a2/C p2.a1 C a2/
2 ; (1.151)
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where the coefficients p0; p1 and p2 are given by

p0 D
p
3

2
C t2
16

C t3
64

' 0:6869 ; p1 D 1

2
C s5
32

C t0
8

' 0:1522 ;

(1.152)

p2 D s4
16

' �0:0081 : (1.153)

Note that the coefficients p0; p1; p2 and s4; s5; t0; t2; t3 were obtained through
independent fits of two distinct data sets. The fact they satisfy the conditions (1.152)
within the expected error-bars is an important consistency check.

When seen as a power series of the initial spins, expression (1.151) suggests
an interesting physical interpretation. Its zeroth-order term, p0, can be associated
with the (dimensionless) orbital angular momentum not radiated in gravitational
waves and thus amounting to �70% of the final spin at most. Interestingly, the
value for p0 is in very good agreement with what is possibly the most accurate
measurement of the final spin from this configuration and that has been estimated to
be afin D 0:68646˙ 0:00004 [47]. Similarly, the first-order term in (1.151), p1, can
be seen as the contributions from the initial spins and from the spin-orbit coupling,
amounting to �30% of the final spin at most. Finally, the second-order term, p2,
can be seen as accounting for the spin-spin coupling, with a contribution to the final
spin which is of �4% at most.

Another interesting consideration is possible for equal-mass binaries having
spins that are equal and antiparallel, i.e., q D 1, a1 D �a2. In this case,
expressions (1.147) and (1.150) reduce to

jafinj D jlj
4

D
p
3

2
C t2
16

C t3
64
: (1.154)

Because for equal-mass black holes which are either nonspinning or have
equal and opposite spins, the vector l does not depend on the initial spins,
expression (1.154) states that jljM2

fin=4 D jljM2=4 D jljM1M2 is, for such systems,
the orbital angular momentum at the effective ISCO. We can take this a step further
and conjecture that jljM1M2 is the series expansion of the dimensionless orbital
angular momentum at the ISCO also for unequal-mass binaries which are either
nonspinning or with equal and opposite spins. The zeroth-order term of this series
(namely, the term 2

p
3M1M2) is exactly the one predicted from the EMRL.

– Generic (misaligned) binaries: unequal mass, unequal spins –
When the binaries are generic, namely when the initial spins are oriented in generic
directions and the two masses are different, the spin expressions (1.147), (1.150)
does not reduce to a simple expression and the analysis of the physical implications
becomes more complex.

Much more challenging is also the numerical solution in these cases, partly
because they are computationally more expensive (no symmetries can be exploited
to reduce the computational domain), and partly because the evolutions start at a
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finite separation which does not account for the earlier evolution of the orbital angu-
lar momentum vector and of the spins (both of which precess). In addition, because
the final spin is oriented in directions which are in principle arbitrarily far from the
main coordinate lines, the calculation of the inclination angle from the properties
of the final apparent horizon is often non-trivial and suitable definitions need to
be introduced (see, e.g., [42]). Overall, however, expressions (1.147), (1.150) are
able to capture the behaviour of numerical-relativity calculations with errors that
are .1%.

1.6.3 Modelling the Final Mass

In this final Section I will describe briefly another algebraic expression that has been
derived to compute the energy radiated in gravitational waves and hence the final
mass of the black hole [25]. It is useful to start recalling that when deriving a simple
algebraic formula that expresses, with a given precision, the mass/energy radiated
by a binary system of black holes, two regimes are particularly well-understood.
On the analytic side, in fact, the test-particle limit yields predictions that are well-
known and simple to derive. On the numerical side, the simulations of binaries with
equal-masses and spins aligned or antialigned with the orbital angular momentum
are comparatively simpler to study, and have been explored extensively over the last
few years. Hence, it is natural that any attempt to derive an improved expression for
the radiated energy should try and match both of these regimes.

Let us therefore start by considering the test-particle limit and, in particular, a
Kerr spacetime with mass M1 and spin parameter a WD S1=M2

1 , and a particle (or
small black hole) with mass M2 on a equatorial circular orbit with radius r 
 M1.5

To first approximation (i.e., for mass ratios q WD M2=M1 � 1), the particle will
inspiral towards the black hole under the effect of gravitational-wave emission,
moving slowly (“adiabatically”) through a sequence of equatorial circular orbits
until it reaches the innermost stable circular orbit (ISCO), where it starts plunging,
eventually crossing the horizon. The energy Erad emitted by the particle during the
inspiral from r 
 M1 to the moment it merges with the central black hole can be
written as

Erad

M
D Œ1 � QEeq

ISCO
.a/	 � C o.�/ ; (1.155)

QEeq
ISCO
.a/ D

s
1 � 2

3 Qreq
ISCO .a/

; (1.156)

Qreq
ISCO
.a/ D rms;˙ ; (1.157)

5Without loss of generality, we can assume that the particle moves on a prograde orbit (i.e. in the
positive-� direction), and let the spin of the Kerr black hole point up (a > 0) or down (a < 0).
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where Qreq
ISCO
.a/ is the equatorial marginally stable circular orbit around a Kerr black

hole and thus its expression is the same as in (1.136).
Here, QEISCO and QrISCO are respectively the energy per unit mass at the ISCO and

the ISCO radius in units of m1, while the remainder, o.�/, contains the higher-order
corrections to the radiated energy.6 These corrections account, for instance, for the
conservative self-force effects, which affect the ISCO position and energy, but also
for the deviations from adiabaticity, which arise because of the finiteness of the mass
m2 and which blur the sharp transition between inspiral and plunge, and, more in
general, for the energy emitted during the plunge and merger phases.

If the particle is initially on an inclined (i.e., non-equatorial) circular orbit,
gravitational-wave emission will still cause it to adiabatically inspiral through a
sequence of circular orbits. Also, the inclination of these orbits relative to the
equatorial plane, which can be defined as [48]7

cos.�/ WD Lzp
Q C L2z

; (1.158)

with Q and Lz being respectively the Carter constant and the azimuthal angular
momentum, will remain approximately constant during the inspiral [48, 49]. As in
the equatorial case, the particle plunges when it reaches the ISCO corresponding
to its inclination �. Unlike in the equatorial case, though, the radius of the ISCO
as a function of a and � can only be found numerically. An analytical expression,
however, can be derived if one considers only the spin-orbit coupling of the particle
to the Kerr black hole, i.e., if one considers small spins a � 1. In that case, in
fact, one can explicitly check [using, for instance, equations (4)–(5) of [49]] that the
ISCO location and energy depend only on the combination a cos.�/, so that at O.a/2,
the generalisation of expressions (1.155)–(1.157) to inclined orbits is given by

Erad

M
D Œ1 � QEISCO.a; �/	 � C o.�/ ; (1.159)

QEISCO.a; �/ �
s
1 � 2

3 QrISCO .a; �/
; (1.160)

QrISCO.a; �/ � Qreq
ISCO
.a cos.�// ; (1.161)

where Qreq
ISCO

is given by (1.157). Expressions (1.159)–(1.161) reduce to Eqs. (1.155)–
(1.157) in the case of equatorial orbits (� D 0) and are therefore exact in that limit,
with the exception of the higher-order terms in �.

6I here use the Landau symbol o, so that f D o.g/ indicates that f=g ! 0 when g ! 0. Similarly,
we will also use the Landau symbol O , where instead f D O.g/ indicates that f=g ! const when
g ! 0.
7As in the equatorial case, we can consider only prograde orbits (0 � � � �=2) and allow a to be
either positive or negative.
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As mentioned above, another case in which we know accurately the total energy
emitted in gravitational waves is given by binaries of black holes with equal masses
and spins aligned or antialigned with the orbital angular momentum. Reisswig et
al. [50], for instance, showed that the energy emitted by these binaries during their
inspiral (from infinite separation), merger and ringdown can be well described by a
polynomial fit [25, 50]

Erad

M
D w0 C w1.a1 C a2/C w1

4
.a1 C a2/

2 ; (1.162)

where the fitting coefficients were found to be [25]

w0 D 0:04827˙ 0:00039 ; w1 D 0:01707˙ 0:00032 ; (1.163)

I recall that the coefficient w0 can be interpreted as the nonspinning orbital contri-
bution to the energy loss (which is the largest one and �50% of the largest possible
mass loss, which happens for a1 D a2 D 1), w1 can instead be interpreted as the
spin-orbit contribution (which is .30% of the largest possible loss), while w1=4 can
be associated to the spin-spin contribution (which is .20% of the largest possible
loss). Expression (1.162) reproduces all of the available numerical-relativity data
for the energy emitted by equal-mass binaries with aligned or antialigned spins, to
within �0:005M (except for almost maximal spins). Note, however, that higher-
order terms in the spins may be needed in Eq. (1.162) to reproduce the data for
nearly extremal spins.

Using therefore the knowledge of the radiated energy from the test-particle
limit and from the equal-mass aligned/antialigned configurations, it is possible to
derive an expression valid for generic binaries. As a first step, let us note that
the PN binding energy of an equal-mass binary of spinning black holes depends
on the spins, at 1.5 PN order, i.e., at leading order in the spins, only through the
combination

OL � .S1 C S2/
M2

D ja1j cosˇ C ja2j cos �

4
: (1.164)

One can therefore attempt to extend expression (1.162) to generic equal-mass
binaries simply by replacing a1 C a2 with ja1j cosˇ C ja2j cos � , i.e., obtaining

Erad

M
D w0 C w1.ja1j cosˇ C ja2j cos �/

C w1
4
.ja1j cosˇ C ja2j cos �/2 : (1.165)

Because in the test-particle limit the angle ˇ becomes the angle between the spin
S1 of the Kerr black hole and the orbital angular momentum of the particle, thus
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coinciding with the angle � defined in (1.158), it is natural to rewrite Eqs. (1.159)–
(1.161) as

Erad

M
D Œ1 � QEISCO. Qa/	 � C o.�/ ; (1.166)

QEISCO. Qa/ D
s
1 � 2

3 Qreq
ISCO . Qa/ ; (1.167)

where we have defined

Qa WD
OL � .S1 C S2/

M2
D ja1j cosˇ C q2ja2j cos �

.1C q/2
: (1.168)

If we now assume that the higher-order term o.�/ in Eq. (1.166) is quadratic in �,
we can determine it by imposing that we recover the equal-mass expression (1.165)
for q D 1, thus obtaining the final expression

Erad

M
D Œ1 � QEISCO. Qa/	 �

C 4 �2Œ4w0 C 16w1 Qa. Qa C 1/C QEISCO . Qa/ � 1	 ; (1.169)

where QEISCO. Qa/ is given by (1.167). By construction, therefore, expression (1.169)
has the correct behavior both in the test-particle limit and for equal-mass binaries.
It should be noted that the fitting coefficients [given by (1.163)] are obtained using
only a subset of the numerical-relativity data, that is, those for equal-mass binaries
with aligned/antialigned spins. Yet, expression (1.169) is in reasonable agreement
with all the published data, both at large and small separations. This is best seen
in Fig. 1.10, where we plot the final mass of the remnant for all the published data
for binaries with a1 cosˇ D a2 cos � (blue circles), as well as the predictions of
our expression when applied to the “small-separation” initial data of the simulations
(meshed surface). Clearly, spinning binaries with unequal mass ratios are essentially
absent, and simulations for such binaries will provide a very significant check of our
expression (1.169). Nevertheless, the simple functional dependence shown by the
available data, whose behaviour can be well captured with low-order polynomials is
quite remarkable.

The graphical representation of the data in Fig. 1.10 highlights that the largest
radiated energy, Erad.a D 1/=M D 9:95%, is lost by binaries with equal-mass
and maximally spinning black holes with spins aligned with the orbital angular
momentum. Hence, black-hole binaries on quasi-circular orbits are among the most
efficient sources of energy in the universe. Note, however, that equal-mass binaries
are not always the systems that lose the largest amount of energy. Indeed, unequal-
mass systems with sufficiently large spins aligned with the angular momentum
can lead to emissions larger than those from equal-mass binaries but with large
antialigned spins. For instance, a binary with � D 0:15 and a1 D a2 D 1 will
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Fig. 1.10 Mass of the final black hole, Mf � M � Erad, and corresponding fit for all the published
binaries with a1 cosˇ D a2 cos � . Note the simple functional dependence of the Erad, whose
behaviour can be well captured with low-order polynomials

radiate more than a binary with � D 0:25 and a1 D �a2. This is simply due to the
interplay of the last two terms in expression (1.169).
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