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In the b∗ model for the Collins-Soper-Sterman (CSS) resummation, the resummed form
factor is accompanied by the nonperturbative gaussian form factor, which is known to
exhibit strong dependence on the the vector boson mass. The nonperturbative form factor
of similar nature arises in another approach for the CSS resummation, the “minimal pre-
scription (MP)” based on analytic continuation to treat the impact parameter transform.
We perform a global fit of the nonperturbative form factor in the MP resummation at the
next-to-leading logarithmic accuracy, with the Z boson production data at the Tevatron
and the low energy Drell-Yan data, and find weak dependence on the vector boson mass.

We consider the hadroproduction of vector bosons, h1 + h2 → V (Q, y, · · · ) + X, where
the vector bosons V = γ∗, Z,W have momentum Qµ and rapidity y. The differential cross
section with the center of mass energy

√
S of the two colliding hadrons h1,2 is given as (x1,2 =

Qe±y/
√
S),

dσ ∝
∑

q
e2q

[

qh1
(x1, Q

2)q̄h2
(x2, Q

2) + q̄h1
(x1, Q

2)qh2
(x2, Q

2)
]

+ · · ·, (1)

with the product of the (anti-)quark distributions for h1,2 and the ellipses standing for the
perturbative corrections, the contributions associated with the gluon distributions, etc. This is
a benchmark process at the LHC; the comparison with experimental data gives constraints for
the PDFs; this is also important for the new physics search. Thus, precise theoretical predictions
are desirable. Now the perturbative QCD corrections are known up to NNLO not only for the
total cross sections and the rapidity distributions, but also for fully differential cross sections [1].

We note that the vector bosons V = γ∗, Z,W are mostly produced at small transverse mo-
mentum QT of typically a few GeV: the vector bosons with the large QT are obtained by the
recoil from the hard emission and can be treated by the fixed-order perturbation theory. On
the other hand, the large cross section at the small QT is obtained by the recoil from the emis-
sion of the soft gluons, whose contributions are accompanied by the logarithms αs ln

2 Q2/Q2
T ,

αs lnQ
2/Q2

T , which become very large and diverge for small QT and have to be resummed
to all orders in αs to obtain meaningful results. The contributions due to the multiple gluon
emission, where the total sum of the gluon’s transverse momenta equals QT , are conveniently
treated in the impact parameter b space conjugate to the transverse-momentum space with
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δ(2)(QT − k1T − k2T − · · · − knT ) =
∫

d2beib ·QT

∏

n e
−ib · kT . According to the Collins-Soper-

Sterman (CSS) resummation formalism [2], the resummed contributions to all orders can be
reorganized in terms of the quark and gluon PDFs, the perturbatively calculable coefficient
functions, the hard vertex to produce the vector boson V , and the Sudakov factor due to the
contributions of soft gluon radiation, which is given as exponentiation of the corresponding
all-orders perturbation series. The resummation replaces the RHS of (1) by

∫

d2beib ·QT eS(b,Q)
∑

q
e2q

[

qh1

(

x1,
b20
b2

)

q̄h2

(

x2,
b20
b2

)

+ q̄h1

(

x1,
b20
b2

)

qh2

(

x2,
b20
b2

)]

+ · · · ,
(2)

as the b-space Fourier transform back to the QT space. Here, b0 = 2e−γE with γE being the
Euler constant and the optimal scale for the PDFs is given by the order of 1/b. We do not
show explicitly the coefficient functions and the hard production vertex, with the corresponding
higher-order perturbative corrections being contained in the ellipses, while we show the Sudakov
factor eS(b,Q), which is universal with (X(αs) =

∑∞

n=1(αs/2π)
nX(n) with X = A,B)
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∫ Q2

b2
0
/b2

dµ2

µ2

{(

ln
Q2

µ2

)

A
(

αs(µ
2)
)

+B
(

αs(µ
2)
)

}

,

where A(1) = 2CF is the leading logarithmic (LL) contribution, and A(2) = 2CF [(67/18 −
π2/6)CG − 5Nf/9] and B(1) = −3CF are the next-to-leading (NLL) level contributions, with
CF = (N2

c − 1)/(2Nc), CG = Nc, and Nf being the number of QCD massless flavors. In this
work we employ the resummation at the NLL accuracy. The importance of the NLL accuracy
is demonstrated in, e.g., Fig. 1 in the first paper in [8].

The Sudakov factor associated with all-orders resummation should be eventually accompa-
nied by the nonperturbative form factor, which is usually taken as a gaussian form and would
be considered as originating from the intrinsic kT of partons inside hadron. This implies the
following replacement in (2), with Q0 denoting a certain fixed momentum,

eS(b,Q) → eS(b,Q)e−gNP b2 , gNP = g1 + g2 ln
Q

2Q0
, (3)

where the linear dependence of gNP on lnQ is obeyed by the renormalization group. We have,
at least, two nonperturbative parameters g1, g2 associated with the resummed form factor.

The participation of the nonperturbative form factor is also signaled by the infrared Landau
pole arising in the integrand of (2) at b ≃ (1/Q)e1/[2β0αs(Q

2)] from the all-orders resummation
embodied by the Sudakov factor, where β0 is the first coefficient of the QCD β function.
A conventional approach to avoid the Landau pole is to introduce the cut-off bmax in the b
integration: making the replacement b → b∗ = b/

√

1 + b2/b2max with bmax ≃ 0.5 GeV−1 in the
Sudakov factor and the PDFs in (2), the b integration is effectively frozen before reaching the
Landau pole. Based on this, the resummed cross sections are fitted to the experimental data
and the results of this global fit give g1 ≃ −0.08 GeV2, g2 ≃ 0.67 GeV2 [3] and g1 ≃ 0.016 GeV2,
g2 ≃ 0.54 GeV2 [4] for Q0 = 1.6 GeV, exhibiting the strong lnQ dependence of gNP .

Another approach to circumvent the Landau pole is based on the deformation of the b-
integration contour in the complex b space [5, 6, 7, 8, 9]. Its advantages are that it leaves
unchanged the perturbative expansion to any (and arbitrarily-high) fixed order in αs, and that
it does not require any infrared cut-off, like bmax, in the b-space integration, so this approach is
often called the “minimal prescription (MP)”. However, now we need the PDFs at the complex
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Figure 1: Fit of gNP to R209, and CDF and D0 Z data, using CTEQ6.6M (left panel) and
MSTW2008 (right panel) sets for the input PDFs to calculate the NLL resummed cross sections.

scale b0/b (see (2)) and the numerical calculations become complicated. The values of g1, g2
based on the global fit have been unknown in the MP. Performing the matching of, e.g., the
QT -integrated cross section,

∫

dQT dσ/dQT , and the average QT ,
∫

dQTQT dσ/dQT , between
the above two schemes, the b∗ model and the MP, the results indicate that the values of g1, g2
in the MP are largely different from those in the b∗ model [10].

We perform a global fit of the nonperturbative form factor in the MP. We calculate the QT -
differential and y-integrated cross sections at the NLL accuracy in the MP using the method
described in Appendix in [6]. The experimental data sets we use are the available rapidity-
integrated cross section data: the low-energy Drell-Yan data (R209 measured at CERN in the
different Q ranges, 5 < Q < 8 GeV and 8 < Q < 11 GeV) and the Tevatron Z-boson production
data (CDF Run-0, Run-1 and D0 Run-1). The cross section calculated with the nonperturbative

form factor e−gNP b2 in (3) is compared with each of the above data sets, associated with different
Q ranges, and we perform the 1-parameter fit of gNP for each data sets, allowing us to adjust
overall normalization factor of the calculated cross section [10]. Plotting the results as a function
of the vector boson mass Q, we can extract the Q-dependence of gNP . The symbol � in Fig. 1
shows the fitted results of gNP as a function of Q: the two symbols at low Q are obtained using
the R209 data, while the upper and lower symbols at high Q are obtained using the CDF and
D0 data, respectively [10]. We perform those fits using the two different sets of NLO PDFs,
CTEQ6.6M and MSTW2008. For comparison, we also plot the results of the similar fits in
the b∗ model by the symbol ♦, which show the strong lnQ dependence corresponding to the
above-mentioned values [3, 4] of g1, g2 in the b∗ model. We see that the results in the MP have
rather mild lnQ dependence, with some dependence on the PDFs.

We also use the 2-paramater form (3) of the nonperturbative form factor and perform
the 2-parameter fit of g1, g2 using all the above-mentioned data sets, allowing us to adjust
the overall normalization factor of the calculated cross section similarly as in the case of the
1-parameter fit [10]. We obtain good description of the QT distributions for Drell-Yan and
Z-boson productions using the 2-paramater form (3), with g1 = 0.241+0.026

−0.028 GeV2, g2 =

0.121+0.041
−0.038 GeV2 for the CTEQ6.6M PDF and g1 = 0.330+0.024

−0.026 GeV2, g2 = 0.066+0.039
−0.037 GeV2

for the MSTW2008 PDF; here, the errors in the results of g1, g2 corresponds to the 1-σ deviation
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from the χ2 minimum. Our best fit value of g1, g2 gives the solid line in Fig. 1, and the mild
lnQ dependence in the MP reflects that the value of g2 in the MP is smaller than that in the
b∗ model by the factor 4 or more.

We note that the Fourier transform of the nonperturbative form factor in (3) gives the

intrinsic transverse-momentum distribution e−k2

T
/(4gNP ), which implies 〈k2T 〉 = 4gNP for the

average k2T . The mild Q dependence in the MP gives 〈k2T 〉 = 4gNP . 2 GeV2 over wide range
of Q. Because this represents the combined contributions from the two protons h1,2, we obtain
〈k2T 〉1-proton . 1 GeV2. This suggests that the nonperturbative form factor in the MP can be
naturally interpreted as arising from the intrinsic kT of partons inside hadrons.

To summarize, we have discussed the NLL resummation in the vector boson production,
which is crucial for reliable prediction of the transverse-momentum QT distribution. We have
the Sudakov factor and the associated nonperturbative form factor which is parameterized by
the two nonperturbative parameters g1, g2. We employed the MP based on analytic continuation
procedure in the impact-parameter space, instead of using the conventional b∗ model. In the MP,
we performed a first systematic determination of g1, g2 by the global fit of the NLL-resummed
cross section to experimental data. The results are obtained for the two popular sets of the
PDFs, and exhibit the significantly weaker lnQ dependence of the nonperturbative form factor
than that in the b∗ model. We mention that the so-called “revised b∗ model” using the cut-off
bmax which is three times larger than the usual choice bmax ≃ 0.5 GeV−1 gives the small value
of g2 [11] similar to the present result, so the investigation of the relation between the MP and
the revised b∗ model would be interesting. We also found that the nonperturbative form factor
in the MP can be naturally interpreted as arising from the intrinsic kT . For more detailed
analysis, more data, in particular, the low energy Drell-Yan data, are desirable. g1, g2 in the
MP determined by us are applicable to the production of the colorless final states, W , Higgs,
diboson, etc.
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