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We present a three-parameter phase shift model whose form is the same as that of Coulomb-
modified Glauber model obtained from Gaussian nuclear densities. This model is applied to the 6Li
+ 12C and the 6Li + 28Si elastic scatterings at Elab = 318 MeV. The calculated differential cross
sections provide quite a satisfactory account of the experimental data. The diffractive oscillatory
structures observed at forward angles can be explained as being due to the strong interference
between the near-side and the far-side scattering amplitudes. The optical potentials for two systems
are predicted by using the method of inversion. The calculated inversion potentials are found to
be in fairly good agreements with the results determined from the optical model analysis in the
surface regions around the strong absorption radius. We also investigate the effects of parameters
in the three-parameter phase shift model on the elastic scattering cross sections.
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I. INTRODUCTION

The differential cross section in the elastic scattering is
an usually measured quantity in terms of scattering an-
gle. The elastic angular distributions can be calculated
from the scattering amplitude. A number of theoretical
models [1,2] have been used to analyze the elastic scat-
tering data. Nuclear phase shift is an important ingredi-
ent in the description of elastic differential cross section.
Since the scattering matrix element related with nuclear
phase shift is expressed in terms of a few parameters, the
parametrized phase shift model (PPSM) have been con-
veniently adopted [3–7] to interpret the elastic scattering
data at intermediate energies.

Meanwhile, the optical limit approximation (OLA) to
the Glauber model [8], which neglects the correction
terms in the expansion of the nucleus-nucleus phase shift
function, has been used in the analysis of high energy
elastic scattering data. If the nuclear density distribu-
tion is assumed to be Gaussian form, a nuclear phase

∗E-mail: yjkim@jejunu.ac.kr

shift can be easily obtained as an analytic form [8, 9].
The only parameter in nuclear phase shift is the ra-
tio of real to imaginary part of the forward nucleon-
nucleon (NN) amplitude because other input parame-
ters are determined from nuclear densities and NN total
cross section, respectively. The OLA to the conventional
Glauber model was suitably modified [10] by taking into
account the Coulomb distortion of the trajectory occur-
ring in the nucleus-nucleus scattering. This type of OLA
to the Glauber model is called as a “Coulomb-modified
Glauber model (CMGM)”, and have been employed [5,
10] to study the elastic differential cross section at low
and intermediate energies. In our earlier paper [11], we
presented a nuclear-modified Glauber model using the
classical perturbation of the Coulomb trajectory and it
has been applied satisfactorily to the 16O + 28Si and 16O
+ 40Ca elastic scatterings at Elab = 1503 MeV.

The elastic scatterings of 318 MeV 6Li ions on 12C and
28Si target nuclei were measured [12]. Diffractive oscil-
lations are observed at forward angles. The large angle
data, which the cross sections down to a fraction of µb
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were measured, are characterized by smooth exponen-
tial falloff pattern. Nadasen et al. [12] have used the
optical and folding models to analyze this experimen-
tal data. This elastic scattering cross sections have also
been studied [13] using the density-independent double
folding optical potentials. Recently, an analysis of this
elastic data has been made [14] within the framework of
the first-order eikonal model.

Ahmad and Arafah [15] proposed a four-parameter
phase shift model based on the Glauber model obtained
from the modified harmonic oscillator target density, and
shown that it provides an excellent fit to π± + 12C elas-
tic scattering at 800 MeV/c. In this paper, we present
a three-parameter phase shift model (TPPSM) deduced
from the CMGM on the assumption of the Gaussian nu-
cleus densities. The phase shift of TPPSM resembles the
one of CMGM in shape and enable us to derive a closed
expression for the optical potential by the method of in-
version. It is interest to examine the usefulness of this
model by applying it to the 6Li + 12C and 6Li + 28Si
elastic scatterings at Elab = 318 MeV. The calculated
results will be compared with the ones obtained from
CMGM and McIntyre PPSM, respectively. We will pre-
dict the optical potential using the method of inversion
and its results also be compared with the Woods-Saxon
optical potential determined from optical model analy-
sis. Further, the effect of parameters in the TPPSM on
the angular distributions will be investigated. In the fol-
lowing section, three-parameter phase shift model based
on the CMGM is proposed. Sec. III provides the re-
sults and discussion, in which the TPPSM calculations
for the elastic angular distribution and inversion poten-
tial will be performed and its results be compared with
the ones of other models. Concluding remarks are given
in Sec. IV.

II. THEORY

Ignoring the spin-orbit effect, the elastic scattering
amplitude between two nuclei can be written in the form

f(θ) = fR(θ)+
1

ik

∞∑
L=0

(L+
1

2
) exp(2iσL)(SL−1)PL(cos θ),

(1)

where fR(θ) is the usual Rutherford scattering ampli-
tude, σL is the Coulomb phase shift, PL(cos θ) is the
Legendre polynomial, and SL is the scattering matrix el-
ement. The S-matrix element, taking into account the
Coulomb field, can be expressed in terms of nuclear phase
shift δL(rc) as

SL = exp[2iδL(rc)], (2)

where rc is the distance of closest approach given by

rc =
1

k
(η +

√
η2 + L(L+ 1)). (3)

The elastic differential cross section is generally calcu-
lated from the scattering amplitude

dσ

dΩ
= |f(θ)|2. (4)

Assuming nuclear density for both projectile (P ) and
target (T ) as a Gaussian form

ρi(r) = ρi(0) exp(− r2

a2i
), i = P, T (5)

the nuclear phase shift δL(rc) in the Coulomb-modified
Glauber model may be written [8,10,16] as

δL(rc) =
APATσNN

4πR2
(αNN + i) exp(−r2c/R

2), (6)

where σNN is the NN total cross section, and αNN is the
ratio of the real to imaginary parts of the forward NN

scattering amplitude. The σNN value is usually obtained
from the relation [17]

σNN =
NPNTσnn + ZPZTσpp +NPZTσnp +NTZPσnp

APAT
,

(7)
where proton-proton cross section σpp (neutron-neutron
cross section σnn) and neutron-proton cross section σnp

have been parametrized as a function of energy in Ref.
[17]. At the same time, R is given by

R2 = a2P + a2T + 2βNN , (8)

where βNN is the slope parameter, and ai is the Gaussian
density parameter related with the root-mean-square ra-
dius Ri

rms as

ai =
Ri

rms√
1.5

. i = P, T (9)
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Table 1. Input parameters and χ2/N values in the Coulomb-modified Glauber model (CMGM) and three-parameters
phase shift model (TPPSM) for the 6Li + 12C and 6Li + 28Si elastic scatterings at Elab = 318 MeV. 10% error bars
are adopted to obtain χ2/N values.

Target CMGM TPPSM
aP (fm) aT (fm) σNN (mb) αNN χ2/N δ0R δ0I c(fm−2) χ2/N

12C 2.045 1.994 102.34 0.784 18.65 5.140 3.952 0.1036 3.05
28Si 2.045 2.528 102.34 0.856 19.75 8.530 5.893 0.0809 4.58

Fig. 1. (Color online) Elastic scattering angular dis-
tributions for the 6Li+ 12C and 6Li + 28Si systems
at Elab = 318 MeV. The solid curves denote the re-
sults of three-parameter phase shift model. The dotted
and dashed curves are the results using the Coulomb-
modified Glauber and McIntyre parametrized phase shift
models, respectively. The solid circles are experimental
data taken from Ref. [12].

The phase shift Eq. (6) has been applied to the 6Li
+ 12C and 6Li + 28Si elastic scatterings at Elab = 318
MeV. The only free parameter αNN is determined from
CMGM fit to the experimental data. In this calculation,
the slope parameter βNN is set equal to zero. Table
1 listed the density parameters (aP and aT ) obtained
from Ri

rms [17], NN total cross section (σNN ) and the
free input parameter αNN , together with the values of
χ2/N. The calculated results of elastic differential cross

section are presented in Fig. 1 as dotted curves. We
found that the nuclear phase shift of Eq. (6) does not
provide satisfactory fits to the elastic scattering data.
The qualities of fit in each system are poor especially
around 10◦ ∼ 30◦. These discrepancies are also reflected
by the large χ2/N−values as shown in Table 1. It seems
that perhaps the phase shift Eq. (6) of CMGM is unsuit-
able for the description of 318 MeV 6Li elastic scattering
on 12C and 28Si targets.

This situation led us to parametrize the nuclear phase
shift δL(rc) in the following manner. Instead of nuclear
phase shift of Eq. (6), we introduce a three-parameter
phase shift model of the form:

δL(rc) = δ0 exp[−cr2c ], (10)

where c is the real parameters and δ0(= δ0R + iδ0I) is a
complex parameters. This form of phase shift is the same
as that of CMGM phase shift Eq. (6). From a compari-
son of the Eq. (6) with the expression Eq. (10), one can
evaluate effective NN amplitude parameters (αNN and
σNN ) and density parameters as follows:

αNN =
δ0R
δ0I

, σNN =
4π

APAT c
δ0I , a2P + a2T =

1

c
.

(11)
Further, we can obtain a closed expression for the optical
potential U(r) by the inversion formula [10,18] :

U(r) =
4E

kπ

1

r

d

dr

∫ ∞

r

δ(rc)√
r2c − r2

rcdrc. (12)

Thus, the resulting expression for the optical potential
can be written as

U(r) = V (r) + iW (r) = −4E
√
c

k
√
π

δ0 exp[−cr2]. (13)
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Table 2. Input parameters and χ2/N values in the McIntyre parametrized phase shift model for the 6Li + 12C and
6Li + 28Si elastic scatterings at Elab = 318 MeV. 10% error bars are adopted to obtain χ2/N values.

Target Lg ∆g L′
g ∆′

g µ χ2/N
12C 29.4012 6.1409 17.5241 5.8743 3.922 4.16
28Si 46.0574 7.1066 33.3364 6.5568 3.580 6.15

III. RESULTS AND DISCUSSION

A three-parameter phase shift model mentioned in pre-
vious section has been applied to the 6Li + 12C and 6Li +
28Si elastic scatterings at Elab = 318 MeV. The calcula-
tions were carried out with χ2/N−fit to the experimental
data by treating δ0R, δ0I and c as adjustable parameters.
The corresponding input parameter values are listed in
Table 1, together with the χ2/N−values. The calculated
results of elastic differential cross sections are displayed
in Fig. 1 as solid curves. The experimental data are
taken from the work of Nadasen et al. [12]. The calcula-
tions have been found to reproduce well the elastic cross
section data characterized by both the diffractive oscilla-
tory structure (forward angles) and smooth exponential
falloff pattern (large angles). It is seen that the overall
fits to the experimental data are quite good. As Table
1 shows, reasonable χ2/N−values are obtained for each
scattering system.

Meanwhile, the phase shift based on McIntyre
parametrization [3,4] contains five adjustable parameters
and is expressed as

δ(L) = µ

[
1 + exp(

L− L′
g

∆′
g

)

]
+ i

1

2
ln

[
1 + exp(Lg − L

∆g
)

]
.

(14)
To investigate the usefulness of three-parameter phase
shift model, we used this McIntyre parametrized phase
shift model to calculate the angular distributions of 318
MeV 6Li elastic scattering on 12C and 28Si target nu-
clei. The input parameters are given in Table 2, and
the corresponding results are shown in Fig. 1 as dashed
curves. As shown in this figure, the dashed curves seem
to provide acceptable fits to the experimental data over
the whole angular range. However, the solid curves gave
somewhat more close to the experimental data than the
dashed curves. In other words, though suggested phase
shift involves three free parameters, the results (solid
curves) obtained from Eq. (10) were found to do better

Fig. 2. (Color online) Differential cross sections (solid
curves), near-side contributions (dotted curves), and far-
side contributions (dashed curves) following the Fuller’s
formalism [19] using the three-parameter phase shift
model for 6Li + 12C and 6Li + 28Si elastic scatterings at
Elab = 318 MeV.

in reproducing the experimental data than those (dashed
curves) from phase shift Eq. (14) having five free param-
eters. As Table 1 and 2 show, the χ2/N−values for each
system are lower in the calculated results with Eq. (10)
than the ones with Eq. (14). It may be said that three-
parameter phase shift model is an alternative for describ-
ing the heavy-ion elastic scattering.

The structure of angular distributions for the 6Li +
12C and 6 Li + 28Si elastic scatterings can be understood
by the near-side and the far-side decompositions [19]
of the scattering amplitude using the three-parameter
phase shift model. Fig. 2 presents the results of the near-
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Table 3. Analysis results of the Coulomb-modified Glauber (Cal. 1), three-parameter phase shift (Cal. 2) and McIntyre
parametrized phase shift (Cal. 3) models for the 6Li + 12C and 6Li + 28Si elastic scatterings at Elab = 318 MeV.

L1/2 Rs(fm) σRs(mb) σR(mb)
12C 28Si 12C 28Si 12C 28Si 12C 28Si

Cal. 1 34.23 51.72 5.51 6.75 955 1433 988 1453
Cal. 2 34.11 50.54 5.49 6.60 948 1369 991 1403
Cal. 3 34.81 52.32 5.60 6.83 987 1465 1073 1520

Fig. 3. (Color online) Real parts of the optical potential
for 6Li + 12C and 6Li + 28Si elastic scatterings at Elab
= 318 MeV. The solid curves denotes the potentials by
the method of inversion, while the dotted curves are the
potential determined by the optical model analysis [12].
The arrows indicate the position of the strong absorption
radius.

side (dotted curves) and far-side (dashed curves) contri-
butions to the elastic scattering cross sections, along with
the differential cross sections (solid curves). The diffrac-
tive oscillatory structures observed at forward angles can
be interpreted as being due to the strong interference be-
tween the near-side and far-side components. As Fig. 2
shows, the magnitudes of the near-side and the far-side
contributions are about the same at the crossing angles
θcross = 4.1◦ for 6Li + 12C and θcross = 4.9◦ for 6Li
+ 28Si. However, the far-side component becomes more
dominant at angle regions greater than the crossing an-
gles. Consequently, the far-side amplitude plays a key

Fig. 4. (Color online) Same as Fig. 3, but for the imagi-
nary parts of optical potential for 6Li + 12C and 6Li +
28Si elastic scatterings at Elab = 318 MeV.

role in determining the smooth exponential falloff be-
havior of large-angle cross section.

In Table 3, we presented the critical angular momenta
L1/2, strong absorption radii Rs and reaction cross sec-
tions σR obtained from the phase shift analysis. The L1/2

is the angular momentum corresponding to |SL|2 = 1/2,
and reflected in determining the Rs defined as Rs =
{η +

√
η2 + L1/2(L1/2 + 1)}/k. As Table 3 shows, both

the L1/2 and Rs values increase as the target mass is
heavier. The strong absorption radius can further be
used to calculate the geometrical reaction cross section
σRs (σRs = πR2

s), and the predicted σRs values are com-
parable to the ones (σR) obtained from partial wave sum.
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One of the concerns of this paper is also to obtain
the optical potential from the analysis of elastic scat-
tering data. As mentioned in previous section, three-
parameter phase shift model provides an analytic expres-
sion Eq. (13) of the optical potential from the method of
inversion. The solid curves in Figs. 3 and 4 show the real
and imaginary parts of the inversion potentials obtained
from Eq. (13) using the parameter values determined
from TPPSM fit to the elastic data. On the other hand,
the dotted curves in these figures denote the Woods-
Saxon optical potentials determined from Nadasen et al.
[12] by fitting the same experimental data. As these
figures show, two potentials agree quite well in the sur-
face region around the strong absorption radius. On the
contrary, both the real and imaginary parts of inversion
potential are found to be different from ones of Woods-
Saxon optical potential in the interior region, except for
the real potential of 6Li + 12C system. Such large dif-
ferences between solid and dashed curves in the interior
region are of little significance because the elastic scat-
tering data are mainly sensitive to the optical potential
at surface region.

The form of proposed phase shift Eq. (10) is motivated
by the one of Coulomb-modified Glauber model. Thus, it
is useful to briefly discuss the physical content from the
comparisons of CMGM phase shift with TPPSM phase
shift. Using the Eq. (11) one can estimate the NN ampli-
tude parameters (αNN and σNN ) and density parameters
from fitting parameters δ0R, δ0I and c given in Table 1.
The calculated parameter values are: (1) αNN = 1.301,
σNN = 66.58 mb and a2P +a2T = 9.653 fm2 for 6Li + 12C
scattering, and (2) αNN = 1.447, σNN = 54.49 mb and
a2P + a2T = 12.361 fm2 for 6Li + 28Si scattering. The
calculated NN amplitude and density parameters differ
from the CMGM parameters given in Table 1. This dif-
ferences are considered to be due to the fact that the
CMGM calculations did not successfully described the
elastic scattering data as shown in Fig. 1. The main rea-
sons of poor fit are thought as follows: (1) The NN total
cross section value, taking into account nuclear medium
effect [20], is generally decreased. But we used the free
space NN total cross section in this study. (2) Since the
value of slope parameter βNN at 53 MeV/nucleon is not
known, CMGM calculations were done assuming βNN =
0 fm2.

Fig. 5. (Color online) Effect of δ0R and δ0I corresponding
to the input parameters of the three-parameter phase
shift model on the elastic cross sections of 6Li + 12C
system at Elab = 318 MeV. The other input parameters
are fixed and given in Table 1.

In order to investigate the effect of input parameter δ0
(δ0R and δ0I) given in the suggested phase shift Eq. (10)
on the elastic angular distribution, we plotted the 6Li
+ 12C elastic cross section in terms of δ0R (δ0I), where
other input parameters are fixed. The δ0R (δ0I) values
are taken ±1.0 from the best fit δ0R (δ0I) value listed
in Table 1, and the corresponding results are displayed
in Fig. 5. The solid curves of this figure denote the
best fits with δ0R (δ0I) = 5.140 (3.952), while the dot-
ted and dashed curves are the results obtained by us-
ing δ0R (δ0I)± 1.0 values. This figure shows variational
trends of elastic angular distributions as the δ0R (δ0I)
values are varied. The elastic cross sections are moved
upward (downward) relative to the best fit as δ0R value
increases (decreases). On the contrary, an increase (de-
crease) in the value of δ0I pushed the calculated cross
section curve downward (upward). The differences be-
tween three curves are more apparently appeared as the
scattering angle increases, though three curves show rea-
sonably agreements at forward angle regions. Calcula-
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tions for 6Li + 28Si elastic scattering (not shown) gave
also similar results.

IV. CONCLUDING REMARKS

In this paper, we have simply presented a three-
parameter phase shift model. The form of phase shift is
the same as the one of Coulomb-modified Glauber model
obtained from Gaussian nuclear densities. It has been
applied to 6Li + 12C and 6Li + 28Si elastic scatterings
at Elab = 318 MeV. This phase shift model reproduced
satisfactorily the structures of the elastic cross sections
with a characteristics of both the diffractive oscillation
at forward angles and smooth exponential falloff pat-
tern at large angles, and showed good agreements with
the experimental data. The three-parameter phase shift
model were found to do better in reproducing the elastic
scattering data, in comparison with the results from the
McIntyre parametrized phase shift model having five ad-
justable parameters. Through the near-side and far-side
decompositions of the elastic cross section for two scat-
tering systems, we have shown that the diffractive oscil-
latory structures observed at forward angles are due to
the strong interference between the near-side and far-side
components, and the far-side one provided absolute con-
tribution in determining the smooth exponential falloff
behavior of the large-angle cross sections.

Using a three-parameter phase shift model, we have
calculated the optical potentials by the method of inver-
sion. Both the real and imaginary parts of inversion po-
tentials for each system generated fairly well agreements
in the surface regions around the strong absorption ra-
dius but differed greatly in the interior regions, in com-
parison with the results of optical model analysis. This
indicates that the elastic scattering cross section depend
sensitively upon the optical potential in the surface re-
gions rather than the interior regions. The effect of input
parameter δ0 (δ0R + iδ0I) of three-parameter phase shift
model on the elastic cross section are investigated. When
other input parameters except of the δ0R (δ0I) are fixed,
the elastic cross sections are moved upward (downward)
as the δ0R (δ0I) value increases.

Finally, three-parameter phase shift model works well
and provides reasonable optical potentials for 6Li + 12C
and 6Li + 28Si elastic scatterings at Elab = 318 MeV. It is
worth noting that this phase shift model is an alternative
for describing the heavy-ion elastic scattering.
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