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We examine what information can be obtained
about the T=0 and T =1 =n—n interactions by
using the dispersion relations for the s- and p-wave
n—N partial waves. These partial waves have the
singularities shown in Fig. 1 where

s =[(M*+ ¢+ + 4%

is the square of the energy in the c.m. system n-}+ N.
The real part of the amplitudes and the contributions
from the cuts (M+p)><s<co and 0Zs<(M—p)?
are evaluated from the known m—MN phase shifts .
The method of calculation has been discussed in
detail elsewhere 2.

The dispersion relations are evaluated for
(M+p)* = 59.6<5<80 (i.e. 0 to 210 MeV pion lab.
energy) on the physical region (we use the units
h=c=u=1). They are also evaluated for
20<s<(M—p)* = 32.7 on the “crossed cut”, by
using the crossing theorem. The evaluation on the
crossed cut, as well as the physical cut, is a great
advantage of our method, and it is the main fact
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Fig. 1 Singularities of the partial wave z—N amplitudes as a
function of s = [(M24-q%)/24(u2+q%) /%)%

which makes it possible to separate out the effect
of the n—m interactions.

This analysis yields experimental values of the
“ discrepancies ” A(s). These give the sum of the
contributions to the partial wave amplitudes coming
from the circle |s| = M*—p* and the cut —oo<s<0.
These have the following physical interpretation:

(i) the discontinuity across the circle ls[ = M>—u?
is given by the absorptive part of the amplitude for
n+n—>N-+N, and by unitarity this is related to
n+n—>n+n. Low energy m—n interactions con-
tribute to the front of the circle (i.e., the portion near
s = M*—u?) and give a term in A4(s) which may
vary rapidly with s over the range 20<s<80. Thus
the long range effect due to low energy n—= inter-
actions should show up strongly in low energy n—N
scattering.

(ii) the cut —oco<s<0 gives contributions to the
n—N partial wave amplitudes which vary slowly
with s over 20<s<80. We can regard this part of
A(s) as being due to the short range (0.3 107** cm)
interactions in ©7— N scattering.

The marked difference in the behaviour of these
two parts of the functions A(s) enables us to separate
out the effect of the n—n interactions.

RESULTS

(a) The low energy n—n effects should give some
characteristic features for A(s). For example, 45"(s)
and A§7(s) relate to the s-wave n—N amplitudes,
and (+) and (—) are charge combinations corres-
ponding to the T=0 and T =1 n—n interactions
respectively. If the low energy 7 =0 n—n inter-
action is important we would expect 457(s) to be a
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hump shaped curve with the centre of the hump near
s = M? =46. The experimental values shown in
Fig. 2 show this behaviour. Also ifthe T=1n—n
interaction is important A4$7)(s) should be fairly
constant in the low energy physical region s> (M p)?,
and it should change abruptly on going over to the
crossed physical region s<(M—p)* =32.7. The
experimental values of 4$7(s) do show this behaviour.

(b) Using Menotti’s results > for the T=0 J = 0
n-+n—>N-+N amplitude, we can compute the effects
to be expected for various forms of the 7=0 J =0
n—n phase shift 6. Figs. 3 and 4 show that rea-
sonably good agreement with the s, p, , and p; , n—N
data is obtained by using a N/D form for the T = 0
J = 0 n—n amplitude on using a single pole for N.
Fig. 5 shows the effective range plot for 63 correspond-
ing to these solutions. The phase shift &9 is attrac-
tive. It rises to a maximum around 25° or 30° for
t = (n—n energy)® in the region 5-7, and falls off for
higher n—n energies. A resonance in the 7 =0
J =0 n—n amplitude at low energies is ruled out
by the p-wave n-N data.

(c) Our solutions for 89 can be compared with
recent * solutions of the Chew-Mandelstam equations
for n—mn scattering. Some of the latter are shown
in Fig. 5. From this comparison we deduce the
values a, = 1.34-0.4, 1 = —0.184-0.05 for the scat-
tering length @, and n—n coupling parameter A.

(d) Other information on 3. Recent work by
Jacob et al.® shows that the results of the p--d
experiment ® are in agreement with a T7=0 J =0
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Fig. 2 Experimental values of :1;”(s).
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Fig. 3 Calculated values of A;”(s) for two N/D pole solutions
for the T=0 J=0 n—n amplitude. Experimental values are
shown by open circles.
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Fig. 4 Comparison of calculated and experimental values
(open circles) for the functions A‘afz) (s) and A‘J; (s) relating to
the py/; and py/, —N states.
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Fig. 5 Effective range plot for d,° for three of our solutions.
Also shown are Bransden and Moffat (BM), Jacob, Mahoux and
Omnes (JMO), and Taylor and Truong (TT) solutions of the
Chew-Mandelstam equations.
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n--m low energy attraction as given by the solution
(IMO) ¥, 4= —0.20 (Fig. 5). This is in good agree-
ment with the results of our #— N analysis. Recent
work 7 on the analysis of t-decay events show that
a positive value of a, is now allowed, and the value
a, = 1.3+0.4 appears to be in agreement with the
7-decay data. The experiments on n-+ N—n+n-+N
at low energy are difficult to analyse theoretically
in an accurate way. (Work to date has suggested
a,<1.0.)

(e) We conclude that the T=0 J=0 n—n
interaction is fairly strong and attractive at low ener-
gies. It plays a very important role in s-wave n-N
scattering and also gives noticeable effects in p-wave
n-N scattering. The behaviour which we deduce
for the phase shift 8 is in agreement with other
sources of information about this m#—n interaction.

(f) The three functions 47 (s) for the 8, P12 and py ),
n—N states are reproduced well by assuming there
is a narrow T=1 J=1 n—n resonance (p) at
tg~30 (Figs. 6 and 7). We represent the helicity
amplitudes for 7n+n—>N-+N by the d-function
approximation C;0(t—tg) (i = 1,2), and determine
the parameter C; from our n—N data. This value
of C, is related, via the nucleon form factors, to the
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Fig. 6 Calculated and experimental values (open circles) for
A;”) (s) (for s-wave m—N scattering).
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Fig. 7 Calculated and experimental values (open circles) for
457 (s) and 4Y}) (s) referring to the py/y and pyjp T—N states.

width of the n—n resonance p. Our value of Cy is
consistent with a half width of around 45 MeV.
Direct calculation of C, from the dispersion relations
for n+n—>N-+N is not vyet satisfactory. This is
probably due to the large values of ¢ which are im-
portant in the Omneés solution.

(2) Our analysis makes it possible to distinguish
the various contributions which generate low energy
s- and p-wave n-N scattering—Born term (long range
part) crossed (3/2, 3/2) resonance, n1—n interactions,
short range (or core) effect. For the s-wave case
the results have been published . For p-waves
the n—n effects are smaller, but are not negligible.
We give one example. The (3/2, 3/2) amplitude is,
of course, dominated by the strong long range Born
attraction. The crossed (3/2, 3/2) resonance term and
the T=1 n—n effect are very small in this case.
The short range (core) term is attractive and varies
very little with energy. The 7=0 n—n effect is
also attractive. It is twice the size of the core term
at threshold and is still larger than the core term at
pion lab. energy 250 MeV. We deduce that any
attempt to predict the position of the (3/2, 3/2) reso-
nance must take account of the 7=0 n—n inter-
action as well as the short range term.
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DISCUSSION

ZOLLNER: I should like to point out that it is very difficult
to explain the low energy pion production with a scattering
length a, of the order 1. To which consequences for the
m— N-scattering should lead an a,-scattering length of the order
0.3 as one can get from low energy pion production?

HamiLTON: A scattering length of the order of 1 is in fact
necessary to get enough attractive interaction to explain the
slopes of the S-wave pion-nucleon phase-shifts as a function
of momentum in the physical and crossed physical regions.

MANDELSTAM: Could not these slopes be explained by a
short range force?

HamiLtoN: No. The shape and height of the hump could
not easily be got from short-range effects.

OMNEs: Moreover, it is certainly impossible to get more
than a very rough order of magnitude information on the pion-
pion scattering length from pion production at threshold, once
there is competition between the opposite terms of about the
same magnitude: the peripheral interaction and direct pion
production in Py, state.

Cmi: I wish to stress that I also consider it unreliable to
attempt to deduce the pion-pion S-wave scattering length from
pion production experiments at threshold. The peripheral
contribution alone, evaluated with double spectral techniques
by Cassandro in Rome, turns out to come almost completely
from regions outside the strip, namely from regions with #>16 u?.

SAKURAI: Am I correct in saying that essentially all of the
isospin dependence is due to the g-meson?

HamiLTON: Almost all.

SAKURAI:
range term.

So there is no isospin dependence from the short

HamiLtoN: This appears to be approximately true.

Cmni: I would like to ask how sensitive is the value of
£©) at threshold to the value of the 33 pion-nucleon phase-shift
at energies above resonance. This is because if one wants to
obtain the parameters of the P-wave pion-pion resonance by
using a more refined relativistic version of the Bowcock-Cot-
tingham-Lurié (“ B.C.L.”) work, Carrassi and Passatore have
found that the high-energy tail of the dispersion integral contri-
butes considerably to the scattering lengths at threshold. One
has therefore to make a subtraction and determine the pion-
pion parameters by means of the energy variation of f() rather
than by its value at threshold. The value of C, obtained in
this way turns out to be about one-third of what you have
found, but subject to big variations due to the uncertainty
on experimental S-wave phase-shifts.

HamiLTON: In the case of f(*) the contribution of the Dy,
resonance to the left-hand cut appears in fact as more important
than the tail of the P, resonance. The case of f() is less clear
cut, but the situation in the partial wave method and here is
more favourable than in the B.C.L. method.

Ross: I want to ask Hamilton why Haber-Schaim obtained
good results in the f) case without taking into account pion-
pion interaction?

Hamicton: If I understand the question correctly Haber-
Schaim used a relation like a sum-rule. It related (a,—a,), f?
and (0_—o;). This is in no way in contradiction with our
results. The ¢ meson contribution is hidden in the values of
(a;—ay) and (0_—o0,).



