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(2) Dipartimento di Fisica, Università degli studi di Pavia - Pavia, Italy

received 5 February 2019

Summary. — In this work we describe a statistical technique that has been recently
applied for the extraction of the proton scalar dipole dynamical polarizabilities from
real Compton scattering data. The technique is based on the simplex minimization
and on the parametric bootstrap and has several important advantages with respect
to the standard χ2 minimization technique, as, for example, the possibility to include
in a straightforward way the systematic error in the minimization procedure.

1. – Polarizabilities in the proton

The polarizabilities of a composite system such as the nucleon are elementary structure
constants, just as its size and shape. They can be accessed experimentally by Compton
scattering processes. In the case of real Compton scattering (RCS), the incoming real
photon deforms the nucleon, and by measuring the energy and angular distributions of
the outgoing photon one can determine the induced current and magnetization densi-
ties. The global strength of these densities is characterized by the nucleon dipole and
higher order (quasi-static) polarizabilities. By taking into account the spatial and time
dependence of the electromagnetic field, the polarizabilities become energy dependent
due to internal relaxation mechanisms, resonances and particle production thresholds in
a physical system. This energy dependence is subsumed in the definition of dynamical
polarizabilities, that parametrize the response of the internal degrees of freedom of a
composite object to an external, real-photon field of arbitrary energy [1-3].

The definition of dynamical polarizabilities is given in terms of the multipole ampli-
tudes f l±

TT ′ , which correspond to the transition T l → T ′l′, with T, T ′ = E,M and ±
giving the total angular momentum j = l ± 1/2. In particular, for the scalar dipole
electric αE1(ω) and magnetic βM1(ω) dynamical polarizabilities one has the following
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combination of the l = 1 multipoles

(1) αE1(ω) ≡ 2f1+
EE(ω) + f1−

EE(ω)
ω2

, βM1(ω) ≡ 2f1+
MM (ω) + f1−

MM (ω)
ω2

,

where ω is the center of mass (c.m.) photon energy.
The extraction of the dynamical polarizabilities from RCS data is quite challenging.

In this work we summarize the method proposed in Ref. [4] that allowed us to gain first
insights on the scalar dipole dynamical polarizabilities (DDPs) from RCS data.

2. – Fitting technique

We adopt the following parametrization of the scalar DDPs

αE1(ω) = fα(αE1, αE1,ν , βM1, βM1,ν) + gα(αE2, βM2, γi) + hα(h.o.),
βM1(ω) = fβ(αE1, αE1,ν , βM1, βM1,ν) + gβ(αE2, βM2, γi) + hβ(h.o.).(2)

In Eq. (2), fα,β + gα,β correspond to the low-energy expansion (LEX) of the DDPs
up to O(ω5), while hα(h.o.) and hβ(h.o.) parametrize the residual (higher-order (h.o.))
energy dependence beyond the LEX. The functions gα,β depend on the higher-order static
electric and magnetic polarizabilities αE2 and βM2, and the static leading- and higher-
oder spin polarizabilities γi. In our analysis, they are fixed using the predictions of fixed-t
dispersion relations (DRs) for the higher-order polarizabilities [5-7], and the experimental
values extracted in Ref. [8] for the leading-order static spin polarizabilities. Likewise,
we use fixed-t DRs to calculate the functions hα(h.o.) and hβ(h.o.). The functions
fα,β(αE1, αE1,ν , βM1, βM1,ν) correspond to the fitting functions, which depend on the
leading order static polarizabilities αE1 and βM1 and the dispersive static polarizabilities
αE1,ν and βM1,ν . In summary, we have four free parameters, i.e. αE1, αE1,ν , βM1, βM1,ν ,
with the additional constraint from the Baldin sum rule αE1 + βM1 = (13.8± 0.4) · 10−4

fm3 [9], which reduces the number of fit parameters to three.
We used the data set of all the available experimental data for the unpolarized RCS

cross section below pion-production threshold, as listed in Ref. [4]. First, we tried to apply
the standard χ2 minimization procedure with the Newton (gradient) method. However,
we found that this method does not work due to (I) high correlation among the fitting
parameters and (II) low sensitivity of the unpolarized RCS differential cross section to the
DDPs coefficients. In particular, it was not possible to achieve the positive-definiteness
condition of the covariance matrix.

In order to solve this problem, we combined the geometrical simplex method for the
minimization in Minuit [10] and the parametric bootstrap [11], which is a Monte Carlo
technique. The general idea is the approximation of the true (and unknown) probability
distribution of the experimental datum with the (known) probability distribution given
by the measured value with its statistical error. The only a priori assumption is the
choice of the specific probability distribution associated to the experimental point.

Schematically, the bootstrap sampling can be written as

(3) Bi,j,k = (1 + δj,k)(Ei + γi,jσi),

where Ei is the experimental value of the differential cross section, with a statistical
error σi. In Eq. (3), the index i runs over the data points, j labels the number of replicas
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Fig. 1. – (a) Probability distributions for the fitted parameters of the scalar DDPs. (b) Results
from the fit of the scalar DDPs as function of the c.m. photon energy ω: αE1(ω) on the top and
βM1(ω) on the bottom. The 68% (yellow) and 95% (green) CL areas include all the correlations
between the parameters. The dashed lines represent the predictions from DRs [2].

and k indicates different data sub-sets. The number γi,j is distributed according to a
standard Gaussian N [0, 1], while δj,k follows a box distribution U [−Δk,Δk], where Δk

is the published systematic error for each data sub-set or, if more than one source for
systematics is present, the product of all the contributions.

We then use our bootstrapped data Bi,j,k for the usual definition of χ2, that is mini-
mized with the simplex technique: after every bootstrap cycle, we obtain the best values
of the fitting parameters, thus reconstructing their probability distributions.

Our fitting technique has several advantages:
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Fig. 2. – Probability distributions for the χ2 obtained from our fitting technique in a two-
parameters fit: the usual χ2 distribution is obtained when we consider only statistical errors
(black line), while a distortion is caused by the systematic sources (red line).
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1. the straightforward inclusion of systematical errors with no modifications in the
definition of the χ2;

2. the true probability distributions for the fitted parameters (see Fig. 1(a)) with no
a priori assumptions;

3. the calculation of the error propagation without using any approximated formulas;

4. the probability distributions of every functions of the fitted parameters (such as
the DDPs or the differential cross section) which automatically include all the
correlation terms.

In Fig. 1(b) we show our fit results for DDPs as function of the photon c.m. energy,
with the 68% and 95% confidence level (CL) bands, in comparison with the predictions
of DRs [2].

It is noteworthy to remark that the χ2 reconstructed by our technique is not distributed
like a χ2 distribution, i.e. it is not the sum of squared Gaussian variables. This a
consequence of the Monte Carlo sampling of Eq. (3) and reflects the biggest effect of
the inclusion of systematical errors. As an example, we show in Fig. 2 the reconstructed
probability distribution of the χ2 in the case of a two-parameters fit, i.e. αE1 and βM1,
where the effect of the systematical errors is clearly visible.

3. – Conclusions

We have discussed a parametric bootstrap technique to analyze proton RCS data for
the extraction of the scalar DDPs. We outlined several advantages of this technique and
we refer to a forthcoming work [12] for a more comprehensive description of the statistical
features of the method. This fitting procedure has never been applied so-far to analyze
RCS data, and we plan to use it for a re-evaluation of the proton scalar dipole static
polarizabilities [13] from the existing RCS data, using fixed-t DRs for the theoretical
framework.
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