
J
H
E
P
1
0
(
2
0
0
9
)
0
0
8

Published by IOP Publishing for SISSA

Received: August 12, 2009

Accepted: September 14, 2009

Published: October 5, 2009

Charge and mass effects on the evaporation of

higher-dimensional rotating black holes

Marco O.P. Sampaio

Cavendish Laboratory, University of Cambridge,

J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.

E-mail: sampaio@hep.phy.cam.ac.uk

Abstract: To study the dynamics of discharge of a brane black hole in TeV gravity

scenarios, we obtain the approximate electromagnetic field due to the charged black hole, by

solving Maxwell’s equations perturbatively on the brane. In addition, arguments are given

for brane metric corrections due to backreaction. We couple brane scalar and brane fermion

fields with non-zero mass and charge to the background, and study the Hawking radiation

process using well known low energy approximations as well as a WKB approximation in

the high energy limit. We argue that contrary to common claims, the initial evaporation

is not dominated by fast Schwinger discharge.

Keywords: Black Holes, Large Extra Dimensions

ArXiv ePrint: 0907.5107

c© SISSA 2009 doi:10.1088/1126-6708/2009/10/008

mailto:sampaio@hep.phy.cam.ac.uk
http://arxiv.org/abs/0907.5107
http://dx.doi.org/10.1088/1126-6708/2009/10/008


J
H
E
P
1
0
(
2
0
0
9
)
0
0
8

Contents

1 Introduction 1

2 The background 2

2.1 Determination of the Maxwell field 4

2.2 Comments on backreaction 4

3 Systems of units and orders of magnitude 7

4 Evaporation — coupling the Maxwell field 9

4.1 Hawking radiation 10

4.2 Wave equations 12

4.2.1 The scalar field 12

4.2.2 The Dirac field 13

4.3 Transmission factors 14

4.3.1 Near horizon equation 14

4.3.2 Far field solution and low energy matching 16

4.3.3 High energy approximation based on WKB arguments 18

5 Results 19

5.1 The effect of particle mass 19

5.2 The effect of BH charge on neutral particles 21

5.3 The effect of particle charge 21

6 Conclusions 24

1 Introduction

Recent proposals for extending the Standard Model of particle physics (SM) have suggested

the existence of extra spatial dimensions as a solution to the hierarchy problem [1–6]. Such

scenarios lower the strong gravity scale to 1 TeV and allow for the production of black holes

at high energies [7–10], such as the proton-proton collisions planned at the Large Hadron

Collider (LHC). For consistency with current experimental observations [11–14], the class

of allowed models is constrained. Examples are the number of extra dimensions n ≥ 3 and

the fundamental Planck mass M4+n. Another important constraint is the need to confine

SM fields on thin branes to avoid bounds from electroweak precision observables [15] and

fast proton decay [16, 17]. Then the SM fields generated by the charges trapped inside the

hypothetical black holes will be confined to the brane, rather than spreading into the bulk.

Thus their influence in the Hawking decay will differ from the non-confined case.
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The study of black hole evaporation is also interesting as a theoretical arena in which

to develop understanding of quantum field theory in curved space-time [18] and its possible

extensions [19, 20]. For Cosmology, the evaporation of small primordial black holes could

be relevant if they were produced after the Big Bang [21]. Finally in Astrophysics the tools

employed to study Hawking radiation may be applied to issues such as black hole stability

and scattering of waves around black holes [22–26].

Phenomenologically, the study of Black Hole (BH) events in high energy collisions

has evolved through the development of event generators [8, 27–30]. The latter incorpo-

rate results from Hawking evaporation to simulate the decay phase (i.e. the evaporation)

together with models for production. In this paper, we focus on the evaporation of (4+n)-

dimensional black holes on the brane. Several detailed studies appeared recently using

analytical [31–37] and numerical tools [38–48]. They focused mainly on massive rotating

black holes, so charge has been largely neglected. The usual motivation to start by ne-

glecting charge relies on the claim that the black hole quickly discharges through Schwinger

emission in the first stages of evaporation [7, 49–51]. We present detailed arguments to

show that Schwinger emission alone does not suffice to discharge the black hole. This is

due to the strengthening of the gravitational field compared to the electromagnetic field

in TeV gravity scenarios which is in contrast with the weakness of gravity compared to

electromagnetism in 4-dimensional Einstein-Maxwell theory. Thus the usual results in four

dimensions, which favour strong Schwinger evaporation [49–51], do not hold.

The structure of the paper is the following: In section 2 we construct the approximate

Maxwell field of an electrically charged (4 + n)-dimensional brane black hole starting with

a background projected Myers-Perry metric with one angular momentum on the brane. In

section 2.2, we comment on backreaction and propose an effective metric to incorporate

the effect of brane charge on the metric. Section 3 is devoted to a detailed matching of the

relevant couplings in the classical limit, taking into account the underlying assumptions of

large extra dimensions models. Some remarks are made on the relative strengths of forces.

In the beginning of section 4 the coupling of matter fields to the background is briefly

presented. In section 4.1 we summarize the relevant formulas from Hawking radiation

which apply to our case, as well as a direct estimate from Schwinger’s formula, indicating

that Schwinger discharge is not dominant. In section 4.2 we present the separated wave

equations for scalars and fermions with non-zero mass and charge. In section 4.3 we use

some approximation methods to determine analytic expressions for transmission factors

for massive charged scalars and massless charged fermions. To conclude, in section 5 we

plot our new results for various combinations of parameters and in section 6 we discuss the

main consequences for LHC phenomenological studies.

2 The background

In this study we are considering a (4 + n)-dimensional black hole space-time which is

asymptotically flat. In the context of TeV gravity scenarios for the LHC such as large

extra dimensions [1–4] or warped extra dimensions [5], they are expected to form due to

the strong gravitational interaction between colliding partons with a centre of mass energy
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well above M4+n ∼ 1 TeV [7–9]. This scale is taken to be the fundamental Planck mass in

flat (4 + n)-dimensional space-time with four infinite dimensions and n compactified extra

dimensions of typical size orders of magnitude larger than 1 TeV−1. The four-dimensional

Planck mass M4 is an effective quantity at large distances. Its large value arises from

integrating out the extra dimensions, giving a large volume factor which scales up M4+n

(see for example [2]).

Since all scales involved in the process are assumed to be of the order of 1 TeV it follows

that the black hole so formed can effectively be treated as a (4 + n)-dimensional object.

In general it will be characterized by a mass M , angular momentum J and some Stan-

dard Model charges inherited from the colliding partons. In particular, for proton-proton

collisions, since quarks are electrically charged it can have a charge Q (in this paper we

will not consider colour charges). Furthermore, at formation, it will have higher multipoles

associated with asymmetries during the collision. Due to the no hair theorems of general

relativity and some estimates in the literature [7], it is believed that such asymmetries

are lost quickly. Thereafter the set {M,J,Q} should provide a good description of the

black hole.

Early attempts to model black hole production [10, 52–55] and evaporation [38–48]

focused on mass (M) and angular momentum (J). Here we are interested in adding charge

and particle mass corrections to the evaporation. We start with the projected Myers-Perry

metric with mass M and one angular momentum J on the brane, and solve for the Maxwell

field keeping the background fixed. It is important to emphasize that we are not interested

in a Maxwell field propagating in the bulk of the (4+n)-dimensional space-time, but rather

a Maxwell field confined to a 4-dimensional brane where all the SM fields propagate.1

The background gravitational field is given by the Myers-Perry metric [56]

ds2 =
(

1 − µ

Σrn−1

)

dt2 +
2aµ sin2 θ

Σrn−1
dtdφ − Σ

∆
dr2 −

−Σdθ2 −
(

r2 + a2 +
a2µ sin2 θ

Σrn−1

)

sin2 θdφ2 − r2 cos2 θdΩ2
n , (2.1)

where

∆ = r2 + a2 − µ

rn−1
, Σ = r2 + a2 cos2 θ , (2.2)

t is a time coordinate, dΩ2
n is the metric on an n-sphere and {r, θ, φ} are spatial spheroidal

coordinates. The mass parameter µ and the oblateness parameter a are related to the

physical mass and angular momentum respectively through

M

M4+n
=

(n + 2)

2
S2+n(2π)−

n(n+1)
n+2 Mn+1

4+n µ , (2.3)

J = S2+n(2π)−
n(n+1)

n+2 Mn+2
4+n aµ =

2

n + 2
Ma . (2.4)

where S2+n is the surface area of a (2+n)-sphere and we have adopted the PDG convention

for the extra-dimensional Planck mass M4+n as in [30].

By fixing the coordinates Ωn we obtain the brane projected metric. This will suffice

as an effective metric to describe the gravitational field felt by brane fields.

1For a discussion of why this is so, see for example section 3 of [30].
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2.1 Determination of the Maxwell field

As a starting approximation, assume the Maxwell field is a perturbation on top of the back-

ground gravitational field. We want to solve Maxwell’s equations for the vector potential

Aa using the metric (2.1). The combined gravitational plus electromagnetic background

can then be coupled to other fields to study the Hawking effect.

We want the solution to retain the symmetries of the effective four dimensional back-

ground. The latter has exactly the same symmetries as the Kerr-Newman solution so we

use the same type of ansatz (see for example chapter 3.6 of [57])

Aadxa = −Q
r

Σ

(

dt − a sin2 θdφ
)

. (2.5)

where Aa is the vector potential. It can be check that (2.5) solves the sourceless Maxwell

equations on the brane

DaF
ab =

1√
g
∂a

(√
gF ab

)

= 0 . (2.6)

where Fab = ∂aAb − ∂bAa is the field strength. This result follows since
√

g = Σ sin θ is

exactly the same as for the Kerr-Newman metric.2 In addition the identities

D[a F bc] = 0 ,

where the brackets denote cyclic permutation of indices, are also satisfied. Note how the

modified r1−n term in ∆ which gives a 1/r2+n gravitational force law away from the black

hole, does not affect the stationary brane Maxwell field. This means that a brane charged

particle propagating outside the black hole, feels an electric force that scales like 1/r2 and

a gravitational force that scales like 1/r2+n.

Gauss’ theorem applied to eq. (2.6) allows us to match Q to the physical charge of the

black hole ∫

DaF
abdΣb = 4π

∫

dΣc
√

gJc ⇒ Q =

∫

d3x
√

gJ0 . (2.7)

Here we have integrated over spatial hypersurfaces of constant t with normal hypervolume

dΣb = d3xδ0
b and after applying Gauss’ theorem integrated the left hand side on a sphere

at r → +∞.

2.2 Comments on backreaction

From the equivalence principle, we know that the Maxwell field should also source the right

hand side of Einstein’s equations through its energy-momentum tensor. In other words the

Maxwell field also gravitates and will generate a correction to the metric. Now that we

have found a consistent solution of Maxwell’s equations on the background we may try to

find a self-consistent correction to the gravitational field. Ideally we would have to solve the

coupled Einstein-Maxwell equations in the full (4+n)-dimensional space with the Maxwell

field confined to the brane. This would involve finding a specific mechanism to confine

the field.

2Note that gab is the brane projected metric. Throughout, Latin indices denote curved space-time

components whereas Greek indices denote Minkowski space components.
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In section 2.1 we started with a simplified framework where the brane is a small pertur-

bation and its geometry is correctly described by the projected Myers-Perry metric (2.1).

It can be checked by direct computation that the Einstein equations on the brane for that

background projected metric are not vacuum like. This is not surprising since the actual

vacuum black hole solution lives in (4 + n)-dimensions. The non-zero components are

G(0)r
r =

nµr1−n

Σ2

G(0)θ

θ = −G(0)r
r

2r2

[

(n + 1)r2 + (n − 1)a2 cos2 θ
]

G(0)φ

φ = −G(0)r
r

2r2Σ

[

(n + 1)r4 + (n + 3)r2a2 + (n − 3)r2a2 cos2 θ + (n − 1)a4 cos2 θ
]

G(0)t

t =
G(0)r

r

2r2Σ

[

2r4 + (n + 3)r2a2 − (n + 1)r2a2 cos2 θ + (n − 1)a4 cos2 θ sin2 θ
]

G(0)φ
t =

aG(0)r
r

2r2Σ

[

(n + 1)r2 + (n − 1)a2 cos2 θ
]

G(0)t

φ = −G(0)φ

t Σ0 sin2 θ , (2.8)

where Σ0 = r2 +a2. So from the brane point of view, an observer performing gravitational

measurements sees a black hole space-time together with an effective fluid due to the

embedding into the extra dimensions.

Before trying to find the corrections to the metric it is useful to note some properties.

We expect such a corrected metric to reduce to the projected metric (2.1) in the Q = 0

limit and to the Kerr-Newman solution when n = 0. Furthermore, it should exhibit the

same symmetries as the Kerr-Newman metric if we want the Maxwell field to be of the

same form as in eq. (2.5).

Compared to the Kerr (Q = 0) limit, the Kerr-Newman metric is modified by a shift

of the mass term µr in ∆ to µr−Q2. The term µr is related to the gravitational potential

which in the chargeless (4+n)-dimensional case is simply replaced by µr1−n. Similarly, we

adopt an ansatz where µr1−n is shifted to µr1−n −Q2 (or equivalently ∆ → ∆+Q2). This

substitution has been noted in a Randall-Sundrum context [58] where Q2 is interpreted as

a tidal charge. Then the effective brane metric ansatz is

ds2
(4) =

(

1 − µr1−n − Q2

Σ

)

dt2 +
2a(µr1−n − Q2) sin2 θ

Σ
dtdφ − Σ

∆
dr2 −

−Σdθ2 −
(

r2 + a2 +
a2(µr1−n − Q2) sin2 θ

Σ

)

sin2 θdφ2 , (2.9)

and

∆ = r2 + a2 − µr1−n + Q2 .

Remarkably, explicit evaluation of the Einstein tensor for this metric yields

Gb
a = G(0)b

a + 8πT b
a , (2.10)
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where

8πT b
a =





















−Q2(Σ0 + a2 sin2 θ)

Σ2
0 0 −2aQ2

Σ3

0 −Q2

Σ2
0 0

0 0
Q2

Σ2
0

2aQ2Σ0a
2 sin2 θ

Σ3
0 0

Q2(Σ0 + a2 sin2 θ)

Σ3





















(2.11)

is the energy momentum tensor for the Maxwell field obtained in the previous section, as

computed from the definition

T b
a =

1

4π

(

FacF
bc − 1

4
δb
aFcdF

cd

)

. (2.12)

This shows how the brane metric ansatz we have chosen reproduces exactly the gravi-

tational field generated by the Maxwell field while keeping the extra contribution from

the embedding into the bulk untouched. This indicates that we can consistently add the

Maxwell field on the brane and correct the brane metric accordingly.

Even though the effective metric (2.9) can’t be the full solution we can regard it as

a first approximation which is physically consistent (for a rigorous study in the second

Randall-Sundrum model see [58, 59]). To solve the problem of the backreaction exactly,

we would have to construct a bulk energy momentum tensor for the Maxwell field, with

some typical thickness, and solve the bulk Einstein equations. This would give the effect

of the four dimensional brane Maxwell field on the bulk geometry as well as the brane.

Keeping in mind the ansatz above it is tempting to assume that the physical metric will

have the form

ds2
(4) =

(

1 − µr1−n − Q2(Ωn)

Σ

)

dt2 +
2a(µr1−n − Q2(Ωn)) sin2 θ

Σ
dtdφ − Σ

∆
dr2 −

−Σdθ2 −
(

r2 + a2 +
a2(µr1−n − Q2(Ωn)) sin2 θ

Σ

)

sin2 θdφ2 + r2 cos2 θdΩ2
n, (2.13)

where now Q2 is a function of the transverse bulk coordinates Ωn such that

Q(Ωn) =

{

Q if Ωn on the brane

0 otherwise
.

If we imagine a brane with thickness ǫ such that the charge function Q2(Ωn) drops suddenly

where the brane ends, then this choice ensures the vacuum Einstein equations are obeyed

in the bulk, as well as on the brane (together with the Maxwell field). The only addition

is a sharp δ function like energy momentum tensor where the brane ends. This can be

checked explicitly in the 5-dimensional case by using a generic function Q(χ) (χ is the

fifth dimensional coordinate) and applying the Gauss-Codazzi equations to obtain brane

Einstein equations at each hyperslice parallel to the χ = 0 brane. If the profile chosen is

flat inside the brane (Q(χ) = Q) and drops suddenly to zero at some χǫ, then we obtain

terms which are proportional to derivatives of Q(χ) at χǫ. These extra contributions at χǫ

– 6 –
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spoil the construction but nevertheless we can ignore them or assume they are somehow

related to the mechanism that keeps the fields confined to the 4-dimensional brane.

Regardless of these problems, note that the charge introduced in (2.9) consistently re-

duces the size of the black hole event horizon on the brane as we would expect for a charged

black hole. Furthermore the Maxwell field, which is independent of ∆, produces terms in

the geodesics which reproduce exactly the usual 4-dimensional electric force. This is cer-

tainly a feature we want to keep. Finally, for LHC black holes we will see that the Q2 in the

metric is actually a small perturbation. So the charge shouldn’t disturb the bulk geometry

much and to first order this effective brane metric should be a good approximation.

3 Systems of units and orders of magnitude

In this section we find the relation between the black hole parameters and the corresponding

physical quantities in terms of well known constants, as well as the coupling of charged test

particles. Note that for simplicity, we have been working in a natural system of units where

all dimensionful quantities come in fact divided by the appropriate Planck unit factor. For

example lengths come divided by M−1
4+n and masses by M4+n. Similarly any field comes

divided by the appropriate “Planck quantity”. Then the charge Q becomes a dimensionless

quantity describing the strength of the electric field with respect to some reference charge.

The precise value of this parameter is found by matching to a known limit. Anticipating

the result we write Q = Z
√

α where
√

α is the fundamental charge and Z is the charge of

the black hole in units of
√

α. For the purpose of matching Q, the rotation parameter can

be set to zero.

Let’s start by looking at geodesics for charged particles. They are obtained from the

action principle

S =

∫

dλ

(

1

2

dxa

dλ

dxa

dλ
+ q

dxa

dλ
Aa

)

(3.1)

where q = z
√

α is the charge of the test particle. The coupling
√

α can be found by taking

the non-relativistic limit. If we define the generalised momentum

Pa =
dL
dẋa

=
dxa

dλ
+ qAa , (3.2)

conservation of the Hamiltonian H ≡ L− Paẋ
a reduces to the 4-momentum constraint

pap
a = m2 , (3.3)

where pa = dxa/dλ. The geodesic equation coupled to electromagnetism is obtained by

variation of the action:

d2xa

dλ2
+ Γa

bc

dxb

dλ

dxc

dλ
+ qF a

b

dxb

dλ
= 0 , (3.4)

where Γa
bc are the Christoffel symbols. We consider radial geodesics dθ/dλ = dφ/dλ = 0.

In four dimensions, the non-trivial equations are

d2r

dλ2
+

1

2
m2U ′ − αU

zZ

r2
E = 0 (3.5)

d2t

dλ2
+

(

U ′E + α
zZ

r2

)

1

U

dr

dλ
= 0 , (3.6)
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with U = ∆/r2. In the non-relativistic limit dt/dλ = E ∼ m, therefore dt ∼ m dλ and

m
d2r

dt2
= −mM

r2
+ α

zZ

r2
+ αm

Z2

r3
+ O(r−4) , (3.7)

giving respectively the Newtonian and Coulomb force laws and the first relativistic correc-

tion due to the gravitational effect of the Maxwell field. To match α in four dimensions,

put back all length scales in terms of Planck units explicitly (note that l4, and l4+n are

Planck lengths)

m
d2r

dt2
1

M2
4

=
m

M4

(

− M

M4

l24
r2

+ α
M4

m
zZ

l24
r2

+ αZ2 l34
r3

+ . . .

)

, (3.8)

where the extra relativistic correction is suppressed by one more power of l4/r. Rewriting

the previous equation and setting the masses to electron masses and charges z, Z = 1 (i.e.

the unit is the electron charge)

m
d2r

dt2
1

M2
4

= −me

M4

(

me

M4
− α

M4

me

)

l24
r2

+ . . . . (3.9)

The ratio of electric to gravitational force between electrons gives

α =
Fe

Fg

(

me

M4

)2

=

e2

4πǫ0

Gm2
e

(

me

M4

)2

=
e2

4πǫ0
≃ 1

137
(3.10)

as expected. Eq. (3.10) emphasizes how the electric force Fe = αFg(M4/me)
2 in 4-

dimensions is orders of magnitude stronger than the gravitational force. This is simply

a statement of the hierarchy problem mentioned in the introduction. However the same

cannot apply in TeV gravity scenarios where all forces are controlled by the same scale, so

gravity becomes stronger at short distances. Thus it is crucial to determine the relative

strength of the (4 + n)-dimensional gravitational force and the electric force.

Now let us rewrite eq. (3.8) using M4+n

m
d2r

dt2
1

M2
4+n

= (3.11)

m

M4+n

[

−
(

M4+n

M4

)2 M

M4+n

l24+n

r2
+ α

M4+n

m
zZ

l24+n

r2
+

(

M4+n

M4

)2

αZ2 l34+n

r3
+ . . .

]

The first and third contributions, which are due to the gravitational fields of the mass

M and the charge Q, are suppressed by the same power of M4+n/M4. However, as we

approach short distances, the gravitational coupling must become higher dimensional,3

gravity becomes strong and the suppression factors will disappear. Note however, that

since the Maxwell field is confined to the brane, the r-power in the third term (which is

associated with the gravitational effect of the charge) remains the same. As for the second

term, it is associated with the electric force between the test particle and the charged body

3This can be checked explicitly by using the brane metric (2.9).
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so it must remain the same, again because the Maxwell field is confined to the brane and

the magnitude of the electric force cannot change at shorter distances.

This qualitative discussion agrees with the short distance geodesic equation obtained

from eq. (2.9)

m
d2r

dt2
1

M2
4+n

=
m

M4+n

[

−(n + 1)µMn+1
4+n

ln+2
4+n

rn+2
+ α

M4+n

m
zZ

l24+n

r2
+ αZ2 l34+n

r3
+ . . .

]

. (3.12)

The first term is correctly modified to a higher dimensional force law, the second term

remains the same and the third term is controlled by the same power or r but without the

suppression factor (M4+n/M4)
2.

It is worth noting that for LHC black holes, which can be produced with a max-

imum charge of |Z| = 4/3, the fine structure constant factor of 1/137 makes the Q2

contribution to the metric small (unless the BH happens to charge up to |Z| ∼ 10 during

the evaporation).

4 Evaporation — coupling the Maxwell field

Now that we have constructed a physically reasonable background we can move on to

discuss the effects of charge on the evaporation. The coupling of the Einstein-Maxwell

background is straightforward through covariantisation. The action principle for the scalar

field is

SΦ =

∫

d4x
√

g

(

1

2
DaΦDbΦ − 1

2
µ2Φ2

)

, (4.1)

with

Da = ∇a + iqAa , (4.2)

where ∇a is the space-time covariant derivative and we have anticipated the matching of

the coupling q to the one introduced before. Note that from now on we use µ for the mass

of the field4 and will eliminate the explicit dependence on the µ parameter of eq. (2.9) by

changing units — see eq. (4.9) below. Variation of (4.1) gives the wave equation

(

DbDb + µ2
)

Φ = 0 . (4.3)

To check the coupling is correct we take the classical limit. In flat space-time consider

a slowly varying vector potential Aa, set

Φ ∼ eiS (4.4)

and identify the mechanical 4-momentum of the classical particle with pa = −∇aS − qAa.

Then to leading order, eq. (4.3) gives the mass-shell condition

pap
a = µ2 .

4This is to avoid confusion with the azimuthal quantum number m introduced later on.
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Conversely, Pa = −∇aS is the usual canonical momentum of the classical particle so we

match q to z
√

α as in eq. (3.2). This coupling agrees with well studied cases (see for

example [49, 51, 60, 61]).

For fields with higher spin the procedure is exactly the same. For a Dirac field we

write the action

SΨ =

∫

d4x
√

gΨ̄ ( /D − µ) Ψ , (4.5)

where

/D = γa (∇a + iqAa) , (4.6)

with

γaγb + γbγa = 2gab . (4.7)

Ψ̄ = Ψ†γ0 and the spinor covariant derivative is

∇a = ∂a +
1

8
ωµνa [γµ, γν ] , (4.8)

where the gamma matrices γµ are in flat space-time and ωµνa is the spin connection.

4.1 Hawking radiation

Since the pioneering work of Hawking [62] several studies in the literature have examined

the quantisation of various fields in black hole backgrounds which are analytically similar to

the one we are using [49, 63–66]. In particular the metric (2.9) and the Maxwell field (2.5)

are similar in form to Kerr-Newman, so the quantisation procedure is formally the same

and we will not repeat it referring the interest reader to [49, 63–66].

Before presenting a summary of the physical quantities which are relevant to our study,

it is convenient to adopt horizon radius units where rH = 1 (rH is defined as the largest

positive root of ∆ = 0). The mapping of parameters is5

r

rH
→ r

a

rH
→ a

ωrH → ω µrH → µ

qrH → q
Q

rH
→ Q

(4.9)

so ∆ becomes

∆ = r2 + a2 + Q2 − (1 + a2 + Q2)r1−n . (4.10)

The main result of Hawking’s original paper is that black holes emit a continuous flux of

particles. In our system of units the fluxes of particle number, energy, angular momentum

5Note that µ here is the mass of the particle. The µ in ∆ has been eliminated through this change of

system of units.
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and charge are respectively [62]

d2Nq

dtdω
=

1

2π

∞
∑

j=|s|

j
∑

m=−j

1

exp(ω̃/TH) ± 1
T

(4+n)
k (ω, µ, a, q,Q) , (4.11)

d2Eq

dtdω
=

1

2π

∞
∑

j=|s|

j
∑

m=−j

ω

exp(ω̃/TH) ± 1
T

(4+n)
k (ω, µ, a, q,Q) , (4.12)

d2Jq

dtdω
=

1

2π

∞
∑

j=|s|

j
∑

m=−j

m

exp(ω̃/TH) ± 1
T

(4+n)
k (ω, µ, a, q,Q) , (4.13)

d2Qq

dtdω
=

1

2π

∞
∑

j=|s|

j
∑

m=−j

q

exp(ω̃/TH) ± 1
T

(4+n)
k (ω, µ, a, q,Q) , (4.14)

where ω̃ = ω − mΩH − qΦH , k = {j,m} are the angular momentum quantum numbers, s

is the helicity of the particle

TH =
(n + 1) + (n − 1)(a2 + Q2)

4π(1 + a2)rH
, (4.15)

and the signs ± are for fermions and bosons respectively. ΩH = a/(1 + a2) and ΦH =

Q/(1 + a2) are the angular velocity and electric potential of the horizon respectively. ΦH

can be defined using the timelike Killing vector at the horizon. For metric (2.9), we can

pick a Killing vector field which is timelike at a given point, using the two Killing vector

fields kt = et and kφ = eφ. We denote such a vector

kp = et + Ωpeφ , (4.16)

where the subscript p labels a space-time point. Then if kp is timelike at p, Ω− < Ωp <

Ω+ where

Ω± =
−gtφ ±

√

g2
tφ − gttgφφ

gφφ
. (4.17)

At the horizon Ω+ = Ω− = ΩH , so in some sense there is a natural vector field which

defines the timelike direction close to the horizon. The electric potential at the horizon

ΦH is defined as the projection of the Aa field along ka
H . It can also be shown that ΩH

corresponds to the angular velocity of a physical observer close to the horizon whose frame

is dragged by the gravitational field of the rotating black hole [67].

Finally T
(4+n)
k are the so called transmission factors defined as the fraction of an in-

cident wave from infinity which is absorbed by the black hole. The boundary conditions

are such that close to the horizon the wave is purely ingoing for the above physical ob-

servers [67].

Before going into the details of calculating fluxes, it is instructive to look at an estimate

from the Schwinger formula for fermions [68]:

dN

dV dt
=

q2E2

π2

+∞
∑

n=1

e
−nπµ2

qE

n2
≃ q2E2

6
, (4.18)
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where we took the small mass limit and E is the electric field. Eq. (4.18) is valid in flat

space for a uniform electric field, and it gives the rate of production of opposite charge pairs

due to the electric field only. For (2.5), we know that the electric field drops like 1/r2 so

strictly speaking this formula is not valid. Nevertheless we can still use (4.18) to estimate

the contribution of the background electric field to particle production and compare it

with the contribution from the gravitational field alone (i.e. the typical Hawking flux for

a neutral black hole). A rough estimate is obtained by considering the electric field at the

horizon and a volume of order (2rH)3 around the black hole. Using our system of units

and noting that the electric field at the horizon is EH ∼ Q/r2
H we get

dN

dt
rH ∼ q2Q2 = z2Z2α2 ≃ z2Z210−5 . (4.19)

So for order ∼ 1 charges we get a very small rate when compared to the typical Hawking

fluxes for a neutral black hole (which are of order ∼ 1). This indicates that pair production

due to the gravitational field is much stronger than pair production due to the electric field.

So the common claim that TeV-scale black holes lose their charges earlier in their lifetime,

is not necessarily true on the basis of Schwinger discharge alone. Below we confirm this

result with a more detailed calculation.

4.2 Wave equations

In this section we present the separated scalar and fermion wave equations. Then we solve

them with appropriate boundary conditions to obtain transmission coefficients, using an

approximate method which is valid for low energies [31–34] and a WKB approximation in

the high energy limit. Our new results for charged and massive fields reduce in some limits,

to the ones in [31–34, 49] which can be used as a check.

4.2.1 The scalar field

Using eq. (2.9) and the separation ansatz Φ = e−iωt+imφR(r)S(θ) we obtain the ra-

dial equation

∆
d

dr

(

∆
dR

dr

)

+
(

K2 − ∆U
)

R = 0 , (4.20)

where

K = ωΣ0 − am − qQr (4.21)

U = µ2r2 + Λc,j,m + ω2a2 − 2aωm . (4.22)

The angular equation has the same form as in the chargeless case

1

sin θ

d

dθ

(

sin θ
dS

dθ

)

+

(

c2 cos2 θ − m2

sin2 θ
+ Λc,j,m

)

S = 0 , (4.23)

where c2 = a2(ω2 −µ2) and Λc,j,m is the angular eigenvalue. In particular when evaluating

our analytic results for transmission factors, we will use well known expansions for the

angular eigenvalue [69].

Equation (4.20), is similar to the chargeless case with the additional terms:
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1. Q2 in ∆, which changes the location of the horizon and therefore the Hawking tem-

perature of the black hole.

2. qQr in K which is related to the electric potential.

In K, ω is shifted by

− am

r2 + a2
− qQr

r2 + a2
. (4.24)

Evaluated at the horizon, both quantities are associated with the well known phenomenon

of superradiance [23, 24, 67, 70, 71], i.e. for ω̃ < 0 an incident wave from infinity will be

scattered back with a larger amplitude. This factor is also present in the expressions for the

fluxes such as (4.11) where the Boltzmann suppression factor in the denominator becomes

smaller for supperradiant modes.

4.2.2 The Dirac field

For a fermion field the standard procedure to separate the wave equation is to use the

Newman-Penrose formalism. The method has been developed for the Kerr metric by

Chandrasekhar [72] and applied to the Kerr-Newman background by Page [60]. Page

points out how a simple substitution of some of Chandrasekhar’s quantities suffices to

obtain separated equations for the fermion field with charge. Below we state the final

result and refer the technical details to references [60, 72, 73].

The separated wave equation for a massive charged Dirac field relies on the ansatz

Ψ = e−i(ωt−mφ)χ(r, θ) where

χ =













(r − ia cos θ)−1P−1/2(r)S−1/2(θ)
√

2∆−1/2P+1/2(r)S+1/2(θ)
√

2∆−1/2P+1/2(r)S−1/2(θ)

−(r + ia cos θ)−1P−1/2(r)S+1/2(θ)













. (4.25)

The radial and angular equations are

∆
1
2

(

d

dr
− 2si

K

∆

)

P−s = (λ + 2isµr)Ps (4.26)

and
[

d

dθ
+ 2s

(

aω sin θ − m

sin θ

)

+
1

2
cot θ

]

S−s = (2sλ + aµ cos θ)Ss (4.27)

where λ is the angular eigenvalue. To make contact with well know limits, it is useful to

obtain second order radial and angular equations by elimination (note that the prime ′
denotes d/dr):

d2Ps

dr2
+

(

(1 − |s|)∆
′

∆
+

2isµ

λ − 2isµr

)

dPs

dr
+

+

[

K2

∆2
− is

K

∆

∆′

∆
− 4s2µ

λ − 2isµr

K

∆
+

2isK ′ − λ2 − µ2r2

∆

]

Ps = 0 (4.28)
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and

1

sin θ

d

dθ

(

sin θ
dSs

dθ

)

+
aµ sin θ

−2sλ + aµ cos θ

(

d

dθ
−2s

(

aω sin θ− m

sin θ

)

+
cot θ

2

)

Ss (4.29)

+

[

a2(ω2−µ2) cos2 θ−2saω cos θ− (m + s cos θ)2

sin2θ
+λ2 − a2ω2+2aωm−|s|

]

Ss =0.

Here s = ±1/2. In the zero mass limit we recover a radial equation with the same analytic

form as in references [46, 47] except for the extra term in K ′. Similarly the angular

equation is exactly the same as for the spin-half spheroidal functions. Again we can use

the expansions in [69] for the angular eigenvalues.

Finally setting the rotation parameter a to zero, note that the angular equation is

the same with or without mass and charge. Then the angular eigenvalue takes a closed

form and we don’t need to integrate the angular equation to study the effects of both

mass and charge. This simplification was explored for example in Page’s paper in four

dimensions [51].

4.3 Transmission factors

In this section we present analytic approximations for the transmission factors. We are

interested in obtaining the main qualitative features of including particle mass and charge

using approximations which are valid at low and high energies. In particular the low energy

approximation has been shown to give good results even in the intermediate energy regime

for spins up to one [32] so we will obtain a good overall qualitative picture of how the trans-

mission factors behave. Below we present the main steps of the calculation adapted to our

problem and refer to details in [32]. The method consists of writing down approximations

for the radial equation in two regions: one near the horizon (Near Horizon solution) and

the other one far from it (Far Field solution). This provides two analytic approximations

which hold exactly close to the horizon and far from it respectively. The final step is to

extrapolate them into a common intermediate region to be matched. Below we summa-

rize the solutions and keep track of the conditions of validity. A more detailed numerical

analysis, which will be useful for improving black hole event generators, is currently in

progress [74].

4.3.1 Near horizon equation

Equations (4.28) and (4.29) are valid for both spin-zero and spin-half fields. The analytic

approximations we use are valid for the massive charged scalar field, but however it turns

out they only work for the massless limit of charged fermions. Therefore we work with the

radial equation (4.28) but set µ = 0 for fermions.
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Following [32] close to the horizon define the quantities

f ≡ ∆

r2 + a2 + Q2

A ≡ n + 1 + (n − 1)
a2 + Q2

r2
≃ A|r=1 ≡ A∗

B ≡ 1 − |s| + 2|s| + n(r2 + a2 + Q2)

r2A
− 4(a2 + Q2)

r2A2
≃ B|r=1 ≡ B∗

P ≡ K2

r2A2
≃ ω(1 + a2) − am − qQ

A∗
≡ p

D ≡ r2 + a2 + Q2

r2A2

[

λ2 + µ2r2δs,0 + 2isqQ − 4isωr
]

≃ D|r=1 ≡ D∗ . (4.30)

Then eq. (4.28) is equivalent to

f(1 − f)
d2R

df2
+ (1 − Bf)

dR

df
+

[

P 2 − isP

f
+

P 2 − isP − D

1 − f

]

R = 0 (4.31)

using the approximations on the right hand side of each line of (4.30). The latter are

equivalent to the condition r− 1 ≪ 1. Eq. (4.31) can be solved in terms of hypergeometric

functions. The general solution is a combination of two linearly independent hypergeomet-

ric functions. According to the general treatment in [23, 49, 67], at the horizon, the wave

must be purely ingoing. This implies R ∼ e−ipr∗ with r∗ the tortoise coordinate defined

as dr∗ = dr/f . Then, it can be shown that the convergent solution with this boundary

condition is

RNH = fα(1 − f)βF (a, b, c; f) , (4.32)

where

α =
|s| − s

2
− ip

β = 1 − |s| + B∗

2
−

√

(

1 − |s| + B∗

2

)2

− p2 + isp + D∗

a = α + β − 1 + B∗

b = α + β

c = 1 − |s| + 2α . (4.33)

In the next section an extrapolation of this solution away from the horizon will be needed,

i.e. around f → 1 ⇒ 1−f ≃ (1+a2+Q2)/rn+1. Note that the larger the value of n, the more

consistent this condition is with r− 1 ≪ 1 so the terms neglected in approximations (4.30)

become less important.6 Using some identities that relate hypergeometric functions with

argument f to argument 1−f and expanding around f = 1 we obtain [75] (up to an overall

normalisation constant)

R → A1r
−(n+1)β + A2r

−(n+1)(2−β−B∗) , (4.34)

6This improvement of the approximation for large n has been noted in [32].
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with

A1 =
(1 + a2 + Q2)βΓ(c − a − b)

Γ(c − a)Γ(c − b)

A2 =
(1 + a2 + Q2)2−|s|−β−B∗Γ(a + b − c)

Γ(a)Γ(b)
. (4.35)

When matching powers of r in the next section we will have to make the approximations

ω, a,Q, µ ≪ 1. Then

− (n + 1)β ≃ −1

2
+

√

1

4
+ λ2

−(n + 1)(2 − β − B∗) ≃ −1

2
−
√

1

4
+ λ2 . (4.36)

For a ≪ 1 the neglected terms are of order ω2 or µ2. So taking into account the leading

behaviour of λ2 when s = |s| the approximation is equivalent to

ω, µ ≪
√

ℓ(ℓ + 1) + 2|s| . (4.37)

So the larger the ℓ and |s| the wider the energy range where the approximations work.

4.3.2 Far field solution and low energy matching

Away from the black hole r → +∞ we approximate ∆ ≃ r2 and

K

∆
≃ ω − qQ

r
+

ω(1 + a2 + Q2)

r
δn,0 . (4.38)

eq. (4.38) contains: the energy, a long range electric potential and a long range gravitational

potential in four dimensions. Keeping terms up to order 1/r2 in eq. (4.20)

d2R

dy2
+

2

y

dR

dy
+

[

1 +
ǫ

y
− γ

y2

]

R = 0 (4.39)

with

y = kr

k2 = ω2 − µ2δs,0

ǫ =
2isω − 2ωqQ + (2ω2 − µ2)(1 + a2 + Q2)δn,0

k
(4.40)

γ = λ2 − q2Q2 − ω(1 + a2 + Q2)
[

2qQ − ω(1 + a2 + Q2) + 2is
]

δn,0 .

Note again that we are not studying the massive case for fermions. The δs,0 factor in k

is emphasizing this — it does not mean the µ2 term is absent for s = 1/2. The general

solution of eq. (4.39) is given in terms of Kummer functions

RFF = e−iyyσ [B1M(u, v, 2iy) + B2U(u, v, 2iy)] , (4.41)
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where

σ = |s| − 1

2
+

√

(

|s| − 1

2

)2

+ γ

u = σ + 1 − |s| + i
ǫ

2
v = 2(σ + 1 − |s|) . (4.42)

Eq. (4.41) can be matched to the near horizon solution in the limit y ≪ 1. This conditions

implies r ≪ 1/k, so for consistency with the limit r ≫ 1 we need k small. The stretched

form is

RFF → kσ

(

B1r
σ + B2

Γ(v − 1)

Γ(u)
(2ik)1−vrσ+1−v

)

. (4.43)

It can be easily shown that within the same approximations as in eq. (4.36) the r-powers

match with those in eq. (4.43). Then, up to an overall common constant

B1 = A1

B2 = A2
Γ(u)(2ik)v−1

Γ(v − 1)
. (4.44)

Finally we expand in the far field limit y → +∞ to obtain (up to an overall com-

mon constant)

RFF → Y (in)
s

e−ikr

r1−|s|−s−iϕ
+ Y (out)

s

eikr

r1−|s|+s+iϕ
, (4.45)

where

ϕ =
ωqQ

k
−

(

ω2 − µ2

2

)

(

1 + a2 + Q2
)

k
δn,0 , (4.46)

and

Y (in)
s = (2ik)−u

(

B1Γ(v)eiπu

Γ(v − u)
+ B2

)

Y (out)
s = (2ik)u−v B1Γ(v)

Γ(u)
. (4.47)

Eq. (4.45) contains a combination of incoming and outgoing waves. However for the spin-

half case the incoming/outgoing wave is dominant for s = ±1/2 respectively. Using the

conserved number current it is possible to show [32] that the transmission factor is

T
(4+n)
s,j,m = 1 −

∣

∣

∣

∣

∣

∣

Y
(out)
−|s|

Y
(in)
|s|

∣

∣

∣

∣

∣

∣

2

. (4.48)

For fermions, to find out the relative normalisation between P1/2 and P−1/2 we plug back

the expansion (4.45) in the first order system (4.26), equate order by order and obtain

the relation

Y
(out)
−1/2 =

2iω

λ
Y

(out)
1/2 . (4.49)

Since the relative normalisation between incoming and outgoing coefficients for the same

s is fixed, now we can insert eq. (4.49) in (4.48) to obtain the transmission factor. For

scalars, eq. (4.48) is also valid if we set |s| = 0.
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4.3.3 High energy approximation based on WKB arguments

To complete the analytic picture, we present some arguments for a useful approximation

in the high energy limit for scalars. This will give the leading asymptotic form for the

transmission factors.

The matching procedure in the previous section doesn’t work in the high energy limit

for two reasons. On one hand the powers in (4.34) and (4.43) no longer match at high

energy, rotation, charges and masses. Secondly we are stretching the near horizon solution

into r ≫ 1 and the far field solution into r ≪ 1/k. If k is large, then these conditions are

incompatible and we are effectively stretching the far field solution too close to the horizon.

To understand this problem we look into the WKB approximation for the scalar ra-

dial equation.7 Some earlier works which have used the WKB approximation to compute

transmission factors are [76–80]. First note that the radial equation can be written in a

Schrödinger-like form through a change of independent variable. Start by choosing

dy =
dr

∆
, (4.50)

to obtain
(

d2

dy2
− V

)

R = 0 , (4.51)

where V := ∆U − K2 contains a leading term −k2r4 corresponding to the highest power

of r (all the other terms are suppressed). In the high energy limit, this term dominates the

solution. In fact, we can formally write an infinite WKB series [81]

R ∼ A+ exp

(

k
∞
∑

n=0

S+
n (y(r))

kn

)

+ A− exp

(

k
∞
∑

n=0

S−
n (y(r))

kn

)

. (4.52)

It is easy to check [81] that the leading correction reproduces the asymptotic form at infinity

consistent with (4.45). A necessary condition for this approximation to be valid is

∣

∣

∣

∣

dV

dy

∣

∣

∣

∣

≪
∣

∣

∣V
3
2

∣

∣

∣⇔
∣

∣

∣

∣

dV

dr
∆

∣

∣

∣

∣

≪
∣

∣

∣V
3
2

∣

∣

∣ , (4.53)

which (to leading order in r) is just r ≫ 1/k. This condition indicates that for large

k the field will start to take a WKB form not far from the horizon. Such result is not

surprising if we note that these modes have very short wavelength, so the potential is

almost constant along many wavelengths (except very close to the horizon). Furthermore,

the WKB corrections obey

S+
n =

{

−S−
n , n even

S−
n , n odd

(4.54)

so the odd terms (which are purely real [81]) only contribute with an overall common factor.

As for the even terms, they are products of
√

V times polynomial terms in V . In general

7Here we focus on the scalar case because the potential is real. A similar treatment can be applied to

fermions using the method in Chandrasekhar’s book [73] to reduce the complex potential to a real one.
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there is an imaginary and a real part for each even order correction, but since our potential

is real then it will either be real or imaginary. If
√

V is real we get a relative change in

amplitude between incoming and outgoing waves, whereas if it is imaginary the relative

amplitude is fixed. But in the limit of k large, the dominant term in the potential is −k2r4

which is negative so the square root is purely imaginary and the even order corrections only

introduce a phase between incoming and outgoing waves. This means that in the region

where the WKB solution is valid,8 the relative amplitude between incoming and outgoing

modes stays fixed. The transmission coefficient can then be calculated at any point in such

a region provided we have a suitable analytic expansion in terms of incoming and outgoing

waves. Thus, in the high energy limit, the propagation of the field along a thin region

outside the horizon, determines the behaviour of the greybody factors.

This behaviour can be seen explicitly in (4.34). There the scalar r-powers have a

common factor r−(n+1)(1−B∗/2) multiplied by

r±
√

(1−B∗)2/4−p2+D∗ . (4.55)

In the high energy limit the argument of the square root in eq. (4.55) becomes negative

and we obtain a relative phase between the two modes which are respectively outgoing and

incoming. The transmission coefficient follows under the single approximation k ≫ 1

T
4+n
0,j,m = 1 −

∣

∣

∣

∣

A+

A−

∣

∣

∣

∣

2

= 1 −
∣

∣

∣

∣

A1

A2

∣

∣

∣

∣

2

. (4.56)

5 Results

In this section we plot various quantities, using the approximations developed in section 4.

The physically most relevant are those in (4.11), (4.12), (4.13) and (4.14). When integrated

over ω and summed over particle type they give the rates of emission of particle number,

energy, angular momentum and charge. Nevertheless we still plot the transmission factors

to keep track of where the new effects enter. We discuss scalars and fermions in parallel

whenever possible and present the effects of particle mass and charge separately. We do not

present plots with rotation to avoid repetition of results which have been studied (without

mass and charge) in previous publications [38, 41–43, 46, 47]. However we have checked

that within our approximations, our general result agrees with those special cases.

5.1 The effect of particle mass

Current modelling of black hole evaporation in (4 + n)-dimensional TeV gravity scenarios

does not take into account the dynamical consequences of non-zero mass for the emitted

particles. This effect is important if the energy of the particle emitted during the evapora-

tion is close to its mass. For Standard Model heavy particles, the top quark (mt ∼ 170 GeV)

the Z (mZ ∼ 91 GeV), the W (mW ∼ 80 GeV) and the Higgs boson, the effect will not

be negligible.

8This is the region connected to infinity such that V < 0.
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Figure 1. Scalar transmission factors and fluxes for n = 6 (left) and variable n (right). The left

plots show variation with particle mass µ in natural units r−1
H

for n = 6 and the right plots show

variation with n for µ fixed. The top plots show the transmission factors T
(4+n)
k

and the bottom

plots show number fluxes, for a range of j modes. The curves are naturally grouped by j, rotation

is off and the line colour/type is the same for top and bottom plots.

In figure 1 we present some representative curves for the transmission factor and the

number flux. As mentioned before the approximation becomes better with larger n so most

of our plots will be for n = 6, except for when we focus on the n dependence where we

use n ≥ 3.

The most prominent property of the left-hand-side plots is a smooth drop close to the

mass µ. The higher the partial wave the less steep this is but however there is always a

horizontal shift (see for example the j = 1 mode). This effect is quite important close to

the mass threshold where the probability of emission is suppressed. This is in contrast

with the simplified approach in current BH event generators where the spectrum is cut off

sharply at ω = µ.

Furthermore, for example the number flux for the j = 1 mode shows how increasing

the mass of the particle not only suppresses the flux around ω ∼ µ but also the total area

under the curve. Massive particles are therefore less likely to be produced. This effect

was previously studied in four dimensions, for example numerically, in Page’s paper for

leptons [51].

The right hand side plots show how the transmission factor is very mildly dependent

on n (at least in the limit of small µ). However the flux plot displays a strong variation

with n which is due to the strong dependence of the Hawking temperature appearing in

the thermal factor.
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Figure 2. Transmission factors and fluxes for neutral scalars and fermions. The left plots show spin

0 and the right plots show spin 1/2. The top plots show transmission factors Tk and the bottom

plots show number fluxes, for a range of j modes and different black hole charges Q. Rotation is

off, µ = 0 and the line colour/type is the same for top and bottom plots.

5.2 The effect of BH charge on neutral particles

The next effect we consider is black hole charge. Neutral particles simply feel a different

gravitational field around the black hole. So by studying neutral particles we disentangle

the gravitational effect from the electromagnetic effect (since q = 0).

In figure 2 we present plots for transmission factors and fluxes. Here we focus on

n = 6 for scalars and fermions. We should note that some of the plots for fermions will

display extrapolated results beyond the small energy limit. This turns out to be quite well

behaved, which is due to the better matching of r-powers as pointed out in eq. (4.37).

From the gravitational point of view, the main effect of Q is to decrease the horizon

radius and consequently increase the Hawking temperature. This is clearly seen in the

transmission factors of figure 2, where all the curves are pushed up with increasing Q. The

same happens with the fluxes where the effect is even larger, due to the strong dependence

of the thermal factor on Q through the Hawking temperature — see eq. (4.11).

5.3 The effect of particle charge

For particles with non-zero charge, in addition, we have a Coulomb repulsion/attraction

according to whether the particle has same/opposite sign charge compared to the black

hole. For definiteness we take the black hole charge to be positive.

In figure 3 we plot transmission factors and fluxes for scalars and fermions, for various

charges, n = 6 and Q = 0.6. It is important to note here that the Coulomb type coupling
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Figure 3. Transmission factors and fluxes for charged scalars and fermions. The left plots show spin

0 and the right plots show spin 1/2. The top plots show transmission factors Tk and the bottom

plots show number fluxes, for a range of j modes and different particle charge q with Q = 0.6.

Rotation is off, µ = 0 and the line colour/type is the same for top and bottom plots.
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Figure 4. Asymptotic high energy transmission factors and fluxes for charged scalars. The left plot

shows transmission factors T
(4+n)
k

and the right plot shows fluxes for a range of j modes. Rotation

is off, µ = 0 and the line colour/type is the same for both plots.

appearing in the radial equation is

qQ = (
√

αz)(
√

αZ) ≃ (0.1z)(0.1Z) .

For an LHC black hole, at production, |Z| ≤ 4/3 and |z| ≤ 1. So the figures we have

chosen are above their typical values. However it is easier to see the differences in the

curves. Furthermore there may be stages during the evaporation where the black hole

charges up so this region of parameters is not completely unphysical.

The main features of figure 3 are as follows. For scalars we can see clearly the phe-

nomenon of superradiance in the top plot for particles with the same charge as the black
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Figure 5. Transmission factors and fluxes for charged scalars and fermions. The left plots show

spin 0 and the right plots show spin 1/2. The top plots show transmission factors Tk and the

bottom plots show number fluxes, for a range of charges q and various numbers of extra dimensions

n with Q = 0.6 and j = 1 for scalar and j = 1/2 for fermions. Rotation is off, µ = 0 and the line

colour/type is the same for top and bottom plots.

hole, where T
(10)
k < 0. However, this does not favour the emission of positively charged

particles because the negative charge transmission factors are greatly enhanced. This is

clear in the flux plot where all the curves at low energies are higher for negative charge.

This can be understood physically by recalling that the transmission factor describes the

probability of a wave incident from infinity to be transmitted down the black hole. Since

negatively charged particles are attracted by the Coulomb potential and positively charged

particles are repelled, we would expect negative charges to have higher transmission fac-

tors. This is confirmed for fermions in a wider range of energies. The other main feature

is that at higher energies, the thermal factor (which favours discharge) dominates and the

tendency is inverted, i.e. positively charged particles are favoured. This is confirmed for

the scalar case in the high energy limit in figure 4, where the transmissions factors are still

larger for negatively charged particles, but however, since they are close to their asymptotic

value T
(10)
k = 1 the thermal factor dominates.

Finally, figure 5 shows the variation with n. Here the transmission factors for scalars

are weakly dependent on n whereas for fermions we have a stronger effect. This is due to

extra n dependent factors in the wave equation as for example the term 2|s|/A ∼ 1/(n+1)

in B — eq. (4.30). For the fluxes the separation is larger due to their stronger n dependence

through the Hawking temperature. In general, similarly to neutral black holes, the effect

of n is to increase the total fluxes.
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6 Conclusions

We have presented a calculation of transmission factors for brane-charged massive scalars

and charged massless fermions on a (4 + n)-dimensional brane-charged rotating black hole

in the low and high energy limits. Our main theoretical results are:

1. The construction of an approximate background with a stationary axisymmetric grav-

itational field and brane-electromagnetic field — eq. (2.5) and (2.9).

2. The derivation of separated scalar and fermion wave equations for particles with

non-zero mass µ and charge q — eqs. (4.20), (4.23), (4.26) and (4.27). The radial

and angular equations we obtained can be integrated for arbitrary parameters given

suitable boundary conditions.

3. The application of a well known procedure in the low energy limit to obtain transmis-

sion factors (and consequently Hawking fluxes), for the new cases of: brane charged

massive scalar field; and massless charged fermion field — eq. (4.48) and (4.47). Fur-

thermore we used the WKB approximation to find the asymptotic behaviour for the

scalar case — eq. (4.56).

Finally the numerical evaluation of the approximate transmission factors showed im-

portant new features which are relevant for LHC phenomenology and the development of

BH event generators. The two central results are:

• For massive particles, our scalar analysis shows a damping of the spectrum close to

the threshold ω ≃ µ as well as an overall reduction of the area under the flux curves

— figure 1. The main consequence for LHC phenomenology is that production of

massive particles such as the top, W, Z and Higgs boson (which have masses of the

same order of magnitude as the typical 1/rH ∼ 100 GeV−1) is highly suppressed at

low energies.

• Black hole discharge is subdominant — eq. (4.18), figures 3 and 4. This is another

important point for LHC phenomenology and the development of event generators

which tend to enforce quick discharge. Nevertheless, black hole events at the LHC will

have non-zero charge, so statistically we would expect a fraction of them to charge

up. For charged black holes our plots show that the flux spectra for positive and

negative charges are split. Thus negatively charged particles are biased towards low

energies whereas positively charged particles are biased towards higher energies. So

the dynamical model of discharge should still be incorporated since it will produce

an asymmetry in the energy spectrum of positive/negative charged particles.

To summarize, the effects of mass and charge are important for improving the modelling

of black hole events from high energy collisions in large extra dimensions scenarios, and may

provide further signatures of black hole events such as charge asymmetries. Two points

we haven’t discussed which deserve further attention are those of QCD charges and the

possible restoration of electroweak symmetry close to the black hole. Both can be treated

using an improved model based on the ideas we have discussed.
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