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Abstract 

Motivated by the top quark condensation scenario of the electroweak symmetry 
breaking ("top-mode standard model"), dynamical chiral symmetry breaking (xSB) 
due to strong coupling Yukawa interaction is studied in the framework of Schwinger­
Dyson equations. In quenched approximation, we show existence of the dynamical xSB 
phase( (Ojo-jO) = 0, (Ol-ifa1/JIO) =f. 0) in strong Yukawa coupling region. Introducing dy­
namical fermion (tadpole) in our framework, we still have.a parameter region where xSB 
has its origin in the fermion condensate. 

1. Introduction 

The origin of electroweak symmetry breaking, which explains the masses of the weak bosons 
and fermions, is one of the most important problems in modern particle physics. In the standard 
model we introduce Higgs field ¢ = ~ (11"2 + .i7ri) which is tuned to have a non-zero vacuum 

V2 (]' - Z1r3 

expectation value (VEV) (Ojo-jO) = v. Here v is an order parameter of the electroweak sym-
metry breaking, through which the weak gauge bosons w±, zO become massive due to Higgs 
mechanism. Masses of fermions, though being in principle independent order parameters of the 
electroweak symmetry breaking, are also explained by v through Yukawa couplings with Higgs 
boson, 

T/J 
m1 = hv. 

This scenario is reasonable when all fermions have small masses, m1 ~ v. However if there 
exists a heavy fermion, m f ;;:; v, it seems rather awkward to assume that the fermion gets its 
large mass from a small VEV of Higgs field. In this case it would be more natural to consider a 
converse, i.e., the origin of v =f 0 comes from a large m f, the dynamical mass of the fermion. 

In fact, in the low energy effective theory of the technicolor models, the mass of technifermion 
determines the value of the order parameter v. 

More exciting possibility will be the top quark which may have a large mass mt ;;:; v in 

the recent experimental situation. Actually, two of the authors (M.T. and K.Y.) and Miransky 
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proposed some time ago the top quark condensation scenario[l] ("top-mode standard model"). 
In this model we no longer need elementary Higgs boson. We instead regard the large top quark 
mass as the result of certain short range dynamics of unspecified origin which breaks the chiral 
symmetry dynamically through the top quark condensate (Oltt!O) -:# 0. Because of dynamical 
xSB we obtain composite Nambu-Goldstone (NG) bosons, which give rise to masses of the weak 
gauge bosons through dynamical Higgs mechanism. We predicted a very large mass of the top 
quark mt"' 250GeV and also a composite Higgs boson H "'tt with a mass mH:::::: 2mt.* Similar 
ideas were also advanced by Terazawal2J and Nambu[3J in somewhat different terminologies and 
with different results for the value of mt. Further studies of the top-mode standard model 
have recently been done by various groups[4,S,G,7] and confirmed the very large top quark mass 

mt > 200GeV in this model. 

In our previous paperl1], we considered the case where the four-fermion interactions are 

responsible for triggering the top quark condensation at very high energy scale(~ GUT scale), and 

in fact our arguments were based on the explicit solution of the gap equation for spontaneous xSB 
in the gauged Nambu-Jona-lasinio model (four-fermion interaction plus gauge interaction)J7l 

What is the origin of the four-fermion interactions, then? One might immediately think of 
exchange of heavy spin 1 bosons with mass mv. In fact one finds[9,l0,ll] that the behavior 

of the xSB solution in this system is similar to that of the NJL model for mv "' A, based 
on the ladder SD equationflO] for is-1(p) = A(-p2)zi- B(-p2) (with "gauge parameter" f, 

Dµv(P) = -i(p2 - mi )-1[gµv - (1 - f.)PµPv(P 2 - mi )-1]); 

e2 ('2 B(y) 
B(x) = (4?r)2 lo dyyJCB(X, y) A2(y)y + B2(y)' (la) 

e2 t2 y A(y) 
A(x) =l + 2(4?r)2 lo dy ;ICA(x, y) A2(y)y + B2(y)' (lb) 

where 

2 [ ( 1 - f.)mi ] ICB(x,y)=KB(x,y;my) (3+f,)+ ./ , (2a) 
y ( x + y + mi )2 - 4xy 

2 [ (f,-l)mi ] ) JCA(x,y)=2KA(x,y;my) f,+. / , (2b 
y ( x + y + mi )2 - 4xy 

with KA and KB being defined in Eq.(6). Including gauge interaction in Eq.(l), we obtain a 

solution which is similar to that of the gauged NJL model in view of the top-mode standard 

model. (For detailed analysis, see Ref.[11].) 

However, in the case of spin 1 boson exchange, we cannot obtain such an effective four­

fermion interaction as 

Eij( ~{tn)( 1-{bn), 

through which (gC2) term in Ref.(lJ) the bottom quark acquires its mass from a top quark con­

densation. We then must assume a bottom condensate independently of a top quark condensate 

* Our recent analysis[8J, including the effect of gauge interaction on the spectrum, implies 

mH:::::: v'2.mt:::::: 350GeV. 
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in order to feed the mass to "down" -like fermions. It would be simple that the masses of fermions 
other than the top quark are also explained by the top quark condensate alone. So it does not 

seem to be the case that the interaction is mediated by spin 1 bosons. 

Here, we wish to discuss another possibility that an attractive force due to a heavy spinless 
boson exchange through Yukawa interaction causes the top quark condensation. Even if we write 
the same SU(2)L x U(l)y symmetric Yukawa interaction as the usual standard model, there will 
be in this picture an essential difference that the SU(2)L x U(l)y breaking is mainly not due to 
the VEV of the spinless boson but to the top quark condensate caused by the attractive force of 
the strong Yukawa coupling. 

Then, our task is to investigate the phase structure of the standard model with very large 
Yukawa coupling. In the following sections, we will investigate chiral phase transition of standard 
model in the framework of the Schwinger-Dyson (SD) equation and find the phase where xSB 
is dynamical. 

2. The SD equations 

In this section, we derive the SD equation for fermion propagator in the form of integral 
equation, which we can solve numerically and analytically. We discuss here SU(2)L x SU(2)R 
symmetric Yukawa interaction, for simplicity. Extension to other types of Yukawa interaction is 
straightforward. The lagrangian is given by 

£ = ~i ~1/J- ~ [~1/Ja + ~iisr1/J. ?r] +~ [(oµa)2 + (oµ1f)2]- ~6 [a2+ 112]- ~o [a2 + ;2]2. 

From the equation of motion for 1/J, i iN - "2(1/;a + i15r1/J · ?r] = O, we obtain the SD equation 

for fermion propagator, 

i ~(OIT1/J(x)-ijJ(O)IO) = ioC4)(x) + ~(OIT(a(x) + ir · ?f(xhs)1/;(:i:)~(O)IO). 

Assuming {Ol?rlO) = 0, we can rewrite the SD equation in momentum space 

. -1 110 110 J d4 
k [ p-iS (p)= v'2{0laiO)+ v'2 (

2
7r)4 Du(k)S(p-k)fu(p-k,p) 

(3) 

+D"K"(k)ifsrS(p - k)f"K"(p - k,p)], 

where Du. D"K" and Sare full propagators of a, 7r and fermion 1/J, respectively, and r u and f"K" are 
fu II vertices of 'lj;-ijJa and 'lj;-ijJ?r. . 

Under the approximation of boson propagators and vertices 

iZ3 iZ3 
Du = k2 - m2 ' D"K" = k2 - m2 , u "K" 

r . 770 r- . 110 -· 
u = -·i J2_' ir = -i J2_Ti/5, 

we obtain the integral equation (SD equation), which reads after Wick rotation 

B - 77 C (\2 B(y) 
(x) - J2v + 2 lo dy yKB(x, y) A2(y)y + B2(y)' (4a) 

C {1\2 y ~ A(y) 
A(x) = 1 + 4 lo dy ;KA(x,y) A2(y)y + B2(y)' ( 46) 
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where C = 11
2/(47r)2,x = -p2, y = -k2 and v = z;2 (0ICTIO}, 112 = Z317~. Here an ultraviolet 

(UV) cutoff/\ is introduced. The integral kernels !Cs and /CA are defined as 

Ks and KA are given by 

!Cs(x, y) = 3Ks(x, y; mi) - Ks(x, y; m;), 

ICA(x, y) = 3KA(x, y; mi)+ KA(x, y; m;). 

KB(x,y;m2) = - de----s_i_n ___ _ 2111" . 2 (} 

1f 0 x + y - 2V£Y cos e + m2 
2 = -----;;---;::::=====;;:=:;;=== 

x + y + m2 + -j(x + y + m2)2 - 4xy' 

Tf ( • 2) _ 4 ladll" VXYCOS8Sin
2 

(} .HAX,y,m =- (} 2 
1f 0 x + y - 2V£Y cos e + m 

4xy 
= 2· 

[x + y + m2 + -)(2: + y + m2)2 - 4xy] 

Note that from Eq.(Sa) CT gives repulsive force while 7r does attractive one. 

(Sa) 

(Sb) 

(6a) 

(6b) 

For the case of Yukawa interaction with a discrete chiral symmetry, CYuk = -7;_;j;'lj;CT, the 
SD equations are given by Eq.(4) with the integral kernels 

!Cs(x, y) = -Ks(x, y; m;), 

JCA(x, y) = KA(x, y; m;). 

(7a) 

(7b) 

For the case of U(l)L x U(l)R symmetric Yukawa interaction, CYuk = -7;_[;j;'lj;CT + ;j;i157/J7r], 
the SD equations are given by Eq.( 4) with the integral kernels 

!Cs(x, y) = Ks(x, y; mi) - Ks(x, y; m;), 

ICA(x, y) = KA(x, y; mi)+ KA(x, y; m;). 

In the case of the massless boson exchange, i.e., m2 = 0, Ks and KA become simple; 

1 1 
Ks(x, y; 0) = -B(x - y) + -e(y- x), 

x y 

KA(x, y; 0) = 1j_B(x - y) + :_(}(y - x). 
x y 

(8a) 

(8b) 

Then, in this case the integral kernels are the same as that of QED in ladder approximation. 

3. Solution within Quenched Approximation 

First we consider v = 0 phase. In quenched approximation, v = 0 does not mean (Ol;j;7/JIO} = 
0. In fact, as we will see in the following, there exists a chiral phase transition even in the v = 0 
phase at strong Yukawa coupling region for SU(2)i x SU(2)R symmetric Yukawa interaction. 

In the v = 0 phase, CT and 7r have degenerate masses mq = m,,. = m. Then the integral 
kernels of the SD equation Eq.(4) are written simply as 

!Cs(x, y) = 2Ks(x, y; m2), 

JCA(x, y) = 4KA(x, y; m2). 

(9a) 

(9b) 

31 



32 

Note that the integral kernels Eq.(9) are the same up to factor as those of the case of the 
massive vector boson exchange Eq.(2) in "Feynman gauge", ~ = 1. Then we obtain the xSB 
solution at strong coupling Yukawa region in the same way as the case of the massive vector 
boson exchange[lO]. 

Note that we cannot obtain the xSB solution within this approximation (only ladder, without 
tadpole) in the cases of discrete chiral symmetric Yukawa interaction (U(l)L x U(l)R symmetric 
Yukawa interaction) because of absence (cancellation) of attractive force. (See Eq.(7a ), Eq.(8a).) 

Following Ref.[10]. we approximate wave function renormalization A = 1 for analytical cal­
culation. This approximation is good if f\,...., m ~ B(O). Here we make a simple approximation 
for (6a); 

To study a scaling relation near the critical point of chiral phase transition, it is sufficient to study 
the linearized integral equation (bifurcation technique}l12l. Then we obtain a simple integral 
equation; 

B(x) = C [ rdy B(y) + 1J\~y B(y) ] , 
}M2 x + m 2 x y + m2 

(10) 

where an infrared (IR) cutoff M '.::::'. B(O) was introduced. Solving Eq.(10), we obtain a scaling 
relation[lO]; 

M2 [ -4 (?r _1 )] m2 
2 2 = exp - - tan J 4C - 1 - 2 2 . 

A + m vf 4C - 1 2 A + m 
(11) 

Critical coupling constant Cc which separates xSB phase from the symmetric one corresponds 
to the solution of Eq.(11) in the limit of M--> 0. 

let us next consider v -=fa 0 phase. In this phase m~ is zero because of the Goldstone theorem. 
Then our integral equation is given by the kernels 

K.s(x, y) = 3Ks(x, y;O)- Ks(x,y;m;), 

K.A(x, y) = 3KA(x, y; 0) + KA(x, y; m; ). 

(12a) 

(12b) 

In this phase, we can define a renormalized <f} coupling ..\ as ..\ = m;/(2v2). In the case of 
,\ = oo, Ks(x, y; m;) can be neglected. Then the SD equations are 

B(x) =_'.Z_v + ~C [.!. fdy yB(y) + 1~Y B(y) ] (13a) 
.Ji 2 x}o A2(y)y+B2(y) x A2(y)y+B2(y) ' 

A(x) =l + ~c [.2_ fdy Y
2 
A(y) + 1J\~y A(y) l (13b) 

4 x2 }0 A2(y)y + B2(y) x A2(y)y + B2(y) . 

These integral equations are the same as those of QED in ladder approximation with gauge 
parameter ~ = 3. Here, we will discuss the behavior of solution only in the ). = oo case. 

It is convenient to rewrite Eq.(13a) and Eq.(13b) into differential equations and boundary 
conditions; 

[ 
d

2 
d 3C 1 l 

x dx2 + 2 dx + 2 A2(x) + B2(x) B(x) = O, (14a) 

[ 
d

2 
d 3C 1 l 

x dx2 + 3 dx + 2 A2(x) + B2(x) A(x) = O, (14b) 
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3 d J x -d A(x) , 
x x=O 

( 1 + xdd) B(x)J = ~v, 
X x:/\2 y 2 

(l+~~)A(x)j =l. 
2 dx x=f\2 

(15) 

2 d J x -d B(x) , 
x x:O 

We define a local order parameter of the chiral phase transition: 

- _ I d
4
p 1 lo/\2 

xB(x) 
(Ol7f1/llO) = - -( )4 trS(p) = --2 dx 2( ) 2( ) • 

27r 27r o A x x + B x 
(16) 

-(01~1/llO) is a positive definite function of 77. In the case of 17 = 0, we obtain (01~1/llO) = 0. 
In the strong coupling limit 17 _.. oo, B( x) becomes large and dominates the denominator of 

Eq.(16) and we obtain -(Ol1/i¢j0) "" 1/ B(O) in that region. (This behavior is consistent with 

the strong coupling expansion which says -(01~1/llO) "" 1/17.) Then we have a turning-over point 

where the function (Ol-¢¢10) takes the maximum value*. We in fact investigate the behavior of 

this function using a numerical solution of Eq.(14). The result is given at Fig.la and Fig.lb. The 

turning-over point appears when the dynamical mass of fermion M = B(O)/A(O) has its value 

M "" /\. Note also (Ol-¢¢10) is nonvanishing at the strong Yukawa coupling region even in the 

limit of v //\ - 0 (continuum limit). 

Note that the behavior of (Ol-¢¢10) is consistent with the result of lattice MC simulation[13]. 

We next investigate the "renormalized Yukawa coupling"[l3] TJR, defined by 11R:: v'2M/v. 
The result is shown in Fig.2. Because of nonvanishing Min the continuum limit (v//\ _.. 0), this 

value diverges at the strong Yukawa coupling region. 

* Note here that this property of -(Ol-¢¢10) (existence of a turning-over point and a maximum 

value) is universa1[14] in ourframework, i.e., it does not depend on details of the interaction which 

breaks the chiral symmetry. In fact, we can explicitly show the existence of a maximum value of 

-(Ol-¢¢10) also in the; cases of strong coupling QED and the NJL model in ladder approximation. 
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Finally, we discuss the effect of dynamical fermion (tadpole) on the above analysis using the 

SD equation. 

Using the equation of motion of a, 

we obtain the SD equation for VEV of a, 

(17) 

We wish to discuss xSB due to the effect of T/Q, hence we disregard the effect of >.o here. Then, 

the value of v is determined by (01~1/JIO); 

{18) 

Unlike the case of quenched approximation, v = 0 means (01~1/JIO} = 0 in this unquenched 

case. From Eq.(4), Eq.(16) and Eq.(18), we obtain the SD equation 

4C {A
2 

yB(y) C {A
2 

B(y) 
B(x) = Z3mB lo dy A2(y)y + B2(y) + 2 lo dyylCs(x, y) A2(y)y + B2(y)' (19) 

where the kernel Ks is defined in Eq.(Sa) and the SD equation for A is the same as Eq.(4b). Here 

we must note that m 17 and m,,. are not independent quantities of 17. For example, in the strong 



coupling phase of 71 where xSB occurs, we have mir = 0 because of the Goldstone theorem. On 
the other hand, in the weak coupling phase of 71 where chiral symmetry is unbroken, mir and mo­
should be degenerate. Such an 71 dependence of mass spectrum of bosons comes from the loop 
effect of fermion in the vacuum polarization in the <1 and 7r propagators. 

Especially in the strong coupling phase, the massless pole of 7r propagator comes from mixing 
with massless bound states of fermions,i.e., composite NG bosons. Then we must solve the SD 

equations for rJ and 7r propagators and Nambu-Bethe-Salpeter equation for the bound state in a 
self-consistent manner. This is very difficult technically, however. We simply disregard the effect 
of dynamical fermion on the propagators of <1 and 7r. We only consider the effect of dynamical 

fermion on the VEV of rJ. Here we use the integral kernels !Cs, /CA given in Eq.(9). 

In such an approximation we obtain the SD equation with the effect of the dynamical fermion, 

4C ff\2 
yB(y) ff\ 2 

2 B(y) 
B(x) = Z3m~ Jo dy A2(y)y + B2(y) + C Jo dy yKs(x, y; m ) A2(y)y + B2(y)' (20a) 

A2 

( ) ,...,1 y ( 2) A(y) Ax =l +c dy-KA x,y;m 2() 2( f o x A yy+B y 
(20b) 

We calculate this integral equation numerically. Fig.3 is the result of the chiral phase transition 

of this system. In this case it is difficult to say whether the xSB is dynamical or not, because 

we always have non--zero value of v whenever xSB occurs. Hence we next discuss a criterion of 

dynamical xSB. 

The NG bosons couple to the axialvector current through its "decay constant" P,., 

The axialvector current is written as 

a - 'Ta a a 
lsµ= 1/J2'Yµ'Y51/J + rJ0µ1r - 7r oµrJ. 

We divide the NG boson decay constant into two parts; 

(Ol~~a lµ'Y51/Jl7rb(q)) =iqµF!oabe-iqx, 

{Oj<10µ7ra - 7ra0µ<1j7rb(q)) =iqµF;oabe-iqx. 

We call the xSB is dynamical, when the fermionic part of the NG boson decay constant Ff is 

sufficiently larger than the bosonic part of the NG boson decay constant F:. 

In this case the bosonic part F; is written in terms of the VEV of <1, F; = Z3v. On the 
other hand, the fermionic part Ff is written in terms of the mass function of the fermion and its 

value is order of M, Ff,...., M. Then our criterion of dynamical xSB is 

M ""'" z __ 77 (Ol~1/!IO) 
#' 3v - ;;:; 2 . 

v2 m0 

(21) 

(01~1/JIO) is given by 
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where I is determined from the high energy behavior of the fermion mass function (an analog of 
anomalous dimension[7J). 

In our numerical calculation we obtain/::::: 1.61 for m 2 = 10-3/\2, Z3mij = J\2, and/::::: 1.97 

for m2 = J\2, Z3mij = J\2. Noting Z3 < 1, we find our criterion of dynamical xSB is fulfilled for 

small m and sufficiently large UV cutoff /\. 

5. Conclusions and Discussion 

We have investigated the dynamical xSB due to strong coupling SU(2)J, x SU(2)R symmet­
ric Yukawa interaction in the framework of the SD equations. Within the quenched approximation 

we found the phase where xSB occurs while the VEV of elementary scalar field vanishes. In the 

approximation where the loop effect of the dynamical fermion affects the value of v, we discussed 

the criterion for dynamical xSB. We found the region where our criterion is fulfilled. 

We discussed here only SU(2)L x SU(2)R symmetric Yukawa interaction. However, the 

Yukawa interaction with large isospin violation is important for the top quark condensation. More 
detailed analysis including the case of isospin violation will appear elsewhere. 
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