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Chapter 1

Introduction

Entanglement is one of the most striking consequences of quantum mechanics
which follows directly from the axioms. In the early days of the development
of the theory, manifestations of entanglement caused many physicists to dis-
like the probabilistic interpretation of quantum theory. The EPR paradox,
formulated by Einstein, Podolsky and Rosen intended to show that either
quantum theory is not complete, or it contains nonlocal interaction between
spacelike separated particles. This conclusion made Einstein to refer to en-
tanglement derisively as “spukhafte Fernwirkung”[11] (spooky action at a
distance).

During the 20th century it turned out however, that even when some
strange result of quantum theory seems to violate fundamental laws of Nature
– at least for our minds condemned to think classically –, a closer examination
shows that these violations are avoided in some subtle way, like for example
in the teleportation of quantum states or in the EPR paradox itself.

In chapter 1 it is intended to give the reader a brief overview of the con-
cepts related to entanglement, highlighting its significance, and discussing the
main questions, answers to which would pave the way to a complete under-
standing of entanglement. The first section is concerned with the differences
between the classical and the quantum world related to entanglement. The
next two sections deal with the problem of classification of entangled states
and quantification of entanglement in general. In the last section, the well
understood case of bipartite entanglement in pure states is outlined as an
example.

In chapter 2 we study entanglement in multipartite quantum systems with
distinguishable constituents. The fundamental notions mentioned in the first
chapter as well as more specific notions are made precise in the first few sec-
tions. Then we characterize local unitary invariants using the representation
theory of the unitary groups, and also suggest a concrete method for con-

5



structing them. Using this method we construct an infinite family of local
unitary invariants in every even degree. We also give a formula for the stabi-
lized dimensions of subspaces of invariants. After some remarks on invariants
under the group of invertible stochastic local operations aided by classical
communication, we conclude this chapter with a relationship between the
local unitary-equivalence problem of pure and mixed states.

Chapter 3 is devoted to the study of entanglement in quantum systems
containing indistinguishable constituents. Using an algebraic construction
proposed by Freudenthal in order to obtain representations of some excep-
tional Lie groups, we are able to describe completely the entanglement classes
in some special tripartite quantum systems. These special quantum systems
have similar entanglement properties, which enables us to distill a general
correspondance between quantum systems with distunguishable and indis-
tinguishable parts, relating local invariants of the two types of systems. This
motivates our study of fermionic entanglement measures with the tools of
the second chapter.

Some mathematical concepts, definitions and theorems encountered in
this thesis are collected in the appendix. These include some facts from
linear algebra and representation theory in general, and the representation
theory of symmetric, general linear and unitary groups.

New scientific results are presented in sections 2.6.1-2.6.3, 2.7, 2.8, 2.9,
2.10, 3.2.1-3.2.5, 3.3, 3.5, 3.6.1-3.6.3, 3.7 and 3.8.

1.1 Quantum correlations

The world of classical physics can be described within the frames of probabil-
ity theory. This one deals with Kolmogorov probability spaces, that is, triples
(Ω,F ,P) where Ω is a set, F is a sub-σ-algebra of 2Ω and P : F → [0, 1] is
a σ-additive function such that P(Ω) = 1, or in other words, a probability
measure. In addition, one has certain measurable functions Ω → T where
T is a measurable space, most often a topological space with its Borel σ-
algebra, and even more often simply T = R with the σ-algebra of Borel sets.
These functions are called random variables and intend to model results of
measurements which are probabilistic in nature, because of the lack of our
complete knowledge of the state of the physical system in question.

One then tries to draw consequences from a physical theory in the form of,
say, expected values, moments and covariances of random variables, in order
to be tested experimentally. The testing of such statements means perform-
ing an experiment sufficiently many times, and comparing the theoretical
predictions with the gathered statistical data.

6



Suppose now that the following experiment is to be carried out[39]: a
pair of particles is prepared in a certain randomly chosen state, then they
are sent in separate laboratories. In each laboratory, the scientists are free to
choose between two properties which they measure, and which can take any
of the two values {1,−1} for simplicity. Let the values of these properties
(which are random variables) be denoted by A1 and A2 for the first, and B1

and B2 for the second laboratory. Notice first that the value of

A1B1 + A2B1 + A2B2 − A1B2 = (A1 + A2)B1 + (A2 − A1)B2 (1.1)

can only be 2 or −2 because on the right side precisely one of the terms
vanish. It follows that the upper bound [16]

E(A1B1) + E(A2B1) + E(A2B2)− E(A1B2)

= E(A1B1 + A2B1 + A2B2 − A1B2)

=
∑

a1,a2,b1,
b2∈{−1,1}

P(A1 = a1, A2 = a2, B1 = b1, B2 = b2)·

· (a1b1 + a2b1 + a2b2 − a1b2)

≤
∑

a1,a2,b1,
b2∈{−1,1}

P(A1 = a1, A2 = a2, B1 = b1, B2 = b2) · 2

= 2

(1.2)

holds for the covariances. This bound is a special case of the Bell inequali-
ties [4].

Let us be more specific, and suppose that the two particles mentioned
above are in fact spins of spin-1

2
particles, described by quantum mechanics.

The state before the measurement is then roughly a unit vector in a four
dimensional complex Hilbert space, C2⊗C2 as a composite system. On each
factor we have the usual observables Xi, Yi, Zi (i ∈ {1, 2}) which are the
spin components in the direction of the axes of a given Cartesian coordinate
system. Their normalization may be chosen so that their possible values are
{1,−1}. Let the state vector of the two spins be

ψ =
e0 ⊗ e1 − e1 ⊗ e0√

2
(1.3)

where e0 and e1 are eigenvectors of the observable Zi in the respective factors
of the tensor product. Let us choose the observables which are to be measured
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as follows:

A1 = Z1

A2 = X1

B1 = −X2 + Z2√
2

B2 =
Z2 −X2√

2

. (1.4)

It is easy to see that the eigenvalues of these operators (i.e. the possible
outcomes of each measurement) are {1,−1}. The covariances are

〈A1B1〉 = 〈A2B1〉 = 〈A2B2〉 =
1√
2

〈A1B2〉 = − 1√
2

(1.5)

where we used the notation 〈·〉 for expected values common in quantum
mechanics. But then

〈A1B1〉+ 〈A2B1〉+ 〈A2B2〉 − 〈A1B2〉 = 2
√

2 > 2, (1.6)

contradicting eq. (1.2).
This is a variation of a thought experiment given by Bohm[10] who dis-

tilled it from the famous EPR paradox after Albert Einstein, Boris Podolsky
and Nathan Rosen, who proposed a setting in their 1935 paper[20]. Their
intention was to show that quantum mechanics is unable to give a complete
description of reality. The violation of Bell’s inequality means that quan-
tum mechanics contradicts “common sense” and their conclusion was that it
must also contradict Nature. However, it turned out that it is common sense
which contradicts Nature, and the predictions of quantum mechanics agree
with experimental results[2].

This finding led physicists to reconsider the derivation of Bell’s inequali-
ties and its main assumptions which are called locality (the assumption that
the measurements in the two laboratories do not influence each other) and
realism (the assumption that the physical properties to be measured exist
independently of any observation). Either one or both of these assumptions
must therefore be dropped from the picture we have of the world. On the
other hand, the Copenhagen interpretation together with the EPR para-
dox shows that there exists a more general theory of probability. Indeed,
probability theory can be rephrased using orthomodular σ-lattices instead of
σ-algebras of subsets. Quantum logic deals with this more general setting[9],
in which the distributivity of meets and joins (as in Boole lattices) is replaced
by the weaker requirement of orthomodularity (as in lattices of projectors in
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a Hilbert space). Upon this new logic, a new theory of probability can be
built, far richer than the traditional one, leading in turn to a new theory of
information, known as quantum information theory.

A large part of quantum information theory deals with states like in eq.
(1.3). These states are special in that they cannot be written as tensor
products of vectors from the Hilbert spaces of the individual subsystems.
Such states are called entangled, and these are precisely the states which
bear in themselves the possibility to violate Bell’s inequalities [55], confirming
Schrödinger’s opinion on entanglement: “I would not call that one but rather
the characteristic trait of quantum mechanics, the one that enforces its entire
departure from classical lines of thought.”[43].

1.2 Entanglement classification problem

The set of separable (not entangled) states has the interesting property that
it is fixed under the action of the group of invertible local transformations,
that is, linear transformations of the composite Hilbert space which are tensor
products of invertible linear transformations of the individual subsystems’
Hilbert spaces. Moreover, thinking projectively (in effect disregarding the
norm and the overall phase), this set is also stable under the action of the
semigroup of local (not necessarily invertible) tranformations as long as the
result is not the 0 vector. This observation can be interpreted as follows: no
entanglement can be created via only local manipulations of the subsystems,
without interaction between the parts.

A separable state can not be converted into an entangled one. But if we
start with an entangled state, is it possible to reach any other entangled state
with local transformations? If not, then what are the possible obstructions
which prevent us from transforming one state into another? Questions like
these belong to the subject of entanglement theory, and the answers have
only been found for a limited number of quantum systems so far.

Also, the answer depends on our choice of admissible transformations.
One possible requirement is that the transformation succeeds with probabil-
ity 1. Alternatively, we may be satisfied with the weaker requirement that we
succeed in transforming one state to another with a positive probability. In
either case, we usually enable that manipulations performed on a particle de-
pend on results of measurements on another one. The former approach leads
to the LOCC (local operations and classical communication) classification
problem, while the latter one to SLOCC (stochastic LOCC).

In both cases, the admissible transformations induce a preorder - on
the set of states of the composite system. Preorders[13] are reflexive and
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transitive relations, in our case reflexivity follows from the fact that “doing
nothing can be done locally”, and transitivity means that performing one
local transformation after another yields again a local transformation. A
standard construction[13] in order theory allows us to pass to equivalence
classes with respect to - ∩ -−1, and on the quotient set this induces a
partial order.

Thus, the classification problem can be split into two parts: first we would
like to identify equivalently entangled states, then we would like to find out
if we are able to convert representatives of any two given equivalence classes
into each other via local transformations. The first problem may be solved by
finding a complete set of invariants with respect to the action of each group
of invertible local tranformations, while the solution to the second problem
means finding sufficiently many entanglement monotones, that is, functions
from the preordered set of states to, say, ([0, 1],≤) which are monotone with
respect to the preorder relations.

It turns out that equivalence classes of states are orbits under the action
of certain groups: for SLOCC classification of states in multipartite quantum
systems with distinguishable constituents, this group is the product of the
local general linear groups, called sometimes (by slight abuse of language)
the SLOCC group, while for LOCC classification of these states, the group
is the product of unitary groups of the subsystems (LU group). General (not
necessarily invertible) SLOCC operations correspond to tensor products of
endomorphisms of the respective Hilbert spaces [7].

1.3 Quantification of entanglement

It turned out that entangled states have many interesting applications like
quantum state teleportation[6] or superdense coding[8], and they also appear
during quantum computations[29]. As entangled states are precisely the ones
that enable us to outperform classical information-processing protocols[41],
we can regard entanglement as a resource like energy or entropy. As such,
it is desireable to find means to quantify it. It is not clear, however, what
properties must a function of the quantum state have in order to be “useful”.
For a review of various aspects of entanglement as a resource, we refer the
reader to [27].

From a mathematical point of view, the problem of understanding entan-
glement is completely stated in the previous section. From the physicists’
point of view, however, not every invariant or monotone is equally useful.
It is preferable for example, if a quantity can be given a clear operational
meaning, or any other direct phyisical interpretation.

10



A commonly used approach is that we single out a special state, usually
the Bell state

Φ =
e0 ⊗ e0 + e1 ⊗ e1√

2
(1.7)

in C2 ⊗ C2, and use it as a standard unit of entanglement. There are es-
sentially two ways to fulfil this program: for a given state ψ, either we try
to create as many copies of ψ as possible (this number will be denoted by
m) with high fidelity from n Bell states using only local transformations,
and calculate the limiting value of m/n as n approaches infinity, or one asks
how many Bell states can be prepared from m copies of ψ, again with high
fidelity, and looking at limm/n where n is the maximal achievable number of
Bell states. It is a nontrivial fact that the two notions – called entanglement
of formation and distillable entanglement respectively – actually coincide for
pure states[5].

Unfortunately, explicit formulae for these and other operationally defined
quantities are very hard to obtain. Although entanglement in bipartite pure
states is more or less well understood, our knowledge on multipartite quan-
tum systems or mixed state entanglement is very limited, the basic result
being the understanding of the mixed states of a two-qubit system [53]. For
example, it is not known how the distillable entanglement of a mixed bipar-
tite state can be calculated.

Because of these enormous difficulties, one cannot do better than tem-
porarily abandon the requirement that the quantities have a clear physical
meaning, and seeks simply for entanglement monotones or polynomial in-
variants, which, at least, enable us to distinguish between different types
of entanglement and say something about the ability to convert states into
each other via local operations. Especially as the problem of finding polyno-
mial invariants (and identifying fundamental ones which generate the algebra
of polynomial invariants) is also very difficult in itself for general quantum
systems.

1.4 Bipartite quantum systems

Let H1 and H2 be finite dimensional Hilbert spaces, corresponding to two
subsystems. The state space of the composite system is H = H1 ⊗ H2. If
dimHi = ni then dimH = n1n2. A pure state of the composite system is
a one dimensional subspace in H, the orthogonal projection on which is a
density operator % ∈ EndH.
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The reduced density matrices of the subsystems are then Tr2 % = %1 ∈
EndH1 and Tr1 % = %2 ∈ EndH2. A characteristic property of entangle-
ment is that a density operator describing an entangled pure state has mixed
reduced density operators. One can then hope that the eigenvalues of the
reduced operators – which are local unitary invariants – encode entangle-
ment properties of the pure state. Indeed, it turns out that the classification
problem for both the LOCC and the SLOCC transformations can be solved
using only the multiset of eigenvalues of the reduced density operators.

Let us begin with a definition:

Definition. Let x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn be two
vectors, and let x↓ = (x↓1, . . . , x

↓
n) and y = (y↓1, . . . , y

↓
n) be their permutations

ordered nonincreasingly. We say that y majorizes x (x 4 y) if

∀k ∈ {1, . . . , n} :
k∑
i=1

x↓i ≤
k∑
i=1

y↓i (1.8)

holds with equality for k = n.

For a self-adjoint operator A, let λ(A) denote the vector of eigenvalues of
A in nonincreasing order disregarding any 0 eigenvalues. Then, in our setting,
Schmidt decomposition[42] implies that λ(%1) = λ(%2) for any pure state %
of H. Now we are ready to state a result about the bipartite entanglement
of pure states[38]:

Theorem 1.4.1. Let ψ and ϕ be pure states of the bipartite quantum system
H = H1 ⊗H2. Then ψ can be converted with probability one to ϕ by LOCC
if and only if λ(Tr2(ψψ∗)) 4 λ(Tr2(ϕϕ∗))

In particular, two states are LOCC-equivalent iff the multisets of eigen-
values of their respective reduced density matrices are equal.

Similarly, ability to convert one pure state into another by SLOCC can be
decided using the eigenvalues, but this time not the values themselves, but
the number of nonzero eigenvalues – called the Schmidt rank – is relevant[18]:

Theorem 1.4.2. Let ψ and ϕ be pure states of the bipartite quantum system
H = H1 ⊗ H2. Then ψ can be converted with nonzero probability to ϕ by
SLOCC if and only if rk Tr2(ψψ∗) ≥ rk Tr2(ϕϕ∗)

In particular, two states are SLOCC-equivalent iff the ranks of the re-
spective reduced density matrices are equal.

What is left is to enumerate the possible equivalence classes for each
classification scheme. For SLOCC, these classes are clearly labelled by the
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Schmidt rank, hence there are min{n1, n2} equivalence classes in H. In the
case of LOCC, however, there are infinitely many equivalence classes labelled
by λ(Tr2(ψψ∗)). The same information is contained in the characteristic
polynomial of Tr2(ψψ∗), whose coefficients are polynomial functions of ψ,
and symmetric polynomials of the eigenvalues.

In this case we can describe the algebra of polynomial LU-invariants ex-
plicitely: it is generated by elementary symmetric polynomials of degree
at most min{n1, n2} of the eigenvalues. Alternatively, we may use power
sum symmetric polynomials of them of degree at most min{n1, n2}, that is,
the quantities Tr((%1)d) where d = {1, . . . ,min{n1, n2}}. Of course, d = 1
tells us nothing when we restrict ourselves to normalized states, therefore
we can conclude that the algebra of polynomial LU-invariants is generated
by min{n1, n2} − 1 algebraically independent invariants, one in each graded
part of bidegree (d, d) (degree d both in the coefficients of ψ and in their
conjugates) where d = {2, . . . ,min{n1, n2}}.
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Chapter 2

Entanglement of
distinguishable subsystems

In this chapter we study in detail the theory of entanglement in the case
of quantum systems consisting of distinguishable particles. In many appli-
cations we encounter localized particles far enough from each other so that
the interaction between them is negligable. In this situation, the amount
of quantum correlations between the particles cannot increase. Inequivalent
types of quantum correlations are encoded in the values of functions on the
state space which are invariant under invertible local transformations. The
main task is therefore to find such invariants, called entanglement measures
in this context.

Section 2.1 summarizes the basic concepts of quantum mechanics, with
an emphasis on local observables of composite quantum systems.

In section 2.2 we discuss the possible time evolutions of a quantum sys-
tem, not neccessarily isolated from its environment, in which case the evolu-
tion is not described by unitary transformations any more. We specialize to
time evolutions representing local manipulations of a multipartite quantum
system. Three semigroups are introduced, the SLOCC semigroup and the
LU and SLOCC groups which contain the possible local transformations in
various types of protocols.

The purpose of section 2.3 is to mathematically formulate the problem of
entanglement classification. It is also shown that this problem leads to the
study of invariant fuctions under certain group actions.

In section 2.4 we make the notion of a (real) polynomial on a vector
space precise, and we also compare some aspects of the LU and SLOCC
classification problems.

Section 2.5 prepares a more detailed study of LU-invariant polynomials
by analyzing the extra structure on the symmetric algebra of a Hilbert space
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induced by the inner product.

In section 2.6 we first collect some general facts about LU-invariants, then
calculate all fourth order LU-invariants for a composite quantum system with
arbitrary dimensional single particle state spaces. Then analogous invariants
are introduced with every even degree. In the special case when all the single
particle state spaces are isomorphic, the set of fourth order LU-invariants
with permutation symmetry is also described.

In section 2.7 we find the generating function of the sequence of dimen-
sions of the space of degree 2m LU-invariants of quantum systems with vary-
ing particle number and at least m dimensional single particle state spaces.

In section 2.8 a formula is derived for the dimension of degree 2m LU-
invariants for a quantum system with k subsystems and sufficiently large
single particle state spaces. The result is interpreted as the Hilbert series
of the inverse limit of the algebras of LU-invariant polynomials of k-partite
quantum systems with state spaces of varying dimension. A conjecture is
formulated regarding the structure of this algebra.

In section 2.9 some relationships with SLOCC-invariants are highlighted.

In section 2.10 it is shown that finding LU-invariant polynomials of mixed
states is equivalent to finding LU-invariant polynomials of pure states with
one extra subsystem added.

2.1 Introduction

In quantum mechanics a complex separable Hilbert space is associated to
every physical system, its state space. A Hilbert space is a vector space
equipped with an inner product such that the space is complete with respect
to the metric induced by the inner product. In quantum information theory
one usually deals with finite dimensional state spaces (although the infinite
dimensional case is also considered by some authors, for a review on this
topic see ref.[1]), removing the need to bother with the last requirement and
separability.

At this point, two kinds of states can be distinguished:

Definition. Let H be the state space of a quantum system. A state is a
positive element in End(H) with trace 1. A state % is pure, if rk % = 1,
otherwise it is called mixed.

Clearly, a pure state can be identified with its image, a one dimensional
subspace ofH. If ψ ∈ H\{0}, then ψ determines a unique pure state, namely
Cψ, therefore nonzero vectors in H are also often called pure states.
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The state space of a composite quantum system of distinguishable subsys-
tems is the tensor product of the Hilbert spaces of the individual subsystems
(see sections A.3 and A.4 in the appendix for the definition and properties of
the tensor product). From the vectors of the individual Hilbert spaces one
can build elementary tensors which have a distinguished role:

Definition. Let k ∈ N and H = H1 ⊗H2 ⊗ · · · ⊗ Hk be the state space of
a composite quantum system, where Hi (1 ≤ i ≤ k) are Hilbert spaces. A
pure state Cψ is separable if it can be written in the form ψ = ψ1 ⊗ · · · ⊗ ψk
where ψi ∈ Hi (1 ≤ i ≤ k). A pure state which is not separable is called
entangled.

A mixed state is called separable if it is a convex combination of separable
pure states, otherwise it is entangled.

In quantum mechanics, the result of a measurement is described by a
random variable which is in this case an element of End(H):

Definition. Let H be the state space of a quantum system. A self-adjoint
operator A ∈ End(H) is called an observable.

Suppose thatH = H1⊗H2⊗· · ·⊗Hk (where k ∈ N) is the state space of a
composite quantum system. A local observable (or single-particle observable)
is a self-adjoint operator of the form

A = A1 ⊗ A2 ⊗ · · · ⊗ Ak ∈ End(H1)⊗ · · · ⊗ End(Hk) ' End(H) (2.1)

where at most one of A1, A2, . . . , Ak differs from the identity operator of the
respective Hilbert space.

In a composite quantum system to each observable Ai ∈ End(Hi) of
a subsystem one can associate a local observable idH1 ⊗ · · · ⊗ idHi−1

⊗Ai ⊗
idHi+1

⊗ · · · ⊗ idHk , and this mapping is an algebra homomorphism (see sec-
tion A.3 in the appendix) End(Hi)→ End(H). This corresponds to the fact
that a property of a subsystem which can be measured is also a measurable
property of the composite system.

2.2 Time evolution

Quantum mechanics is not only about describing a state and the probability
distribution of observables in a particular moment, but also about how the
state evolves over time. One usually wants to find out how the state of an
isolated quantum system changes over a given time interval. In other cases,
one would like to consider a quantum mechanical system which interacts with

17



its environment, and determine its state after some time has elapsed. In the
former case, time evolution is described by a one-parameter unitary group
generated by the Hamiltonian, an observable with a special role, while in the
latter case, one regards the quantum system in question together with its
environment as an isolated composite system, and derives how the unitary
evolution of the whole is reflected in the evolution of the parts.

In quantum information theory, time evolution is studied in order to be
able to determine how the control parameters of a given quantum system need
to be tuned to perform the desired manipulations on it. In addition, under-
standing the general properties of special types of time evolution enables us
to tackle the problem of undesirable interactions with the environment which
would otherwise ruin the process of computation or information processing.

Suppose that we have an isolated quantum system with state space H,
and the Hamiltonian (the observable corresponding to energy) is H = H∗ ∈
End(H). Let the initial state be % ∈ End(H). Then after a time interval t,
the state of the system will be

%(t) = e−
i
~ tH%e

i
~ tH (2.2)

From eq. (2.2) we already see that %(t) is unitary equivalent to %. In
particular, a pure state remains pure under such an evolution. More gener-
ally, if % is a convex combination of pure states, then %(t) will be the convex
combination of evolved versions of the same pure states with the same coef-
ficients.

The case of an open quantum system is more subtle. Let H be the state
space of a quantum mechanical system which interacts with its environment,
whose state space isHE. Let the initial state of the joint system be %⊗%E, and
the Hamiltonian governing the evolution of the joint system be H. Without
loss of generality we can assume that %E is a pure state, the projection to
the subspace Cψ ≤ HE where ‖ψ‖ = 1. Let {ej}j∈J be an orthonormal basis
in HE. Then

%(t) = TrE(e−
i
~ tH%⊗ %Ee

i
~ tH)

=
∑
j∈J

〈ej, e−
i
~ tH%⊗ (ψψ∗)e

i
~ tHej〉HE

=
∑
j∈J

Ej%E
∗
j

, (2.3)

where TrE = idH⊗TrHE is the partial trace and Ej = 〈ej, e−
i
~ tHψ〉HE ∈

End(H). (the definition of the partial trace and the “partial matrix element”
can be found in the appendix in section A.4)
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The operators {Ej}j∈J satisfy a certain completeness relation:

1 = Tr

(∑
j∈J

Ej%E
∗
j

)
= Tr

(∑
j∈J

E∗jEj%

)
(2.4)

for all states % implies that∑
j∈J

E∗jEj = idH (2.5)

holds. In order to be able to include more genaral operations in the de-
scription – such as discarding the quantum system in the case of a certain
measurement outcome – the equality in eq. (2.5) must be weakened to∑

j∈J

E∗jEj ≤ idH . (2.6)

Indeed, suppose that P ∈ End(H) is a projection, and we wish to measure
if the state is in ranP , and continue the process only in this case, but the
initial state is only known to be %. Then the state will be

P%P

TrP%P
(2.7)

after the measurement with probability TrP%P . In general, the probability
of success is given by

Tr

(∑
j∈J

Ej%E
∗
j

)
(2.8)

This process with measurements and other admissible interactions with
the environment enables us to perform more general transformations than in
eq. (2.2), provided we are satisfied with a smaller but still nonzero probability
of success. In particular, if A ∈ End(H) is an arbitrary operator such that
ran % 6≤ kerA then we are able to implement the transformation

% 7→ A%A∗

Tr(A%A∗)
(2.9)

with nonzero probability since ∃α ∈ R× such that 0 < (αA)∗(αA) ≤ idH and

α2A%A∗

Tr(α2A%A∗)
=

A%A∗

Tr(A%A∗)
(2.10)

holds.
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2.2.1 Semigroups of local transformations

In entanglement theory, our aim is to study nonlocal properties of quantum
states, that is properties which cannot be created by local operations. In the
previous section we have seen that any element of End(H) can be applied to
a quantum system with state space H with a nonzero probability of success,
and any unitary operator in End(H) can be applied with probability one.

Imagine now that H = H1 ⊗ · · · ⊗ Hk (k ∈ N) is the state space of a
composite quantum system, and there can be no (direct or indirect) inter-
action between the subsystems, for example because they are in spacelike
separated laboratories. A manipulation performed on the ith subsystem is
still of the form of eq. (2.9), but instead of A being an arbitrary element of
End(H), it can only be a member of the algebra of local observables of the
ith subsystem, that is, A = idH1 ⊗ · · · ⊗ idHi−1

⊗Ai⊗ idHi+1
⊗ · · · ⊗ idHk (see

section C.2 for a proof).

It can be shown[7] that if a reversible operation of this type can be per-
formed with probability one, then Ai ∈ End(Hi) can also be chosen to be
unitary. These considerations motivate the following definitions:

Definition. Let k ∈ N and H = H1 ⊗ · · · ⊗Hk be the state space of a com-
posite quantum system. The SLOCC semigroup (stochastic local operations
and classical communication) of H is the subsemigroup

{A1 ⊗ · · · ⊗ Ak|∀i ∈ [k] : Ai ∈ End(Hi)} (2.11)

of End(H).

The SLOCC group of H is the group of invertible elements in the SLOCC
semigroup.

The LU group (local unitary) is the subgroup of unitary elements in the
SLOCC group.

idH = idH1 ⊗ · · · ⊗ idHk implies that the SLOCC semigroup is actually a
monoid (semigroup with identity).

The kernel of the map (A1, . . . , Ak) 7→ A1⊗ · · · ⊗Ak is the subsemigroup
{(a1 idH1 , . . . , ak idHk)|a1a2 · · · ak = 1}, therefore the SLOCC semigroup is
isomorphic to

{A1⊗· · ·⊗Ak|∀i ∈ [k] : Ai ∈ End(Hi)} ' End(H1)∗End(H2)∗· · ·∗End(Hk)

(2.12)

where ∗ denotes the central product with identified centers.
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Similarly, if H = H1 ⊗ · · · ⊗ Hk where dimHi = ni and dimH = n =
n1 · · · · · nk, then

det(A1 ⊗ · · · ⊗ Ak) =
k∏
i=1

det(Ai)

∏k
j=1 nk
ni (2.13)

which implies that the SLOCC group of H is

{A1⊗· · ·⊗Ak|∀i ∈ [k] : Ai ∈ GL(Hi)} ' GL(H1)∗GL(H2)∗· · ·∗GL(Hk)

(2.14)

∗ denoting again the central product with identified centers (the center of
each GL(Hi) being C× idHi , identified with C×). In particular, the SLOCC
group of H is a quotient of GL(H1)×GL(H2)× · · · ×GL(Hk).

And finally, as (A1⊗· · ·⊗Ak)∗ = A∗1⊗· · ·⊗A∗k and A1⊗· · ·⊗Ak ∈ C× idH
iff ∀i ∈ [k] : Ai ∈ C× idHi , it follows that the LU group is

{A1⊗· · ·⊗Ak|∀i ∈ [k] : AiA
∗
i = idHi} ' U(H1)∗U(H2)∗· · ·∗U(Hk) (2.15)

where ∗ is again the central product with identified centers (those being all
isomorphic to U(1)). In particular, the LU group is a quotient of U(H1) ×
U(H2)× · · · × U(Hk).

2.3 Monoid actions

In this section we would like to formalize the notion of “performing a local
manipulation on a pure state”. This will enable us to express mathematically
what it means for two states to be entangled in the same way. Let us start
with a definition[14]:

Definition. Let M be a monoid with 1 denoting the identity element, and
S a set. We say that a map M × S → S sending (m, s) 7→ m · s is an action
of M on S if the following conditions are met:

1. ∀s ∈ S : 1 · s = s

2. ∀s ∈ S : ∀m,n ∈M : m · (n · s) = (mn) · s

One can also think of a monoid as a category with one object. Then a
monoid action is simply a functor from this category to Set (see section A.1
in the appendix for the definition).

Given a set S on which a monoid M acts, we can define a binary relation
on S as follows. For s1, s2 ∈ S, let s2 - s1 iff there exists an element m ∈M
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such that s2 = m · s1. Clearly, s = 1 · s implies that - is reflexive, and
(s2 = m · s1, s3 = n · s2) ⇒ s3 = (nm) · s1 implies that - is transitive, thus
- is a preorder on S.

The next step is to define an equivalence relation based on -. Let us
write s1 ∼ s2 iff s1 - s2 and s2 - s1. Indeed, this relation is symmetric by
definition, reflexive and transitive by the same properties of -. Let [s] =
{s′ ∈ S|s ∼ s′} denote the equivalence class of s. On the set

S/ ∼= {[s]|s ∈ S} (2.16)

of equivalence classes - induces a relation ≤ by letting [s1] ≤ [s2] iff s1 - s2.
By construction this relation is well-defined, reflexive, antisymmetric and
transitive, that is, a partial order. In the special case when M is a group, ≤
is the identity relation.

Now we return to our special monoids introduced in the previous section.
First note that if M × S → S, (m, s) 7→ m · s is an action of the monoid
M and M ′ is another monoid, f : M ′ → M is a homomorphism, then
(m′, s) 7→ f(m′) · s defines an action of M ′ on S. In particular, instead of
actions of the SLOCC semigroup, the SLOCC group and the LU group, we
can consider actions of End(H1)×· · ·×End(Hk), GL(H1)×· · ·×GL(Hk) and
U(H1)× · · · ×U(Hk), respectively. The advantage is that these groups have
a simpler representation theory than the central products (see sections B.1
and B.4 in the appendix). As the latter two monoids are subsemigroups of
the first one, we need only to define the action of the first one.

We will let these monoids act on H in the obvious way: for ψ ∈ H and
A = (A1, · · · , Ak) ∈ End(H1)× · · · × End(Hk) we let

A · ψ = (A1 ⊗ · · · ⊗ Ak)ψ (2.17)

that is, induced from the action of End(H) on H.
Now we are ready to formulate the classification problem of entanglement

of pure states:

Definition. Let k ∈ N and H = H1 ⊗ · · · ⊗ Hk be the state space of a
composite quantum system. Then two states ψ, ϕ are

• SLOCC-equivalently entangled iff ψ ∼ ϕ where ∼ is the equivalence
relation induced by the action of the SLOCC group

• LU-equivalently entangled iff ψ ∼ ϕ where ∼ is the equivalence relation
induced by the action of the LU group

• ψ is SLOCC reducible to ϕ iff ϕ - ψ where - is the preorder relation
induced by the action of the SLOCC semigroup
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Note that we could also define a preorder using not necessarily invertible
LOCC operations, but this can only be done if we consider a monoid action
on mixed states first, then restrict the induced preorder relation to pure
states. We do not wish to do this here, as we will only discuss the problem
of equivalence under local transformations, which leads us back to the LU
group.

The main problem of entanglement theory is to find the set of equivalence
classes with respect to ∼ (induced from the actions of both groups) and
provide necessary and sufficient criteria for two states ψ, ϕ ∈ H to satisfy
ψ - ϕ.

In the case of the SLOCC semigroup, therefore, for ψ, ϕ ∈ H the relation
ϕ - ψ holds precisely when there exist operators {Ai}ki=1 (∀i ∈ {1, . . . , k} :
Ai ∈ End(Hi)) such that ϕ = (A1 ⊗ · · · ⊗ Ak)ψ. We would like to express
the equivalence relation ψ ∼ ϕ defined by ψ - ϕ ∧ ϕ - ψ more explicitely.
We have the following lemma, proven in ref.[18](the proof here is a slightly
simplified version):

Lemma 2.3.1. Suppose that H = H1 ⊗ · · · ⊗ Hk, ψ, ϕ ∈ H. Then the
following conditions are equivalent:

1. ∃(A1, . . . , Ak), (B1, . . . , Bk) ∈ End(H1)× · · · × End(Hk) such that ϕ =
(A1 ⊗ · · · ⊗ Ak)ψ and ψ = (B1 ⊗ · · · ⊗Bk)ϕ.

2. ∃(C1, . . . , Ck) ∈ GL(H1)×· · ·×GL(Hk) such that ϕ = (C1⊗· · ·⊗Ck)ψ

Proof. Considering one factor at a time, we can successively replace the op-
erators Ai with inverible ones as follows. For i = 1, ϕ and ψ′ := (idH1 ⊗A2⊗
· · · ⊗ Ak)ψ can be considered as elements of HomVectC(H∗2 ⊗ · · · ⊗ H∗k,H1).
Then A1 ◦ ψ′ = ϕ and B1 ◦ ϕ ◦ (B∗2A

∗
2 ⊗ · · · ⊗B∗kA∗k) = ψ′, therefore

dim ranϕ = dim ranA1◦ψ′ ≤ dim ranψ′ ≤ dim ranB1◦ϕ ≤ dim ranϕ (2.18)

which implies that dim ranϕ = dim ranψ′. On the other hand, dim ranϕ =
dim ranψ′ − dim(kerA1 ∩ ranψ′), therefore kerA1 ∩ ranψ′ = {0}. Now let
U be a direct complement of kerA1 containing ranψ′, and let V be a direct
complement of ranA1. Let A′1 := A1|U : U → ranA1, and let A′′1 : kerA →
V be an arbitrary isomorphism (recall that H1/ ranA1 ' kerA1). Then
A′1 ⊕ A′′2 : H1 → H1 is an invertible operator such that (A′1 ⊕ A′′2) ◦ ψ′ = ϕ.
We can proceed similarly with the other subsystems, arriving to an operator
of the desired form.

Conversely, if ∃(C1, . . . , Ck) ∈ GL(H1) × · · · × GL(Hk) such that ϕ =
(C1 ⊗ · · · ⊗ Ck)ψ, then for (C1, . . . , Ck) ∈ End(H1) × · · · × End(Hk) and
(C−1

1 , . . . , C−1
k ) ∈ End(H1) × · · · × End(Hk), ϕ = (C1 ⊗ · · · ⊗ Ck)ψ and

ψ = (C−1
1 ⊗ · · · ⊗ C−1

k )ϕ.
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Thus, equivalence classes of the ∼ relation obtained from the action of
the SLOCC semigroup are exactly the orbits under the action of the SLOCC
group.

Similarly, if we are given two pure states ψ and ϕ such that ψ - ϕ
and ϕ - ψ under LOCC, then there exist unitary operators (A1, . . . , Ak) ∈
U(H1)× · · · × U(Hk) such that ϕ = (A1 ⊗ · · · ⊗ Ak)ψ [7].

We are interested in finding real valued functions on H in order to be able
to characterize - with them. Clearly, if ϕ - ψ and ψ 6- ϕ then the function

fψ(ψ′) :=

{
1 if ψ - ψ′

0 otherwise
(2.19)

is a monotone function from (H,-) to (R,≤) which separates ϕ and ψ. For
if we take two elements ϕ - ϕ′ in H such that fψ(ϕ) = 1 then ψ - ϕ -
ϕ′ implies that fψ(ϕ′) = 1. Thus, such functions separate inequivalently
entangled states.

In other words, there exists an index set I, and a family of functions (fi)i∈I
such that fi : H → R, and that

∏
i∈I fi : H → RI is an order-embedding

into RI with the componentwise partial order. It is an interesting question
whether I can be taken to be finite, and whether the functions fi can be
chosen to be “nicer”, for example continuous or differentiable.

In this thesis only the problem of finding the equivalence classes of the
two ∼ relations – that is, orbits under the action of the SLOCC and LU
groups – is considered. Therefore, we shall drop the requirement of being
monotone, and look instead for functions which satisfy the weaker condition
of being constant along the orbits, that is, which are invariant functions.

Various results exist on the invariants under the action of both groups
for quantum systems with small dimensional state spaces and for a few con-
stituents, see eg. [52, 47, 48, 33, 34]

2.4 Invariant polynomials

As the set of invariant functions fromH to R is too large to be handled, in the
following we would like to restrict the class of invariant functions considered,
while still retaining the property that the subset of functions separate the
orbits.

In which direction to proceed, depends on our choice of the group of local
transformations to be considered. Both have advantages and disadvantages.
As the dimension of the SLOCC group is larger, there are fewer orbits, their
number can even be finite in low dimensional cases with a small number
of subsystems. Also, the SLOCC group is algebraic over the complexes, an
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algebraically closed field, while the LU group is only algebraic over the reals.
On the other hand, the LU group is a compact Lie group, while the SLOCC
group is only locally compact.

Having a regular action of an algebraic group in both cases makes it
tempting to concentrate on invariant polynomial functions. However, in-
variant polynomials do not separate every orbit when the SLOCC group is
considered, therefore we opt to look for LU-invariants, in which case the sit-
uation is easier, but we still have to consider functions which are polynomial
in the coefficients of the state and their conjugates. Occasionally, however,
we will be able to derive some facts on the SLOCC-invariant polynomials
as well, due to the close connection between the representation theories of
the two groups (see section B.4 in the appendix for details). The first step
will be to make the notion of such polynomials precise, and define it in a
coordinate-free manner at the same time.

Let V be a finite dimensional complex vector space. A vector v ∈ V
determines an element

ṽ := (1, v, v ⊗ v, v ⊗ v ⊗ v, . . .) ∈
∞∏
m=0

m⊗
i=1

V (2.20)

This vector space is the dual of the tensor algebra (see sections A.2 and A.5
in the appendix)

T (V ∗) =
∞∐
m=0

m⊗
i=1

V ∗ =
∞⊕
m=0

m⊗
i=1

V ∗ (2.21)

From the pairing(
∞∏
m=0

m⊗
i=1

V

)
× T (V ∗)→ C (2.22)

we have that there exists a map V × T (V ∗)→ C defined by

(v, ϕ) 7→ ϕ((1, v, v ⊗ v, v ⊗ v ⊗ v, . . .)) = ϕ(ṽ) (2.23)

For any fixed v ∈ V , this map is an algebra morphism from T (V ∗) to C:

((ϕ1⊗ · · · ⊗ ϕm)⊗ (ω1 ⊗ · · · ⊗ ωm′))(ṽ) =

= ϕ1(v) · · ·ϕm(v)ω1(v) · · ·ωm′(v)

= (ϕ1 ⊗ · · · ⊗ ϕm)(ṽ)(ω1 ⊗ · · · ⊗ ωm′)(ṽ)

(2.24)

holds for elementary tensors in addition to linearity.
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On the other hand, for any fixed vector ϕ ∈ T (V ∗), there exists a map
p̂ϕ : V → C defined by v 7→ ϕ(ṽ). Clearly, the map p̂ : T (V ∗) → C(V,C)
defined by ϕ 7→ p̂ϕ is an algebra morphism. As C(V,C) is commutative, the
kernel of this latter map must contain the two sided ideal I generated by
commutators, and in fact the kernel equals to this ideal. Therefore, there is
a unique morphism p making the following diagram commute:

T (V ∗)
p̂ //

π

��

C(V,C)

T (V ∗)/I

∃!p

88r
r

r
r

r

(2.25)

The algebra T (V ∗)/I will be denoted by S(V ∗).

Definition. Let V be a finite dimensional vector space. The algebra S(V ∗) is
called the algebra of holomorphic polynomials over V . For ϕ = ϕ̂+ I ∈ S(V ∗),
the function pϕ : V → C defined by pϕ(v) = ϕ̂(v) is a holomorphic polynomial
function on V .

Let {e1, . . . , en} be an arbitrary basis in V , and {e∗1, . . . , e∗n} be its dual
basis in V ∗ defined by e∗i (ej) = δij. An element ϕ̂ ∈ T (V ∗) can then be
written in the form

ϕ̂ =
M∑
m=0

n∑
i1,...,im=1

ϕi1,...,ime
∗
i1
⊗ · · · ⊗ e∗im (2.26)

with M ∈ N. Let ϕ = ϕ̂+ I. On the vector v =
∑n

i=1 viei, the value of pϕ is
then

pϕ(v) =
M∑
m=0

n∑
i1,...,im=1

ϕi1,...,im(e∗i1 ⊗ · · · ⊗ e
∗
im)(v ⊗ · · · ⊗ v)

=
M∑
m=0

n∑
i1,...,im=1

n∑
j1,...,jm=1

ϕi1,...,imvj1vj2 · · · vjme∗i1(ej1) · · · e
∗
im(ejm)

=
M∑
m=0

n∑
i1,...,im=1

ϕi1,...,imvi1vi2 · · · vim

(2.27)

which is polynomial in the coefficients of v, justifying the definition above.
Conversely, a function f : V → C which is polynomial in the coefficients can
be represented uniquely by a vector in S(V ∗).

Suppose now that G is a group acting on V linearly (see section B.1
in the appendix for the definition of a group representation), that is, the
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function v 7→ g · v is linear for all g ∈ G. This action induces a unique linear
action on

∏∞
m=0

⊗m
i=1 V such that the map v 7→ ṽ is equivariant, explicitely,

g·(1, v, v⊗v, v⊗v⊗v, . . .) = (1, g·v, g·v⊗g·v, g·v⊗g·v⊗g·v, . . .). This in turn
induces an action on T (V ∗) such that the pairing (

∏∞
m=0

⊗m
i=1 V )×T (V ∗)→

C is also equivariant (when C is regarded as the trivial representation of G),
that is, for g ∈ G,ϕ ∈ T (V ∗) and v ∈ V , the following equation holds:

(g · ϕ)(g · ṽ) = ϕ(ṽ) (2.28)

In addition, G acts on T (V ∗) by graded algebra morphisms (see section A.5
in the appendix). Finally, as the ideal I is homogenous and G-invariant (this
follows from the fact that g ·(ϕ1⊗ϕ2−ϕ2⊗ϕ1) = (g ·ϕ1)⊗(g ·ϕ2)−(g ·ϕ2)⊗
(g · ϕ1)), S(V ∗) is also graded and can be given the structure of a G-space
such that π in the diagram of eq. (2.25) is G-equivariant.

Now that we have a representation of G on S(V ∗), it makes sense to look
for fixed elements in S(V ∗), which form a subalgebra, because G acts also on
S(V ∗) by algebra morphisms. The set

S(V ∗)G = {ϕ ∈ S(V ∗)|∀g ∈ G : g · ϕ = ϕ} (2.29)

of fixed elements is called the algebra of invariant holomorphic polynomials. As
G acts on S(V ∗) with graded algebra morphisms, homogenous parts of an
invariant holomorphic polynomial is also invariant.

However, these tools cannot be directly utilized in order to be able to say
anything about the entanglement of any system. The problem is that both
the SLOCC group and the LU group contains elements of the form eiϕ idH –
and the algebra of invariant polynomials under this subgroup is already only
the algebra of constant polynomials. There are two possible solutions to this
problem: either one considers only local transformations with determinant 1,
or one forgets about the SLOCC group and looks for invariant polynomials
over R or in other words, polynomials in the coefficients and their conjugates.

Let us see how these polynomials can be defined. Let us start with a
finite dimensional Hilbert space H on which G acts and which is equipped
with a G-invariant inner product, that is, one satisfying 〈g ·ψ, g ·ψ′〉 = 〈ψ, ψ′〉
for all ψ, ψ′ ∈ H, g ∈ G. We also have the induced action on H∗ defined by
(g ·ϕ)(g ·ψ) = ϕ(ψ). To a vector ψ ∈ H we can associate a linear functional
ψ∗ ∈ H∗ with the inner product: ψ∗(ψ′) := 〈ψ, ψ′〉. The semilinear map
ψ 7→ ψ∗ is G-equivariant by construction:

(g · ψ∗)(g · ψ′) = 〈g · ψ, g · ψ′〉 = 〈ψ, ψ′〉 = ψ∗(ψ′) (2.30)

Let V = H ⊕ H∗. Then V carries a representation of G and we have
the G-equivariant map H → V v = ψ 7→ ψ ⊕ ψ∗. The fact that the map
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ψ 7→ ψ∗ is only semilinear makes it plausible that holomorphic polynomials
on V correspond to polynomials in the coefficients of ψ and their conjugates.
Indeed, let {e1, . . . , en} be an orthonormal basis of H, and {e∗1, . . . , e∗n} ⊆ H∗
its dual basis. Then {e1, . . . , en, e

∗
1, . . . , e

∗
n} is a basis of V , and the image of

ψ =
∑n

i=1 ψiei under the above map is

ψ ⊕ ψ′ =
n∑
i=1

ψiei ⊕
n∑
i=1

ψie
∗
i (2.31)

and thus polynomials in its coefficients are in fact polynomials in the co-
efficients of ψ and their conjugates. Note that as 2 Re z = z + z and
2i Im z = z − z, these are exactly the polynomials in the coefficients of ψ
regarding H as a real vector space.

Definition. LetH be a finite dimensional Hilbert space with an action of the
group G and a G-equivariant inner product, and let V = H⊕H∗. The algebra
S(V ∗) is called the algebra of polynomials over H. For ϕ = ϕ̂+I ∈ S(V ∗), the
function pϕ : H → C defined by pϕ(ψ) = ϕ̂(ψ ⊕ ψ∗) is a polynomial function
on H. The set

S(V ∗)G = {ϕ ∈ S(V ∗)|∀g ∈ G : g · ϕ = ϕ} (2.32)

of fixed elements is called the algebra of invariant polynomials.

This algebra turns out to contain enough elements to separate the orbits
under the LU group. This is implied by the following theorem[37]:

Theorem 2.4.1. Let H be a finite dimensional Hilbert space with an action
of the compact topological group G and a G-equivariant inner product. For
two vectors ψ, ψ′ ∈ H, there exists g ∈ G such that g ·ψ = ψ′ iff f(ψ) = f(ψ′)
for all invariant polynomial functions f .

Proof. Suppose that ψ and ψ′ are on different orbits. As n : ψ 7→ ‖ψ‖2 is an
invariant polynomial function, we can assume that ‖ψ‖ = ‖ψ′‖. The level
set n−1(‖ψ‖2) is a sphere, in particular, it is compact. The orbits of ψ and
ψ′ are disjoint compact sets, therefore, by Urysohn’s theorem, there exists a
continuous function f : H → R which is 1 on the orbit of ψ and 0 on the
orbit of ψ′.

By the Stone-Weierstrass theorem, for every ε > 0 there exists a polyno-
mial function p such that |p(v)− f(v)| < ε for all v ∈ n−1(‖ψ‖2). Choose an
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ε < 1
2

and let p be such a polynomial function. Then∣∣∣∣1− ∫
G

p(g · ψ)dg

∣∣∣∣ =

∣∣∣∣∫
G

(f(ψ)− p(g · ψ))dg

∣∣∣∣
=

∣∣∣∣∫
G

(f(g · ψ)− p(g · ψ))dg

∣∣∣∣
≤
∫
G

|f(g · ψ)− p(g · ψ)|dg ≤ ε

(2.33)

together with∣∣∣∣0− ∫
G

p(g · ψ′)dg
∣∣∣∣ =

∣∣∣∣∫
G

(f(ψ′)− p(g · ψ′))dg
∣∣∣∣

=

∣∣∣∣∫
G

(f(g · ψ′)− p(g · ψ′))dg
∣∣∣∣

≤
∫
G

|f(g · ψ′)− p(g · ψ′)|dg ≤ ε

(2.34)

implies that the invariant polynomial function

p̃ : v 7→
∫
G

p(g · v)dg (2.35)

takes different values on ψ and ψ′.

Notice that the same program would fail in the case of the SLOCC group
at several points: when G is the SLOCC group with the usual action, there
are no G-invariant inner products on H; we cannot restrict ourselves to a
compact subset, and therefore polynomials are not dense in the space of
continuous functions; there is no averaging operator, because the SLOCC
group is not compact, and hence there is no normalized Haar measure; and
even worse, there may exist a dense orbit, in which case even continuous
invariant functions are unable to separate the orbits.

2.5 The symmetric algebra of a Hilbert space

Throughout this sectionH denotes a finite dimensional complex Hilbert space
with inner product 〈·, ·〉. We regard H as a representation of U(H) = {ϕ :
H → H|∀v ∈ H : ‖ϕv‖ = ‖v‖}.

Let S(H) denote the symmetric algebra (see section A.5) of H that is, the
algebra of polynomials in vectors of H. S(H) has the structure of a graded
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algebra, its degree m homogenous subspace will be denoted by Sm(H). As
S1(H) = H, and this subspace generates S(H) as a unital commutative
algebra, we have that U(H) acts on S(H) with algebra automorphisms.

The inner product on H induces one on Sm(H) by the following require-
ment: for u, v ∈ H let 〈um, vm〉 = 〈u, v〉m (see also section A.4 in the ap-
pendix). This turns out to be equivalent to saying that for a unit vector
u ∈ H, ‖um‖ = 1. Clearly, this inner product will be preserved by the ac-
tion of U(H) on S(H), restricted to each homogenous subspace. It is known
from the representation theory of the unitary groups (see section B.4 in the
appendix) that in this way each Sm(H) becomes an irreducible unitary rep-
resentation of U(H), and hence the induced inner product is essentially the
only one invariant under this group action.

To be more explicit, if we fix an orthonormal basis {e1, . . . , ed} in H,
then Sm(H) is the space of degree m homogenous polynomials in the basis
elements, and the degree m monomials with coefficient 1 form a basis. These
monomials are mutually orthogonal, but they are not unit vectors. If v =∑d

i=1 αiei then

vm =
d∑

i1=1

· · ·
d∑

im=1

αi1αi2 · · ·αimei1 · · · eim

=
∑

k1,...,kd≥0
k1+...+kd=m

(
m

k1, k2, . . . , kd

)
αk11 α

k2
2 · · ·α

kd
d e

k1
1 e

k2
2 · · · e

kd
d

(2.36)

(where
(

m
k1,k2,...,kd

)
is the multinomial coefficient) hence

‖vm‖2 =
∑

k1,...,kd≥0
k1+...+kd=m

(
m

k1, k2, . . . , kd

)2

|αk11 α
k2
2 · · ·α

kd
d |

2‖ek11 e
k2
2 · · · e

kd
d ‖

2 (2.37)

Comparing this with

(‖v‖2)m =

(
d∑
i=1

|αi|2
)m

=
∑

k1,...,kd≥0
k1+...+kd=m

(
m

k1, k2, . . . , kd

)
|αk11 α

k2
2 · · ·α

kd
d |

2 (2.38)

we conclude that

‖ek11 e
k2
2 · · · e

kd
d ‖ =

(
m

k1, k2, . . . , kd

)−1/2

(2.39)
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2.6 Local unitary invariants

We return to the more concrete setting of the entanglement classification
problem. In the following, k ∈ N, and H = H1 ⊗ · · · ⊗ Hk is the state space
of a composite quantum system, dimHi = ni < ∞. The group we consider
is the direct product of the single-particle unitary groups:

G = U(H1)× · · · × U(Hk) (2.40)

As each homogenous part of an invariant polynomial is also invariant,
we need only to consider homogenous polynomials. These are elements of
Sp(H∗ ⊕H). We have the isomorphism

Sp(H∗ ⊕H) '
p⊕

m=0

Si(H∗)⊗ Sp−m(H) (2.41)

of G-spaces. An element λ of {eiϕ|ϕ ∈ R} ' U(1)× {1} × · · · × {1} ≤ Z(G)
acts on Sm(H∗)⊗Sp−m(H) as multiplication by λ(p−m)−m = λp−2m, therefore,
invariant polynomials can reside in Sm(H∗)⊗ Sp−m(H) only if p = 2m.

From now on, m will denote p
2
. Observe that Sm(H∗) = Sm(H)∗. Let

Sm(H) '
⊕

α∈Irr(G)

cαVα (2.42)

be the decomposition to the orthogonal sum of isotypic subspaces, where cα
are nonnegative integers and Irr(G) is a set labelling the isomorphism-classes
of irreducible representations of G. Then

Sm(H)∗ ⊗ Sm(H) '
⊕

α,α′∈Irr(G)

cαcα′Vα ⊗ V ∗α′ (2.43)

The multiplicity of the trivial representation in Vα ⊗ V ∗α′ is 1 if α = α′ and 0
if α 6= α′. We can conclude that for α ∈ Irr(G) there are three possibilities:

1. cα = 0, in this case we do not get any invariants

2. cα = 1, in this case there is a one dimensional subspace of invariant poly-
nomials in Vα⊗V ∗α ≤ Sm(H∗)⊗Sm(H), and we can choose a “canonical”
element spanning it

3. cα > 1, in this case we get a c2
α dimensional space of invariants in which

we can not find a “distinguished” basis in any obvious way

31



In the following, we concentrate only on the cα = 1 case. Although we throw
away this way the majority of invariants, we can hope that the remaining ones
have a clearer structure and still we can find previously unknown invariants.

For an α ∈ Irr(G) such that cα = 1, the distinguished element can be
obtained as follows. As we have seen in section 2.5, up to normalization,
there exists a unique inner product on Sm(H) which is invariant under the
induced action of the full unitary group acting on H. This follows from
the fact that Sm(H) carries an irreducible representation of this group. We
choose the normalization so that for any ψ ∈ H, the equation ‖ψm‖ =
‖ψ‖m holds, where ψm = ψ ⊗ · · · ⊗ ψ ∈ Sm(H). Now let Pα denote the
orthogonal projection onto the irreducible subrepresentation indexed by α.
The value of the distinguished invariant polynomial function on ψ ∈ H is
then 〈ψm, Pαψm〉.

We would like to express this value as a polynomial in the coefficients
with respect to a given basis. To this end we first need to find a generating
set of the vector space ranPα, each generating vector expressed as a linear
combination of degree m monomials in elements of an orthonormal basis in
H.

Once we have a generating set, we orthogonalize it, and for each vector w
in the orthogonal set we calculate the value of |〈w,ψm〉|2‖w‖−2. Finally, the
sum of these numbers is the value of our invariant evaluated on the state ψ.
Explicitely, let ψ =

∑
I ψIeI , and w =

∑
k1,k2,...,kd

βk1,k2,...,kde
k1
I1
. . . ekdId , where

d = n1 · · · · · nk and I1, . . . , Id are the possible k-element multi-indices, and
k1, . . . , kd run over nonnegative integers such that their sum equals m. Then
by equation (2.39) we have

〈w,ψm〉 =
〈∑
k1,...,kd

βk1,...,kde
k1
I1
. . . ekdId ,

∑
k′1,...,k

′
d

(
m

k′1, . . . , k
′
d

)
ψ
k′1
I1
. . . ψ

k′d
Id
e
k′1
I1
. . . e

k′d
Id

〉
=
∑

k1,...,kd

βk1,...,kdψ
k′1
I1
. . . ψ

k′d
Id

(
m

k1, . . . , kd

)
‖ek1I1 . . . e

kd
Id
‖2︸ ︷︷ ︸

1

(2.44)

A set labelling the isomorphism-classes of irreducible representations of
the group U(Hi) ' U(C, ni) is the set Pi of generalized partitions with at
most ni parts (see section B.4 in the appendix). Then Irr(G) can be chosen to
be P1×· · ·×Pk. A representation U(C, ni)→ GL(V ) indexed by a partition
of m is an mth degree polynomial function (that is, can be identified with an
element of Sm(End(Cni)∗) ⊗ End(V )). Consequently, only those irreducible
representations are present in which all the Pis are partitions of the same
number m, and for a fixed m, they span Sm(H).
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Note that for a fixed m, for sufficiently large single particle state spaces,
there is no restriction to the shape of the partitions, as a partition of m
cannot have more then m parts. Moreover, the decomposition of Sm(H)
into irreducible components does not depend on the dimensions of the single
particle state spaces apart from the vanishing of those indexed by a partition
with more parts then the dimension of the respective Hilbert space. It would
then be desirable (and in principle possible) to express the invariants with
a systematic dependence on the dimensions of the state spaces. This way
we can eliminate the need to bother about the dimensions, the two relevant
parameters are the degree m and the number of subsystems k. The set Irr(G)
may then be taken to be the set of k-tuples of generalized partitions.

2.6.1 Fourth order invariants

The m = 2 case is special in that for all k ∈ N, the multiplicities are all at
most 1. The decomposition of S2(H) can be obtained inductively, using the
following isomorphisms of GL(V )×GL(W )-spaces[22]:

S2(V ⊗W ) ' (S2V ⊗ S2W )⊕ (Λ2V ⊗ Λ2W )

Λ2(V ⊗W ) ' (S2V ⊗ Λ2W )⊕ (S2V ⊗ Λ2W )
(2.45)

In order to be able to handle various representations of GL(V ) – including
symmetric and alternating powers of V – in a uniform manner, we will express
these using Schur functors (see section B.3 in the appendix for the definition).
In particular, SmV = S(m)V and ΛmV = S(1m)V . We will need two kinds of
subsets of Irr(G):

Irrevenk,m = {(λ1, . . . , λk) ∈ {(m), (1m)}k||{i|λi = (1m)}| ≡ 0 (mod 2)}
Irroddk,m = {(λ1, . . . , λk) ∈ {(m), (1m)}k||{i|λi = (1m)}| ≡ 1 (mod 2)}

(2.46)

Proposition 2.6.1. Let k ∈ N and H = H1 ⊗ · · · ⊗Hk be the state space of
a composite quantum system with dimH <∞. Then

S(2)H '
⊕

(λi)ki=1∈Irrevenk,2

Sλ1H1 ⊗ · · · ⊗ SλkHk

S(12)H '
⊕

(λi)ki=1∈Irroddk,2

Sλ1H1 ⊗ · · · ⊗ SλkHk

(2.47)

Proof. We prove by induction in k, the k = 1 case is clear. Suppose that
for k − 1 instead of k, the statement is true. Then, using eq. (2.45) and the
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induction hypothesis, we have that

S(2)H ' S(2)(H1 ⊗ · · · ⊗ Hk−1)⊗ S(2)Hk⊕
⊕ S(12)(H1 ⊗ · · · ⊗ Hk−1)⊗ S(12)Hk

'
⊕

(λi)
k−1
i=1 ∈Irrevenk,2

Sλ1H1 ⊗ · · · ⊗ Sλk−1
Hk−1 ⊗ S(2)Hk⊕

⊕
⊕

(λi)
k−1
i=1 ∈Irroddk,2

Sλ1H1 ⊗ · · · ⊗ Sλk−1
Hk−1 ⊗ S(12)Hk

'
⊕

(λi)ki=1∈Irrevenk,2

Sλ1H1 ⊗ · · · ⊗ SλkHk

(2.48)

and

S(12)H ' S(2)(H1 ⊗ · · · ⊗ Hk−1)⊗ S(12)Hk⊕
⊕ S(12)(H1 ⊗ · · · ⊗ Hk−1)⊗ S(2)Hk

'
⊕

(λi)
k−1
i=1 ∈Irrevenk,2

Sλ1H1 ⊗ · · · ⊗ Sλk−1
Hk−1 ⊗ S(12)Hk⊕

⊕
⊕

(λi)
k−1
i=1 ∈Irroddk,2

Sλ1H1 ⊗ · · · ⊗ Sλk−1
Hk−1 ⊗ S(2)Hk

'
⊕

(λi)ki=1∈Irroddk,2

Sλ1H1 ⊗ · · · ⊗ SλkHk

(2.49)

which finishes the proof.

Consequently, the irreducible components of S2(H) can be indexed by
even-element subsets of [k], with a bijection sending the set A to the compo-
nent in which the alternating power of Hj appears iff j ∈ A. The subspace
corresponding to A will be denoted by VA. It follows that the dimension of
the space of fourth order G-invariant polynomials is 2k−1.

Our next aim is to construct an orthonormal basis in VA for each possible
subset A. We would like to express elements of S2(H) in terms of a com-
putational basis in H. Let {ej,i|1 ≤ j ≤ k, 1 ≤ i ≤ nj} be a set of vectors
such that {ej,i}1≤i≤nj is an orthonormal basis in Hj. Let us now introduce
the following short notation: ei1i2...ik := e1,i1 ⊗ e2,i2 ⊗ . . . ⊗ ek,ik ∈ H, where
1 ≤ ij ≤ nj (for all j ∈ [k]). The set of vectors of this form is an orthonor-
mal basis in H. Elements of the symmetric algebra S(H) are polynomials
in these vectors, in particular, a vector of Sm(H) is a degree m homogenous
polynomial.
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Let i0,1, i0,2, . . . , i0,k, i1,1, i1,2, . . . , i1,k be fixed integers such that 1 ≤ i0,j ≤
i1,j ≤ nj for all 1 ≤ j ≤ k, and i0,j 6= i1,j whenever j ∈ A. Let us now
consider the vector

v =
∑

b1,...,bk∈{0,1}

(−1)|A∩B|eib1,1ib2,2...ibk,kei1−b1,1i1−b2,2...i1−bk,k (2.50)

whereB = {j ∈ [k]|bj = 1}. We claim that this is an element of VA, moreover,
vectors of this type form a basis of VA and are pairwise orthogonal.

Clearly, when we construct two vectors v and v′ this way starting from
different sets of indices, then not only v and v′ are orthogonal, but any term
appearing in the above expression of v is orthogonal to any term in v′. It is
also easy to see that the span of these vectors is G-invariant. The highest
weights can be read off from the vector with smallest possible indices, namely,
for j /∈ A, the highest weight for the jth factor in G is (2), while for j ∈ A it
is (1, 1). Therefore, vectors of this type span VA. Note, that this is consistent
with the fact that the number of admissible sets of indices is∏

j∈{1,...,k}\A

(
nj + 1

2

)∏
j∈A

(
nj
2

)
= dimVA (2.51)

for a fixed subset A.
We calculate next the norm squared of the elements of this basis. The

sum has 2k terms, but they are not necessarily distinct. More precisely, each
term appears with the same multiplicity, which is easily seen to be 2c+1 if
c := {j ∈ [k]|i0,j = i1,j} < k and 2k if c = k. The latter case can only be
realized if A = ∅. The norm of a single term is 1 if c = k, and 1√

2
otherwise.

To sum up, the norm squared of v is

‖v‖ =

{
2k

2c+1 (2c+1)2 1
2

= 2k+c if c < k
(2k)2 if c = k

(2.52)

A formula which gives back both cases is ‖v‖2 = 2k+c.
The invariant associated to the subrepresentation VA is therefore given

by

IA(ψ) = 2−k
∑

1≤i01≤i11≤ni
...

1≤i0k≤i
1
k≤nk

2−c

∣∣∣∣∣
1∑

b1,...,bk=0

(−1)|A∩B|ψib1,1ib2,2...ibk,kψi1−b1,1i1−b2,2...i1−bk,k

∣∣∣∣∣
2

(2.53)

with B and c as above, and ψ =
∑
ψi1i2...ikei1i2...ik .
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2.6.2 Invariants of higher order

In the general m ≥ 2 case, a similar treatment would be impractical, as in-
stead of eq. (2.45), we would need one similar isomorphism for each partition
of m, and the full decomposition of Sm(H) would be rather complicated. We
can derive however invariants in this case which are analogous to the ones
found in the m = 2 case. We assume that the single-particle state spaces
are “large enough”, meaning that ∀i ∈ [k] : dimHi ≥ m, ensuring that none
of the appearing representations are {0}. For smaller m, we may define the
corresponding invariants to be identically zero.

The above mentioned isomorphisms are special cases of the following
one[22]:

Sν(V ⊗W ) '
⊕
λ,µ

CλµνSλV ⊗ SµW (2.54)

where ν is a partition of m, λ, µ run over partitions of m and Cλµν are
certain coefficients, appearing also in the decomposition of tensor products
of irreducible representations of Sm:

Vλ ⊗ Vµ '
⊕
ν

CλµνVν (2.55)

where Vν is the irreducible representation of Sm labelled by the partition
ν. Analogous formulae are valid for more than two factors as well. (see
sections B.3 and B.4 in the appendix)

In what follows we only need to consider the two simplest irreducible
representations, namely the trivial representation V(m) and the alternating
one V(1m). It is easy to see that

V(m) ⊗ · · · ⊗ V(m) ⊗ V(1m) ⊗ · · · ⊗ V(1m)︸ ︷︷ ︸
b factors

'
{
V(m) if b is even
V(1m) if b is odd

(2.56)

Consequently, in the decomposition of Sm(H) into irreducibles we can find
Sλ1H1 ⊗ . . . ⊗ SλkHk with multiplicity one (zero) when among the λs only
(m) and (1m) are present and the latter appears an even (odd) number of
times (note that the tensor product is commutative up to isomorphism).

This means that again we have a family of local unitary invariants, la-
belled by even-element subsets of [k], mapped bijectively to the set of irre-
ducible subrepresentations of Sm(H) built up from symmetric and alternating
powers of the representations Hj with an even number of alternating powers.
Again, the subspace corresponding to the subset A ⊆ [k] will be denoted by
VA.
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For a fixed subset A, let (ij,l)1≤j≤k,1≤l≤m be integers such that if j /∈ A,
then 1 ≤ ij,1 ≤ ij,2 ≤ . . . ≤ ij,m ≤ nj and if j ∈ A, then 1 ≤ ij,1 < ij,2 <
. . . < ij,m ≤ nj. From these indices we can form the vector

∑
π1,...,πk∈Sm

m∏
j=1

χλj(πj)ei1,π1(1)...ik,πk(1)ei1,π1(2)...ik,πk(2) . . . ei1,π1(m)...ik,πk(m)
(2.57)

where λj = (m) if j /∈ A and λj = (1m) if j ∈ A, χλ is the character
of the corresponding irreducible representation, i.e. constant 1 if λ = (m)
and the sign of the permutation if λ = (1m). v is then an element of VA,
vectors of this form span VA and they are pairwise orthogonal for different
(multi)sets of indices. As there does not seem to be a simple formula for
the norm squared of these vectors, we cannot give the general form of the
corresponding invariant, but it can be calculated without any difficulty for
every concrete value of m and k and every subset A.

2.6.3 Fourth order invariants with permutation sym-
metry

We return to the better-understood m = 2 case. In the special case when
all single particle Hilbert spaces have the same dimension, one might want
to look for polynomials which are invariant not only under local unitary
transformations but also under permutations of the particles. Among the
invariants presented above, the ones corresponding to A = ∅ and A = [k]
clearly have this property. From the remaining ones we can easily form
permutation invariant polynomials:

Id(ψ) :=
1(
k
d

) ∑
A∈([k]

d )

IA(ψ) (2.58)

where 0 ≤ d ≤ k and 2|d, and
(

[k]
d

)
denotes the set of d-element subsets of

[k].

On the other hand, if I is an arbitrary fourth order invariant, then it can
be written uniquely as a linear combination of IA-s where A runs through
even-element subsets of [k]:

I =
∑
A⊆[k]
2||A|

cAIA (2.59)
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If I is additionally invariant under particle permutations, then

I =
∑
π∈Sk

I ◦ π =
∑
π∈Sk

∑
A⊆[k]
2||A|

cAIA ◦ π

=
∑
π∈Sk

∑
A⊆[k]
2||A|

cAIπ−1(A) =
∑
A⊆[k]
2||A|

cA
∑
π∈Sk

Iπ−1(A)︸ ︷︷ ︸
k!I|A|

(2.60)

Therefore, the dimension of the vector space of permutation-invariant degree
four unitary invariants is 1 + bk

2
c.

2.7 Dimensions of subspaces of LU-invariants

Based on the method followed in the previous section, we can find LU-
invariants for a given particle number and with a fixed degree in a relatively
straightforward way. Although this may be useful when our aim is to find
invariants which can be computed directly – low-order invariants are partic-
ularly well-suited to this, as the computation time scales with (dimH)d for
a degree d polynomial –, only little information is gained this way about the
structure of the algebra of invariants.

One particularly useful tool to study graded structures (such as the graded
algebra of polynomial invariants) is the Hilbert series. This can be thought
of as a generalization of dimension to graded vector spaces which are often
of infinite dimension, but locally finite dimensional (see also section A.5 in
the appendix).

Definition. Let V =
⊕

i∈N Vi be a graded vector space such that ∀i ∈ I :
dimVi <∞. Then the Hilbert series of V is the formal power series∑

i∈N

(dimVi)t
i (2.61)

in the indeterminate t.

For example, consider a bipartite quantum system with n dimensional
state spaces for both constituents, and let H = H1 ⊗ H2 denote the state
space of a composite system. Then

S(m)H =
⊕
λ`m

SλH1 ⊗ SλH2 (2.62)
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therefore, the dimension of the subspace of degree 2m invariants – which is
equal to the number of terms on the right side – is the number of partitions
of m into at most n parts. The Hilbert series is then∑

i∈N

dim(Si(H⊕H∗)U(H1)×U(H2))ti =
1

(1− t2)(1− t4) · · · (1− t2n)
(2.63)

It turns out that a lot of information is encoded in this function. Note
first that the Hilbert series of the tensor product of graded algebras is the
product of their Hilbert series. It is easy to see that the Hilbert series of a
unital graded algebra with a single generator of degree d is (1 − td)−1 (see
eq. (A.16) and section A.5 for a derivation).

Therefore eq. (2.63) suggests that the algebra of invariant polynomials in
this bipartite case is generated by n algebraically independent invariants of
degrees 2, 4, . . . , 2n. As already mentioned in the introduction, this is indeed
the case, and the generators can be chosen to be Tr(%d1) with d = 1, 2, . . . , n
where %1 is the reduced density matrix of the first subsystem.

The LU group has the advantage that dim(Sm(H ⊕H∗))G stabilizes for
any fixed number of subsystems as the dimension of the state spaces of indi-
vidual subsystems is increased, and G is always taken to be the product of
their full unitary groups. We can therefore get rid of the dependence on the
dimensions of the state spaces if we write the stabilized dimensions of the
invariant subspaces in eq. (2.63) instead of those for some fixed n. We have

∑
i∈N

dim(Si(H⊕H∗)U(H1)×U(H2))stabt
i =

∞∏
i=1

1

(1− t2i)
=

1

φ(t2)
(2.64)

where φ is the Euler function given by

φ(q) =
∞∏
i=k

(1− qk) (2.65)

Generating functions formed from the dimensions like in eq. (2.61) are
important because they contain information about infinitely many subspaces,
complementing the data obtained from studying the individual cases. When
working with the stabilized dimensions, only two parameters remain: the
number of subsystems k and the degree of the polynomials 2m. The Hilbert
series above are built from the dimensions for fixed k and varying m. Another
possibility is to fix m and determine the behaviour of the dimension of the
subspace of degree 2m polynomial invariants in the function of k.

For the general k case, we would like to start from a decomposition anal-
ogous to eq. (2.62). In general, however, the multiplicities on the right side
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are not only 1s, and therefore the dimension of the subspace of invariants in
the corresponding space of homogenous polynomials can be calculated as the
sum of the squares of the multiplicities.

Let k,m ∈ N and H = H1 ⊗ · · · ⊗ Hk be the state space of a composite
system with dimHi ≥ m (1 ≤ i ≤ k). The isotypic decomposition of Sm(H)
is given by (see eqs. (B.21-B.22) in the appendix):

Sm(H) '
⊕

λ1,...,λk

C(m)λ1...λkSλ1H1 ⊗ · · · ⊗ SλkHk (2.66)

where C(m)λ1...λk is the multiplicity of V(m) in the tensor product Vλ1⊗· · ·⊗Vλk
of irreducible representations of Sm. In terms of the characters of irreducible
representations of Sm we have that

C(m)λ1...λk = (χ(m), χλ1χλ2 · · ·χλk) (2.67)

The dimension of the fixed subspace is

dk,m := dimS2m(H⊕H∗)G =
∑

λ1,...,λk`m

C2
(m)λ1...λk

(2.68)

Let us introduce the following notation:

Dk,ν,ν′ :=
∑

λ1,...,λk`m

Cνλ1...λkCν′λ1...λk (2.69)

where ν, ν ′ ` m. Then clearly dk,m = Dk,(m),(m) and we have the recursion

Dk,ν,ν′ =
∑

λ1,...,λk`m

Cνλ1...λkCν′λ1...λk

=
∑

λ1,...,λk`m
µ,µ′`m

CνµλkCµλ1...λk−1
Cν′µ′λkCµ′λ1...λk−1

=
∑

λ1,...,λk−1,
µ,µ′`m

(∑
λk`m

CνµλkCν′µ′λk

)
︸ ︷︷ ︸

Cνν′µµ′

Cµλ1...λk−1
Cµ′λ1...λk−1

=
∑
µµ′

Cνν′µµ′Dk−1,µ,µ′

(2.70)

If we imagine the collection of numbers Cνν′µµ′ as a square matrix C
whose width and height is the square of the number of partitions of m, the
rows being indexed by pairs (ν, ν ′) and the columns by (µ, µ′), and Dk,ν,ν′
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as a column vector Dk, then eq. (2.70) is clearly a matrix multiplication.
Therefore, Dk = Ck−1D1 where the (ν, ν ′) entry of D1 is 1 if ν = ν ′ and 0
otherwise. In principle we can obtain dk,m for any values of k and m, and
the generating function

∞∑
k=1

dk,mt
k (2.71)

is simply the ((m), (m)) entry of the vector

∞∑
k=1

Dkt
k =

∞∑
k=1

t(tC)k−1D1 = t(I − tC)−1D1 (2.72)

where I denotes the identity matrix. In order to evaluate this expression, one
needs to know how triple tensor products of irreducible Sm-spaces decompose
to irreducibles, or calculate C using the alternative formula

Cνν′µµ′ = (χνχν′ , χµ′χµ′) (2.73)

For example the m = 2 case yields

∞∑
k=1

dk,2t
k =

t

1− 2t
(2.74)

while for m = 3 we have

∞∑
k=1

dk,3t
k =

t(1− 8t+ 14t2)

(1− 2t)(1− 3t)(1− 6t)
(2.75)

2.8 Stable dimensions of the spaces of LU-

invariant polynomials

We describe another way to obtain the dimensions of subspaces of LU-
invariant polynomials. This method does not give us a generating function
directly, but it has the advantage that one does not need to know the de-
composition of tensor products of irreducible representations of Sm for which
there does not exist a simple formula. The following derivation is a slightly
modified version of the one found in ref.[26]
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Using the fact that every representation of Sm has real character[22], we
can write the dimension as

dk,m =
∑

λ1,...,λk`m

C2
(m)λ1,...,λk

=
∑

λ1,...,λk`m

(χ(m), χλ1 · · ·χλk)2

=
∑

λ1,...,λk`m

(χλ1 · · ·χλk−1
, χλk)(χλk , χλ1 · · ·χλk−1

)

=
∑

λ1,...,λk−1`m

(χλ1 · · ·χλk−1
, χλ1 · · ·χλk−1

)

=
∑

λ1,...,λk−1`m

(χ(m), χ
2
λ1
· · ·χ2

λk−1
)

= (χ(m),
∑

λ1,...,λk−1`m

χ2
λ1
· · ·χ2

λk−1
)

= (χ(m),

(∑
λ`m

χ2
λ

)k−1

)

(2.76)

where we have made use of the fact that irreducible characters form an or-
thonormal basis in the space of class functions. All we have left is to deter-
mine the character of the Sm-representation⊕

λ`m

Vλ ⊗ Vλ (2.77)

A general theorem states[21] (see theorem B.2.2 in section B.2) that the
representation of a finite group G acting on the group algebra CG via con-
jugation decomposes as⊕

i∈Irr(G)

Vi ⊗ V ∗i (2.78)

Again, using that irreducible representations of Sm are isomorphic to their
duals, we have that

∑
λ χ

2
λ is the character of the conjugation representation

on CSm.
The character of a permutation representation such as the one above is

easy to describe: the value on a group element is the number of points fixed
by that element. In the case of the conjugation action, this is exactly the
number of group elements which the given group element commutes with,
that is, the order of its centralizer. By the orbit-stabilizer formula we have
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that the order of the centralizer of an element multiplied by the size of its
conjugacy class yields the order of the group.

According to eq. (2.76), we need to calculate the multiplicity of the trivial
character in the conjugation representation. Let R be a set of representatives
of the conjugacy classes of G. Then

1

|G|
∑
g∈G

χconj.(g)k−1 =
1

|G|
∑
g∈R

C(g)χconj.(g)k−1

=
1

|G|
∑
g∈R

|G|
|ZG(g)|

|ZG(g)|k−1

=
∑
g∈R

|ZG(g)|k−2

(2.79)

where ZG(·) denotes the centralizer.
Returning to our case, we have to know the order of centralizers in Sm.

Conjugacy classes in Sm can be labelled by cycle types (see section B.3 in the
appendix), which are m-tuples a = (a1, a2, . . . , am) of nonnegative integers
having the property

m∑
i=1

iai = m (2.80)

We denote this fact by a  m and say that a is a type of m. Note that a
type a  m is just another way to describe the partition λ = (mam , (m −
1)am−1 , . . . , 1a1) ` m.

The order of the centralizer of an element in the conjugacy class labelled
by a is given by[22]

|ZSm(g)| =
m∏
i=1

iaiai! (2.81)

where g is an element with cycle type a, that is, it is the product of disjoint
cycles, such that the number of length i factors is ai. We conclude that

dk,m =
∑
am

(
m∏
i=1

iaiai!

)k−2

(2.82)

The dimensions for some small values of k and m are given in table 2.1.
Note that dk,m grows very rapidly in both k and m. Namely, for a fixed

m, dk,m is asymptotically equal to (m!)k−2.
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dk,m k = 1 2 3 4 5
m = 1 1 1 1 1 1

2 1 2 4 8 16
3 1 3 11 49 251
4 1 5 43 681 14491

Table 2.1: Stabilized dimensions of spaces of degree 2m LU-invariants for a
composite quantum system with k subsystems.

So far we have regarded the dk,m as dimensions of subspaces of different
but related algebras, but it is possible to introduce a single graded algebra
for a fixed k whose graded parts are of dimension dk,m, and which is closely
related to the algebras of LU-invariant polynomials [50]. In the construction
every possible set of single particle state space dimensions appears, therefore
we introduce first some notations which show explicitely these dimensions.

Let k ∈ N and n = (n1, . . . , nk) ∈ Nk, and consider the complex Hilbert
space Hn = Cn1 ⊗· · ·⊗Cnk describing the pure states of a composite system
with k distinguishable subsystems. The group of local unitary transforma-
tions, LUn = U(n1,C) × · · · × U(nk,C), acts on H in the obvious way, i.e.
regarding Cni as the standard representation of U(ni,C).

Let Ik,n denote the graded algebra of polynomials over Hn which are
invariant under the action of LUn. Suppose that n, n′ ∈ Nk such that n ≤ n′

with respect to the componentwise (product) partial order. Then we have
the inclusion ιn,n′ : Hn ↪→ Hn′ which is the tensor product of the usual
inclusions Cni ↪→ Cn′i sending an ni-tuple to the first ni components. We
can similarly regard LUn as a subgroup of LUn′ which stabilizes the image
of ιn,n′ , and thus ιn,n′ is an LUn-equivariant linear map. Therefore it induces
a morphism of graded algebras %n,n′ : Ik,n′ → Ik,n (note that the algebra of
polynomials on a vector space is the symmetric algebra of its dual space,
which is a contravariant construction).

Clearly, ιn,n is the identity and if n ≤ n′ ≤ n′′ then ιn′,n′′ ◦ ιn,n′ = ιn,n′′ ,
which implies that %n,n = idIk,n and %n,n′ ◦ %n′,n′′ = %n,n′′ . The central object
which we study is the inverse limit of this system of graded algebras and
their morphisms (see sections A.1 and A.5 for the definition):

Ik := lim←−
n∈Nk

Ik,n =

{
(fn)n∈Nk ∈

∏
n∈Nk

Ik,n

∣∣∣∣∣∀n ≤ n′ : fn = %n,n′fn′

}
(2.83)

Note that as the product is taken in N−CAlgC, it consists of sequences with
bounded degree. We will call Ik the algebra of LU-invariants.

Lemma 2.8.1. Suppose that n, n′ ∈ Nk and n ≤ n′. Let m ∈ N such that
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for all i we have m ≤ ni. Then the restriction of %n,n′ is an isomorphism (of
vector spaces) between the spaces of homogenous degree m elements of Ik,n′
and Ik,n.

Proof. As it was already noted, the dimensions of the two homogenous parts
are equal. We will show that %n,n′ is injective on elements of degree at most
m.

Suppose first that for some 1 ≤ i ≤ k we have ni = n′i−1 and for j 6= i we
have nj = n′j. Let {e1,1,...,1, . . . , en′1,...,n′k} be the basis of Hn′ formed by tensor
products of standard basis elements of the Cni . Then the algebra of real
polynomials is generated by the coordinate functions {e∗1,1,...,1, . . . , e∗n′1,...,n′k}
and their conjugates {e∗1,1,...,1, . . . , e∗n′1,...,n′k}.

Let f ∈ Ik,n′ be a degree m homogenous polynomial such that %n,n′f =
0. This means that f vanishes on the image of ιn,n′ . Denoting by Ja the
ideal generated by elements of the form {ej1,...,jk} such that ji = a, we can
reformulate this fact as f ∈ Jni . Note that f is invariant under the action
of LUn, and we have the subgroup Sni ≤ LUn which permutes the basis
elements in the ith factor Cni , therefore f is also contained in the ideals
J1, . . . , Jni .

But the intersection of the ideals J1, . . . , Jn1 is their product, therefore
f is in the ideal generated by n1-fold products of the coordinate functions.
As f is LUn-invariant, its terms must contain the same number of conjugate
coordinate functions, and therefore its homogenous parts of degree less then
n1 vanish. m ≤ n1 implies that f = 0.

For the general case, observe that if n ≤ n′ then %n,n′ can be written as
a composition of the maps considered above (or is the identity in the case of
n = n′), and hence also injective.

This lemma means that every element of Ik is represented in some Ik,n
(it suffices to take n to be (m,m, . . . ,m) with m the degree of the element),
and that if nmin = min{ni} then the factors of Ik and Ik,n by the ideals
generated by homogenous elements of degree at least nmin+1 are isomorphic.
Therefore, the algebras Ik,n and Ik are closely related, while the latter seems
considerably simpler to study.

The Hilbert series of the algebra Ik is the formal power series

∑
m≥0

dk,mt
m (2.84)
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Using eq. (2.82) this can be rewritten as

∑
m≥0

dk,mt
m =

∑
m≥0

∑
am

(
m∏
i=1

iaiai!

)k−2

tm

=
∑

a1,a2,...≥0

m∏
i=1

(iaiai!)
k−2 tiai

=
∏
i≥1

(∑
a≥0

(iaa!)k−2tia

)
=
∏
d≥1

(1− td)−ud(Fk−1)

(2.85)

where in the last row ud(G) denotes the number of conjugacy classes of index
d subgroups of a group G and Fk−1 is the free group on k − 1 generators.
This last equality can be found in [45].

The formula obtained suggests the following conjecture[50] (here we re-
turn to the usual grading, which differs from the previously used one by a
factor of two):

Conjecture 2.8.2. The algebra of LU-invariants Ik of k-partite quantum
systems is free, and the number of degree 2d invariants in an algebraically
independent generating set equals the number of conjugacy classes of index d
subgroups in the free group on k − 1 generators.

Note that this conjecture turns out to be true, a proof along with an
algebraically independent generating set can be found in ref. [50].

2.9 SLOCC-invariants

At this point we would like to say something about SLOCC invariants as
well. As the inner product on H = H1 ⊗ · · · ⊗ Hk is not invariant under
the action of the SLOCC group G = GL(H1) × · · · × GL(Hk), there is no
element in H∗ corresponding to a vector ψ ∈ H. As a consequence, we
cannot consider polynomials in the complex conjugates of the coefficients of
ψ, as this notion would not be G-invariant. But this means also that no
nonconstant polynomial can be invariant under G, as (c idH1 , idH2 , . . . , idHk)
acts on a homogenous polynomial of degree m with multiplication by cm.

One possible – and frequently used – solution to this problem is to con-
sider the subgroup of transformations with determinant one. In this case we
are essentially working with the group G = SL(H1) × · · · × SL(Hk), and
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look for invariants under the action of this group. Homogenous invariants
span one dimensional representations of the SLOCC group (see section B.4
in the appendix), and hence transform with a power of the determinant.
These polynomials are often called SLOCC-invariant, by abuse of language.
Although the action of an element of GL(H1)×· · ·×GL(Hk) can change the
value of such a polynomial, its vanishing or non-vanishing is still an invariant
notion.

Generating sets of the algebras of determinant 1 SLOCC-invariants have
been obtained for up to four qubits[33], and partial results exist for five
qubits[34].

As we have already noted, the determinant 1 SLOCC-invariant polyno-
mials do not separate the orbits under this group. It is true however, that
these polynomials separate closed orbits, and that the closure of any orbit
contains exactly one closed orbit. The set of closed orbits has the structure
of an affine algebraic variety over C and its coordinate ring is the algebra of
determinant 1 SLOCC-invariant polynomials.

Our task is now to study the algebra of polynomials S(H). For each
m, the homogenous part Sm(H) is the direct sum of irreducible G-spaces
Sλ1H1 ⊗ · · · ⊗ Sλ1H1 characterized by k-tuples of partitions of m. Such
an irreducible representation is one dimensional iff the factors are all one
dimensional, therefore we need that ∀i ∈ [k] : λi = (m

ni
, . . . , m

ni
) where ni =

dimHi, that is the partitions appearing are rectangle-shaped. In particular,
m must be a multiple of the least common multiple of the ni-s.

One can see that the structure of SLOCC-invariants is much more “rigid”
than that of LU-invariants: we can imagine how changing the dimensions
of the individual state spaces makes invariants vanish and reappear with
completely different degrees, according to the varying of the least common
multiple of the dimensions. In contrast, an LU-invariant (more precisely its
generalizations) remains there when any of the dimensions of the Hilbert
spaces is increased.

On the other hand, for a fixed H and m we have only one k-tuple of
partitions such that the corresponding isotypic component contains SLOCC-
invariants, and this fact makes it easier to compute the dimensions of the
fixed subspaces (that is, subspaces of invariants). Indeed

dim (Sm(H))G = (χ(m),
k∏
i=1

χ(m
ni
,...,m

ni
))Sm (2.86)

with ni as above.
Note that the special case when the dimensions of the individual Hilbert

spaces are equal was studied in ref.[15]. For example, suppose that ∀i ∈ [k] :
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ni = n and m = n. In this simple case only (1n) appears, corresponding to
the alternating representation. Thus

dim (Sn(H))G = (χ(n), χ(1n)
k)Sn =

{
1 if k is even
0 if k is odd

(2.87)

Let us now look at the k = 2 case. The value of (χ(m), χλ1χλ2) is 1 if
λ1 = λ2 ` m and 0 otherwise. Therefore, there are no nontrivial SLOCC
invariants if n1 6= n2 and if n1 = n2 = n then the subspace of invariants in
each degree which is a multiple of n is 1. But then the algebra of invariants
must be generated by a single invariant of degree n, and of course this is
the determinant of the matrix built from the coefficients of the state in an
arbitrary computational basis.

Finally, let us consider an example which does not fall into any of the
previously discussed cases. Again suppose that H = H1 ⊗ · · · ⊗ Hk with
dimensions ni = dimHi. Let d ∈ N be a fixed number, and suppose that
{n1, n2, . . . , nk} = {d, d2}, that is, all the single particle state spaces are
either of dimension d or d2, but not all are equal. Then the least common
multiple of the dimensions is d2, so we would like to look at Sm(H) for
m = d2.

Two partitions of m are relevant, namely (1m) and (dd). The first one
corresponds to the alternating representation, while the second to a repre-
sentation of Sm which is self-conjugate, as the conjugate partition of (dd) is
itself. Consequently, χ(dd)χ(1m) = χ(dd). Therefore in this case

dim (Sm(H))G = (χ(m), χ(dd)
l)Sm (2.88)

where l := |{i|ni = d}| is the number of d dimensional state spaces in the
tensor product.

The simplest nontrivial concrete example is d = 2. According to the
character table of S4 (see table B.4 in section B.3), χ(2,2) is 2 on the identity
element and the conjugacy class of (12)(34) (3 elements), −1 on the conjugacy
class of (123) (8 elements) and 0 otherwise. Thus

dim
(
S4(H)

)G
= (χ(4), χ(2,2)

l)S4

=
1

24
(2l + 3 · 2l + 8(−1)l)

=
2l

6
+

(−1)l

3

(2.89)

which yields 0, 1, 1, 3, 5, . . . for l = 1, 2, 3, 4, 5, . . . in agreement with (and
generalizing the results of) refs. [15, 35].
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2.10 Local unitary invariants for mixed states

Observe that the derivation in eq. (2.76) remains valid when we only assume
that dimHk ≥ m with some modification. If H = H1 ⊗ · · · ⊗ Hk where
dimHi = ni and nk ≥ m then

d(n1,...,nk−1),m := dim(S2m(H⊕H∗))LU

= (χ(m),

k−1∏
i=1

∑
λ`m
|λ|≤ni

χ2
λ

)
(2.90)

Moreover, in this case we do not need nk →∞ to have stabilization for every
m, the condition nk ≥ n1 · n2 · · · · · nk−1 is sufficient.

An important special case is when ni = 2 for i < k. In this case the above
formula reduces to

d(2,...,2),m = dim(S2m(H⊕H∗))LU

= (χ(m),

∑
λ`m
|λ|≤2

χ2
λ


k−1

)
(2.91)

One can also find a physical interpretation of this condition. Regarding
HS := H1 ⊗ · · · ⊗ Hk−1 as the Hilbert space of an open quantum system
interacting with its environment with state spaceHENV := Hk, the condition
above ensures that every mixed state over HS arises as the reduced state of
a pure state of H = HS ⊗HENV .

Recall that in this case given a mixed state % ∈ End(HS) we can find
a vector ψ ∈ H (called a purification of %) such that % = TrENV ψψ

∗ and
that ψ is unique up to transformations of the form idHS ⊗ U where U ∈
U(HENV ) [39]. As TrENV : End(HS ⊗ HENV ) → End(HS) is U(HS) ×
U(HENV )-equivariant, we have that purification gives a bijection between
LU -equivalence classes of mixed states over HS and pure states in H with
the partial trace as inverse.

Denoting the set of mixed states over a Hilbert space H by

D(H) := {A ∈ End(H)|A ≥ 0,TrA = 1} (2.92)

and the set of unit vectors by

P (H) := {ψ ∈ H|‖ψ‖2 = 1} (2.93)
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we can write the commutative diagram

P (H)
TrENV ◦P // //

����

D(HS)

����
P (H)/LU ∼ //___ D(HS)/LU

(2.94)

where P : H → End(H) is defined by ψ 7→ ψψ∗, LU = U(H1) × · · · ×
U(Hk−1) × U(Hk) is the local unitary group acting in the obvious way and
the vertical arrows are the quotient maps. Note that when nk < n1 · n2 · · · · ·
nk−1, the lower horizontal map making this diagram commutative (as well as
TrENV ◦P ) fails to be surjective.

Using the fact that TrENV ◦P : P (H) → D(HS) is an equivariant poly-
nomial function (of degree 2), from a polynomial invariant f : D(HS) →
C on pure states we can always construct one on mixed states, namely
f ◦ TrENV ◦P . Similarly, if we are given an invariant g : P (H) → C, we
can pull it back via the isomorphism D(HS)/LU → P (H)/LU to obtain an
invariant on mixed states:

C

P (H)
TrENV ◦P // //

����

g

OO

D(HS)

����

ggP P P P P P P

P (H)/LU ∼ //

??

D(HS)/LU

(2.95)

The two constructions are clearly inverses of each other, but it is not clear
that f is polynomial whenever f ◦ TrENV ◦P is polynomial.

To prove this, observe that the map Sm(End(HS)) → S2m(H ⊕H∗) de-
fined by f 7→ f ◦TrENV ◦P2 is an injective linear map where P = P2 ◦P1 and
P1 : H → H⊕H∗ is defined by ψ 7→ ψ ⊕ ψ∗ while P2 : H⊕H∗ → H⊗H∗ is
defined by ψ⊕ϕ∗ 7→ ψϕ∗. As the appearing vector spaces are by assumption
finite dimensional, we need to show that these dimensions are equal.

Let HS = H1 ⊗ · · · ⊗ Hk−1 be the state space of a composite quantum
system, and HENV the state space of its environment as before, and let
H = HS ⊗ HENV denote the Hilbert space of the joint system composed
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from the two. Then

S2m(H⊕H∗)U(HENV ) '
' Sm(H)⊗ Sm(H∗)U(HENV )

'

( ⊕
λ,λ′`m

SλHS ⊗ SλHENV ⊗ Sλ′H∗S ⊗ Sλ′H∗ENV

)U(HENV )

'
⊕
λ`m

(SλHS ⊗ SλHENV ⊗ SλH∗S ⊗ SλH∗ENV )U(HENV )

'
⊕
λ`m

SλHS ⊗ SλH∗S

' Sm(HS ⊗H∗S) = Sm(End(HS))

(2.96)

as U(HS)× U(HENV )-spaces where we have used that

(SλHENV ⊗ SλH∗ENV )U(HENV ) '
{

C if dimHENV ≥ |λ|
0 if dimHENV < |λ|

(2.97)

with the trivial representation on C and that SλHS ' 0 iff |λ| > dimHS ≤
dimHENV

Similarly to the case of pure state invariants, we may construct the inverse
limit of all the algebras of invariant polynomials with a fixed number of
subsystems.

For k ∈ N and n ∈ Nk, let Imixedk,n denote the algebra of LUn-invariant
(real) polynomials on End(Hn). The inclusions ιn,n′ : Hn → Hn′ induce
also in this case the maps %n,n′ : Imixedk,n′ → Imixedk,n with similar composition
properties as in the case of pure states. Let us consider the inverse limit of
this system:

Imixedk := lim←−
n∈Nk

Imixedk,n =

{
(fn)n∈Nk ∈

∏
n∈Nk

Imixedk,n

∣∣∣∣∣∀n ≤ n′ : fn = %n,n′fn′

}
(2.98)

As in the case of pure state invariants, this inverse limit also has the
property that every element is represented in some Imixedk,n , and that there is

no difference between Imixedk,n and Imixedk when we consider only elements with
degree at most the minimum of the dimensions {ni}1≤i≤k.

The above-shown correspondence between mixed and pure state invari-
ants is clearly reflected in the isomorphism Imixedk ' Ik+1 induced by the
isomorphisms

Imixedk,(n1,...,nk) ' Ik+1,(n1,...,nk,n1·...·nk) (2.99)
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described above. Note that the grading of Imixedk is the usual one which is
to be contrasted with the extra factor of 2 in the grading of Ik. With this
convention, the map f 7→ f ◦ TrENV ◦P respects the degree.

We can also formulate our conjecture in terms of mixed state invariants:

Conjecture 2.10.1. The algebra of mixed state LU-invariants Imixedk of k-
partite quantum systems is free, and the number of degree d invariants in
an algebraically independent generating set equals the number of conjugacy
classes of index d subgroups in the free group on k generators.

This conjecture is shown to be true in ref. [50], and an algebraically
independent generating set of mixed state invariants is also presented there.

52



Chapter 3

Entanglement of identical
particles

Although quantum information theory traditionally dealt with quantum sys-
tems containing distinguishable parts, in the recent years an increasing in-
terest towards entanglement properties of fermionic and bosonic particles
appeared [54, 19, 3, 24, 23]. In this chapter we discuss some aspects of
entanglement of identical particles as well as connections to the case of dis-
tinguishable subsystems.

In section 3.1 we formulate the entanglement classification problem for
quantum systems containing identical particles, emphasizing only the differ-
ences between these systems and those consisting of distinguishable particles.

Section 3.2 deals with some special tripartite quantum systems contain-
ing both identical and distinguishable subsystems. The quantum systems
considered are very special, and their SLOCC classification is related to an
algebraic construction which was originally introduced in order to obtain
representations of exceptional Lie groups. The uniform treatment of these
systems results also in a close similarity of their entanglement properties.

In section 3.3 we argue that these similarities are in fact manifestations
of a more general phenomenon. We point out a relationship between entan-
glement measures of different quantum systems, and present an explanation
using representation theory.

In sections 3.4-3.5 we outline a method which can be utilized in order to
find local unitary invariants for fermionic quantum systems, and show how
the simplest invariant of every even degree for any number of fermions can
be obtained.

Section 3.6 contains three worked out examples which illustrate some
features of this method.

In section 3.7 it is shown how LU-invariants and SLOCC-invariants are
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related for multifermion systems. The key idea in this section is that a
SLOCC invariant can always be generalized into arbitrary dimensional single
particle state space, but this generalization only has LU-invariance. The
simplest case of this generalization is discussed in more detail.

In section 3.8 we consider fourth order LU-invariant polynomials of quan-
tum systems of femions or bosons. This paralells with the case of fourth
order LU-invariant polynomials with an additional permutation symmetry
for quantum systems with distinguishable constituents.

3.1 Introduction

So far we have been concerned with composite quantum systems with dis-
tinguishable constituents. The situation is somewhat different if there are
identical particles in the system, and there are no observables which can
distinguish between them (see section C.1 in the appendix). For example,
consider a quantum system with k identical particles with single particle state
spaces H1 of dimension n. Then the state space of the composite system can
be either

Sk(H1) ≡ S(k)H1 (3.1)

in the case of bosons or

Λk(H1) ≡ S(1k)H1 (3.2)

in the case of fermions. (see section B.3 in the appendix for the definition of
Schur functors)

These spaces are usually thought of as subspaces of H1⊗· · ·⊗H1 spanned
by symmetrized and antisymmetrized elementary tensors, defined by

ei1 ∨ ei2 ∨ · · · ∨ eik =
∑
π∈Sk

eiπ(1) ⊗ · · · ⊗ eiπ(k) (3.3)

and

ei1 ∧ ei2 ∧ · · · ∧ eik =
∑
π∈Sk

χ(1k)(π)eiπ(1) ⊗ · · · ⊗ eiπ(k) (3.4)

respectively, where χ(1k) is the alternating character of Sk, and {ei}ni=1 is an
orthonormal basis of H1.

The algebra of physically meaningful observables can accordingly be real-
ized as a subspace of End(H1⊗· · ·⊗H1) as follows: the representation of Sk
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on H1⊗ · · ·⊗H1 induces an Sk-space structure on End(H1⊗ · · ·⊗H1). The
set of observables is then the subspace fixed by this action. Indeed, these
correspond exactly to those operators that are “insensitive to permutations
of identical particles”, which can be expressed mathematically as commuting
with all particle-exchange operators.

Note that according to our former notions introduced in the case of dis-
tinguishable subsystems, states like in eqs. (3.3-3.4) may seem entangled,
however, the fact that the set of observables is constrained implies that the
correlations resulting from these forms – or the statistics these particles must
obey – are uninteresting from the quantum information theoretical point of
view. Of course, states of these types already show behaviour which dif-
fers from that of distinguishable particles – think of ideal gases of fermions
and bosons at low temperatures – but physical processes involving only such
states are not capable of outperforming classical information processing pro-
tocols. We will call states described by (anti)symmetrized elementary tensors
separable [23].

We would like to follow a similar program as in the case of distinguish-
able subsystems. Many results apply without any change, the first interest-
ing question is that of identifying the analogues of “local transformations”.
Clearly, we cannot single out particles and manipulate only one of them –
that would already imply that the particles are distinguishable. But there is
another characterization of local transformations in the distinguishable case:
these are precisely the possible time evolutions when no (direct or indirect)
interaction between the subsystems is allowed.

This latter approach turns out to be fruitful. Recall that the evolution
of noninteracting identical particles is governed by Hamiltonians which are
built solely from one-particle operators, that is, they are of the form

H = A⊗ idH1 ⊗ · · · ⊗ idH1 + idH1 ⊗A⊗ idH1 ⊗ · · · ⊗ idH1 + · · ·
· · ·+ idH1 ⊗ · · · ⊗ idH1 ⊗A

(3.5)

where A ∈ End(H1).
The terms on the right side commute with each other, therefore we can

exponentiate termwise, and then multiply the results, leading to a unitary
evolution of the form

U(t) = U1(t)⊗ U1(t)⊗ · · · ⊗ U1(t) (3.6)

where

U1(t) = e
i
~ tA (3.7)

The case of nonunitary evolutions can be treated similarly. This is the
motivation behind the following definitions:
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Definition. Let H1 be a finite dimensional Hilbert space k ∈ N. Then

1. the fermionic SLOCC semigroup is {S(1k)g|g ∈ End(H1)}.

2. the fermionic SLOCC group is {S(1k)g|g ∈ GL(H1)}.

3. the fermionic LU group is {S(1k)g|g ∈ U(H1)}.

4. the bosonic SLOCC semigroup is {S(k)g|g ∈ End(H1)}.

5. the bosonic SLOCC group is {S(k)g|g ∈ GL(H1)}.

6. the bosonic LU group is {S(k)g|g ∈ U(H1)}.

Clearly, these (semi)groups are quotients of End(H1), GL(H1) and U(H1)
respectively, and come with a canonical action on the k-fermion (k-boson)
state space.

More generally, a composite quantum system may consist of several dif-
ferent types of indistinguishable particles, and the corresponding semigroup
of local transformations is a quotient of the direct product of the End, GL
and U (semi)groups of the single particle state spaces of the different types,
with its obvious action.

As an example suppose that we have N types of fermionic particles, ki
of the ith type having ni single particle states. To this composite system we
associate the Hilbert space

H = Λk1H(0)
1 ⊗ · · · ⊗ ΛkNH(0)

N (3.8)

where dimH(0)
i = ni and the SLOCC group is a quotient of G = GL(H(0)

1 )×
· · · ×GL(H(0)

N ).

3.2 Special three-particle quantum systems

In this section we analyze entanglement properties of various quantum sys-
tems containing three subsystems, among which both distinguishable and
identical particles can be found. Our method works only in some very special
cases, which are closely related to some algebraic structures called Freuden-
thal triple systems and Jordan algebras. But at least in these special systems
the full SLOCC classificiation of entanglement can be achieved.

First we would like to collect the relevant notions and results from the
area of cubic Jordan algebras and Freudenthal triples.
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Definition. An algebra (not necessarily associative) (J,+, •) is called a Jor-
dan algebra[28] if for any two elements A,B ∈ J the equations

A •B = B • A (3.9)

and

(A • A) • (A •B) = A • ((A • A) •B) (3.10)

hold.
A Jordan algebra is said to be cubic if every element satisfies a cubic

polynomial equation.

One possible way to obtain a cubic Jordan algebra is called the Springer
construction [44, 36]. This starts with a vector space V equipped with a
suitable cubic form N : V → C and a basepoint c ∈ V such that N(c) = 1.
One can then define various maps using the linearization

N(x, y, z) =
1

6

(
N(x+ y + z)−N(x+ y)−N(x+ z)−N(y + z)+

+N(x) +N(y) +N(z)
) (3.11)

of N , including the Jordan product, but for our purposes only the following
two are needed:

(·, ·) : V × V → C
(x, y) 7→ 9N(c, c, x)N(c, c, y)− 6N(x, y, c)

·] : V → V defined by

∀y ∈ J : (x], y) = 3N(x, x, y)

(3.12)

The former is called the trace bilinear form, while the latter is the adjoint or
sharp map.

From a Jordan algebra J over C one can construct the Freudenthal triple
system M(J) = C ⊕ C ⊕ J ⊕ J which is equipped with a skew-symmetric
bilinear form and a quartic form defined by:

{x, y} = αδ − βγ + (A,D)− (B,C)

q(x) = 2
(
(A,B)− αβ

)2 − 8(A], B]) + 8αN(A) + 8βN(B)
(3.13)

where x = (α, β,A,B) and y = (γ, δ, C,D) are two elements of M(J). One
also introduces the unique trilinear map T : M(J)×M(J)×M(J)→M(J)
with the property {T (x, y, z), w} = q(x, y, z, w) where q(·, ·, ·, ·) is the lin-
earization of the quartic form q(·).

We are interested in maps preserving these forms:
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Definition. We will denote by Inv(M(J)) the group of linear transforma-
tions which preserve these forms, that is, for all σ ∈ Inv(M(J))

{σ(·), σ(·)} = {·, ·} and q ◦ σ = q (3.14)

holds.

Clearly, the construction yields a 2 + 2 dim J dimensional representation
of Inv(M(J)) and q is a quartic polynomial invariant under the action of
this group. In order to study the orbits of this action, we need the following
function on M(J):

Definition. Let J be a cubic Jordan algebra and M(J) the corresponding
Freudenthal system. The rank of an element x ∈M(J) is an integer between
0 and 4 defined uniquely as follows:

• rkx = 4 iff q(x) 6= 0

• rkx ≤ 3 iff q(x) = 0

• rkx ≤ 2 iff T (x, x, x) = 0

• rkx ≤ 1 iff ∀y ∈M(J) : 3T (x, x, y) + {x, y}x = 0

• rkx = 0 iff x = 0

As the rank is determined by values of invariant and equivariant forms
under Inv(M(J)), it is also Inv(M(J))-invariant.

It turns out that the rank together with q are enough to separate the
orbits [30].

Theorem 3.2.1. Let J be a cubic Jordan algebra over C, and consider the
action of Inv(M(J)) on the Freudenthal module M(J). Then Inv(M(J))
acts transitively on the sets of elements of rank 0, 1, 2, 3. In the case of rank
4, Inv(M(J)) acts transitively on the sets of elements with a given nonzero
value of q.

In the following we give explicitely the Jordan algebras needed for the
classification of entangled states in the above mentioned quantum systems. It
turns out that all of them can be regarded as a subalgebra of J3 = Mat(3,C)
so we start with this one.

For A ∈ J3 the cubic form N is simply the determinant of the 3 × 3
matrix, the basepoint is c = I3 (where In denotes the n×n identity matrix),
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for A,B ∈ J3 the trace bilinear form is given by (A,B) = Tr(AB) and the
explicit form of the sharp map is

A] = A2 − Tr(A)A+
1

2

(
Tr(A)2 − Tr(A2)

)
I3 (3.15)

The simplest nontrivial Jordan algebra is J1 = C, the cubic norm of
a ∈ J1 is N(a) = a3. It follows that the map J1 → J3; a 7→ aI3 is an injective
morphism of cubic Jordan algebras.

The next Jordan algebra we need is J1+1 = C⊕C, the value of N on the
element x = (a, b) is N(x) = ab2. In this case the image of x in J3 is a 0 0

0 b 0
0 0 b

 ∈Mat(3,C) (3.16)

The third Jordan algebra is J1+1+1 = C ⊕ C ⊕ C Here for x = (a, b, c) the
value of N is N(x) = abc. This is nothing else but the determinant of the
matrix a 0 0

0 b 0
0 0 c

 ∈Mat(3,C) (3.17)

which shows us the isomorphism between J1+1+1 and the subalgebra of diag-
onal matrices in J3. The last Jordan algebra we consider is J1+2 = C ⊕ Q4,
where Q4 is an arbitrary 4 dimensional complex vector space with a nonde-
generate quadratic form. It is convinient to let Q4 be the vector space of 2×2
matrices, and the quadratic form be the determinant. A general element in
J1+2 is therefore x = (a,A), and its cubic norm is N(x) = a detA. For this
Jordan algebra the inclusion map is given by

(a,

[
A11 A12

A21 A22

]
) 7→

 a 0 0
0 A11 A12

0 A21 A22

 ∈Mat(3,C) (3.18)

the image being a block diagonal matrix built from a 1×1 and a 2×2 block.
These constructions are useful for studying entanglement because the Inv

groups of the respective Freudenthal modules are the (determinant 1) SLOCC
groups of various quantum systems. Namely [30],

Inv(M(J1)) ' SL(2,C)

Inv(M(J1+1)) ' SL(2,C)2

Inv(M(J1+1+1)) ' SL(2,C)3 o S3

Inv(M(J1+2)) ' SL(2,C)× SL(4,C)

Inv(M(J3)) ' SL(6,C)

(3.19)
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We will see that disregarding the 0 vector, there are three SLOCC orbits
in the first case with ranks 1, 3 and 4, four orbits in the second case, one
with every possible positive rank. There are six SLOCC orbits in the third
case, one for each positive rank except for rank 2 for which there are 3 orbits,
which are permuted under the action of S3. In the fourth case there are 5
orbits, again one for each positive rank except for rank 2 for which there are
2 orbits, and four orbits in the last case, with ranks 1, 2, 3 and 4.

3.2.1 Three fermions with six single particle states

A genuine tripartite entanglement measure for three fermions with six single
particle states can be constructed using Freudenthal’s construction applied
to the cubic Jordan algebra of J3 = Mat(3,C) as follows [32].

It can be shown[30] that the group of transformations of the Freudenthal
triple system M = C ⊕ C ⊕ J3 ⊕ J3 preserving its quartic form is precisely
SL(6,C) and the representation of this group on M is isomorphic to Λ3V6

where Vn denotes the standard representation of SL(n,C) on the vector space
of n-tuples of complex numbers.

An isomorphism can be explicitely given as follows. Let {e1, e2, . . . , e6}
be an orthonormal basis of C6, and let eijk denote the normalized wedge
product of the vectors ei, ej, ek:

eijk =
1√
6

(ei ⊗ ej ⊗ ek + ej ⊗ ek ⊗ ei + ek ⊗ ei ⊗ ej

− ei ⊗ ek ⊗ ej − ek ⊗ ej ⊗ ei − ej ⊗ ei ⊗ ek)
(3.20)

Using these notations a three-fermion state may be written as

a =
∑

1≤a<b<c≤6

aabceabc (3.21)

with the 20 coefficients satisfying the condition∑
1≤a<b<c≤6

|aabc|2 = 1 (3.22)

meaning that the norm of the state is 1. The corresponding element of M is
x = (α, β,A,B) where

α = a123 β = a456

A =

 a156 a164 a145

a256 a264 a245

a356 a364 a345

 B =

 a423 a431 a412

a523 a531 a512

a623 a631 a612

 (3.23)
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Then the quartic polynomial preserved by the action of SL(6,C) is

T = 4([Tr(AB)− αβ]2 − 4 Tr(A]B]) + 4α detA+ 4β detB) (3.24)

and the tripartite entanglement measure is τ = |T |. Since under the action of
GL(6,C) this quantity takes up a nonzero factor, one immediately concludes
that there must be at least two SLOCC equivalence classes of three-fermion
states. In fact, using the rank one can complete the classification and it turns
out that we have four SLOCC orbits: the separable one, the biseparable one,
and two different types of true tripartite entanglement.

3.2.2 One qubit and two fermions with four single par-
ticle states

In this case the Jordan algebra we use is J1+2 = C ⊕ M2(C) [51]. Let
x = (α, x0) and y = (β, y0) be two elements of J1+2. The cubic norm form is
given by N(x) = α detx0, the sharp map is x] = (detx0, α(Tr x0)I2 − αx0),
and finally the trace bilinear map in this case is (x, y) 7→ αβ + Tr(x0y0).
We have seen that this Jordan algebra can be viewed as a subalgebra of J3

namely it is isomorphic to the subalgebra of block-diagonal matrices with a
1× 1 and a 2× 2 block in the diagonal.

It is known[30] that the Freudenthal construction applied to J1+2 yields
a representation of SL(2,C) × SL(4,C) isomorphic to V2 ⊗ Λ2V4. Also we
have the inclusion

V2 ⊗ Λ2V4 ↪→ Λ3(V2 ⊕ V4) ' Λ3V4 ⊕ V2 ⊗ Λ2V4 ⊕ Λ2V2 ⊗ V4 (3.25)

as SL(2,C)× SL(4,C)-spaces and

V2⊗ V2⊗ V2 ↪→ V2⊗Λ2(V2⊕ V2) ' V2⊗ (Λ2V2⊕ V2⊗ V2⊕Λ2V2) (3.26)

as SL(2,C)3-spaces.
The analogy between the bipartite entanglement of two fermions with

four single particle states and the two-qubit entanglement[19, 25, 31] suggests
that this quantum system might behave much like the three-qubit system.
Viewed together with the inclusion above, this fact makes one expect that in
a sense this system fits between the three-fermion and the three-qubit one.
This expectation is further supported by the fact that we have the inclusions
J1+1+1 ↪→ J1+2 ↪→ J3.

Let us see how this works explicitely. Let {e0, e1} and {f0, f1, f2, f3} be
the canonical basis of C2 and C4 respectively. A state a ∈ C2 ⊗ Λ2C4 may
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be written as

a =
1∑
i=0

∑
0≤j<k≤3

aijkei ⊗ (fj ∧ fk) (3.27)

the coefficients being antisymmetric in the second and third index. The
condition of being normalized means that

1∑
i=0

∑
0≤j<k≤3

|aijk|2 = 1 (3.28)

Now we relate the six-state labels to the two-state and four-state ones as
(1, 4) 7→ (0, 1) and (2, 3, 5, 6) 7→ (0, 1, 2, 3) respectively, and keep only the 12
coefficients whose index contains precisely one of 1 and 4. We associate to a
the element x = (α, β,A,B) ∈M where

α = a001 β = a123

A =

 a023 0 0
0 a103 a120

0 a113 a121

 B =

 a101 0 0
0 a021 a002

0 a031 a003

 (3.29)

For this state the value of the quartic tripartite entanglement measure is

T = 4((a023a101)2 + (a021a103)2 + (a002a113)2

+ (a031a120)2 + (a003a121)2 + (a001a123)2)

+ 8(a002a021a103a113 + a021a031a103a120

+ a002a003a113a121 + a003a031a120a121)

+ 16(a003a021a113a120 + a001a023a103a121

+ a002a031a103a121 + a003a021a101a123)

− 16(a001a023a113a120 + a002a031a101a123)

− 8(a021a023a101a103 + a002a023a101a113 + a023a031a101a120

+ a002a031a113a120 + a003a023a101a121 + a003a021a103a121

+ a001a023a101a123 + a001a021a103a123 + a001a002a113a123

+ a001a031a120a123 + a001a003a121a123)

(3.30)

3.2.3 Three qubits

The SLOCC classification of three-qubit entanglement has already been com-
pleted [18, 12], but we present a rederivation of the result using our present
methods for completeness, as well as to highlight the connections between
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the quantum systems. By looking at special three-fermion states one may
observe that the space of three-qubit states

⊗3
i=1 C2 can be injected into our

three-fermion one in such a way that the three-tangle[17] defined by Cayley’s
hyperdeterminant can be viewed as a special case of the quartic above.

To this end we keep only the amplitudes with three different numbers
modulo 3 in the subscript. We have 8 such coefficients which is the num-
ber of coefficients needed to describe a three-qubit state. Let us choose an
orthonormal basis {f0, f1} ∈ C2 and take three-fold tensor products of its ele-
ments, forming a computational basis. Now let us map an element fi⊗fj⊗fk
of this basis to e1+3i ∧ e2+3j ∧ e3+3k ∈

∧3 C6. To a three-qubit state

a =
∑

i,j,k∈{0,1}

aijkfi ⊗ fj ⊗ fk (3.31)

we associate this way an element x = (α, β,A,B) of M where

α = a000 β = a111

A =

 a011 0 0
0 a101 0
0 0 a110

 B =

 a100 0 0
0 a010 0
0 0 a001

 (3.32)

On this element τ is equal to the three-tangle of a (using decimal notation):

T = 4((a0a7)2 + (a1a6)2 + (a2a5)2 + (a3a4)2)

− 8(a0a7a1a6 + a0a7a2a5 + a0a7a3a4

+ a1a6a2a5 + a1a6a3a4 + a2a5a3a4)

+ 16(a0a3a5a6 + a7a4a2a1)

(3.33)

Another way to look at the similarity between the two systems [32] is
obtained by observing that starting with the cubic Jordan algebra J1+1+1 =

C ⊕ C ⊕ C the Freudenthal construction leads to the V
(1)

2 ⊗ V
(2)

2 ⊗ V
(3)

2

representation of the group SL(2,C)3, and the quartic polynomial preserved
by the action of the group is Cayley’s hyperdeterminant. In section 3.2
we have seen that J1+1+1 is isomorphic to the subalgebra of J3 of diagonal
matrices.

For an element x = (x1, x2, x3) ∈ J1+1+1 we have a cubic norm N(x) =
x1x2x3, the sharp map assigning x] = (x2x3, x1x3, x1x2) to x and on J we have
a bilinear form whose value is (x, y) = x1y1 + x2y2 + x3y3 for y = (y1, y2, y3).

We see that the injection of the space of three-qubit states into the space
of three-fermion states can be done at the Jordan algebra level. Moreover the
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quartic invariant is based entirely on the cubic Jordan algebra structure in
both cases. It is not surprising therefore that the three-tangle of a three-qubit
state can be obtained also by first taking the associated special three-fermion
state and then calculating the value of the quartic invariant on it.

3.2.4 One distinguished qubit and two bosonic qubits

According to the literature on Freudenthal triple systems[30] there are two
more Jordan algebras for which the Freudenthal construction yields a repre-
sentation that has a natural interpretation in quantum information theory.
These are J1 = C and J1+1 = C⊕C, and both are isomorphic to subalgebras
of J3.

These correspond to three bosonic qubits and a composite system consist-
ing of one qubit and two other indistinguishable bosonic qubits, respectively
[51]. The state space of these systems can be naturally viewed as subspaces
of the one describing three qubits so one might expect that these can be
injected into the latter much like the three-qubit system is injected in the
three-fermion one.

First take a look at J1+1. With the Freudenthal construction we obtain
a representation of SL(2,C)2 on C ⊕ C ⊕ J1+1 ⊕ J1+1 that is isomorphic to

V
(1)

2 ⊗ S2V
(2)

2 . This enables us to classify entangled states in the space of a
distinguishable and two bosonic qubits.

Let {e0, e1} be the computational basis of C2, and let f0 = e0 ⊗ e0,
f1 = e0⊗e1 +e1⊗e0 and f2 = e1⊗e1. Now a normalized vector in C2⊗S2C2

may be written as

a =
1∑
i=0

2∑
j=0

aijei ⊗ fj (3.34)

where

1∑
i=0

(|ai0|2 + 2|ai1|2 + |ai2|2) = 1 (3.35)

The corresponding three-fermion state is given by x = (α, β,A,B) ∈ M
where

α = a00 β = a12

A =

 a02 0 0
0 a11 0
0 0 a11

 B =

 a10 0 0
0 a01 0
0 0 a01

 (3.36)
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For the state a we have the quartic invariant:

T = 4(a2
00a

2
12 + a2

02a
2
10) + 16(a2

11a00a02 + a2
01a10a12)

− 8a00a02a10a12 − 16(a01a02a10a11 + a00a01a11a12)
(3.37)

3.2.5 Three bosonic qubits

Now let us turn to the Jordan algebra J1 = C in which the norm of an
element is simply its cube, the sharp means taking the square, and the trace
bilinear form of two elements x, y ∈ J1 is 3xy. Again after some calculation
one can show that J1 is a subalgebra of J1+1 the inclusion map being x 7→
(x, x). The Freudenthal construction in this case leads to a four dimensional
representation of SL(2,C) isomorphic to S3V2 which is related to the system
of three indistinguishable bosonic qubits [51].

A general normalized state in S3C2 may be written as

a = a0e0 ⊗ e0 ⊗ e0 + a3e1 ⊗ e1 ⊗ e1

+ a1(e1 ⊗ e0 ⊗ e0 + e0 ⊗ e1 ⊗ e0 + e0 ⊗ e0 ⊗ e1)

+ a2(e0 ⊗ e1 ⊗ e1 + e1 ⊗ e0 ⊗ e1 + e1 ⊗ e1 ⊗ e0)

(3.38)

where |a0|2 + |a3|2 + 3(|a1|2 + |a2|2) = 1. To this we associate the element
x = (a0, a3, a2I3, a1I3) in M. For this state the quartic invariant is:

T = 4a2
0a

2
3 − 12a2

1a
2
2 − 24a0a1a2a3 + 16(a0a

3
2 + a3a

3
1) (3.39)

To sum up, we have the chain of inclusions of Jordan algebras J1 ↪→
J1+1 ↪→ J1+1+1 ↪→ J1+2 ↪→ J3 that gives rise via Freudenthal’s construction to
the chain of inclusions of Hilbert spaces S3C2 ↪→ C2⊗S2C2 ↪→ C2⊗C2⊗C2 ↪→
C2 ⊗ Λ2C4 ↪→ Λ3C6. These inclusions are compatible with the SLOCC
classification of entanglement in the sense that SLOCC orbits of any of these
systems are subsets of the intersections of SLOCC orbits of the three-fermion
Hilbert space with the appropriate subspace. In order to find representatives
of various entanglement classes it is therefore enough to look for them in
the smallest possible subspace then interpret them as elements of the larger
Hilbert spaces. These representatives can be chosen to be the following ones:
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GHZ =
1√
2

(1, 1, 0, 0)

W =
1√
3

(0, 0, 0, I3)

B1 =
1√
2

(1, 0,

 1 0 0
0 0 0
0 0 0

 , 0)

B2 =
1√
2

(1, 0,

 0 0 0
0 1 0
0 0 0

 , 0)

B3 =
1√
2

(1, 0,

 0 0 0
0 0 0
0 0 1

 , 0)

S = (1, 0, 0, 0)

(3.40)

The GHZ and W states show tripartite entanglement, the Bi are biseparable
and S is a separable state. Apart from Bi these can be found in the system
of three bosonic qubits, but the relations characterizing states of rank at
most two imply separability in this case. Therefore the representative of the
biseparable class is chosen from the larger Hilbert space C2 ⊗ S2C2. Of the
biseparable subclasses only B1 is present in the latter, all can be found in the
three-qubit case, B2 and B3 are equivalent in C2 ⊗ Λ2C4, and all three are
equivalent in the largest Hilbert space Λ3C6. Table 3.1 shows these states
for each system.

3.3 Entanglement measures for systems with

distinguishable particles from fermionic

ones

The quantum systems considered in the previous section are the only ones
related to cubic Jordan algebras and the Freudenthal construction. There-
fore, this method is not suitable for being generalized to a classification of
other entangled states. However, we can still learn something from the phe-
nomenon found, namely, that different quantum systems may share some
aspects of their entanglement properties, for example having a correspon-
dence between orbits of equivalently entangled states or having invariants
which can be regarded as special cases of a single one.
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space (H) representatives
GHZ = 1√

2
(e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6)∧3 C6 W = 1√

3
(e4 ∧ e2 ∧ e3 + e1 ∧ e5 ∧ e3 + e1 ∧ e2 ∧ e6)

B1 = 1√
2
(e1 ∧ e2 ∧ e3 + e1 ∧ e5 ∧ e6)

S = e1 ∧ e2 ∧ e3

GHZ = 1√
2
(e0 ⊗ (f0 ∧ f1) + e1 ⊗ (f2 ∧ f3))

C2 ⊗
∧2 C4 W = 1√

3
(e0 ⊗ (f2 ∧ f3) + e1 ⊗ (f0 ∧ f3) + e1 ⊗ (f2 ∧ f1))

B1 = 1√
2
e0 ⊗ (f0 ∧ f1 + f2 ∧ f3)

B2 = 1√
2
(e0 ⊗ (f0 ∧ f1) + e1 ⊗ (f0 ∧ f3))

S = e0 ⊗ (f0 ∧ f1)
GHZ = 1√

2
(e0 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e1)

C2 ⊗ C2 ⊗ C2 W = 1√
3
(e1 ⊗ e0 ⊗ e0 + e0 ⊗ e1 ⊗ e0 + e0 ⊗ e0 ⊗ e1)

B1 = 1√
2
(e0 ⊗ (e0 ⊗ e0 + e1 ⊗ e1))

B2 = 1√
2
(e0 ⊗ e0 ⊗ e0 + e1 ⊗ e0 ⊗ e1)

B3 = 1√
2
((e0 ⊗ e0 + e1 ⊗ e1)⊗ e0)

S = e0 ⊗ e0 ⊗ e0

GHZ = 1√
2
(e0 ⊗ (e0 ⊗ e0) + e1 ⊗ (e1 ⊗ e1))

C2 ⊗ Sym2C2 W = 1√
3
(e1 ⊗ (e0 ⊗ e0) + e0 ⊗ (e1 ⊗ e0 + e0 ⊗ e1))

B1 = 1√
2
(e0 ⊗ (e0 ⊗ e0 + e1 ⊗ e1))

S = e0 ⊗ (e0 ⊗ e0)
GHZ = 1√

2
(e0 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e1)

Sym3C2 W = 1√
3
(e1 ⊗ e0 ⊗ e0 + e0 ⊗ e1 ⊗ e0 + e0 ⊗ e0 ⊗ e1)

S = e0 ⊗ e0 ⊗ e0

Table 3.1: Representatives of SLOCC orbits of quantum mechanical systems
classified via Freudenthal’s construction.

We can formulate this correspondence more precisely as follows. First
note that according to eq. (3.3), the state space of k identical bosons with
H1 as single particle state space can be viewed as a subspace of H1⊗· · ·⊗H1.
From the inclusion

Sk(H1) ↪→ H1 ⊗ · · · ⊗ H1 ' Sk(H1)⊕
⊕
λ`k

λ 6=(1k)

SλH1 ⊗ Vλ (3.41)

of GL(H1)× Sk-spaces we see that this mapping is G-equivariant when G =
GL(H1) or G = U(H1). (see section B.4 in the appendix for details)

Secondly, suppose that we haveN types of fermionic particles, ki of the ith
type having H(0)

i as single particle state space (dimH(0)
i = ni <∞) with the
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composite state space as in eq. (3.8). Recall that we are interested in finding

the orbits under the action of the group G = GL(H(0)
1 )× · · · ×GL(H(0)

N ) or

G = U(H(0)
1 )× · · · × U(H(0)

N ).

Let H(0) = H(0)
1 ⊕ · · · ⊕ H

(0)
N and k = k1 + · · ·+ kN . In both cases

K := Λk(H(0)
1 ⊕ · · · ⊕ H

(0)
N ) '

⊕
0≤i1,...,iN
i1+···+iN=k

Λi1H(0)
1 ⊗ · · · ⊗ ΛiNH(0)

N (3.42)

as G-spaces. One of the terms in the direct sum is

H = Λk1H(0)
1 ⊗ · · · ⊗ ΛkNH(0)

N (3.43)

therefore we have a G-equivariant inclusion map H ↪→ K [51].
These homomorphisms are useful because they enable us to relate some

of the invariants of the domain with those of the codomain. To see how this
works, let us first consider a more abstract setting. Let H be a group and
G ≤ H, and take two spaces V ∈ Ob(GMod) and W ∈ Ob(HMod). By
restriction, one can also think of W as a G-space (Actually, in this way we
get a functor HMod→ GMod). Suppose that we have a G-equivariant map
ϕ : V → W . Then ranϕ is clearly a G-subspace of W .

As taking the dual is a contravariant while constructing the symmetric
algebra is a covariant functor, ϕ induces a map S(W ∗) → S(V ∗), that is,
we can map a polynomial on W to a polynomial on V G-equivariantly. But
then G-invariant vectors in S(W ∗) are mapped to G-invariant vectors, so by
restriction we have a map

ϕ∗ : S(W ∗)G → S(V ∗)G (3.44)

It is easy to see that this map is surjective if ϕ is injective, but in this case we
cannot expect S(W ∗)G to be easier to describe than S(V ∗)G. On the other
hand, the subalgebra S(W ∗)H ≤ S(W ∗)G might have a simpler structure
than S(W ∗)G for a suitably chosen larger group H, and ϕ∗(S(W ∗)H) can
contain many “physically important” invariants.

Returning to our more concrete situation, it is convenient to choose H to
be the SLOCC (LU) group GL(H(0)

1 ⊕ · · · ⊕ H
(0)
N ) and U(H(0)

1 ⊕ · · · ⊕ H
(0)
N )

of K with G as above respectively, and the roles are V = H, W = K for the
SLOCC group and V = H⊕H∗, W = K ⊕K∗ for the LU group.

To sum up, a SLOCC (LU) invariant of the fermionic quantum system
K gives rise to a SLOCC (LU) invariant of the smaller system H consisting
of the same number particles, but which are of different types, can be either
bosonic, fermionic or distinguishable, but with fewer single particle states.
Notice that this is exactly what we have seen in the previous section.
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Similarly, using the isomorphism

Sk(H(0)
1 ⊕ · · · ⊕ H

(0)
N ) '

⊕
0≤i1,...,iN
i1+···+iN=k

Si1H(0)
1 ⊗ · · · ⊗ SiNH

(0)
N (3.45)

we can regard the state space of a quantum system with distinguishable con-
stituents as a subspace of a bosonic quantum system with the same number
of particles and such that the bosonic single particle state space is the direct
sum of the original single particle state spaces. In what follows, we will only
consider the fermionic case because an orthonormal basis of the fermionic
state space is easier to describe than that of a bosonic state space, but it
would be possible to translate the results to the bosonic case.

One can view this phenomenon from the opposite direction and ask
whether an invariant for a quantum system with distinguishable constituents
can be extended to an invariant of a fermionic or bosonic system. For some
well-known invariants this can indeed be done. We have already seen one ex-
ample, the generalization of the usual three-tangle for three qubits has been
found in [32]. Another example is a fermionic extension[51] of the invariants
given by Wong and Christensen[52].

3.4 Local unitary invariants of fermionic pure

states

In this section H will be a finite dimensional complex Hilbert space playing
the role of the single-particle state space of a fermionic quantum system of
k particles. If n = dimH, then the k-particle Hilbert space is isomorphic to

ΛkH ' ΛkCn (3.46)

and hence its dimension is
(
n
k

)
. This space also comes equipped with an inner

product induced from that of H, and an irreducible unitary representation
of U(H) which models local unitary transformations of the k-particle states.

Now let us look at the symmetric algebra of the k-fermion state space. On
its homogenous subspaces Sm(ΛkH) we have an action of U(H) which factors
through U(ΛkH) and an inner product which is invariant under U(ΛkH)
hence also invariant under U(H). This time the representation of U(H) is
not irreducible, and Sm(ΛkH) can be split into the orthogonal sum of U(H)-
invariant subspaces in a non-trivial way:

Sm(ΛkH) =
⊕
λ

Vλ (3.47)
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where λ ranges over the partitions of km, and Vλ is the corresponding iso-
typic component of the representation. Interestingly, this decomposition is
independent of n (apart from the vanishing of the subrepresentations associ-
ated to partitions involving more than n parts, but for n ≥ km this certainly
cannot happen). This is essentially due to the fact that a degree j symmet-
ric polynomial in n variables can be reconstructed even if we only now its
restriction to a subspace in which only j variables take nonzero values.

This decomposition allows us to introduce unitary invariants, one for each
isotypic subspace [49]. Let ψ ∈ ΛkH be a k-fermion state vector, and ψm

its m-th power which is an element of Sm(ΛkH). Let Pλ : Sm(ΛkH) → Vλ
denote the orthogonal projection. This commutes with the representation of
U(H), therefore the value of Iλ(ψ) := 〈ψm, Pλψm〉 = ‖Pλψm‖2 is invariant:

∀g ∈ U(H) : 〈(g · ψ)m, Pλ(g · ψ)m〉 = 〈g · (ψm), g · (Pλψm)〉
= 〈ψm, Pλψm〉

(3.48)

Note that the number of independent invariants of this type is one less than
the number of nonvanishing isotypic components, because

∑
λ

〈ψm, Pλψm〉 = 〈ψm,

(∑
λ

Pλ

)
ψm〉 = 〈ψm, ψm〉 = 1 (3.49)

Unfortunately, it is in general not an easy task to calculate the projections
for all these invariant subspaces for every value of k and m, but some of them
are easy enough to be done by hand.

Note also that if the multiplicity of the representation SλH in Sm(ΛkH)
is cλ, then the dimension of the space of degree 2m invariants is

∑
λ c

2
λ.

However, to obtain
∑

λ c
2
λ linearly independent invariants we would need to

choose a decomposition of the isotypic subspaces into irreducible ones. Our
method does not make use of such arbitrary choices.

3.5 Invariant subspaces with maximal high-

est weight

Let us now fix an ordered orthonormal basis (e1, . . . , en) in H. This also
gives the isomorphisms H ' Cn, and U(H) ' U(n,C). The maximal torus
T which acts diagonally in this basis is then identified with the subgroup
of diagonal unitary matrices. The set of one dimensional representations
T → C× is a commutative group isomorphic to Zn. We will use the following
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identification:

(r1, r2, . . . , rn) : T → C×

(r1, r2, . . . , rn)(diag(λ1, . . . , λn)) =
n∏
i=1

λrii
(3.50)

On the set of n-tuples of integers we have the usual partial ordering, an
n-tuple (r1, r2, . . . , rn) being positive iff r1 + . . . + rn = 0 and r1, r1 + r2,
. . . , r1 + r2 + . . . + rn−1 are nonnegative, and λ ≥ µ iff λ − µ is positive.
A finite dimensional representation of U(H), when restricted to T , splits
into one dimensional subrepresentations. The representations with nonzero
multiplicity are called weights, and a vector whose orbit under T spans a one
dimensional subspace is called a weight vector. The isomorphism class of an
irreducible representation of U(H) is determined by its highest weight.

For I = {i1, i2, . . . , ik} where 1 ≤ i1 < i2 < . . . < ik ≤ n let us introduce
the following notation:

eI = ei1 ∧ ei2 ∧ . . . ∧ eik

=
1√
k!

∑
π∈Sk

χ(1k)(π)eiπ(1) ⊗ eiπ(2) ⊗ . . .⊗ eiπ(k)
(3.51)

where Sk is the symmetric group on k elements, and χ(1k) : sk → {1,−1}
denotes the alternating representation. The set {e{i1,...,ik}|1 ≤ i1 < i2 < . . . <

ik ≤ n} forms an orthonormal basis of
∧kH, and therefore every k-fermion

pure state can be expressed uniquely as a linear combination of these vectors:

ψ =
∑
I∈([n]

k )

ψIeI where
∑
I∈([n]

k )

|ψI |2 = 1 (3.52)

(Here we used the short notation [n] = {1, 2, . . . , n} and
(

[n]
k

)
denotes the set

of k-element subsets of [n].) For each m ∈ N, the mth power of ψ is a vector
in Sm(ΛkH):

ψm =
∑

I1,...,Im

ψI1ψI2 . . . ψImeI1eI2 . . . eIm (3.53)

We would like to find a vector in Sm(ΛkH) which generates an irreducible
U(H)-representation. In general we cannot say much about all the irre-
ducible subrepresentations, but we always have one weight vector, em1,2,...,k,

corresponding to the highest weight, which is easily seen to be (mk) with the
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tailing zeros omitted. We now have that 〈U(H)em1,2,...,k〉 := W is irreducible.
The next step will be to find an orthonormal basis for W .

Our first goal will be to find a generating set for W as a linear space,
then we can orthogonalize it to obtain an orthonormal basis. To this end,
we will use the fact that W is also an irreducible representation of GL(n,C)
whose action on Sm(ΛkH) is defined in the same way as that of U(H). (see
section B.4 in the appendix)

In order to find a generating set which is easy to handle, we will look
for one that is the union of orbits under Sn ≤ GL(n,C) (possibly up to a
nonzero multiple) which permutes the basis elements of H. It turns out that
we can require also that the generating set consists of weight vectors. We
will call sets with these properties good :

Definition. Let S ⊂ Sm(ΛkH) be a subset, {e1, . . . , en} an orthonormal
basis inH and Sn ≤ U(H) the subgroup which permutes these basis elements.
The subset S will be called good (with respect to this basis) if it has the
following two properties:

1. The subset

CS :=
⋃
w∈S

Cw ⊆ Sm(ΛkH) (3.54)

is fixed under the action of Sn.

2. If v is an element of S then if we write v as a polynomial in the vectors
{eI}I∈([n]

k ) then every index i ∈ [n] appears the same number of times in

every term. Or equivalently: v is a weight vector for the maximal torus
fixing the given orthonormal basis.

We can immediately see that {emI }I∈([n]
k ) is the smallest good subset con-

taining em1,2,...,k.
To reach every element in W , we will use the fact that GL(n,C) is gen-

erated by matrices of the form uij(s) = id+ sEij where Eij is a matrix with
a 1 at the intersection of the ith row and the jth column, and zeros every-
where else. We need to know how these matrices act on the basis elements
of Λk(H). One can calculate using equation (3.51) that

uij(s) · eI =


eI j /∈ I
eI + (−1)|I∩(i,j)|seI∪{i}\{j} j ∈ I, i /∈ I
eI i, j ∈ I

(3.55)

The first and last cases are not interesting, but the second one allows us
to build our generating set step by step starting from the above mentioned

72



elements. Keeping track of the appearing sign could cause some difficulty, but
we can overcome this by letting eabc... = −ebac... etc. and simply substituting
j with i without reordering the indices.

Observe that when uij(s) acts on a degree m polynomial in the eI-s, then
we get a polynomial in s with coefficients in Sm(ΛkH). Since W contains
this polynomial for any s ∈ C, and it is a linear subspace, W must also
contain the coefficient of sl for each 0 ≤ l ≤ m (because of the non-vanishing
of a Vandermonde determinant). Using this method, one can calculate in
a few steps a generating set for the isotypic (in fact, irreducible) subspace
corresponding to the highest weight. The following lemma shows which terms
should one concentrate on:

Lemma 3.5.1. Let W ≤ Sm(ΛkH) be an invariant subspace and S ⊆ W a
good subset

Suppose that w ∈ S and i 6= j are indices such that i does not appear in
w when written in the monomial basis as above. Then

a) The coefficients of every power of s in uij(s) · w as a polynomial in s are
weight vectors.

b) If the degree of this polynomial is d then the one dimensional subspaces
spanned by the coefficients of sr and sd−r are in the same Sn-orbit.

c) The coefficient of the constant and the leading terms is contained in CS.

d) If Cw = Cπ ·w′ for some π ∈ Sn, then the minimal good subsets contain-
ing S and each coefficient in the polynomial uij(s) ·w or uπ−1(i)π−1(j)(s) ·w′
generate the same subspace.

Proof. a) uij(s) · eI1eI2 . . . eIm = (eI1 + seI′1)(eI2 + seI′2) . . . (eIm + seI′m) where
I ′l is obtained from Il by replacing j with i if Il contains j and eI′l = 0

else. The coefficient of sl contains exactly those terms in the expansion
in which the number of replaced j-indices is l.

b) d is the (common) number of occurrencies of the index j in each term of
w. The coefficient of sd−r term is therefore proportional to the image of
the coefficient of sr under the transposition swapping ei and ej.

c) The constant term is w.
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d) Let π ∈ Sn ≤ U(H) be an element such that Cw = Cπ · w′. Then

Cuij(s) · w = uij(s)Cw
= uij(s)Cπ · w′

= Cuij(s)π · w′

= Cπuπ−1(i)π−1(j)(s) · w′

(3.56)

Corollary. If S ⊆ Sm(ΛkH) is a good subset and w ∈ S such that in each
term of w the index j appears exactly once and w does not contain the index
i, then uij(s) · w ∈ 〈S〉 for all s ∈ C.

Proof. In this case, uij(s) ·w is a degree 1 polynomial in s, therefore, by the
lemma above, both of its terms are in CS, hence their sum is in 〈S〉.

To sum up, we begin with the vector em12...k, then act on it and the distinct
types of obtained coefficients of s successively with the matrices uij(s), as
long as we get new types of vectors. Finally, we take union of the Sn-orbits
of the vectors we have met. This will result in a generating set of W .

We would like to remark that if we are to use these invariants as measures
of entanglement, then, taking into account the constraint (3.49) and the fact
that the mth power of a decomposable state is always in the irreducible
subspace generated by em12...k, we should use 1−〈ψm, PWψm〉 = 〈ψm, PW⊥ψ〉,
or the invariants associated to the subspaces other than W .

If we wanted to calculate the projectors of the other isotypic subspaces,
then we simply needed to take the orthogonal complement of W , and find
the weight vectors corresponding to the highest weight, and proceed with it
the same way as we did with em12...k.

3.6 Examples

3.6.1 k = m = 2 case

The first nontrivial case is the space of quadratic polynomials in vectors of
the space of two fermions. As we have seen, a weight vector with maximal
weight is e2

12, therefore W := 〈GL(n,C)e2
12〉 contains e2

ij for 1 ≤ i < j ≤ n.
In the next step we let ukj(s) act on an element:

ukj(s)(e
2
ij) = (eij + seik)

2 = e2
ij + 2seijeik + s2e2

ik (3.57)
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This shows that we must add eijeik for each triple i, j, k, where the appearing
indices are distinct. Now as

uli(s)(eijeik) = (eij+selj)(eik+selk) = eijeik+s(eljeik+eijelk)+eljelk (3.58)

we also have to add eijelk + eikelj for each combination of indices.
By the corollary after the lemma we are ready, but it is instructive to

verify the dimension of the generated subspace. Clearly, the set

{e2
ij|1 ≤ i < j ≤ n} ∪ {eijeik|1 ≤ i ≤ n, i 6= j < k 6= i} (3.59)

consists of pairwise orthogonal elements. The third type in the generating
set is {eijelk + eikelj} which generates a two dimensional space for each set of
four indices, and these subspaces are pairwise orthogonal and also orthogonal
to the other elements. Therefore,

dimW =

(
n

2

)
+ n

(
n− 1

2

)
+ 2

(
n

4

)
=
n2(n2 − 1)

12
(3.60)

which is exactly the dimension of the irreducible representation of GL(n,C)
corresponding to the partition (22). (see section B.4 in the appendix)

Orthogonalization needs to be performed only within the two dimensional
subspaces, and this leads to the vectors eijekl+eikejl and eijelk+2eilejk−eikejl
for 1 ≤ i < j < k < l ≤ n. The expression for the invariant corresponding
to W is therefore (using equation (2.44))

I(22)(ψ) = 〈ψ, PWψ〉

=
∑

1≤i<j≤n

|ψ2
ij|2 +

n∑
i=1

∑
1≤j<k≤n
j 6=i 6=k

2|ψijψik|2

+
∑

1≤i<j<k<l≤n

(
|ψijψkl + ψikψjl|2 +

1

3
|ψijψlk + 2ψilψjk − ψikψjl|2

)
(3.61)

In this case we can also show that W⊥ is irreducible. To this end, let
us recall that for n = 4 there exists a degree two SL(4,C)-invariant over
Λ2C4, namely, the polynomial in the Plücker relation which is known to be
a sufficient and necessary condition of separability. The subrepresentation
generated by this polynomial is the representation indexed by the partition
(14), therefore this one must appear also in the n > 4 case. As the dimension
of this is

(
n
4

)
, and

dimW +

(
n

4

)
=
n(n− 1)(n2 − n+ 2)

8
= dimS2(Λ2Cn) (3.62)
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therefore W⊥ is irreducible, and the unitary invariant associated to it gives
a generalization of the Plücker relation. The explicit formula turns out to be
simpler than the previous one:

I(14)(ψ) = 〈ψ, PW⊥ψ〉 =
2

3

∑
1≤i<j<k<l≤n

|ψijψkl + ψikψlj + ψilψjk|2 (3.63)

3.6.2 k = 2, m = 3 case

In this case a weight vector for the highest weight is e3
12. Again, W :=

〈GL(n,C)e3
12〉. We are looking for a generating set of W . We extend e3

12 into
a good set {eij}1≤i<j≤n. Now we need to add the coefficient of s in

u32(s)(e3
12) = (e12 + se13)3 = e12 + 3se2

12e13 + 3s2e12e
2
13 + s3e3

13 (3.64)

and one vector from each element of the orbit of the subspace generated by
it: {e2

ijeik}i,j,k∈[n]. The next steps are:

u43(s)(e12e
2
13) = e12(e13 + se14)2 = . . .+ 2se12e13e14 + s2(. . .) (3.65)

um1(s)(e12e
2
13) = (e12 + sem2)(e13 + sem3)2

= . . .+ s(2e12e13em3 + em2e
2
13) + s2(. . .) + s3(. . .)

(3.66)

Here m = 2 is special, in this case the second term in the coefficient of s
vanishes, hence we have to add {2eijeikemk + emje

2
ik} for any ordered pair

of disjoint pairs ({i, j}, {k,m}), and also eijejkekj for {i, j, k} ∈
(

[n]
3

)
. The

remaining steps are

um1(s)e12e13e14 = (e12 + sem2)(e13 + sem3)(e14 + sem4)

= . . .+ s(em2e13e14 + e12em3e14 + e12e13em4)+

+ s2(. . .) + s3(. . .)

(3.67)

um1(s)(e52e13e14 + e12e53e14 + e12e13e54) = . . .+ s(e52em3e14 + e52e13em4

+ em2e53e14 + e12e53em4+

+ em2e13e54 + e12em3e54)+

+ s2(. . .)

(3.68)

Here m ≤ 5 does not lead to a new subspace.
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It turns out that the vectors obtained so far are enough to generate W .
In this case, orthogonalization turns out to be a bit lengthy, especially in
the case of the six-term vectors like in equation (3.68). These span a five
dimensional subspace for each six-element set of indices i1, . . . , i6. For these
the coefficients of the monomials are given as a matrix:

0 0 0 0 0 0 0 1 1 0 1 1 0 1 1
0 0 0 0 3 3 0 1 1 3 1 −2 3 1 −2
0 0 0 2 1 −1 2 1 −1 1 1 0 −1 −1 0
0 2 2 0 1 1 0 1 1 −1 −1 0 −1 −1 0
4 2 −2 2 1 −1 −2 −1 1 −1 1 2 1 −1 −2


(3.69)

The order of the monomials is (12|34|56), (12|35|46), (12|36|45), (13|24|56),
(13|25|46), (13|26|45), (14|23|56), (14|25|36), (14|26|35), (15|23|46),
(15|24|36), (15|26|34), (16|23|45), (16|24|35), (16|25|34), where (ab|cd|ef) is a
short notation for eia,ibeic,ideie,if . The norms inverse squared of these vectors
are

1,
1

8
,
3

8
,
3

8
,
1

8
(3.70)

respectively. The orthogonal generators coming from the remaining vectors
are given in table (3.2)

form indices dimension ‖ · ‖−2

e3
ij {i, j}

(
n
2

)
1

e2
ijeik {i}, {j}, {k} 6

(
n
3

)
3

eijeikeil {i}, {j, k, l} 4
(
n
4

)
6

eijeikekj {i, j, k}
(
n
3

)
6

e2
ijekl + 2eijeilekj {i, j}, {k, l} 2

(
n
2

)(
n−2

2

)
1

−2e2
ijekl + 6eijeikelj + 2eijeilekj

1
8

eikeilejm + eikejleim + ejkeileim {i}, {j, k, l,m} 15
(
n
5

)
2

eikeilejm + 3eikeijeml +
eimeilekj + 3eimeijekl +
2eimeikejl

1
4

2eijeilemk + eikeilemj +
eikeijeml + eimeilejk + eimeijekl

3
4

Table 3.2: Orthogonalized generators for W . Indices shown in one set are
indistinguishable for counting purposes.
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Using these data the value of the invariant I(3,3) can be calculated in
a straightforward way, but the full formula is too long to be presented ex-
plicitely.

The orthogonal complement of W clearly has a highest weight of (22, 12),
and we could find a generator of the unique one dimensional weight space
corresponding to it, and calculate the projector of its invariant subspace.
Instead of this, we follow another approach. According to the plethysm

s(3)[s(12)] = s(32) + s(22,12) + s(16) (3.71)

for n = 6, an SL(6,C)-invariant polynomial appears. It is easy to guess how
this should look like: for a state ψ ∈ Λ2C6, we can construct ψ∧ψ∧ψ which
is an element of Λ6C6, a one dimensional vector space on which GL(6,C)
acts by multiplication with the determinant. Therefore this element remains
unchanged under SL(6,C), and its norm squared is an U(6,C)-invariant
polynomial in the coefficients of ψ and their conjugates. Our invariant cor-
responding to the subrepresentation indexed by the partition (16) must be
proportional to it. Explicitely, it equals to

1

11520

∣∣∣∣∣∑
π∈S6

σ(π)ψπ(1),π(2)ψπ(3),π(4)ψπ(5),π(6)

∣∣∣∣∣
2

(3.72)

Here the sum is over all the permutations, but actually there are 15 different
terms, each counted 48 = 3! · 23 times. Alternatively, we could sum over the
partitions of [n] into three two-element sets.

The n ≥ 6 case can be obtained similarly to the previous section. Taking
all the six-element subsets of [n] polynomials like this span an

(
n
6

)
dimensional

subspace which is also the dimension of the invariant subspace we are looking
for. Therefore in the general case the invariant is

I(16)(ψ) =
1

11520

∑
I∈([n]

6 )

∣∣∣∣∣∑
π∈S6

σ(π)ψiπ(1),iπ(2)ψiπ(3),iπ(4)ψiπ(5),iπ(6)

∣∣∣∣∣
2

(3.73)

where I = {i1, . . . , i6}.
These two invariants are linearly independent, and they sum to 1 with

the one associated to the third irreducible subspace.

3.6.3 k = 3, m = 2 case

Now we turn to the first case with more than two particles. In S2(Λ3H) the
vector with highest weight is e2

123. We proceed in a similar way as before:

un3(s)(e2
123) = e2

123 + 2se123e12n + s2e2
12n (3.74)
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un2(s)(e123e124) = . . .+ s(e123e1n4 + e1n3e124) + s2(. . .) (3.75)

un1(s)(e123e154 + e153e124) =

= . . .+ s(e123en54 + en23e154 + e153en24 + en53e124) + s2(. . .) (3.76)

These vectors already form a generating set, we only need to orthogonalize
this set. For a fixed subset of six indices, the vectors of the form like in (3.76)
span a five dimensional subspace. Orthogonal generators for this are again
given with the coefficients of the monomials as a matrix:

1 0 0 1 0 1 0 0 0 1
−1 0 2 1 0 1 2 0 0 −1
−1 0 0 −1 2 1 0 0 2 1
1 4 2 −1 2 1 −2 0 −2 −1
1 1 −1 −1 −1 1 1 3 1 −1

 (3.77)

The order of monomials is (123|456), (124|356), (125|346), (126|345),
(134|256), (135|246), (136|245), (145|236), (146|235), (156|234),
where (abc|def) is a shorthand notation for the vector eia,ib,iceid,ie,if . The
inverse squared norms of these vectors are

1

2
,
1

6
,
1

6
,

1

18
,
1

9
(3.78)

respectively. The orthogonal generators coming from the remaining vectors
are given in table (3.3)

form indices dimension ‖ · ‖−2

e2
ijk {i, j, k}

(
n
3

)
1

eijkeijl {i, j}, {k, l}
(
n
2

)(
n−2

2

)
2

eijmeikl + eijkeiml {i}, {j, k, l,m} 2n
(
n−1

4

)
1

eijmeikl + 2eijleimk − eijkeiml 1
3

Table 3.3: Orthogonalized generators for the subspace generated by the high-
est weight vector. Indices shown in one set are indistinguishable for counting
purposes.

The value of I(23) can now be calculated. This time the orthocomplement
is also irreducible, so we get one independent invariant in this case.
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3.7 Fermionic SLOCC invariants

In the examples we have seen local unitary invariants with a special property:
for a particular value of n, the corresponding irreducible subspace becomes
one dimensional, and the subspace is pointwise fixed under the action of
SL(n,C), that is, the local unitary invariant turns out to be a SLOCC-
invariant. Let us examine this case in more detail.

The irreducible polynomial representation of SL(n,C) indexed by the
partition λ is one dimensional for some n precisely when λ consists of equal
parts (see section B.4 in the appendix). In this case λ = (rn) is a partition
of nr, hence a neccesary condition for it to occur as a subrepresentation
of Sm(ΛkCn) is that mk = nr, and in this case GL(n,C) acts on it by
multiplication with the rth power of the determinant. The norm squared is
therefore invariant under U(n,C).

In our notations this subspace is spanned by a polynomial w in the basis
vectors e1, . . . , en. w is a weight vector with weight (rn), and it generates a
one dimensional U(n,C)-invariant subspace. The crucial thing is that when
we increase the dimension n of the single particle state space to n′, w remains
a weight vector that generates an irreducible U(n′,C)-invariant subspace, but
it is no longer one dimensional. Therefore, the invariant corresponding to this
subspace will be a generalization of the SLOCC-invarant we have begun with,
but is now only a unitary invariant.

The explicit form of the resulting invariant can be obtained in general us-
ing the method outlined above: we must act on it with uij(s)-s and elements
of Sn′ . A particularly simple special case is when r = 1. In this case the
dimension of the representation corresponding to λ is

(
n′

n

)
, and an orthonor-

mal basis can be obtained by acting on w by elements of Sn′ . Therefore the
invariant can be obtained by calculating the value of the SLOCC-invariant
with the initial index set [n] replaced by every element of

(
[n′]
n

)
, and summing

their absolute values squared.

3.8 Fourth order LU-invariants of multipar-

tite systems with identical particles

Similarly to the case of distinguishable particles, the m = 2 case is spe-
cial in that the decomposition of the symmetric square of a fermionic state
space into irreducible subrepresentations of the local unitary group involves
only representations with multiplicity 1. Explicitely, we have the following
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isomorphism of U(H)-spaces[22]:

S2(ΛkH) '
⊕

0≤a≤k
2|a

S(2k−a,12a)H (3.79)

It is apparent that the number of linearly independent fourth order LU-
invariants of a k-fermion system is 1 + bk

2
c. We have seen that this is exactly

the number of permutation-invariant LU-invariants for a system consisting
of k distinguishable particles with equal single-particle state space dimen-
sions. This means that in this special case, every permutation invariant
LU-invariant is a truncation of a corresponding fermionic invariant.

Let us look at the examples worked out above comparing them with the
invariants of eq. (2.58), indexed by a nonnegative even integer d. In the
k = m = 2 case I(22) corresponds to d = 0, while I(14) to d = 2, while in the
k = 3, m = 2 case I(23) reduces to the d = 0 and I(2,14) to d = 2. This suggests
that in general the invariant associated to the subspace S(2k−a,12a)H reduces
to Ia when viewed as an invariant of a quantum system with distinguishable
constituents.

Finally, let us look at the symmetric square of the state space of a quan-
tum system of k bosons. The isomorphism[22]

S2(SkH) '
⊕

0≤a≤k
2|a

S(2k−a,a)H (3.80)

shows that the space of fourth order LU-invariant polynomials is 1 + bk
2
c

in this case too, which suggests that the fourth order LU-invariants with
permutation symmetry for distinguishable particles can also be obtained by
restricting bosonic invariants of the same degree.

81



82



Appendix A

Multilinear algebra and Hilbert
spaces

A.1 Categories and functors

Category theory is an abstract way to speak of mathematical structures
and structure-preserving maps between them. As such, it appears in all
branches of modern mathematics and also in mathematical physics, providing
a language in which many important constructions can be discussed in a
unified way.

Definition. A (locally small) category C consists of a class Ob(C) of objects,
for any two objects a and b a set HomC(a, b) (for f ∈ HomC(a, b), we often
write f : a → b) and for any three objects a, b and c, a binary operation
◦ : HomC(a, b)× HomC(b, c)→ HomC(a, c) sending (f, g) to g ◦ f such that

1. if f : a→ b, g : b→ c and h : c→ d then h ◦ (g ◦ f) = (h ◦ g) ◦ f

2. for every object x there exists idx ∈ HomC(x, x) such that for f : a → b
the equations f ◦ ida = idb ◦f = f hold.

Elements of HomC(a, b) for any two objects a and b are called morphisms.
A morphism f : a→ a is called an endomorphism of a, and the semigroup

of endomorphisms of a is denoted by EndC(a).
A morphism f : a → b for which another morphism f−1 : b → a exists

such that f ◦ f−1 = idb and f−1 ◦ f = ida is called an isomorphism, while
f−1 is called the inverse of f . In this case a and b are said to be isomorphic,
denoted by a ' b.

An isomorphism f : a→ a is called an automorphism of a, and the group
of automorphisms of a is denoted by AutC(a).
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Note that the subscripts in the definition above are usually omitted when
it is clear from the context.

Sometimes it is convenient to look at morphisms of a category “back-
wards”. This is made precise by the concept of the opposite category:

Definition. Let C be a category. The category Cop consists of the same
objects as C, for a, b in Ob(Cop) = Ob(C), HomCop(a, b) = HomC(b, a), and
for a, b and c in Ob(Cop), f ∈ HomCop(a, b) and g ∈ HomCop(b, c), the binary
operation is defined by g ◦op f = f ◦ g. Cop is called the opposite category of
C.

In many cases a category consists of sets with some extra structure and
functions between them preserving this extra structure with composition as
◦. These are called concrete categories.

Well-known examples include the category Set consisting of sets as ob-
jects and functions as morphisms, the category VectK with vector spaces
over a fixed field K as objects and K-linear mappings between them as mor-
phisms and the category Grp of groups and group-homomorphisms.

We would also like to consider structure-preserving maps between cate-
gories:

Definition. Let C and D be two categories. A covariant functor F from C
to D is a mapping which associates to each object a in Ob(C) an object
F (a) in Ob(D), and to each morphism f ∈ HomC(a, b) a morphism F (f) ∈
HomD(F (a), F (b)) such that

1. for any object x ∈ Ob(C), F (idx) = idF (x)

2. for two morphisms f : a→ b and g : b→ c, F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor F from C to D is a mapping which associates to
each object a in Ob(C) an object F (a) in Ob(D), and to each morphism
f ∈ HomC(a, b) a morphism F (f) ∈ HomD(F (b), F (a)) such that

1. for any object x ∈ Ob(C), F (idx) = idF (x)

2. for two morphisms f : a→ b and g : b→ c, F (g ◦ f) = F (f) ◦ F (g).

An example of a covariant functor is the power set P : Set→ Set sending
each set to its power set and each function f : X → Y to the function
P (f) : P (X)→ P (Y ) which maps U ⊆ X to f(U) ⊆ Y , while an example of
a contravariant functor is the dual ∗ : VectK → VectK , sending each vector
space V to its dual V ∗, and a linear map A : V → W to A∗ : W ∗ → V ∗

defined by (A∗ϕ)(v) = ϕ(Av).
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Note that a contravariant functor F : C → D can also be viewed as a
covariant functor Cop → D.

In category theory an abstract generalization of various “product” con-
structions in algebra and other fields of mathematics can be given as follows:

Definition. Let C be a category and (ai)i∈I a family of objects in C. An
object a together with a family of morphisms πi : a → ai is called the
product of the family (ai)i∈I if for any object b ∈ Ob(C) and any collection
of morphisms fi : b → ai there exists a unique morphism f : b → a making
the diagram

a

πi
��

b

∃!f
??�

�
�

�

fi
// ai

(A.1)

commute for all i ∈ I. The product of (ai)i∈I is denoted by
∏

i∈I ai.

For two objects a1 and a2 the product is usually written as a1 × a2 and
for f1 : b → a1 and f2 : b → a2 the unique morphism may be denoted by
(f1, f2).

A dual concept is obtained by “reversing the arrows”:

Definition. Let C be a category and (ai)i∈I a family of objects in C. An
object a together with a family of morphisms ιi : ai → a is called the co-
product of the family (ai)i∈I if for any object b ∈ Ob(C) and any collection
of morphisms fi : ai → b there exists a unique morphism f : a → b making
the diagram

a
∃!f

���
�

�
�

b ai
fi

oo

ιi

OO (A.2)

commute for all i ∈ I. The coproduct of (ai)i∈I is denoted by
∐

i∈I ai.

Products and coproducts do not exist in every category. Examples in
which they do include Set (in which they correspond to Cartesian products
and disjoint unions, respectively), VectK (direct products and direct sums)
and Grp (direct products and free products).

A generalization of the categorical product is obtained if the family of
objects is parametrized not merely by a set, but by a partially ordered set,
and we require that for indices being in relation, the corresponding objects
are “glued together” along certain morphisms. Alternatively, the index set
may be replaced by an arbitrary category as follows:
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Definition. Let C and I be a two categories, and F : I → C a covariant
functor, called a diagram of type I in C.

A cone to F is an object c ∈ Ob(C) together with a morphism ψi : c →
F (i) for each object i ∈ Ob(I) such that for every morphism f : i → j in I,
we have F (f) ◦ ψi = ψj.

A limit of F : I→ C is a cone (l, ϕ) to F such that for any cone (c, ψ) to
F there exists a unique morphism u : c→ l in C such that for all i ∈ Ob(I)
we have u ◦ φi = ψi.

(see eq. (A.3) for a visualization of the morphisms appearing in the
definition)

c

ψi



u
���
�
�

ψj

��

l
ϕi

~~||||||||
ϕj

!!BBBBBBBBB

F (i)
F (f)

// F (j)

(A.3)

Note that when the only morphisms in I are the identity morphisms, then
the limit reduces to the product.

One common special case is when I is a partially ordered set:

Definition. Let I be a partially ordered set considered as a small category,
that is, objects of I are elements of a partially ordered set, Hom(i, j) has
exactly one element if i ≤ j, and it is empty otherwise. An inverse system in
C is a functor F : Iop → C. The limit of an inverse system F is called its
inverse limit.

If I is a partially ordered set, and (ai, fij) is an inverse system, then its
inverse limit is denoted by

lim←−
i∈I

ai (A.4)

Like products and coproducts, limits do not always exist in every category.
When they do, however, they are unique up to isomorphism.

A.2 Vector spaces

Let K be a field, and let VectK denote the category for which Ob(VectK) is
the class of K-vector spaces, and for V,W ∈ Ob(VectK), HomVectK (V,W )
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is the set of linear maps from V to W . One can easily check that in this
way we obtain a category with idV being the identity map of V and ◦ being
the composition of maps. An important property of this category is that
HomVectK (V,W ) itself is also a linear space. The group AutVectK (V ) is often
denoted by GL(V ).

For a collection (Vi)i∈I of K-vector spaces, the product is given by the
vector space∏

i∈I

Vi := {(vi)i∈I |∀i ∈ I : vi ∈ Vi} (A.5)

and the linear maps

πj :
∏
i∈I

Vi → Vj

(vi)i∈I 7→ vj

(A.6)

Similarly, the coproduct of {Vi}i∈I is given by the vector space⊕
i∈I

Vi :=
∐
i∈I

Vi = {(vi)i∈I |∀i ∈ I : vi ∈ Vi, |{i : vi 6= 0}| <∞} (A.7)

and the linear maps

ιj : Vj →
∐
i∈I

Vi

vj 7→
(
i 7→

{
vj if i = j
0 otherwise

) (A.8)

Note that when |I| <∞ then
∏

i∈I Vi and
∐

i∈I Vi are isomorphic.
The dual gives rise to a contravariant functor ∗ : VectK → VectK sending

V to V ∗ and the linear map A : V → W to its transpose (or dual) map
A∗ : W ∗ → V ∗ which is defined by (A∗ϕ)(v) = ϕ(Av). There is a canonical
injection i from any vector space V into its bidual V ∗∗ given by i(v)(ϕ) =
ϕ(v). i is an isomorphism if and only if V is finite dimensional.

The product and the coproduct are related by the following isomorphism
involving the dual space functor:(⊕

i∈I

Vi

)∗
'
∏
i∈I

V ∗i (A.9)

where {Vi}i∈I are arbitrary vector spaces.
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Consider a family (Vi)i∈I of K-vector spaces and another K-vector space
Z. A map ψ :

∏
i∈I Vi → Z is called multilinear if for any j ∈ I and any

collection (vi)i∈I\{j} the map

ψj : Vj → Z

vj 7→ ψ((vi)i∈I)
(A.10)

is linear, that is, ψ is linear in each variable while the values of the other
variables are fixed.

A.3 Tensor products

Definition. Given a family of vector spaces (Vi)i∈I , a tensor product of
(Vi)i∈I is a vector space

⊗
i∈I Vi together with a multilinear map ϕ :

∏
i∈I Vi →⊗

i∈I Vi such that for any mulitilinear map ψ :
∏

i∈I Vi → Z with Z an arbi-
trary vector space, there exists a unique linear map T :

⊗
i∈I Vi → Z making

the following diagram commute:∏
i∈I Vi

ψ //

ϕ

��

Z

⊗
i∈I Vi

∃!T

<<y
y

y
y

y

(A.11)

Vectors in ranϕ are called elementary tensors.

One can show that the tensor product exists, and it is unique up to
isomorphism. The tensor product of V and W is denoted by V ⊗W , and for
v ∈ V and w ∈ W the notation v ⊗ w is used to denote ϕ(v, w).

The tensor product of two vector spaces can be viewed as a bifunctor from
VectK to itself, covariant in both variables, or in other words, a covariant
functor from VectK × VectK to VectK , sending (V1, V2) to V1 ⊗ V2 and
(ϕ1 : V1 → W1, ϕ2 : V2 → W2) to ϕ1 ⊗ ϕ2 : V1 ⊗ V2 → W1 ⊗W2.

In particular, given two vector spaces V and W together with a linear map
A : V → W , the tensor product with an arbitrary vector space X gives rise to
a linear map A⊗idX : V ⊗X → W⊗X defined by (A⊗idX)(v⊗x) = (Av⊗x)
on elementary tensors and extended lineraly.

An important special case is the partial trace. We give first the definition
of the trace map:

Definition. Let V be a finite dimensional vector space. Then we have the
isomorphism HomVectK (V, V ) ' V ⊗ V ∗. Consider the bilinear map ψ : V ×
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V ∗ → K defined by (v, ϕ) 7→ ϕ(v). By the universal property in the definition
of the tensor product, there exists a unique linear map TrV : V ⊗ V ∗ → K,
such that TrV (v ⊗ ϕ) = ϕ(v) The map TrV : HomVectK (V, V )→ K is called
the trace.

If (Vi)
k
i=1 is a finite family of vector spaces, then we define the jth partial

trace to be idV1 ⊗ · · · ⊗ idVj−1⊗TrVj ⊗ idVj+1⊗ · · · ⊗ idVk .

A.4 Tensor products of Hilbert spaces

Hilbert spaces are complex vector spaces with an inner product such that the
space is complete with respect to the metric induced by the inner product.
In this case the definition of a tensor product must be modified, as the
usual tensor product of two Hilbert spaces might fail to be a Hilbert space:
although the usual tensor product of finitely many Hilbert spaces comes
equipped with an induced inner product, the resulting space is in general not
complete.

However, we can resolve this problem by defining the tensor product
of finitely many Hilbert spaces to be the (topological) bidual of the usual
tensor product with the induced inner product. Fortunately, in the case of
finite dimensional vector spaces – which are discussed in the vast majority
of quantum information theory literature – no such problem arises. In this
thesis, all Hilbert spaces encountered are assumed to be finite dimensional.

Hilbert spaces together with bounded linear operators between them as
morphisms form the category Hilb.

Let H be a Hilbert space with inner product 〈·, ·〉H : H ×H → C. Note
that we follow the physicist’s convention that an inner product is always
assumed to be linear in the second variable and semilinear in the first one.
For any two vectors v, w ∈ H, consider the linear map

〈v, ·w〉H : End(H)→ C
A 7→ 〈v,Aw〉H

(A.12)

By the general construction above, for any Hilbert space K, this gives rise to
a linear map (denoted the same way)

〈v, ·w〉H : End(H)⊗ End(K)→ C⊗ End(K)∑
i∈I

Ai ⊗Bi 7→
∑
i∈I

〈v, Aiw〉HBi
(A.13)

We also have the obvious identifications End(H) ⊗ End(K) = End(H ⊗ K)
and C⊗ End(K) = End(K).
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A.5 Graded algebras

In this section we collect some properties of a very special class of algebras,
namely, N-graded algebras. By algebra we will always mean unital associative
algebra, and by graded we will mean N-graded.

Definition. Let K be a field. A graded algebra A over K is a vector space
equipped with a bilinear associative map · : A×A→ A sending (a, b) to a · b
such that A has a direct sum decomposition:

A =
⊕
n∈N

An (A.14)

satisfying Ai · Aj ⊆ Ai+j, and such that there exists 1 ∈ A satisfying 1 · a =
a · 1 = a for all a ∈ A.

Ai is called the ith graded part of A, and elements of Ai are the homogenous
elements of degree i.

An element a in A =
⊕

n∈NAn can be uniquely written as a =
∑

n∈N an
where an ∈ An. The degree of an arbitrary element a is the largest natural
number d such that ad 6= 0.

If A and B are graded algebras over K, then a map ϕ : A → B is
said to be a homomorphism of graded algebras if it is linear and the relations
ϕ(a1 · a2) = ϕ(a1) · ϕ(a2), ϕ(1) = 1 and ϕ(Ai) ⊆ Bi hold.

Note that the unit of a graded algebra must be in its 0th graded part.
Graded algebras could be defined more generally replacing K with an arbi-
trary ring, N with an arbitrary semigroup and not requiring the existence of
a unit. In this thesis, however, the above-given definition suffices.

For a field K, we denote by N−AlgK the category consisting of graded
algebras as objects and graded algebra-homomorphisms as morphisms. Sim-
ilarly, we denote by N − CAlgK the subcategory consisting of commuta-
tive graded algebras as objects and graded algebra-homomorphisms as mor-
phisms.

Definition. Let A be a graded algebra over the field K. A subset I ⊆ A is
called an ideal, denoted by I / A if I is a (vector) subspace, I · A ⊆ A, and
A · I ⊆ A. I is a homogenous ideal if in addition I =

∑
n∈N(I ∩ An).

If I / A is a homogenous ideal, then the factor A/I becomes a graded
algebra with the obvious multiplication and the following grading (A/I)n =
An + I. An important special case is the ideal generated by commutators:
the abelianization of a graded algebra is also a graded algebra.

One often deals with infinite dimensional graded algebras, and in many
cases the dimension of each graded part is finite. In this case, these dimen-
sions can be conveniently encoded in a single object as follows:
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Definition. Let A =
⊕

n∈N An be a graded algebra over K. The Hilbert
series of A is the formal power series∑

n∈N

(dimK An)tn (A.15)

in the indeterminate t.

As a particularly important example, we calculate the Hilbert series of
the graded algebra A = K[xd] over K freely generated by the element xd,
assumed to be a degree d homogenous element as the notation suggests. A
vector space basis of this algebra is easily seen to be 1, xd, x2d, . . ., and these
are homogenous elements of degrees 0, d, 2d, . . . respectively. Therefore the
Hilbert series is∑

n∈N

(dimK An)tn =
∞∑
i=0

td·i =
1

1− td
(A.16)

In N−AlgK products and coproducts always exist, and are called direct
products and free products, respectively. For a family (Ai)i∈I of graded
algebras, the product is given by∏

i∈I

=
∐
n∈N

(
∏
i∈I

(Ai)n) (A.17)

where on the right hand side the product and the coproduct are understood
in VectK , and the multiplication is the obvious one. The free product is the
graded algebra generated freely by the disjoint union of the Ai modulo the
identities holding for their elements.

In N−AlgK (and many other categories of algebraic objects like abelian
groups, rings, modules over a fixed ring, etc.) inverse limits can be conve-
niently realized as subobjects of products. Let (I,≤) be a partially ordered
set, and (Ai)i∈I and %ij : Aj → Ai (i ≤ j) be an inverse system (where the
Ai are objects and %ij are morphisms in the category under consideration,
N−AlgK in this case). The inverse limit of this inverse system is

lim←−
i∈I

Ai =

{
(ai)i∈I ∈

∏
i∈I

Ai

∣∣∣∣∣∀i ≤ j : ai = %ijaj

}
(A.18)

Let V be a vector space over the field K. The graded algebra T (V ) is
defined as follows. Its nth graded part is

T (V )n = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

(A.19)
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(and T (V )0 = K), while multiplication is given by the canonical isomorphism

V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

⊗V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
m times

→ V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n+m times

(A.20)

T (V ) is called the tensor algebra of V . The tensor algebra satisfies the fol-
lowing universal property: any linear transformation ϕ : V → A to an
algebra A over K extends uniquely to a homomorphism ϕ′ : T (V ) → A
of algebras. This shows that the construction gives a covariant functor
T : VectK → N−AlgK .

Denoting by I the ideal generated by commutators in T (V ), the abelian-
ization T (V )/I of the tensor algebra is called the symmetric algebra of V ,
denoted by S(V ). Clearly, we have a contravariant functor S : VectK →
N−CAlgK which is the composition of T with abelianization. The algebra
of polynomials over a vector space V is S(V ∗).

Definition. Let K be a field and A, B two commutative graded algebras over
K. The graded tensor product A⊗B is the tensor product as a vector space,
it is equipped with the multiplication (a1⊗ b1) · (a2⊗ b2) = (a1 · a2)⊗ (b1 · b2)
and with a grading

A⊗B =
⊕
n∈N

⊕
i,j∈N
i+j=n

Ai ⊗Bj

︸ ︷︷ ︸
(A⊗B)n

(A.21)

and becomes this way a commutative graded K-algebra.

Note that the graded tensor product is just the coproduct in N−CAlgK .
Let f(t) and g(t) be the Hilbert series of the commutative graded algebras

A and B. Then the Hilbert series of their tensor product is the product of
their Hilbert series:∑

n∈N

dimK((A⊗B)n)tn =
∑
n∈N

∑
i,j∈N
i+j=n

dimK(Ai) · dimK(Bj)t
i+j

=
∑
i,j∈

dimK(Ai)t
i · dimK(Bj)t

j

=

(∑
i∈N

dimK(Ai)t
i

)
︸ ︷︷ ︸

f(t)

·

(∑
j∈N

dimK(Bj)t
j

)
︸ ︷︷ ︸

g(t)

(A.22)
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In particular, the Hilbert series of a free commutative unital graded algebra
A with nd generators of degree d in an algebraically independent generating
set is ∑

n∈N

dimK Ant
n =

∞∏
d=1

1

(1− td)nd
(A.23)

as a consequence of eq. (A.16) and the previous calculation.
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Appendix B

Elements of representation
theory

B.1 Group representations

The theory of group representations deals with homomorphisms from a group
to automorphism groups of vector spaces.

Definition. LetG be a group and V a complex vector space. A representation
(or linear action) of G is a group homomorphism % from G to AutVectC(V ).
One often writes g · v or even gv to denote the vector %(g)(v), if there is no
ambiguity. V is then said to be a G-space, sometimes without explicitely
mentioning the map %.

Let V , W be two G-spaces, with representations %V : G → AutVectC(V )
and %W : G → AutVectC(W ), respectively. A linear map ϕ : V → W is
G-equivariant if the following diagram commutes for all g ∈ G:

V
ϕ //

%V
��

W

%W
��

V ϕ
// W

(B.1)

More precisely, what we have just defined is a left action of G. One can
similarly define a right action.

If V is a G-space, then V ∗ also carries a representation of G, by setting
(g · ϕ)(v) = ϕ(g−1v) for ϕ ∈ V ∗ and v ∈ V , called the dual representation.

Two G-spaces V and W are said to be isomorphic if there exists a G-
equivariant isomorphism in HomVectC(V,W ).
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A (linear) subspace U of a G-space V is a G-subspace if for all g ∈ G the
relation g · U ⊆ U holds. A G-space V is irreducible if the only G-subspaces
of V are {0} and V .

If U ≤ V is a G-subspace, then the quotient V/U can be given the
structure of a G-space, defined by the requirement that the quotient map
q : V → V/U is G-equivariant.

Given two G-spaces V and W and a G-equivariant map ϕ : V → W , it
is easy to see that kerϕ ≤ V and ranϕ ≤ W are G-subspaces. Assuming
that V and W are irreducible, we have Schur’s lemma, stating that in this
case the subspace of G-equivariant maps is one dimensional when V and W
are isomorphic and consists of only the zero map when V and W are not
isomorphic.

Various constructions exist which produce new representations from old
ones. If G and H are groups, V is a G-space and W is a H-space, then
the tensor product V ⊗W comes with a G × H-representation defined by
(g, h) · (v⊗w) := (g ·v)⊗ (h ·w) on elementary tensors and extended linearly.
If V and W are irreducible, then V ⊗W is also irreducible.

Consider the special case when G = H, that is, V and W are two G-
spaces. Then V ⊗W is a G × G-space, or in other words, we have a group
homomorphism % : G × G → AutVectC(V ⊗W ). Composing this with the
diagonal morphism

∆G : G→ G×G
g 7→ (g, g)

(B.2)

we get a representation of G on V ⊗W called the tensor product representa-
tion.

Representations of a group G as objects and G-equivariant maps be-
tween them as morphisms form a category, denoted by GMod. In this cat-
egory products and coproducts exist, and they correspond to products and
coproducts of the underlying vector spaces equipped with the obvious (com-
ponentwise) action of G. As in VectC, these are also called direct products
and direct sums, respectively. The dual representation gives a contravariant
functor from GMod to itself.

Consider the free commutative group on the isomorphism classes of finite
dimensional complex representations of a group G divided by the relations
[V ⊕W ] = [V ]+[W ] where V and W are two such representations. The tensor
product then induces a binary operation, turning this abelian group into a
commutative ring called the representation ring of G, and denoted by R(G).
If G has the property that every finite dimensional G-space is the direct
sum of irreducible ones – for example when G is finite –, then the additive
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group of the representation ring is the abelian group generated freely by the
isomorphism classes of irreducible representations.

Note that a group G may be viewed as a category with a single object
and such that every morphism is an isomorphism. In this way a group rep-
resentation is simply a functor from this category to VectC. One may also
consider functors to other categories, leading to other types of representa-
tions. For example, composing an ordinary (linear) representation with the
symmetric algebra functor – which sends every vector space to its symmetric
algebra – yields a group homomorphism from G to the automorphism group
of a commutative unital associative algebra.

A particularly important special case is when we compose the representa-
tion with a Schur functor introduced section B.3. In this way every represen-
tation of a group G is mapped to another representation and G-equivariant
maps are sent to G-equivariant maps. Thus, a Schur functor may also be
viewed as a functor Sλ : GMod → GMod. In section B.3 we proceed in a
slightly different way, defining Schur functors directly for representations.

B.2 Character theory of finite groups

Character theory is an indispensable tool in the study of representations of
groups. For our purposes it suffices to formulate the statements for finite
groups, but many results of character theory can be extended to compact
topological groups as well.

Definition. Let G be a finite group, V a finite dimensional complex vector
space and % : G → AutVectC(V ) a complex representation of G. Then the
function

χV : G→ C
g 7→ Tr(%(g))

(B.3)

is called the character of the representation.

The equation

χV (hgh−1) = Tr(%(hgh−1)) = Tr(%(h)%(g)%(h)−1)

= Tr(%(g)) = χV (g)
(B.4)

shows that a character is constant along conjugacy classes of G. Such func-
tions are called class functions, and the set of class functions on G is denoted
by C(G). Also, isomorphic representations have the same character. It is
an important result that the converse is also true, that is, the isomorphism
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class of a finite dimensional representation of G is uniquely determined by
its character.

On the space of functions G→ C we have the usual inner product defined
by

〈f1, f2〉G =
1

|G|
∑
g∈G

f1(g)f2(g) (B.5)

Class functions clearly form a subalgebra, and we have the following impor-
tant result:

Theorem B.2.1. Let G be a finite group, Irr(G) a maximal set of inequiva-
lent irreducible representations, and let χi denote the character of the repre-
sentation i ∈ Irr(G). Then {χi}i∈Irr(G) is an orthonormal basis in the space
of class functions on G.

In particular, the number of inequivalent irreducible representations is
equal to the number of conjugacy classes in G.

Using the properties of the trace it is easy to see that for two G-spaces
V and W , the following hold:

χV⊕W = χV + χW

χV⊗W = χV · χW
χV ∗ = χV

(B.6)

Therefore, the map V 7→ χV induces a ring homomorphism from the repre-
sentation ring R(G) to the ring of class functions C(G). In the case of finite
groups, this is in fact injective.

Therefore in the case of finite groups, the theory of finite dimensional
representations can be encoded in a table containing the values of irreducible
characters on each conjugacy class, indicating also the sizes of the conjugacy
classes. Such a table is usually referred to as a character table.

A special kind of linear representation is obtained in the following way.
Let S be a set and α : G× S → S a group action, that is, a map such that

1. ∀s ∈ S : α(1, s) = s

2. ∀s ∈ S : ∀g, h ∈ G : α(g, α(h, s)) = α(gh, s)

and let CS be the vector space with basis S. Then the map % : G →
AutVectC(CS) defined by

%(g)
∑
s∈S

ass :=
∑
s∈S

asα(g, s) (B.7)
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is a representation of G called a permutation representation. In this case the
value of the character on a group element g is the number of elements in S
fixed by g.

In the special case when S = G and α : G × G → G is the group multi-
plication, the resulting representation is called the left regular representation.
Note that CG can be turned into an algebra by extending the group multi-
plication linearly, called the group algebra.

Another important representation is given by conjugation. Let S = G as
above and α(g, h) := ghg−1. The corresponding representation on CG is the
conjugation representation. We have the following result [21]:

Theorem B.2.2. Let G be a finite group and CG be the group algebra
equipped with the conjugation representation. Let Irr(G) be the set of iso-
morphism classes of irreducible representations of G, and let Vi denote a
representation in the class i ∈ Irr(G). Then we have the isomorphism

CG '
⊕

i∈Irr(G)

Vi ⊗ V ∗i (B.8)

as G-spaces.

In particular, we have that the character of the conjugation representation
is ∑

i∈Irr(G)

|χi|2 (B.9)

where χi is the character of Vi.

B.3 Representations of the symmetric group

Let Sd be the group of bijections from [d] to itself, called the symmetric group
on d elements. Its group algebra CSd consists of formal linear combinations
of the group elements, with multiplication defined as the bilinear extension
of the group multiplication.

Given a partition λ, fix a numbering of the corresponding Young diagram
by the integers [d] and let Pλ (Qλ) denote the subgroup of Sd which fixes
each row (column). In the group algebra we introduce two elements:

aλ =
∑
g∈Pλ

g and bλ =
∑
g∈Qλ

sgn(g)g (B.10)

Then cλ = aλbλ is called a Young symmetrizer. We have the following theorem:
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Theorem B.3.1. c2
λ = nλcλ for some nλ ∈ C and the image of cλ by right

multiplication on CSd is an irreducible representation Vλ of Sd. Moreover,
every irreducible representation of Sd arises in this way for a unique partition
λ.

In principle, this theorem enables us to calculate the characters of the
irreducible representations of Sd. The number of inequivalent irreducible
representations is the number of partitions of d. This is also the number
of conjugacy classes in Sd, and it turns out that conjugacy classes can be
indexed by partitions quite naturally as follows.

A permutation of the set [d] can always be written essentially uniquely
as the product of cycles. A cycle is a permutation of the form a1 7→ a2 7→
. . . 7→ ak 7→ a1 where {ai}ki=1 ⊆ [d] are distinct elements, and sending the
other elements to themselves. As the length of a cycle does not change
upon conjugation, we can conclude that a conjugacy class contains elements
which are built up from disjoint cycles such that each length occurs the same
number of times in each element. The collection of these numbers is called
the cycle type of the group element, considering fixed elements as cycles of
length 1.

Alternatively, cycle types can be mapped bijectively to partitions sending
a cycle type with ni at the ith place to the partition containing i ni times.

Character tables of the first few symmetric groups are shown in tables
B.1-B.4. In these tables the character of Vλ is denoted by χλ.

(1)
S1 1
χ(1) 1

Table B.1: Character table of the symmetric group S1

(1) (1)
S2 1 (ab)
χ(2) 1 1
χ(12) 1 −1

Table B.2: Character table of the symmetric group S2

Let V be a finite dimensional vector space. Then on the vector space

V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
d factors

(B.11)
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(1) (3) (2)
S3 1 (ab) (abc)
χ(3) 1 1 1
χ(2,1) 2 0 −1
χ(13) 1 −1 1

Table B.3: Character table of the symmetric group S3

(1) (6) (3) (8) (6)
S4 1 (ab) (ab)(cd) (abc) (abcd)
χ(4) 1 1 1 1 1
χ(3,1) 3 1 −1 0 −1
χ(2,2) 2 0 2 −1 0
χ(2,12) 3 −1 −1 0 1
χ(14) 1 −1 1 1 −1

Table B.4: Character table of the symmetric group S4

GL(V ) acts from the left as the tensor product of the standard actions on
V , and Sd acts from the right by permuting the factors, that is, for π ∈ Sd,
the action is defined by

(v1 ⊗ · · · ⊗ vd) · π = vπ(1) ⊗ · · · ⊗ vπ(d) (B.12)

on elementary tensors and extended linearly. It is easy to see that the two
actions commute. For any partition λ of d, let cλ be a corresponding Young
symmetrizer, which acts also from the right on the vector space. Let

SλV = ran(cλ|V⊗···⊗V ) (B.13)

denote the image of cλ acting on V ⊗ · · · ⊗ V from the right.
Now let W be a GL(V )-space, and ϕ ∈ Hom

GL(V )Mod(V,W ). then ϕ
determines a GL(V )-equivariant map

ϕ⊗ · · · ⊗ ϕ : V ⊗ · · · ⊗ V → W ⊗ · · · ⊗W (B.14)

which is easily seen to be also Sd-equivariant when Sd acts on both spaces
from the right as above. It follows that

ϕ⊗ · · · ⊗ ϕ|ran(cλ|V⊗···⊗V ) : ran(cλ|V⊗···⊗V )→ ran(cλ|W⊗···⊗W ) (B.15)

is a GL(V )-equivariant map from SλV → SλW . this map will be denoted by
Sλ(ϕ).
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In this way what we have obtained is a covariant functor from GL(V )Mod
to itself, called the Schur functor corresponding to λ. Note also that we can
view V to be a G-space for any group G instead of GL(V ), if we are given
a representation % : G → GL(V ). Then the same construction leads us to
a functor Sλ : GMod → GMod. In particular, for G = {1}, a G-space is
simply a vector space, and hence we have Sλ : VectC → VectC.

B.4 Rational representations of the unitary

and the general linear groups

Let V be a finite dimensional complex vector space. The general linear group
of V is GL(V ) := AutVectC(V ). Suppose that V is also equipped with an in-
ner product 〈·, ·〉 : V × V → C. The subgroup U(V ) := {g ∈ GL(V )|∀v, w ∈
V : 〈g · v, g · w〉 = 〈v, w〉} preserving the inner product is called the uni-
tary group of (V, 〈·, ·〉). Note that V is automatically a GL(V )-space and a
U(V )-space with the (appropriate restriction of the) identity homomorphism
idAutVectC (V ) as representation.

We are interested in locally finite dimensional rational representations
of these groups, that is, representations % : GL(V ) → AutVectC(W ) where
W =

⊕
i∈IWi is the direct sum of finite dimensional GL(V )-spaces given by

rational maps %i : GL(V ) → AutVectC(Wi). (A rational map φ : GL(V ) →
AutVectC(Wi) ⊂ EndVectC(Wi) may be imagined as an element of the module
C[EndVectC(V )](det)⊗ EndVectC(Wi).) We have the following:

Theorem B.4.1. Let (V, 〈·, ·〉) be an inner product space with n = dimV <
∞. Then any locally finite dimensional rational representation of GL(V )
(U(V )) is isomorphic to the direct sum of irreducible ones. Irreducible ratio-
nal representations of GL(V ) (U(V )) are of the form

SλV ⊗Dk (B.16)

where Dk is the k-fold tensor product of ΛnV with itself when k ≥ 0 and
D−k = D∗k, and λ is an arbitrary partition with at most n− 1 parts.

Moreover, SλV ⊗Dk ' Sλ′V ⊗Dk′ iff λ = λ′ and k = k′.

Note that Dk is a one dimensional vector space of GL(V ) (U(V )), on
which GL(V ) (U(V )) acts by multipication with the kth power of the deter-
minant.

Alternatively, we may index finite dimensional irreducible representations
of the two groups with nonincreasing integer sequences λ1 ≥ . . . ≥ λn, cor-
responding to the representation

S(λ1+k,··· ,λn+k)V ⊗D−k (B.17)
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for any sufficiently large k. This equation may also be used to extend the
definitions of Schur functors to nonincreasing integer sequences (sometimes
called generalized partitions) instead of partitions, and then S(λ1+k,··· ,λn+k)V ⊗
D−k ' S(λ1,··· ,λn)V for any value of k. The representation S(λ1,··· ,λn)V is
polynomial iff λ is a partition.

Theorem B.4.1 shows that there is a deep connection between the repre-
sentation theory of GL(V ) and that of U(V ). In particular, we have that any
locally finite dimensional rational representation of U(V ) may be extended
to a representation of GL(V ). But as U(V ) is a compact matrix Lie group,
every finite dimensional representation of U(V ) is rational, and every unitary
representation of U(V ) has a locally finite dimensional dense U(V )-subspace
[40].

We would also like to identify one dimensional representations of GL(V ),
which are exactly those which are trivial when viewed as representations of
SL(V ) := {g ∈ GL(V )| det g = 1}. We have the dimension formula for
λ = (λ1, . . . , λn):

dimSλV =
∏

1≤i<j≤n

λi − λj + j − i
j − i

=
∏

1≤i<j≤n

(
1 +

λi − λj
j − i

)
(B.18)

As each factor in the product is at least 1, the product can only be 1 if
λi − λj = 0 for all 1 ≤ i < j ≤ n, that is, λ = (k, k, . . . , k). where k ∈ Z and
this representation is polynomial iff k ≥ 0.

We have seen that polynomial representations of GL(V ) and representa-
tions of the symmetric groups Sd are intimately connected. We will make use
of various isomorphisms which show some other aspects of this connection.
For ν ` d,

Sν(V ⊗W ) '
⊕
λ,µ`d

Cλµν(SλV ⊗ SµW ) (B.19)

as GL(V )×GL(W )-spaces, for µ, ν ` d,

Vλ ⊗ Vµ '
⊕
ν`d

CλµνVν (B.20)

as Sd-spaces. Note that as the irreducible representations of Sd are self-dual,
Cλµν is also the multiplicity of the trivial representation in Vλ⊗Vµ⊗Vν , and
in particular, is invariant under permutations of its three indices.

For our purposes it is particularly important to understand better how
Schur functors interact with tensor products. We have the following gener-
alization of eqs. (B.19-B.20):
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Proposition B.4.2. Let ν ` d and V1, . . . , Vk be finite dimensional vector
spaces. Then

Sν(V1 ⊗ · · · ⊗ Vk) '
⊕

λ1,...,λk`d

Cνλ1...λk(Sλ1V1 ⊗ · · · ⊗ SλkVk) (B.21)

as GL(V1)× · · · ×GL(Vk)-spaces where the coefficient Cνλ1...λk is defined by

Vλ1 ⊗ · · · ⊗ Vλk '
⊕
ν`d

Cνλ1...λkVν (B.22)

Proof. We prove by induction, using eqs. (B.19-B.20) in the induction step.
For k = 1 (and k = 2) the statement is clearly true. Suppose that eq. (B.21)
holds for k − 1 instead of k. Then we have that

Sν((V1⊗ · · · ⊗ Vk−1)⊗ Vk) '

'
⊕
µ,λk`d

Cµλkν(Sµ(V1 ⊗ · · · ⊗ Vk−1)⊗ SλkVk)

'
⊕
µ,λk`d

Cµλkν(
⊕

λ1,...,λk−1`d

Cµλ1...λk−1
(Sλ1V1 ⊗ · · · ⊗ Sλk−1

Vk−1)⊗ SλkVk)

'
⊕

λ1,...,λk`d

(∑
µ`d

CµλkνCµλ1...λk−1

)
(Sλ1V1 ⊗ · · · ⊗ SλkVk)

(B.23)

But

Vλ1 ⊗ · · · ⊗ Vλk−1
⊗ Vλk '

⊕
µ`d

Cµλ1...λk−1
Vµ ⊗ Vλk

'
⊕
µ,ν`d

Cµλ1...λk−1
CµλkνVν

'
⊕
ν`d

(∑
µ`d

Cµλ1...λk−1
Cµλkν

)
︸ ︷︷ ︸

Cνλ1...λk

Vν

(B.24)

so the coefficient in the equation above is Cνλ1...λk .
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Appendix C

The axioms of quantum
mechanics

C.1 States and observables

The presentation of quantum mechanical states and observables in this sec-
tion is based on ref.[46]. To every quantum system we associate a complex
separable Hilbert space, that is, a complex vector space H with inner prod-
uct 〈·, ·〉 : H × H → C such that H is complete with respect to the metric
induced by the inner product, and such that there exists a dense countable
subset. In addition, there is a distinguished sub-C∗-algebra A ≤ End(H) of
the C∗-algebra of bounded linear operators of H.

Self-adjoint elements of A are called observables and they correspond to
physical quantities which can be measured. A state is a positive element % of
A with Tr(%) = 1. A state is called pure if it is a rank 1 projector. Note that
Amay be a proper subset of End(H) meaning that not every rank 1 projector
(or unit vector in H) describes a physically realizable state. In general the
representation of A on H is reducible, and there are self-adjoint elements
in the commutant of A which are not proportional to the identity, called
superselection operators. Subrepresentations of H are called superselection
sectors.

One common way in which nontrivial superselection operators arise is
when a group G acts on H and A in such a way that the action of A on H
(which is a linear map A⊗H → H) is G-equivariant. If this representation of
G on H is not irreducible, then H decomposes as a direct sum of subspaces,
each of which is the tensor product of an irreducible representation of G and
a representation of A.

If we measure the value of an observable A when the quantum system is
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in the state described by %, then the expectation value of the outcome of the
measurement is Tr(%A). Note that A 7→ Tr(%A) is a positive linear functional
on A.

If we are given k quantum systems with state spaces H1, . . . ,Hk then
the Hilbert space associated to the composite system is their tensor product
H := H1 ⊗ · · · ⊗ Hk. One can think of this as a consequence of linearity:
loosely speaking, given an observable A ∈ End(H) of the whole system, its
expectation value must depend linearly on the state of each subsystem, but
also linearly on the state of the composite system. But the “most general”
vector space which has the property that a multilinear map fromH1×· · ·×Hk

factors through it is the tensor product.

An important case is when among the subsystems we can find identical
ones. In this case the corresponding Hilbert spaces are isomorphic via a dis-
tinguished isomorphism, and hence can be identified. Then the appropriate
permutation group acts on the Hilbert space of the composite system by per-
muting the factors in the tensor product, and observables are invariant under
this action, giving rise to superselection sectors. In the simplest case when
H1 = . . . = Hk, we readily see that Sk acts on the tensor product and on
End(H) and the action of the observables is equivariant. Then the images of
Young symmetrizers are subrepresentations of the algebra of observables. In
particular, we can restrict ourselves to any subrepresentation, the partition
(k) corresponds to bosons, and in this case the relevant Hilbert space is

S(k)H1 = Sm(H1) (C.1)

while the partition (1k) corresponds to fermions, with the relevant part of
the Hilbert space being

S(1k)H1 = Λm(H1) (C.2)

C.2 Time evolution with restricted interac-

tions

Let H be the state space of a quantum system interacting with its envi-
ronment, the state space of which is HENV . Suppose that we are given a
distinguished C∗-algebra A ≤ End(H), and the Hamiltonian governing the
unitary evolution of the composite system is of the form

H =
∑
i∈I

Ai ⊗Bi (C.3)
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where ∀i ∈ I : Ai ∈ A and Bi ∈ End(HENV ), that is, observables in A corre-
spond to physical quantities through which the quantum system is coupled
to its environment.

If the inital state of the joint system is % ⊗ ψψ∗ where % ∈ End(H) and
ψ ∈ HENV is a unit vector, then after a time interval t has elapsed, the state
of the quantum system is∑

j∈J

Ej%E
∗
j (C.4)

where Ej = 〈ej, e
i
~ tHψ〉HENV ∈ End(H).

We claim that ∀j ∈ J : Ej ∈ A. Firstly, for a polynomial p(x) =∑m
k=0 akx

k and v, w ∈ HENV , we have that

〈v, p(
∑
i∈I

Ai ⊗Bi)w〉HENV

=
m∑
k=0

ak
∑

i1,...,ik∈I

〈v, (Ai1Ai2 · · ·Aik ⊗Bi1Bi2 · · ·Bik)w〉HENV

=
m∑
k=0

ak
∑

i1,...,ik∈I

〈v,Bi1Bi2 · · ·Bikw〉HENVAi1Ai2 · · ·Aik ∈ A

(C.5)

Secondly, any continuous function on the spectrum of H can be uniformly
approximated by polynomials, from which the claim follows.
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[31] P. Lévay, S. Nagy, and J. Pipek. Elementary formula for entanglement
entropies of fermionic systems. Phys. Rev. A, 72:022302, Aug. 2005.
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