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We review the Coset Space Dimensional Reduction (CSDR) scheme and the
best model constructed so far. Then we present some details of an alternative CSDR
programme, in which the extra dimensions are considered to be fuzzy. Specifically,
we present a four-dimensional N = 4 SYM theory, orbifolded by Z3, which mimics
the behaviour of a dimensionally reduced N = 1, ten-dimensional gauge theory over
a set of fuzzy spheres at intermediate high scales. This leads to the trinification GUT
SU(3)3 at slightly lower, which in turn can be spontaneously broken to the MSSM in
low scales.
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1. INTRODUCTION

Scientists have set in high priority the aspect of unification of the fundamental
forces. Appealing approaches are the ones that support the existence of extra dimen-
sions. A very consistent framework in the unification of all forces supporting such a
scenario is Superstring theories [1], with most promising the Heterotic string [2] due
to the connections to the low-energy physics. Another remarkable framework for the
unification attempt was employed, a few years before the discovery of the Heterotic
string, that is the dimensional reduction of higher-dimensional gauge theories. This
field was pioneered by Forgacs and Manton with studies on Coset Space Dimen-
sional Reduction (CSDR) [3–5] and the Scherk-Schwarz group manifold reduction
[8]. In these two approaches, a starting gauge theory governs the regime of higher di-
mensions, where gauge-Higgs unification is achieved, leading to a four-dimensional
theory in which the gauge and Higgs fields are the surviving components of the ini-
tial fields in high dimensions. In the CSDR scheme, fermions are included in the
initial gauge theory, resulting to Yukawa couplings in four dimensions. The initial
theory is required to be N = 1 supersymmetric, i.e. gauge and fermion fields belong
to the same vector supermultiplet, relating gauge and fermion fields that have been
introduced. Resulting with chiral theories in four dimensions [9, 10] is regarded as a
notable achievement.
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2 Higher-dimensional Unified Theories with continuous and fuzzy coset spaces 277

In order to preserve an N = 1 supersymmetry after the dimensional reduction,
Calabi-Yau (CY) spaces are considered as suitable compact internal manifolds [11].
However, the moduli stabilization problem that arose, led to a wider class of internal
spaces, called manifolds with SU(3)-structure. Specifically, here we consider an
interesting class of SU(3)-structure manifolds, called nearly-Kähler manifolds [12,
14, 15], also see refs from [13].

The homogeneous nearly-Kähler manifolds in six dimensions are the three
non-symmetric coset spaces G2/SU(3), Sp(4)/(SU(2)×U(1))non−max and res-
pectively SU(3)/U(1)×U(1) and the group manifold SU(2)× SU(2) [15] (see
also [12, 14]). It is worth noting that in four-dimensional theories resulting from
dimensional reduction of a ten-dimensional, N = 1 supersymmetric gauge theory
over non-symmetric coset spaces, supersymmetry breaking terms are automatically
included [16], [17], contrary to CY spaces.

Another promising framework for describing physics at Planck scale is Non-
commutative geometry [18]–[38]. Non-commutative geometry was considered as an
appropriate framework for regularizing quantum field theories, or even better, build-
ing finite ones. However, constructing quantum field theories on Non-commutative
spaces is much more difficult than expected and , furthermore, problematic ultravio-
let features have emerged [21] (see also [22] and [23]). Nevertheless, this framework
is appropriate to accommodate particle models with Non-commutative gauge theory
[24] (see also [25–27]).

Remarkably, the two frameworks came closer by realizing that in M-theory and
”open string theory”, in the presence of a non-vanishing background antisymmetric
field, the effective physics on D-branes can be described by an Non-commutative
gauge theory [28, 29]. Thus, Non-commutative field theories emerge as effective
description of string dynamics. Moreover, major contribution in Non-commutative
geometry was made by Seiberg and Witten [29]. Their study triggered notable de-
velopments [31, 32] and , based on them, Non-commutative versions of SM were
built [33]. Unfortunately, those models fail to troubleshoot the main problem of
the SM, that is the presence of numerous free parameters, due to the ad hoc con-
sideration of Higgs and Yukawa sectors. Finally, an interesting programme has
been suggested and investigated [34–38] considering the extra dimensions as Non-
commutative. This programme overcomes the ultraviolet/infrared problems of theo-
ries defined in Non-commutative spaces in an obvious way offering the new possibil-
ity to start with an abelian gauge theory defined on the higher-dimensional space and
result with a non-abelian one in four dimensions, after dimensional reduction. Ad-
ditionally, another spectacular feature of this programme is that theories constructed
on Non-commutative (fuzzy) manifolds as approximations of the continuous ones,
are renormalizable contrary to all known higher-dimensional theories. The latter
property was examined from the four-dimensional point of view, too, using spon-
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taneous symmetry breakings, which mimic the results of the dimensional reduction
of a higher-dimensional gauge theory with fuzzy extra dimensions. Finally, in this
framework, chiral realistic theories have been constructed, too.

2. THE COSET SPACE DIMENSIONAL REDUCTION

The CSDR procedure demands that the field dependence on the extra coordi-
nates is such that the Lagrangian is independent of them. An elegant way to fulfill
the above requirement is to allow for a non-trivial dependence on them, in the sense
that a symmetry transformation by an element of the isometry group S of the space
formed by the extra dimensionsB corresponds to a gauge transformation. Along this
framework, a gauge invariant Lagrangian will be independent of the extra coordi-
nates. The above mechanism is the basis of the CSDR scheme [3–5], which assumes
that B is a compact coset space, S/R.

In the CSDR scheme one considers a Yang-Mills-Dirac Lagrangian, with gauge
group G, defined on a D-dimensional spacetime MD, with metric gMN , which is
compactified to M4×S/R, with S/R a coset space. We assume the following form
for the metric

gMN =

(
ηµν 0
0 −gab

)
, (1)

where ηµν = diag(1,−1,−1,−1) and gab is the coset space metric. The requirement
that transformations of the fields under the action of the symmetry group of S/R are
compensated by gauge transformations, imposes certain constraints on the fields of
our theory. The analysis of these constraints provides us with the four-dimensional
unconstrained fields, as well as with the gauge invariance that remains in the the-
ory after dimensional reduction. Therefore, a potential unification of all low energy
interactions, gauge, Yukawa and Higgs is achieved.

It is worth noting that the dimensional reduction of higher-dimensional theo-
ries results in effective field theories that might contain also towers of massive higher
harmonic (Kaluza-Klein) excitations. The behaviour of the running couplings is al-
tered from logarithmic to power [42] by the quantum level contributions of these
excitations, resulting in a remarkable change of the traditional unification picture
[43]. Using the continuous Wilson renormalization group technique [44], which can
be formulated in any number of space-time dimensions, higher-dimensional theo-
ries have also been studied at the quantum level, with results in agreement with the
treatment involving massive Kaluza-Klein excitations.
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4 Higher-dimensional Unified Theories with continuous and fuzzy coset spaces 279

2.1. REDUCTION OF A D-DIMENSIONAL YANG-MILLS-DIRAC LAGRANGIAN

Considering a Lie group S and its subgroup R we define a d-dimensional coset
S/R on which the extra dimensions ofM4×S/R are compactified (M4 is our space-
time). S acts as a symmetry group of the extra coordinates. According to the CSDR
scheme, an S-transformation of the extra d coordinates is a gauge transformation of
the fields that are defined on M4×S/R, thus a gauge invariant Lagrangian written
on this space is independent of the extra coordinates. Fields defined in this way are
called symmetric. The d-dimensional gauge field AM (x,y) is split into its compo-
nents Aµ(x,y) and Aα(x,y), corresponding to M4 and S/R respectively.

Let us now consider a Yang-Mills-Dirac theory with gauge group G defined
on a manifold MD which, as stated, will be compactified to M4×S/R, D = 4 +d,
d= dimS−dimR. The action is

A=

∫
d4xddy

√
−g
[
−1

4
Tr(FMNFKΛ)gMKgNΛ +

i

2
ψ̄ΓMDMψ

]
, (2)

whereDM = ∂M −θM −AM , with θM = 1
2θMNΛΣNΛ, the spin-connection ofMD,

and FMN = ∂MAN −∂NAM − [AM ,AN ], where M,N run over the D-dimensional
space and AM and ψ are D-dimensional symmetric fields. The fermion fields can
be accommodated in any representation F of G, unless a further symmetry, such as
supersymmetry, is required. If we denote by ξαA,(A= 1, ...,dimS and α = dimR+
1, ...,dimS the curved index) the Killing vectors which generate the symmetries of
S/R and by WA the compensating gauge transformation associated with ξA, the
following constraint equations for scalar φ, vector Aα and spinor ψ fields on S/R,
are expressing the requirement that transformations of the fields under the action of
S/R are compensated by gauge transformations

δAφ= ξαA∂αφ=D(WA)φ, (3)

δAAα = ξβA∂βAα+∂αξ
β
AAβ = ∂αWA− [WA,Aα], (4)

δAψ = ξαA∂αψ−
1

2
GAbcΣ

bcψ =D(WA)ψ , (5)

where WA depend only on internal coordinates y and D(WA) represents a gauge
transformation in the appropriate representation of the fields.

Regarding the constraints (3)-(5), they provide us [3, 4, 6] with the four- dimen-
sional unconstrained fields as well as with the gauge invariance that remains in the
theory after dimensional reduction. The components Aµ(x,y) of the initial gauge
field AM (x,y) become, after dimensional reduction, the four dimensional gauge
fields and they are independent of y. Additionally, they have to commute with the el-
ements of theRG, subgroup ofG, meaning that the four-dimensional gauge groupH
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280 G. Zoupanos, D. Gavriil, G. Manolakos 5

is the centralizer ofR inG,H =CG(RG). We denote by φα(x,y) theAα(x,y) com-
ponents of AM (x,y). They become scalars in four dimensions and they transform
under R as a vector υ, i.e.

S ⊃R (6)

adjS =adjR+υ. (7)

Moreover, the φα(x,y) fields act as an interwining operators connecting induced
representations ofR acting onG and S/R. According to Schur’s lemma, the previous
expression implies that the transformation properties of the fields φα(x,y) under
H can be found, if we decompose the adjoint representation of G according to the
embedding:

G⊃RG×H (8)

adjG= (adjR,1)+(1,adjH) +
∑

(ri,hi). (9)

Then, if υ =
∑
si, where each si is an irreducible representation of R, there survives

a Higgs multiplet transforming under the representation hi of H and all other scalar
fields vanish.

Regarding the fermion fields [4, 9, 10, 45] we proceed along similar lines as
in the case of scalars. It turns out that the spinor fields act as interwining operators
connecting induced representations of R in SO(d) and G. In order to obtain the H
representation content of the four-dimensional fermions, we have to decompose the
representation F of the initial gauge group, in which the fermions are assigned in
higher dimensions, under RG×H , i.e.

F =
∑

(ri,hi), (10)

and the spinor of SO(d) under R

σd =
∑

σj . (11)

Then for each pair (ri,σi), where ri and σi are identical irreducible representations of
R, there is an hi multiplet of spinor fields in the four-dimensional theory. Regarding
the possibility of obtaining chiral fermions in the effective theory, we notice that if
we start with Dirac fermions in higher dimensions it is impossible to obtain chiral
fermions in four dimensions. Further requirements must be considered in order to
achieve chiral fermions in the resulting theory. Imposing the Weyl condition in D
dimensions, we obtain two sets of Weyl fermions with the same quantum numbers
underH . Although this is already a chiral theory, we can go further and try to impose
Majorana condition in order to eliminate the doubling of the fermionic spectrum.
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6 Higher-dimensional Unified Theories with continuous and fuzzy coset spaces 281

Majorana and Weyl conditions are compatible inD= 4n+2 which is the case of our
interest.

The allowed embeddings of R into G are restricted by the condition that an
anomaly free theory in higher dimensions must fulfill, in order to obtain anomaly free
theories in four dimensions after the dimensional reduction [46]. According to that
condition, the allowed embeddings are related with the embedding of R into SO(6),
the tangent space of the six-dimensional cosets we consider [4, 7, 40]. According to
ref. [7] the anomaly cancelation condition is automatically satisfied for the choice of
embedding E8 ⊃ SO(6)⊃R, which we adopt here.

2.2. DIMENSIONAL REDUCTION OF E8 OVER SU(3)/U(1)×U(1)

In this subsection we summarize a few results concerning the dimensional re-
duction of theN = 1,E8 SYM over SU(3)/U(1)×U(1) [39]. The four-dimensional
gauge group will be provided by the decomposition of E8 under R = U(1)×U(1)
suggested by

E8 ⊃ E6×SU(3)⊃ E6×U(1)A×U(1)B . (12)
According to the rules of the previous section, the surviving gauge group in four
dimensions is

H = CE8(U(1)A×U(1)B) = E6×U(1)A×U(1)B . (13)

The surviving scalars and fermions in four dimensions are provided by the explicit
decomposition of the adjoint representation of E8, 248 under U(1)A×U(1)B . Ap-
plying the CSDR rules we find that the resulting four-dimensional theory is anN = 1,
E6 GUT with U(1)A,U(1)B as global symmetries. The potential is determined by
the decomposition of the specific S =SU(3) underR=U(1)×U(1) studied in [17].
The D-terms can be constructed and the F-terms are obtained by the superpotential.
The rest of the terms in the potential could be interpreted as soft scalar masses and
trilinear soft terms. Finally, the gaugino obtains a mass and receives contribution
from the torsion contrary to the rest soft supersymmetry breaking terms.

2.3. SU(3)3 DUE TO WILSON FLUX

According to the previous section, theE6×U(1)×U(1) group is the surviving
gauge group of the initial’s E8 group dimensional reduction. The surviving scalars
in the four-dimensional theory, being in the fundamental representation of the gauge
group are not able to provide the appropriate symmetry breaking towards the standard
model. In order to reduce further the gauge symmetry, one has to apply the Wilson
flux breaking mechanism [47–49]. Application of this mechanism imposes further
constraints in the scheme.
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In the case of our interest, instead of considering the simply connected mani-
fold B0, where B0 is the coset S/R, we consider the multiply connected manifold
B =B0/F

S/R with FS/R a freely acting discrete symmetry of B0. The manifold B
is multiply connected due to the presence of the symmetry FS/R. For each element
g ∈ FS/R, we pick up an element Ug in H , which can be represented as the Wilson
loop. If the manifold is simply connected, then the vanishing of the field strength
ensures that we can set the gauge field to zero by a gauge transformation. In the case
of a multiply connected manifold, although the vacuum field strength vanishes every-
where, Ug cannot be set to one and the gauge field cannot be set to zero. Therefore,
a homomorphism of FS/R into H is induced with image TH , which is the subgroup
of H generated by the element Ug.

Concerning the gauge symmetry that is preserved by the vacuum, we consider
the following. The vacuum has Aaµ = 0 and we represent a gauge transformation by
a space-dependent matrix V (x) of H . In order to keep Aaµ = 0 and leave the vacuum
invariant, V (x) must be a constant. Moreover, the matrix V (x) is consistent with
the action of the elements Ug only if [V,Ug] = 0 for all g ∈ FS/R. Therefore, the
unbroken subgroup of H is the centralizer of TH in H . Respectively, the surviving
matter fields are those that are invariant under the diagonal sum FS/R⊕TH . The
discrete symmetries FS/R, which act freely on coset spacesB0 = S/R are the center
of S, Z(S) and W =WS/WR , where WS and WR are the Weyl groups of S and R,
respectively. In the case of our interest, where B0 = SU(3)/U(1)×U(1), we have
FS/R = Z3 ⊆W . After the Z3 projection, the gauge group E6 breaks to SU(3)C ×
SU(3)L × SU(3)R, (the first of the SU(3) factors is the Standard Model colour
gauge group). Moreover, one can obtain three fermion generations by introducing
non-trivial monopole charges in the U(1)’s in R.

In ref [14] it was shown that the scalar potential leads to the proper hierarchy
of spontaneous breaking. Using the appropriate vev’s, a first spontaneous symme-
try breaking leads to the MSSM [50], while the electroweak breaking proceeds by a
second one [51]. It is worth noting that before the EW symmetry breaking, super-
symmetry is broken by both D-terms and F-terms, in addition to its breaking by the
soft terms.

We plan to examine in detail the phenomenological consequences of the result-
ing model, taking also into account the massive Kaluza-Klein modes.

3. FUZZY SPACES AND FUZZY DIMENSIONAL REDUCTION

In order to continue our analysis, it is fundamental to introduce the concept of
the fuzzy sphere [41]. The appropriate way to do so, is to initially consider the or-
dinary sphere S2, on which the algebra of functions is commutative, and then define
the fuzzy sphere as its extension.
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8 Higher-dimensional Unified Theories with continuous and fuzzy coset spaces 283

It is known that the algebra of functions on S2 is generated by the spherical
harmonics, Ylm, i.e. any arbitrary function on S2 can be expanded in terms of Ylm,
since they form a complete and orthogonal set of functions. In the fuzzy case (the
most typical case of Non-commutative geometry), contrary to the non-fuzzy sphere,
the integer number l does have an upper limit. So, the algebra of functions on the
fuzzy sphere is truncated to finite dimensional - naturally considered as a matrix
algebra. Therefore, it proves that it is consistent to define the fuzzy sphere as a
matrix approximation of the non-fuzzy sphere and that the truncation of the algebra
of the functions is responsible for the deprivation of commutativity. [The geometry

of other (higher-dimensional) fuzzy spaces (e.g. fuzzy CPM ) are examined in [52, 53]. Besides of

functions on the fuzzy sphere, spinors can be examined as well [34].]
Given that we aim at studying gauge theory on fuzzy sphere, the next -obvious-

step is to examine the behaviour of the gauge fields on the fuzzy sphere. So, we
consider a field φ(Xa) on the fuzzy sphere, with Xa being the covariant coordinates
[54] and then we take an infinitesimal transformation of this field

δφ(X) = λ(X)φ(X) , (14)

where λ(X) is the parameter of the gauge transformation. Under the above gauge
transformation it holds that δXa = 0, ensuring the invariance of the covariant coor-
dinates. Therefore, in the Non-commutative case, when left multiplying by a coordi-
nate, we obtain

δ(Xaφ) =Xaλ(X)φ, (15)
and in general, it holds that Xaλ(X)φ 6= λ(X)Xaφ. So, according to the non-fuzzy
gauge theory, one needs to introduce the covariant coordinates φa, in order to obtain
δ(φaφ) = λφaφ, with δ(φa) = [λ,φa]. Also, it is set that φa ≡Xa +Aa, where Aa
is the gauge potential, concluding in the equivalence that φa is the analogue of the
covariant derivative of the original gauge theories. From the above equations, the
transformation of Aa is

δAa =−[Xa,λ] + [λ,Aa] , (16)

encouraging the identification of Aa with a gauge field.

4. FUZZY CSDR

Attempts to reproduce the dominant gauge theory that describes physics in
low energies are based on the above structure. More specifically, we consider a Non-
commutative gauge theory on theM4×(S/R)F space, then we perform dimensional
reduction and in the end we result with a four dimensional theory. [(S/R)F is a fuzzy

coset e.g. the fuzzy sphere.] Unfortunately, realistic results did not arise using this method,
therefore, in order to obtain a more appropriate gauge theory in four dimensions, a
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284 G. Zoupanos, D. Gavriil, G. Manolakos 9

non trivial dimensional reduction had to be applied, namely the fuzzy extension of
the CSDR scheme.

The factor that differentiates the fuzzy CSDR from the original one, is the
consideration of the extra dimensions as fuzzy coset spaces [34] (see also [55]),
meaning that the group S acts now on the fuzzy coset (S/R)F , with the fields re-
maining invariant under an infinitesimal transformation of S - up to an infinitesimal
gauge transformation. Specifically, the fuzzy coset we make use is the fuzzy sphere,
(SU(2)/U(1))F , therefore scalar and gauge fields should be left invariant under an
infinitesimal transformation of SU(2) on the fuzzy sphere, up to an infinitesimal
gauge transformation

Lbφ= δWb
=Wbφ (17)

LbA= δWb
A=−DWb , (18)

where A is the gauge potential and Wb is an antihermitian gauge parameter which
depends on Xa. Therefore, Wb can be written as

Wb =W I
b T I , I = 1,2, . . . ,P 2 , (19)

where T I are the hermitian generators of the gauge group of the theory U(P ) and
(W I

b )† =−W I
b . The CSDR constraints are converted in the form

[ωb,Aµ] = 0 (20)

Cbdeφ
e = [ωb,φd] , (21)

where φa ≡Xa+Aa -as mentioned above- and ωa ≡Xa−Wa. Since Lie derivatives
respect the su(2) commutation relations, one is led to the consistency condition

[ωa,ωb] = Ccabωc , (22)

where ωa transforms as ωa → ω′a = gωag
−1. As for the spinors, a quite similar

procedure is followed [34].
As an application of the fuzzy CSDR scheme, we present the example, where

the gauge group is U(1) and the fuzzy coset is the fuzzy sphere. The ωa are N ×
N antihermitian matrices, therefore they can be considered as elements of U(N).
Though, the consistency relation, (22), must hold, that is the ωa obeys the commu-
tation relation of the SU(2) algebra. Thus, the SU(2) algebra has to be embedded
into the U(1) algebra. So, let T h,h= 1 . . . ,N2 be the generators of the U(N) in the
fundamental representation, and make use of the convention h(a,u),a = 1,2,3,u =
4,5, . . . ,N2, with the generators T a satisfying the SU(2) algebra [T a,T b] = Cabc T

c.
Obviously the embedding is achieved with the identification ωa = Ta.

Let us now examine and give interpretations of the two constraints (20), (21).
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10 Higher-dimensional Unified Theories with continuous and fuzzy coset spaces 285

The first one suggests that the gauge group of the four-dimensional theory is the
centralizer of the image of SU(2) in U(N), that is

K = CU(N)(SU(2)) = SU(N −2)×U(1)×U(1) . (23)

Therefore, there is an arbitrariness on the dependance of Aµ(x,X) on x, but as for
X , they depend on them meaning that the latter are valued in K instead of U(N).
Rephrasing, the 4-dimensional gauge potential that one is led is valued in K. The
second constraint is satisfied after choosing φa = rφ(x)ωa. This means that the re-
maining unconstrained degrees of freedom are related to the scalar field φ(x), which
belongs to the trivial representation of the 4-dimensional gauge group K.

Summing up the above procedure, one starts with a gauge theory which is de-
scribed by a U(1) on M4×S2

N . The consistency condition is satisfied by embedding
the SU(2) into U(N). [Instead of embedding the SU(2) into the fundamental representation of

U(N), one could have used other representations, too [41].] Then, imposing the two CSDR
constraints, the four-dimensional group is obtained and the scalar fields that do sur-
vive the reduction procedure arise.

Let us now proceed with listing the results of the above procedure, for the
fermionic case. The extended analysis [34] proves that the appropriate embedding
is S ⊂ SO(dimS), which is achieved by Ta = 1

2CabcΓ
bc, which respects the SU(2)

commutation relation. Therefore, ψ is an interwining operator between the represen-
tations of S and SO(dimS). According to the commutative case [4], the surviving
fermions in four-dimensional theory arise by decomposing the adjoint representation
of U(NP ) under the product SU(NP )×K, that is

U(NP )⊃ SU(NP )×K , adjU(NP ) =
∑
i

(si,ki) . (24)

Moreover, the decomposition of the spinorial representation σ of SO(dimS) under
S is

SO(dimS)⊃ S , σ =
∑
e

σe . (25)

Therefore, in case that the two irreducible representations si,σe are identical, the
fermions that survive (4-dimensional spinors) and are present in the four-dimensional
theory, belong to the ki representation of K.

Ending this section, it is important to compare the ordinary higher-dimensional
theory M4× (S/R), to the fuzzy one, M4× (S/R)F . Both theories have the same
isometries – fuzziness does not affect them –, i.e. SO(1,3)×SO(3). In addition,
the dimensionality of the gauge couplings defined on the two spaces is the same.
On the other side, they present a very striking difference: Non-commutative higher-
dimensional theory is the only one that is renormalizable. [ Meaning that the divergencies

are eliminated by a finite number of counter-terms.] Moreover, a U(1) gauge group defined
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on theM4×(S/R)F space, is appropriate in order to end up with a non-abelian four-
dimensional theory. [ Technically, this is possible because N ×N matrices could be decomposed

on the U(N) generators.]

5. ORBIFOLDS AND FUZZY EXTRA DIMENSIONS

The recovering of chiral four-dimensional theories starting from higher-dimen-
sional theories with fuzzy extra dimensions was the motivation of the introduction
of the orbifold structure, similar to the one in [56]. The orbifold procedure offers an
alternative way to obtainN = 1 four-dimensional models after reducing a higher-di-
mensional theory on appropriate manifolds, e.g. Calabi-Yau [57] or SU(3) structured
ones [12, 58]. Duality between four-dimensional N = 4, U(N) SYM theory and
Type IIB string theory on AdS5×S5 [59], motivated the authors of [56] to proceed
to the application of orbifold techniques — similar to [60, 61] — in order to break
some of the four supersymmetries. Moreover, the initial gauge group, SU(3N), that
is realized on 3N D3 branes, breaks to SU(N)3 with fermions being accommodated
into its chiral representations. [ This is point where the two different frameworks (superstring

theories and Non-commutative geometry) that aim at unification meet, i.e. Non-commutative gauge

theory can describe effective physics on D-branes.]
The concept of deconstructing dimensions [62], motivated the idea to reverse

the above procedure [35–37] for further justification of the renormalizability of the
theory and construction of chiral models in theories arising from the framework of
fuzzy extra dimensions. Reversing the procedure gives hope that consideration of the
initial abelian gauge theory as a higher-dimensional one is not necessary, instead the
non-abelian gauge theory could emerge from fluctuations of the coordinates [63]. Re-
alizing the last consideration, one has to start with a four-dimensional gauge theory,
including an appropriate scalar spectrum and a suitable potential producing vacua
that could be interpreted as dynamically generated fuzzy extra dimensions includ-
ing, at the same time, a finite Kaluza-Klein tower of massive modes. Also, although
in such models the inclusion of chiral fermions is preferred, the best one achieved
so far includes mirror fermions [36, 37]. [ Ending up with mirror fermions does not forbid

phenomenological contact [79], however exactly chiral fermions are preferred.]
In this review, the above sketch is realized performing a dimensional reduction

on an orbifold [64, 65]. More specifically, we examine the spectrum of the surviv-
ing fields and the superpotential of the projected theory, after the application of Z3

orbifold projection of the N = 4 SYM theory [66]. In our case, this theory is an
SU(3N) and the particle content is one SU(3N) gauge supermultiplet and three ad-
joint chiral supermultiplets. Their component fields are the gauge bosons, six adjoint
real scalars and four adjoint Weyl fermions. The scalars and Weyl fermions trans-
form under representations of the SU(4)R symmetry of the theory - 6, 4 respectively.
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That is the reason why - in order to introduce orbifolds - the discrete group Z3 must
be included as a subgroup of SU(4)R. Although there are more than one options, the
appropriate one is to embed the discrete group into the SU(3) subgroup of SU(4)R.
The suitability of this choice lies into the fact that it is the only one that leads to the
desired N = 1 supersymmetric models [56] (with U(1)R R-symmetry). Since the
particles that consist the spectrum of the theory belong to different representations of
SU(4)R, it is expected that Z3 will act non-trivially on them. In the case of gauge
and gaugino fields, the action of Z3 is trivial, since they are singlets under SU(4)R.
On the other hand, scalars and fermions will transform non trivially under the above
action. Specifically, as far as the matter fields are concerned, since they are not in-
variant under a gauge transformation, Z3 acts on their gauge indices, too. Therefore,
the orbifold filters this way the particle spectrum and the derived theory contains the
particles which are invariant under the combined Z3 action on both the geometric and
gauge indices [61]. [ In case of ordinary reduction of a 10-dimensional N = 1 SYM theory, one

obtains anN = 4 SYM theory in four dimensions with a global SU(4)R symmetry which is identified

with the tangent space SO(6) of the extra dimensions [16, 17].]
So — after the orbifold projection — the gauge group of the initial theory

breaks down to the group H = SU(N)×SU(N)×SU(N) with both scalar and
fermionic fields transforming under the same representation, written in detail like
3 ·
(
(N,N̄,1) + (N̄ ,1,N) + (1,N,N̄)

)
, a result that demonstrates the presence of

the N = 1 remnant supersymmetry. The chiral supermultiplet, which fermions and
scalars share, is an anomaly free representation of H .

Besides the particle spectrum of the projected theory, it is necessary to deter-
mine its superpotential, which is derived from the superpotential of the initialN = 4
SYM theory [66]

WN=4 = εijkTr(ΦiΦjΦk) , (26)
where the Φ’s are chiral superfields. The above structure remains the same after the
projection, but it encodes only the surviving fields of the N = 1 theory that passed
the orbifold filtering

W
(proj)
N=1 =

∑
I

εijkΦ
i
I,I+aiΦ

j
I+ai,I+ai+aj

Φk
I+ai+aj ,I . (27)

The next step is to find the scalar potential of the projected theory. This can
be achieved by extracting it from the above superpotential, W (proj)

N=1 . Therefore, the
scalar potential is

V proj
N=1(φ) =

1

4
Tr
(

[φi,φj ]†[φi,φj ]
)
, (28)

where, φi are the scalar component fields of the chiral superfield Φi. Unfortunately,
the minimization of V proj

N=1(φ) is achieved only by vanishing vevs of the fields, there-
fore, it is necessary to modify it in order that solutions which could be interpreted as
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vacua of a Non-commutative geometry to be emerged. So, addressed to this direc-
tion, N = 1 soft supersymmetric terms of the form

VSSB =
1

2

∑
i

m2
iφ

i†φi+
1

2

∑
i,j,k

hijkφ
iφjφk +h.c. (29)

are inserted into V proj
N=1(φ), where hijk = 0, unless i+ j+ k = 0mod3. [ Only purely

scalar SSB terms will be inserted into the scalar potential. Of course, other SSB terms have to be in-

cluded in order to obtain the full SSB sector [68], however it is not necessary for our purposes.] It is
important to refer that the introduction of the SSB terms does not cause embarrass-
ment, since an SSB sector is indispensable for a model aspired to be realistic, see e.g.
[68].

So, the total scalar potential is

V = V proj
N=1 +VSSB +VD , (30)

where the term VD represents the D-terms of the theory, which are given by

VD =
1

2
D2 =

1

2
DIDI , (31)

where DI = φ†iT
Iφi and T I are the generators of the chiral multiplets - in the rep-

resentation they belong. Fixing the parameters of the (29) to m2
i = 1 , hijk = εijk,

the total scalar potential turns to be

V =
1

4
(F ij)†F ij +VD , (32)

where F ij is
F ij = [φi,φj ]− iεijk(φk)† . (33)

[ The VD term settles for a change on the radius of the sphere, in accordance to the ordinary fuzzy

sphere case [35, 37, 69].]
Obviously, the first term of (32) is positive definite, which means that the global

minimum of the potential is obtained if

[φi,φj ] = iεijk(φ
k)† , φi(φj)† =R2 , (34)

with [R2,φi] = 0. It seems that the fuzzy sphere underlies in the above equations, so
it just remains to designate it. This will arise by defining the untwisted fields φ̃i as
φi = Ωφ̃i, with Ω 6= 1, satisfying the following relations

Ω3 = 1 , [Ω,φi] = 0 , Ω† = Ω−1 , (φ̃i)† = φ̃i ⇔ (φi)† = Ωφi . (35)

Now, it is clear that (34) reduce to the ordinary fuzzy sphere relation generated by φ̃i

[φ̃i, φ̃j ] = iεijkφ̃
k , φ̃iφ̃i =R2 . (36)
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This demonstrates the reason why the Non-commutative space that generates the φi

is called twisted fuzzy sphere, S̃2
N . The fact that the above structure is valid only

for Z3, poses it as the unique choice as the appropriate cyclic group for the orbifold
projection.

A configuration of the twisted fields, φi, that satisfy (34) is φi = Ω(13⊗λi(N)),
where λi(N) are the generators in the N -dimensional irreducible representation of
SU(2) and Ω is the matrix described by the following relations:

Ω = Ω3⊗1N , Ω3 =

 0 1 0
0 0 1
1 0 0

 , Ω3 = 1 . (37)

According to the transformation φi = Ωφ̃i, the ”off-diagonal” orbifold sectors are
expressed in block-diagonal form

φi =

 0 (λi(N))(N,N̄,1) 0

0 0 (λi(N))(1,N,N̄)

(λi(N))(N̄,1,N) 0 0


=Ω

 λi(N) 0 0

0 λi(N) 0

0 0 λi(N)

 . (38)

It is clear that the (untwisted) fields, φ̃i, that generate the ordinary fuzzy sphere,
have taken a block-diagonal form. Each block separately can be regarded as an or-
dinary fuzzy sphere, since the corresponding commutation relations (36) are separa-
tely satisfied. Therefore, the configuration (38) could be interpreted as three separate
fuzzy spheres (branes), embedded with relative angles 2π/3. Rephrasing, the solu-
tion φi is equivalent to three fuzzy spheres which conform with the orbifolding. In a
few words, the global minimum of the scalar potential - at least for a fixed range of
parameters - is achieved by a twisted fuzzy sphere. So, the F ij that was defined in
(33), could be considered as the field strength on the spontaneously generated fuzzy
extra dimensions.

Let us now examine the potential’s vacuum from a geometric point of view.
Fixing the parameters, the potential gets minimized by a twisted fuzzy sphere solu-
tion

φi = Ω(13⊗ (λi(N−n))⊕0n) , (39)

where 0n is the n× n matrix with zero entries. This non-vanishing vacuum - a
vacuum considered as R4× S̃2

N with a twisted fuzzy sphere in the φi coordinates
- breaks the gauge symmetry, SU(N)3 down to SU(n)3.
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The fluctuations of the scalar fields around the vacuum can be understood
by considering the transformation, φi = Ωφ̃i. In the non-twisted case, fluctuations
around the vacuum describe scalar and gauge fields on S2

N [54, 63], which gain mass
from the R4 point of view. The (38) exhibits that the matrix Ω maps the twisted
fuzzy sphere into three ordinary fuzzy spheres as three N ×N blocks are diagonally
embedded into the original 3N × 3N matrix. Therefore, all fluctuations could be
considered as fields on the three untwisted fuzzy spheres

φi = Ω̃(λi(N) +Ai) =

 λi(N) +Ai 0 0

0 ω(λi(N) +Ai) 0

0 0 ω2(λi(N) +Ai)

 , (40)

as well as specific massive off-diagonal states which cyclically connect these spheres.
The field strength F ij , (33), converts to

F ij = [φi,φj ]− iεijk(φk)† = Ω2
(

[φ̃i, φ̃j ]− iεijkφ̃k
)
, (41)

that is the field strength on an untwisted fuzzy sphere. Thus, at intermediate energy
scales, the vacuum can be interpreted as R4×S2

N with three untwisted fuzzy spheres
in the φ̃i coordinates. The three spheres do not mix, due to the lack of off-diagonal
entries, due to the orbifold projection. As in [35–37], because of the Higgs ef-
fect, fermions and gauge fields decompose to a finite Kaluza-Klein tower of massive
modes on S2

N resp. S̃2
N , as well as a massless sector.

6. THE SU(3)c×SU(3)L×SU(3)R CHIRAL MODEL

Working in the above context, three minimal and anomaly free models emerge,
however we will focus on the most interesting one. For all models the initial theory
is the same, i.e. a N = 1 SYM 4-dimensional SU(3N) gauge theory whose field
spectrum was listed in the previous section. Then it follows the realization of the
orbifold projection of the theory, embedding - as we have already noted - the Z3

into the SU(3) subgroup of SU(4)R. After the projection, the initial gauge group
breaks to the N = 1 SU(N)3 and the fields of the theory are accommodated into
chiral representations of the gauge group. More specifically, there are three families
transforming as

(N,N̄,1) + (N̄ ,1,N) + (1,N,N̄) (42)
under the gauge group SU(N)3. Of course, due to the different ways the initial gauge
group SU(3N) is spontaneously broken, we end up with different unification groups
SU(4)×SU(2)×SU(2), SU(4)3 and SU(3)3. [ Similar approaches have been examined

in the YM matrix models framework [78], but they deprived of phenomenological viability.]
Let us now focus on the very interesting trinification group, equal precisely to

SU(3)c×SU(3)L×SU(3)R [70, 71] (see also [72–76]; for a string theory approach
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see [77]). At first, we need to decompose the integer N as N = n+ 3 and then - for
the SU(N) - we consider the embedding

SU(N)⊃ SU(n)×SU(3)×U(1) , (43)

from which it follows that the embedding for the total gauge group SU(N)3 is

SU(N)3 ⊃ SU(n)×SU(3)×SU(n)×SU(3)×SU(n)×SU(3)×U(1)3 . (44)

The three U(1) factors are ignored and according to the above decomposition, the
representations (42) decompose (44), (after reordering the factors) as

SU(n)×SU(n)×SU(n)×SU(3)×SU(3)×SU(3) ,

(n, n̄,1;1,1,1) + (1,n, n̄;1,1,1) + (n̄,1,n;1,1,1) + (1,1,1;3, 3̄,1)

+ (1,1,1;1,3, 3̄) + (1,1,1; 3̄,1,3) + (n,1,1;1, 3̄,1) + (1,n,1;1,1, 3̄)

+ (1,1,n; 3̄,1,1) + (n̄,1,1;1,1,3) + (1, n̄,1;3,1,1) + (1,1, n̄;1,3,1) . (45)

[ These factors decouple at the low energy sector of the theory due to a possible gaining of mass by

the Green-Schwarz mechanism [67].] So, judging from the decomposition (43), the gauge
group is broken to SU(3)3. The surviving fields transform under the gauge group
SU(3)3, as

SU(3)×SU(3)×SU(3) , (46)

((3, 3̄,1) + (3̄,1,3) + (1,3, 3̄)) , (47)

which correspond to the desired chiral representations of the trinification group. The
transformation of quarks and leptons (only for the first family but it is similar for the
other two) under the gauge group SU(3)c×SU(3)L×SU(3)R is

q =

 d u h
d u h
d u h

 ∼(3, 3̄,1) , qc =

 dc dc dc

uc uc uc

hc hc hc

 ∼ (3̄,1,3) ,

λ=

 N Ec v
E N c e
vc ec S

∼ (1,3, 3̄) , (48)

respectively.
It is crucial to mention that this theory could be upgraded to a two-loop finite

theory (see reviews [51, 80–82]) and furthermore could make testable predictions
[51].

Moreover, the fuzzy orbifold mechanism can be used to break spontaneously
the unification gauge group down to MSSM and then, in turn, to the SU(3)c ×
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U(1)em. Concluding, it is useful to sum up the general idea of the theoretical
model. At the very high-scale regime, there is an unbroken renormalizable gauge
theory. After the spontaneous symmetry breaking, the resulting gauge theory we are
led to, is an SU(3)3 GUT, accompanied by a finite tower of massive Kaluza-Klein
modes. Finally, in the low scale regime, the trinification group SU(3)3 breaks down
to the MSSM. Thus, we conclude with the statement that fuzzy extra dimensions
can be used to construct chiral, renormalizable and phenomenologically viable field-
theoretical models.

A natural extension of the above ideas and methods has been reported in ref
[83] (see also [84]), realized in the context of Matrix Models (MM). At a fun-
damental level, the MMs introduced by Banks-Fischler-Shenker-Susskind (BFSS)
and Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT), are supposed to provide a non-
perturbative definition of M-theory and type IIB string theory respectively [30, 85].
On the other hand, MMs are also useful laboratories for the study of structures which
could be relevant from a low-energy point of view. Indeed, they generate a plethora
of interesting solutions, corresponding to strings, D-branes and their interactions
[30, 86], as well as to non-commutative/fuzzy spaces, such as fuzzy tori and spheres
[87]. Such backgrounds naturally give rise to non-abelian gauge theories. Therefore,
it appears natural to pose the question whether it is possible to construct phenomeno-
logically interesting particle physics models in this framework as well. In addition,
an orbifold MM was proposed by Aoki-Iso-Suyama (AIS) in [88] as a particular pro-
jection of the IKKT model, and it is directly related to the construction described
above in which fuzzy extra dimensions arise with trinification gauge theory [38]. By
Z3 - orbifolding, the original symmetry of the IKKT matrix model with matrix size
3N ×3N is generally reduced from SO(9,1)×U(3N) to SO(3,1)×U(N)3. This
model is chiral and has D = 4, N = 1 supersymmetry of Yang-Mills type as well
as an inhomogeneous supersymmetry specific to matrix models. The Z3 - invariant
fermion fields transform as bi-fundamental representations under the unbroken gauge
symmetry exactly as in the constructions described above. In the future we plan to
extend further the studies initiated in refs [83, 84] in the context of orbifolded IKKT
models.
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L. Castellani, D. Lüst, Nucl. Phys. B 296, 143 (1988).

13. D. Gavriil, G. Manolakos, G. Zoupanos, arXiv:1412.0438 [hep-th] (2014).
14. N. Irges, G. Zoupanos, Phys. Lett. B 698, 146 (2011);

N. Irges, G. Orfanidis, G. Zoupanos, PoS CORFU2011, 105 (2011).
15. J. B. Butruille, arXiv:math.DG/0612655 (2006).
16. P. Manousselis, G. Zoupanos, Phys.Lett. B 518, 171–180 (2001);

P. Manousselis, G. Zoupanos, Phys.Lett. B 504, 122–130 (2001).
17. P. Manousselis, G. Zoupanos, JHEP 0411, 025 (2004);

P. Manousselis, G. Zoupanos, JHEP 0203, 002 (2002).
18. A. Connes, “Noncommutative geometry” (Academic Press, Inc., San Diego, CA, 1994).
19. J. Madore, “An Introduction to Noncommutative Differential Geometry and its Physical Applica-

tions” (London Mathematical Society Lecture Note Series, vol. 257, Cambridge University Press,
Cambridge, 1999).

20. M. Buric et al., JHEP 0604, 054 (2006);
M. Buric, J. Madore, G. Zoupanos, SIGMA 3, 125 (2007).

21. T. Filk, Phys. Lett. B 376, 53 (1996);
J. C. Várilly, J. M. Gracia-Bondı́a, Int. J. Mod. Phys. A 14, 1305 (1999);
M. Chaichian, A. Demichev, P. Presnajder, Nucl. Phys. B 567, 360 (2000);
S. Minwalla, M. Van Raamsdonk, N. Seiberg, JHEP 0002, 020 (2000).

22. H. Grosse, R. Wulkenhaar, Lett. Math. Phys. 71, 13 (2005).
23. H. Grosse, H. Steinacker, Adv. Theor. Math. Phys. 12, 605 (2008);

H. Grosse, H. Steinacker, Nucl. Phys. B 707, 145 (2005).
24. A. Connes, J. Lott, Nucl. Phys. B Proc. Suppl. 18, 29–47 (1991);

A. H. Chamseddine, A. Connes, Commun. Math. Phys. 186, 731–750 (1997);
A. H. Chamseddine, A. Connes, Phys. Rev. Lett. 99, 191601 (2007).

RJP 61(Nos. 1-2), 276–296 (2016) (c) 2016 - v.1.3a*2016.2.17



294 G. Zoupanos, D. Gavriil, G. Manolakos 19

25. C. P. Martı́n, M. J. Gracia-Bondı́a, J. C. Várilly, Phys. Rep. 294, 363–406 (1998).
26. M. Dubois-Violette, J. Madore, R. Kerner, Phys. Lett. B 217, 485–488 (1989);

M. Dubois-Violette, J. Madore, R. Kerner, Class. Quant. Grav. 6, 1709–1724 (1989);
M. Dubois-Violette, J. Madore, R. Kerner, J. Math. Phys. 31, 323–330 (1990).

27. J. Madore, Phys. Lett. B 305, 84–89 (1993);
J. Madore, in “Fundamental Theories in Physics”, vol. 52, pp. 285–298 (Kluwer Acad. Publ.,
Dordrecht, 1993).

28. A. Connes, M.R. Douglas, A. Schwarz, JHEP 9802, 003 (1998).
29. N. Seiberg, E. Witten, JHEP 9909, 032 (1999).
30. N. Ishibashi et al., Nucl. Phys. B 498, 467 (1997).
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