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Abstract The possible violation of the conventional lower
Higgs mass stability bound by the discovered Higgs boson
has far reaching consequences within particle physics and
cosmology. We discuss the possibility that nonpolynomial
bare interactions seeded at some high-momentum scale can
considerably diminish the lower Higgs mass bound without
introducing a metastability in the Higgs effective potential.
For this, we classify various deformations of the usual quar-
tic bare potential regarding their impact on stable IR physics.
We perform the analysis in a large Nf expansion, addressing
the convergence of the obtained results by taking 1/N¢ cor-
rections into account as well. In addition, we investigate the
renormalization group flow of the scalar potential on a non-
perturbative level. Within these approximations, we are able
to identify bare potentials that lead to Higgs masses below
stability mass bounds obtained from finite-order polynomial
bare interactions without introducing a metastability in the
effective potential.

1 Introduction

The Higgs boson was the long term missing piece for the
experimental confirmation of the standard model of particle
physics. It took almost 20 years from the commencement of
construction of the LHC until the Higgs discovery in 2012
[1,2]. The theoretical computation on mass bounds for the
Higgs has an even longer history dating back to the 1970’s.
From renormalization group arguments it was known that
the mass of the Higgs has to be in a finite infrared (IR) win-
dow for a given ultraviolet (UV) cutoff scale A of the stan-
dard model [3—-27]. The current measurements of the standard
model parameters, most prominently the top mass but also
the value of the strong coupling constant or the masses of
the electroweak gauge bosons, indicate that the mass of the
Higgs violates the lower Higgs mass bound within the stan-
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dard model for large A. This fact would render the effective
Higgs potential metastable if it is assumed that the renormal-
ization group running (RG) of the standard model parameters
is only dominated by perturbatively renormalizable operators
[28-32].

The situation might change once degrees of freedom
beyond the standard model enter the RG flow of the Higgs
potential. These might stabilize the potential [33—35] or even
compound the stability issue [36]. Thus, Higgs mass bounds
can also be used to constrain parameters in different scenar-
ios beyond the standard model and have been computed in
various standard-model extensions [37-65].

In the spirit of effective field theories, the yet unknown
degrees of freedom beyond the standard model can be
parametrized by higher-dimensional operators in order to
perform model-independent analyses. These
higher-dimensional operators are generically generated by
the underlying structure of the standard model and can influ-
ence the RG running in various ways.

For instance, the impact of a bare A3¢° coupling at the
cutoff scale can diminish the lower Higgs mass bound in
Higgs—Yukawa models mimicking the Higgs-fermion sector
of the standard model [66—68]. Incorporating also the influ-
ence of the gauge bosons on the RG running, it can be shown
that Higgs masses 1 GeV below the conventional stability
bound at the Planck scale are still compatible with stable
Higgs potentials [69]. A simple RG mechanism explains this
fact. While the impact of the RG irrelevant coupling A3 on the
other couplings rapidly dies out according to Wilsons argu-
ments in the vicinity of the Gauflian fixed-point, this operator
is able to stabilize the Higgs potential in the deep UV even
if the quartic Higgs coupling drops below zero. Thus, a pos-
sible instability scale can be shifted towards larger scales,
leading to a diminishing of the lower Higgs mass bound.

As the conventional stability bound is usually associated
with a vanishing quartic Higgs coupling at some UV scale,
it is useful to introduce a new lower consistency bound for
the mass of the Higgs once higher-dimensional operators are
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permitted within the bare action. The latter can be defined
by the lowest possible Higgs mass given by a specified gen-
eralization of the bare action which has a Higgs potential
equipped with a unique minimum during the entire RG flow.
In particular this leads to the consistency condition that the
potential is bounded from below to obtain a well-defined
partition function of the theory.

The simple example of adding a ¢° term to the bare poten-
tial demonstrates that generalizations of the bare action can
weaken the stability problem. In fact, the instability scale of
the standard-model Higgs potential at 101 ... 10! GeV can
be shifted by at least one order of magnitude by this strat-
egy [69]. Besides the simple extension of the bare action by
polynomial Higgs self-interactions, also the impact of other
polynomial generalizations of the bare interactions has been
tested, e.g., in the Yukawa sector, confirming these results
[70,71]. However, this shift cannot be realized for an arbi-
trarily large amount of scales, as the running of polynomial
higher-dimensional couplings is dominated by their power-
counting behavior and thus they can contribute only for a
comparatively small RG time to the flow. Due to this argu-
ment, this statement will likely hold for any class of polyno-
mial bare interactions.

However, the existence of an absolute lower consistency
bound is an involved minimization problem in theory space
spanned by all possible bare potentials. Especially, the impact
and RG running of nonpolynomial bare interactions on the
Higgs mass stability issue is not explored in detail, so far.
A further relaxation of the lower consistency bound might
be possible, if a suitable nonpolynomial bare potential exists
such that the RG flow of the Higgs potential stays for a suffi-
ciently long RG time away from its power counting behavior
and the usual RG arguments in the vicinity of the GauBian
fixed-point can be circumvented.

The aim of this work is to cast a first glance on possible
modifications of the effective Higgs potential and a diminish-
ing of the lower Higgs mass bound by nonpolynomial bare
potentials. For this task, we use a systematic 1/Nf expan-
sion to investigate the properties of the effective potential.
In Sect. 2, we will introduce a toy model to concentrate
on the Higgs-top interactions as the top Yukawa coupling
is the driving force for the stability problem. After defin-
ing the theory, we will compute the effective potential for
the scalar field within a mean-field analysis which represents
the leading order contribution of the large Ny expansion. In
order to improve our analysis, we take 1/ Nf corrections in an
extended mean-field analysis into account in Sect. 3. In par-
ticular, we give constructive suggestions of possible nonpoly-
nomial bare interactions that lead to Higgs masses substan-
tially below the lower consistency mass bound of any bare
action spanned by a set of finite-order polynomials. While
it is straightforward to obtain such bare potentials in the
mean-field approximation, the consideration of scalar fluc-
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tuations can spoil the convergence properties of the large N¢
expansion. Nonetheless, the inclusion of scalar fluctuations
offers new mechanisms to diminish the lower mass bound at
the same time. Inspired by these results, we check how RG
improvement alters the results. In particular many nonpoly-
nomial classes show unsatisfactory convergence properties
within the 1/N¢ expansion. In Sect. 4, we investigate the
RG running of the full scalar potential on a functional level
for specific examples and reveal properties of the underlying
UV physics to obtain a stable effective potential. We finally
conclude and give an outlook in Sect. 5.

2 Mean-field analysis

As the large top mass dominates the RG flow of the Higgs
quartic coupling and is responsible for the fact that it becomes
negative at large RG scales, we will focus on a simple Higgs—
Yukawa model mimicking the Higgs-top sector of the stan-
dard model in the following. This toy model has proven use-
ful to investigate the occurrence of Higgs mass bounds in the
literature also on a nonperturbative level [23,66,72-74], see
[75] for a brief review. The classical, Euclidean action of the
model is given by

. ] _
S = / [§<au¢)2 +U@) + vidy + ihtww} : M

Demanding that the scalar potential is invariant under a Z,
symmetry, U(¢) = U(—¢), the action exhibits a discrete
chiral symmetry, ¢ — —¢, ¥ — ei%’“l/f, and Y — 1/_fei%75,
which mimics the properties of the electroweak symmetry
group within this toy model. Particularly the Dirac fermion,
which represents the top quark, can acquire a mass term only
due to spontaneous symmetry breaking.

In order to get a first, simple approximation of the effec-
tive potential which is obtained after all fluctuations are inte-
grated out, let us investigate the fermionic partition function
of this model. As the fermions appear only as a bilinear in
the action, we can integrate them out yielding the standard
fermion determinant of a Yukawa theory. We perform this
computation in Euclidean spacetime for convenience.

Zp = / Dy DPe SOV V] — =S80 Get(if + ihg), (2)
A

where Sp is the purely bosonic part of the classical action S
defined in Eq. (1). The UV cutoft scale at the functional inte-
gral indicates that we formulate this theory in the spirit of an
effective field theory with an intrinsic finite cutoff belonging
to the definition of the model. Technically, this scale can be
viewed as a UV regularization. However, it is also associated
to a physical scale. Below that scale the considered theory
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can be formulated in terms of a viable quantum field theory
to describe certain aspects of a physical system. For larger
scales, the model loses its validity and has to be replaced by
a more fundamental theory. As the standard model likely has
to be defined with such an upper validity scale and is only
an effective description of nature, we explicitly introduce a
finite but arbitrary UV cutoff scale in our toy model.

In order to extract the effective potential at an one-loop
level, we consider a homogenous mean-field for the scalar
field, ¢ (x) = const.. This is sufficient as the fermionic deter-
minant already corresponds to a loop integration. Deviations
from this homogeneous field configuration contribute only
at a higher loop level. Therefore, we obtain for the fermionic
induced effective mean-field potential

dets (—3% + h2¢?)
detp (—92)

1
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where we have chosen a normalization of the generating func-
tional that the fermion-induced effective action is normalized
to the zero field limit and €2 denotes the spacetime volume.
Moreover, we used the hermiticity property of ys, i.e., id is
isospectral to —i{.

The ratio of the functional determinants can be evaluated
straightforwardly once a suitable regularization procedure is
chosen. We use in the following a linear regulator family as is
often used in the context of functional RG equations [76,77],
in particular in the context of Higgs mass bounds [66,67,69—
71,75,78,79]. Thus, we use this type of regulator for rea-
sons of convenience to directly compare with these studies.
Moreover, functional flows or nonperturbative lattice simu-
lations along the lines of [68,80-85] will be needed to further
improve the following large Ny analysis as we will demon-
strate in the next sections. We emphasize, that the following
conclusions remain the same for other type of regulators like
a sharp momentum cutoff, zeta-function regularization, or
various classes of mass dependent regularization schemes
[67].

The effective mean-field potential can be computed ana-
lytically for the linear regulator and reads

LI A%2¢% — it (14 A
1672 ‘ ‘ hig?) 1
“

UMF =U, -

This approximation of the effective potential becomes exact
in the strict limit Ny — oo, assuming the model exhibits
N¢ copies of Dirac fermions. In the context of Higgs mass
bounds, the simple mean-field approximation has turned out
to be a remarkable good approximation already for Ny = 1 in
case the top fluctuations dominate the RG flow of the scalar
couplings, i.e., for the conventional lower mass bound. The
mean-field lower bound deviates only slightly from a non-

perturbative investigation of the stability bound including
threshold effects, RG improvement, as well as a full func-
tional flow of the scalar potential [66,79].

2.1 Higgs mass consistency bound for polynomial bare
potentials

The main advantage of this simple-minded approximation is
that the effective mass of the scalar particle can be analyti-
cally computed. It can be expressed as a function of the UV
cutoff of the model as well as of the bare parameters encoded
in the bare potential U, [66],

"
mi = UMF (v)
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where v is the nontrivial minimum of the effective potential
of the scalar field Ug[fF /(v) = (0, given by the Fermi scale in
the standard model. We exchanged the bare Yukawa coupling
by the top mass parameter as we fix this coupling in the deep
IR by a suitable renormalization condition which is given by
my = hv for our simple approximation. Again, this is an
oversimplification of the complex RG flow of the standard
model but sufficient for our qualitativ investigation at the
moment. Even though we consider only a toy model here,
we choose m; = 173 GeV and v = 246 GeV in order to
make contact with standard-model physics in the following.

Assuming that the bare potential at the cutoff scale is given
by only perturbatively renormalizable operators, i.e., Uy =

my o0 Ao 44
%+ FH 9%, we get,
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yielding a mass which is a monotonically increasing func-
tion of the bare quartic coupling Ay A for a given cutoff A
and fixed top mass m. Thus, we obtain a natural lower mass
bound for the Higgs, min my = mu (A2, o = 0), for the class
of quartic bare potentials, for which the Higgs mass is entirely
build up from top fluctuations. Lower Higgs masses cannot
be meaningfully obtained in this Higgs—Yukawa model, as
already the bare potential would be unbounded from below
for negative bare quartic couplings. Hence, the effective
potential would suffer from an instability as well. This con-
clusion is a direct consequence from the fact that the asymp-
totic behavior of the potential cannot be altered by the RG
running as can be seen from the properties of exact RG flow
equations [86], for instance.
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However, as long as the underlying structure of the stan-
dard model is unknown, other interactions beyond the power
counting renormalizable operators cannot be excluded at the
cutoff scale. Currently, no experiment is able to put con-
straints on these higher-dimensional operators. The simplest
possible extension of the quartic bare potential is by other
polynomial interactions at the cutoff scale,

N
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Including these operators in the computation of the Higgs
mass, we obtain

2 m i 1+A_2 _3A% 4+ 2miA?
H™ 4022 m}
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The contribution from the RG irrelevant couplings A,>3,A to
the effective mass of the Higgs field is suppressed by suitable
powers of the cutoff A as one would expect from a dimen-
sional analysis in the vicinity of the Gauflian fixed-point.
Thus, for a sufficient large separation of the electroweak scale
from the scale of new physics, the IR observables are almost
independent of these modifications of the bare action and are
far beyond the current precision measurements.

Even though the higher-dimensional operators do not have
adirectimpact on the observable IR Higgs mass, they modify
the stability considerations and thus have an indirect impact
on the position of the lower stability bound. At this point it
is important to keep in mind that the stability mass bound
does not contain only information about the IR physics but
also of the UV embedding of the standard model. In the
presence of positive A,,>3, A a negative bare quartic coupling
can be permitted in the UV, as the higher-order couplings can
potentially stabilize the scalar potential without introducing
a meta- or instability on all RG scales.

Let us exemplify this by a generalization of the bare poten-
tial by a simple A3¢°® operator along the line of [66,67,79].
For quartic bare potentials, Eq. (6) can be viewed from two
perspectives once the mass of the Higgs is known. We can
either fix the quartic coupling by the mass of the scalar par-
ticle for a given cutoff or we are able to compute the scale
of maximal UV extent of the model which is determined by
the lower mass bound A o = 0. If a Higgs mass of 125
GeV is required, the scale of maximal UV extent is given by
Agya ~ 107 GeV within our Higgs-top toy model for a top
mass of 173 GeV. To push the cutoff scale even further, neg-
ative values of the bare quartic coupling have to be chosen
which induce an instability in the bare potential as well as
in the effective potential. This problem can be circumvented
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once a A3, A¢° operator is allowed. The requirement of a bare
potential that is bounded from below translates into a positive
A3, A coupling. Having a negative quartic coupling, the lower
mass bound is indeed diminished as the contribution from the
positive A3, A to the effective Higgs mass is highly suppressed
by the cutoff, see Eq. (8), which leads effectively to a larger
cutoff for a fixed Higgs mass. Besides implications for the
Higgs mass an additional ¢® operator affects also tunneling
rates in case a second minimum is present [§7-91], see also
[92] for a specific beyond the standard model scenario, or the
electroweak phase transition [93,94].

Unfortunately, the instability scale cannot be arbitrarily
shifted by this simple generalization. Suppose A3 o = 3. For
this value, the bare quartic coupling can safely be dimin-
ished until it reaches Ay o = —0.065. For smaller A 5 the
bare potential can be stable with a unique minimum at vanish-
ing field amplitude, however, the effective potential develops
a second nontrivial minimum rendering the effective poten-
tial metastable due to the interplay of the nontrivial struc-
ture of the bare potential U, and the top fluctuation induced
part of the effective potential [79]. While for a quartic bare
potential the extremal condition of the effective minimum
Ué\ng/ = 0 has only one nontrivial Z;-symmetric solution,
the richer polynomial structure allows for more solutions in
the generalized case. Thus, the metastability arises for dif-
ferent reasons than the previous stability problem for quar-
tic bare potentials. Nonetheless, even for the seeming small
value of A o = —0.065 the cutoff scale can be shifted by an
order of magnitude to A ~ 108 GeV.

This simple example demonstrates how irrelevant interac-
tions can weaken the stability issue. Nonetheless, the large
gap between the instability scale in the standard model and
the Planck scale can unlikely be bridged by polynomial inter-
actions at the cutoff scale. Of course, it is possible to add more
terms beyond the ¢® generalization. However, for these type
of finite-order polynomial bare interactions, the second min-
imum in the effective potential beyond the Fermi minimum
is usually at the order of the cutoff scale ¢mpin/A ~ O(1) and
generically developed by a first order phase transition during
the RG flow if not already present in the bare potential for
sufficiently large absolute values for A2 5. As these higher-
dimensional operators are even more strongly suppressed by
the cutoff scale, and the corresponding couplings X, die out
faster, any finite-order approximation of the bare potential in
terms of polynomial interactions will not be able to prevent a
metastability in the effective Higgs potential for a sufficiently
light Higgs.

Of course, an exception could be given by rather exotic
finite-order polynomials that have a large higher-order cou-
pling, A, > 1. For instance, the scale of maximal UV extent
can be pushed to A ~ 10° GeV if A3.a = 100 for myg = 125
GeV. As a rule of thumb within this mean-field approxima-
tion, a coupling A3 A ~ O(Az/(10A¢4)2) is required to sta-
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bilize the scalar potential where A4 is the instability scale
if only power counting renormalizable operators are consid-
ered in the bare action. Nevertheless, this type of solution
comes with a grain of salt. Albeit it cannot be ruled out a
priori, it is very unlikely that the underlying structure of the
standard model generates a finite-order polynomial potential
for the scalar field that singles out one (or a few) dimen-
sionless coupling, say A3 A for simplicity, which is orders of
magnitude larger than the other coupling constants.

From the Wilsonian view point every interaction term that
is compatible with the field content and the symmetries of
the model will be present at the cutoff scale. Especially the
scalar potential is an arbitrary function of the field amplitude
¢ as long as it respects the Z, symmetry. Restricting the dis-
cussion to a quartic bare potential or a bare potential with
#° term assumes implicitly that the bare potential is expand-
able in a meaningful Taylor series at the origin. In the first
instance, it is reasonable to assume that the dimensionless
higher-order couplings A, o of this Taylor series are of order
one, also to guarantee a suitable radius of convergence to
obtain trustable results within a finite-order approximation.
The situation might change once an infinite series is consid-
ered with increasing higher-order coupling strength. For this,
a full functional analysis as well as appropriate resummation
is required.

2.2 Higgs mass consistency bound for nonpolynomial bare
potentials

In case of a finite-order Taylor-like bare potential, we have
seen that a new lower consistency bound can be formulated.
This bound is a few GeV below the conventional stability
mass bound which is derived for power counting renormal-
izable operators but still guarantees a unique minimum of the
potential at all RG scales. However, it is only able to push the
conventional mass bound by one order of magnitude towards
larger scales. Also, polynomial generalizations in other sec-
tors of the bare action, e.g., by generalized Yukawa inter-
actions h(¢p2)¢yy [70,71], seem to not further diminish
this lower mass bound. Thus, this bound might be univer-
sal for any bare action with polynomial interactions where
the higher-order dimensionless bare couplings are of order
o).

In order to further diminish the lower Higgs mass consis-
tency bound, we now focus on nonpolynomial bare interac-
tions. A variety of possibly viable extensions regarding the
stability issue might exist in the infinite dimensional theory
space of all possible bare potentials. Minimizing the lower
consistency bound is thus an intricate problem and clearly
beyond the scope of this work. We will rather classify the
implications of different nonpolynomial structures within the
bare potential on the stability issue and the IR physics and
present constructive examples that diminish the polynomial

lower bound without introducing a metastability in the effec-
tive potential in the mean-field approximation and beyond.
In particular, we investigate three different cases. Bare
potentials which can not be expanded in a Taylor series at
vanishing field amplitude, potentials with a finite radius of
convergence, and potentials which can be written in a power
series with infinite radius of convergence. Some of these
potentials might be motivated by underlying physics that can
be described in the context of a quantum field theory, like
Coleman-Weinberg type potentials which arise by integrat-
ing out heavy degrees of freedom. By contrast, the underly-
ing structure of the standard model does not necessarily be
explainable by yet known methods and techniques. For this
reason, we do not want to restrict to a specific scenario.

2.2.1 Bare potentials with vanishing radius of convergence

The lower mass bound is essentially built up from the loga-
rithmic term in Eq. (5) induced by top fluctuations. As a first
example, let’s try to weaken this impact by modifying the
standard ¢* potential by a logarithmic structure that will eat
up the fermion fluctuations,

2
m
Up = TA¢2+

A2, A

2
: ¢* —ag*In <1+A—), 9)

be?

with positive constants a and b. Note, that this bare potential
and also the effective mean-field potential is bounded from
below if and only if A o > 0. For further convenience, we
choose a = b?/(167?) as this is sufficient for our following
purpose. In this case it is straightforward to see that parameter
regions exist that can diminish the lower Higgs mass bound
drastically without introducing an instability. The simplest
example is given by the choice b = h2. The logarithmic
modification of the quartic bare potential exactly cancels the
top fluctuation induced part in the mean-field potential. Thus,
the effective mean-field potential only has a simple ¢* form
and is stable for positive A» 4 which is anyhow required for
a stable bare potential. The Higgs mass can then be freely
adjusted according to the precise value of the quartic coupling
for any value of the cutoff scale.

Also for other values of b, the impact of the fermionic
fluctuations can be significantly weaken, depending on the
ratio b/ h?. Inserting the bare potential (9) into the mean-field
approximation of the Higgs mass (5), the lowest possible
value of b can be determined by the consistency constraint
Az2,n > O for a given cutoff and Higgs mass. For instance,
for b > 0.36 the cutoff scale of our toy model can be pushed
by at least five orders of magnitude compared to quartic bare
potentials towards A = 102 GeV for my = 125 GeV with-
out introducing a metastability or instability in the scalar
potential. For smaller values of b, a negative bare quartic
coupling is needed to obtain the desired Higgs mass, render-
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ing the potential unstable. Larger values of b allow for a fur-
ther increase of A. Similar analyses can also be performed
for a # b?/(167?), of course, where large regions of the
parameter space regarding a and b exist which diminish the
lower bound considerably once this particular logarithmic
modification of the bare potential is permitted.

Besides this specific logarithmic extension of the bare
potential, we tested a variety of other functions. The obvious
difference between the In-type bare potential and polynomial
generalizations is the singular structure of the potential (9)
at the origin, yielding a potential which cannot meaningfully
expanded in a polynomial around the minimum at the origin
asio p ~ limy_oIn(1/¢?) and Ay>3.4 ~ limg_o 1/¢>" 4.

2.2.2 Bare potentials with finite radius of convergence

Let us now investigate whether bare potentials with a finite
radius of convergence can solve the stability problem. For
this task, we slightly modify our previous example (9) by a
mass-type coupling parameter ,

2
m
Up = TA¢2+

A2 A A2
8 UIAZ +bp? )’
(10)

¢ —agp*In <1 +

Expanding the potential (10) in a power series around its
minimum at ¢ = 0, we obtain a radius of convergence in
units of the cutoff scale A which is given by w/+/b. For
simplicity, we choose b = 1 in the following. We use this
specific function again for purely illustrative purposes. Sim-
ilar conclusions hold for other functions which have a Taylor
series expansion at the origin with a finite radius of con-
vergence like a¢? In(1 + bg? / A?), ap* arctan (> / A?), or
ag*/(1 + by /A?).

Regarding the stability issue, we observe the following.
We are able to diminish the lower mass bound even below the
consistency bound of generalized polynomial bare potentials
if a suitable value of y is chosen. In order to shift the cutoff
by n orders of magnitude from the ¢* instability scale A =
10" A ot = 107" GeV, the parameter u has to be of the order
O107") or smaller. This implies that the nonpolynomial
structure of Eq. (10) is able to solve the stability problem
only if the radius of convergence is close to or smaller than
the instability scale A4 as one would naively expect.

From a conventional perspective one might be tempted
to argue that new physics has to show up below the scale
A¢4, based on these results. For instance, structures as they
appear in the potential (10) might be generated from a heavy
massive bosonic particle which couples directly to the Higgs
field and has a mass given by wA. Asonly for uA S Ay the
potential is stabilized, the occurrence of new physics is below
the instability scale, solving the stability problem trivially.
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However, we would like to emphasize at this point that this
has not necessarily to be the case.

From a more conservative point of view, Nature might be
only described by the degrees of freedom and symmetries of
the standard model up to scales A >> A yq, if nonperturba-
tive effects in terms of nonpolynomial structures in the bare
potential are present and dominate the RG flow above a cer-
tain scale given by uA < A 4a. In this case, the Higgs poten-
tial can be meaningfully described in terms of a polynomial
series at small field amplitudes, ¢ < A, especially near
the electroweak scale, implying that a perturbative descrip-
tion suffice to explain current collider data. Above the scale
A nonperturbative effects seeded by the bare action at some
high scale A may render the effective potential stable without
introducing new degrees of freedom or new particles below
the cutoff scale.

One might be worried about the fact that a seemingly
unnatural small value for u has to be generated at the cut-
off scale to obtain a sufficiently large separation between the
cutoff and the instability scale. However, the parameter p
is not associated to a specific coupling as usually occurs in
a perturbative analysis but rather contributes to the specific
properties of a full coupling functional in terms of the poten-
tial (10) and a functional investigation for all field amplitudes
is needed to capture the entire nonperturbative effects. In that
sense we formulate no constraint on this parameter. It rather
classifies to which subspace the potential belongs in theory
space. In that sense, the specific example for the bare poten-
tial in Eq. (10) can be understood as a placeholder for any
potential with an analogous structure. It is merely chosen for
an illustrative example in terms of elementary functions.

2.2.3 Bare potentials with infinite radius of convergence

Besides the two considered examples in Egs. (9) and (10) rep-
resenting bare potentials which have not a well-defined poly-
nomial expansion at the minimum or a finite radius of con-
vergence respectively, also a third possibility can lead to the
desired properties which we already have sketched at the end
of the previous subsection. Suppose the underlying theory of
the standard model generates an infinite polynomial series
with an infinite radius of convergence but sufficiently strong
higher-order interaction terms. Then, the Taylor approxima-
tion of the potential converges for every field amplitude but
with a slow rate of convergence such that very high truncation
orders are needed to capture the relevant properties.

For this type of bare potentials, we use a simple exponen-
tial function for illustration,

bp?

s 002
20 4 4 gt et (11)

2
m
A —2¢+—8
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In case b (and a) are of order O(1) or smaller, only a few
terms in a Taylor approximation are needed to properly inves-
tigate the properties of the effective potential regarding the
instability issue and we fall back into the discussion below
Eq. (7) as the bare higher-dimensional couplings A, A are of
order one. The situation changes if » >> 1. In this case, the
higher-order couplings grow according to A, o ~ b"~2 for
n > 2 until the factorial n! in the denominator of the series
coefficients of the exponential function takes over ensuring
the convergence properties of the Taylor series. Depending
on the precise value of b, several terms have to be consid-
ered within the polynomial approximation and especially the
’low-dimensional’ coupling constants A3, A4, --- become
large. However, this is not problematic as the full series can
be added up to an exponential function with large b by con-
struction within our example.

In order to diminish the lower bound by this strategy, a
sufficient large b has to be chosen such that the occurrence
of a second minimum at large field amplitudes ¢min ~ A
driven by a negative A 4 is suppressed but still small enough
that the impact of the new contributions do not alter the small
field behavior of the plain ¢* structure. Otherwise the lower
mass bound would increase due to the strong coupling of
the higher-order operators. Our rule of thumb derived for the
#° class of bare parameters is already a good indication for
the specific example given by Eq. (11) as the potential can
be expressed in terms of a power series where A3 o ~ b. In
order to shift the cutoff scale n orders of magnitude away
from the ¢* instability scale, A = 10" A g, b has to be of
the order O(A2 / (10A¢4)2). This might imply rather large
values for b but again, we deal here with a full coupling
functional instead of an extension in terms of an additional
single coupling. In the sense the parameter ; was used for
the bare potential (10) to classify the nonpolynomial effects
that lead to a finite radius of convergence, b can be used to
pick an example of the class of potentials with a specific
rate of convergence towards the full function. Then, a large
value b signals that a sufficiently slow rate of convergence is
required.

Aside from this example with a rather large parameter, also
potentials can be constructed with parameters of order one for
the sake of complexity regarding the functional dependence
on the field amplitude. For instance the cutoff scale can be
pushed towards 10° GeV in our toy model for a bare potential
given by,

Up = 7A¢2 + =20 +agtele™ (12)

A2, A
8

fora=1,b=c=2orto A = 109GeV fora = 1,b =
¢ = 4.75. Similarly higher values of the scale of maximal UV
extent can be approached, e.g., by replacing the exponential

by exp(bexp(c exp(dp?/A?))), we can achieve A = 10'!
GeVforb=c=d=1.7.

To briefly summarize, two strategies can be used to
weaken or even solve the stability problem of the standard
model Higgs sector in terms of generalized Higgs interac-
tions at least in the large Ny limit. First, the nonpolynomial
structure has no impact on the shape of the effective poten-
tial near the electroweak scale. Then, a negative quartic cou-
pling is needed to diminish the lower mass bound and the
nonpolynomial interactions have to compensate the occur-
rence of a second minimum at large field values near the
cutoff scale driven by the negative quartic coupling. The last
class of potentials with a sufficiently slow convergence rate
belongs to this case. Second, the deviation from the (;54 struc-
ture can directly affect the effective quartic coupling at the
electroweak scale and thus the Higgs mass. In case it sup-
presses the contribution coming from the top quark, the lower
mass bound can be diminished as well without introducing a
metastability in the effective potential. For our examples of
In-type modifications, we ensured that the large field behav-
ior is governed by a positive bare quartic coupling which
avoids the occurrence of a second minimum.

3 Extended mean-field analysis

So far, we only used a simple mean-field approximation in
order to calculate the effective potential, which is the first
contribution in a large Ny expansion. As long as the bosonic
sector is only weakly coupled and the top Yukawa coupling
dominates the RG flow, this approximation has turned out to
be useful even for small N¢ not only qualitatively but also to
some extent on a quantitative level for the lower mass bound
[66] as well as the effective potential [79], at least for poly-
nomial type bare interactions. To improve our understanding
of the nonpolynomial bare potentials, an improved calcu-
lation for the effective potential is mandatory as for some
field amplitudes the system becomes strongly coupled and
the validity of the mean-field approximation cannot be guar-
anteed.

An extended mean-field calculation is the next logical step
as this approximation takes 1/ Ny corrections into account by
including the scalar fluctuations on the same Gauf3ian level as
the fermionic fluctuations. The resulting determinant can be
computed analytically for the class of linear regulator func-
tions which we used in the previous section and the extended
mean-field effective potential reads,

[A2h2¢2 — ht¢*In (1 + A’ )}
t t ht2¢2

A2
o
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where primes denote derivatives with respect to ¢ and we
reinstated Ny merely as an ordering parameter of the calcu-
lation. For all quantitative statements, we use Ny = 1.

3.1 Bare potentials with vanishing radius of convergence

At first glance, the logarithmic extension of the quartic struc-
ture in Eq. (9) seems as an appropriate extension. However,
incorporating the scalar fluctuations to the renormalization
process, we obtain a strong contribution from the curvature of
the bare potential induced by the singular structure of the log-
arithm at the origin. Especially the quartic coupling defined
at the electroweak scale, Ay eff = UE&AFM) (¢ = v), renor-
malizes with an unusual behavior as the polynomial bare cou-
plings obtained from an expansion at the electroweak scale
behave as A, o ~ A2 4 forn > 2and A > v.
Therefore, we obtain the peculiar situation of a unique mini-
mum at the electroweak scale but Higgs masses of the order
of the cutoff scale within the extended mean-field approxi-
mation. Note that this result obviously does not diminish the
lower mass bound but circumvent the upper triviality bound
due to nonperturbative effects. Nonetheless, the upper bound
cannot meaningfully be dealt with within the mean-field or
extended mean-field approximation as RG improvement is
mandatory for such a strongly coupled Higgs sector even in
the simple case of quartic bare potentials.

Whether a full nonperturbative RG investigation which
includes RG improvement can wash out this strong renormal-
ization at the electroweak scale, leading indeed to a diminish-
ing of the lower bound, or circumvent the triviality arguments
for the upper bound cannot be answered a priori. At this point,
we are only able to conclude that the singular behavior of the
bare potential (9) spoils the convergence of the 1/Ny expan-
sion for a large scale separation between the cutoff and the
electroweak scale and a full nonperturbative RG investiga-
tion is required to make a definite statement. We perform
such an investigation in Sect. 4.

Of course, this problem does not occur for small A only
a few scales above the electroweak scale, e.g., A = 10 TeV,
with a suitable value ¢ < 1. However, already polynomial
generalizations with A3 o ~ O(1) can considerably diminish
the lower Higgs mass bound for small cutoff scales.

Instead of the nonpolynomial structure of the bare poten-
tial Uy itself, there also is the possibility that the scalar fluc-
tuations induced by the curvature of the nonpolynomial bare
potential U compensate the renormalization coming from
the top for a negative a with |a| <« 1. This is only possi-
ble if the dimensionless parameter ¢ compensates the large
contribution A?/v? coming from the strong curvature of the
bare potential near the origin, i.e., a ~ v? / AZ. For instance,
we obtain a stable effective potential with my = 125 GeV
for A = 10'0 GeV, if a = —5.6 x 10713, Nevertheless, the
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reliability of this result is questionable due to the qualitative
difference between the mean-field and extended mean-field
results caused by the large effects of the scalar fluctuations
as well as RG improvement is still missing in this simple
computation.

3.2 Bare potentials with finite radius of convergence

In a similar way the In-type example with finite radius of con-
vergence, Eq. (10), does not show the desired convergence
properties. First, we observe that the contribution induced
from the scalar fluctuations to the renormalized effective
quartic coupling and thus to the Higgs mass is ~ u =2 as

can be seen by a straightforward computation,

Nem? A?

2 _ 2 —24.2 £

mH_)»quv —Saln(/L )v +m|:21n (m—t2>—3i|
15ab 1 v?
22 O (F) ()

forv €« A, u < 1, and n? « wA, where we have sep-
arated the contribution from the scalar fluctuations in the
second line. The first line contains the contribution from the
top fluctuations (last term ~ Ny) as well as the curvature of the
bare potential at the electroweak scale in the first two terms
which gets renormalized by the fluctuations, i.e., the first
line on the right-hand side represents the mean-field result.
For the mean-field case a sufficiently small u was needed to
compensate the top contributions and to ensure that the radius
of convergence drops below A 44 such that the nonperturba-
tive effects can stabilize the potential for large field values.
The scalar fluctuations included in the extended mean-field
approximation can thwart the diminishing for too small w.
Thus, we have to first answer the question whether parame-
ters exist such that these two contrary effects can be balanced
to solve the stability problem, before we turn towards the
convergence properties of this specific example in the 1/ Ny
expansion.

Choosing negative a, a critical value p.; can be found that
minimizes the Higgs mass for a given A. For u < pr the
radius of convergence shrinks which strengthens the nonper-
turbative effects, leading to larger Higgs masses and spoil-
ing the convergence of the 1/Ny expansion. For u > ey,
the radius of convergence becomes larger, implying that the
nonpolynomial structure cannot prevent the effective poten-
tial from becoming metastable. Nonetheless, the lower bound
obtained by this strategy can be below the lower consistency
bound for the class of generalized polynomial bare potentials.

However, convergence regarding the large Ny expansion
cannot be expected since the diminishing mechanisms are
qualitatively different between the mean-field and extended
mean-field approximation. The nonpolynomial deformation
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of the bare potential contributing to a modification of the
bare quartic coupling at the electroweak scale, see first two
terms on the right-hand side of Eq. (14), and the curvature of
the bare potential determining the scalar fluctuations (second
line of Eq. (14)) come with opposite sign. Thus, a change in
the sign of a is necessary to obtain stable bare potentials with
a Higgs mass below the conventional stability mass bound by
going from mean-field to extended mean-field, as in the pre-
vious case. This leads to the fact, that every set of parameters
for the bare potential (10) that solves the stability problem
in the mean-field approximation does not provide a solution
for the extended mean-field case and vice versa.

This problem might be circumvented by potentials of this
class for which the bare contribution and the contribution
induced by scalar fluctuations contribute with the same sign,
e.g., for arctan(¢?) or In(1 +¢?). However, we were not able
to find a set of parameters for these potentials that diminish
the lower mass bound considerably below the lower consis-
tency bound of the ¢° class within the extended mean-field
approximation.

3.3 Bare potentials with infinite radius of convergence

The scalar fluctuations can spoil the convergence properties
of the large Ny expansion also for the bare potential (11)
belonging to the class of potentials which can be expanded
in a polynomial for arbitrarily large field amplitude but suffi-
ciently slow convergence rate. Nevertheless, there are regions
in parameter space for this example in which the extended
mean-field approximation show merely moderate deviations
from the mean-field results.

The contribution to the Higgs mass induced by the scalar
fluctuations is ~b for the class of bare potentials modified
by an exponential function. The larger b, i.e., slower rates
of convergence, the stronger the system is coupled such that
no convergence of the results can be expected by the cur-
rent simple approximations of the effective potential and RG
improvement is required again. By contrast, the occurring
metastability cannot be prevented for too large values of the
cutoff for too small b. Following the same strategy as in the
previous case of bare potentials with a finite radius of con-
vergence, we are able to determine an upper critical value for
b which balance both effects. The lower mass bound deter-
mined by b, is depicted for A o = —0.18 anda = 10~% in
Fig. 1 as red solid line. For comparison, we plotted also the
conventional lower stability mass bound for ¢* bare poten-
tials as black solid line and the lower consistency bound for
the ¢© generalization with A3 5 = 3 as orange dashed line.
Comparing the conventional lower mass bound to the consis-
tency mass bound of the exponential bare potential, the scale
of maximal UV extent can be shifted by almost three orders
of magnitude for this specific example.

200}
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Fig. 1 Comparison of Higgs mass consistency bounds for different
bare potentials. The black solid curve belongs to the conventional lower
stability mass bound for quartic bare potentials. The orange dashed
line is obtained from the lowest possible Higgs masses for the class
of ¢° bare potentials with a unique minimum for the bare as well as
the effective potential. The red solid line depicts the lower consistency
mass bound for bare potentials given by Eq. (11) for a = 10~ and
A n = —0.18

In order to compare this lower mass bound to the mean-
field results, we fix the parameters a and b of the bare
potential but vary Ay A until the effective potential becomes
metastable within the mean-field approximation. Comparing
the obtained values for the masses within both approxima-
tions, we observe a deviation of the Higgs mass by at most
10% for the region of interest A > 10% GeV. This moderate
deviation between the mean-field and extended mean-field
Higgs mass can be traced back to the specific properties of
potentials with an infinite radius of convergence but small
convergence rate. The parameters a and b appear in a particu-
lar combination such that the small field behavior of the scalar
potential is governed by the usual power-counting renormal-
izable structure while for field amplitudes close to the cutoff
the generation of a second minimum is avoided by the strong
couplings A3, A4, - --. In order to trust these results beyond
the large Ny expansion, we perform a full nonperturbative
RG calculation in Sect. 4.

3.4 Beyond elementary functions

After the promising results of the mean-field calculation, the
extended mean-field results do not favor a scenario with
a rather simple nonpolynomial generalization of the bare
potential such that the scale of maximal UV extent can be
shifted towards the Planck scale. Although, suitable bare
potentials can be constructed leading to stable extended
mean-field approximations for the effective potential, most
of them called for RG improvement to obtain a reliable result.
At least, we were able to construct an example that further
diminishes the lower consistency bound by a few GeV with-
out spoiling a possible convergence of the 1/Ny expansion
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for the class of potentials given by an infinite polynomial
series but sufficient slow rate of convergence.

However, we would like to emphasize, that we only inves-
tigated bare potentials which were expressed in terms of ele-
mentary functions, so far. The space of all allowed bare poten-
tials is much larger. For instance, it is possible to numerically
construct a bare potential that can circumvent the stability
problem by rethinking Eq. (13). This equation can be viewed
as a nonlinear second order differential equation to obtain a
suitable bare potential once the effective potential is fixed.
The two integration constants can be fixed by demanding
that the solution respects the Z; symmetry of the model,
U, (0) = 0, and by choosing a convenient value for the in
our case unimportant offset of the potential, e.g., Up (0) = 0.
This yields a unique solution for the bare potential once
the effective potential is specified. By this strategy it can
be tested, which stable IR physics can be extended up to suf-
ficient high energy scales, in case a solution to this nonlinear
differential equation exist.

A numerical solution of this problem is depicted in Fig. 2
where the bare potential is plotted as blue solid line. For
simplicity, we have assumed that the effective potential (red
dashed line) is only given by a stable ¢* potential equipped
with a minimum at the electroweak scale and a Higgs mass
of 125 GeV. The scale of new physics is set to 10'* GeV.
Albeit the solution for the bare potential looks rather trivial
at logarithmic scales, it has a variety of noteworthy proper-
ties. The contribution coming from the scalar fluctuations to
the effective potential (second line of Eq. (13), depicted as
black dotted line in Fig. 2) is almost identical to the abso-
lute value of the fermion determinant for field values larger
than the electroweak scale. Thus, we observe a dynamical

10%8 1

108}
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1072 L¢ . . . . L
1 1000 10° 10° 102 1015
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Fig. 2 Numerical solution of Eq. (13) for the bare potential U, (blue
solid line) for A = 10'* GeV. The IR physics is governed by a quartic
Higgs potential (red dashed line) by construction. The black dotted
curve shows the contribution of the scalar fluctuation induced part as
well as the absolute value of the fermion induced part. As the difference
of both contributions are hardly visible by eye in this double logarithmic
plot, they appear as one line, indicating that both contributions almost
compensate each other
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cancellation between both contributions such that no second
minimum is generated at large field values and the effective
potential is stable.

Forlarge field amplitudes ¢ ~ 100A the differential equa-
tion becomes stiff, making it challenging to go to arbitrar-
ily large amplitudes. Nevertheless, already at scales slightly
above the cutoff scale, the scalar as well as the top fluctua-
tions approach constant values and thus do not modify the
large field behavior which is given by ¢* by construction.
For scales below A, we observe slight deviations from the
quartic structure being strong enough that the effective poten-
tial does not develop a second minimum but small enough
near the origin such that the IR physics is not affected by
this modification and a Higgs mass of 125 GeV can be
obtained.

Besides the example depicted in Fig. 2, we also inves-
tigated the construction of the bare potential via reverse
engineering for other cutoff values as well as different sta-
ble, weakly coupled IR potentials. In all cases, the solutions
behave in a similar way as described above. Thus, not the
plain modification of the quartic structure accounts for the
diminishing of the lower mass bound without introducing a
metastability as was suggested in the mean-field approxima-
tion but the scalar fluctuations described by the curvature of
the bare potential. In this case, the scalar fluctuations have
to play a similar dominant role as the top fluctuations but
are not given in terms of a single strong coupling constant
though induced by the nonpolynomial deformation from the
quartic structure. This behavior was also seen for the In-type
modifications above.

Let us finally highlight, that the example depicted in Fig. 2
is also below the lower mass bound for the exponential bare
potential plotted as red solid line in Fig. 1. Even though there
is no convergence regarding the 1/ N expansion for most of
the investigated generalizations, we are optimistic that the
reverse engineering of the bare potential can also be used
for a full nonpertrubative flow equation study in subsequent
work.

4 Nonperturbative RG flow of the scalar potential

In order to improve our results, a full nonperturbative RG
study is required as most modifications of the potential
include nonperturbative structures and effects. In particular
it is important to verify whether the stabilizing effects will be
washed out once RG improvement is included. For this, the
functional RG approach formulated in terms of the Wetterich
equation [86] is an ideal tool. The Wetterich equation

1 . d
8Ty = ESTr[(F,%—i—Rk) R o = k. (15)



Eur. Phys. J. C (2019) 79:10

Page 11 of 15 10

interpolates smoothly between the classical action defined
at the cutoff scale S = I'y— and the full effective action
[' = I'k=o via an IR cutoff R and allows to investigate the
strong coupling limit, threshold effects, and the RG evolution
of a full coupling function depending on various mass scales.
For instance, the flow equation for the dimensionless scalar
potential (u = k~4U) for the considered Yukawa model can
be obtained by a systematic derivative expansion and reads,

1
ou =—du+ E(d -2+ n¢,)¢)u/

o+ dva [17 (W ng) = 17 (9% )| (16)

where primes denote derivatives with respect to the scalar
field ¢ and ny and 7y are the anomalous dimensions of the
scalar and fermion field, respectively. The threshold func-
tions l(()B/ B4 encode the loop integration over bosonic and
fermionic degrees of freedom. These can be performed ana-
lytically for the linear regulator family which we used in
Sects. 2 and 3. The threshold functions as well as the nonper-
turbative flow equations for the anomalous dimensions and
the Yukawa coupling for the considered model can be found,
e.g., in Ref. [71].

The flow equations for the quartic coupling, the mass
parameter of the scalar field, or any other higher-dimensional
scalar-self coupling can be extracted form Eq. (16) via
suitable projections. Moreover, also the RG flow of the
entire scalar potential with nonpolynomial interactions can
be addressed by solving this partial differential equation.
Of course, this is rather time consuming compared to the
functional investigation of the large Ny expansion because
a numerically stable solution has to be obtained over many
orders of magnitude regarding the RG scale k as well as the
field amplitude ¢ to separate the electroweak from the cutoff
scale.

The large N expansion has shown that the class of polyno-
mials with infinite radius of convergence exhibit promising
properties to solve the stability issue. It is at least reasonable
to expect that this type of diminishing is also present in the
full flow for the following reason. Usually, the impact of the
higher-dimensional coupling 13 on the quartic coupling A5 is
washed out after a few RG scales as the RG running of A3 is
governed by its power counting behavior. In case the running
of A3 is driven by a large A4 for a sufficiently long RG time,
the impact on A, can be extended. The even faster die-out
of L4 can be compensate by an even larger coupling As and
so on. A similar mechanism can also be used to circumvent
the triviality problem of the scalar sector in gauged-Higgs
models which become asymptotically free [95]. Therefore,
we restrict our following considerations mainly to this spe-
cific class. Nonetheless, as the higher-dimensional couplings
behave as b" /n! for the exponential bare potential (11) the

described mechanism can only bridge a finite (but possibly
arbitrary) amount of scales as " /n! — 0 for fixed b and
n — o0.

A useful property of this class is that some of the char-
acteristics of the full functional solution can be investigated
in a polynomial truncation of the potential. A similar obser-
vation has been made for bare potentials with finite-order
polynomials. Although, a polynomial projection on the flow
of the potential covers only local information in field space,
the radius of convergence at intermediate RG scales k is usu-
ally still large enough to spot a potential metastability for
polynomial-type bare potentials [79]. We also observe this
behavior for exponential-type bare potentials for sufficiently
high truncation orders. We examine this by comparing the
solutions of the full flow, i.e., solving the partial differential
equation (16), to a finite polynomial approximation A,,¢>"
up to n = 16 for selected initial conditions.

According to our previous investigations on the stability
issue for finite-order bare potentials, we have checked the
convergence of our results for different truncations. These
checks include improvements of the derivative expansion
by comparing results of a local potential approximation to
results which include scale-dependent wave function renor-
malizations. In addition we tested the stability of our results
by including other higher-order operators from the Yukawa
sector by allowing for a (polynomial) Yukawa potential /1 (¢>)
during the RG flow. Technical details on such truncation test
can be found in [66,67,71,79]. For the class of exponential-
type bare potentials, we observe satisfactory convergence
properties even in the strong coupling limit similar to the
previous results for polynomial bare potentials.

Most importantly, we are able to find initial conditions
for the flow equation which can considerably diminish the
lower mass bound of quartic bare potentials as well as the
lower consistency mass bound for finite-order bare poten-
tials. Choosing Eq. (11) as initial potential at the cutoff scale
with a = 1 and positive b, we are able to choose a nega-
tive quartic coupling as long as the potential is stabilized by
the exponential modification. In qualitative agreement to the
large Ny expansion, we observe that some critical 15", exist
for fixed b which defines a new lower consistency bound for
this specific class of bare potentials. For 1 o > A5, the
scalar potential is stable during the entire RG flow, while
for A2 o < AS", a second minimum is generated due to the
nontrivial intefplay between the scalar and fermionic fluctu-
ations. We plot the deviation of this new lower consistency
bound from the lower stability bound for quartic bare poten-
tials in Fig. 3 as black circles for b = 1/2, red squares for
b =5, as well as blue triangles for b = 50.

For comparison, we also plot the results obtained from
the mean-field and the extended mean-field investigation as
dashed and solid lines, respectively. For sufficiently small
b where the scalar potential is still in a regime which can
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Fig. 3 Deviation of the lower Higgs mass consistency bound for
exponential-type bare potentials from the lower stability bound for quar-
tic bare potentials. The black curves correspond to b = 1/2 while the
red and blue curved are computed for b = 5 and b = 50, respectively.
Dashed lines depict mean-field results, solid lines take 1/Nf correc-
tions into account, and the circles (b = 1/2), squares (b = 5), and
triangle (b = 50) show results of the full RG flow of the scalar potential
including RG improvement

be described with perturbative techniques or can be approx-
imated by a finite polynomial including only a few terms,
the deviation between mean-field and extended mean-field
results (black curves) is hardly visible by eye. Likewise the
deviation from the full flow equation study is small such that
the large Ny approximation of the effective potential is a suit-
able tool to obtain a first glance on the IR properties in this
regime. Once b is increased, the solutions start to deviate
on a quantitative level but at least the qualitative features
can be captured by all different approximations. It seems
that the extended mean-field results generically overshoot
the impact of the scalar fluctuations. This is not surprising as
RG improvement is missing in the 1/ N expansion. Thus the
strongly coupled scalar fluctuations contribute over too many
scales as only the bare propagators are used to integrate out
modes. Their contribution is weakened in a full flow equa-
tion study as the large contributions from higher-dimensional
couplings die out during the flow. Nonetheless, the impact of
these nontrivial interactions modifies the flow of the poten-
tial in the UV in such a way that the scalar potential remains
stable during the entire RG flow.

The diminishing effect decreases for larger values of the
cutoff like for the case of a finite-order polynomial modifi-
cation of the bare interactions. Nonetheless, we would like
to emphasize that we were able to demonstrate that the insta-
bility scale can be shifted by 3 orders of magnitude with the
considered initial conditions up to » = 50 and the difference
of the resulting Higgs masses between the lower bounds is
by a factor 2-3 bigger for the exponential modification com-
pared to any finite-order polynomial. Going to even larger
values of b and thus lower Higgs masses is not a conceptual
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but numerical issue as it becomes challenging to compute a
numerical stable solution in this case.

So far, we have only investigate the exponential func-
tion given in Eq. (11) as a representative of a bare poten-
tial with infinite radius of convergence. However, it is not
likely that the underlying physics of the standard model will
solely generate an exponential modification of the standard
quartic structure of the Higgs potential at the cutoff scale
A. Nonetheless, we would like to emphasize that the results
presented here will be similar for any potential which can be
expanded in a Taylor series with sufficient slow rate of con-
vergence. In order to substantiate this conjecture, we perform
the following tests.

First, we investigate variations of the plain exponential
structure given in Eq. (11). Therefore, we add a fixed order
monomial ;—",’¢2N to the exponential modification of the quar-
tic Higgs potential. The results in the following do not alter
if either the full functional flow of the bare potential or only a
(sufficient high) finite-order approximation of the exponen-
tial function is studied. In case of a finite order polynomial
approximation, we ordinarily choose N to coincide with the
highest order exponent but the results do not change if N is
smaller. Now, we crank up the coupling ¢y which serves as
a measure for the departure of the exponential. As this test
becomes numerically expensive for increasing N, we focus
onb = 1/2aswellasb = 5 for A = 109, 107, and 108
GeV, and b = 50 at A = 107 GeV. We choose these cutoff
values simply because the instability scale of this toy model
is of order O(107) GeV for a Higgs mass of 125 GeV for the
considered toy model.

For all tests we find approximately the same pattern. The
modification influences the low energy physics only if a
certain critical order of magnitude of the coupling cy is
approached. For instance, the stability of the Higgs poten-
tial and the IR Higgs mass is not altered as long as c4 < 10.
Once ¢4 becomes O(10), we obtain a slight increase of the
Higgs mass of O(0.1) GeV and a shift of a few GeV if ¢4 is
O(100). As long as the Higgs mass increases, the potential
remains stable during the entire RG flow. For larger N the
maximal order of magnitude of the coupling increases. It can
be estimated by ¢y & 1025V =8_ Aslong as ¢ is smaller, the
IR physics is altered by less than a GeV. Thus, we observe a
certain flexibility of the UV potential around the exponential
function.

Apart from this study, we have also checked that simi-
lar shifts of the lower Higgs mass bound are possible for
other functional structures, e.g., by replacing the exponential
by a cosh or a nested exponential structure like eebxz/z. For
instance, the shift of the lower Higgs mass bound for b~02
is roughly the same as in case of the exponential modifica-
tion with b = 1/2. As long as the lower order coefficients of
the Taylor expansion of the investigated function are of the
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same size as in the exponential case, we find similar shifts
of the Higgs mass consistency bounds without introducing a
metastability in the Higgs potential.

This fact can also be understood from the above mentioned
point of view. The stability issue of the Higgs potential and
mass is mainly governed by the running of the quartic cou-
pling for the class of bare potentials with infinite radius of
convergence. This running is directly modified by A3 and (in
the broken regime) A4. Higher-order couplings have only an
indirect impact via the running of these two couplings. Thus,
the lower order contributions of the expansion will have the
dominant impact as long as higher order couplings do not
become exorbitant large. Any function with a low order Tay-
lor expansion similar to the exponential function will result
in the same IR physics and therefore a similar shift of the
mass bound. Thus, we view the exponential just as a repre-
sentative of the class of functions which can be expanded in
an infinite Taylor series with a certain rate of convergence.

5 Conclusions and outlook

In this work, we addressed the impact of nonpolynomial bare
interactions on the stability of the Higgs potential and the
related lower Higgs mass consistency bound. We found that
deviations from the usual polynomial interactions might have
the possibility to circumvent the RG arguments which lead
to a metastability of the Higgs potential at large field values.
It was possible to construct various classes of bare potentials
that lead to an considerably shift of the scale of new physics
towards larger scales or even solved the stability problem
within a large Ny approximation for the effective potential.

Improving the results by taking 1/Ny corrections into
account, the space of allowed bare potentials obtained from
the mean-field analysis that are compatible with observed IR
physics was further constraint. At the same time, the extended
mean-field analysis offered new mechanisms to shift the scale
of new physics towards larger scales. In particular it turned
out that the nonpolynomial structures have to impose strong
contributions from the scalar fluctuations. This mechanism is
remarkable as nonperturbative physics in terms of a strongly
coupled Higgs sector is usually associated with the upper
Higgs mass bound, here we got a first glance on how these
effects might diminish the lower mass bound.

As scalar fluctuations are not considered within the mean-
field approximation, a suitable convergence property regard-
ing the 1/Nr expansion cannot be expected. However, we
were able to construct one particular family of generalized
bare potentials that shows some convergence behavior. For
this family an example was given that was able to diminish
the lower bound below present consistency bounds obtained
from finite-order generalizations of the bare action within
the considered toy model [66,70,71]. Moreover, we demon-

strated how bare potentials can be constructed via reverse
engineering such that the effective potential does not suffer
from a stability problem and is compatible with observed IR
physics.

However, to fully establish these mechanisms a full non-
perturbative RG flow is required. The challenging part of this
task is to compute the RG flow with a sufficiently high preci-
sion in order to separate the cutoff from the electroweak scale
and the scalar potential has to be investigated beyond local
approximations to investigate its global properties. Sophisti-
cated solvers based on pseudo-spectral methods have turned
out to be useful for this [96—100]. We were able to show, that
a further diminishing of the lower Higgs mass bound by non-
polynomial bare interactions is possible, if the full flow of
the scalar potential is considered for the class of exponential-
type bare interactions with an infinite radius of convergence.
For this class, the large Ny expansion captures all relevant
effects at least on a qualitative level.

Beyond these technical considerations, this work can be
extended in various directions. Even though the Brout—
Englert—Higgs effect is much more involved in a theory
with local gauge symmetry [101-111], a generalization of
this approximation to the full standard model is, of course,
more involved but straightforward. Moreover, we considered
only nonpolynomial generalizations of the scalar potential
here but also modifications of the kinetic terms might sta-
bilize the effective Higgs potential [112]. Besides solving
the stability problem, nonpolynomial structures might also
be able to resolve other open problems without introducing
new degrees of freedom or symmetries beyond the standard
model and offer interesting properties [113]. For instance,
the impact of nonpolynomial bare potentials in terms of the
building blocks of a resurgent transseries expansion can be
investigated to obtain a sufficiently strong first order phase
transition in the context of electroweak baryogenesis [114].

In addition, the presented results can be used to constrain
the underlying physics of the standard model. For instance,
certain classes of nonpolynomial bare interactions are not
compatible with observed IR physics. In case some theory
beyond the standard model generates such a nonpolynomial
structure in the bare Higgs potential, it cannot be a viable
extension of the standard model.
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