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Résumé

Ce travail consiste en la mesure de la section efficace de photoproduction du
méson ρ sur le proton à haute énergie dans le système du centre de masse. La
mesure est effectué à partir des données proton-plomb du LHC prises en 2013
par le détecteur CMS.

Après introduction des éléments théoriques nécessaires et une description du
dispositif expérimental, des coupures d’exclusivité sont définies afin de dimin-
uer autant que possible la contribution des bruits de fond. La contribution
résiduelle après sélection est estimée et soustraite du signal observé.

La dépendence de la section efficace de photoproduction du méson ρ en
l’énergie dans le système du centre de masse est estimée, ainsi que la section
efficace différentielle en t. Nos mesures sont en accord avec celles effectuées
auprès d’autres expériences.

Mots-clefs : Physique des hautes énergies, LHC, CMS, photoproduction, col-
lisions ultrapériphériques, section efficace.

Abstract

The goal of this work is to measure of the cross section for ρ meson photopro-
duction on proton targets, at high center-of-mass energy. The LHC proton-lead
data taken by CMS in 2013 is used to perform the measurement.

After introducing the necessary theoretical elements and describing the ex-
perimental setup, exclusivity cuts are defined in order to lower as much as
possible the background contribution. The residual contribution after the se-
lection is estimated and subtracted from the observed signal.

The dependence of ρ meson photoproduction cross section on the center-of-
mass energy is estimated, as well as the t-differential cross section. Our results
are in agreement with those from other experiments.

Keywords: High-energy physics, LHC, CMS, photoproduction, ultraperiph-
eral collisions, cross section.
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Introduction

Quantum mechanics is a very successful theory. Three of the four fundamental
interactions can be described using its combination with special relativity, the
quantum theory of fields. Some of the most accurate predictions in physics
involve relativistic quantum mechanics. Predictions of the theory were tested
experimentally across more than ten orders of magnitude.

One the corner stones of quantum mechanics is the unitarity of time evolu-
tion. Since it plays a central role in our understanding of nature, any possible
experimental deviation has to be investigated: proving quantum mechanics to
be wrong would be a major discovery.

Today’s measurements of the proton structure seem to challenge unitarity:
it looks like the density of low-energy gluons grows without limit. If this turns
out to be true, our description of physics is facing a major problem. Otherwise,
understanding how unitarity kicks in is still a very interesting problem.

The low-energy (or low momentum fraction x) contents of the proton can
only be probed in high-energy collisions. Small momentum fractions are probed
by the production of light particles close to the beam pipe. Probing the small-x
gluon density is thus acheived by studying the production of light resonances
(i.e. below the Z mass).

The present work is in line with this experimental programme. We measure
the photon-proton cross section for one of the lightest possible final states,
a single ρ0 meson. We use data taken by the CMS detector in proton-lead
collisions, at a nucleon-nucleon center-of-mass energy of 5.02TeV. Our work
is a cross-check and possible improvement of a CMS analysis [1]. We will often
refer to it as FSQ-16-007.

The general organization of this Master’s thesis is as follows.

In the first chapter, we introduce the elements of theory needed to under-
stand the motivation of our work. We will also describe existing experimental
results and explain how a photon-proton cross section can be extracted from
proton-lead events.

The second chapter is a description of the LHC and of the CMS detector.
We will mainly stay focused on information needed in order to understand the
next chapter, though we’ll say a bit more than strictly necessary.

We will detail our event samples and selection in the third chapter. In
particular, we will describe how we use the CMS detector to reject as much
background as possible. Monte-Carlo event samples will be mentioned at the
end of the chapter.

In the fourth and last chapter, we will finally compute the cross section
for ρ meson photoproduction. We will need to estimate the background and

vii
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subtract it from the selected event sample. Our results will be compared to
those from past experiments.



Chapter 1

Motivation and theoretical
background

This first chapter covers the theoretical framework around our work. We will
start by introducing the Standard Model of particle physics, then focus on
states bound by the strong interaction. We will then move on to the partic-
ular process studied here: photoproduction of the ρ meson on proton targets.
We will describe a prediction for its high-energy behavior, and quickly review
existing experimental results. The last two sections will cover ultra-peripheral
collisions and the use of Monte-Carlo simulations at particle physics experi-
ments.

As usual in particle physics, we set c = ~ = 1. With this definition, energies,
momenta and masses all share the same unit; distance use its inverse. We will
use the electronvolt eV, and in particular two of its multiples, the MeV and
the GeV. The unit of energies, momenta and masses is the GeV; distances can
be written in GeV−1.

1.1 The Standard Model of particle physics

The Standard Model (SM) [2] is the best description of particle physics cur-
rently available. It is based on the quantum field theory (QFT), which unifies
quantum mechanics and special relativity. The SM describes three interac-
tions: electromagnetism, the weak force and the strong force; gravitation is
currrently missing. The weak interaction manifests itself at higher energies
than those considered here, and will be neglected in the following.

Most calculations in QFT are based on perturbation theory around small
coupling constants. When this development converges, the SM can be seen
as a set of “matter” fermions interacting through the exchange of “mediator”
bosons (see figure 1.1). How to perform calculations when it doesn’t is an open
problem.

An important feature of QFT is that coupling constants are actually not
constant. Their variations are functions of a scale whose value is not given by
the theory. It is usually taken as one of the Lorentz-invariant energies in the
process; distances are sometimes used as well.

After a short overview of QED and QCD, the theories behind electromag-
netism and the strong interaction, we will describe the spectrum of a class of

1
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Figure 1.1: Particle contents of the Standard Model (adapted from [3]).

strongly bound particles, the mesons. An overview of the proton as a QCD
bound state closes this section.

Quantum electrodynamics (QED)

QED was the first part of what’s today called the Standard Model to be in-
vented. It describes interactions between charged particles as the exchange of
one or more “photons” (written γ). Many photons together make up a classical
electromagnetic field obeying Maxwell’s equations.

Just like light, photons are massless and have two polarizations; however,
these constraints only apply to photons that can be observed (“real” or “on-
shell” ones). “Virtual” photons can have any polarization and mass, but cannot
travel far away.

The only free parameter of QED is the charge of the electron, which is
usually chosen equal to one. In that case, the fine structure constant α ≡ e2/4π
is equal to 1/4π. This constant increases slightly with the energy, and becomes
infinite at a finite (huge) scale. We won’t have to worry about those effects.

Quantum chromodynamics (QCD)

The strong interaction is more subtle than electrodynamics, and a satisfying
description was only found in the seventies. QCD is based on particles called
“quarks”, with fractional electromagnetic charge. Each of these quarks comes
in three “colors”, and can interact with other color-charged particles by ex-
changing “gluons”.

The main oddity of QCD is that the coupling constant is large at low
energy, which prevents using perturbation theory below ∼ 1GeV. The whole
perturbative picture breaks down, and quarks and gluons are no more well-
defined objects. In the presence of a “hard” scale (an energy whose value is
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Pseudoscalar Vector

Quark contents Symbol Mass Symbol Mass

1√
2
(uū− dd̄) π0 135 ρ0 775

ud̄/ūd π+/π− 140 ρ± 775
us̄/ūs K+/K− 464 K∗± 892
d̄s/ds̄ K0/K̄0 498 K∗0/K̄∗0 896

c1√
2
(uū+ dd̄) + c2(ss̄) η 548 ω 783

c′1√
2
(uū+ dd̄) + c′2(ss̄) η′ 958 φ 1 019

Table 1.1: Classification of light pseudoscalar and vector mesons [4]. Charge-
conjugate particles are listed on the same line. Masses are in MeV.

bigger than a few GeV), the coupling constant is lower and perturbation theory
may make sense – though it’s not automatic.

Because the coupling constant is so strong (and increases with the distance
between particles), colored states can’t live for long: they immediately ex-
change gluons and eventually become color-neutral. This is the reason why
quarks are always observed in bound, color-neutral states1. The lightest such
states are made of two quarks; they are called mesons. Three-quarks bound
states are called baryons; they include the proton and neutron.

The meson spectrum

Predicting the meson spectrum is hard because of the strong coupling constant.
Fortunately, phenomenological arguments allow to understand it qualitatively.

Since the difference beween the up and down quarks masses is much smaller
than the meson masses, swapping one for the other doesn’t change much (as
far as the strong interaction is concerned: they have different electric charges).
If we allow arbitrary superpositions of u and d quarks, we end up with a
representation of the su(2) algebra called Gell-Mann SU(2). More precisely,
the (ud) doublet is in the 2 and (ūd̄) is in the 2̄.

Let’s now construct mesons, using one quark and one antiquark. If the Gell-
Mann symmetry holds, we end up doing 2⊗ 2̄ = 1⊕ 3: we get one particle in
the representation 1, and three in the 3. Mesons in the same representation
should have similar masses, because they end up mixing with each other when
mixing the up and down quarks. The three particles in the 3 are called pions
(symbol π), and the singlet η8. The η8 is actually not a mass eigenstate; we
will see shortly that it mixes with another η.

The same argument using the three lightest quarks, u, d and s, leads to
nine mesons, one in a singlet and all others in an octet (of su(3)). The octet
contains the three pions, the K±, the K0 and K̄0, and the η8. The singlet is
called η1. Because they share the same quantum numbers, the η1 and η8 mix
with each other; the mass eigenstates are called η and η′.

So far, we only talked about mesons in their ground state, with spin 0 and
negative parity (“pseudoscalar” ones). The first excited states have spin 1 and

1 Apart from the top quark, which decays before having the time to form bound states.
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Figure 1.2: Parton density functions (left) and their generalizations (right). x is

the momentum fraction of the produced parton;
−→
k⊥ is its transverse momentum; ∆

is the four-momentum transferred at the proton vertex. TMFF stand for transverse
momentum-dependant form factors, and TMSD for transverse momentum-dependant
spin distributions.

negative parity, and are called “vector” mesons. Among them can be found the
main topic of this work, the ρ0, as well as the ω and φ, that will be important
backgrounds. The Gell-Mann symmetry still holds; actually, its predictions are
even better than in the scalar case.

Table 1.1 lists the lightest mesons and their quark contents. Apart from
some trouble with the three pions (which can be explained by chiral symmetry
breaking [5]), mesons in the same representation of su(3) have more or less
the same mass. Variations inside the su(2) doublet are even smaller: the mass
difference between the ρ0 and the ρ± couldn’t be measured to date [4].

The proton bound state

Protons (and neutrons) are baryons made of up and down quarks. Due to
the strength of the strong coupling constant at low energy, their structure is
in fact more complicated: along with their three “valence” quarks, protons
contain gluons, and even other quarks (that make up the “sea”). The same is
true for any hadron; these structures cannot be computed analytically.

The probability of finding a quark or gluon q in a proton is given by the
parton density functions (PDF) fq/p(x;µ

2), where µ2 is a factorization scale
and x is the momentum fraction carried by the parton [7]. The scale dependence
of the PDFs is given by the DGLAP system of coupled differential equations.
Recent values of the PDFs are shown of figure 1.2a.

The observed density of very low x gluons tends to be very high. It can’t,
however, go to infinity without breaking the unitarity of time evolution in quan-
tum mechanics. The gluon density must therefore stop raising at some point
(for example due to gluon recombination, gg → g, not included in the DGLAP
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equations because of unknown correlations in the gg initial state). This feature,
called “gluon saturation”, hasn’t been observed so far in an unambiguous way.

Parton density functions are very useful, but they have a few important
limitations. First, they only give a one-dimensional picture of the proton, which
doesn’t take transverse momentum into account. This problem can be solved
by considering transverse momentum-dependant parton distributions (TMDs)
[8]. Secondly, the relation between the PDFs and the proton form factors (FF)
isn’t clear; generalized parton distributions (GPDs) provide a natural unified
framework. GPDs and TMDs are both specializations of even more general
functions, called generalized TMDs (GTMDs). The relations between these
functions are shown on figure 1.2b.

The main pitfall of TMDs and GPDs with respect to PDFs is their higher
dimensionality: measuring them in the whole phase space is difficult. The first
fits of TMDs to data appeared a few years ago; present research focuses on
taking scale dependence into account. GPD fitting is more difficult because
these functions have more parameters, but is also an active research area [9].

1.2 Vector meson (photo)production

The “golden channels” to access the GPDs (and in general the color distribu-
tion in the proton) are Compton scattering (γ∗p → γp) and exclusive meson
production (γ∗p→Mp) [10]. Both of them feature the same, well-understood
initial state; the difference lies in the reaction products. From a theoretical
point of view, predictions for exclusive meson production are more difficult
because the connexion between perturbation theory and the meson final state
is not fully understood. The two processes are in fact complementary because,
as will be discussed below, they probe different GPDs.

Since it is the main topic here, we will focus on the production of vector
mesons, γ∗p→ V p. Conservation rules imply that the meson must be neutral,
cannot carry strangeness/charm/bottomness, and must have negative parity.
Many particles satisfy these conditions. Let’s begin the list with the ρ and its
two heavier versions, the ρ(1450) and ρ(1700) (hereafter referred to as ρ′). The
ω and the φ are two other possible light mesons. Heavier ones, such as the J/ψ
and ψ(2s) (cc̄ bound states) and the Υ (bb̄), can also be produced. This list
omits many rare resonances.

We can’t go forward without first defining the kinematic variables describing
the system. Once done, we’ll describe three models for vector meson produc-
tion. We will then present a prediction for the case of gluon saturation.

Kinematics

One of the most important variables is the virtuality of the incoming photon,
Q2 = −q2 > 0, where qµ is the photon four-momentum. We will develop
the kinematics in the “photoproduction” domain (when Q2 ≈ 0); all Lorentz-
invariant definitions remain valid in the “electroproduction” domain (Q2 > 0).
We use the following momentum assignments:
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γ∗ (q) V (pV )

p (p) p (p′)

It is convenient to use a frame in which both the proton and photon mo-
mentums are along the z axis, and the proton is ultra-relativistic. Such a frame
can always be defined, and we’ll see later that it is close to the lab frame. In
our frame, if the photon is real, one can take:

qµ = Eγ(1, 0, 0, 1)
µ and pµ = Ep(1, 0, 0,−1)µ,

where Eγ and Ep are respectively the photon and proton energies.
The final state momentums pV and p′ can be written as:

pµV = (EV ,pt, p
V
z )

µ and p′
µ
= (E′

p,−pt,−p′z)µ,

where pt is the (two-dimensional) transverse momentum.
Two important Lorentz-invariant quantities are defined as follows: the

photon-proton center-of-mass energy, W , is such that W 2 ≡ (p + q)2; the
square of the momentum transfer t is defined as t ≡ (q − pV )

2 = (p − p′)2.
Using four-momentum conservation and keeping only the leading power in Ep,
we can write these variables as follows:

−t = p2t , (1.1)

W 2 = 2Ep(EV + pVz ). (1.2)

It is sometimes useful to consider the rapidity of the vector meson,

yV ≡ 1

2
log

EV + pVz
EV − pVz

.

At small pt (with respect to the mass MV ≡
√
p2V of the vector meson), equa-

tion (1.2) can be rewritten as W = 2EpMV e
yV . We’ll use the more precise

version given by equation (1.2).
At high energy (of the vector meson with respect to its mass), the rapidity

can be approximated by a purely geometrical variable, called pseudorapidity:

ηV ≡ 1

2
log

pV + pVz
pV − pVz

.

Detector geometries are usually described in terms of ηV rather than the spher-
ical polar angle θV .

Models for vector meson production

Several models have been proposed to describe exclusive vector meson produc-
tion. We shortly discuss three of them in this section. We’ll start with Vector
Meson Dominance, an old but still relevant phenomenological model. We’ll
continue with a short overview of the color-dipole approach, a state-of-the-art
predictive model. GPD-based computations will be examined last, with an
emphasis on what vector meson production can teach us in this area.
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Vector meson dominance

Vector meson dominance (VMD) [11] takes its roots in early attempts at de-
scribing the strong interaction. Today, it is considered as a phenomenological
model. The principle is simple: the virtual photon is thought as a superposi-
tion of a purely electromagnetic state and a set of vector mesons with the same
quantum numbers. In canonical VMD, only the lightest mesons (ω, ρ and φ)
are included. Generalized versions include heavier resonances.

In the VMD picture for vector meson production, the photon first fluctuates
into a vector meson, which then interacts with the proton. The case where the
photon interacts before fluctuating is usually neglected, because electromag-
netic coupling between the photon and the proton is much smaller than the
strong coupling between the meson and the proton.

The first measured input of the model is the photon-meson coupling fV ,
computed from the meson leptonic decay width, ΓV→e+e− :

ΓV→e+e− =
4πα

f2V

MV

3
,

where α = 1/4π is the fine structure constant. The leptonic decay width is a
well-measured quantity [4].

Using this quantity, one writes the t-differential cross section dσ/dt as:

dσγp→V p

dt
=

e2

f2V

dσV p→V p

dt
,

where e = −1 is the charge of the electron. This is in particular true at t = 0,
in which case we can apply the optical theorem2:

dσγp→V p

dt

∣∣∣∣
t=0

=
e2

f2V

1 + β2

16π
σ2
V p→X ,

where β accounts for the contribution of the real part of the amplitude, that
the optical theorem cannot predict.

The total inelastic cross section σV p→X is parametrized as:

σV p→X = σMW
−η + σPW

ε. (1.3)

The two terms are often referred to as coming from meson (σM ) and “pomeron”
(σP) exchange.

The VDM doesn’t predict the t differential cross-section; an exponential
form is usually assumed:

dσγp→V p

d|t|
∝ e−b|t|σ2

V p→X . (1.4)

2 The optical theorem relates forward elastic scattering amplitudes to total cross sections.
In our case, it reads:

=AV p→V p

∣∣∣
t=0

= 4πW σV p→X ,

where σV p→X is the total inelastic cross-section. It is an unavoidable consequence of the
unitarity of time evolution in quantum mechanics; more details are found e.g. in chapter 24
of [2].
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The parameter b above is called the t slope of the cross section. It is usually
interpreted as the square of the transverse size of the interaction (i.e. including
the proton, photon and vector meson sizes).

The VDM is valid for soft interactions (when QCD bound states interact
as a whole and their composite nature is irrelevant). This is among others
realized in high-energy photoproduction: W → ∞ and Q2 → 0.

The color dipole model

The color dipole model [12, 13] is formulated in light-cone coordinates, with
time being swapped for the x+ ≡ 1√

2
(x + t) coordinate. The basic idea is

that the incoming photon fluctuates into a quark-antiquark pair, γ∗ → qq̄,
that forms a “color dipole”. The dipole then interacts with the proton, and
the projection of the result on the meson wave function gives the scattering
amplitude.

More precisely, in terms of the vector meson and photon light-cone wave
functions ΨV and Ψ, the imaginary part of the scattering amplitude can be
written as:

Aγp→V p = 2i

∫
d2r

4π

∫
d2b

∫ 1

0

dz (Ψ∗
V Ψ) e−i[b−(1−z)r]∆ N ,

where r is the dipole separation, b is the impact parameter, z is the fraction of
the photon light-cone momentum carried by the quark, and ∆ is the momentum
transfer at the proton vertex, t = ∆2. A summation over spin and quark
flavours u, d, s, c is implied in (Ψ∗

V Ψ), called the “overlap” between Ψ and ΨV .
The photon light-cone wave function Ψ can be computed in pure QED.

Its equivalent for the vector meson ΨV cannot, but the so-called “boosted
gaussian” wave functions reproduce currently available data for 1 s and 2 s
meson states.

The proton-dipole scattering amplitude N (x, r,∆) (x is the Björken vari-
able) depends on the spatial distribution of gluons inside the proton; at small
dipole sizes, it can be computed in perturbation theory. Outside of the per-
turbative regime, several different parametrizations based on gaussian (spatial)
gluon distributions reproduce currently available experimental data.

The expression above is defined in such a way that:

dσγp→V p

dt
=

1 + β2

16π
|Aγp→V p|2 ,

where β2 . 15% accounts for the missing real part of the amplitude. The t-
dependence of the exclusive vector meson cross sections therefore depend on the
details of the proton-dipole scattering cross-section. In particular, it depends
on the color distribution in the transverse plane of the proton.

GPD-based computations

The interpretation of vector meson production in terms of GPDs is only possible
in certain kinematic regions. GPD factorization was formally proven at large
photon virtuality and center-of-mass energy, Q2 → ∞ and W → ∞, with the
Björken variable x kept fixed, and in the photon-proton center-of-mass frame
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Figure 1.3: Typical diagrams of DVCS (top) and DVMP (bottom) using the GPDs
E, Ẽ, H and H̃ [10]. The lepton ` can be swapped for any other charged particle.
ML stands for any vector or scalar meson, VL for a vector meson.

[10]. Another proof was found for photoproduction (small Q2) of qq̄ mesons,
in the formal limit mq → ∞.

Typical diagrams for deeply virtual (Q2 → ∞) Compton scattering (DVCS)
and meson production (DVMP) are shown on figure 1.3. They show that, at
leading order, DVCS depends only on the quark GPDs. DVMP depends on the
GPDs for the quark species that make up the final state meson and, in the case
of vector mesons, on the gluon GPDs. The latter contribution dominates at
low x (for GPDs, x is defined with respect to the total exchanged momentum).

Unfortunately, ρ0 photoproduction can’t be interpreted in terms of the
GPDs because the ρ is made of light quarks. Therefore, our analysis won’t
constrain generalized parton distributions.

A prediction for gluon saturation

A calculation [13] using the color dipole model indicates that gluon saturation
could manifest itself through the appearance of a diffractive pattern in the |t|-
differential vector meson cross sections (see figure 1.4). The differential cross
section would feature several dips, which the authors claim is an universal
feature of any gluon saturation model.

In the gluon saturation picture, the dips move to lower |t| when increasing
W or lowering the mass MV of the considered meson. While dips could appear
for other reasons, this is a distinctive feature of saturation models. Since the ρ
is the lightest vector meson, gluon saturation could very well be first observed
in ρ photoproduction.
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Figure 1.4: Diffractive pattern in the t-differential cross section for exclusive γp →
ρp production in the gluon saturation picture [13]. This prediction was made for
photoproduction at W = 1TeV; the red and black curves are two different models
for gluon saturation, and the purple one is a model without saturation. Theoretical
uncertainties are shown using the marker sizes.

If gluons saturate, the vector meson production cross sections are expected
to saturate too. This would manifest itself by a deviation from the power law
of the VDM at high W . The deviation in W predicted by [13] is, however,
not significant at energies within reach of current data samples. Moreover, the
results depend strongly on the quark masses, which aren’t known with great
accuracy.

1.3 Experimental results

Exclusive photoproduction of a ρ meson has been studied for a long time.
Most of the available data lies below W = 20GeV; the two experiments that
provided data above this threshold, H1 [14] and ZEUS [15], used the reaction
ep → eρp at the HERA collider. The statistics used for their measurements
at Q2 = 0 were limited, because a special trigger configuration was needed in
order to reach this domain. Precision measurements of exclusive ρ production
on gold were recently performed using data taken at the Relativistic Heavy Ion
Collider (RHIC) [16].

Mass peak and interference

The STAR collaboration at RHIC has recently been able to perform a pre-
cise measurement [16] of the various contributions to π+π− production with
Mππ around Mρ = 775MeV in gold-gold collisions. The production mode is
essentially the same as in our analysis, with the additional complication of the
target being a nucleus. The photon-nucleon center-of-mass energyW is around
15GeV.
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Figure 1.5: Contributions to the ρ mass peak, as measured by STAR [16].

Around the Mρ, the amplitude Aππ for π+π− production can be written as
the sum of three terms [16],

Aππ ∝ A

√
MππMρΓ(Mππ)

M2
ππ −M2

ρ + iMρΓρ(Mππ)
−B + Ceiϕ

√
MππMωΓ(Mππ)

M2
ππ −M2

ω + iMωΓω(Mππ)
,

where the first term describes ρ production, the second one direct π+π− pro-
duction and the last one stands for the ω.

In the expression above, all parameters are real and positive;Mω = 783MeV
is the mass of the ω. The variable widths Γρ and Γω take the variation of the
available phase-space into account; for Γρ, the expression is:

Γρ(Mππ) = Γπ+π−

ρ

Mρ

Mππ

∣∣∣∣M2
ππ − 4m2

π

M2
ρ − 4m2

π

∣∣∣∣ 3
2

, (1.5)

where Γπ+π−

ρ ≈ Γtot
ρ = 149MeV is the partial decay width of the ρ into two

charged pions, and mπ = 140MeV is the mass of charged pions. A similar
expression holds for Γω(Mππ); see [16] for details.

The STAR measurement shows that the three contributions are needed in
order to describe the data (see figure 1.5). The most important part of the
cross section comes from ρ production. The amplitudes for direct ππ and ω
production are small, but their interferences with the ρ are important.

The effect of the ρ-ππ interference is to shift the apparent mass of the ρ
to lower values, by increasing the cross section for Mππ < Mρ and lowering
it above Mρ. The ρ-ω interference term is much smaller, and only slightly
changes the shape of the mass peak.

Most measurements of the ρ cross section neglect the contribution from the
ω. In this case, the cross section is given by the Söding formula:

dσγp→π+π−

dMππ
=

∣∣∣∣∣A
√
MππMρΓ(Mππ)

M2
ππ −M2

ρ + iMρΓρ(Mππ)
−B

∣∣∣∣∣
2

. (1.6)

We will stick to this expression in what follows.
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(a) Total cross section. (b) t slope.

Figure 1.6: W and Q2 dependence of the γ∗p → ρp cross section [10].

Observed dependences of the cross section

The diffractive γp→ ρp cross section has been studied at various center-of-mass
energies W and photon virtualities Q2 ≡ −q2. The low-W and low-Q2 part of
the phase-space was measured at fixed target experiments. The H1 and ZEUS
collaborations at HERA were able to provide measurements [17, 18, 14, 15] for
W up to 200GeV and Q2 up to 35GeV2. The elastic cross section as a function
of W and Q2 is shown on figure 1.6a.

The W dependence of the exclusive cross section can be parametrized as
the sum of two power laws:

σγp→ρp = σMW
−η + σPW

ε, (1.7)

where, as in equation (1.3), σM stands for meson exchange and σP for pomeron
exchange.

The t dependence of the cross section was measured at H1, ZEUS and other
lower-energy experiments. Available data is well described by a decreasing
exponential:

dσγp→V p

d|t|
∝ e−b|t|, (1.8)

where the parameter b is called the t slope of the cross section, and is interpreted
as the transverse area of the proton-photon system.

The observed b slope increases at high W (figure 1.6b); H1 and ZEUS
found values around b ≈ 8GeV−2 for 〈W 〉 = 75GeV. In addition, the H1
collaboration found a slight deviation from a pure exponential above |t| ∼
0.4GeV2; ZEUS results weren’t conclusive.

1.4 Ultra-peripheral collisions

When throwing a proton at a nucleus, it is likely that they will miss each
other. In this case however, there is still a substantial probability for them
to interact through their respective electromagnetic fields. Such a process is
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called an ultra-peripheral collision (UPC for short), because it happens at a
long distance from the nucleus.

Two classes of processes are possible in UPCs: photon-photon interactions,
and strong interactions between a photon and one of the nuclei. In heavy ion-
proton collisions, photon-proton interactions dominate because of the higher
charge of the nucleus. This is one of the ways of probing vector meson photo-
production at high energy.

In order to extract photon-proton cross sections, it is crucial to know the en-
ergy spectrum of the involved photons. This computation is usually performed
in the Weizsäcker-Williams approximation, whose derivation will be sketched.
Since we are interested in the t-differential cross section, we will check that the
transverse momentum of the photons is small. But before doing anything, let’s
define the kinematics.

Kinematics

We assign momenta k and k′ to the incoming and outgoing lead nucleus:

Pb (k)

Pb (k′)

p (p)
p (p′)

γ∗ (q)

ρ (pρ)

Other momenta are defined as before. We use a frame in which both the
lead and the proton are ultrarelativistic, and neglect their masses with respect
to their energy and axial momentum. Since this corresponds to the situation
at a particle collider, we will call it the lab frame.

The Weizsäcker-Williams approximation

The Weizsäcker-Williams approximation can be used to compute the average
number density of photons that accompany a charged particle moving close
to the speed of light. Such a result is needed in order to describe ion-proton
collisions in terms of photon-proton interactions. Before applying it to this
particular case, let’s first sketch its derivation.

The four-potential A µ of a moving charged particle can be computed in
classical electrodynamics. It is traditionally written as a function of the posi-
tion, A µ(xν), or the momentum, A µ(qν). The two representations are related
by a Fourier transform. We’ll use a mixed representation3: A µ(Eγ ,b, q

z),
where Eγ is the energy, b ≡ (x, y) and qz is the z component of the momen-
tum.

We are, however, not interested in A µ, but in the energy density4 E . If a
spherical particle of charge Z is moving along the z axis in the +z direction,

3 At the cost of losing manifest Lorentz invariance.
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and γ is the boost factor, one finds:

E(Eγ ,b) =
αZ2

π2

(Eγ)
2

γ2
K2

1

(
bEγ

γ

)
,

where we have neglected terms of order 1/γ2 in the argument of K1, b = |b|,
K1 is the usual Bessel function and we have performed an integration over qz.

The average energy- and impact parameter-dependent photon number den-
sity N is therefore given by:

N (Eγ ,b) =
1

Eγ
E(Eγ ,b) =

αZ2

π2

Eγ

γ2
K2

1

(
bEγ

γ

)
. (1.9)

Let’s now apply this result to ultra-peripheral collisions. There are several
prescriptions on how to deal with the remaining dependence on the impact
parameter b. An analytical result can be obtained by integrating over the
whole plane except the region b < bmin, effectively describing the heavy ion
as a hard sphere. Swapping Eγ for W , we find the following photon number
density:

Γ(W ) ≡ dnγ
dW

=
αZ2

π

2

W

[
x2

(
K2

0 (x)−K2
1 (x)

)
+ 2xK0(x)K1(x)

]
, (1.10)

where x ≡ bminEγ/γ = bminW
2/4γEp.

Another method is to perform a Glauber calculation, taking into account
the impact-parameter dependent probability of hitting the nucleus:

Γ(Eγ) =

∫
dbN (Eγ ,b)

(
1− P(interaction)(b)

)
. (1.11)

This second formula gives more precise results because it takes the nuclear
density into account. In ion-ion collisions, the cross section is reduced by up
to 20% when compared to equation (1.10) [20].

Photon virtuality and transverse momentum

In order to measure the t slope of the photon-proton cross section, we must
compute this variable from the kinematics of the ρ meson alone – we won’t
measure the scattered proton. In this section, we claim that equation (1.1) is
still valid for ultra-peripheral collisions in the lab frame. This proposition can
be formulated in three equivalent ways:

1. Equation (1.1) is valid in the lab frame;

2. The transverse boost needed to go from the lab frame to the photon-
proton center-of-mass frame is small;

4 In an arbitrary representation, the energy density can be computed as [19]:

E =
1

2
(q̂[iA0])

2 +
1

4
(q̂[iAj])

2,

where q̂i are the momentum operators. In position representation, one should take q̂i = ∂i;
in momentum representation, q̂i = qi. In the expression above, a[ibj] stands for aibj − ajbi
and a sum over all free indices is implied after taking the square.
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3. The transverse momentum of the photon is small.

The last formulation makes it clear that one should take the ion into account,
because that’s where the photon gets produced.

The structure of the ion can be described using its form factor F (qµ), de-
fined as the Fourier transform of its charge distribution. Assuming a Woods-
Saxon matter distribution, one can show that an approximate form factor is
given by [20]:

F (qµ) =
[
sin(QR)−QR cos(QR)

] 3

(QR)3
1

1 + a2Q2
, (1.12)

where R is the nuclear radius, a is fixed to 0.57GeV−1 and Q2 ≡ −q2 ≥ 0 is
the virtuality of the photon. In the lab frame, it can be written as:

Q2 =
E2

γ

γ2
+ (pγt )

2,

where γ is the Lorentz boost of the ion and pγt the photon transverse momen-
tum. Using this expression, one can compute the average photon virtuality at
a given photon energy:

〈Q2〉 =

∫∞
E2

γ/γ
2 dQ

2Q2F 2(Q2)∫∞
E2

γ/γ
2 dQ2 F 2(Q2)

.

Evaluating this expression for lead (R = 5.343GeV−1) and typical photon ener-
gies at the LHC gives 〈Q2〉 ≈ 0.025GeV2. This value is also an upper bound for
the square of the photon transverse momentum (pγt )

2 < Q2. Expression (1.1) is
therefore valid in the lab frame from approximately ∆t ∼ 0.025GeV2 upwards,
and we can use it.

1.5 Monte-Carlo simulations

Modern particle physics experiments are increasingly complex. The size of the
detectors, the amount of data they collect and the number of processing steps
needed in order to get usable high-level objects (reconstructed particles etc)
makes it impossible for an human to understand all experimental effects, let
alone find an analytic description.

In order to relieve themselves from this challenge, particle physicists use
detailed computer simulations of their detectors. Such simulations are used to
check that the observed distributions match the predictions, but also to correct
for acceptance and detection efficiency. These simulations play a central role
in virtually every modern particle physics data analysis.

Simulated events are not chosen at random, but usually follow expected
physical distribution. This has several advantages: the same simulations can
be used to predict expected number of events and to perform the analysis;
deviations from predictions can be spotted earlier; the uncertainty on total
cross sections is minimized. The main drawback of this approach is that it
causes large uncertainties in regions of the phase space where the cross section is
small, because of the lower statistics available to estimate the detector response.
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There is a large family of Monte-Carlo event generators, programs that pro-
duce events according to known (or predicted) cross sections. Such programs
exist for a wide range of processes, from production of hypothetical particles to
the well-known quantum electrodynamics. Event generators are experiment-
agnostic (except for the initial state), and the same generator is often used by
several experiments.

The STARlight event generator

STARlight [20] is an event generator that produces UPC events using the cur-
rent knowledge of the cross sections. It targets high-energy experiments such
as the RHIC and the LHC. STARlight supports two production modes, two-
photon and photonuclear interactions, and a wide range of final states. It can
also simulate nuclear breakup.

Among the channels supported by STARlight are diffractive production
of the ρ0, ω, φ and ρ′ vector mesons, including interference of the ρ0 with
direct π+π− production. It can’t, however, simulate three-body decays such
as ω → π+π−π0. Due to the lack of available data, some of its parameters are
guesses that should not be relied upon; this is in particular the case for the ρ′

resonance.
STARlight uses equation (1.11) to compute the photon flux. It assumes vec-

tor meson dominance and describes the vector meson total cross sections using
equation (1.3). The transverse momentum dependence of the cross section is
evaluated by performing the following integral:

dσAp→AV p

dpV
t

∣∣∣∣
pV

t ,M2
V ,Eγ

∝
∫

d2pγ
t

(
ΓA(Eγ)

(pγ
t )

2

q4
F 2
A(q)F

2
p (∆) + (p↔ A)

)
,

where ∆ is the four-momentum transfer at the proton vertex, q and pγ
t are

respectively the four- and transverse momentums of the photon, and Eγ is its
energy. ΓA is the photon flux for nucleus A. FA is the nucleus form factor of
equation (1.12) and Fp is the proton form factor:

Fp(∆) =

[
1 +

∆2

∆2
0

]−2

,

corresponding to an exponential charge distribution. The proton “radius” ∆2
0

is fixed to 0.71GeV2.
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Experimental setup

In this chapter, we describe the experimental setup that was produced the
data used in our analysis. We will begin with the accelerator used to produce
the beams. The main section covers the detector itself, or rather the different
subdetectors it is made of. In the last section, we will briefly describe how the
data is preprocessed to make it usable for physics analyses.

2.1 The LHC

The Large Hadron Collider (LHC) is a circular particle collider located at
CERN, Geneva. Its two beams meet each other at four points, shared by seven
detectors. There are four big detectors (ALICE, ATLAS, CMS and LHCb) and
three smaller ones (LHCf, MoEDAL and TOTEM). Two of them (ATLAS and
CMS) are generalist and aim at very diverse physics programmes; the others
were designed to study more specific topics.

The LHC beams are not continuous: particles are bunched together, with
a nominal bunch crossing rate of 40MHz. The LHC is the highest-energy part
of a chain of particle accelerators operated by CERN. Before being sent to the
LHC, bunches are formed and pre-accelerated by several other facilities, some
of them taking their roots back in the fifties. The full accelerator complex is
represented on figure 2.1.

Despite its ability to accelerate heavy ions, the LHC operates most of the
time in proton-proton mode. Between the start of the data-taking in 2010 and
the first long shutdown in 2013, only one month of Pb-Pb data was taken, and
another month was split into p-Pb and Pb-p data.

2.2 The CMS detector

CMS (Compact Muon Solenoid) [22] is one of the four main detectors using
the LHC colliding beams. It is built around a large superconducting solenoid
that produces the strong 4T magnetic field necessary to bend the trajectory of
high momentum charged particles. A silicon tracking system and two calorime-
ters are located inside the magnet. Around it is built a big tracking system
dedicated to muons – hence the name of the experiment.

CMS can detect almost every long-lived particle of the Standard Model,
with only neutrinos escaping without being seen. It achieves this through the

17
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Figure 2.1: The CERN accelerator complex in 2012, and the main experiments at
the time [21].

Forward
Calorimeter

Hadron
Calorimeter

Electromagnetic
Calorimeter

Muon
Detectors

Superconducting
Solenoid

Tracker

Figure 2.2: A perspective view of the CMS detector (adapted from [22]). ZDC and
CASTOR are not represented.
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Figure 2.3: Pseudorapidity coverage of the various CMS subdetectors.

combination of different detection techniques (see figure 2.2). The apparatus
closest to the interaction point is a large silicon tracker, sensitive to charged
particles going through it. It is surrounded by an electromagnetic calorimeter
that measures the energy of high-energy photons and electrons, and a hadronic
calorimeter that does the same for hadrons. The muon tracking system that
surrounds the magnet won’t be of interest to us in the present analysis.

Most of the CMS instruments are concentrated in the mid-rapidity region.
The tracker covers the range |η| < 2.5; the electromagnetic calorimeter (ECAL)
extends to |η| < 3.0, and the hadronic calorimeter (HCAL) to |η| < 5.2. Addi-
tional calorimeters, CASTOR and ZDC, cover the ranges −6.6 < η < −5.2 and
|η| > 8.3 respectively. Figure 2.3 shows the extent of the various subdetectors.

We now proceed to a more in-depth description of the detectors that will be
used in this analysis: the tracker, the electromagnetic and hadronic calorime-
ters, CASTOR and ZDC.

The tracker

The innermost part of CMS, the tracker, was designed to be able to recon-
struct the individual trajectories of more than 1 000 particles in a single bunch
crossing. Radiation damage and the need to limit the material budget were
other design challenges. With about 200m2 of active area, CMS uses the larges
silicon tracker ever built.

The innermost part of the tracker is a pixel detector composed of three
concentric barrels of radii from 4.4 to 10.2 cm, supplemented by two endcaps.
It covers pseudorapidities in the range |η| < 2.5. With a pixel size of 100 ×
150µm2, it provides the high spatial resolution needed to distinguish between
many primary and secondary vertices.

Around the pixel detector, the tracker is made of several barrels and endcaps
of strip sensors, up to a radius of 1.14m. Its geometry is such that all tracks
within |η| < 2.4 cross at least 9 layers, with 4 of them providing directional
information. Like the pixel detector, the strip sensors’ acceptance extends to
|η| < 2.5.

The tracking system as a whole is able to reconstruct charged particles’
trajectories in three dimensions. Thanks to the strong magnetic field, there is
a relation between the track curvature and the transverse momentum pt of the
corresponding particle:

pt[GeV] = 0.3B[T]R[m],



20 CHAPTER 2. EXPERIMENTAL SETUP

where B is the magnetic field and R > 0 is the radius of the track. The sign
of the curvature gives the sign of the charge of the particle; we will call it the
track “sign” below.

The track parameters are inferred form the measured points using a Kalman
filter, an iterative generalization of least-squares fitting to systems undergoing
random evolution (but with with modeled randomness) [23]. The Kalman filter
is able to estimate the measurement error; for low-energy particles, multiple
scattering dominates. A quick analysis of our data (see chapter 3) gave us a
resolution of ∆pt/pt . 3%.

The electromagnetic calorimeter

The electromagnetic calorimeter (ECAL for short) is made of 75 848 PbWO4

crystals, each of them about 25 radiation lengths-deep. It provides an hermetic
coverage of the pseudorapidity range |η| < 3.0. It measures the energy of
photons and ultrarelativistic electrons through the cascade they produce in
the absorber material.

The barrel part (EB) is 360-fold in φ and 2×85-fold in η, so that each crystal
covers approximately ∆η×∆φ ≈ 0.0174×0.0174. It covers the pseudorapidity
range |η| < 1.479; its inner radius is about 1.29m. In order to avoid the
effect of radial cracks in the structure, the crystals do not point straight to the
interaction point, but are instead tilted by 3◦.

Each of two endcaps (EE) is made of 7 324 crystals arranged in a grid in the
x-y plane. They are located at 3.154m from the interaction point, and cover
the pseudorapidity range 1.5 < |η| < 3.0. Like in the barrel part, the crystals
are tilted (by 2◦ to 8◦) to avoid cracks effects.

The energy resolution of a calorimeter can be parametrized as:

(σE
E

)2

=

(
S√
E

)2

+

(
N

E

)2

+ C2,

where S is the stochastic term, N is the noise term and C is the constant term.
For the ECAL, S was found to be about 5% ×

√
GeV; a value of C below

0.3% was part of the design requirements. The noise term is dominated by
electronics and digitization; one has N ≈ 40MeV, and the noise has a clean
gaussian shape.

The hadron calorimeter

Located just behind its electromagnetic counterpart, the hadronic calorimeter
(HCAL) has a lower spatial resolution but covers a larger rapidity range, down
to |η| < 5.2. It is made of six sections: a barrel (HB), two endcaps (HE) and
two “forward” parts (HF). The sixth part, the “outer” calorimeter, surrounds
the solenoid to catch the tails of high-energy cascades, and is of little interest
to us.

Hadrons sometimes start cascading in the ECAL, before reaching HB or HE.
In this case, the ECAL provides additional measurements that are combined
with those of the HCAL.

The barrel part covers the range |η| < 1.3. It is 2× 16-fold in η and 72-fold
in φ, for a spatial resolution ∆η×∆φ ≈ 0.087× 0.087. Every HB cell maps to
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HF

1m

Figure 2.4: Location of HF and CASTOR (adapted from [24]). Despite the positive
values of η on the diagram, CASTOR is located in the negative η region. The orange
device in front of CASTOR is part of the TOTEM detector.

a group of 5 by 5 crystals in EB. HB is made of 14 brass plates stacked above
each other, with plastic scintillator layers interleaved in-between. The total
depth goes from 5.82 interaction lengths (λI) at η = 0 to 10.6λI at |η| = 1.3.

The two endcaps cover the range 1.3 < |η| < 3.0. For |η| < 1.6, their
granularity is the same as in the barrel, ∆η ×∆φ ≈ 0.087× 0.087. It is lower
for |η| ≥ 1.6, ∆η ×∆φ ≈ 0.17 × 0.17. The same brass alloy as in HB is used;
taking the ECAL into account, the two HE are about 10 interaction lengths-
deep.

HF extends the HCAL to the pseudorapidity range |η| < 5.2. Its granularity
is mostly ∆η ×∆φ = 0.175× 0.175. HF can distinguish showers generated by
electrons and photons, whose starting depth is lower than for hadronic ones.
It uses steel as its absorber material, and uses the Cherenkov light emitted by
charged particles to detect them.

CASTOR

CASTOR (Centauro and STrange Object Research) is a Cherenkov detector
located on the −z side of CMS, covering the pseudorapidity range −6.6 < η <
−5.2. It is located as close to the beam pipe as one can get (1 cm); see figure 2.4
for its location relative to HF. CASTOR can be taken away from the beam if
needed.

The design of CASTOR allows it to be sensitive to anything ranging from
a single minimum ionizing particle to jets at full beam energy (7TeV). It has
two electromagnetic sections and twelve hadronic ones. A 16-fold division in φ
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allows for a resolution of about 20 degrees. All in all, the CASTOR signal is
split into 224 channels.

The zero-degree calorimeters

The zero-degree calorimeters (ZDC) surround the beam pipes on each side of
the z axis, at a distance of 140m from the interaction point. This location
allows them to cover the pseudorapidity range |η| > 8.3 for neutral particles
(mostly photons and neutrons). They have a 19 radiation lengths-deep electro-
magnetic section, and a 6.5λI hadronic section. They are able to reconstruct
the energy of 2.75TeV neutrons with a resolution above 15%. As CASTOR,
the ZDC are removed from the detector during high-luminosity runs.

2.3 Data processing system

Not all events happening at the LHC are equally interesting. Moreover, the
amount of data produced by a big detector like CMS running at 40MHz is
huge. Recording every single event is thus impossible, and a way to decide
which events to keep is needed. This is achieved by a complex system of
triggers. In this section, we summarize the design of the event selection and
reconstruction system.

The selection of events to be recorded is done in two steps. A first selection is
performed in hardware (mostly programmable electronics), bringing the event
rate down to 100 kHz; this is called the Level-1 (L1) trigger. Events accepted
by the L1 trigger are forwarded to a computer farm, which further reduces the
output rate, down to 100Hz. More subdetector data (in particular the tracker)
is available for this step, called the high-level trigger (HLT).

Events selected by the HLT are saved and dispatched to data centers around
the World, where they undergo several processing steps in order to reconstruct
physical information. The data produced at CMS and the other major LHC
experiments is processed by the largest single-purpose distributed computing
grid ever built.
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Event samples

In this analysis, we use proton-lead and lead-proton data taken by CMS for
three weeks during the winter 2013. At that time, the LHC was being oper-
ated at an energy of 4TeV per proton and 1.58TeV per lead nucleon, which
corresponds to a nucleon-to-nucleon center-of-mass energy

√
sNN = 5.02TeV.

The expected signature of our events consists in two tracks of opposite
charges and nothing else in the detector.

Since the tracker does not provide L1 triggers, we use the so-called “zero
bias” trigger, which records a given (small) fraction of all active bunch cross-
ings. The zero bias data mostly contains empty events, with only a fraction of
the data being useful. Out of the 287 million events recorded by the zero bias
trigger, only about 160 000 contain two or more reconstructed tracks.

The integrated luminosity for the 2013 zero-bias dataset is 16.94µb−1, of
which 7.39µb−1 is proton-lead data and 9.55µb−1 is lead-proton. These values
are known to 3.6% [25].

In this chapter, we describe how the detector was used to select an event
sample corresponding to ρ0 production, with a background contamination as
low as possible. We will go roughly from the innermost detection layers to the
outermost. We’ll start with the selection of tracks, before investigating the cuts
on energy deposit in the barrels of the ECAL and HCAL. The endcaps will then
be given some attention before moving to the forward detectors, CASTOR and
ZDC.

3.1 Tracks

Since the ρ0 decays into two charged pions, the experimental signature in CMS
for its exclusive production is two tracks of opposite signs. There must be
nothing else in the detector. For this reason, the very first cut we apply is on
the number of tracks: we require that there are exactly two.

In order to avoid tracks too close to the edges of the tracker, only those
with |η| < 2.4 are kept; events with tracks outside of this range are thrown
away. Likewise, in order to remove badly reconstructed tracks, the estimated
χ2/number of degrees of freedom (ndf) of both fits is required to be below 10.
We also require all tracks to point to a single vertex.

23
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Figure 3.1: Track pt before and after track cuts. The left plot shows the leading-pt
track, the right one the second track. The cut is also represented.

3.2 Background suppression

In order to avoid a not well controlled low-efficiency region, the leading-pt track
is required to have pt > 400MeV, and the other one pt > 250MeV. This cut
reduces the acceptance at low |t| and low ρ invariant mass.

In order to avoid contamination from the exclusive φ production with
φ → K+K−, the invariant mass of the two tracks assuming K± mass, MKK ,
is required to be above 1.04GeV (the mass of the φ is 1.02GeV and its width
4MeV). It was shown at HERA that this cut removes most of the φ contribu-
tion [17].

The effect of these cuts is shown on figure 3.1, while the kinematics of the
ρ candidate is shown on figure 3.2.

3.3 ECAL Barrel

A few particles can be detected only in EB. The ECAL is designed to recon-
struct precisely the deposited energy of photons and electrons/positrons. But
at low energy, hadrons will be stopped by the ECAL. It has been checked that
the charged pions from the ρ decay do not leave signal in the ECAL above the
noise level (by trying to correlate hits and tracks). This was to be expected,
since low-pt charged particles cannot exit the tracker because of the magnetic
field and stochastic energy loss.

Neutral pions, that decay into two photons, are possibly visible. Back-
grounds such as the ω → π+π−π0 may be reduced using the ECAL, especially
at high transverse momentum. Overall, one doesn’t expect events with lots of
hits in the ECAL.

The objects used in this analysis to evaluate activity in EB are the so-called
CaloTowers. CaloTowers offer an unified formalism to deal with information
from all CMS calorimeters. They are used by CMSSW to reconstruct photons,
electrons, missing transverse momentum and jets. CaloTowers’ information is
calibrated.

In EB, CaloTowers aggregate information from groups of 5 by 5 crystals.
One can extract the mean η and φ, as well as the total energy Eem and the
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Figure 3.2: Kinematics of the ρ candidate before and after track cuts. Visible dif-
ferences include a slight decrease of the |t| slope and the removal of most events at
low invariant mass. Both effects are consequences of the cut on track pt. y > 0
corresponds to the direction of the photon (or lead).

number Nem of crystals that have been hit. Since towers with a total energy
below 200MeV are filtered out to save disk space, we can’t use them – but
we’ll see that they wouldn’t be useful anyway.

Hot Cells

A quick look at the spatial distribution of hits in the ECAL (figure 3.3a) shows
that most of them come from a small fraction of the towers, that we will
call “hot” in what follows – there are a dozen of them, out of one thousand
towers. Moreover, one can distinguish rectangles in the (η, φ) plane where there
are more hits than in the average. Such variations can’t come from particles
reaching EB, which would be produced uniformly in φ.

Looking closer, one identify that just a few crystals cause the whole hot
cells signal. However, there is no (easy) way to tell apart individual crystals
from CaloTowers on an event-by-event basis. In order to avoid the hot part
of the signal, we must therefore ignore anything coming from hot towers – not
just when a hot crystal fires up.

The precise set of towers to be neglected was defined by hand, with no
systematic criteria – but with the implicit goal of reaching a better spatial
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Figure 3.3: Spatial distribution of towers in EB with Eem > 0.5GeV, before and after
hot towers removal. Notice the logarithmic scales.

distribution. A total of 22 towers (out of 1224) are ignored; the fraction of the
phase space that is lost (about 2%) can be neglected, as will be shown later.

Cut

CaloTowers aggregate several crystals, but the noise is expected to come from
individual crystals (in particular from their readout electronics). In order to
separate signal from noise, a cut using CaloTowers is expected to use the
number of crystals Nem considered for building towers’ energy.

An histogram of Nem for all (not hot) towers is shown on figure 3.4a. That
the most probable number of crystals be greater than one is clearly unphysical,
as low-energy particles’ showers aren’t expected to span multiple crystals, and
high-energy particles are rare.

Looking at the mean energy per crystal, 〈Eem〉 ≡ Eem/Nem (figure 3.4b), we
can assume that the low-energy bump corresponds to noise, while the higher-
energy tail is signal. This hypothesis is supported by our knowledge of the
electronic noise, which has a 40MeV-wide gaussian shape.

In order to test our assumption, we define cuts and make some tests. We’ll
among others check that the spatial distribution of the tail is uniform and that
the number of hits is zero for most of the ρ events. The cuts we use are:

good tower ≡ Eem

Nem
>



0.36 GeV if Nem = 1,

0.29 GeV if Nem = 2,

0.26 GeV if Nem = 3,

0.24 GeV if Nem = 4,

0.22 GeV else.

They are represented on figure 3.4b.
The very first check we do is to plot the number of crystals per good tower,

as is done in figure 3.4a. One can see that the most probable number of hits is
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Figure 3.4: Properties of CaloTowers in EB. Energy cuts are represented on the
second graph. “Cold” towers are those that are not hot; “good” towers are those
that pass the cuts. Events with Nem = 0 are not shown.

now 1, as expected. As a second test, the spatial distribution (figure 3.5a) is
now uniform in φ. Moreover, the hit multiplicity (figure 3.5b) is zero for most
events, and is lower in the average when other exclusivity cuts are applied. The
EB cut is thus correlated to other cuts, which is encouraging.

The last check before looking at the effect on the properties of the ρ meson
is to look at the photon-photon invariant mass distribution for two-hits events
(figure 3.5c). One can clearly see a sharp peak around 100MeV. This is roughly
the mass of the π0, which decays into two photons.

Since all checks tend to agree, we can now be confident that the signal
is indeed caused by particles reaching the ECAL. Let’s take a look at what
happens to the ρ kinematics when using EB as an exclusivity cut, i.e. when
rejecting events with at least one good CaloTower.

Effect of the Cut

In order to evaluate the effect of the EB cut, we plot on figure 3.6 the ρ
kinematics with all cuts defined in this chapter applied (including those that
were not yet mentioned), and the same without the EB cut. This presentation
emphasizes events that are rejected by the EB cut only.

Let’s see what the effect of using EB as an exclusivity criterion is. If the
EB cut allows to reject events with photons from π0’s or other decays from
background events, we expect a change in the |t| slope, and maybe a slight
sharpening of the mass peak. On figure 3.6, we plot these two distributions
with all cuts defined in the present chapter applied, and with all cuts but the
EB one. The two aforementioned effects are indeed visible.

On its own, the EB cut excludes a thousand out of around 20 000 events.
Since hot towers add up to only 2% of the phase space, we can neglect the effect
of having ignored them – taking it into account would remove an additional 20
events.
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Figure 3.7: Spatial distribution of towers in HB above two threshold energies. Notice
the logarithmic scale.

3.4 HCAL Barrel

Particles that can reach HB without being seen in the tracker or the ECAL are
rare. They include only long-lived, neutral hadrons: neutrons and K0

L’s. Fur-
thermore, hadronic showers often begin in the ECAL, and should be partially
measurable there. As it is used in FSQ-16-007, we can nevertheless check if
the HB can be used as an exclusivity criterion.

Like in EB, we use information from CaloTowers to evaluate activity in HB.
Every HB tower maps to a single cell; there is no cell multiplicity. The spatial
granularity of towers is the same as in EB.

Hot Cells

One of HB’s peculiarities is the high number of hot cells, and its strong depen-
dence on η and the threshold energy. Figure 3.7 shows the spatial distribution
of hits with an energy above two different thresholds. Physical signal is ex-
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Figure 3.8: HB E∗ as a function of the number of ignored cells. E∗ is defined as the
lowest energy cut for which the P -value for the φ distribution being uniform is higher
than 1 %. The chosen cut is superimposed (black solid line).

pected to be uniform in φ; this is the case above 1GeV in the high |η| region,
while it is not in the center, even above 1.15GeV. A stringent cut should
therefore both depend on η and ignore hot cells.

Since the number of possible cuts with a pseudorapidity-dependent thresh-
old is very high, a semi-automated procedure was used. The HCAL is first split
into rings, each of them being one cell wide in η and covering the full detector
in φ:

∆η

φ

The uniformity of the distribution of hits in each wheel is measured using the
P-value. The lowest energy cut for which the distribution remains uniform
(with a P-value greater than 1%), E∗, is computed.

In order to take hot cells into account, this procedure can ignore a fixed
number n of the most active cells. It was performed with values of n going
from 0 to 20. The energy thresholds E∗

n(η) are shown on figure 3.8 for values of
n starting from 0. This plot should be read from top to bottom: The highest
point in a given η bin is the highest energy for which the distribution in φ
is uniform without ignoring any cell. The second point gives the same when
ignoring one cell, and so on.
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Figure 3.9: Spatial distribution of hits in the HCAL barrel, after hot cell removal.
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Cut

One has to do a compromise between the number of cells that are ignored and
the potential advantage of having a lower threshold. One can see on figure 3.8
that, while ignoring a few cells can lead to big energy gains (almost 1GeV in
the best case), there is at some point a saturation. Removing additional cells
then leads to a very small benefit.

We choose to cut just below the lowest significant gap, which was chosen
by hand (see the black line on figure 3.8); a total of about 120 cells are ignored
this way (out of 1152). They are shown as gray dots on figure 3.9, together
with the spatial distribution of hits passing the cut (“cold” ones).

Energy distributions of hits before and after applying the cut are plotted
on figure 3.10. One can see that requiring spatial uniformity lead to a much
smoother energy distribution, with a slope equal to the asymptotic one – the
decrease below 1.2GeV is due to the lower acceptance at low energy.

Effect of the cut

Let’s now try to evaluate how useful HB can be for our analysis. For this,
we select events without any good hit in HB; the effect of this cut on the ρ
kinematics is shown on figure 3.11. We find that the number of events excluded
by HB alone is negligible, and will therefore not use HB as an exclusivity
criterion.
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Figure 3.12: Hits in the ECAL endcaps with Eem > 2 GeV (left: EE−, right: EE+).
The mapping to the (x, y) plane is approximate.
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Figure 3.13: Hits in the HCAL endcaps with Ehad > 1.95 GeV (left: HE−, right:
HE+). The mapping of the detector geometry to the (x, y) plane is approximate.

3.5 Endcaps

We didn’t have the time to study the endcaps as systematically as the barrels.
We summarize our findings below, looking first at the ECAL endcaps, then at
HB. HF will also be mentioned briefly.

The authors of FSQ-16-007 claim that the ECAL endcaps aren’t useful to
isolate an exclusive ρ sample. Since we saw that EB was dominated by hot cells,
we looked at the spatial distribution of hits in EE (figure 3.12), with an energy
threshold close to what the FSQ-16-007 authors used. While there appears to
be hot cells near the inner edge of the endcap, ignoring them and using uniform
cuts didn’t lead to any significant change of the t and Mππ distributions. As
we didn’t have the time to conduct the study for a pseudorapidity-dependent
cut, we don’t use EE in this analysis.

Unlike EE, the HCAL endcaps are used in FSQ-16-007, with an uniform
energy threshold of 1.95GeV. Figure 3.13 shows the spatial distribution of hits
with an hadronic energy deposit above this cut. It is uniform in φ and increases
near the beam pipe, both features expected from physical signal. Since there is
no obvious problem with this distribution, we use the cut proposed in FSQ-16-
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Figure 3.14: Effect of the HE and HF cuts. All exclusivity cuts defined in the present
chapter are applied, except for the HE and HF ones.

007.
Because of time constraints, we payed even less attention to the forward

hadronic calorimeters HF, and blindly followed the prescriptions from FSQ-16-
007. Events with energy deposits EHF > 3GeV are removed from the consid-
ered sample.

The effect of the endcaps cuts on the ρ kinematic distributions is shown on
figure 3.14. One can see that a larger proportion of events is removed outside
of the mass peak, and that the t shape of the distribution changes slightly, in a
way expected for background reduction. There is therefore no obvious reason
not to trust the cuts.

3.6 Forward detectors

Our cuts on CASTOR and ZDC are also guided by FSQ-16-007. Following
its authors, we require that the energy deposits be under 500GeV in ZDC−
(proton direction) and 2 000GeV in ZDC+ (lead direction). We use a higher
threshold than FSQ-16-007 for CASTOR: 9GeV instead of 4GeV.

Figure 3.15 compares the |t| and rapidity distributions of events rejected
by the forward calorimeters to our exclusive ρ sample. The asymmetry of
CASTOR is clearly visible on the rapidity distribution. It has been accounted
for by reweighting events rejected by CASTOR only.

The high-|t| behavior of events rejected by ZDC and CASTOR when in the
proton direction is compatible with that of the exclusive ρ sample. The cuts
therefore reject part of the contributions to the high-|t| queue of the distribu-
tion. This will be important in the next chapter.

3.7 Summary

Let’s summarize our most important cuts. We select events with exactly two
tracks, of opposite sign and with |η| < 2.4. One of them must have a pt above
400MeV, the other above 250MeV. The φ → K+K− background is rejected
by requiring MKK > 1.04GeV.
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Figure 3.15: |t| and y distributions of events with energy deposits in forward detec-
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beam.

We were able to use the energy deposit in the ECAL barrel as an exclusivity
criterion after removing hot cells. We showed that cutting on the HCAL is in
our case not useful. We started a study of the ECAL endcaps, but couldn’t
finish it due to time constraints.

We used the cuts from FSQ-16-007 for most other detectors: HE, HF and
ZDC. We found no obvious reason not to trust them. We use a higher cut on
CASTOR, 9GeV instead of 4GeV.

3.8 Simulated samples

In addition to the events from CMS, we use two samples of simulated events,
which will be used to describe exclusive ρ and ρ′ photoproductions. The events
were generated using STARlight, then passed through a detailed simulation of
the CMS detector. The simulation files include two description levels: the
particles thrown in the detector (“generated” level) and the signal from the
detector (“reconstructed” level).

We perform the same analysis on simulated samples and on real world data,
with the notable exception of the EB cut, because the simulated files don’t have
enough information to implement it. We don’t expect this difference to have a
significant impact on our results.

ρ sample

The ρ sample is made of 100 000 diffractive ρ events produced using STARlight.
Interference with direct π+π− production is included, using A = 2.75 and
B = 1.84GeV−1/2 in the Söding formula (1.6). The parameters σM , η, σP
and ε in equation (1.3) are fixed to 26.0µb, 1.23, 5.0µb and 0.22 respectively,
with the photon-proton center-of-mass energy W expressed in GeV. Other
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parameters are fixed to their PDG values [4]. The STARlight description of
exclusive ρ photoproduction was tuned to match H1 and ZEUS measurements.

The only ρ decay channel simulated by STARlight is ρ0 → π+π−. The
associated branching ratio is taken to be 100%, which is very close to its actual
value. STARlight assumes that the ρ inherits its helicity from the photon (a
feature known as s-channel helicity conservation, SCHC). Since the amount of
longitudinal photons is negligible at high energy, the helicity is always taken to
be λρ = ±1. The angular distribution of the final state takes this into account.

ρ′ sample

STARlight was also used to produce 100 000 diffractive ρ′ events. This channel
was primarily developed in STARlight in order to enable studies of the 2(π+π−)
final state. It is not supposed to describe the ρ′ accurately. It could nevertheless
be useful to describe 4π events with two pions outside of the acceptance – a
background that had to be taken into account in the H1 experiment [17].

STARlight assumes that the values of σM , η, σP and ε used for the ρ are also
valid for the ρ′. Despite the existence of two overlapping resonance ρ(1450) and
ρ(1700), STARlight uses a single Breit-Wigner with a mass Mρ′ = 1540MeV
and a width Γρ′ = 570MeV. The decay is simulated using a phase-space
distribution (i.e. the angular distribution is flat). This description matches the
STAR observations.

Limitations

The two Monte-Carlo samples have some limitations that may affect our anal-
ysis, and in particular the t slope of the cross section.

The main issue is the lack of a sample describing proton dissociation. Its
cross section is lower than in the elastic case, but also has a lower t slope, and
is therefore dominant at high |t|. We’ll handle this background using a data-
driven approach that, as we shall see, leads to large systematic uncertainties.
A proton-dissociative sample could help reducing them.

Since our analysis relies on stringent cuts on all subdetectors, taking noise
and pileup into account is very important. The noise generated by the detector
simulation can be different from the real one, an obvious example being hot
cells (they are absent from the simulations). This could be handled by su-
perimposing zero-bias events on top of the simulated detector response, which
would take both noise and pileup into account. This isn’t done in this analysis.



Chapter 4

Extraction of the cross section

As discussed in the previous chapter, we use the detector to the best of its
capabilities to reduce backgrounds. With all cuts applied, our event sample
is mostly made of exclusive ρ events, but it does also contain remaining con-
tributions from other processes. We still need to take this into account, and
convert the number of observed pPb → Pbπ+π−p events to a γp → ρp cross
section. The extraction of the cross section is done in several steps, that we
now discuss briefly.

The first step takes into account the events from proton dissociation not
handled by the exclusivity cuts. We evaluate their contribution by fitting a
sum of different templates to the data, and substract it from the measured his-
tograms. This will give us distributions that are free of the proton-dissociative
component.

The next step in the analysis is to take into account the detector accep-
tance and efficiency. This is done by applying a procedure called “Bayesian
unfolding” to the histograms obtained by substracting the proton-dissociative
background. This gives us access to the γp→ π+π−p cross section.

Once we get the γp → π+π−p cross section, we still have to isolate its
resonant part (γp→ ρpπ+π−p). We do this by fitting the Söding formula (1.6)
to the observed invariant mass distributions, and retaining its purely resonant
component only.

We repeat the last two steps of the procedure in various (W, t) bins in order
to get measurements of the total averaged cross section, the W -dependence of
the cross section and the t-differential cross section. The results are compared
to those of H1 and ZEUS at HERA.

4.1 Proton-dissociative background

There is no way to remove the remaining backgrounds on an event-by-event
basis. However, if their distributions are known, they can be substracted from
the observed distribution to get the signal:

[observed] = [signal] +
∑
i

[background]i, (4.1)

The square brackets mean that the above equation is a relation between dis-
tributions.

37
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In order to substract backgrounds, we must therefore know their distribu-
tions and, most importantly, normalize them correctly – else equation (4.1)
doesn’t hold. A way to estimate the normalizations is to fit a linear combina-
tion of “templates” to the observed distribution:

[observed]
fit≡ α[signal template] +

∑
i

αi[background template]i.

If one can get a good fit for one distribution and the considered background
contributions are relevant, all other kinematic distributions should match with
the same normalizations.

The distribution used to fit must be chosen carefully. Indeed, if the tem-
plates share the same behavior, the result will be meaningless. The obvious
candidate is in our case the pt (or equivalently t) distribution, because the
various contributions have different t slopes.

The four templates considered in this analysis are described in the next
section. We will then discuss the fit results.

Fitting templates

Our signal template will be given by the ρ simulation. However, since one of
the main motivations for this work was the measure of the t slope of the cross
section, we need to avoid depending on what STARlight predicts. If we use the
STARlight output as is, our results will reflect the STARlight parametrization.
In order to suppress this model dependence, we allow for a reweighting of the
t slope, [ρ signal] 7→ e−∆bp2

t [ρ signal], where ∆b is determined by the fitting
procedure.

The first background template, describing diffractive production of the
ρ′(→ 4π) meson, was produced using STARlight as discussed in section 3.8.
Consideration was given to normalizing it using three-tracks events, but this
was found to be impossible. Indeed, the ρ′ simulation can’t describe the ob-
served distribution of track multiplicity: the ratio of the number of two-tracks
events to the number of three-tracks events is 3:1 in data, while it is 23:1 in
the simulation. (Four-pions events can be reconstructed as two- or three-tracks
events when one or more pions’ pt is under threshold.)

A third template (called “3π” below) was produced using three-tracks
events, and keeping only two of them (we keep the two tracks of opposite
sign with Mππ closest to Mρ). This method is mainly motivated by the bad
description of track multiplicity by the ρ′ simulation. As we shall see, it turns
out that the |t| slope of the 3π template is compatible with the one for exclusive
ρ events for |t| → ∞ – where the proton-dissociative background is expected.

A template for proton dissociation (“p-diss”) was produced by inverting the
cuts on CASTOR and ZDC on the −z side of the detector. Events with hits
in CASTOR only are reweighted to take the detector asymmetry into account.

Figure 4.1 shows the t dependence of these four fit templates. The 3π and
p-diss templates have the similar asymptotic slopes, but different behaviors
below |t| ' 0.7GeV2. The ρ and ρ′ slopes are clearly different from each other
and from the other templates.
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Figure 4.1: t distributions of the four fit templates. The normalizations were chosen
to highlight the differences between the templates.

Fit to data

As already mentioned, we fit a linear combination of our four templates to the
pt distribution of events observed in CMS:

[observed]pt ≡ αρe
−∆bp2

t [ρ]pt + α′[ρ′]pt + αp[p-diss]pt + α3[3π]pt ,

where the brackets are there to remind that this is a relation between distri-
butions. The fit parameters are the slope difference ∆b and the four normal-
izations α.

Fitting with all parameters left free leads to two interesting results. First,
the ρ′ normalization is zero independently of its initial guess. This is unex-
pected because this contribution was needed at H1 [17]; it is probably included
in the 3π template. The second result is that the p-diss and 3π templates are
almost 100% anti-correlated1. This is obviously because their asymptotic t
slopes are identical.

The strong anti-correlation between the p-diss and 3π templates is an in-
dication that both templates could describe data equally well. Indeed, the fits
with αp ≡ 0 or α3 ≡ 0 are equally good, although they lead to different values
of ∆b: a fit with only p-diss (α3 = 0) leads to ∆b = 1.1GeV−2, and a pure 3π
fit (αp = 0) to ∆b = 1.9GeV−2. The results of the fits are listed in table 4.1.
Different combinations of the two templates lead to intermediate values of ∆b.

The fits results for α3 = 0 (hereafter called the “p-diss” fit) are shown
on figure 4.2; the 3π fit (αp = 0) is shown on figure 4.3. The pt, |t| and
rapidity distributions are matched by the templates. The mass peak, on the
other hand, isn’t reproduced well; this can be caused by a systematic shift in

1The signal template is obviously also anti-correlated with each of the backgrounds, but
to a smaller extent (less than about 20%).
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Figure 4.2: Fit results for the p-diss template. The upper part of each plot shows the
sum of all contributions compared to data; the ratio of the two is displayed in the
lower part. All statistical and fitting errors are included in the ratio plots, except for
the ρ template t slope reweighting.



4.1. PROTON-DISSOCIATIVE BACKGROUND 41

100

101

102

103

N
u
m
b
er

o
f
ev
en
ts

100

101

102

103

104

Measured 3π background template STARlight ρ template

0 0.5 1 1.5 2
0.8

1

1.2

1.4

pt [GeV]

D
a
ta
/
F
it

0 1 2 3 4
0

0.5

1

1.5

2

|t| [GeV2]

0

500

1 000

1 500

2 000

2 500

N
u
m
b
er

o
f
ev
en
ts

0

100

200

300

400

500

600

700

800

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.5

1

1.5

2

Mππ [GeV]

D
a
ta
/
F
it

−2 −1 0 1 2

0.6
0.8
1

1.2
1.4

y

Figure 4.3: Fit results for the 3π template. The upper part of each plot shows the
sum of all contributions compared to data; the ratio of the two is displayed in the
lower part. All statistical and fitting errors are included in the ratio plots, except for
the ρ template t slope reweighting.
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Parameter p-diss fit 3π fit

αρ 3.33± 0.05 3.29± 0.06
∆b [GeV−2] 1.1± 0.2 1.9± 0.3
αp 0.8± 0.1 –
α3 – 1.0± 0.1
α′ < 10−8 < 10−9

Table 4.1: Results of the background fits with the 3π and p-diss components set
to zero (left and right columns, respectively). The ρ′ contribution is in all cases
negligible, and the values of ∆b aren’t compatible.

the reconstruction of low-pt tracks or a direct π+π− contribution lower than
expected. The situation is somewhat better for the 3π fit than for p-diss.

Since the two fits are very close to being good, let’s not worry yet about
which one to choose. We’ll do the analysis for both, and use the difference
between them to estimate the systematic uncertainty caused by the choice of
template for proton dissociation.

4.2 Evaluation of the cross section

We describe below how we extract the γp → ρp cross section from the distri-
butions obtained by substracting the proton-dissociative background. We will
first expose the procedure used to take detector effects into account. Once done,
we will see how to compute the photon-proton cross section using proton-lead
events. We will finish by discussing how we handle the remaining backgrounds,
including direct π+π− production.

Acceptance and efficiency

Detectors aren’t perfect; so aren’t their measurements. Two effects can be
considered: migration between histogram bins and missed events. Moreover,
particles can be produced outside of the acceptance (i.e. they are undetectable
because of the detector geometry). These effects are accounted for using sim-
ulations.

In the absence of migration between bins, one can multiply their contents
Ni by factors that takes both acceptance and efficiency into account:

N̂i =
1

AiEi
Ni,

where Ni is the number of detected particles in the bin i (after background
substraction), N̂i is the “true” number of particles, Ai is the acceptance and
Ei is the detection efficiency.

This is, however, a special case. Correcting for event migration is of-
ten needed, especially when measuring sharp distributions, because it has a
smoothing effect. Data migration can be modeled as:

Ni =
∑
j

(EA)ijN̂j ,
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Figure 4.4: Invariant mass response matrix, as evaluated from the ρ simulation. It is
mostly diagonal, indicating that the bin width matches the detector resolution. Rows
are normalized to unity; white cells correspond to P(reconstructed|true) = 0.

where the (EA) is called the response matrix, and describes both migration,
acceptance and efficiency. The matrix element (EA)ij can be interpreted as
the probability P(i|j) for an event in bin j to be measured in bin i.

Inverting the relation above (“unfolding” the measured distribution) is
tricky, and simply inverting the response matrix doesn’t give good results. We
use the method first proposed by d’Agostini [26] (as implemented in RooUnfold

[27]), based on Bayesian statistics. It describes data migration as a set of causes
and consequences, where every consequence can result from any number of
causes with known probabilities. Acceptance and efficiency are implemented
by adding a consequence for missed events.

Unfolding can be used to account for data migration, but cannot supplement
a bad detector resolution. It is therefore important to check that the bins are
larger than the detector resolution. This can be checked by looking at the
response matrix: if it is mostly diagonal, we are safe. The response matrix for
the invariant mass Mππ is represented on figure 4.4.

We unfold the signal distributions obtained by inverting equation (4.1):

[signal] = [observed]−
∑
i

[background]i.

This gives us the “true” distributions of events, fully corrected for acceptance,
efficiency and data migration.

Cross section calculation

Extracting a photon-proton cross section from proton-lead events isn’t trivial.
In this section, we expose the procedure followed to compute the γp→ pπ+π−

cross sections.
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The elementary proton-lead cross section dσPbp→Pbpπ+π− associated with
one measured π+π− event can be found using the integrated luminosity L:

dσPbp→Pbpπ+π− =
1

L
1

AE
,

where we neglected migration between bins. Integrating this relation with
respect to the kinematics of the final state gives the proton-lead cross section
for π+π− production:

σPbp→Pbpπ+π− =
N̂π+π−

L
,

where N̂π+π− is the “true” number of events with a π+π− final state.
In order to compute the photon-proton cross section, one needs the photon-

proton cross section element dσγp→pπ+π− . For an event e, it can be computed
from from dσPbp→Pbpπ+π− using the photon flux Γ (see section 1.4):

dσγp→pπ+π−(We) =
1

Γ(We)
dσPbp→Pbpπ+π− =

1

L
1

AE
1

Γ(We)
,

where We is the measured photon-proton center-of-mass energy. Integrating
on the final state kinematics and averaging on the interval I ≡ [W,W +∆W ],
one gets:

〈σγp→pπ+π−〉I =
1

∆W

1

L
1

AE
∑

e|We∈I

1

Γ(We)
≡ 1

∆W

N̂I
π+π−

L
, (4.2)

where we’ll call N̂I
π+π− the “equivalent number of events” and has the dimen-

sion of an energy. The generalization of this relation in order to take data
migration into account is straightforward.

The expression for a differential cross section is obtained by integrating on
a small subset � of the final state phase space (e.g. an histogram bin). For
example, if � = [t, t+∆t] is a small interval in t, one gets:〈

dσγp→pπ+π−

dt
(t)

〉
I

≈ 1

∆W

1

∆t

1

L
1

AE
∑

e|We∈I ,te∈�

1

Γ(We)
.

Further corrections can be applied to account for the variation of the differential
cross section; we won’t do it here.

Suppression of the residual backgrounds

Before we can use equation (4.2) to compute the cross section, we have to
estimate the remaining background contributions. The most important one
is direct π+π− production, including its interference with the ρ. The other
non-negligible contributions come from the production of the φ and ω vector
mesons.

We’ll take the direct π+π− background into account by fitting invariant
mass distributions to the Söding formula (see section 1.3):

dσγp→pπ+π−

dMππ
∝

∣∣∣∣∣A
√
MππMρΓ(Mππ)

M2
ππ −M2

ρ + iMρΓρ(Mππ)
−B

∣∣∣∣∣
2

.
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We will then integrate the Breit-Wigner part of the cross section in the full
mass range:

σγp→ρp ∝
∫ ∞

2mπ

dMππ

∣∣∣∣∣A
√
MππMρΓ(Mππ)

M2
ππ −M2

ρ + iMρΓρ(Mππ)

∣∣∣∣∣
2

= 2.02294 |A|2. (4.3)

Another non-negligible background comes from the ω → π+π− decay. At
the typical values of W studied here, the ω cross section is small (σρ/σω ∼ 10),
and so is the branching ratio of the ω → π+π− decay (1.5%). However, the
ω-ρ interference term isn’t negligible and increases the π+π− cross section by
about 4% in the range 0.5 < Mππ < 1.2GeV [16]. We’ll scale the cross section
by 96%.

The last background comes from the three-pions decays ω → π+π−π0 and
φ→ π+π−π0. Due to the presence of a third pion, these contributions show up
at high |t| and low invariant mass, mostly below Mππ < 0.65GeV [16]. Part of
their contribution may already have been accounted for by the pt fit. We will
nevertheless ignore the low invariant mass region for the mass fits.

In order to limit the uncertainty due to background removal, we restrain
the data taken into account for the fit to the range |y| < 2.1 and |t| < 0.5GeV2.

We will keep the ρ and π± masses fixed to their PDG values [4]; A, B and
Γρ will be left free.

4.3 Averaged cross section

In this section, we evaluate the averaged cross section on the full W range.
As described above, we fit Söding formula to the invariant mass distribution
dN̂/dMππ. We sum on events covering the wholeW domain accessible to CMS
(30 < W < 250GeV, with a flux-corrected average 〈W 〉Γ = 141GeV).

The invariant mass fits using the p-diss and 3π background templates are
shown on figures 4.5 and 4.6. The errors on the data points come from the
statistics, the error on the normalization of the proton-dissociative background
templates, and the unfolding procedure. Given that we had to multiply the
simulated signal by three to match the data, the last contribution is likely
dominant.

One can be scared of the big χ2’s, but they mostly come from the region
0.9 < Mππ < 1.2GeV, i.e. from outside of the peak. The values of the ρ width
Γρ found by the fits are compatible with its PDG value of 149MeV.

The value of A is stable when changing the fit bounds and the binning, but
B is not. In particular, B is very sensitive to the upper bound of the fit. We
didn’t have the time to look at these effects in detail, and won’t rely on the
values of B and B/A in the following.

The γp → ρp cross section can be calculated from equation (4.3), keeping
in mind that it is a W average and substracting the ω-ρ interference term:

〈σγp→ρp〉 = 96%
1

∆W

1

L
2.02294 |A|2.

Before computing the cross section, let’s take a look at the systematic uncer-
tainties.
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Figure 4.5: Fit of the invariant mass distribution for the p-diss background template.
The dark curve is the fit to the Söding formula. The light solid curve is the Breit-
Wigner term, the dashed one is the interference, and the dot-dashed line is the direct
π+π− background.

Systematic uncertainties

Systematic uncertainties in this analysis come from several sources, from track
reconstruction to the modeling of the mass peak. They need to be estimated
in order to get meaningful results.

The authors of FSQ-16-007 use the estimation of the uncertainty due to
track reconstruction efficiency from another analysis, FSQ-12-004, that found
7.8%. Concerning the exclusivity cut, they studied the effect of varying the cuts
on CASTOR and HF by 17% and 5% respectively, and found an uncertainty of
1.4%. For the uncertainty on the fit procedure, they used a plain Breit-Wigner
distribution instead of the Söding formula, and found a variation of 5%. The
dependence on the flux calculation was estimated to 5%. As we didn’t have
the time to estimate these uncertainties, we use the values above.

We already saw in chapter 3 that the value of the luminosity L is known to
3.6%. We estimate the uncertainty on the ω-ρ interference term by varying the
σγp→ωp exclusive cross section by 30%, because it isn’t well measured above
W = 20GeV. This corresponds to a relative error of 15% on the interference
term.

We didn’t have the time to estimate the error due to the mass binning and,
most importantly, to the fit bounds. Their impact on the ρ cross section is
expected to be marginal, but they do affect the evaluation of the direct π+π−

cross section.
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Figure 4.6: Fit of the invariant mass distribution for the 3π background template.
The dark curve is the fit to the Söding formula. The light solid curve is the Breit-
Wigner term, the dashed one is the interference, and the dot-dashed line is the direct
π+π− background.

Source ∆σ/σ Method

Luminosity 3.6% [25]
Exclusivity criteria* 1.4% Varying CASTOR and HF cuts
Track reconstruction* 7.8% FSQ-12-004
t binning, Söding formula* 5% Variation of the t binning and

fits using a plain Breit-Wigner
Flux calculation* 5%
ω-ρ interference 0.6% Variate σγp→ωp by 50%
Mππ binning and fit bounds ? No evaluation

Table 4.2: Estimated systematic uncertainties, except dependence on the background
template for proton dissociation. Values for starred sources are taken from FSQ-16-
007.
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W [GeV2] 〈σ〉 [µb] ∆〈σ〉 [µb]
From To p-diss 3π avg p-diss 3π avg

30 50 7.7 6.7 7.2 0.9 0.8 1.0
50 64 11.8 11.5 11.6 1.5 1.4 1.5
64 80 10.5 9.6 10.0 1.3 1.2 1.3
80 110 11.6 9.7 10.6 1.4 1.2 1.6
110 170 15.4 14.5 15.0 1.8 1.7 1.8
170 250 17.7 17.3 17.5 2.2 2.2 2.2

Table 4.3: Values of the γp → ρp cross section as a function of W . The “p-diss” and
“3π” columns use the p-diss and 3π templates for proton dissociation, respectively.
The final estimate is in the “avg” columns.

Table 4.2 summarizes the systematics and their evaluated values. The un-
certainty on background subtraction using the pt fit will be estimated below.

Final results

The cross sections found using the p-diss and 3π background templates are
compatible:

〈σp-diss
γp→ρp〉

∣∣∣
|t|<0.5 GeV2

= 16.6± 0.6(stat.)± 1.9(syst.)µb

〈σ3π
γp→ρp〉

∣∣∣
|t|<0.5 GeV2

= 15.0± 0.5(stat.)± 1.7(syst.)µb

We take their mean and add a systematic error of half their difference for the
choice of the background templates, which gives us the final result at 〈W 〉Γ =
141GeV (integrated on 0 < t < 0.5GeV2):

〈σγp→ρp〉
∣∣∣
|t|<0.5 GeV2

= 15.8± 0.5(stat.)± 2.0(syst.)µb.

This result is compatible with what was found in FSQ-16-007 (since this anal-
ysis isn’t public yet, we can’t write their result here).

4.4 W dependence of the cross section

We now set out to evaluate theW dependence of the cross section. We proceed
exactly as above, except that we restrict our average to smaller W ranges. We
keep both Mρ, Γρ and mπ fixed to their PDG values for fitting, and keep the
same estimations of the systematics, including for the background template for
proton dissociation. We didn’t evaluate the uncertainty due to the choice of
the W binning.

The invariant mass fits for both background templates are shown on fig-
ures 4.7 and 4.8. The computed cross sections are listed in table 4.3, and
compared to the results of past experiments on figure 4.9. Considering the
large uncertainties, our points are in agreement with those from H1 and ZEUS.
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Figure 4.7: Fits of the invariant mass distributions for the p-diss background template,
in W bins. The fits are performed in the range 0.65 < Mππ < 1.2GeV. The black
data points are unfolded data. The dark curve is the fit to the Söding formula. The
light solid curve is the Breit-Wigner term, the dashed one is the interference, and the
dot-dashed line is the direct π+π− background. A and B are given in GeV−1/2 and
GeV−1, respectively.
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Figure 4.8: Fits of the invariant mass distributions for the 3π background template,
in W bins. The fits are performed in the range 0.65 < Mππ < 1.2GeV. The black
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GeV−1, respectively.
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Figure 4.9: Comparison of our measurement of σγp→ρp(W ) with the results of past
experiments. The solid line is a fit of equation (1.7), and doesn’t take our points into
account. The data was kindly provided by the authors of [10].

4.5 t-differential cross section

We evaluate the t-differential cross section dσγp→ρp/dt by averaging the t dis-
tribution of events on the full W range (as above, 〈W 〉Γ = 141GeV). We use
7 bins in t, covering the range |t| = 0.025 to 0.5GeV2. As above, the only fit
parameters left free are A and B.

The invariant mass fits are shown on figure 4.10 for the p-diss fit and fig-
ure 4.11 for the 3π template. Since the fit for the highest-|t| bin using the 3π
template didn’t converge, we exclude that point.

The systematic uncertainty due to the choice of the background template is
evaluated by fitting an exponential to the t distribution for each template, and
taking half of the difference between the two fits. This procedure regularizes
our estimate with respect to fluctuations of the measured values, in particular
at large |t|. The fits to data from the two templates are shown on figure 4.12.
The t slopes are bp-diss = 7.9GeV2 and b3pi = 9.7GeV2.

Our estimates for the differential cross section are given in table 4.4, and
compared to H1 [14] and ZEUS [15] data on figure 4.13. Our points are in good
agreement with the ZEUS measurement, and in tension with what was found
at H1.

We find no dip in the t-differential cross section. This is not unexpected,
because their predicted location was around |t| ∼ 0.5GeV2 for W = 1TeV.
Since our measurement is at 〈W 〉Γ = 141GeV, the dips would have migrated
to even higher |t| (see the end of section 1.2).
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Figure 4.10: Fits of the invariant mass distribution for the p-diss background tem-
plate, in |t| bins. The black data points are unfolded data. The dark curve is the fit
to the Söding formula. The light solid curve is the Breit-Wigner term, the dashed
one is the interference, and the dot-dashed line is the direct π+π− background. A
and B are given in GeV−1/2 and GeV−1, respectively.



4.5. t-DIFFERENTIAL CROSS SECTION 53

0

5

· 104

χ2/ndf = 35.9/9
|A| = 93± 2
|B| = 63± 5

0.025 to 0.075GeV2

0

2

4

6
· 104

χ2/ndf = 41.3/9
|A| = 69± 2
|B| = 40± 6

0.075 to 0.125GeV2

0

1

2

3

· 104

χ2/ndf = 27.3/9
|A| = 57± 2
|B| = 21± 4

0.125 to 0.175GeV2

0

1

2

· 104

χ2/ndf = 24.14/9
|A| = 50± 2
|B| = 30± 9

E
q
u
iv
al
en
t
n
u
m
b
er

of
ev
en
ts

[G
eV

]/
0
.0
5
G
eV

0.175 to 0.24GeV2

0

0.5

1

1.5

· 104

χ2/ndf = 15.95/8
|A| = 39± 3
|B| = 16± 7

0.24 to 0.3GeV2

0.6 0.8 1 1.2

0

0.5

1

· 104

χ2/ndf = 14.53/9
|A| = 29± 2
|B| = 9± 4

Mππ [GeV]

0.24 to 0.3GeV2

0.6 0.8 1 1.2

0

2 000

4 000

χ2/ndf = 4.25 · 1082/6
|A| = 0± 0
|B| = 0± 0

Mππ [GeV]

0.4 to 0.5GeV2

Figure 4.11: Fits of the invariant mass distribution for the 3π background template,
in |t| bins. The black data points are unfolded data. The dark curve is the fit to the
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the interference, and the dot-dashed line is the direct π+π− background. A and B
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54 CHAPTER 4. EXTRACTION OF THE CROSS SECTION

|t| [GeV2] 〈 dσ
d|t| 〉

[
µb

GeV2

]
∆〈 dσ

d|t| 〉
[

µb
GeV2

]
From To p-diss 3π avg p-diss 3π avg

0.025 0.075 92 90 91 11 11 11
0.075 0.125 51 50 50 7 6 7
0.125 0.175 36 34 35 5 5 5
0.175 0.240 23 20 22 3 3 4
0.240 0.300 16 14 15 2 2 3
0.300 0.400 6 4 5 1 1 2
0.400 0.500 4 - 4 1 - 2

Table 4.4: Values of the t-differential γp → ρp cross section. The “p-diss” and “3π”
columns use the p-diss and 3π templates for proton dissociation, respectively. The
final estimate is in the “avg” columns.

0 0.1 0.2 0.3 0.4 0.5

101

102

〈W 〉 = 141GeV

|t| [GeV2]

d
σ
γ
p
→

ρ
p

d
|t
|

[µ
b
G
eV

−
2
]

p-diss template 3π template

Figure 4.12: Exponential fits to the t distributions for two background templates.
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Conclusions

In this work, we studied exclusive ρ0 production in CMS 2013 proton-lead and
lead-proton data at

√
sNN = 5.02TeV, corresponding to a total integrated

luminosity of 16.94µb−1. The first part of our work consisted in the selection of
the event candidates and a study of exclusivity criteria using the CMS detector.
Most CMS subdetectors are used in our analysis. The second part consisted
in the removal of the remaining backgrounds and the measure of the γp → ρp
cross section. Our results for 20 < W < 250GeV, |t| < 0.5GeV2 are consistent
with those of FSQ-16-007, though somewhat higher, and in good agreement
with measurements conducted prior to ours.

We showed that the barrel of the electromagnetic calorimeter could be used
as an exclusivity criterion. The authors of FSQ-16-007 had found the converse,
but their study was dominated by signal coming from “hot towers”. Ignoring
them and taking the nature of the noise into account makes it possible to define
a cut. We found that the signal observed above this cut was compatible with
physical information, and used it to refine our event selection.

We conducted a similar study for the barrel of the hadronic calorimeter, in
which hot cells were also present. We found that a pseudorapidity-dependent
cut was needed, and used the cylindrical symmetry of the detector to define
one. We found that it excluded a negligible amount of events, and concluded
that HB wasn’t useful to isolate an exclusive ρ sample.

In order to remove remaining backgrounds from our event sample, we fitted
a sum of signal and background templates to the pt distribution. We found
no evidence for a ρ′ contribution distinct from the background templates. We
showed that two templates could be used to describe the proton-dissociative
background and lead to different (though mutually compatible) results. We
made use of this information to estimate the systematic uncertainty associated
to the chosen background templates. This systematics increases dramatically
at high |t|: any result above |t| ∼ 0.2GeV2 has to take it into account, and
it makes it very difficult to measure the t-differential cross section above |t| ∼
0.5GeV2.

This being considered, we measured the W dependence of the exclusive
γp → ρp cross section in the range 20 < W < 250GeV and the t-differential
cross section for 0.025 < |t| < 0.5GeV2. Our results are compatible with
measurements performed by the H1 [14] and ZEUS [15] collaborations. We
found no diffractive dip in the t-differential cross section.

This work tends to develop a methodology for exclusive vector meson pro-
duction in CMS. Future measurements of other exclusive processes, such as
J/ψ or Υ photoproduction, are expected to be performed, in particular using
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the large proton-lead data sample taken in 2016 at
√
sNN = 8TeV. They

would benefit from our work on exclusivity cuts. Since their production can
be described in terms of the gluon PDFs or GPDs, measurements of the cross
sections for these heavy vector mesons would directly constrain the low-x gluon
density.
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