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Abstract

D-branes, having typical sizes of the order of the Planck length, are natural probes of
quantum gravity. The D-brane dielectric effect is a phenomenon arising in string theory
analogous to the polarization of uniform charges in a background E&M field; when an
isolated collection of bound D0 branes is placed in a background electric flux, the electric
force counteracts the collapse of the branes, supporting a configuration in the shape of a
fuzzy sphere. We investigate whether the dielectric effect could arise from presence of non-
trivial gravitational background curvature, such as in regions of space near the horizon of
a black hole or in an expanding cosmological model. Barring a runaway potential in the
non-Pauli matrix modes, we find a stable vacuum solution of the potential indicating a
fuzzy sphere of D0-branes.



Contents

1 Introduction 2

2 The Gravitational Dielectric Effect 4
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Dirac-Born-Infeld Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 An Outline of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Derivation of our Action 7
3.1 Simplification of the DBI Action for D0-branes . . . . . . . . . . . . . . . . . . . 7
3.2 Expansion in Riemann Normal Coordinates . . . . . . . . . . . . . . . . . . . . 8

4 The SU(2) Algebra Ansatz 12
4.1 Applying the Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Evaluating the Symmetrized Trace . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 The Vacuum Solution 16
5.1 Finding the Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Limits to the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Brief Application to de Sitter Cosmology 19

7 Discussion 20

1



1 Introduction

General Relativity and Quantum Mechanics do not mix. Quantum mechanics has been success-
ful in describing the physical world at characteristic scales of order h̄, while General Relativity
accurately describes large scale gravity as a geometrical curvature of space, having a charac-
teristic scale of order G. The Standard Model has successfully unified the fundamental forces
of E&M and the strong and weak force. However, attempts to incorporate gravity into the
Standard Model have not succeeded, because the Standard Model is fundamentally a quantum
theory, while general relativity is fundamentally classical. Thus, we are left with an unsatisfy-
ingly splintered description of our physical universe. Enter string theory.

String theory is a promising attempt to combine all of the physical forces into one coher-
ent framework. String theory sides with the Standard Model, assuming that gravity must be
transformed into a quantum theory. One reason for this is that general relativity itself yields
troubling results, such as physical gravitational singularities, indicating that the theory is some-
how incomplete. The fundamental postulate of string theory is that an elementary particle is
treated as a vibrating string extended in one or more spatial direction instead of a point parti-
cle. The different modes of vibration correspond to different elementary particles with different
energies. This description holds promise for quantum gravity, since one of the vibrational states
is the graviton. Strings can be closed, looping around on themselves, or open, in which case
their ends are connected to dynamical“defects” in space or solitons known as Dp-branes, where
p designates the dimensionality of the brane (D stands for Dirichlet, indicating that D-branes
represent a physical boundary condition for the strings). For example, a D0 brane is a point-
like, a D1 brane is string-like, and a D2 brane is like a two dimensional membrane. The world
volume of a Dp-brane is the p+1 dimensional volume swept out by the brane across its time
evolution.

String theory has been so promising in part because of one of its most bizarre implications:
our universe contains more than the 3+1 spacetime dimensions that we observe. This would be
possible because the extra dimensions are sufficiently compactified that we have not observed
their signatures. However, such compactified dimensions may exhibit traces of their existence in
our universe, for instance, if we are able to probe particles at higher energies and hence smaller
length scales. Up to the mid-1990’s, five distinct string theories we known to exist, each assum-
ing that our universe contained 9+1 spacetime dimensions. Type I strings are open, containing
electric charges on their ends. Type II strings are closed or end on D-branes, and are insulating;
IIA strings allow for even dimensional D-branes while IIB allow for odd dimensional D-branes.
Heterotic-O and Heterotic-E strings are closed, oriented, and superconducting. However, in
1995 these theories were united under one super-theory in 10+1 dimensions, M-theory. The
five separate theories are simply facets of M-theory, and each are obtained from the details of
the compactification from 11 to 10 dimensions. Although M-theory is an over-arching string
theory, it is still not well-understood. Hence, much analysis in string theory is still performed
using one of the simpler 9+1 dimensional theories.

One other unique signature of string theory is that, unlike quantum field theory, it contains
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no adjustable dimensionless parameters. Instead it contains scalar fields φi whose expectation
values determine such parameters. Thus, one could presumably compute the dimensionless
parameters based on the energies of the φ’s. String theory has one dimensionful parameter, the
string length ls, which can be thought of as the size of fundamental strings. The string length
is typically thought of as coinciding with the Planck length lp

lp =

√
Gh̄

c3
≈ 10−35m (1)

However, the only observable constraint on ls is the signature of extra dimensions. ls may be
as large as 10−16 m and still produce dimensions sufficiently compact. It is possible that extra
dimensions as large as one tenth of a millimeter may have up to now gone undetected!
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2 The Gravitational Dielectric Effect

2.1 Background

The D-brane dielectric effect is a phenomenon arising in string theory analogous to the polar-
ization of charges in a background E&M field; oppositely charged particles placed in a uniform
electric field will separate to cancel the background field, forming a dielectric [1]. In string
theory, a collection of D0 branes can be bound together with open strings ending on them.
An isolated collection will collapse under its own tension, but when placed in a background
magnetic field, the flux will support D0-branes from collapsing, causing them to puff up into
the shape of a fuzzy spherical configuration. The fuzziness arises from the intrinsic quantum
mechanical nature of spacetime on the Planck scale, incorporating non-commutative geometry
analogous to the Heisenburg Uncertainty Principle.

While the dielectric effect has successfully been demonstrated to arise from a background
E&M field [1], it remains an outstanding question as to whether it is possible to observe di-
electric effect arising from a purely gravitational background. By unifying gravity with the
electromagnetic force, string theory suggests that this should be possible, but until recently it
was thought that the curvature of space alone was not sufficient to cause the polarization of D-
branes. However, recent analyses [2], [3], [4], [5], have provided evidence that the gravitational
dielectric effect may occur. One [3] suggests that a proper modification to the DBI action moti-
vated from string theory might make static solutions possible. Recently, Sahakian [2] has used
the original DBI action near the event horizon of a gravitational singularity, i.e. black hole; a
point-like bound configuration of D0-branes might puff up into a fuzzy sphere as it falls inward
toward the horizon. However, in looking for the desired static spherical configuration, the solu-
tion was at an extremum of the energy, and thus unstable. Thus, it remains an open question as
to whether the curvature of space alone is sufficient to yield the dielectric effect in string theory.

2.2 The Dirac-Born-Infeld Action

The dynamics of Dp-branes are described by the Dirac-Born-Infeld (DBI) action as given in
Myers [1]

SBI = −Tp

∫
dp+1σStr

{
e−φ

√
−det(P [Eab + Eai(Q−1 − δ)ijEjb] + λFab)det(Qi

j)
}

(2)

where the integral is over p + 1 spacetime dimensions, and σ represents the coordinates along
the Dp-branes. Starting from the left, Tp represents the dimensionless tension of an individual
Dp-brane, and is defined by

Tp ≡
2π

gs(2πls)p+1
(3)
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where gs is a measure of the string coupling. The tension of a string scales its energy, which is
relativistically equivalent to mass, thus Tp can also be thought of as a mass term.

Since the terms within the square-root are tensors, their indices must be traced over to
produce a scalar over which to take the integral. However, because of the fundamental ambiguity
in the ordering of tensors within the trace, the indices within the trace must be symmetrized
over. For example, given matrices A,B, and C, the symmetrized trace of their product is given
by

Str{ABC} ≡ Tr{ABC + ACB + BCA + BAC + CAB + CBA} (4)

Next, φ represents the background dilation field, describing string coupling. P [] is defined as
the pullback of the background gravitational and E&M fields onto the world volume of the Dp-
branes. Since IIA string theory exits in 9+1 dimensions, but branes may have any even number
of dimensionality (up to 8), this terms represents the projection of a field in higher dimensions
onto a lower dimensional brane. Eab is defined as the sum of the gravitational metric tensor
and the string gauge (magnetic) field

Eab ≡ Gab + Bab (5)

In addition, Qi
j is defined as

Qi
j ≡ δi

j + iλ[Φi, Φk]Ekj (6)

where Φi are NxN coordinate matrices describing N Dp-branes. Diagonal entries in this matrix
give the coordinates of spacetime that embed the branes, while off-diagonal terms describe
interactions between a configuration of Dp-branes. The index i = 1, ..., 9 gives the dimension
to which the coordinates refer. Next, λ is simply a constant defined by

λ ≡ 2πl2s (7)

and Fab is gauge field on the world volume of the Dp-branes. Note that this is a two-dimensional
object, and thus for D0-branes, having a one-dimensional world volume, this term is zero.

2.3 An Outline of Our Approach

Armed with the Myers version of the DBI action, we are ready to search for the existence of
the gravitational dielectric effects in various non-trivial background curvatures. However, given
that the relevant dynamical terms occur under a square root in the action, any non-trivial
computations from this action will necessarily have to be expansions in λ. The recent effort
of Sahakian [2] found static solutions to the DBI action to order λ2. However, the analysis
yielded an unstable (tachyonic) static extremum that quickly radiates away. In an effort to
find more compelling evidence for the gravitational dielectric effect, we will expand upon this
work and search for time-dependent solutions to order λ4, noting that the DBI action is itself
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an approximation within string theory and is valid only to that order.

Because of their high level of intrinsic symmetric, two interesting and computationally
tractable sources of background curvature to explore are the Schwarzschild metric near a black
hole horizon and the Robertson-Walker metric of a de Sitter universe as an expanding cosmolog-
ical model. Our computation will focus primarily on the dynamics of a point-like configuration
of D0-branes infalling toward a black hole horizon. Using the Myers action (2), we will assume
small curvature near the horizon, which will allow us to expand the action in Riemann Normal
Coordinates into a useful form (Section 3). Because of spherical symmetry of the metric, we
will postulate that SU(2) algebra will describe coordinate matrices of the D0-branes, and we
will assume maximal symmetry of the metric, which will allow us to simplify the action to
scalar form (Section 4). In Section 5, we extract the potential energy from the Lagrangian,
analyzing its behavior to identify any stable configurations of the D0-branes. We find that, for
positive curvature, the potential takes the shape of a modified Mexican hat potential, allowing
for an extremum vacuum solution. This solution is stable barring a runaway potential in the
non-Pauli matrix modes of the NxN D0-brane coordinate matrices Φi. In Section 6 we apply the
results to the FRW cosmological model to explore the properties of D0-branes in a cosmological
context, and in Section 7 we discuss the results.

Although our subsequent analysis is performed in IIA string theory, which exists in 9+1
spacetime dimensions, our computations will assume that 6 dimensions are sufficiently com-
pactified so that we retrieve the familiar 3+1 dimensions. This is a natural assumption given
our models in Schwarzschild and Robertson-Walker space.
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3 Derivation of our Action

3.1 Simplification of the DBI Action for D0-branes

Starting with the DBI action (2)

SBI = −Tp

∫
dp+1σStr

{
e−φ

√
−det(P [Eab + Eai(Q−1 − δ)ijEjb] + λFab)det(Qi

j)
}

we will examine D0-branes in purely gravitational background fields. Thus, Tp → T0, which
simplifies the string tension (3) to

T0 =
1

gsls
(8)

and because we examine only gravitational fields, Eab → Gab. Furthermore, we will let the
background scalar field φ be constant, thus the exponent e−φ can be absorbed into the string
tension, and the action simplifies to

S = −T0

∫
dσStr

{√
−det(P [Gab + Gai(Q−1 − δ)ijGjb])det(Qi

j)
}

(9)

Noting that Q−1Q = 1 by definition, and since λ << 1, one can expand Q−1 to find(
Q−1 − δ

)ij
= −iλ[Φi, Φk]G j

k (10)

The pullback of the gravitational field onto the worldline of the D0-brane is defined by

P [Gab] ≡ Gµν
∂xµ

∂σa

∂xν

∂σb
(11)

where the worldline of a D0-brane is one-dimensional, thus a, b = 0. We are employing the
static gauge, and so σ0 = τ , the D0-brane proper time. Thus,

P [Gab] = G00 + Gijẋiẋj (12)

where ẋi ≡ ∂x
∂τ

.

We now allow the D0-brane coordinates to become matrices via the transformation

xi → λΦi (13)

where the coordinate matrices Φi have units of inverse length, and λ has units of length squared.
The pullback thus becomes

P [Gab] = G00 + λ2GijΦ̇
iΦ̇j (14)

Letting (Q−1 − δ)
ij

= Aij for computational simplicity,

P [GaiA
ijGjb] = GµiA

ijGjν ẋ
µẋν (15)
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Since the metric is symmetric, G0i = Gi0 = 0, the pullback scales as

P [GaiA
ijGjb] ∼ Aµν ẋ

µẋν (16)

Note though that Aµν is intrinsically antisymmetric because it scales as a commutator. Because
(16) undergoes a symmetrized trace within the action, this term can be dropped. Furthermore,
recalling that a, b = 0 for the D0-branes, the determinant of the pullback can also be dropped,
and so the Lagrangian has simplified to

L = −T0Str
{
(−(P [Gab])

1/2
(
det(Qi

j)
)1/2

}
(17)

3.2 Expansion in Riemann Normal Coordinates

In arbitrarily curved spacetime, one can always construct a locally inertial frame at some point
P . In the near vicinity of P , spacetime is approximately flat, so the gravitational metric Gab

can be replaced by the flat space metric ηab, and geodesics (free particle trajectories) are rep-
resented by straight lines. Further computations will employ a special realization of local flat
space, Riemann Normal Coordinates (RNC). We choose P to be near the Schwarzschild hori-
zon, where the RNC expansion is valid for sufficiently massive black holes, which have small
curvature near the horizon.

The expansion of the metric in matrix coordinates (where xi → λΦi) is given compactly by

Gij(x) = eλΦk∂kGij|x=P (18)

Because spacetime is approximately flat near P , the first derivative of the metric vanishes,
∂iGµν = 0. Writing out the metric as Gµν = G00 +Gij and substituting in the above expansion
to order λ2

G00 = G00|P + λG00,k|P Φk +
λ2

2
G00,kl|P ΦkΦl (19)

which simplifies to

G00 = η00 +
λ2

2
G00,klΦ

kΦl (20)

and similarly

Gij = ηij +
λ2

2
Gij,klΦ

kΦl (21)

Putting (20) and (21) into (11) yields

P [Gab] = η00 +
λ2

2
G00,ijΦ

iΦj + λ2ηijΦ̇
iΦ̇j +

λ4

2
Gij,klΦ

kΦlΦ̇iΦ̇j (22)
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From [6], in RNC

G00 ≈ −1−R0l0mxlxm (23)

Gij ≈ δij −
1

3
Riljmxlxm

to linear order in the curvature tensor Rabcd, which is a valid approximation since we are
assuming small curvature. Taking the derivatives with respect to xi,

G00,ij = −R0i0j (24)

Gij,kl = −1

3
Rikjl

and substituting the above into the pullback, we have

P [Gab] = η00 + λ2ηijΦ̇
iΦ̇j − λ2

2
R0k0lΦ

kΦl +
λ4

2
RikjlΦ

kΦlΦ̇iΦ̇j (25)

Since the square roots in the Lagrangian (17) cannot be evaluated directly, they must be
expanded in a Taylor series, where we will expand all terms to order λ4. Using the expansion

(1 + ε)1/2 ≈ 1 +
1

2
ε− 1

8
ε2

we have

(−P [Gab])
1/2 ≈

(
1− λ2(Φ̇i)2 +

λ2

2
R0k0lΦ

kΦl +
λ4

6
RikjlΦ

kΦlΦ̇iΦ̇j

)1/2

= 1− λ2

2
(Φ̇i)2 +

λ2

4
R0k0lΦ

kΦl +
λ4

12
RikjlΦ

kΦlΦ̇iΦ̇j)

−1

8

(
−λ2(Φ̇i)2 +

λ2

2
R0k0lΦ

kΦl

)(
−λ2(Φ̇k)2 +

λ2

2
R0i0jΦ

iΦj

)

= 1− λ2

2
(Φ̇i)2 +

λ2

4
R0k0lΦ

kΦl +
λ4

12
RikjlΦ

kΦlΦ̇iΦ̇j − λ4

8
(Φ̇i)2(Φ̇k)2

+
λ4

8
R0k0lΦ

kΦl(Φ̇i)2 − λ4

32
R0k0lΦ

kΦlR0i0jΦ
iΦj + O(λ6) (26)

Next, to evaluate (det(Qi
j))

1/2, we first expand out the metric in RNC, using (20) and (21)
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Qi
j = δi

j + iλ[Φi, Φk]Gkj

= δi
j + iλ[Φi, Φj] + i

λ3

2
[Φi, Φk]Gkj,lmΦlΦm

= δi
j + iλ[Φi, Φj]− i

λ3

6
[Φi, Φk]RkljmΦlΦm (27)

Making use of the identity

(detA)1/2 = e
1
2
Tr(lnA)

as well as the expansions

ln[(δ + λA)ij] ≈ λAij − λ2

2
AikAkj +

λ3

3
AikAknAnj − λ4

4
AikAknAnpApj

eλAij ≈ δij + λAij +
λ2

2!
AikAkj

we see

ln(Qij) ≈ iλ[Φi, Φj]− i
λ3

6
[Φi, Φk]RkljmΦlΦm

−1

2

(
iλ[Φi, Φn]− i

λ3

6
[Φi, Φk]RklnmΦlΦm

)(
iλ[Φn, Φj]− i

λ3

6
[Φn, Φk]RkljmΦlΦm

)

−i
λ3

3
[Φi, Φn][Φn, Φp][Φp, Φj]− λ4

4
[Φi, Φn][Φn, Φp][Φp, Φq][Φq, Φj] (28)

Plugging the above expansion into the exponent yields

(det(Qij))1/2 ≈ exp
{

1

2
Tr

(
iλ[Φi, Φj]− i

λ3

6
[Φi, Φk]RkljmΦlΦm +

λ2

2
[Φi, Φn][Φn, Φj]

−λ4

6
[Φi, Φn][Φn, Φk]ΦlΦmRkljm − i

λ3

3
[Φi, Φn][Φn, Φp][Φp, Φj]

−λ4

4
[Φi, Φn][Φn, Φp][Φp, Φq][Φq, Φj]

)}
(29)

Next, applying the trace will cause all tensor indices will be summed over, Aij → Aii, which
will cause the first two terms to drop, since they are antisymmetric, leaving

(det(Qij))1/2 ≈ exp

{
λ2

4
[Φi, Φn][Φn, Φi] − λ4

12
[Φi, Φn][Φn, Φk]ΦlΦmRklim

−i
λ3

6
[Φi, Φn][Φn, Φp][Φp, Φi] −λ4

8
[Φi, Φn][Φn, Φp][Φp, Φq][Φq, Φi]

}
(30)
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Finally, expanding out the exponential, we have

(det(Qij))1/2 ≈ 1 +
λ2

4
[Φi, Φn][Φn, Φi]− i

λ3

6
[Φi, Φn][Φn, Φp][Φp, Φi]

−λ4

12
[Φi, Φn][Φn, Φk]ΦlΦmRklim −

λ4

8
[Φi, Φn][Φn, Φp][Φp, Φq][Φq, Φi]

+
λ4

32

(
[Φi, Φn][Φn, Φi]

)2
(31)

Multiplying (26) and (31) and keeping terms to order λ4 yields the fully expanded Lagrangian.
Noting that the λ3 term in (31) is antisymmetric and thus cancels out via the symmetrized
trace in (17), the Lagrangian is thus given by

L = −T0Str
{
1 + λ2

(
−1

2
(Φ̇i)2 +

1

4
R0k0lΦ

kΦl − 1

4
[Φi, Φj]2

)
+λ4

(
1

8
(Φ̇i)2[Φn, Φp]2 − 1

16
R0k0lΦ

kΦl[Φn, Φp]2 − 1

8
(Φ̇i)2(Φ̇j)2 +

1

8
R0k0lΦ

kΦl(Φ̇i)2

+
1

12
RijklΦ

kΦlΦ̇iΦ̇j − 1

32
R0k0lR0i0jΦ

kΦlΦiΦj − 1

8
[Φi, Φn][Φn, Φp][Φp, Φq][Φq, Φi]

− 1

12
Rklim[Φi, Φn][Φn, Φk]ΦlΦm +

1

32

(
[Φi, Φn][Φn, Φi]

)2
)}

(32)

We will assume that the configuration of D0-branes has small velocity, Φ̇i << Φi, and
that the background gravitational field is weak, yielding small curvature, R << 1. Thus, the
−1

8
(Φ̇i)2(Φ̇j)2 and − 1

32
R0k0lR0i0jΦ

kΦlΦiΦj terms can be dropped, leaving our final expression
for the Lagrangian

L = −T0Str
{
1 + λ2

(
−1

2
(Φ̇i)2 +

1

4
R0k0lΦ

kΦl − 1

4
[Φi, Φj]2

)
+λ4

(
1

8
(Φ̇i)2[Φn, Φp]2 − 1

16
R0k0lΦ

kΦl[Φn, Φp]2 +
1

8
R0k0lΦ

kΦl(Φ̇i)2

+
1

12
RijklΦ

kΦlΦ̇iΦ̇j − 1

8
[Φi, Φn][Φn, Φp][Φp, Φq][Φq, Φi]

− 1

12
Rklim[Φi, Φn][Φn, Φk]ΦlΦm +

1

32

(
[Φi, Φn][Φn, Φi]

)2
)}

(33)

However, we are still left with the question of how to evaluate the symmetrized trace of the
coordinate matrices, what to make of the commutation relations intrinsic to the action, and
how to apply time-dependence to the solution. To proceed, we must make an ansatz as to the
algebra that these coordinate matrices of D0-branes satisfy.
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4 The SU(2) Algebra Ansatz

4.1 Applying the Algebra

We note that curvature arising from Schwarzschild (black hole) and FRW (cosmology) metrics
will be maximally (spherically) symmetric, and thus in searching for a time-dependent solution
to our action, we are led to a maximally symmetric algebra, namely SU(N). For computational
simplicity, we will look to the SU(2) modes of the NxN Φi matrices, and thus we start with the
ansatz

Φi = ai(t)αi (34)

where ai(t) represent the time-dependent size of the configuration of D0-branes in the ith
direction, and αi are the generators of SU(2) (Pauli) algebra in an N-dimensional representation,
satisfying the relation

[αi, αj] = 2iεijkαk (35)

Despite the simplicity that this ansatz introduces, imposing dependence of direction on size
still proves computationally intractable in solving for the dynamics. Thus we make the fur-
ther ansatz of maximal symmetry in directionality, so the D0-branes puff out in a spherical
configuration. We thus apply the simplified ansatz

Φi = a(t)αi (36)

Next, we assume that the gravitational source is a space of constant curvature, or maximally
symmetric. Such symmetry is inherent to FRW cosmological models, and can be applied, for
example, to a charged, rotating black hole. For such spaces, the curvature tensor obeys the
relation [7]

Rabcd =
R0

D(D − 1)
(gacgbd − gadgbc) (37)

where D is equal to the number of spacetime dimensions. Recall that we have moved into
conventional spacetime territory with D = 3 + 1, under the assumption that the additional 6
dimensions are sufficiently compactified. Applying this relationship to the R0k0l terms in the
Lagrangian (33), we have

R0k0l =
R0

12
(g00gkl − g0lgk0)

=
R0

12
(η00ηkl − η0lηk0)

= −R0

12
ηkl (38)
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where gab ≈ ηab because we have assumed small curvature, and because we are in 3-D space,
k, l = 1, 2, 3, thus the η0l terms vanish.

Rewriting the Lagrangian (33)

L = −T0Str {1 + A} = −T0 {N + Str(A)} (39)

where for further computational simplicity, A is defined as

A ≡ λ2
(
−1

2
ȧ2(αi)2 +

1

4
R0k0la

2αkαl − 1

4
a4[αi, αj]2

)
+λ4

(
1

8
ȧ2a4(αi)2[αn, αp]2 − 1

16
R0k0la

6αkαl[αn, αp]2 +
1

8
R0k0lȧ

2a2αkαl(αi)2

+
1

12
Rijklȧ

2a2αkαlαiαj − 1

8
a8[αi, αn][αn, αp][αp, αq][αq, αi]

− 1

12
Rklima6[αi, αn][αn, αk]αlαm +

1

32
a8
(
[αi, αn][αn, αi]

)2
)

(40)

Note that in (39) the trace over the identity simply yields the number of D0-branes, N. Plugging
in the curvature tensor for spaces of constant curvature and the SU(2) algebra commutation
relation yields

A = λ2
(
−1

2
ȧ2(αi)2 − R0

48
a2ηklα

kαl − 1

4
a4
(
2iεijkαk

)2
)

+λ4
(

1

8
ȧ2a4(αi)2

(
2iεljkαk

)2
+

R0

192
a6ηklα

kαl (2iεnprαr)2 − R0

96
ȧ2a2ηklα

kαl(αi)2

+
R0

144
ȧ2a2(ηikηjl − ηilηjk)α

kαlαiαj − 1

8
a8(2i)4εinsεnpbεpqrεqitαsαbαrαt

− R0

144
a6(2i)2(ηikηlm − ηilηmk)ε

inaεnkbαaαbαlαm +
1

32
a8
(
2iεijkαk

)4
)

(41)

We next make use of the properties that the products of the totally antisymmetric tensor
obey [7]

εabcε
pqn = δp

aδ
q
bδ

n
c + δq

aδ
n
b δp

c + δn
a δp

b δ
q
c

−δp
aδ

n
b δq

c − δn
a δq

bδ
p
c − δq

aδ
p
b δ

n
c (42)

εabcε
aqn = δq

bδ
n
c − δn

b δq
c (43)

εabcε
abn = 2δn

c (44)
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εabcε
abc = 6 (45)

Thus, from (44) we have

(εijkαk)2 = εijkεijlαkαl = 2δklα
kαl = (αk)2 (46)

and from (43)

(εnsiε
npb)(εqrpε

qit) = (δp
sδ

b
i − δb

sδ
p
i )(δ

i
rδ

t
p − δt

rδ
i
p) = δt

sδ
b
r + δb

sδ
t
r (47)

Substituting these identities into the Lagrangian, noting that the R0

144
ȧ2a2(ηikηjl−ηilηjk)α

kαlαiαj

term will cancel from the symmetrized trace in (39), we have

A = λ2
(
−1

2
ȧ2(αi)2 − R0

48
a2(αk)2 + 2a4(αk)2

)
+λ4

(
−ȧ2a4(αi)2(αk)2 − R0

24
a6(αk)2(αr)2 − R0

96
ȧ2a2(αk)2(αi)2

−4a8(αr)2(αt)2 +
R0

18
a6(αb)2(αm)2 + 2a8(αi)2(αk)2

)
(48)

4.2 Evaluating the Symmetrized Trace

Now we must now find a way to evaluate the symmetrized trace of αiαi. We use the result
of Ramgoolam et al. [3], who have shown through knot theory that, for the ansatz Φi = aαi

satisfying the SU(2) algebra, one can replace the symmetrized trace of αiαi by the power series

Str(αiαi)n = N
n−1∑
i=1

kiC(n−i) (49)

where ki is a constant and C = (N2 − 1). Having solved for the constants ki, they find

Str(αiαi)n = N
(
Cn − 2

3
n(n− 1)C(n−1) +

2

45
n(n− 1)(n− 2)(7n− 1)C(n−2) + ...

)
(50)

Since our Lagrangian contains terms of highest order n = 2, the above simplifies to

Str(αiαi)n = N
(
(N2 − 1)n − 2

3
n(n− 1)(N2 − 1)(n−1)

)
(51)

and we thus make the following definitions

Str
{
αiαi

}
= N(N2 − 1) ≡ F1 (52)
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Str
{
αiαiαkαk

}
= N

(
(N2 − 1)2 − 4

3
(N2 − 1)

)
≡ F2 (53)

Substituting this result into (48), and (48) into (39) yields the desired scalar expression for the
Lagrangian

L = T0

(
−N +

λ2

2
ȧ2F2 +

λ2

48
R0a

2F2 − 2λ2a4F2

+ λ4ȧ2a4F4 +
λ4

96
R0ȧ

2a2F4 + 2λ4a8F4 +
7

72
λ4R0a

6F4

)
(54)

For large N, F2 ≈ N3 and F4 ≈ N5 from (51), and we have the final expression for the
Lagrangian,

L = T0

[
ȧ2

(
λ2

2
N3 + λ4a4N5 +

λ4

96
R0a

2N5

)

−N +
λ2

48
R0a

2N3 − 2λ2a4N3 + +2λ4a8N5 +
7

72
λ4R0a

6N5
]

(55)

A most interesting feature of this Lagrangian is the radius-dependent mass term, indicating
that the mass of the collection of D0-branes increases with the size of the fuzzy sphere. This
result is expected, since given a fixed string tension between the branes, the energy of the
collection, and hence its mass, should increase as the branes puff apart. We now must analyze
whether a fuzzy sphere is in fact a stable configuration for the D0-branes.
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5 The Vacuum Solution

5.1 Finding the Potential

Rewriting (55) in the Hamiltonian formalism

H = T0

[
ȧ2

(
λ2

2
N3 + λ4a4N5 +

λ4

96
R0a

2N5

)

+N − λ2

48
R0a

2N3 + 2λ2a4N3 − 2λ4a8N5 − 7

72
λ4R0a

6N5

]
(56)

where H = E, the total energy of the configuration. Adding E into the potential term and
dividing by the mass term to scale the kinetic energy, we have a modified Hamiltonian

ȧ2 + V (a) = 0 (57)

V (a) is the effective potential and is defined as

V (a) =
−E0 + N − λ2

48
R0a

2N3 + 2λ2a4N3 − 2λ4a8N5 − 7
72

λ4R0a
6N5(

λ2

2
N3 + λ4a4N5 + λ4

96
R0a2N5

) (58)

where E0 is the “normalized” energy

E0 =
E

T0

(59)

The behavior of the effective potential is dependent upon the sign of the Ricci (curvature)
scalar R0. If R0 is negative, then the only stable configuration of the D0-branes is at a = 0,
hence they remain bound together in a point-like configuration.

Figure 1: Normalized potential energy of spherical configuration vs. size, negative R0
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If however R0 is positive, as expected from the Schwarzschild geometry of a black hole, the
potential is similar to the Mexican hat potential, and it becomes energetically favorable for the
D0-branes to puff up into a fuzzy sphere in the vacuum of the potential.

Figure 2: Normalized potential energy of spherical configuration vs. size, positive R0

We use Maple to find the roots of the effective potential to linear order (small a), finding
that the vacuum solution occurs at

av =

√
R0

192

(
2N

E0

− 1
)

(60)

Note however that av has dimensions of inverse length. The physical radius r of a spherical
configuration of D0-branes is given generally in [1] by

r = λ

√
Tr(Φ̇i)2

N
(61)

Recalling that λ = 2πl2s , our configuration thus has a physical size

rv = 2πl2s

(
a2

vN

N

)1/2

= 2πl2sav (62)

5.2 Limits to the Solution

The shape of the potential imposes limits on the normalized energy E0 and the number of
D0-branes N if we are to have a bound configuration at the vacuum solution. From (57), we
have scaled the effective total energy to 0, and thus to ensure a stable minimum, the vacuum
solution must occur for V (a) < 0, surrounded by regions of V (a) > 0. To satisfy the latter,
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we must have N − E > 0, and for the former, N − E <
N3R2

0λ2

18432
. Combining these yields the

restrictions (
1− N2R2

0λ
2

18432

)
<

E0

N
< 1 (63)

In addition, the limits imposed by the initial expansion of the DBI action (26) are

N2λ2R0a
2 << 1 (64)

N2λ2a4 << 1 (65)

and to satisfy the weak gravity/small curvature approximation (33)

R0λ << 1 (66)

Combining these restrictions, we have

NλR0 << 1 (67)

which, when applied to (63), means that E0 ≈ N . Recalling that E0 = E
T0

, this means that
the total energy of the spherical configuration of D0-branes is simply the sum of the individual
brane energies

E = T0N (68)

which appears to contradict the notion that the branes are bound since we observe no binding
energy. However, this result is not new to string theory; Banks et al. [8] have shown that,
assuming a duality between M-theory and IIA string theory, M-theory naturally allows for
marginally bound states of any number of D0-branes. Also surprising is that, since the ratio
N
E0

is approximately fixed, the size of the fuzzy sphere (62) is independent of the number of D0-
branes, N . This result is in seeming violation of the conjectured uncertainty principle inherent
to the Planck scale [3].
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6 Brief Application to de Sitter Cosmology

Having explored the behavior of D0-branes near a black hole horizon, we next turn to applying
our analysis to an FRW cosmological model. The fundamental assumption we are using is that
D0-branes are the building blocks of spacetime, and therefore even though their intrinsic size is
on the order of the Planck length (10−35 m), they can be used to probe our universe as a whole.
We assume a de Sitter model of the universe, in which space is homogeneous and isotropic,
hence the Robertson-Walker metric is maximally symmetric, and can be expressed in the form

Rabmn =
Λ

3
(gamgbn − gangbm) (69)

which is in agreement with (37), where

R0

D(D − 1)
=

Λ

3
(70)

In addition, a de Sitter universe represents spacetime with a positive cosmological constant,
Λ, and thus our vacuum solution (62) is still valid. Thus, for N ≈ E0, the size of the D0-brane
fuzzy sphere rv is approximately

rv ≈ λ
√

Λ (71)

Note the curious result that the cosmological constant is scaling the size of the D0-brane
configuration. We expect that the the D0-branes are naturally of size on order of the Planck
length, yet they are dynamically affected by Λ, which fundamentally sets the scale and dynamics
of the universe as a whole. This provocative concept of the mixing of energy scales has been
proposed previously [10]. Since we are modeling the universe as a collection of D0-branes (or
as one large Dp-brane), string theory alludes to the idea that the dynamics on the largest scale
are fundamentally linked to those on the smallest scale. Future work in the field of string
cosmology will hopefully shed more light on this intriguing link.
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7 Discussion

We have found the vacuum solution to the potential of a spherical configuration of D0-branes
near the horizon of a black hole. For positive curvature, the shape of the potential indicates
that a possibly stable configuration of D0-branes of non-trivial size is possible, providing ev-
idence that the D0-branes will puff up via the gravitational dielectric effect. However, while
we found a stable vacuum solution, av, the stability is limited to the SU(2) modes (Pauli ma-
trices) of the NxN coordinate matrices Φi. As a critical next step, we need to look at all
modes not in the direction of the Pauli matrices. This is, however, a non-trivial computation;
since Φi is NxN, we would need to analyze N2 total perturbations. However, this analysis is
vital, since if the non-Pauli modes are unstable, so is our vacuum solution. One can imagine
this by extrapolating Fig. 2 into 3 dimensions, in which the potential minimum av becomes a
saddle point. If our vacuum solution is in fact unstable, we have made little progress beyond [2].

One may ask what is the physical mechanism that causes the D0-branes to puff up. The
puffing up specifically near the horizon suggests a fundamental limit to the number of branes
that can exist in some patch of space, and that at the horizon represents a region of saturation
of D0-branes, hence we would expect a dynamical bounce of the D0-branes off the horizon.
This would indicate, contrary to General Relativity, that horizons represent more than just
mere mathematical constructs beyond which escape from the gravitational potential of the sin-
gularity is not possible; they are an actual physical surface at which interesting dynamics can
occur. More specifically, the horizon represents a physical boundary that the D0-branes cannot
cross. This conjecture is supported by [3], which analyzed the dynamics of N D0-branes in
flat space, finding that for finitely large N , a spherically collapsing configuration of D0-branes
will bounce back. If this suggestion is true, one may ask what is the fundamental limit to
the number of D0-branes in a given space. Unfortunately, though, our resulting lack of strong
dependence of D0-brane spherical size on number of branes N (since always N ≈ E0, thus
av ∼

√
R0) appears to violate this suggestion.

To investigate this idea further, we would like to study the dependence of D0-brane config-
uration size vs. distance from horizon, which would shed light on the specific dynamics as the
D-branes near the horizon. Ideally, this would be done through studying the equations of mo-
tion from the Lagrangian (55). Given its complexity, though, this may prove intractable, and
we may have to resort to numerical analysis. Furthermore, to simplify the computations, we
have assumed a spherical configuration of the D0-branes (36). However, an ellipsoidal geometry
would likely be more realistic, in which the size in the direction normal to the horizon would
differ from those in the other directions, as in [2]. We could then find a correlation between
radial size of the ellipsoid and distance from horizon via the effects of relativistic tidal forces.
While such an approach would be less direct then solving for the equations of motion, it may
prove more computationally feasible.

Another direction for future work would be to generalize our result to any black hole so-
lution. While the Robertson-Walker metric of cosmology is naturally a maximally symmetric
space, the Schwarzschild geometry is not inherently so, and we had to assume a rotating,
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charged black hole with Ramond-Ramond fluxes on the D0 branes to simplify the geometry.
Ideally, we would substitute into the Lagrangian (33) the individually curvature tensors Rabcd

of the Schwarzschild metric, then solve for the dynamics. This approach may be made easier
by the indication from symmetry that only the Rrθrθ component would be non-zero.

Finally, we would like to expand upon our analysis for an FRW cosmological model. Specif-
ically, since the cosmology represents an expanding universe, we would like to use the time-
dependence of our Lagrangian to study the dynamics of the D0-branes under cosmological
expansion. Particularly interesting would be further study of the suggestions of mixing of en-
ergy between cosmological and Planck scales.
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