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Exploration in Extra-Dimension in the Era of LHC and Beyond

Abstract of the PhD thesis

In this thesis, we have considered a particular incarnation of BSM scenario, the Universal Extra Di-
mensional model (UED) in its basic as well as in its non-minimal version (nmUED). Non-minimality
in Universal Extra Dimensional (UED) framework is realized by adding kinetic and Yukawa terms
and also the mass and quartic coupling terms of various fields with arbitrary coefficients to the action
at boundary points of the extra space like dimension. This thesis mainly deals with the different
processes and their corresponding results of constraining the parameter space of this model from a
generic study of unitarity (in scalar sector) and also from the difference between the branching ratio
of Z — bb decay obtained from LEP collaboration and its SM estimate. After that we study some
flavor changing rare top decays. We examine the unitarity constraints in gauge and scalar sectors.
We have shown that some of the tree-level two-body scattering amplitudes in gauge and secalar sectors
do not respect partial wave unitarity. Unitarity of scalar sector of this model leads to an upper bound
on gauge or scalar boundary-localized (BLT) parameter which depends on the maximum number of
Kaluza-Klein (KK) mode considered in the analysis. We have also shown that the variation of the
upper bound of the gauge or scalar BLT parameter decreases with the increasing KK-modes. The
results are, in effect, independent of the inverse of compactifiaction radius. The upper bound on
boundary-localized parameter results in a lower bound on gauge and scalar KK-masses. Besides, a
recent estimation of the Standard Model (SM) contribution to Zbb coupling at two loop level, points
to a 1.20 discrepancy between the experimental data and the SM result. We compare our calculation
with the difference between the SM prediction and the experimental estimation of the above coupling
and constrain the parameter space of nmUED. We also review the limit on compactification radius
of UED in view of the new theoretical estimation of SM contribution to Zbb coupling. For suitable
choice of coefficients of boundary-localized terms (which is permissible from unitarity analysis), 95%
C.L. lower limit on R~ comes out to be in the range of 1 TeV in the framework of nmUED; while
in UED, the lower limit on B~! is 350 GeV which is a marginal improvement. over an earlier esti-
mate. The flavor changing decays of the top quark are severely suppressed in the Standard Model
by virtue of the Glashow-Iliopoulos-Maiani mechanism. We perform a complete one-loop calculation

of the flavor changing top quark decays ¢ — ¢y and ¢ — ch in this model. We find that the decay
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rates in the minimal variant of the model do not change much from their Standard Model values.
In the non-minimal version of this model, these decay rates can be higher for specific choices of
the boundary localized parameters for a certain range of inverse compactification radins. But these
model parameters lead to Kaluza-Klein particle masses that are in tension with various searches at

the LHC and at the LEP.
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Standard
Model

The Standard Model (SM) of particle physics is immensely successful and our best formulation
till date in explaining almost all the classification of elementary particles and their interactions
observed in high energy colliders like the Tevatron and the LHC. Fundamentally it is a quantum
field theory which elucidates the dynamics of our universe through matter and forces. All the
matter fields consist of fermions which interact among each other via vector fields. The vector
fields in the theory act as force carriers of the electro-weak and strong forces. The theory
incorporates a unified picture of three fundamental forces of the universe: the strong, the weak

and the electromagnetic forces.

In quantum field theory, so in the SM, the elementary particles are described by fields which
are local in spacetime with definite transformation properties under some particular symme-
tries. Therefore, it is necessary to start with the definitions of the symmetry group, in order to

understand the field content of the SM properly.



Chapter 1. Standard Model 2

1.1 Symmetries and Particle Content

Symmetries have always been powerful guiding principles in particle physics. The SM has been

formulated respecting the same path; it is a theory based on local symmetry.

Let us start with Noether’s theorem which states that any conservation law of physics originally
results from the symmetries of a particular theory. One important example is the theory of
Quantum Electrodynamics (QED). If we make a local symmetry in the free Lagrangian of the
fermion field, the invariance of the action requires new local field which is basically the gauge

field with some definite properties. The free Dirac Lagrangian can be written as

‘C?Z’ :@(za—m) v, (1.1)
where, 1 is the spin-1/2 Dirac field, ¢ = 170, and 4# are the 4 x 4 Dirac matrices. This
Lagrangian is invariant under the global transformation v — exp(—ieQ0)y where, 0 is the
global parameter being the same at all spacetime, @ is the charge of ¢ in the unit of electron

charge e. The invariance of action under this global transformation implies a conserved Dirac

current j* by Noether’s theorem:

Ot =0; " =eQuytp. (1.2)

However, the Lagrangian £, is not invariant under local symmetry, i.e. when 6 is a function of

spacetime. This evidently suggests that the derivative should be redefined as

Oy = D, =0, —ieQA,, (1.3)

where, A, is a vector field. The Ly (given in Eq. 1.1) with the replacement 9, — D,, is now

invariant under the following local transformations

b = Y = exp(—ieQb(x))¢, (1.4)
Ay — A=A, —0,0(x), (1.5)

and is finally expressed as

Ll = Ly + eQyu A, (1.6)
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matter particles
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neutrino neutrino neufrino Wiboson'g)

FIGURE 1.2: Standard Model interac-
tions.

GAUGE BOSONS

LEPTONS

STANDARD MODEL MATTER AND FORCE PARTICLES

FIGURE 1.1: The particle content of
the Standard Model.

Thus all the terms that were invariant under the global phase rotation are now invariant under
the local phase rotation provided we make the minimal substitution 9, — D,. We obtain the
second term in Eq. 1.6 from the imposition of local invariance. It demonstrates that, in principle,
a theory having only matter fields evidently mandates the existence of vector fields that govern
the interactions amongst fermions. One can thus generalize this principle for all interactions
through specific symmetries imposed on the theory. This is basically the fundamental idea for
constructing the SM that was initially proposed by Glashow [1] and independently by Salam
and Ward [2] which was extended later by Weinberg [3] and Salam [4]. The Standard Model
(SM) is a specific form of gauge field theory based on well known gauge symmetry SU(3). ®
SU2) ®U(1)y. The SU(3). part of the gauge group characterizes the strong interactions and
is independently called Quantum Chromodynamics (QCD), whereas the SU(2)r ® U(1)y part
describes a unified picture of the electromagnetic and the weak interactions and is called the

Electroweak sector of the theory. The fundamental particles of the SM is summarized in Fig. 1.1.

The gauge symmetry of the electroweak sector is described by SU(2)r, ® U(1)y. The SU(2).
group is related to the weak force where ‘L’ signifies that only left-handed fermions transform
under this group operation, whereas the U(1)y represents the weak hypercharge group (Y de-
notes the hypercharge). SU(2) has three generators and U(1) has one. In doublet representation
of SU(2) the generators can be represented as T, = 0,/2, where o, (a = 1,2,3) are the Pauli

matrices, given by
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0 1 0 —i 1 0
0'1:<1 0), 0'2:<i O), 0'3:<0 _1>. (17)

However, it is convenient to consider these matrices in the following combinations:

o4 = \}5(01 +i03) = (8 \gi) , O_ = \}5(01 —i0g) = <\3§ 8) v 03 (1.8)

An important feature of this group is the chiral nature of interactions. Unlike strong interac-
tions', the left- and right-chiral parts of the fields act differently under the electroweak gauge
transformations. Fermions are the set of spin-1/2 particles. Based on their electric charge and
ability to interact with strong nuclear force, they are subdivided into two types: leptons and
quarks. The leptonic sector consists of three flavors with a progressive mass hierarchy, which
contains integral or zero electric charged particles (defined in the unit of electron charge e).
Each charged lepton is also associated with a neutral left-handed particle called neutrino. We

represent the left-handed leptons as

() ) 0) e
€ L K L T L

with weak isospin 1/2 and weak hypercharge Y (Ly) = —1; where ‘¢’ corresponds to three different
lepton flavors with ¢: e, u, 7. The right-handed charged leptons are

E/ =eRr, LR, TR, (1.10)

with weak hypercharge Y (E;) = —2. The right-handed fields are singlets under SU(2). The
observed electric charges are given by Q = T3 + % Both ey, and er have electric charge (—1),
while v.r is uncharged justifying the hypercharge assignments for those fields. There is no

right-chiral neutrino in the theory which implies that the neutrinos are massless.

Quarks are distinguished from leptons for their interactions via the strong color force and their
fractional electric charge. Due to the requirements of color neutrality and strong force confine-
ment at low energies, free quarks are not accessible in nature. Similar to the leptons, based on the
masses, there exists a generational hierarchy of distinct quark flavor doublets. The left-handed

quarks are given by

We shall discuss it shortly.
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U c t
q = M = ) = )
1 d q2 < q3 b
L L L

with weak isospin 1/2 and weak hypercharge Y (¢;) = 1/3; and their right-handed counterparts

(1.11)

are represented by

uUpA = uRachtR and dA = dR,SR,bR, (1.12)

with weak hypercharges Y (uy) = 4/3 and Y(d4)
quark running from 1 to 3. The different properties of quarks and leptons such as mass, charge,
baryon number (£), lepton number (.£) are listed in Table. 1.1 and in Table. 1.2 [5].

—2/3; ‘A’ corresponds to generation index of

Mass Charge SU(3),
Lepton (MeV) (in uni% e) Lo | Lu | quantum(nl)lmbers
e 0.51 -1 1 0 0 1
W 105.65 -1 0 1 0 1
T 1777.03 -1 0 0 1 1
Ve <3x107° 0 11010 1
Vi < 0.19 0 0 1 0 1
vy < 18.2 0 0 0 1 1
TABLE 1.1: Properties of Leptons
Charge SU(3)c

Quark Mass (in unit e) Z\Z quantum( n)umber

u 1.8-3 MeV 2/3 /3] 0 3

d 4.5-5.3 MeV -1/3 /3] 0 3

c 1.25-1.3 GeV 2/3 /3] 0 3

s 90-100 MeV -1/3 /3] 0 3

t 174.98 GeV 2/3 1/31 0 3

b 4.15-4.21 GeV -1/3 1/3] 0 3

TABLE 1.2: Properties of Quarks

Since identical quantum numbers can mix with each other there arises coupling terms (e.g.
Yukawa Coupling) that mix the generations of three different quarks. Alternatively, one can
diagonalize the Yukawa coupling by incorporating a new basis for quark fields. The weak eigen-
states in Eq. 1.11 are considered to be the linear combinations of the mass eigenstates. Let
u’LZ and dz denote the mass eigenstates, 7.e. quarks in the basis that diagonalizes their Higgs
couplings. This latter basis is the physical one since it diagonalizes the mass matrix. The two
bases are related by unitary transformations:

L =Ujd].

uh = U9, (1.13)
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However, this simplification of the Higgs coupling results in a complication in the gauge coupling.

The gauge boson current will take the following form

1 . ) 1 . )
JHt e = —=upytdy, = —=u}y"Vijdy. (1.14)

gauge \@ \/§

Here,

Vi; = (ULU)45, (1.15)

which is a unitary matrix called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The off-
diagonal terms in V;; enable weak-interaction transitions among the three quark generations. As

an example, for simplicity considering only two generations we can have

Vi;d} = cosfedy, + sin s (1.16)

The term sin 8, allows an s quark to decay weakly to a u quark. However, it is noteworthy that no
such mixing occurs in the leptonic sector of the SM. No difference can be made between the flavor
and the mass eigenstates, since the neutrinos are massless in the SM?. It is evident that, mixing
between different generations of quarks leads to flavor violation and experimental observations
have set high constraints on this flavor changing neutral current (FCNC). Glashow-Iliopoulos-
Maiani [6] showed that if we demand Veogm to be a unitary matrix that in turn would result
in highly suppressed flavor changing processes mediated by neutral gauge bosons. A simple
parameter counting of a n X n unitary matrix generates n(n — 1)/2 independent real mixing
angles and (n — 1)(n — 2)/2 independent complex phases. Clearly, the Cabibbo |7]-Kobayashi-
Maskawa [8] matrix (Vokwm) contains three real mixing angles and one complex phase factor.
The complex phase factor is the only source of complex gauge interactions that violates CP
symmetry within the framework of the SM. The unitarity condition implies various relations

between its elements. For example, we have

ViaVay + VeaVay, + ViaVip = 0. (1.17)

The above relation can be represented as a “unitarity” triangle. The other five unitarity triangles
can be constructed corresponding to their orthogonal relations [9,10]. The areas of all the

unitarity triangles are the same and related to the measure of CP violation as [11-13]:
| Jep |[=2- A, (1.18)

where A corresponds to the area of the unitarity triangle. Currently, the best-fit values of the

various elements of the CKM matrix obtained from experiments are 5]

2Tt is worth mentioning that, discovery of neutrino mass necessitates a mixing matrix in the neutrino sector
as well, which is called PMNS (Pontecorvo-Maki-Nakagawa—Sakata) matrix.
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Via| = 0.974  |Vis| = 0.225 V| = 0.004
[Vea| = 0.220  |Vis| = 0.995 |V = 0.041 |- (1.19)
[Via] = 0.0082  |Vis| =0.04 [V = 1.009

SM is a chiral theory, completely free of axial vector anomalies among the gauge currents. The
cancellation of anomalies requires that leptons and quarks should appear in complete multiplets
associated with the structure as (Lg, Ef, ga,ua,d4), which in turn results in equal number of
quarks and leptons appearing in Nature. A prerequisite condition of the theory to be renormal-
izable is that it has to be anomaly-free which eventually ensures that the higher order corrections
in any perturbation theory will respect the same gauge symmetry as that of the tree level in

that theory [14].

The electroweak gauge group provides two sets of gauge fields: set of weak isovectors W), with
coupling constant g and a weak isoscalar B, with corresponding coupling constant ¢g’. For
the requirement of the gauge invariance of the Lagrangian, gauge fields Wj; must transform in
some way to compensate the variation of the fermionic field under an infinitesimal weak-isospin

rotation generated by G = 1 + i« - T which is given as:
v — (14+iaT) 1, (1.20)

where, a® is a local parameter. This requires the transformation of the gauge fields to be
Wi — Wi+ (1/g)(‘3uaa—|—fach2ac, whereas B), should transform as B, — B, —(1/¢")0,c under
an infinitesimal hypercharge phase rotation. These transformation laws in consequence imply
the covariant derivative of 1 has the same transformation pattern as 1 itself. The corresponding

field-strength tensors are defined as
Fit, = 0V — O, W5 + gf Wi WS (1.21)

and
B, = 0uB, — 0,B,. (1.22)

In the above, a = 1,2, 3 for the three components of the weak isovector, f®¢ is the antisymmetric

structure constant with f123 = +1.
We can now briefly sketch the SM electroweak interactions by the following Lagrangian,
Eelectroweak = ﬁgauge + Eleptons + Equarks (123)

with
1 Qa a v 1 v
Egauge = _Z ; 'FIU/‘F ny ZB,U'VBM , (124)
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Lleptons = Zié iW“ (aﬂ — igO’ . WM — igBMY) Lg
l
gQBMY> Ey, (1.25)
where £ is the generational index and runs over e, u, 7, and
g g
Equarks = EA:(]A Z’YM <8/1 - 150' . WH — ZQBMY> qa
/
+ ZA:uA iyt <8M - ingMY> uA
/
+28A H <au —Z'gBMY)dA, (1.26)
T 2

where A being the generation index of quarks, runs over 1,2,3 (previously mentioned). The

objects in parentheses in Eqgs. 1.25 and 1.26 are the covariant derivatives (Dy).

The Lgauge describes four massless electroweak gauge bosons, wviz. Wﬁ, Wﬁ, Wﬁ, B,. Mass
terms such as %m2WMW“ and %m2BMBF‘ are prohibited by gauge symmetry. On the other hand,
massless gauge fields interact in infinite range®. In Nature, only electromagnetism matches with
this criteria with the respective gauge field called the photon. Moreover, the gauge symmetry
forbids fermion mass terms of the form m f1/31/1 =m f(i/;R¢L+1/;L1/)R) in Egs. 1.25 and 1.26, where
i1, is left-handed fermion doublet and R is right-handed fermion singlet. The left-chiral and

right-chiral components of the fields transform differently under gauge symmetry, i.e.
left — handed doublet : 1)y — 1 = V" Ta T 0¥y,

right — handed singlet : g — ¢ = Vb
This means the mass terms are not invariant under SU(2)r, x U(1)y rotations.

The masses of gauge bosons (except photon) and chiral fermions can be generated in a very
unique way. We demand that gauge symmetries are respected everywhere except at vacuum
state. The mechanism of generation of masses keeping intact the gauge invariance of the theory
which is only broken by vacuum state, is called the spontaneous breaking of the gauge symmetry.
This mechanism will be discussed elaborately in the next Sec. 1.2. This idea of symmetry
breaking was first proposed by Nambu in the context of superconductivity, later Nambu and
Jona-Lasinio suggested the idea of generation of masses of elementary particles in a similar
manner [15,16]. Goldstone then suggested a theorem of the existence of a massless particle in

spontaneous symmetry breaking (SSB) [17], the general proof was shown in relativistic theory [18]

3However, massless gluon fields mediate the short range strong force. We will soon discuss on it.
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by Goldstone, Salam and Weinberg. In particle physics this is called the Higgs mechanism [19-22]

which is a relativistic generalization of the Ginzburg-Landau theory [23] of superconductivity.

Now, let us focus on the strong interaction part of the SM. This part, as previously mentioned, is
called Quantum Chromodynamics or QCD which is governed by the SU(3). gauge group. Here
‘¢’ stands for the color charge. Quarks are the only matter fields which interacts strongly. Each
flavor of quark has three color states. Leptons do not carry color charge and therefore do not
participate in the strong interactions. They are singlets under the SU(3) transformation. The

Lagrangian density for SU(3) gauge group can be written as [24-26]

1 o
Locp = =1 Gu,G™" + > ko (iP5 —my) q, (1.27)
&
with
gﬁu = auglij - 8ugﬁ + gsf/pqm gz gzn (1.28)

where, G, is the field strength tensor for the gluon fields G, p = 1,...,8 and g5 is the QCD
gauge coupling constant. There are eight generators AP of SU(3). group mediate strong inter-

action among quarks. The structure constants f'P9™ (p,q,m =1,...,8) are defined by
AP, NT] = 24 f/PAm )\ (1.29)

where the s are normalized by Tr (A\PA?) = 26P7, and Tr ([A\P, N1]\™) = 44 f/P9™,

The first term in the Lagrangian (Eq. 1.27) gives the self-interactions of gluons and Dj corre-

sponds to the covariant derivative for quarks; ¢ is the ‘k’th quark flavor; «, 8 = 1,2, 3 are color

indices (QI‘ed) (green leue) and
Djis = (Du)as = Oudap — igs Gy, Leg, (1.30)

where L¥ = A\*/2 in the fundamental representation and A\¥s are the 3 x 3 traceless Gell-Mann

matrices:
01 0 0 —i 0 1 0 0 01
M=110o0f, ¥=|i o of, ¥=]0o -1 0], X=|00 0],
00 0 0 0 0 0 0 0 00
0 0 —i 000 01 0 C(rooo
¥=1loo o, 2=foo0 1|, M=|10 <], X¥==2]01 0
' V3
i 00 010 0 i 0 0 —2
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The transformations of quarks and gluons under the SU(3) gauge transformation are given by
wq - wq/ — eia“ Lawcp

G? = G8 + (1/9)dua” + f'PGla™.

The color interactions are purely vector like and hence parity conserving. These interactions are
diagonal in the flavor indices. In addition, there exist ghost fields and respective gauge-fixing
terms which help in the quantization of the SU(3) as well as in the electroweak part of the
theory. In QCD, at high energies the coupling becomes weak, enabling perturbative study at
these energy scales or at short distances and implying the asymptotic freedom [27,28|; whereas,
at low energies or at large distances it becomes strongly coupled [29] which is sometimes termed
as infrared slavery, leading to the confinement of quarks and gluons. The confinement of quarks

and gluons gives rise to a complicated scenario of non-perturbative phenomenon.

The theoretical picture of QCD described above has been rigorously verified by multitude of
collider experiments. The scaling of structure functions in the deep inelastic collisions of nucle-
ons furnished the first signatures of hadronic substructure where parton model of hadrons was
invoked to explain this phenomenon. The scaling violations, that were discovered later, provided
the indirect hint of perturbative QCD. All particle interactions of the SM have been shown in
Fig. 1.2.

1.2 Brout-Englert-Higgs Mechanism

Higgs proposed the idea of generating mass in particle physics in a relativistic invariant way [20,
21]. Though that treatment was purely classical. At that time, Brout and Englart demonstrated
that the same idea could be incorporated in non-Abelian models as well [19]. Guralnik, Hagen
and Kibble showed the different formalism how to evade Goldstone theorem [22]. The idea of
generating masses of the gauge bosons was exhibited first time by Weinberg and Salam [3,4].
Finally, the proof of renormalizability of such a spontaneously broken gauge theory was provided
by 't Hooft [30,31]. In this way, along with the Glashow’s idea [1] of extending the gauge group
from SU(2)r, to SU(2)L @ U(1)y (thus giving a unified picture of the electromagnetic and weak
interactions), the work of Weinberg and Salam marked the completion of the Standard Model
of the particle physics [3,4] (also known as Glashow-Weinberg-Salam model) where the gauge
bosons and the fermions acquire their masses via the Brout-Englert-Higgs mechanism (BEH

mechanism).

Let us introduce a complex scalar in this context. Since we intend the Lagrangian to retain

all its symmetries, we can only add SU(2);, ® U(1)y multiplets. So the complex scalar is an
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isospin doublet, i.e. it is a left-handed doublet with weak isospin 1/2. The electric charges of
the upper and the lower component of the doublet are chosen to ensure that the hypercharge or
U(1) charge is Y = +1. This requirement is very essential and important for reasons that will

become more evident later. The scalar doublet is given by

o = ( ) ) _ [ oo ) (1.31)

S

¢’ (¢3 +ig4)

1
2

S

The Lagrangian for the field ® which is gauge invariant may be written as,
Ly = (D'®)1(D,D) - V(9), (1.32)

where V(®) is the scalar potential given by
1 ! 1 A
v = 3t (et ) + o (Let) e
i=1 i=1

The Higgs potential in Eq. 1.33, for u% <
0, takes the form depicted in Fig. 1.3. Any
choice of the vacuum that breaks a symmetry
will generate the masses of the gauge bosons

in the SM. We choose ¢1 = ¢ = ¢4 = 0 and
¢3 = v:

0
Vacuum = @y = \}5 ( ) (1.34)
v

FiGure 1.3: The Higgs potential in the
Standard Model. This vacuum defined in such a way is electri-

cally neutral since T3 = —% and with our choice
of Y = +1 we have @ = T3+ 1Y = 0. This choice of the vacuum breaks SU(2); ® U(1)y,
but leaves U(1)gy invariant, leaving only the photon massless and results in the breaking of the

gauge symmetry at the vacuum state.

Let us consider an infinitesimal rotation of ® as (1 + iaR)®y = ®¢ and invariance implies
R®y = 0, where R is associated with some kind of rotation. The status of SU(2)r, U(1)y and

U(1)gm generators under symmetry breaking are:

SU2)p : 01Py = <(1) ;) \jﬁ (S) = —1—\}5 (;) # 0 — broken. (1.35)
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0 —\ 1 (0 i (v

o9®y = — = —— 0 — broken. 1.36

w00 () () -
1 0 1 {0 1 (0

o3P = — = —— 0 — broken. 1.37

m=(y )5 0) =% () o

1 0\ 1 (0
A N (| IR U PP
)

This implies that all the four gauge bosons (W', W2 W3 and B) acquire their masses through

\)

the Higgs mechanism, while for the photon to remain massless the U(1)gy symmetry should

leave the vacuum invariant and indeed:

10 0
U)gwm : QP = %(03 +Y)Py = (O O) \}i <v> = 0 — unbroken. (1.39)

So U(1)gwMm is conserved as the vacuum is neutral and we have:

(po — €iaQ@0 = (I)() (1.40)

Let us introduce the physical scalar ® defined by the relation

1 (0 )
o= NG <v> + 9, (1.41)

where (0|®'|0) = 0. The field ® cannot be treated as quantum field since its VEV is non-zero and
so it cannot be expanded as creation and annihilation operators. In that sense ® is quantum

field. Alternatively, ® can be written as [32]

y a a 0
b= L iveo . (1.42)
V2 v+h

Here h is the physical Higgs scalar. The &% are the massless pseudoscalars Nambu-Goldstone
bosons [15-18,33| that are associated with broken symmetry generators. These are the unphysical
fields in the theory. The £ field is the phase of the field ®. We know any phase, even if, it is a
spacetime dependent one, is irrelevant because of local U(1) symmetry. For some specific choice

of gauge, we can have

jd > a a 1 O
D5 d=e X p = , (1.43)
V2 \ v+h

which in turn implies the disappearance of the £ field from the Lagrangian. The Lagrangian

then contains only physical fields and the gauge in which these unphysical fields disappear from
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the physical spectrum is called unitary gauge. The scalar degrees of freedom have been eaten up
by the gauge bosons and increase the longitudinal degrees of freedom, thus creating the masses

of the gauge bosons. The covariant derivative of ® can be written as
Db = (9, —ie- W, —iLB,Y )& 1.44
pE =\ G T 0 WV g P . (1.44)
The gauge boson mass terms come from the square of Eq. 1.44, evaluated at the vacuum expec-
tation value of the scalar field:

/ 2

~ ~ 0

(D,®) (D'd) = %(O v) [ggaWZ + 92[3’#] ( ) + h terms, (1.45)
v

where the interactions and mass terms involving the physical h field have been clubbed together

as the ‘h terms’. If we simplify the above expression explicitly, we find

_1v2

AL 54

[{OV)? + Vi)"Y + (—gWyi +9'Bu)?] (1.46)
After the spontaneous breaking of the electroweak gauge group, the third component of the

SU(2)1, gauge field Wﬁ and the U(1)y gauge field B, have identical quantum numbers and they

get mixed in the Higgs kinetic term. The three massive vector bosons are given by:

1 . . gv
W;it = E(Wli F zWﬁ) with mass My = ?; (1.47)
1 5 . 9>+ 9"
Z, = W (QW;L - Q/Bu) with mass Mz = 5 v; (1.48)

The fourth vector field, orthogonal to Z,, is the photon field which remains massless:

1

P —
® 92+gl2

(9Wi+gB.)  with mass My =0. (1.49)
The covariant derivative in terms of mass-eigenstates can be written as

. e ) 1 Y
D;U' = a’u — Zg(W/j_T+ =+ WN T ) — sz“ <g2T3 — gl22>

;99 s, Y
i 92+g/2AM(T +5), (1.50)
with
1 1
T = —_(T' +4iT?) = o+, 1.51
\/5( iT*) 5 (1.51)

It is evident that the last term in Eq. 1.50 shows that the massless photon field A, couples

to the gauge generator (T + %) which is nothing but the electric charge quantum number @Q;

hence the coefficient of the electromagnetic interaction which is the last term of Eq. 1.50 can be



Chapter 1. Standard Model 14

identified with the electron charge e by

/
e=—99 (1.52)

To further simplify the expression of Eq. 1.50, let us define the weak-mizing angle 0y, which is
the mixing angle of the basis (Wﬁ, B,) and related to the (Z,, A,) basis as:

Zy\ cosfBy —sin Oy Wg (153)
A,  \sinfy  cosfy B, -

so that )

cos by = $, sin Oy = SN (1.54)
/g2 _|_g/2 /92 +gl2
The Z, coupling and then D, can be rewritten as
23 /2Y 2 2\3 2
9T =975 =g +4)T" = 4°Q, (1.55)
D, =8, —igWHTr + WoT™) —i—L—7,(T3 — sin? 0 Q) — ieA,Q (1.56)
w= O T H cosby M w pEe '

with g = e/sinfyy. Clearly, the masses of W and Z bosons are not independent, but are related

by My = My cos6y. The Fermi constant is related to gauge boson mass by

Gr_ ¢
V2 o 8ME’

(1.57)

where Gr ~ 1.16637 x 107°GeV 2 (determined from the muon lifetime measurements). The

weak scale v is given by:

2Mwy
V= ——"

~ (V2Gp) Y2 ~ 246 GeV. (1.58)
g

The fermions can have masses by Higgs mechanism. They can have gauge invariant interactions
involving the Higgs bosons. To generalize for all the fermionic fields, we can write the Yukawa-

type interactions as:
L = —yl.q) Ouf, — yH @, dl — i L] OER +h 1.59
Yukawa Yirdp P up — Yjpdp Pdp — Yy Ly LR + h.c. (1.59)

where, ®¢ = igo®*; j, k represent the generational index and y*, y¢, y' are the respective up-
quark, down-quark and charged lepton Yukawa coupling matrices. After spontaneous symmetry

breaking the general form of the mass term of leptons can be written as m ;g with the mass

4

matrices (my);;, < y5v, (mg);, o y;.ik,v, (my) ;5 o yé-kv . These mass matrices are in the

4The mass terms of the fermions also break the chiral symmetry of the theory.
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flavor basis, and not in the mass basis. Due to absence of right-handed counterpart the neutrino

remains massless in the SM.

1.3 Present Experimental Status of the Standard Model

1.3.1 The Higgs

The observations from the collider experiments at center of mass (c.m.) energy /s < 1 TeV have
profoundly consolidated the Standard Model. The last milestone in the high energy frontier has
been the discovery of the Higgs boson at the LHC [34, 35] which marks the completion of the
Standard Model (SM) of particle physics. The path towards the discovery of the Higgs boson has
been gone through many experiments, much more data have been scrutinized, and hence there
is hardly any sign of anomaly in the Higgs measurements. Precisely, it has been tested through
all its dominant production modes (gluon fusion, fusion of vector boson, W or Z Higgstrahlung,
and ttH production) and also through the most sensitive decays of Higgs boson at the Large
Hadron Collider (LHC): yy, WW, 77, 4-leptons and bb. One of the agreed measurement with
the theoretical expectations is the signal strength p which is defined as the observed cross-section

times the branching fraction of a process divided by the SM expectation of that process.

ATLAS Prelim. |—o(stat)  Total uncertainty
m, = 125.36 GeV —0(1Sr¥eso'rnyc' Floonp
Phys. Rev. D 90, 112015 (2014)
H-yy 105
\ 19.7 o' (8 TeV) + 5.1 b (7 TeV,
h=1179% 8% + O o |
| Combined CMS my = 125 Gev
arXiv:1408.5191 M=100+0.14 ~0.96
Hozze .4l |53 — P
H - yy tagged |
u= l.44f8:gg ¥ —— p=112+0.24 —
|
arXiv1412.2641 H - ZZ tagged
H - WW* - [vlv 733 et H=1.00%029 "
— +0.23 |+017 | H - WW tagged
= . H— |
V) 1.09>0_21 0.14 ‘ ‘ u=0.83+021 —=
arXiv:1409.6212
- bb +0.3 H - 11 tagged e
W,ZH - bb - 03 1=091+0.28 E
— +0.4 |+02
M= 0'5-0.4 <02 ‘ | H - bb tagged =
ATLAS-CONF-2014-061 H=0842044 |
H- 1t 83 — 0 05 1 15 2
w0 lros Best fit o/ag,,
W =1.475|"03 —r

| |
0.5 1 15 2
Signal strength (1)

released 12.01.2015

s=7TeV [Ldt=45471b"
Is=8TeV [Ldt=203fo"

FIGURE 1.4: The measurement of the signal strengths 1 = o /ogym of the various decay channels
of Higgs by the experiments ATLAS [36] (left) and CMS [37] (right).

Fig. 1.4 shows the signal strengths of the various decay channels analyzed by both ATLAS and
CMS at 25 fb~! integrated luminosity and at c.m. energy /s = 7 — 8 TeV corresponding to a

production of about 10% Higgs boson in the dominant production modes. More concretely, the
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results are consistent with the SM within 1o. By the year 2022, the LHC is expected to produce
around 300 fb~! integrated luminosity at c.m. energy of /s = 13 — 14 TeV. There remains a
fair possibility that the LHC will be upgraded into the high-luminosity LHC (HL-LHC) and
expected to deliver about 3000 fb~! of data at c.m. energy /s = 14 TeV by the year 2035 [38].
Fig. 1.5 shows the projected precision of signal strength by the ATLAS experiment®.

ATLAS Simulation Preliminary
Vs =14 TeV: [Ldt=300 fb™* ; [Ldt=3000 fb™*

H-yy (comb.)

H- ZZ (comb,)

H- WW (comb.)

H- Zy (incl.)

H_ bp (comb)

HoTt (VBF-like)

Hopp  (comb.)

Ap/u

FI1GURE 1.5: The ATLAS prospects for the measurements of the signal strengths of the various
Higgs decay channels with integrated luminosity 300 fb~! and 3000 fb=! [38] by the year 2035.
The hashed areas indicate the theoretical uncertainties.

1.3.2 Other Aspects

Earlier, the electroweak theory was formulated mainly in the context of S decay; to put it
in another way, the construction of this theory was based on the experimental evidences of
the charged-current weak interactions. The Fermi theory of these weak interactions had been
developed and tested experimentally prior to the formulation of the SM°. The detailed analysis
of unitarity of four-fermion interactions (v, +e~ — v.+ ™) showed that the momenta of initial
state fermions should be less than ~ 300 GeV [39]|. This necessitated the effective Lagrangian
Lo should be modified at high momentum transfer, i.e. at small distance. Some agents are

needed to transmit the action of a current from one point (say, ) to another point (say, x)

°In these Figs. 1.4 and in 1.5, H is basically the SM Higgs h according to the notation used in this thesis.

SBefore the construction of the SM, the effective Lagrangian was considered to have the form as Leg =
Li; + Lg: + Lgg [39]. Here, L£;; corresponds to purely leptonic part such as muon decay, L£7; stands for
all partial leptonic interactions such as # decay and L7 represents all the leptonic weak interactions such as
A® — p+ 7. In these Lagrangians, all the corresponding currents were taken at the same spacetime point z.
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to generate such “effective” nonlocality’. This gave the possibility to assume the existence of
heavy massive charged gauge bosons. The smallest unitary group which contains an off-diagonal
generator (corresponding to the charged gauge boson) is SU(2) with the relevant generators o
and oy. To explain the infinite range electromagnetic interaction a massless gauge boson has to
be incorporated. Only o3 would not serve the purpose since that would lead to a contradiction

of charge assignment of particles. More precisely, the next simplest construction was to take
SU(2) x U(1), instead of SU(2).

The weak neutral current (WNC) was discovered in 1973 by the Gargamelle collaboration at
CERN [40-42| and by HPW (Harvard-Pennsylvania-Wisconsin) group at Fermilab [43]. The
structure of the WNC has been verified in many processes including (purely weak) neutrino
scattering such as ve — ve; weak-electromagnetic interference, atomic parity violation and in
polarized Méller scattering. The W and Z bosons were discovered at CERN by the UA1 [44] and
UA2 [45] groups in 1983. Even the measurements of their masses have been in excellent agree-
ment with the SM expectations. The LEP II runs profoundly verified the SM gauge group with
the non-abelian nature as well as the spontaneous symmetry breaking of the gauge group [46].
The LEP and SLC allowed tests of the SM at a precision of ~ 1073, The four LEP experiments
ALEPH, DELPHI, L3, and OPAL at CERN produced some 2 x 107 Z’s at the Z-pole in the
reactions ete™ — Z — IT17 /qq [47,48]. The SLD experiment at SLAC had a relatively smaller
number of production of Z’s ~ 10° but had the significant advantage of the high polarization
(~ 75%) of the e~ beam [47,48|. One important aspect about the Z factories was the most
precise measurements of the number of light neutrino types N, which comes from the studies
of Z production in eTe™ collisions. The Z boson decays into quarks and charged leptons. The
invisible width is assumed to be due to N, light neutrino species each contributing to I'iny,
which is estimated by subtracting the measured visible partial widths corresponding to Z de-
cays into quarks and charged leptons, from the total Z width as given by the Standard Model.
The combined results from four LEP experiments give the stringent constraint on the number
of ordinary neutrinos as N, = 2.9841 + 0.0083 [46], which consequently gave the hint of the
existence of the three generation flavor structure of the SM. On the other hand, the study of
charged current interactions is now based on the study of Cabibbo-Kobayashi-Maskawa (CKM)
matrix which measures the mismatch between the family structure of the left-handed u-type and
d-type quarks. The magnitudes of |V;;| for CKM elements has been given in previous section
(Eq. 1.19).

The SM has also been verified at high level accuracy beyond the tree level. Experimental
measurements on the Z-pole at LEP has tested the radiative corrections to the gauge boson
propagators at high precision. There are four two-point functions: Il,,(¢?), IL,z(¢%), zz(¢?),

yw(q?), where the measurements have been made at two energy scales: ¢* = O,M%. So

"The Leg can be replaced by [[jx(2)]5S(x —2')[jx(z')]e dz’ +. . .; where ji(z) being the corresponding current
density at that point x and S(z — z’) being the scattering wave amplitude [39].
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there are eight two-point correlators, corresponding to four types at two different energy scale.
Ward identity ensures II,,(0) = II,z(0). From remaining six, three linear combinations can
be absorbed in the redefinition of the parameters: Fine-structure constant, Fermi coupling (ex-
tracted from muon decay) and Mz [49]. The remaining three combinations are called the

Peskin-Takeuchi parameters or oblique corrections or S, T' and U parameters [50].
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FIGURE 1.6: lo constraints (39.35% for the closed contours and 68% for the others) in the TS
plane. S and T represent the contributions of new physics only. The black dot indicates the
Standard Model values S =T =0 [5].

The T parameter is proportional to the difference between the Z and W self-energies at ¢> = 0,
while S and (S + U) are associated with the difference between the Z and W self-energy at
¢ = M% W and ¢ = 0 respectively. S, T and U parameters are correlated. The most recent fit

to the electroweak precision data gives [5],
S =0.06£0.11, T =0.09+0.13, U =0.01£0.11. (1.60)
Fixing U = 0 (same as in Fig. 1.6) moves S and T slightly upwards,
S = 0.07 £ 0.08, T = 0.10 £ 0.07, (1.61)

with 7" having a 1.50 deviation from zero [5|. Fig. 1.6 shows the allowed region in the T'— S
plane. The SM contributions have been subtracted from the parameter, i.e. S — Sexp — Ssm

and T" — Toxp, — Tsm. The SM point on this plane is the origin (0,0). Evidently, this is in good
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agreement with experimental bounds and hence sets strong constraints on any extension of the
SM.

1.4 Shadows over the SM

SM has been immensely successful model in explaining many experimental observations regarding
particle interactions, but it suffers from a few shortcomings. Some of these issues have been

discussed below.

1.4.1 Gauge-Hierarchy Problem

Let us take a simple example of interaction of a single fermion 1 coupled to a massive scalar ¢.

The Lagrangian is given by

— il H }u _ 7, _ﬂz 2_54
L = i)y,0 1/1+28 PO — Ao 2¢) 4¢>. (1.62)

After the spontaneous symmetry has been broken, the fermion gets mass my = A\fv/ V2. The
corrections of fermion mass is shown in Fig. 1.7 (a), i.e. it is given by one loop correction to the

fermionic propagators due to scalar particle. The corrected mass is given by
my(new) = mys + omy. (1.63)

The correction depends on the cutoff A of the theory:

3\2m f A
smy=——d Lt = 4 1.64
e (1.64)
where, - - - indicates terms independent of A. The correction to the mass of the fermion depends

explicitly on my. In the limit where the fermion masses are very small, the Lagrangian 1.62 is
invariant under chiral transformations. The decreasing fermion mass increases the symmetry of

the theory and hence it is said that the fermion masses are protected by the chiral symmetry.

Similarly, we can compute corrections to the scalar propagator due to the fermion loop and
scalar loop as shown in Figs. 1.7 (b-c). Considering, Figs. 1.7 (b) and (c) the scalar obtains a
correction as It

om? = @(—m} +A). (1.65)
Unlike the corrections for fermionic mass, the mass correction for a scalar particle is found to

be quadratically divergent. For this reason, nothing can actually protect the mass of the scalar
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particle which has very large mass corrections. If we assume the theory to be valid up to the
Planck scale (Mp; ~ 1019 GeV), i.e. scale at which the quantum corrections to gravity become
important, corrections to the scalar particles will be of that order of magnitude. If the mass of
the particle and its correction are not at most of the same order, the theory is said to have a

naturalness problem. The same thing happens for the SM Higgs boson.

FIGURE 1.7: One-loop quantum corrections to the fermion mass (a) and to the Higgs mass (b,
¢, d) in the SM.

The radiative corrections to the fermions or the gauge bosons are always proportional to their
masses and hence one cannot generate the masses of these fields purely from radiative contri-
butions. This happens because there is a mismatch in the degrees of freedom of a massive and
massless gauge boson or fermion. In the case of fundamental scalars, the situation is entirely
different; Eq. 1.65 reflects the fact that one can generate their masses radiatively even if they
are massless at tree level. So, all in all, there is a lack of symmetry that can protect the Higgs
mass. Furthermore, the large hierarchy between the weak scale and the Planck scale makes it
difficult to explain the light Higgs mass (~ 125 GeV) within the SM. This is known as the gauge

hierarchy problem which is, in principle, a naturalness issue with the SM.

1.4.2 Neutrino Mass and Fermion Mass Hierarchy Problem

In the SM, neutrinos have exactly zero mass since there is no right-handed neutrino. With no
suitable right-handed partner, it is impossible to explain the existence of masses of neutrinos.
Measurements of neutrino oscillations signify that neutrinos spontaneously change flavors which
in turn implies that they have non zero masses. However, the measurements of the neutrino
oscillation probabilities shed lights on the mass-squared difference of the different flavors of
the neutrinos and not on the absolute masses of neutrinos. The best constraint on the absolute
mass of the neutrinos has been obtained from the precision measurements of tritium decay which
provides an upper limit as 2 €V on the mass on electron-neutrinos (v,) [51]. Clearly, neutrinos
have masses at least seven orders of magnitude lighter than that of the electron in the SM.
Another issue that is not well explained by the SM is related to the hierarchical pattern of the

fermion masses.
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Experimentally, the CKM matrix is constrained and follows a hierarchy. In principle, the SM
gives no prediction for the hierarchy observed in the CKM matrix. This hierarchy is related to the
hierarchy obtained from the experimental values for the masses of the fermions. Since the fermion
masses are generated from the spontaneous symmetry breaking mechanism, it is unnatural to
obtain masses with so different order of magnitude. For instance, the ratio Mmejectron/Mtop 18
of the order of 3 x 1075, This issue is usually known as the fermion mass hierarchy. These
altogether necessitate an extension of the Standard Model and indicates the existence of new

physics at the TeV scale.

1.4.3 Strong CP Problem

CP symmetry is the combination of charge conjugation (C) and parity (P). Though both
symmetries hold for electromagnetic interactions they are separately violated in weak inter-
actions [52,53]. To ameliorate the problem of individual C and P violations, CP symmetry
had been proposed. Experimentally, the CP violation has been discovered in 1964 by Cronin
and Fitch by the experiments with K° [54,55]. Later the violation of CP symmetry in case of
B mesons has been observed [56-58]. If we consider the QCD Lagrangian, one can add a CP
violating term ﬁ%ggglm@“’ to the Lagrangian, where QNW = ewaﬁgaﬁ is the dual field and 6
is an arbitrary dimensionless parameter [59]. One cannot make the term zero by simply setting
the 6 to zero, since weak interaction corrections result in a shift in 6 by 66|yeax ~ 1073 which in
turn requires a fine-tuned cancellation among the tree and the weak contributions. This issue
is known as strong CP problem. The best possible theory has been introduced by Peccei and
Quinn [59,60] to solve this issue which postulates the existence of a new particle names axion,
generated from a spontaneous breaking of a new symmetry called Peccei-Quinn symmetry (PQ

symmetry).

1.4.4 Existence of Dark Matter

From various astrophysical observations it has become evident that our universe consists of 4.9%
ordinary matter (constituted out of SM particles), 26.8% dark matter (DM) and 68.3% dark
energy [61]. The earliest astrophysical evidence of DM came from the study of rotation curves in
spiral galaxies; it was observed that the outer constituents of the Coma cluster [62] were moving
far too quickly than what can be explained by the visible cluster mass. Virial theorem can
explain this observation only if one postulates that the cluster contains another large component
of mass which is invisible, viz. dark matter. The relation between the luminosity (L) and the
maximum circular velocity (vmax) of the constituent members of spiral galaxies L o vfﬂax with
B = 3 ~ 4, can be explained using virial theorem only if the existence of DM is taken into

account [63]. Other evidences of DM can be obtained from Gravitational lensing [64,65] and
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Bullet cluster [66]. Some of the recent experimental observations [61,67] show that the baryonic
density and total matter density are different. This ensures that the DM is necessarily non-
baryonic. The many evidences of existence of DM mandates that DM should have the following

properties:

e DM is electrically neutral. Otherwise it would be able to emit photons which in turn could

have modified observations from astrophysical objects, like quasars.
e The DM interacts feebly with baryons.
e The DM must be stable, i.e. DM must have lifetime larger than the age of the universe.
e Large scale structure formation demands the DM to be non-relativistic.

e DM can not be comprised of SM particles as most of them are charged. Among the SM
constituents neutrinos can be a viable DM candidate. But neutrinos are very light particles,
it is of the order of eV [51|. With this small mass it can not contribute significantly to the
matter density of the Universe. Moreover, since the neutrinos are so light, they are still
relativistic and can constitute what is called hot dark matter. This type of hot DM can

not give any explanation for the galaxy formation rate of the universe after the big bang.

Thus it becomes obvious that SM can not accommodate a suitable DM candidate. The most
popular examples of DM candidates are axions and WIMPs (or weakly interacting massive
particles). Many BSM models like Supersymmetry and Inert Higgs Doublet Model can provide
suitable DM candidate. In mininal Universal Extra Dimensional (mUED) model the first KK-
level photon v() (or to be precise the BM) is the LKP (the lightest Kaluza-Klein particle). The
stability of LKP is mandated by the conservation of KK-parity. Various aspects of LKP as a
dark matter has been discussed rigorously in Refs. [68-80]. In the case of non-minimal Universal
Extra Dimensional (nmUED) model the identity of LKP is no longer fixed like the case of UED,
rather it can change depending on the choice of parameters of the theory. This flexibility shows
that either of v(1) (or BM), Z(D (or Wél) ), v and HM [81,82] can be the DM candidate in
nmUED.



The Extra Dimensional
Models

2.1 A Historical Journey to the Birth of an Extra Dimension

Of all the properties of spacetime, dimensionality has drawn a considerable attention which has
always been a matter of curiosity and discussion among all the scientists and the philosophers
of all time. Why is the space three-dimensional? There have been two different perspectives
addressing this issue. One obvious answer is to seek for the possibility of existence of one
more dimension, a fourth dimension; other approach is completely having historical interest
though some of these are still compelling. This is to anyway deduce the only possible value of
dimensionality of space as three. One of the important arguments made by Ehrenfest [83] and
many others' that for d = 3 planetary orbits are stable’. For d > 4, Newton’s inverse-square
law of gravitation gets modifications. Though the justification for taking d = 3 is based on the
validity of law of gravitation at all length scale, the modern-day searches for extra dimension

look for such discrepancies from inverse-square law at short distances.

'For complete lists and arguments see Refs. [84,85].
2The stability argument does not rule out the possibility of d < 3, but the values of d = 4,5, ... onwards, are
obviously ruled out.

23
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Introduction of extra-dimension became immensely popular in physics with the advent of relativ-
ity. Minkowski’s geometrical interpretation of the Lorentz transformations in a four-dimensional
spacetime had already stepped towards the direction of the era of extra dimensions. Minkowski

did not initiate a fourth dimension; rather he reinterpreted time as a dimension.

But in physics, the concept of theorizing a dimension or more dimensions was developed from an
effort to unify the different forces of Nature. In 1914, a year before Einstein published General
relativity, Gunnar Nordstrém [86] propounded a five-dimensional vector theory concurrently
describing the theory of electromagnetism and a scalar version of gravity. On the other side,
Theodore Kaluza, in 1919 worked out a tensor theory [87]. To explain the issue related to the
query how the extra dimension is hidden from our physical world, both Nordstrém and Kaluza
assumed that the fields do not depend on the fifth dimension, 7.e. all the derivatives of the
fields with respect to the fifth dimensional coordinate vanish. This condition is recognized as
“cylinder” condition. Kaluza actually considered a five-dimensional tensor theory in the absence
of any matter. The five-dimensional metric gp;ny decomposes into a four-dimensional metric
9w, a vector potential A, and a scalar ¢. Kaluza identified g,,, with the usual four-dimensional
metric which is related to gravitation, and the vector g,4 as the electromagnetic potential. Kaluza

ignored the scalar by setting it unity which leads to the unphysical condition F,, F** = 0 [84,88|.

To treat extra dimensions at par with other dimensions, Oskar Klein came up with the idea [89]
that the extra dimension could be compactified to very small size. This extra dimension could be
assigned a circular topology S* with the radius of the circle very tiny. He also gave a convincing
proposal on the non-appearance of extra dimension from the physical world by suggesting that
the presence of extra dimension would not be observed unless the experiments have a resolution
higher than the radius of the compactified circle. Fields on the circle can be expanded as a
Fourier series having infinite number (n, say) of modes, which is termed as Kaluza-Klein or KK-
modes. Each mode is associated with quantum number |n|/R which is nothing but the discretized
momentum ps in the extra dimension, R being the radius of compactified circle. The unusual
smallness of R results in very large value of momentum for all modes n > 0, which eventually
makes them beyond the reach of observation. Only the zero mode (n = 0) remains observable.
Klein thus recreated Kaluza’s cylinder conditions by incorporating a tiny compactification radius.
Since U(1) is the symmetry group associated with S1, compactification of extra dimension on
a circle essentially introduces a U(1) gauge-invariance in the theory. The U(1) invariance of
the five-dimensional theory implies that KK-fields have electric charge quantized in terms of the
mode number. So the n = 1 mode could be treated as the physical electron whereas the physical
charge of electron could be identified as the quantized-charge of Kaluza-Klein theory. But this
logic of charge-quantization works only for higher modes (from n = 1 and onwards) which on the

other hand have masses proportional to a very large scale. This internal contradiction and the
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discovery of nuclear forces, i.e. the existence of two other fundamental forces in Nature other

than electromagnetism and gravitation were the major setback of the Kaluza-Klein theory?®.

Higher dimensional theories resurrected with renewed interests in the late 1970’s and 1980’s with
the advent of supergravity and superstring theories. In the 1960s, the Quantum Chromodynam-
ics was not developed and String theory was suggested as a theory of strong interactions. In
1968, Gabriele Veneziano proposed a form of scattering amplitude which described the picture
of strongly interacting particles [91,92]. This model came with the realization that the spectrum
of hadronic states could be determined from relativistic string. Initially this string picture was
strikingly successful, but the appearance of spin-2 hadron in the spectrum of states of a closed

string had no analogue in the hadronic spectrum and made this model abandoned.

Scherk and Schwarz [93] revived the idea of string by proposing it not as a theory for hadrons only,
rather they reinterpreted this theory as a theory of all interactions, which eventually includes
gravity. The spin-2 massless excitation of closed string was to be interpreted as a graviton.
Quantization of this theory leads to some negative-norm states in the string spectrum and also
some other unavoidable problems. But these problems disappear if the spacetime dimensionality
is taken to be 26. The requirement for consistency in quantum theory of strings leads to the
higher dimensionality of spacetime in string theory. So it is evident that higher dimensionality
of spacetime in string theories is not an a priori assumption. In a sense, the idea of unification
of fundamental interactions evolves naturally from string theories; the quantization of the open
and closed string follows the similar path except the open string has a spin-1 massless mode
whereas the closed string has spin-2 massless mode, indicating a possible way to the unification
of Yang-Mills theory and gravity. This quantization is for bosonic string only. To take care of
the fermions in the picture one should impose supersymmetry on the action and identify the
Majorana fermions as the superpartners to the bosonic coordinates; the spacetime dimensionality
will be 10 instead of 26 to maintain the internal consistency of the theory. However, the extra
dimensions considered in these theories are extremely small (of the order of Planck length M ]Sll)

and were beyond the scope of any possible experimental reach.

In 1990s, people started to think of the possibility of extra dimensions much larger than the
Planck length:

o A TeV ™ lsize extra dimension was first propounded by Antoniadis [94] in the year 1990
related to the phenomenon of supersymmetry (SUSY) breaking.

e In the year 1996, Horava and Witten [95,96] proposed an extra dimension in M-theory
which can move down the string scale to the grand unification scale Mgyt ~ 106 GeV

and thus unifying the gravity with other forces at the same scale.

30n this account see Reference [90].



Chapter 2. The Extra Dimensional Models 26

e With the advent of D-theory by Polchinski [97] in 1995, a natural setting for different
fields living in different number of extra dimensions came into picture, where the Standard
Model (SM) fields which are localized on lower-dimensional D-branes can be represented
by open strings whereas the gravitons were identified with the closed strings propagating

in all dimensions.

e In the year 1998, the idea of extra dimension mainly came into limelight in phenomenology
when Arkani-Hamed, Dimpopoulos and Dvali [98] suggested large extra dimensions (LED)

as a solution to the hierarchy problem.

e A model with a small fifth dimension but with a warped five-dimensional geometry was
proposed by Randall and Sundrum [99,100] in 1999 gives the solution to hierarchy problem.
Also, the ADS/CFT theory by Maldacena [101] in 1998 provides new possibilities to explain

and construct models related to the weak scale.

e Another extra dimensional model is Universal Extra Dimensional (UED) model where all
particles propagate along some flat compactified extra dimensions. The remarkable feature
of UED is that the remnant of translational invariance along the extra dimensions remains
preserved making the KK-modes incapable to couple to the zero-modes [102]. This model
which is the main part of this thesis, will be described elaborately in the next section of

this chapter.

Below the primary features of LED and Randall-Sundrum (RS) model will be briefly mentioned.

2.1.1 Large Extra Dimension

Gauge hierarchy problem as described in the previous chapter is actually the issue related to the
large difference between the electroweak scale (~ 100-1000 GeV) and the Planck scale (~ 10
GeV). In SM, the electroweak symmetry is broken by the vacuum expectation value of the
Higgs field. This electroweak scale eventually becomes unstable under the radiative corrections
since the mass-squared of the Higgs field gets quadratic contributions from its interactions.
The natural scale to cutoff the quadratic contributions is the Planck scale where the quantum
corrections of gravity become significant. To put the problem in another way is raising the
question: why is the gravity so weak relative to the other interactions of SM? To address this
issue Arkani-Hamed, Dimpopoulos and Dvali [98] proposed a theory of 4 + d extra dimensions
with Standard Model particles being confined to a 3-brane (which is actually a 34+ 1 dimensional
surface) whereas only the gravitons propagate in the full d-dimensions. Evidently, the extra
dimensions have to be compactified to get the usual 3 + 1 dimensional effective theory. But
compactification can be arranged by considering only d number of extra dimensions with a

common scale R which is relatively large leading to the possibility that scale of quantum gravity
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is much lower than that of the Planck scale (Mp;). The magnitude of R could vary from a
millimeter to a fermi according to the number of large extra dimensions. Newton’s law in 4 + d

dimensions is given by,

G(4+d) 1
F(r) ~ —N T2 s (2.1)
d+2 d+2 2’ ‘
" Mpjipay 7

which can be decomposed to two expressions according to the relation between r and R as:

1 mi1ms
F(r) 1 sl for r < R, (2.2)
Pl(4+d)
1 mims
F(r) ) 75, forr>R. (2.3)
MPZ(4+d) Rar

Comparing the last expression with the four-dimensional Newton’s law,

1 mims
F 2.4
we have
2 d+2 d
MPl ~ MPl(4+d)R . (25)

If we take the fundamental scale Mpj4iq) ~ 1 TeV and demand that R can be chosen to

reproduce the four-dimensional Planck scale Mp; ~ 10 GeV, then we have

2 1/d
R~ <d+{j‘> ~ 10%/4 TeV =1 ~ 10%2/910717 em, (2.6)
Mpystay
d = 1= R~10% cm (> 1 AU), which is ruled out,
d = 2= R~1mm,

d = 3=R~10%cm.

So, in this model number of extra dimensions d > 2 are allowed. But recent experimental
observations show that the bound on R is obtained as < 30 pm [5]. On the other hand, no
significant bound is obtained for d > 3.

2.1.2 Warped Extra Dimension

The above ADD scenario solves the problem of gauge hierarchy, but it introduces another hi-
erarchy between the large extra dimension and the Planck length. To solve this issue, a model
with small compact extra dimension was proposed by Randall and Sundrum [99, 100], with a

five-dimensional warped geometry. The model has two branes placed at two fixed points of
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orbifold at which the fifth dimension is compactified. The novel feature of the model is having
warped metric caused by the back-reaction of gravity on the branes. Consideration of the back-
reaction has important cosmological implications [103,104]. A four-dimensional theory with only
four-dimensional sources necessarily leads to an expanding universe with positive cosmological
constant. In warped geometry, one can adjust the bulk cosmological constant to get an effective
vanishing four-dimensional cosmological constant.Thus the four-dimensional universe would still
appear to be static and flat for an observer on a brane. Now, an incorporation of a bulk cos-
mological constant is necessary as the five-dimensional background itself is curved. Evidently,
there is a transfer of the curvature from the four-dimensional branes, which are made flat, to the
bulk which is now significantly curved [105]. This scenario was originally suggested by Rubakov
and Shaposhnikov [103,104]. In the minimal version of the RS model only gravity propagates
in the bulk while the SM fields are localized on the brane where the warp factor is small. The

corresponding metric in five-dimension can be written as
ds? = e_A(y)nm,dx“dx” — dy?. (2.7)

The warp factor e=4®) is a measure of the curvature (warping) along the extra dimension. It
is an exponential factor involving the fifth dimension as well as the radius of compactification;
and clearly this factor comes as a multiplicative factor with the four-dimensional Minkowski
part of the metric. This warp factor is the main ingredient that helps to address the hierarchy
issue by “warping down” the Planck scale’. For this mechanism to work, the compactification
radius should be stabilized against the quantum fluctuations and this can be performed by
incorporating a bulk scalar field which generates a potential that allows the stabilization. The
associated modulus field radion which describes the fluctuations of the magnitude of the radius
obtains a mass of the order of a TeV. Due to the presence of the discrete spectrum of graviton
resonances, the collider phenomenology of this model is quite distinct from that of the model
of LED. The massive radion offers a very distinct scenario for this model. If warped extra
dimension exists in nature, LHC data shows that the size of extra dimensions should be greater
than TeV scale [108,109].

2.2 Universal Extra Dimension

Among many variants of extra dimensional model, this thesis will be devoted to a particular
incarnation of extra dimensional theories proposed by Appelquist et al. [102]. This is termed as
Universal Extra Dimensional (UED) model which is the main focus of this thesis. The universal
in UED makes it explicit that all the Standard Model (SM) fields can propagate along the extra

spatial dimension instead of being confined to a boundary as in the case of ADD and RS model.

“For more detailed clarifications see the TAST lectures by Sundrum [106] and Gherghetta [107].
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Despite being devoid of the virtue of solving hierarchy issues unlike ADD and RS models, UED

has a wide range of phenomenological motivations.

Various phenomena of neutrino mass generation can be fit into flat five-dimensional spacetime
scenarios [110]. Such kind of scenarios provide mechanism of supersymmetry breaking [94]|. Extra
dimensional models solve the puzzle of mass hierarchy in the fermion sector [111-113]. Dynamical
electroweak symmetry breaking has been studied in extra dimensional scenarios [114]. The issue
related to the gauge coupling unification is also well addressed in the flat extra dimensional
theories. Usually these theories predict a unification scale which is considerably below the usual
GUT scale [111,115-117]. Proton stability is one of the perplexing issues in particle physics. The
six-dimensional operators which result in the violations of baryon and lepton number can cause
proton decay and to maintain the constraints of proton lifetime in an SM-only theory leads to an
unnatural cutoff. But, by the very construction of the UED model (six-dimensional UED), the
operators leading to rapid proton decay can be forbidden [118]. This is the main difference with
some other BSM models (e.g. SUSY), where ad hoc introduction of some symmetry is required
to reduce the problem of rapid proton decay. Moreover and most importantly, UED provides
a stable, electrically neutral and colorless state in a natural way® which can qualify as a viable

dark matter candidate [119].

2.2.1 A Fifth Dimension

In this section, we describe the standard Kaluza-Klein theory which involves an extension of
the 1 + 3 dimensional Minkowski world My to a 1 + 4 dimensional My x S! world. Here the
fourth spatial dimension corresponds to a topology of a circle S! with a radius R implying that
the extra dimension is compact. Einstein described this world as a ‘cylindrical world’ [120].
The extra dimension is denoted as y. Compactification means the physical identification of
the points y and y + 27 R along the extra dimension y which means for any field, viz. ®, we
have ®(y) ~ ®(y + 27 R). Evidently, there is a periodic boundary condition on any function of

spacetime. The coordinate is defined as
M = {2, ). (2.8)

Here, z* (un = 0,1,2,3) is the four-dimensional non-compact spacetime coordinates; M =
0,1,2,3,5 are five-dimensional Lorentz indices with the metric convention gy/y = diag(+, —, —, —,
_).

®Though, in the non-minimal version of this UED model, one should add KK-parity conserving boundary-
localized terms to get a viable dark matter candidate.
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e Kaluza-Klein Modes

The existence of the so-called Kaluza-Klein modes in the five-dimensional theory comes as the
very first upshot of having an extra dimension in compact form. Let us consider the simplest

example of a free real scalar field. The action of a free scalar field in five-dimension is [121]

2R
0

where the scalar field ®(z,y) is the field on this five-dimensional space, or bulk. The periodic
boundary condition on ¥y allows us to perform a Fourier series expansion along the y direction

as
00

1 .
®(z,y) = — > e (a)emv/R, (2.10)

n=—oo

Here, 1/+/27R is just a normalization factor. In the above, each of the Fourier coefficients (")
is itself a field over the usual four-dimensional Minkowski space and these fields are the Kaluza-
Klein (KK) modes. Plugging the Fourier decomposition of ®(z,y) (Eq. 2.10), in Eq. 2.9 and
exploiting the orthonormality of y-profiles of the Fourier modes in extra dimension and then
integrating over the extra dimension, we finally obtain the effective four-dimensional action:

2

Sip = - Z/d‘* [ 8,™)( )8“<I>(”)(a:)—<mg+;2> (<1><“>(:c))2] . (2.11)

This implies that from the four-dimensional point of view the five-dimensional scalar field appears

as an infinite tower of KK-modes where the mass of nth KK-mode is given as

n2
my, =1/ m3+ ook (2.12)
The set of KK-modes with monotonously increasing masses with n = 1,2,... is termed as a

Kaluza-Klein tower of states. The zero-mode (n = 0) has a bulk mass mg and is evidently

massless for mg = 0.

The fifth directional momentum operator in quantum theory can be written as ks = —id, and

we can have

i.e. each KK-mode corresponds to a momentum-eigenvalue

k" =n/R. (2.14)
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The discrete values of momentum are the evident consequence of the periodic boundary condi-

tions. The relativistic energy of the nth KK-mode is

En:\/k2 2+ mk —\/k:2—|—m2 (2.15)

The substitution of Eq. 2.14 in the above equation results in Eq. 2.12 which is nothing but the
expression for the mass of nth KK-mode. Here comes the natural conclusion that, the KK-
masses observed in four dimensions are nothing but the “frozen” components of momentum in

the extra dimension [84].

We can similarly perform a Fourier decomposition for the five-dimensional gauge field along the

compact dimension [121]:

S A (@mem/ R, (2.16)

1
Ay (zt,y) =

The action then becomes

2R 1 27 R 1
Sgauge = /d433/ dy [_4]:MNJT"MN:| = /d4x/ dy [—4{.7-'“1,}"”” —&-2.7:#5]:#5}} :
0 0
(2.17)

The derivative along y can be replaced by d5 — i(n/R) under Fourier series expansion. To

remove the mixing terms between Agn) and A,(Ln) we can execute a gauge transformation as

n n (n)
A — Al — /Ra L Ag' (2.18)
A™ 0, for n#0. (2.19)

In this gauge we have,

2R 1
Syauge = / d'x / dy {( 4@3)?(0)“” + QauAg%uAgm)

1 -n n)uv 1 Tl -n n
+Z 9 <_4‘FI(W ) pmur QRQA( )AL)> . (2.20)

So, the end result is that, on a circle, both A, and A5 components have zero modes; the former is
a vector whereas the latter is a scalar from the four-dimensional perspective. In case of nonzero
modes, Agn) is eaten and becomes the longitudinal mode of the corresponding massive vector

field Al(ln). Naturally, there is no scalar mode left for nonzero KK-modes [121].
e Fermion on a Circle: Chirality Problem

One of the unavoidable ramification of one extra dimension is definition of chirality operator

in odd dimension is not possible. The possible representation of the 1 4+ 4 dimensional Clifford
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algebra for fermions can be given as
[T PN} — 261, (2.21)

with
Iy =9 and T's = ivs. (2.22)

Here, g™V is the Minkowski metric in five-dimension and the representation is provided by the
4 x 4 Dirac matrices. Thus, we observe that the smallest irreducible representations of five-
dimensional fermions has four complex components. The five-dimensional action for fermions is

given by

2R
Stermion = /d4x/0 dy \i/(x,y) (i@MFM - mf) U(z,y). (2.23)
The compactification of extra dimension to a circle results in a similar periodic decomposition
of the five-dimensional fermionic field and after integrating over y the effective four-dimensional
action for Dirac fermions is given by [106]
Stermion = / d'z Y ¢"(x) (maﬂ —my+ i%%) Y (). (2.24)
n
Again, from the four-dimensional point of view, we obtain a tower of four component Dirac
spinors with mass-squared as shown in Eq. 2.12. Considering the case of my = 0, we obtain non-
chiral massless modes; 1&&0:)1_4 decomposes as ~ [11)20) (a=1,2), @bg)(a = 3,4)], where L (R)
corresponds to left-(right-)chirality under the four-dimensional Lorentz transformation. As s is
being introduced among the five-dimensional Dirac matrices and there is no other matrix with
the anti-commuting properties of 5, so in a natural way there is no explicit chirality in this
theory. Generally, in any dimension whether it be even or odd (say j), we have j number of
gamma matrices T! (1 = 1,2, ..., ), satisfying {T'!,"™} = 2¢'™. Then the generalized v5 can be
obtained as
It =rir? 1, (2.25)

For even number of dimension (j = 2p), IV™! will be nilpotent ((IY*1)? = 1) and anticommute
with all T,
{7y =0, vi=1,2,...,2p. (2.26)

However, for odd number of dimension, j =2p+ 1,
) =0, vi=1,2,...,2p+1, (2.27)

and then by Schur’s lemma I'V*! is just a multiple of unit matrix. Evidently, in odd number of

dimensions defining chiral fermion is not possible.
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2.2.2 Fields on Orbifold

So, all in all, there are two major problems in accommodating SM field in five-dimensional

theory:

e For every gauge field A, () there exists a degenerate scalar partner As(z).

e All the fermions in the theory will essentially be vector-like.

To ameliorate both these problems we need further modification of the space. If compactification
is done, not on a circle, but on a line segment imposing suitable boundary conditions to the bulk
fields, we can evade these issues. Let us take the example of bulk scalar field ®(x,y) with the
extra dimension being mapped to a line segment 0 < y <[ [84,122]. Applying the variational
principle to the action

0P

~ 250
By(s

y=l

! P
55[®] = _/d% / dy (aMan>T+mgq>T) 5P + /d4:n (‘Zya@ > (2.28)
0 y=0

By virtue of variational principle the above expression must vanish for any arbitrary variations

d®. Thus we can immediately have the bulk (Klein-Gordon) equation
Moy ® + m2d =0, (2.29)

and also the boundary condition

/d%; 9% 5 = 0. (2.30)
oy =0

This would be naturally valid on a circle if y = 0 and y = [ are identified as the same point. On

0P
— 8—y5@

y=l

the other hand, this is a line segment and the above equation can only hold if both terms vanish

individually. So we can obtain the following boundary conditions:

oAtyzO:eitherN:% orD: ®(x,0)=0
y=0

o At y=1: either N: 22

By or D: ®(z,l) =0

y=l

where, D and N correspond to Dirichlet and Neumann types boundary conditions respectively.
Evidently, we can have four combinations, viz. DD, DN, ND, NN; where first letter stand for
y = 0 and the second for y = [. However, if we want to retain only the DD and NN sets of

harmonics, the line segment will have

1. a periodic boundary condition ®(x,y) = ®(x,y + 21),
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2. a reflection symmetry ®(x,y) = ®(x,l — y) at the point y = [.

T
0= Identify

Y~ _ +0 with — 0 0=0 O=m
(i.e. identifying y with — y)

0=0 O=m
u=0 y=mR

FIGURE 2.1: Pictorial description of the UED compactification: orbifolding.

Physically, these conditions correspond to a S'/Zs orbifold as depicted in Figure 2.1. We can,
therefore, relate | to a compactification radius R by [ = wR. To repeat in another way, if we
have a topology of a S'/Zs orbifold, and if ®(z,y) = ®(x) n(y); then the harmonics reconcilable

with the boundary conditions will be nyn(y) and npp(y) functions.

Orbifold projection eliminates the phenomenologically undesirable degrees of freedom (DoF) at

the zero-mode level. The bulk scalar field can be expanded as

d(z,y) L &z, —y) = tenn (e, ) (2.31)

_(I)DD(xv y)

Clearly, depending on the choice of boundary conditions, we have two different physical scalars

given as

dyn(z,y) = LQ%N \/72@) ) cos ( R) , (2.32)
Opp(x,y) \/72<I> ) sin ( ];/) . (2.33)

So, @y (x,y) is even under the fifth component of parity y — —y whereas the other, ®pp(z,y)
is odd under y — —y. Here, @S\%\,(:c) would play the role of the SM field. Thus, to get rid of
the SM fields and to have only KK excitations, we should impose DD boundary conditions. On
the other hand, to retain the SM field along with their KK excitations NN boundary conditions
should be imposed. This is the distinctive feature of the application of S!/Zs topology that is
applied profitably to formulate the theory of Universal Extra Dimension (UED).

e Defining Chiral Fermion

Based on the previous discussion of the section 2.2.1, the title seems purely paradoxical and

self-contradictory, since there is no chiral projections of a Dirac fermion as there is no analogue
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of v5 in odd dimensions. And yet, this very concept becomes feasible in four dimensions with
orbifold compactification. The Dirac matrices given in Eq. 2.22 can be used to formulate the
spinor representation of the bulk Lorentz group SO(1,4), since compactification reduces the
symmetry to the usual Lorenz group SO(1,3) of the four non-compact dimensions [84]. Taking

this fact into account, we can construct the projection operators
1 0T 1213
Pi:§(]1iz1“1“1“1“) (2.34)

that act on the bulk spinor W(z,y) to yield projections W*(z,y) = PLV(z,y) with, ¥(z,y) =
Ut (z,y) + U (z,y). These projection operators are numerically same with the right and left
chiral projection operators in four dimensions; but these can not be termed as so called right-
or left-projectors as this very idea does not exist in five dimensions. But, by similar manner,

applying orbifold compactification we can have the bulk spinor as even spinor

V(@) = = tW(e) + 2 S vl cos (7). (2.35)

or as an odd spinor

Upp(x,y) \/721/1 sm( ) . (2.36)

Applying Py operators to both sides of Eq. 2.35, we obtain

qJ;N(gg,y):PmNN(x,y):\/%R \/>Z pyeos ("), (237)

%N(g;,y):P_WNN(x,y)z\/%R \/»Z%N cos(}?). (2.38)

Since, P operate on a four-dimensional spinor, we get P1 = Pp/y, respectively, since chirality is

a valid concept for the four-dimensional spinors 1/15\?3\, and w](\%)\, Similarly, we can get a similar

set of odd fermions

Ul (z,y) = PrVpp(z,y) \/72 1!1 ) sin <?g/> , (2.39)
Upp(2,y) = P-Upp(z,y) = \/; > WwEhlu(a)sin (). (2.40)
n=1

However, since there can exist either N or D boundary conditions at the orbifold fixed points,
we can have any one of Eqs. 2.37 or 2.38, and again, any one of Egs. 2.39 or 2.40. As the
zero-mode is identified with the SM fields, it clearly follows that SM fermions will be chiral.
Similar mechanism can be applicable to the five-dimensional vector field AM (z,y). The fifth
component, As(z,y) is nothing but the polarization of the gauge field along the extra dimension

and from four-dimensional point of view, after compactification, this just behaves as a (infinite)
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tower of spinless KK-modes. Clearly, this As will have no zero mode and will be an odd field.

The corresponding KK decomposition for the gauge field will be

1 [ 2 & n
" _ w(0) w(n) Y

2 n
5 _ 5(n) .Y
App(z,y) = R n§=1A (z) sin R (2.42)
Thus, introducing the trick of orbifolding we can get rid of the gauge scalars in the SM, such

type of scalars will only be present among the KK excitations, and, can in principle, be detected.

2.2.3 KK-Parity

Once, orbifolding is done, the translational invariance is broken and hence the fifth dimensional
momentum p5 is no more a conserved quantity, unlike the four-dimensional momentum. There-
fore, KK-number is evidently violated®. However, there remains an additional symmetry, an
accidental discrete symmetry, called KK-parity. “KK-parity” conservation is being manifested
as the translational symmetry y — y — 7R. Thus for the nth level particle KK-parity is (—1)™.
Evidently, all SM fields are of even KK-parity. It is worth mentioning that KK-parity is not the
Zy symmetry of S1/Zy [122]. Conservation of KK-parity implies [123]

e the stability of the lightest level-one KK-mode (LKP),
e odd level KK-modes can only be produced in pairs,
e all direct couplings of SM particles to even number KK states are loop suppressed and can

occur through brane-localized interactions.

Generally, in the minimal version of UED, KK-parity remains a good symmetry and remains
unbroken so long as no explicit KK-parity violating interactions are introduced at the orbifold

fixed points.

2.2.4 SM in Five Dimensions

After a detailed analysis of the fundamental essence of extra dimensional theories, we are now
all set to discuss the SM embedded in five-dimensional theory, where all SM fields can propagate

in the bulk (the five-dimensional whole space). The five-dimensional action consists of the same

SKK-number is still a good quantum number in (m)UED, which remains preserved in all interactions and
decays, if we ignore the orbifolding fixed points.
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fields of SM and would respect the same SU(3). ® SU(2)r, ® U(1)y gauge symmetry as that of

SM. The five-dimensional action will be given by,

TR
S = /d%/ dy (Ly+ Lo+ L1+ Ly + Ly) (2.43)
0
where,

g——z}- ]:MN_Z MN 7 N9t (2.44a)
Ly = (Dy®) (DY D) + pf;), 10 — A5, (270)?, (2.44b)
Lo="3 [L; (iT"Dar) Lj + E; (it Dur) Ej] (2.44¢)

j=generation
Ly = [Q; (it"Du) Q; + U; (LY Das) U; + D (it D) Dy (2.44d)

j=generation
Ly =) [—Q%;Q@CU]- — §5:Q:®D; — i, L;® E; + h.c.] . (2.44e)

i, j=generation

In the above, the Ly, Lo, L;, L4 correspond to the five-dimensional Lagrangian for gauge
field, scalar field, lepton and quark field respectively whereas Ly denotes the five-dimensional
Yukawa Lagrangian. The symbols fi(5), and Ay, respectively represent the five-dimensional
bulk Higgs mass parameter and scalar self-coupling. Here, G5, W, and By are the gauge fields
of the respective gauge groups SU(3)., SU(2);, and U(1)y; the suffices p and a represent the
SU(3) and SU(2)[, gauge indices respectively where the sum over the repeated gauge indices are
implied. In the above formulae, M, N =0, 1,2, 3,5 are the five-dimensional Lorentz indices. We
will be using the mostly minus metric convention, i.e., gyyny = diag(+1,—1,—1,—1,—1). The
five-dimensional gamma matrices are '™ = (y#, —i~5) (Sec. 2.2.1). The field strength tensor for

the gauge fields, By, W4, and Gh, are given by

Byun = OuBy — OnBu, (2.45)
Firn = OuWhy — ONWiy + GF " WEWg, (2.46)
Gy = OmGh — ONGhy + 9 PG G (2.47)

The covariant derivative, in general, is given as
Dy = Oy — igW3 T — ig' BuytY, (2.48)

where g and ¢’ are the five-dimensional gauge coupling constants of SU(2);, and U(1)y respec-
tively, and 7% and Y are the corresponding generators. The scalar field ® and ®¢ = iT?®*
denote the standard Higgs doublet and its charge conjugated field, and ﬂfj, ﬂfj are the Yukawa

matrices in the five-dimensional theory; they mix different generations. The fermionic fields @,
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D and U are the four-component Dirac spinors and carry the same quantum numbers as the
corresponding SM fields. As covariant derivative, in a sense, determines the interaction between
the fermion and the gauge boson, the explicit form of Djys will be given by the interaction prop-
erties of the corresponding fermionic field. For example, the covariant derivative for the quarks
are given by

Dy = O — igWy T —ig ByY — z'gs%gﬁd, (2.49)

where AP (p = 1,2,3,...,8) are Gell-Mann matrices which are related to the generators of SU(3),
gauge group and g, corresponds to the five-dimensional gauge coupling of this gauge group. The
five-dimensional gauge couplings are dimensionful parameters, and there exist scaling relations
between the five-dimensional and its four-dimensional counterpart, which in the context of UED
is given as

7
P = s 2.50
9= /R (2:50)

where, g; is the usual four-dimensional coupling. The Fourier expansion of the fields are given

by,

Qo) = =@+ 2 | @ @ eos (7)
n=1
+Qf(@)sin () |. (2.51)
U(z,y) = \/jriRUg))(x)—k %Z Ugl)(x)cos(%>
n=1
+U™ () sin <%) : (2.52)
Ay(z,y) = \/7177RA/80)(x)+ %ZAEF)(CL')COS (%), (2.53)
n=1
As(z,y) — %ZA@”)(x)sm(%). (2.54)
n=1

We thus obtain the desired zero modes g)), U }(%0 ) and AELO) corresponding to the SM fields’.

The expansion for U is valid also for D. The expansion for lepton doublet will be similar to
that of the quark doublet Q(x,y) whereas the lepton singlet can have the expansion similar to
that of U or D. The expansion of the scalar Higgs field will have the same form as that of A,.
We must also expand the zero-mode Higgs doublet around its vacuum expectation value, and

express the KK Higgs doublets in terms of their component fields:

00 — o0 e = o . (2.55)
75 (0RO X)) 75 (h™ +ix™)

"This part will be described elaborately in the last part of this chapter.
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Here v is the usual four-dimensional Higgs VEV, A9 is the physical zero-mode Higgs, and x(©,
#OF are the zero-mode Goldstone bosons. The h(™ are the KK excitations of CP-even Higgs
and the x(™ are KK excitations of CP-odd scalars. The four-dimensional effective Lagrangian
would also contain bilinear terms involving the KK excitations (starting from KK-level n = 1
and above) of the 5th components of W= (Z) bosons and the KK excitations of ¢OF (x(9)) of
the Higgs doublet field [124]. There exists also the mixing terms between A,(f) and Aén). To
remove all these mixings, gauge-fixing Lagrangian should be added. The gauge-fixing action is

given by

1

25(8“14“ + £05AP)?

TR
Ser = / itz / dy [—1@9%58595)2
0 2§
1
—E{O#Z“ +&,(052° —iMzx)}?

—; (O WHT + £(0sWPT —iMy¢™)) (0,WH + E(0sW°™ +iMwe ™)) | . (2.56)

The mass matrices upon diagonalization would lead to a tower of charged Goldstone bosons (with
mass-squared &(m?2 + M2,)) and a physical charged Higgs pair (with mass-squared m2 + M3,);
and a tower of neutral Goldstone bosons (with mass-squared &(m?2 + M%)) along with a tower
of physical CP-odd Higgs (with mass-squared m?2 + M2%). The new spectrum also consists of a

tower of KK-modes with masses m2 for both AELn) and Aén) and a massless zero-mode photon.

There exist bilinear terms involving the doublet and singlet states of the fermions and the
strength (off-diagonal terms) of the mixing is proportional to fermionic mass, so that the mixing
is only important for top quark (we will denote top quark mass by m; in the following). The
detailed analysis will be elucidated in the latter part of this chapter (Sec. 2.5) while describing
the model description on non-minimal Universal Extra Dimensional model (nmUED) and as we

proceed we will point out how to revert to UED.

2.2.4.1 Particle Interactions and Couplings

The above discussions show that from the four-dimensional point of view the five-dimensional
fields appear as infinite towers of KK-modes. The KK excitations, whether follow NN or DD
boundary conditions have masses given in Eq. 2.12. The zero-mode SM particle has the mass
mg which is the same as the bulk mass. An evident feature of this model is, in the limit of large
R~1 all the KK excitations having a particular order n will have a common mass m, ~ n/R.

Later we will see that this degeneracy can be broken by radiative corrections of masses.

Now we put our attention to the interactions among the particles of UED model. Calculating
the interactions is straightforward but a bit tedious. The steps of extracting the coupling of

UED are the following:
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e Write the SM in five-dimensions.

e Replace every bulk field (scalar, fermion or vector) by its corresponding KK expansion,

keeping general mode numbers.

e Lastly, integrate over the fifth co-ordinate y to obtain the effective four-dimensional cou-

pling in compactification limit.

While calculating all these interactions, we should keep in mind that the coupling in zero-mode
sector will be exactly the same as that of SM coupling. Let us take the example of the interactions
among fermions and gauge bosons. Now, these couplings arise from the fermion kinetic term,

if(z,y)T™M Dy f(x,y), where f(z,y) is any arbitrary five-dimensional fermionic field. Then,

if (2, )T Doy f (2, y) = if (2, )V Duf (@, y) + if (x,y)(—iv5)Ds f(, y). (2.57)

For the time being, we focus on the first term only and write, illustratively, D, = 9, — igA,.
Thus, the interaction between gauge field A, and fermion f will be gf(x,y)A(z,y)f(z,y). By
plugging the KK expansion of each field in this term we have,

o [ate [ [ (700 L S koo () + s () )

p,q,r

qy
X Yy (\/@Au( ) \/*ZAMN(?V cosR>

(s e e (F) < s ()| e

From this equation, we can obtain the coupling between f and A, for any arbitrary KK-level.

We can have the zero-mode coupling for p = ¢ = r = 0, which is given as

oo [ da / dyJ® ()3, 440 (@) 1O (@)

- / a4 O (2)ry, 440 () £ O) ()

—g [ dfO @), @)1 O o). (2.59)

Clearly, we will get the exact zero-mode coupling as that of SM if ¢ = g/v7R, which is the
correct scaling between the four- and five-dimensional coupling, as we mentioned in Eq. 2.50.
We can generalize a trilinear coupling for different KK-level, e.g. the coefficient of f®) A@ ().

This can be written as

/d4x (f(p) (), AHD () f) (x)) /OWR dy(7rR§)3/2 {cos (%) cos (%) cos (%)
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(3 on (3 () () () n () 550 () () ()

= [t (72 @A @) @)) gy mgs,)) (2.60)

where, A(np,ng,n,) are the admixtures of Kronecker delta symbols alongwith some normaliza-
tion factors. It can be shown that the KK-number violating couplings are vanishing. Thus a
second level particle can not interact with two zeroth level particles at tree level. This type
of coupling, however, can be possible at loop level. Also we will see later, that such type of
(2)-(0)-(0) coupling is present, even at tree level, in the non-minimal version of UED. Similar
procedure of calculation of interactions among different fields will be used in the case of non-
minimal version of UED also. Hence, we have altogether the following features of UED model

at tree level:

e The SM fields correspond to the zero modes of the bulk fields and always follow the NN
boundary conditions. For zero mode, the number of bulk fields is exactly the same as the
number of fields in the SM.

e The KK excitations, in general, have both NN and DD boundary conditions.

e The interaction at tree-level preserves the KK-number, e.g. in the above example n(,) +
n(g) +n¢y = 0, where we actually assign the opposite signs to the KK-number for the initial
and final states. This is evidently mandated from the fact that the translational invariance
is locally retained in the bulk, and hence the momentum along the fifth dimension p, = n/R

remains conserved.

2.3 minimal Universal Extra Dimension

In the previous section, we have discussed UED model and have seen that this model contains
a number of almost degenerate states at each KK-level. As the extra dimensional momentum is
conserved (ignoring the fixed points of orbifold) the phenomenology of such nearly degenerate
states crucially depends on the mass splitting between the KK-modes. We know that radiative
corrections play an important role for precision measurements, but it is not expected this cor-
rection radically change the nature of processes, like the production and decay of new particles
in collider experiments. But this projection can be completely wrong in presence of extra di-
mensions as KK-masses are quantized at tree level and all the momentum preserving decays are
exactly at threshold. Hence radiative corrections [122] become the most important determining
factor and the dominant effect in deciding which decay channels are open. Under radiative cor-

rections the mass of nth KK-mode (Eq. 2.12) will be modified as \/mZ + (n/R)2 + dm2, where

om,, is the correction in mass due to the radiative corrections. The mass correction arises from
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the higher order contributions to the two-point correlation functions. There are two types of
contributions to these mass corrections;

e corrections coming from compactification, which is called bulk correction,

e boundary correction which arises due to orbifolding.
The first type of correction comes from the S' compactification which eventually breaks the five-
dimensional Lorentz invariance globally. This type of non-local effect results in internal loops in

Feynman diagrams, which wind around the circle of the compactified dimension (see Fig. 2.2).

The contributions generating from this type of loops are well defined and finite. The second

7@ b

\

>

rH

FIGURE 2.2: An example of Lorentz violating loop winding around the extra dimension [122].

type of correction is the immediate upshot of the orbifold compactification S!/Zs. Orbifolding
introduces fixed points (y = 0 and y = 7R in our case) in the manifold and they results in the
additional breaking of five-dimensional Lorentz invariance. This is obviously a local effect. A
detailed calculation on radiative corrections of a field theory in S!/Zy orbifold has been shown
in Ref. [125]. Unlike bulk contribution, the mass shift resulting from this orbifold correction
no longer remains finite, but is logarithmically divergent. To remove these divergent terms one
has to perform renormalization which in turn requires the incorporation of counterterms which
are localized at the orbifold fixed points. At this point, one can simplify this computation by
assuming that the boundary terms at the cutoff A are small. This means with no large boundary
terms, the logarithmic divergences can be absorbed into the cutoff A, where A is not too large.
Large boundary terms result in the mixing between different KK-levels and hence each mode
receives, in addition to the bulk correction, a shift in its mass that is logarithmically dependent
on the cutoff A. In that case, we have to consider both effects while calculating the radiative

corrections.

The scenario with the assumption of vanishing boundary terms at the cutoff A is known as

minimal UED (mUED). Considering the effect of two types of corrections, the total mass shift
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dmy, for various particles are given by [119],

n 27 1
Smgm = 167T2R (693 59T 89’2) In(AR), (2.61a)
SMyrn) = 16 R (692 +2¢") In(AR), (2.61b)
n 1
Impm) = 1628 <6g§ + 29’2) In(AR), (2.61c)
n 27 9
OMmym) = 62 ( g9+ 89 )ln(AR), (2.61d)
n 9
5mE(n) = 167T2R2 In(A ) (2.61e)
39¢ n?
6m8(") - 167r2R 2 772 EID(AR) ’ (2.61f)
_3¢(3 2
(5mh(n) = 167r2R2 3¢ + g — 2/\h> In(AR), (2.611)

where ¢, g and g5 are the gauge couplings for the U(1)y, SU(2); and SU(3). groups respec-
tively (previously mentioned) and A, is the Higgs quartic coupling. The above expressions show
that there are no bulk corrections to the Higgs scalar mass or the fermion masses. The fac-
tor ((3) = Y00, n~3 &~ 1.202, is the third Riemann zeta function. The factor In(AR) in the
Eqs. 2.61 corresponds to the orbifold corrections and the A independent contributions are from
bulk corrections. Actually, the factor is ln< ,), where p’ is the renormalization scale. The
factor AR counts the number of KK-levels below the cutoff A. If the contributions coming from
Yukawa coupling is taken into account (which is important for top quark), then SU(2) doublet

quark @ and singlet U get corrections as

n 3,

g = 1o (~3" ) (AR (2.620)
n U

Oyukmy(n) = 162R (=3y") In(AR). (2.62b)

Thus to obtain the radiatively corrected mass for nth mode top quark, we should add the above
results with appropriate corrections presented in Eqs. 2.61. As we know the nonzero KK-level
fermions are vector-like, so the appropriate eigenstates and mass eigenvalues of the KK fermions

can be obtained by diagonalizing the mass matrix of the form

<g +Im(F) " ) (2.63)

my — = §'m(f)
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where my is the zero-mode mass obtained from electroweak symmetry breaking (EWSB), F' (n)
and f( correspond to SU(2) doublet and singlet fermions respectively. The ¢ indicates the

total corrections obtained from both bulk as well as boundary corrections.

There are other mixings that occur among the KK excitations. There exists mixing between the

W3 and B™ gauge bosons. The mass-squared matrix in the B and W3™ basis is

1.02,2 | £..2 2 1.7 .2
<4g v +5m8(n)+% —49'gv > (2.64)

1./..2 1.2,2 5.2 2
—39'gv 19708+ 0M5, 50 +

The mass eigenstates and eigenvalues of the KK photons and Z bosons for each KK-mode can
be derived from the above mass matrix. The terms corresponding to ) represent the corrections
due to both bulk and boundary conditions. It is evident that, for the zeroth level the diagonal
entries will have only the v? dependent terms and the eigenvalues of this matrix will be {0, (g% +
g"%)v?/4}, where zero corresponds to the mass eigenvalue of the SM photon and (g2 + ¢’?)v?/4
is the mass-squared eigenvalue of the SM Z boson. For n > 0 the full matrix in Eq. 2.64 is to be
used. Clearly, for the KK excitations, the Weinberg mixing angle 6,, will also be different from

that of zero-mode particles (SM) and is given by

/002
O = §tan_1 - - g9Y .
2 [6m?3<n) - 5m12/\;3(n) + %(9/2 - 92>

(2.65)

However, the value of 6, is small which eventually makes the KK photon more B("™)-like and the

KK Z boson more W3(™-like [122]. They are often applied exchangeably.

Unlike four-dimensional SM, in mUED the KK W and Z boson acquire their masses by absorb-
ing the linear combination of the fifth component of the corresponding gauge fields and their
respective KK Goldstone bosons. After this, there remains four scalar states for each KK-level:
two charged scalars H("* CP-even neutral scalar h(™ and CP-odd neutral scalar A . The
zero modes H(O* and A are the usual Goldstone bosons (¢* and x) of the SM. The one loop

corrected masses of these extra scalar states are

2
n
2 2 n’ 2
Mgy = Mye) + R +0my (2.67)

where, 5mi(n) is given by Eq. 2.611.
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2.3.1 Mass Spectrum

After a detailed discussion on radiative corrections of the masses for different particles, we shall
now describe the particle spectrum of the full one loop corrected mUED. It is clear from the
previous section that, the shift in the mass is different for different types of particles (see Egs. 2.61
and 2.62). Naturally for nonzero KK-level, mass spectrum will no longer be degenerate. As a
consequence, the phenomenology of the model will be considerably different from what would
have been the case for the tree level degenerate spectrum. As an illustration, the mass spectrum
for n = 1 corresponding a definite choice of mUED parameters (my, 1/R and A)® has been
shown in Fig. 2.3 [122]°.
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FIGURE 2.3: Particle spectrum for the first level KK particles at tree level (left) and after the
inclusion of one loop correction (right) with Higgs mass mj; = 120 GeV, 1/R = 500 GeV and
AR = 20. Plot courtesy [122].

A significant consequence is that at any specific level the mass of KK photon (’y(”)) receives
negligible contribution from the radiative corrections. The immediate conclusion which can be
drawn from this observation is that the first level photon, i.e. fy(l) (or BM . so to say) is the
lightest KK particle (LKP); BM is a particle with odd KK-parity. The decay of this particle to
any other KK-level particle is kinematically impermissible and to SM particles is forbidden as
the very upshot of the conservation of KK-parity. Thus B(!) is a stable particle having all the

properties which can be counted as a viable dark matter candidate [128,129].

8Here my, is the mass of SM Higgs boson. After the discovery of Higgs boson [34, 126] and following the
subsequent analysis in Ref. [127], mj, = 125.9 £ 0.4 GeV.
°In this figure, H is basically the SM Higgs h(® according to the notation used in this thesis.
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2.4 Constraints on (m)UED Scenario

The (m)UED model, as we have described, is fundamentally a one-parameter extension of the
SM. Several experimental and theoretical observations put constraints on the parameter space of
(m)UED. Agashe et al. [130] first pointed out the fact that charged Higgs bosons at first KK-level
could contribute to the radiative B decays through the quark transition b — sv. Many other
processes like K and B decays and the measurement (g — 2), considerably restrict the mUED
model [131]. The radiative B decays set constraint on the lower bound on R™! as, R™! > 250
GeV. A recent study on this same decay [132] including next-to-next-to leading order QCD
corrections contributes a stricter bound as R~! > 323 GeV. Electroweak precision tests at the
LEP-1 and LEP-2 colliders provide slightly more stringent bounds. The mUED contributions

to the S and T parameters (represented as S and T respectively) are given [133] as

2
g 962 f2 5 1 5
S T Tamper2 3™ T
o g*¢(2) mi _isin2 HWmQ
(4n)2R~2 | M2, 12cos26y "’

The above equations show that the contribution to 7' is much greater than to that of the S
due to the effect of large quark mass. The KK excitations of top quarks as well as of KK Higgs
states in one loop contribute to these variables at significant level, whereas the electroweak gauge
boson propagators give the merest contributions. In the wake of the discovery of Higgs boson
a detailed study has been performed on the new physics contributions to these variables [134]

which provides a constraint on the parameter space as R~ > 680 GeV.

Another studies on (g — 2), [135], FCNC processes [136,137|, p-parameter [138] and studies on

some electroweak processes [139-141] results in the lower bound on R~ > 300 GeV.

The results from the LHC and the Tevatron also set limits on (m)UED parameters. The con-
straints have been obtained from LHC analysis and also from many other experiments in search-
ing of dark matter [142-144|. Some other projected bounds from the LHC is in the range of
TeV [145-147]. The contributions coming from the KK excitations in loop modify the Higgs
production and decay rate [148]. The constraints mainly arise from gg — h — vy, WW*, ZZ*.
However, the data from the ATLAS [149] and the CMS [150| experiments show that among
all these channels, h — WW* gives the most stringent constraint on R~'. The ATLAS Higgs
data with the combined center-of-mass energies 7 TeV and 8 TeV at 25 fb~! luminosity gives
a constraint as R~! > 460 GeV, whereas CMS provides a much stricter bound of R~ > 1300
GeV [151]. Such kind of large deviation occur mainly due to the large difference in signal
strengths (u value) registered by the two experiments. In all the processes described till now,
the constraints on UED parameter space comes from their loop induced contributions to those

processes. Apart from such kind of indirect constraints, some direct searches for mUED signal
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also set limits on this scenario. Level-1 KK particles are produced in pair at the LHC and there-
after they cascade into SM particles and the LKP. A search for vy events with large missing
transverse momentum for /s = 7 TeV at luminosity 4.8 fb~! by the ATLAS experiment abso-
lutely rules out R~! up to 1.41 TeV [152]. We know that level-2 KK gauge bosons in mUED do
not interact to any SM particle (level-0) at tree level as that would result KK-number violation.
However, an effective coupling among these particles may occur at one loop level that respect
KK-parity. This has a remarkable importance since it permits the resonance production of level-
2 gauge bosons at the LHC. Many new physics models with higher symmetry group claim the
existence of additional gauge bosons (Z’ or W'). The level-2 electroweak gauge bosons in mUED
(7(2), Z® or W(Q)i) can be considered as such additional gauge boson candidates. Clearly, the
absence of such signals, can lead to bounds on level-2 KK gauge bosons. CMS search for such

resonant Z' in the dilepton channel results in a constraint of R~! > 715 GeV for mUED [153].

In previous chapter, it has been already mentioned that LKP can be a viable WIMP dark matter
candidate. The level-1 KK photon (7(1)) can be treated as LKP and hence the prospective dark
matter candidate. The relic density is defined as the measure of dark matter present in today’s
Universe. The current value of the relic density from Planck data [61] is Qpyh? ~ 0.1198-+0.0026.
In an mUED scenario corresponding to a cutoff scale A = 20R™!, the value of R~! which gives
the correct relic density is around 1300 GeV [75,154]|. The actual constraint may vary depending
on the nature of the dark matter and the mass splitting with other particles. However, one can
avoid the bounds in many possible ways and make the constraint more flexible. For example,
constraints are less restrictive for a Z(!) WIMP or for a multi-component dark matter scenario.
Clearly, the constraints depend on various assumptions and in actual situation may be less
stringent. It is evident that one should keep the above information in mind while studying the

mUED scenario.

So, presently the strongest bound on R~! comes from the consideration of Higgs boson produc-
tion and decay [151] or from the consideration of relic density [75]. In the last two cases, the

derived limits are comparable and yield R~ > 1.3 TeV.

2.4.1 Finding the Cutoff

In the framework of mUED, the KK-modes of SM particles, would nontrivially affect the running
of gauge couplings and as well as the Higgs self coupling A, which in turn affects the Higgs
mass [155,156]. The value of \j, at the Higgs mass scale is rather small A, (mp) ~ 6.5 x 1072
With this starting value, the running of A(Q) falls to zero as the energy scale @ rises to around
4R~ and becomes negative around Q ~ (5 —6)R~!. In a sense, the electroweak vacuum would
destabilize at that point and hence there must be some cutoff for the mUED theory; the UED

framework ceases to work beyond this scale and it serves as a natural cutoff of this framework.
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Clearly, R~! being the fundamental mass gap between two consecutive KK-levels, one arrives

at this energy scale after crossing the 5-6 KK-levels.

2.5 non-minimal Universal Extra Dimensional Model

We have seen in the previous section that the mass spectrum of the mUED model can be
drastically changed by radiative corrections. The mass spectrum has been calculated under the
assumption that boundary terms do not contribute to the kinetic terms. This kind of assumption
is unnatural and has been pointed out in the Ref. [157] as there exist many boundary-localized
kinetic terms which obey all the symmetries, even KK-parity. We have also observed that
the orbifold corrections are logarithmically divergent. These can be removed by introducing
boundary-localized kinetic terms. A general form of these boundary-localized kinetic terms can
be

r{d(y) + é(y — mR)} x (appropriate field combinations) (2.68)

The symbol 7 is the free parameter of the theory. Now we can tune the parameter r in such a way
that the boundary-localized terms (BLTS) can be zero at some scale (say, at 1 TeV), but they will
be induced again radiatively at some other scale. This unknown coeflicient is called boundary-
localized parameter which has to be fixed from phenomenological considerations. FEvery bulk
term in the model has their corresponding BLT parameter. In the following, a particular non-
minimal scenario will be considered in which the kinetic and Yukawa terms of the respective fields
as well as the mass and potential terms of the scalar fields are added to their corresponding five-
dimensional actions at the boundary points. Coefficients of the boundary-localized terms (BLTS)

are the free parameters of this model.

2.5.1 A Brief Review of the Model

In this section, we will briefly review the model (mainly in electroweak sector) to set the notations
and conventions. For completeness first we will describe the general set-up of nmUED with BLTs
and as we proceed we will point out how we can go back to UED. For a more detailed discussion
of the model see Refs. [81,128,157-174].
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2.5.1.1 Lagrangian and Interactions

To begin with, consider the five-dimensional action for quarks'’. The resulting action in five

dimensions is given by

TR
Swwnc = [ o [ dy[QITVDyQ + 1y {5(0) + 6y - 7RG DLPLQ
0
+UTM Dy U + r4{(y) + 6(y — 7R)}YUir" D, PrRU
+DITM Dy D + 1 {6(y) + 0(y — WR)}EMDHPRD} , (2.69)

where the four component five-dimensional fields are comprised of chiral spinors and their

Kaluza-Klein excitations and they can be written as

Qua(@,y) = Nao QL + > { QL @ £ W) + Qfr(@)ef” ) } (2.70a)
n=1
Uz, y) = Noo U + S {U @) 17 () + U (0)g ()} (2.70b)

n=1

D(z,y) = Ngo DY +

NE

{D(L”) (@) /45" (y) + DY (x) g}y (y)} : (2.70¢)

n=1

In the effective four-dimensional theory the zero-modes of @ will give rise to the SU(2)r, doublet
quarks whereas the zero-mode of U (D) will be identified with the up (down) type singlet quark,
i.e. after compactification and orbifolding the zero-modes of Q) will be the left-handed doublet
comprising of SM ¢ty and by, whereas tp and br would emerge from the U and D respectively.
The compact form of quark doublet is Q = (Q;, Qj)T, where ¢ and j correspond to up type and
down type quark respectively. Ngo is the normalization constant of the fermionic wave functions
for zero-mode. In Eq. 2.69 the terms containing the parameter r; are the BLKTs. Clearly in the
UED, ry is assumed to be vanishing. It is worth mentioning that by setting BLKT parameters

to zero one can translate from nmUED to UED.

Now, from the variation of action and considering appropriate boundary conditions, one can

obtain the y-dependent mode functions f and g:

cos[Mg, (y - %)]

C for n even,

pu— f— Qn

fr(y) = gr(y) = Non ~sin[Ma, (y— =) : Ny (2.71)
So, or n odd,

197 eptonic fields will follow similar procedure.
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and
TR

sin[Mo, ( _ 7)] for n even

_ Q. ’

Sa. or n odd,
with

Mo ™R Mo ™R
Cgq,, = cos <Q;7r> , Sg, =sin <Q;7r> . (2.73)

The orthonormality conditions satisfied by fs and gs are given by

/ dy[1+r{6() + 8(y — 7R} K (y) K™(y) = 57 = / dy 1™ () () (2.74)

where, k£ can be f;, or gr and [ corresponds to g; or fr. From the above condition one can

obtain the normalization factors as

2 1
Non =/ — . (2.75)
TR r2 M2, r

TR
For zero-mode, the normalization constant is given by
1

In passing, we note that 7y = 0 implies the usual UED normalization y/2/(7R) for nth mode,
whereas for zero-mode it will be y/1/(wR). The quantity Mg, in the previous equations repre-

Noo = (2.76)

sents the KK-mass and is given by the following transcendental equations as,

—2tan M for n even, ( )
reMo, = 2.77
Fen 2 cot MQSWR for n odd.

Clearly for ry = 0 we get back the UED KK-mass n/R. In Fig. 2.4 we show the dependence of
KK-mass on the BLKT parameter; here we have taken 1/R to be 1 TeV.

After discussing the fermions we now describe the actions for gauge and scalar fields and the

Yukawa interactions. The respective actions are given by,
1 TR
Semse = = [[ % [ | S (PN 1y 00) + 0y - )T
+BMNByn +1r{6(y) + 6(y — 7R)}B* B, |, (2.78)

TR
2
Sscalar = \/d4.%'\/0 dy|: (DMq))T (DM(I)) + M%S)h(I)TCI) - )‘(S)h(q)T(I))
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FIGURE 2.4: Dependence of first KK-level mass on the BLKT parameter for 1/R =1 TeV.

+{6(y) + 6y — 7R Hry (D) (D, ®)
+ukote - )\B(Q>T<I>)2}} : (2.79)

TR B B
Syuk = — / d4m/0 dy [Q“QQ)CU + 7%Q®D + ry{6(y) +d(y — 7R)}

X (g“QL&)UR n gdeL@DR) n h.c.] : (2.80)

All the conventions of field-strength tensors, Higgs doublet, gamma matrices and five-dimensional
metric are same as given in Sec. 2.2.4. The BLKT parameters for gauge and scalar fields are rg
and 7y respectively, whereas r, denotes the boundary-localized Yukawa parameter. The symbols
Hs)n and A(s)p, respectively represent the five-dimensional bulk Higgs mass parameter and scalar
self-coupling (Sec. 2.2.4); up and Ap are the boundary-localized Higgs mass parameters and
the scalar quartic coupling respectively. In the limit, r4 = r, the scalar and gauge fields will
have the same y-dependent profile given in Eqs. 2.81 and 2.82. If the two BLT parameters are
taken to be different, the breakdown of electroweak symmetry results in a term proportional to
r4 in the differential equations governing the dynamics of the gauge profile in y direction [175].
Consequently, the y-profile solutions of the gauge field will be different from what is given below
(Egs. 2.81 and 2.82). Throughout the analysis, these two BLKT parameters r4 and 74, will be
taken as equal to avoid the nontrivial scenario. Thus the y-dependent wave functions for scalar

or gauge fields for nth KK-mode with appropriate boundary conditions are given by

TR
cos(Msp,, (y - 7)) for n even

I = Nod o G g (2.81)
for n odd.
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Since the fifth component of gauge field are projected out by Zs odd condition, no zero mode
appears for W5i, and the y-profile for nth KK-mode is given by [165,169,171,172,176]

sin(Mag,, (y — %))

) c for n even,
95 = Nan A 2.82
’ ' cos(Ms, ( _ TR)) for n odd | )
So,, ’
with
Mg 7R Mg 7R
Cg, = cos <q>5’ﬂ'> , Sp, =sin <<D;7T> . (2.83)

(n)

These wave functions fd()n) and g’ satisfy the orthonormality conditions

/ dy[1+rp{o(y) + 6y — 7R} £V (y) £ (y) = 6" = / dy g (y) 98" (), (2.84)

which give the normalization constant as

TR

[ 2 1
Non =\ — : (2.85)
TR M2
\/1+—¢’4q’ + 77

The mass Mg, of the nth KK-mode now satisfies the following transcendental equations

—2tan M for n even,

2 cot w for n odd.

7o Mgy = (2.86)

In case of nmUED, the five-dimensional gauge couplings g and §’, are related to their four-

dimensional counterparts g and ¢’ by

= (=1
N = Nao 3 () = —29)_ 2.87
9 (¢') = Nao g (3') Ve + 7R (2.87)
For the zeroth mode of Higgs to be flat [165,177] the following conditions must hold !.
:U’2B = 7’¢,LL%5)h and )\B == T¢)\(5)h' (2.88)

We will use 't Hooft—Feynman gauge in our calculation and its important to spell out the gauge

fixing action in this scenario. These actions, following Refs. [169, 176], are given by,

" 1 A TR i 5 2
Sqp = —— [ d'z dy(@uA +&y05A ) ) (2.89)
2§y 0

11f the boundary parameters are unequal in Eq. 2.79, the mass term would involve KK-mode mixing and
diagonalization of KK-mass matrix would modify the wave functions implying a y-dependent zero mode [177].
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TR
Sér = —22/#3:/0 dy{aMZ#+§y(a5Z5
Y
~iMyx{1+ 7o (50) + 6y~ 7R)) (2:90)
- B 1 . TR
S = —Sy/d x/o dy‘auW”++§y(85W5+
2
~iMw 6™ {1+ 74 (8(y) + oy — TR (2.91)

In the above, Mz and My are the respective masses of the Z and W boson; SéF, S(%F and Sg%
are the gauge fixing actions for photon, Z boson and W boson respectively. The gauge fixing
parameter £, is related to physical gauge fixing parameter £ (equals to 1 in Feynman gauge, and
0 in Landau gauge) by [169,171,172,176|

;: 2{1+r¢ (6(y) +d(y — 7R))}. (2.92)
Yy

The standard procedure to calculate the effective four-dimensional couplings is to write the
original five-dimensional interaction terms and then replacing each field by their corresponding
KK expansions and then integrate out the extra coordinate y. In (m)UED this type of couplings
are equivalent to their SM counterparts. But in case of nmUED, the couplings get modification

from the overlap integrals of the form,

ijk _ mh (@) (4) (k)
I = /0 dy 157 (y) £5" () 1577 (y), (2.93)

where the Greek indices (subscripts) denotes the type of field and the Latin indices (superscripts)
refer to the KK-level of the respective fields. This type of modification in coupling is character-
istic to the nmUED scenario. The root of this modification lies in the fact that unlike (m)UED,
the KK-mode function in nmUED has BLT parameter dependence, explicitly in normalization
factors and implicitly in KK-masses. Also note that if (i + j 4+ k) is an odd integer then these

overlap integrals vanish due to the conservation of KK-parity.

2.5.1.2 Physical Eigenstates

In the effective four-dimensional theory, the presence of higher KK-modes of various fields will
mix to give rise to physical fields. This type of mixing will be present in fermionic as well as in

scalar /gauge sector.

In the quark sector the strength of mixing is proportional to the quark mass. Thus it is significant

for top sector. This mixing matrix can be diagonalized by separate unitary matrices for left-
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and right-handed quarks:

%L(n) _ <— cosqy, Sin an> 7 %1:(5”) _ (cos o’ —sinan> ’ (2.94)

sino,  CoSap sincq, COSaQy

where o, = %tan_1 (]\Z;

) with m; denoting the SM top quark mass. In nth KK-level, mass

n

term can be written as,

—(m) —=(m —M@gpd™  mia ™" an)
(Q§L> g ))< Q mn) ( | +he., (2.95)
m;0q ManS UR

where Mg, are the solutions of transcendental equations given in Eq. 2.77. Z™" is an overlap

integral of the form

TR
/0 [+, {8(y) + 3(y — 7R} £ (1) () dy,

and

7[‘R+7“f

T ARty

In general Z™" is nonzero whether n = m or n # m. However, the n # m case would lead to the
KK-mode mixing among the quarks of a particular flavor. An interesting point to note is that
for the choice ry = ry, Z™" = ,,, and obviously a; = 1. Thus to get a simpler form of fermion
mixing matrix and avoid the mode mixing we will stick to the choice of equal 7, and r;. Taking
into account of these matrices one can now relate the gauge eigenstates an) (U (”)) and mass

eigenstates Qg(n) (U'™) as (in this notation 4 refers to the up quark flavor),

QEZ}R = T cos anQ;(LT;)R + sin oang;%, (2.96a)
Ug;)R = +sin anQ;(Ln/)R + cos oy, UL(;%. (2.96b)

The mass eigenstates, in this case, share the same mass eigenvalue,

mQ;(n) = Myn) = \/m?+ M2n = Miop- (2.97)

Similar procedure follows for the down sector also. While dealing with the four-dimensional
effective Lagrangian there also exist bilinear terms involving the KK excitations (from first and
higher KK-levels) of the 5th components of Z bosons and the KK excitations of x(?) of the
Higgs doublet field; and similarly there are mixing terms between the 5th component of W+
and the KK excitations of ¢(OF of the Higgs doublet field [124]. Mixing between Aftn) and Aén)
cancels by adding SéF, and the new spectrum consists of a massless zero-mode photon, a tower

of KK-modes with masses M%n for both A,(Ln) and Aén). Using the gauge fixing actions and
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appropriate mode functions of gauge and scalar fields (Eqs. 2.81, 2.82) and finally integrating
over y, the mass matrices for the mixing between KK-modes of Z5(™ and x(™ and that for the

mixing between the KK-modes of I/V5jE ™ and #=(™ are respectively given by

(ﬁm)xw)QA@+fM%L U—éth%><zmv, (2.98)

1— & MzMg, M2, +EM2 x(™
and
M2, + M2 —i(1 — &) My Mg, \ (WT
(Wé”" ¢(n)7> w &M, i1 = &)Mw Mo o +h.c. (2.99)
i(1—MwMe, M3, +EME, gl t

Diagonalization of the mass matrix present in Eq. 2.98 would lead to a tower of Goldstone
modes of Z (G(Zn) with mass-squared £(M2, + M2)) and a physical CP-odd scalars (A™) with

mass-squared M(%n + M %) respectively given as

1

G(n) _ —M. nZ5(”) + My™ , 2.100a

Z " My, ( ® Zx ) ( )
1

A — i (Mcpnxmur MZZ5<”>). (2.100b)

A similar diagonalization in Eq. 2.99 would also generate KK-tower of charged Goldstone bosons
(with mass-squared £(M2, +M32,)) and a physical charged Higgs pair (with mass-squared M2+
M3,) given by

atn) — Ml (Mcanﬂ’(") T iMqui(")) , (2.101a)
Whn
) _ M1 ( Moy ™™ i MWWﬂ’(")) , (2.101Db)

n

The fields Z#(™) G(Zn) and A(™ all possess the common mass eigenvalue as Mz, = /M<12>n + M%

Similarly WM+ G)E and H™* share the same mass eigenvalue My, = /M%n + MI%V in t-
Hooft Feynman gauge (§ = 1). The above combinations of charged Higgs and charged Goldstone
ensure the vanishing coupling of A% H (”)iWV(")jHQ.

12However, another important point to obtain these combinations is to remain careful about the sign used before
the non-abelian part of the field strength tensor Fj;x; the couplings required for the above combination comes
from (D*®)" (D,®) and Fis F*5. The expressions of the charged Higgs and charged Goldstone modes do not
depend on the sign used in (D“CD)Jr (Dn®), but depends on whether Fy;y is (8MW]C{7 — OnWiy + §fabCW]bV[va)
or (OuW5 — ONWir — G WRWSR). For Fiyn = (W5 — On Wi — Gf** W3R W5 ), the combinations which
give the vanishing coupling of A*(® HMEW,™F are

GEm — 7M1 (Mon W™ F ity =),
Whn

1 n . n
HTM = 7MW" (quczﬁi( ) ¥ ZMWW5i( )) .



Chapter 2. The Extra Dimensional Models 56

2.5.1.3 Asymmetric BLTs

In passing it is worth mentioning that we have used symmetric BLTs which respects KK-parity.
If the BLT parameter r is taken to be different at two boundary points, then we have asymmetric

BLTs which eventually violate KK-parity. The example of this is given below:

r{d(y) +d(y —7R)} and {rd(y)+r0(y—7R)}.

Symmetric BLT Asymmetric BLT

The asymmetric BLTs do not obey KK-parity [159]. It has been mentioned that KK-parity is
nothing but a remaining translational invariance under the transformation, y — y — 7R. For

symmetric BLTs, we have

r{d(y) + 6y —mR)} = r{d(y — 7R) + 6(y — 27R)}
=r{d(y—7R)+(y)}, (2.102)

whereas the asymmetric BLTSs result in

{r16(y) + r26(y — 7R)} — {r16(y — 7R) + r26(y — 27 R)}
={rid(y —mR) +12(y)}, (2.103)

Clearly, Eqgs. 2.102 and 2.103 show that under y — y — 7R the symmetric BLT case remains
invariant, which preserves KK-parity, but asymmetric BLTs do not respect KK-parity. Although
violation of KK-parity would lead to unstable LKP which in turn results in the lack of good
motivation of the Universal Extra Dimensional scenario regarding dark matter, but it has some
interesting phenomenology in the context of collider physics [166,167,170]. In the literatures
(e.g. in Refs. [164,165,177]) sometimes, the orbifold fixed points are taken at y = +7R/2 and at
y = —mR/2. In that case, the respective BLT is written as {d(y—L)+0(y+L)}. By introducing
a simple mapping y — y + % the results from here to that of Refs. [164,165,168-173] can be
obtained, provided the other conventions are taken care of properly. Thus we see that nmUED
differs from UED scenario in two ways. The presence of BLTs firstly modify the mass spectrum
and secondly the coupling from that of UED values. It is noteworthy that mUED scenario
corresponds to an intermediate state between UED and nmUED. In the mUED scenario, the
mass corrections are only taken into account but the couplings are left unaltered as that of the

UED -case.



nmUED Confronts Unitarity

In the Standard Model (SM), the presence of Higgs boson ensures the complete restoration of
unitarity in the longitudinal scattering of vector bosons (Vz,, where V.= W, Z) at tree level. In a
seminal paper by Lee, Quigg and Thacker (LQT) [178], it has been shown that the VLV, — VLV,
scattering amplitudes grow with center of mass energy (F) if Higgs boson is not included. The
immediate ramification of the absence of Higgs boson in the theory is unitarity violation which in
turn implies the breakdown of quantum mechanical sense of conservation of probability in these
scattering amplitudes. Ref. [178] shows that the Higgs mass my, should be less than 1 TeV to
respect unitarity. The discovery of Higgs boson in LHC [34,35] having mass 125 GeV (which is
obviously much lower than the bound mentioned in Ref. [178]) reflects the fact that any process
involving the longitudinal vector bosons as well as any other SM particles in external state would

remain well-behaved at any arbitrary high energies.

However, in five-dimensional Universal Extra Dimensional model with the missing Kaluza-Klein
(KK) Higgs sector, the longitudinal scattering of gauge bosons do not respect partial wave
unitarity if other KK-modes are involved. With the inclusion of higher modes of Higgs boson
the unitarity is completely preserved [142]. But this is the case of the five-dimensional Universal
Extra Dimensional model, where there is no boundary-localized terms (BLT) and the theory is
effectively one parameter theory. In this case the only parameter R~ does not play any role
in unitarity violation. Things appear to be certainly different in non-minimal Universal Extra

Dimensional (nmUED) scenario where the BLTs are present. These terms are associated with

o7



Chapter 3. nmUED Confronts Unitarity 58

corresponding parameters which are called boundary-localized parameters and it is still a matter

of analysis whether BLTs play any role in unitarity violation.

In nmUED, many studies have been done to find the lower limit of the inverse of compactification
radius R~! as well as to constrain the allowed range of BLT parameters [164,169,172] till date.
But no robust studies have been performed yet to set the upper limit on these parameters. The
Refs. [122,125] have shown that the boundary terms are generated by radiative corrections and
in a sense, are loop suppressed. Still it is not apparent and not even very clear what would be
the actual range of the BLT parameters, the new parameters of the theory. Though the BLT
parameters are the coefficients of boundary-localized terms originated from radiative corrections,
no drastic conclusion, such as they should be small, can be drawn about their range like since
the other parts of the Lagrangian are dependent on these parameters too. Boundary-localized
parameters might have some higher values and still can altogether result in BLTs which are in
effect loop suppressed. These boundary terms can be considered as some effective operators with
some unknown coefficients. All in all, a study of unitarity is therefore essential for determining
the upper bound in four-dimensional effective theory. This chapter includes a detailed study
on unitarity in gauge and scalar sectors that would set an upper limit on the respective BLT

parameters.

We begin by reviewing the basic idea of implementation of unitarity constraint and a short
description of the Lagrangian and interactions required in this analysis. Then we refer the
processes needed in the analysis. After that we compute the bounds on the parameters. This

chapter follows largely from Ref. [173].

3.1 Unitarity Constraints

Any 2 — 2 scattering amplitudes, M(6) can be expressed in terms of scattering angle 6. That

in turn can be expanded in terms of an infinite sum of partial waves as

)
M(0) =167 " ay (2] + 1) Py(cosb). (3.1)
J=0
Here, a; represents the scattering amplitude of Jth partial wave and Pj(cosf) is Jth order
Legendre polynomial. Refs. [178,179] show that the unitarity constraints of scattering amplitudes
can be manifested as constraints on partial-wave coefficients, in particular on the zeroth partial
wave amplitudes ag as

|Re (ag)| < =. (3.2)

N |

By exploiting the equivalence theorem [178] in the high energy limit the unphysical scalars of

the theory can be used instead of the original longitudinal components of the gauge bosons. The
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relevant 2 — 2 scatterings should get contributions from the quartic couplings only. The con-
tributions coming from the trilinear couplings can be safely ignored as the diagrams originating
from those couplings will have an E?-suppression due to intermediate propagators. Following
Ref. [178] a t-matrix (which is tV for J = 0) can be constructed from different two-particle states
represented as rows and columns. Evidently each matrix element corresponds to the scattering
amplitudes between the respective 2-particle state in the row and in the column. Consequently,
the unitarity constraint can be manifested as the bounds on the eigenvalues of the matrix (¢°)
given by

|IM| < 8. (3.3)

However, the procedure of finding the constraint as the bounds on the eigenvalues of matrix can
be extremely complicated and leads to an unpalatable scenario in the case of nmUED. In many
cases, the trilinear couplings are proportional to the KK-masses. Consequently the contributions
coming from these trilinear terms can not be ignored as the matrix elements in those cases are the
functions of s, where /s denotes the center of mass energy of the respective scattering processes.
So one can end up with an intractable determinant [180]. But this conclusion comes with a caveat
that single channel scattering is not enough to analyze the bad high energy behaviour in any
five-dimensional compactified theory, whereas the coupled channel analysis is preferable for the
study of unitarity violation [179]. Coupled channel analysis is performed by constructing a t°
matrix for all suitable scattering channels and obtaining the eigenvalues as functions of the model
parameters, and hence demanding that no eigenvalues should exceed 87. Thus, in the present
scenario, we would first like to obtain the expressions of ag for every possible 2 — 2 process in the
entire scalar sector of nmUED model. In those cases, the quartic couplings are not suppressed
by KK-masses and the BLT parameters can be constrained from Eq. 3.2. Following this we can
perform the coupled channel analysis with some selective channels which do not eventually fall

with /s and can further constrain the bounds on parameters using Eq. 3.3.

3.2 Lagrangian and Interactions

Now we briefly discuss the Lagrangian and interactions required in the analysis of finding the
bound on BLT parameters from unitarity. In this case, all we need are five-dimensional action for
gauge fields given in Eq. 2.78 and for the scalar fields given by Eq. 2.79. Here, the kinetic terms
for gauge and scalar fields as well as the mass and interaction terms of scalar fields are added
to their respective five-dimensional actions at the boundary points. Substituting the Eq. 2.88 in

Eq. 2.79, we can have the form of five-dimensional Lagrangian of scalar field Lg as

TR
Lo = [ g1+ (60) + 5y = 7R)} ') (D)
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{17 (8(0) + 8y — TR) Hikyn @10 — Ao (818)°) — (D52) (D58)]. (3.4)

The terms [;* dy{1+74 (3(y) + 0(y — 7R))} (1), B0 — A5 (®1®)") and [ dy{—(Ds@)T (D
®)} in the above equation contribute to the required scalar interactions. Since by virtue of
the equivalence theorem in the high energy limit, we can replace all the longitudinal modes
of gauge bosons by their respective unphysical scalars or Goldstone modes [178], only scalar
interactions are required in this analysis. The Higgs doublet ® can be expanded [181,182] in

terms of zero-mode and its KK-tower as

bt g0 g )

Jrot 7R

and consequently Ds® can be written as

Ds® = — My @™ — i %) RGP ),

(I,O
g(n)
¢ rs 7R
with

o3 () )+
‘)}'(n) _ 1 <9W5 +9 BS \/§QW5 > (3.5)

2 ﬂgwg”)_ —§W5(n)3 +§/Bé")

Substituting all the required y-profiles in the above and integrating over the extra dimension y,

the final form of the last two parts of Eq. 3.4 (denoted as £1 and L2) can be represented as

L, = M%(@(O)Tq)(o)) — A (@O p()2 M%(@(R)Tq)(n)) —22,(® D10y (M1 p ()
(@™ 4 1)) (@O 1 (TGO
—2), 29 (@013 4 i) (@@Tp@)) — ), 7P (oM Tp®))(e@TaM))  (3.6)
Ly = —M; &M Mg, &M xMe0) 4 ing, &0 X1 er) — g0 xi(n) () $0)
—iMeg, T;"10MTx P @) 4 iMap, TPt x 0 g@) _ 7,mragpO)f p ()t ) g
— 7Pty 0t x (@ @0 _ 7 pang ()t x )t (@) §0)
—yrrragp(mit x @)t x (1) 9 (3.7)

where the sum over all possible KK-indices are implied. In the above, A, is the four-dimensional

counterpart of )\(5)h given as
A)h

A = ——
h 1"(15—+—7rR7

and puy, is related to its five-dimensional counterpart as

Hh = K(5)h-
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Here X’s are the matrices given as

o L (Vg BY gt (3.8)
2\ Vet g gl
and are related to its five-dimensional counterpart X as
x ™)
xm = < (3.9)
Vg + TR
The overlap integrals' arising from the integrations of y-profiles are given as
e () (0) (@)
T~ e AR [yt + s = <R (30

TR

I = (rg+7R) /O dy [1+74{8(y) +8(y — aRY P00, (3.11)
TR

M = \Jry ¥R /0 dy g g 149, (3.12)
TR

s N /0 dy g7 g 1", (3.13)

T, g — (’I” + 7TR) 7er (p) (T)f(”)f(‘I) (3 14)
1 ® 0 Y95 94 Jo o - .

From Egs. 3.6 and 3.7, we obtain the mass of nth mode Higgs as mp, = 4 /M(%n + m%, my, being
the mass of zero-mode Higgs. The overlap integrals are nonzero when the sum of all indices
(n+p-+q+r) are even and their values will be zero when the sum is odd due to the conservation
of KK-parity. Substituting all the expressions (Egs. 2.100 and 2.101) in terms of A, G(Zn),
H™E and GM=* in Egs. 3.6 and 3.7 all the couplings and interactions can be obtained. We list

all the necessary Feynman rules in Appendices A, B and E.

3.3 Relevant Scattering Processes

Now we are all set to discuss on the relevant processes to find the upper bound on gauge
and scalar BLT parameters from unitarity analysis using Eq. 3.2. Initially we will restrict our
calculations to (n), (n) — (n), (n) processes. In these processes, the KK-numbers of the initial
and the final states are same and respective quartic couplings are not suppressed by KK-masses.
In scalar sector we have altogether 13 processes satisfying these conditions. Considering 2 — 2

processes, we have neutral two-particle states and charged two-particle states.

'Overlap integrals are actually absent in UED as the wave functions are of simple form like sin(%¢) or cos(%¥).
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The bases of neutral two-particle states are

7 (n) ~(n)
{h( :)/;%(n)7 A(v:)/jg(")’ GZ\/C;Z 7G(Z”)A(n)’H(n)+H(7L)—7H(n)iG(7L)¥} and {h(n)A(n)7h(n)G(Zn)}, (3.15)

and the bases of charged two-particle states are given by

{H<”>ih<”>, GERM), H<”>iG<Z">} and {H(")iA<”>, GmE g } (3.16)

Eqgs. 3.15 and 3.16 show that there exist two types of neutral two-particle states and two kinds
of charged two-particle states respectively. Since we are working in CP-conserving scenario,
with 2™ being CP-even and A™, G(Zn) being CP-odd it is evident that there will be no mutual
interactions among these two different kind of states. The diagrams for all necessary processes
are shown in Figs. 3.1-3.6, and their corresponding expressions of ay are given in Appendices C
and D. In this entire analysis, we have not considered the radiative corrections of Weinberg angle

(Ow) [122] which arises due to the presence of KK-modes.
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FIGURE 3.1: Diagrams for the processes h(™ (1)h(™(2) — K™ (3)A(™)(4), A (1)A™(2) —
AN (3)AM (1), G (1)AM(2) — G (3)AM (4).

The quartic couplings showed in Fig. 3.3 (a) can also generate the processes R pn) — G(Zn)G(Zn),
RMAM) — A A(™)  But the amplitudes in the latter cases will be suppressed by a factor of
1/2 as compared to the amplitudes of the processes given in Fig. 3.3. This suppression occurs
due to the normalization factor 1/4/2 arising from the presence of the same bosonic states both
in the initial and final states. Same argument will hold for the process A™A™ — G(ZH)G(Zn)
resulting from the quartic interaction given in Fig. 3.1 (a). This amplitude will be also sup-
pressed by a factor of 1/2 as compared to the process A(”)G(Zn) — A(”)G(Zn) mentioned in
Fig. 3.1 for same reason. The quartic couplings in Fig. 3.5 (a) can also give rise to the pro-
cesses hWpM) — g+ g0)= pp0) — G+Gm)= g A(n) _y g+ )= A(n) g4(n)

Gm+gn)— G(ZH)G(Zn) — HM+ M= which will eventually be suppressed by a factor of 1/v2
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FIGURE 3.3: Diagrams for the processes h(™ (1)A™)(2) — h(™)(3)A"™)(4), h(”)(l)G(Zn)(Q) —

) (3)G5) (4).
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FIGURE 3.4: Diagrams for the process h(”)(l)G(Zn)(Q) — HWE(3)GMT (4).
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FIGURE 3.5: Diagrams for the processes H(™M*(1)n("(2) — HME(3)p(M(4), GIE(1)R(M)(2)
= GMEE)RM (4), HME(1)AM (2) — HME3)AM (4), GMIE(1)AM (2) — GME(3)AM (4),
HWE1)GP (2) » HWEE)G (4),
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FIGURE 3.6: Diagrams for the process A(")(l)G(Zn)(Q) — GUF(3)HM*E(4).

as compared to the processes mentioned in Fig. 3.5, due to the presence of identical bosonic state
in the initial (or in final) state. We are not considering those processes as the ag in that case
will result in a unitarity violation at larger value of r4 which in turn result in a less stringent

bound as compared to the processes mentioned in Figs. 3.1, 3.3 and in Fig. 3.5.

The zeroth mode partial wave amplitude ag for each process can be studied as the function of s
(v/s being the center of mass energy for respective processes) for different values of r, and one
can set an upper limit on BLT parameter by Eq. 3.2. This ag can also be studied as function
of the BLT parameter r4 for a fixed s. The value of r4 for which |Re ag| will be greater than
half even at large limit of s, would give us the required upper bound on the BLT parameter for

a particular KK-number n.

After analyzing all the relevant (n), (n) — (n), (n) channels in detail we can perform the
coupled channel analysis (mentioned in Section 3.1) for suitable set of channels to obtain further
constriant on the upper bound on BLT parameters [179]. However, it is not possible to obtain

the channels for this purpose before acquiring the results of single channel scattering analysis.
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The computation of t° matrix with appropriate basis and the bounds obtained from this will be

analyzed elaborately in the next section after getting the results of (n), (n) — (n), (n) scattering.

3.4 Obtaining the Bounds on BLT Parameters

3.4.1 (n), (n) — (n), (n) Processes

We start this section by a discussion about the variations of ag for different processes as function
of s for a fixed value of BLT parameter 74 and vice versa. Since we are dealing only with the
(n), (n) — (n), (n) processes, the variation of ag will be analyzed for specific KK-modes. In this
single channel scattering analysis, we restrict ourselves to the KK-number up to 4. It would be
clear in the latter part of this section that to obtain suitable channels for the coupled channel

analysis it is sufficient to study the single channel analysis with KK-mode up to 4.

The Fig. 3.7 shows the variation of ag for these six processes h(Wh(W — pMpM) - A) A(n)
A A() )+ pr(n)— _y grn)+ )= pn) g(n) _y p(n) g(0) )£ g0)  gn)E g0) - g)Ep0)
— HM™Ep(™)  The BLKT parameter re is a dimensionful parameter. For convenience, we will
use scaled BLKT parameter Ry = 74/R while presenting our results. Each plot has two hori-
zontal axes, the lower one corresponds to sR? and the other corresponds to Ry. The vertical
axis represents the values of ag for different values of s and R4. Here the value of R~ is taken
as 1500 GeV. These figures reflect that for n = 1, the |Re ag| is much less than half with the
variation of s even at very large value of Ry. We can see from these figures that |Re aol is almost

independent of s for n = 1 and there is no unitarity violation for n = 1.

The entire scenario has been changed for KK-number n = 2. From the Fig. 3.7, it is very clear
that the variation of ag is quite different for n = 2 from the variation of ag for n = 1. In this case,
|Re ag| can be greater than half for some specific value of Ry, for a given value of R™1. As ex-
ample, at R~ = 1500 GeV, |Re ag| for the processes R — p()p () - g() A() _y g(n) A(n)
HmW+HO)— o g+ gh)— p)gn) 5 p) o) g)E () gr)E g(n) - ri)Ep)
HM™WER(M) becomes greater than half when the respective values of Ry are 138, 138, 103, 206,
207 and 206. This will remain same even at large value of sR?. Clearly among all the processes
mentioned in Fig. 3.7, the process H (n)+ pr(n)— _y g)+ pr(n)- gives the most stringent upper
limit on the value of Ry (Fig. 3.7 (c)) for n = 2. One can see at Ry = 103, the value of |Re ao|

becomes greater than half signaling the breakdown of unitarity.

The discontinuity along the curves in Fig. 3.7 corresponds to different values of pole masses
of the propagators. KK-parity conservation ensures that whether n = 1 or n = 2, only even
KK-modes can contribute along the propagators (the KK index along the propagator is denoted

by ¢q). These plots also reflect that if ag is considered as a function of Ry for a particular sR? for
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FIGURE 3.7: Variation of ag as a function of sR? for different KK-mode with different val-
ues of R4, and also as a function of R4 for second KK-mode with sR? = 50. Each plot
has two horizontal axes. The lowest one corresponds to sR? for different values of R, and
the upper one shows the variation of ag as a function of R, for a fixed value of sR?. Both
dependences have been shown for specific KK-modes. Variations of ag for the processes
R pm) 5 g pn) - A) A(n) 5 A(n) A(n) - )+ )= _y Fim+ )= pn) g(n) _y pn) A(n)
HmWEAM)  glEgn)  gEpn) o gO)ER™) are presented with R~ =1500 GeV.
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specific KK-mode (in Fig. 3.7, sR? = 50 and n = 2), variation of |Re ag| is a straight line and
will be greater than half at the same value of Ry at which the unitarity violation occurs with

the variation of sR? even at large s limit.

For n =3 and n = 4, with R™! = 1500 GeV, the values of R, at which |Re ao| > 1/2 are shown
in Table 3.1. For higher values of KK-modes unitarity breaks down at relatively lower values of
Ry reducing the allowed upper bound of BLT parameters. The data in the table exhibits that
the process HMWTHM— — HM™+HM = gives the tightest upper bound on Ry; for n = 3 and
n = 4 the bounds are slightly different, R4 should be less than 99.9 for n = 3 and 99.4 for n = 4.

Processes Value of Ry | Value of Ry

(n=3) (n=14)

R ) 5 p ) ) 1312 359

AT AT — AT AT 134.2 133.7
HM+gh)— - g+ gh)- 99.9 99 4
R A 5 () A7) 2021 502
HWE AW g)E A0) 502.9 5022
HOERM)  gER[) 502 5013

TABLE 3.1: Values of Ry for the KK-modes n = 3 and n = 4 for the processes R(7) p(n)
— RMRM) A A() o A() p(n) - g+ )= g+ )= pn) g(n) y p(n) A(n)
HMEAM) 5 gmEp() - goyxpn) o g)Ep(m) - at which unitarity violation occurs, i.e.
|Re ag| > 1/2. Here, R~ = 1500 GeV.

Now, it is important to check the variation of ag as function of R~'. The Table 3.2 shows
the different values of |Re ao| of the process HMWtH® = — HM+HM= corresponding to
different R~! for KK-mode n = 2,3 and 4. In this table, ag is separately analyzed considering
the contributions arising due to quartic coupling and the contributions coming from quartic
coupling along with trilinear contributions. We observe that R~! has a nominal effect on the
upper limits of Ry and slightly shifts the bounds to a lower value for all KK-modes when R1lis
increased. For R~! = 1.5 TeV and n = 2, the upper bound on Ry arising from the contributions
only from quartic interactions differs from the contributions coming from total amplitude by
0.1 only; considering the quartic interaction the upper bound would be Ry < 103. This small
discrepancy vanishes with higher values of R~! (say, 10 TeV) which results in a nominal shift
in bound as Ry < 102.6 for same KK-mode. The discrepancy vanishes absolutely for R~ from
5 TeV onwards for all KK-modes. For n = 3 and n = 4, R4 should be less than 99.8 and 99.3
respectively at R~ = 10 TeV. Clearly for sufficient large values of R~!, trilinear contributions
are fully suppressed by E? and ag solely depends on R4 and not on R~ the contributions are
effectively governed by quartic couplings. Evidently the sum over KK-modes in the propagators
which has been taken up to 4th KK-level does not affect the result considerably. The quartic

couplings in the processes mentioned in Fig. 3.7 are not suppressed by KK-masses and also the
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overlap integrals are independent of R~!; consequently the results have nominal dependence on
R7L

The The value of Ry, for [Re ao| > %
for different KK-modes
Value of
R,1 n =2 n=3 n=4
. From quartic | From total || From quartic | From total || From quartic | From total
in GeV . ) ) . . .
coupling amplitude coupling amplitude coupling amplitude
1500 103 103.1 99.9 99.9 99.3 99.4
2500 102.8 102.8 99.9 99.9 99.3 99.3
5000 102.6 102.6 99.8 99.8 99.3 99.3
7500 102.6 102.6 99.8 99.8 99.3 99.3
10000 102.6 102.6 99.8 99.8 99.3 99.3

TABLE 3.2: Value of R4 signaling the breakdown of unitarity for the process H (m+g-

HM™+HM= for different KK-modes and for different values of R=' (GeV). Here contributions
to ag from quartic coupling and that from the total amplitude have been presented separately.

The Fig. 3.8 shows the variation of ag for the processes GMWEAM — GIEAM)  GIERM)
GEpM), G(Zn)A(”) — G(Zn)A("), h(")G(Zn) — h(”)G(Zn) as a function of sR?. For KK-mode n = 1
there is no unitarity violation. For n = 2, the specific nature of ag due the contributions of quartic
coupling and that from the total amplitude have been separately presented for a particular value
of R4. As an example, for the process GMEAM _, Gn)Egn) |Re ap| will become 1/2 for
Ry = 741, whereas the contributions coming from total amplitude are much less than half.
The trilinear coupling in this case is effectively proportional to KK-masses and consequently
the numerator in the terms generated from trilinear couplings is effectively proportional to the
square of KK-masses. Thus, ag coming from the contributions of trilinear interactions falls from
much higher value than 1/2, resulting in a falling nature of ap with variation of s initially. In
Fig. 3.8, R™! is taken as 1500 GeV. Evidently higher value of R~ will result in a higher rate of
falling of ag with sR2. Besides, Fig. 3.8 shows that the E?-suppression increases with increasing
value of s. The uniratity violation will occur either at very large value of Ry or at very large
value of s. It is very clear that the contributions coming from trilinear couplings can not be
ignored when the couplings are effectively proportional to KK-masses. Higher KK-modes follow
the similar explanations. In this case also, the sum over KK-modes in the propagators has been
taken up to 4th KK-level. Further increase in ¢ does not change the result considerably as the

contributions from higher modes will decouple from the theory.

The other processes like A(”)G(Zn) — HOEGM)F h(”)G(Zn) — HOWEGM)F H(”)iG(Zn) —
H (”)iG(Zn) give unitarity violation at very large values of Ry and therefore are irrelevant to
our discussions. For some specific value of Ry, unitarity violation occurs as a result of the large
contributions to the scattering amplitudes from the overlap integral I" (for n =p = q = r, ["P?"
would be I") coming from respective quartic interactions. In the Table 3.3, the overlap integral

I™ is presented as a function of Ry for different KK-modes (n = 1 —4). This table shows that
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FIGURE 3.8: Variation of ag for processes GEAM — GMEAM)  qEp0) . GER((0)
GWAM 5 G A mGT 5 hmMGYY as a function of sR? with different KK-modes for

different values of Ry4. Here R~ is taken as 1500 GeV.

I is very small for n = 1 even at very large value of Ry, rather it decreases with increasing Ry.

This eventually reflects the fact why there is no unitarity violation at n = 1.

3.4.2 Coupled Channel Analysis

In the previous section 3.4.1, we have shown a detailed analysis of unitarity violation from a set

of suitable (n), (n) — (n), (n) channels. Coupled channel analysis should be taken into account

to get further constraint on the BLT parameter R4. The coupled channel analysis includes

the construction of t° matrix generated by different two-body channels as rows and columns;

restoration of unitarity demands that each of the eigenvalues of this t° matrix should lie below

8 (Eq. 3.3). Clearly we can proceed our analysis with the processes shown in Fig. 3.7, as for

these channels unitarity violation takes place at much lower value of Ry4. In addition, there is
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Value of Ry || Value of I"™ | Value of I" | Value of I" | Value of I"
(n=1) (n=2) (n=3) (n=4)
50 1.03 23.60 24.90 25.16
100 1.02 47.45 48.78 49.04
150 1.01 71.31 72.66 72.91
200 1.01 95.18 96.53 96.79
250 1.01 119.05 120.41 120.66
300 1.01 142.92 144.28 144.53
350 1.00 166.80 168.15 168.41
400 1.00 190.67 192.03 192.28
450 1.00 214.54 215.90 216.15
500 1.00 238.41 239.77 240.03
550 1.00 262.29 263.65 263.90
600 1.00 286.16 287.52 287.77
650 1.00 310.03 311.39 311.65
700 1.00 333.91 335.27 335.52
750 1.00 357.78 359.14 359.40
800 1.00 381.65 383.01 383.27
850 1.00 405.52 406.89 407.14
900 1.00 429.40 430.76 431.02
950 1.00 453.27 454.63 454.89
1000 1.00 477.14 478.51 478.76

TABLE 3.3: The overlap integral I™ as a function of Ry for different KK-modes.

another advantage for taking these channels for t° construction; they are s independent and
thus the contributions coming from trilinear couplings can safely be ignored. In this case too,

we initially start our computation with KK-modes up to 4 only.

From Fig. 3.7, we can see that there can be neutral two-particle states and charged two-particle
states in case of t9 matrix construction. In neutral scenario this t© will be a 70 x 70 matrix and

the states are given as

0 0 1 1 2 2 3 3 4 4
{h( RO RORO BORE OB RO ),h<0>h<1>,h<°)h<2>,h<°>h<3>,h<°>h<4>,h<1>h<2>,h<1>h(3>,

@) A A1) AR) 4(2)  A4B) 4B) 44 4D
Y \/i ) \/i ) \/5 ) \/§ )
AW AW AP AG) AR AW 4B AW 5O+ 50— g+ )= g+ — g@+ G- g+ @ -
PO L= $O= g+ 50+ )= 3O)=g@+ 4O+ gE)= 50)=gG+ 50+ gH = 40— g+
HO+ER- gO+gO= g+ @)= gO+gO- g+ - gO+gh- g@+HE)-

ROR® RARE) R R® RGIR AW AR AW AG)

HO+H® - g@O+g@®- gO+gQR- gO+ -, H(4)+H(3)*} , (3.17)
and

{h(O)A(l), RO AR p©O) 4B) RO) AW (1) 4 R AR) [ (1) 4B) R AW B2 4 () A2)
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K AG) @) A@ 13 4D 1) 4@ 53 AB) {3 4D H® AN @) AQ) @) 4B) (&) A(4>} , (3.18)

As a consequence of CP conservation, 70 x 70 matrix will have 50 x 50 and 20 x 20 block diagonal
forms and the eigenvalues of these matrices can be separately analyzed as a function of BLT

parameter IZ,. The 50 x 50 charge neutral matrix can be written as

Aisxis Bisxio  Cisx2s
1
MgV)C‘,E)OXE)O: Bioxis Dioxio Eioxas | (3.19)

T T
C25><15 525><10 ]:25><25

where, the ./\/15\1,)075OX 5o matrix has eigenvalues A\1;, (la = 1,...,50). Other charge neutral matrix
/\/lg\z,)c 20x20 can have eigenvalues A2y, (Ib = 1,...,20). General form of matrix elements are given

in Appendix E.

Similarly, charged two-particle states can have 45 x 45 matrix which comprises of 20 x 20 and

25 x 25 block diagonal forms as

(3.20)

G20x20  020x25
Meccasxas = < )

025%20 Hoasx2s

Here, the matrices Gogxoo and Hosx2s have eigenvalues denoted by A3;, (Ib = 1,...,20) and
M. (Ie =1,...,25) respectively. The set of two charge two-particle states are given by

{¢(0)+A(1), POt AR HO+AB) yO+ 44 g+ AM g+ 42) g+ AG) g+ 44 g+ 40
H®+AQ) g@+AG) g2+ A4 @)+ A0 gG)+ Q) g+ 4G) g+ 4@ g+ 40 g+ 42)

H®O+A®) g+ A(4>} , (3.21)
and

(0)+7(0) H(0)+7(1) H(0)+7(2) 4(0)+7(3) 40)+5(4) M+x(0) gM)+51) ()+52) )+5(3)
O TR TR VTR VTR VTR HYY TR HY TR HY TR HY TR
H(1)+h(4),H(2)+h(0),H(2)+h(1),H(2)+h(2),H(2)+h(3),H(2)+h(4),H(3)+h(0)7H(3)+h(1)7H(3)+h(2),

H(3)+h(3),H(3)+h(4), H(4)+h(0)7 H(4)+h(1), H(4)+h(2), H(4)+h(3)7 H(4)+h(4)} ) (3.22)

Fig. 3.9 shows the variation of the largest eigenvalue corresponding to different Ry. To find
the eigenvalues in this case, we have neglected all the masses my, Mz, My with respect to KK-
masses. Further the quartic interactions in non-abelian Lagrangian part being suppressed by KK-
masses or higher power of KK-masses, the channels have negligible contributions from that part
and we have neglected that part also. Evidently, the result is R~! independent (Appendix E).

The Table 3.2 also reflects the fact that R~ does not play crucial role in unitarity violation.
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FIGURE 3.9: The variation of the largest eigenvalue (Apq,) as function of Ry.

Clearly these simplifications would not affect the actual result. Now, to respect unitarity every
eigenvalue of matrix should lie below 87 (Eq. 3.3). As consequence, the analysis of largest
eigenvalue (\q2) as function of Ry from each set of 50, 20 or 25 number of eigenvalues would
give us the desired result. Fig. 3.9 (a) exhibits that the matrix Mg\lf)C'750><50 gives the most
stringent upper bound on Ry; at Ry = 26.4 maximum value of A1 exceeds 8w. Now, the upper
bound on Ry implies a lower bound on KK-masses. In Refs. [164,172|, the dependence of KK-
masses as a function of scaled BLT parameter has been explicitly shown. The KK-mass decreases
with increasing value of Ry so the upper bound on Ry implies a lower bound on KK-masses.
Here, the maximum attainable value of Ry should not exceed 26 implies a lower bound on KK-
masses which for scalars and gauge field is given by 0.22 R~!, 1.05 R~!, 2.02 R~! and 3.02 R~!
for n = 1 — 4 respectively. Since the upper bound on Ry is, in effect, independent of R~1, the
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results on the lower limits on KK-masses are true for any R~

In the above analysis, we have considered KK-modes up to 4. The higher modes will definitely
lead to higher dimensional matrices. These higher dimensional matrices would result in the
breakdown of unitarity at relatively lower value of Ry4. The above analysis shows that Eq. 3.19
gives the most stringent upper bound on R, and therefore we will extend our analysis with
higher KK-modes with this basis only (Eq. 3.17). In the Fig. 3.10, we can see that the upper
bound on Ry decreases with increasing KK-modes. If 7,4, be the maximum KK-number taken
in the coupled channel analysis the dimension of the respective matrices would be {2(npq0 +
1)2 X 2(nmaz + 1)?}. Fig. 3.10 reflects that for nyq: = 25 the upper bound on Ry falls down to
nearly one. It also exhibits the fact that KK-number from 18 onwards the values of Ry resulting
in the unitarity violation are more closely spaced. So, the inclusion of more higher modes, i.e.

KK-number from 26 onwards, will not change the upper bound on R4 considerably.

30
|

25} .

20} » |

e 15 .

10} . .

51 NNN ]

4]

0 L n L n L n L
5 10 15 20 25
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NN,

FIGURE 3.10: The variation of R, (signaling the breakdown of unitarity) as function of maxi-
mum KK-number n,,,, considered in the analysis.

However, in Refs. [169, 172] it has been shown explicitly that in case of loop induced decay
processes (Sec. 4) higher modes from 5 or 6 onwards, will not change the physical amplitudes
significantly. In those cases, the upper bound on Ry can be taken as high as 19, because for
Nmaz = O the violation would occur at Ry, ~ 20. Another noteworthy issue in this case is that
the determination of the upper bound on n from unitarity analysis is not possible which can be
straightforwardly done in some other five-dimensional theories. The Ref. [179] shows that for a

fixed value of R~1 one can find a lower bound on the KK-number n as

{72

1
=N @ (3:23)

==

for a five-dimensional SU(N) Yang-Mills theory. In our case, i.e. in nmUED, the scenario

is somewhat more nontrivial with the existence of the BLKT parameters which were absent
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in the simple Universal Extra Dimensional theories. In this scenario with BLT parameters, the
normalized four-dimensional gauge-singlet s-wave amplitude ag[(n), (n) — (m), (m)] of Ref. [179]

will be modified by some overlap integrals as

n N§?
R1672

nnmm

ao[(n), (n) = (m), (m)] =1 (3.24)

where, I™™""™ ig the overlap integral of Eq. 3.11. Consequently, Eq. 3.23 will be modified as

n 1 8

The expression of overlap integral I is given by

1 2R, R 1 )
(1_1_@_'_%) (1+(R¢n?m)2+%> { + p +7T2 +4( ¢ )
1 9 2 2 R2 2 R; 2
-I-*(Rqsm@m) +T(R¢m¢nm¢>m) i 2(R¢m<l>n) — m(Rqsm@m)
Ry

If we consider ap[(n), (n) — (n), (n)] instead of ap[(n), (n) — (m), (m)] in Eq. 3.24, the overlap

integral I™™"™ will be replaced by I™ and that is given as
3 1 Ry R 1 2, Ry 2
" = s +t—+ + 7 (Rgman)” + — (Ryman)
(H(szqm)? +%)2 {2 rom2 4 8¢
1 1 Ry
T3 (Rgman)? @(R@m@n) T (R¢>m<1>n)4} : (3.27)

Clearly, the overlap integrals are not directly proportional to the BLT parameter Ry. Moreover,
these overlap integrals are explicit functions of Ry as well as of me, = Mg, R. On the other
hand, mg, has an implicit dependence on the KK-number n. Overall, there would exist one
possibility to find out the bound on n through unitarity analysis that at some n,,,; unitarity
violation would occur at every possible value of Ry. As from Eq. 2.87 it is very clear that
Ry should be greater than (—m), so if an 7,4, is to be considered as the upper bound in the
nmUED scenario, violation would occur at least for Ry = (—2.99) or Ry = (—3.0). Though the
Fig. 3.10 reflects that the inclusion of higher KK-modes would result in unitarity violation at
much lower value of Ry, it also exhibits that from KK-number 18 onwards the values of Ry at
which the unitarity violation occurs are more closely spaced. Even the difference between the
values of R4 which violate the unitarity at KK-number 24 and 25 is less than 0.2. Therefore,
after KK-number 25 there will not be any considerable change in the result, or to be specific the

violation would never occur at Ry = (—2.99) or at (—3.0) for any nmqq-
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3.5 Conclusions

In this chapter, we have done simple partial wave unitarity analysis as well as coupled channel
analysis in gauge and scalar sectors in non-minimal Universal Extra Dimensional (nmUED)
model where kinetic terms involving fields as well as mass and potential terms of the scalar
fields are added to their respective five-dimensional actions at the fixed boundary points. By
exploiting the equivalence theorem, we have used all the Goldstone modes or unphysical scalars
instead of the longitudinal modes of vector bosons. First, all the necessary two-body (n), (n)
— (n), (n) tree level scattering amplitudes have been calculated to study the upper bound on
scalar BLT parameter by the simple method of partial wave analysis. After that coupled channel
analysis (t'-matrix construction) has been performed for some selective channels to get further

constraint.

Any 2 — 2 scattering amplitudes can be expressed in terms of an infinite sum of partial waves.
For a process to respect unitarity the zeroth partial wave amplitude ag should obey the condition
|[Re ag| < 1/2. Initially the analysis of unitarity with ¢t-matrix construction has not been taken
into account as in many cases, contributions coming from trilinear couplings can not be ignored
where the interactions are effectively proportional to KK-masses and consequently the contribu-
tions are not E?-suppressed. Therefore, it is evident that some entries of the matrix elements
are not simple numbers but are also the functions of center of mass energy /s of respective
processes. So to obtain the suitable channels for t construction we should first consider the

single channel analysis for (n), (n) — (n), (n) processes.

While dealing with the single channel scattering processes we have restricted our calculations to
two-body scattering processes for specific KK-modes with the condition that KK-numbers for all
initial and final particles in the respective processes are same. We have taken only those processes
whose quartic interactions are not suppressed by KK-masses. Following these conditions we have
altogether thirteen quartic interactions in the entire scalar sectors in nmUED scenario. Besides,
the quartic interactions having two same neutral particles in initial states and another same two
neutral particles in final states, can generate two kinds of processes. Also the processes that
involve two same or different charged particles in initial states and same two neutral particles in
final states can give rise to two different kinds of processes. So, only those processes have been
preferred where the amplitudes are not suppressed by the factor of 1/2 or by 1/+/2 arising from
normalization factors for the presence of identical bosonic states, as that suppression would result
in breakdown of unitarity at some larger value of Ry and thus giving a relative less stringent

bound. Here, Ry is the scaled scalar boundary-localized parameter determined as = ry/R.

Among all thirteen processes, H™W+HM™~ — HM+F M)~ gives the most stringent constraint
on the upper limit on Ry4. A detailed analysis on (n), (n) — (n), (n) reflects that the channels
involving the processes h(™h(™ — bW pM) - A0 A() _y A() A(0) - )+ )= g+ gin)—
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RMAM) — ) A() - F)EAM) )= A() - rmEp ) () (0) gre preferable for cou-
pled channel analysis, which is actually the construction of t° matrix generated by two-body
states as rows and columns. Consequently each matrix element corresponds to the amplitude
of respective processes and each eigenvalue of the matrices should lie below 87 to respect the
unitarity. Coupled channel analysis leads to an upper bound on R4 corresponding to maximum
KK-number (7,,4,) taken in the analysis. If 1,4, is taken to be 4, the BLT parameter Ry
should be less than 26.4. The results, in effect, are independent of R~!. As the KK-masses
decrease with increasing value of Ry, the upper limit on BLT parameter in turn implies a lower
bound on KK-masses for gauge or scalar fields. For n,,q; = 4, the upper limit on Ry~ 26 leads
to lower bounds on KK-masses ~ 0.22 R~!, 1.05 R~', 2.02 R"! and 3.02 R~! forn =1 —4
respectively. As we know that R~ does not play any role in determining the upper limit on Ry,
the results on the lower bounds on KK-masses are true for any R~!. Besides, the value of Ry
corresponding to the violation of unitarity decreases if n,,4, in the analysis is being increased.
If we take nqp = 25, the upper bound on Ry falls down to nearly one. From KK-mode 18
onwards, the constraints on the upper limit on scalar BLT parameter change very slowly and
will not change significantly for KK-modes higher than 25. Therefore, in this theory, there will

be no upper bound on the KK-number n from unitarity analysis.



One Loop Effect of

Universal Extra Dimensional Models

In this chapter we study the effects of higher KK-modes (with one extra special dimension) in
some loop-induced decay processes. The four LEP experiments ALEPH, DELPHI, L3 and OPAL
had made high-statistics studies on the precision measurements at the Z boson resonance in the
years 1989-95. Precision electroweak variables like Ry, (Z boson decay width to a pair of b quarks
normalized to total hadronic decay width), A% p (forward-backward asymmetry of b quarks at
Z pole), p(T)-parameter measured by LEP and SLC always play the role of a guiding light in
search of the new physics. Incidentally, these electroweak precision variables are very sensitive
to radiative corrections and these quantum corrections get significant contributions from large
top quark mass. Furthermore, a recent estimation of the Standard Model (SM) contribution to
Ry at two loop level points to a 1.20 discrepancy between the experimental data and the SM
estimate [183,184].

Now let us shift our attention to the flavor changing neutral current (FCNC) interactions in
the SM. An important aspect of SM is the absence of the FCNC interactions at the tree-level.
However, FCNC is possible in the loop-level, but that too is strongly suppressed by the Glashow-
[liopoulos-Maiani (GIM) mechanism. Generally these types of loop-driven processes involve two
different generations of fermions in the initial and in the final states where all possible generation

of fermions run in the loop. These FCNC processes are strongly suppressed in the SM; evidently

7
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the discovery of any such process would be a clear hint of some BSM physics. So in the case of any
BSM scenario for these types of processes no BSM particle has to be produced on-shell but their
effects in the loop would be enough to look into the picture at hand. This is specially important
in a time when there is a lack of any direct evidence of new physics at the LHC. In this same vein
many BSM scenarios have been studied through these type of FCNC processes. One important
place to look for such FCNC processes is the rare decays of top quark in the context of some new
physics model. Many studies have been performed to consider the rare decays of the top quark
in the SM [185-197| as well as in various BSM scenarios, e.g. in supersymmetry [198-205], two
Higgs doublet model (2HDM) [206-210|, warped extra dimension [211], UED [212] etc. A study
on the FCNC top decays based on a model independent effective field theory can be found in
Refs. [213,214].

In this chapter we will see the one-loop induced effects of one extra dimension in the processes
like Zbb and some rare top decays (t — ¢y and t — ch). We would like to investigate how one of
the precisely known electroweak variable R could constrain the nmUED parameter space. We
will preface this by a brief description of required Lagrangian and overlap integrals. That will
be followed by a discussion on processes with necessary Feynman diagrams. In the subsequent
sections we elaborate on the results and the bounds obtained in the cases of mUED and nmUED.
This chapter is mainly based on Refs. [169,172].

4.1 Lagrangian and Overlap Integrals

This section includes a short description of required Lagrangian and overlap integrals. In the
analysis of loop induced processes by extra dimension, the five dimensional kinetic and Yukawa
terms of the respective fields are needed at boundary points. Clearly, the five dimensional actions

given in Eq. 2.69 and in Egs. 2.78-2.80 in the Chapter 2 are required in this study.

First we should briefly discuss the mass matrices in quark sector. From Eq. 2.95 in Section. 2.5,
we know that the strength of mixing is proportional to the quark mass and hence is significant
for the top sector. In case of new physics effect on Zbb coupling all we need the third generation
top quark mass and therefore all the related discussion on the physical eigenstates and mixing
strength in quark sector are given in Sec. 2.5.1.2. However, in rare top decays, to incorporate
the GIM mechanism, we consider the mixing in the down sector too. In that case, a,, is given
by %tan_1 (J\ZZn) where my denotes the SM bottom quark mass. In the nth KK-level, the mass
term can be written as

_ _ —Mond™  mion I ()
(Qm p) ~Mend™ e U ) +he. (4.1)
JE mj;o MQnémn DR
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We can relate the gauge eigenstates an) (D™) and mass eigenstates Q;(n) (D'™) in a similar

way as (in this notation j refers to the down quark flavor),

QSZR = T cos anQ;(L”/)R + sin aan%, (4.2a)
D(L’;)R = +sin anQ;(;/)R + cos aan%. (4.2b)

The mass eigenstates, in this case, also share the same mass eigenvalue,

mQ;(n) = Mpi(n) = \/mg + Mén = Mbottom- (4‘3)

Now we mention about a few overlap integrals that appear in our calculations,

TR
= /0 dy [1+r7{6(y) + 3y — 7RI 15) () 1P EE W) 12 (), (4.4a)
TR
= [l o) + o —eRY I, 0) SO W) 0.
TR
1= /O ay 19 @) 10w 1), (4.40)
R K,y (0
- /0 ay 19 ) 90 10, (4.4d)
R 0 k k 0
It = /0 dy [1+7p{8(y) + 0(y — 7R} 150, ) £ ) (i () £ (), (4.4e)
TR
= / dy [+ r{8(y) + 8(y — 7R 150, () £ () (38 () 1o (w). (4.41)

The overlap integrals given in Eqs. 4.4a, 4.4c and in Eq. 4.4¢ arise in the analysis of Zbb whereas
the same overlap integrals given in Egs. 4.4b, 4.4d and in Eq. 4.4f appear in the study of flavor-
changing rare top decays. These are the overlap integrals that modify the respective couplings.

These overlap integrals can also be written as

1

Iy = ——T17, 4.5a

A /—Tf TR a ( )
1

W= 1~ 4.5b

B R (4.5b)
1

= I* (4.5¢)

w/?“f—l-ﬂR ¢’

where the integral parts of Eqgs. 4.4 have been embedded in the new overlap integrals, viz.
1 (llk, I ll)k, 1, f; apart from the integral part I (]f includes another parameter-dependent multiplicative

factor 1//ry + mR. Fig. 4.1 shows characteristic behavior of the overlap integrals with respect

to various BLT parameters. It should be kept in mind that even though for some choice of
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Numerical value
Numerical value

Ry

FIGURE 4.1: Characteristic dependence of overlap integrals on the BLT parameters. Here
Ry 5 =1y ¢/R and we take only first KK-modes into account, i.e. we take j,k =1 in Egs. 4.4.

BLT parameters the numerical value of the overlap integrals can be greater than unity, the final

values of the relevant couplings remain within the perturbativity limit.

Besides, in cases of the overlap integrals /¥ and I ll,k’ when [ differs from k (in the case of even
[ + k) values of the integrals diminish generally by an order of magnitude than the [ = k case.
For example, when Ry = 1 and R, = 2. I}' = 0.82, I?? = 0.88, I?3 = 0.92, I} = 0.94,
I35 =0.96, I3! = 0.01, IZ! = 0.004, I2® = 0.03, I2? = 0.03; I}t ~ I?? ~ 33 ~ I} ~ ID5 = 0.99
and Il‘;ﬂ = 0.07, I,?l = 0.02, 11;12 = 0.08. In case of Zbb analysis we will be only considering the
interactions with [ = k neglecting the other sub-dominant contributions coming from interactions
in which [ # k. This kind of approximation is not used in the analysis of rare decays. The
expressions for the integrals (after integrating over y) are given in Appendix H along with the

necessary Feynman rules given in Appendices I and G.

4.2 A Brief Description of Loop-induced Processes

This section starts with the analysis of the radiative calculation of Zbb vertex. The subsequent

parts will describe the rare top decays (t — ¢y and t — ch).

4.2.1 Calculation of Radiative Correction to the Zbb Coupling

We are now going to lay down the details of the calculation leading to the correction of the
Zbb vertex in the framework of nmUED. We will first briefly discuss the meaning of Ry, and its
correlation to Zbb coupling in the SM as a preamble. The tree level Zbb coupling, in the SM,

can be given as
g
cos Oy

0Oy (g9 P + g PRIV Z(), (4.6)
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where fo]) and b(0’s are the SM fields; Prp = (1 £ 5)/2 are the right- and left-chirality

projectors respectively and

1 1
g = -5+ 3 sin’ Oy, (4.7a)
1
g% = 3 sin Oy (4.7b)

Any higher order quantum corrections, whether being from SM or from new physics (NP) can

be incorporated uniformly as the modification to this tree level couplings defined as

gL = g7 + 6g7M + 597", (4.8a)
gr = g%+ 0g3M + 5gRF. (4.8D)

Here § 9%%2 corresponds to the radiative corrections from SM and § gg/PR denotes the contributions

from new physics (NP) [215]. These corrections in turn can modify the Z decay width to b quarks
normalized to the total hadronic decay width of Z defined by a dimensionless variable
['(Z — bb)

Ry = . 4.9
b I'(Z — hadrons) (4.9)

Generally, at one loop order (in SM & also in NPs), g; gets correction proportional to m?

whereas gg receives correction proportional to m% (due to the difference in couplings between
two chiralities); here my (my) is the zero mode top (bottom) quark mass. We have neglected the

b mass in our calculation and thus a shift in (5gEP translates into a shift in Ry as

~

gL NP
(5Rb = 2Rb(1 — Rb)ﬁ(Sg y (4.10)
91+ 9k
with g and gr given by
~b 1 Lo
Jr = \/pT;(—i—Hibg sin” Oy ), (4.11a)
. 1 .
dr = 5V/pot sin® O, (4.11D)

after incorporating the SM electroweak corrections only [127]. Here, p, = 0.9869 and k; =
1.0067 [127].

Besides, the ggp is calculable in a given framework while Ry is an experimentally measurable
quantity. Thus Eq. 4.10 can be used to constrain the parameters of the model. We will perform
the same exercise in the framework of nmUED. Required Feynman rules have been listed in

Appendix F.
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/() 77
1) gyn)

FIGURE 4.2: Loop involving KK-mode of scalar and fermion propagators of Zbb in the 't
Hooft-Feynman gauge (excluding (0)-(0)-(n)).

Since we have neglected the interactions involving KK-states with unequal KK-numbers in an
interaction vertex, the number of diagrams contributing to radiative corrections of the Zbb cou-
pling in nmUED are same as that of (m)UED. Fig. 4.2 shows the Feynman diagrams involving
KK excitations of top quarks and the charged Higgs/Goldstone bosons in the loop. The contri-
butions coming from the diagrams of Fig. 4.2 have the dominant effect for the presence of Yukawa
coupling which is proportional to m;. In our calculations, we have considered momentum of the

external Zl(LO) to be zero and have also neglected the b quark mass.

The amplitude of each diagram, for nth KK-mode, can be expressed in terms of a single function,
F@™ (rp, 7l M"), defined as,

iM™) = g H(phSl)f(n)(’r'n,T;L,M/)’)/#PLU(p2782)€M(q) , (4.12)
cos Oy

where r,, = mg /M3, , r}, = Mg, /M, and M’ = Mg, /M3,

n =

Amplitudes of different diagrams of Fig. 4.2 (evaluated in 't-Hooft-Feynman gauge) are given by

f(n)( / M/ _ B 92 4 . 29 ].2 I2 m% 12 4 . 4
1(a) Tny Ty ) - (47[_)2§{—§Sln w p T aM75V + 1 (COS Qy + SIn an)
2
—1—2[3 ]\TZ; sin? o, cos? a, } [5n —1+{5(rn+ 1)+ 3(rl, + M')?
w

—8(rn + 1)1 + M) = 2(1 + 7,)? In(1 + 1)
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—2(M' + )’ (M + 7)) + 4(1 + rp) (M + /) In(M + 1)}

/2 +1) = (M +17) 1), (4.13)
b g {2Ib sin? oy, cos? oy, — 2[2 mi L sin? oy, cos® a, }

(4m)? 8 Mg,

[5n — 14 {=3(rm + 1)2 4 30, + M')?

—2(1 + rp)?In(1 + 1) — 2(M" + 1) In(M' + 1)

+8(1 + 7)) (M +70,) In(1 + 1ry) — 4(1 4 1) (M’ + 77,) In(M' + 7))}

fl?b)) (Tnv 7“;1, M/) =

J2{(r+ 1) = (M +71) 2], (4.14)
/ B 92 . 9 9 5 m 2 9
f1(c+d)(Tn,7”n,M) = (47r)2§{(_1 + 2sin® Oyy) (Ib + 12 —L e ) — I}

[5n +{3(rn + 12 + (), + M')?
—4(rp + 1), + M) = 2(1 + )% In(1 + )
—2(M' + 1) In(M' + 7)) + 4(1 + 7)) (M + 7)) In(M’ 4 1/,)}

/2{(rn +1) — (M’+r;)}2}, (4.15)
N B g 2 m?
f1 e+f)(rn,'rn,M) = an)? 8 <1—3sm 9W> <I§+I3]wév>

[0+ {80 + 1)+ (), + M)?

—A(rp + 1)+ M) = 2(1 +1,)? In(1 + 1)

—2(M' + ) In(M' + 7)) + 4(1 + rp) (M + /) In(M + 1)}

/2{(rn +1) = (M +77) ] (4.16)

Here 9, = 2/e — v + log(4m) + log(,uQ/Mén) and g is the 't-Hooft mass scale; 8 = :ﬁi:? The
symbols I, and I stand for the overlap integrals given in Eq. 4.5a and in Eq. 4.5b respectively
for n = m. Amplitudes of the diagrams 4.2(e) and 4.2(f) are multiplied by a factor of 1/2 which
comes from the usual convention of contributing one-half of this correction into self-energy and
the other half in the wave function renormalization. Total amplitude (z./\/lgn)) of diagrams in
Fig. 4.2 is obtained by adding the individual amplitudes for each diagram and is given by the

following expression:

o )
i rnf , o, m?
= 2 Toost AT
MO e Teost " P (G D G P < A VER )
/ / / / ]W/—l—T;I "
(L) = (M 73) (M ) In (=2 [7Puo (b2, 52) €u(a). (4.17)

From the above equation, it is evident that terms proportional to 4, as well as to sin? @y cancel
among themselves. In passing we would like to comment that any correction proportional to

sin? Oy in the Zbb vertex must be reflected in the renormalization of charge (of b quark). This



Chapter 4. One Loop Effect of Universal Extra Dimensional Models 84

implies that any finite renormalization to the vbb vertex must be the same (in amplitude) to any
correction proportional to sin? @y in the Zbb coupling. We have explicitly checked that both
of these corrections coming from diagrams of the same topology depicted in Fig. 4.2 identically

vanishes.

Q;’H”. Uy

FIGURE 4.3: Loop involving KK-mode of W and Goldstone propagators of Zbb in the 't Hooft—
Feynman gauge (excluding (0)-(0)-(n)).

There is a second set of diagrams contributing to the effective Zbb interaction arising from the
KK excitations of W bosons and quarks. These have sub-dominant contributions with respect

to the contributions coming from Fig. 4.2.
In the following we present the amplitudes of all diagrams given in Fig. 4.3 :

f2€2) (rn, 1, M') = (ﬁljré 942{_;1 sin? Oy + cos* au, + sin? ant|on —2

+{5(rn +1)* 4+ 3(r), + M')?

—8(rn + 1)(r), + M') = 2(1 + r)* In(1 + 1,)

oM+ VP In(M ) AL+ ) (M 4 ) (M + 1)}

/2{(rn +1) = (M +17) ] (4.18)
(i‘i@ 942{2 sin? a, cos? a, } [5n — 2+ {-3(r, + 1)

+3(rf, + M2 = 2(1 + 70)° In(1 + 1) — 2(M' +77,)* In(M' + 1)

+8(1 4 1) (M’ + ) In(1 +1y) — 4(1 + 1) (M’ + 7)) In(M' +1,)}

fég)(rnvr;mv M/) =
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/2{(rn +1) = (M +77) ¥ (4.19)
2
f2(7(1c))(7“m7“;mM’) = (I fQQZL (6(305 QW) [5n — ; + {3(7% 4 1)2 + (T;L —i—M’)Q

—A(rp + 1)+ M) = 2(1 + )2 In(1 + 1)
—2(M' +7,)* In(M' + 77,) + 4(1 + 1) (M +7/,) In(M' + 1)}

2o +1) = (M4, (420)
2 2
Fatare)(rm i M) = (jjrf? T <1 - ;Sin2 9W> (00— 1+ {3 + 1) + (17, + M)?

—A(ry + 1)+ M) = 2(1 + )2 In(1 + 1)
—2(M' 4+ 7)) In(M + 7)) + 41 + rp) (M + 7)) In(M' + 1)}

/2{(rn +1) — (M’+r;)}2], (4.21)
2
fé?}+g)(rn,r;,M’) — i f2g {(rp +1)sin® Oy — 1}
{—Q+ry)+ (M +7r,)+ (1 +7r,)In (W)}
J{(rn+1) = (M +17,)}2. (4.22)

In the diagrams of Fig. 4.3, the divergences along with the terms proportional to sin® fy do not
cancel among themselves. The divergent terms are 7, independent. Following the prescription

given in Ref. [216], we can write the renormalized amplitude as:

iMS) (v !, MYy = iME (! M) — iME (= 0,07 M), (4.23)

yI'no

Finally summing up the contributions coming from all diagrams we have,

. 3
(n) (n) o _ 19 "nf
Mgt = M+ IM3R = (o Teosgy ™ P15 [ 1) = (0 4 )P

{—I§+I§< 2+M22)}{(1+rn)—(r;+M’)+(r;+M’)ln<m>}

147
2 n
+41; {—(1 + 1)+ (ry + M) 4+ (1 +7,)In (W>}

Y Pro (p2, s2) €u(q)- (4.24)

Therefore, for each mode, the correction in gy :

n 2G n
NP an Tn,Tn,M) \[ Fmt F( )

1671— nmUED(Tn/rna Ml)) (425)
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where

T3
[(L+rn) = (ry + M)

x {(1 +rn) = () + M)+ (¢!, + M) In <r;‘ +m/>}

FEQUED(TM Ty M') =

147,
AMi 147,
+ 2 I; {—(1+rn)+(r;+M’)+ (147,)In (W . (4.26)

The total new physics contribution 5ggp and similarly Fy,uEp, can be obtained by summing
5g(n)NP

FomUED goes to zero when R~ — 00, as expected in a decoupling theory.

over KK-modes (n). It can be verified that the new physics contribution & gEP and hence

4.2.1.1 Additional Diagrams

Here we mention the additional contributions to Zbb coupling arising only in nmUED scenario.
Though these diagrams have negligible contributions, we still include a brief discussion for the
completion of the analysis. Their contributions will be discussed explicitly in the next section
(Sec. 4.3.1.2).

(n,m)

In nmUED, we can have the contributions from F| ’\jpp (i.e. from m = n and m # n con-
tributions) instead of FSQUED (only m = n contributions), though the differences coming from
these two are almost negligible. Moreover, there exists additional contributions coming from
FI(I?I%)ED. In case of m,n contributions the number of diagrams shown in Figs. 4.2, 4.3 remain
the same, with all nth mode contributions from scalars and gauge fields replaced by its mth
mode. Besides the M’ in Eq. 4.24 will now be MqQ)m/Mg271 The diagrams of (0)-(0)-(n) type are

shown in Fig 4.4. Here n is only even.

The diagrams in Fig. 4.4 follow the same analysis as that of Figs. 4.2 and 4.3. As we are dealing
with KK-parity conserving scenario, only those diagrams are allowed which include vertices

allowed by KK-parity. The contribution from (0)-(0)-(n) type diagrams is given by

00 anBI? 6M2 a
Frgm{J%D(an? a;) = [an _na/ : {an - aiz - 1} (1 - m%/V —(1+ a;l) In 1 +na/
n n
2M3, an
2 1)1 4.27
+ ?(anJra + )n(1+%>], (4.27)

with a, = mi/M2,, a,, = M3, /MZ,. So if we consider all KK-number violating as well as

KK-number conserving contributions, the F,,ugp can be given by

Famuep = Z F nglr?ED + z Fn?x?%ED (4.28)

n—even
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FIGURE 4.4: Loop involving (0)-(0)-(n) contributions of Zbb in the 't Hooft-Feynman gauge.

With R~! — oo, the new physics contributions will go to zero.

4.2.2 Rare Top Decays

This section deals with some of the rare decays of the top quark in the nmUED model. In
the SM, the flavor changing rare decays of top quarks occur at loop level. On top of this loop
suppression, there exist CKM and GIM suppression [190,191,206]. Here we consider the decays,
t — ¢y and t — ch. Evidently in the present model, the higher KK-mode particles contribute in
these loop-driven processes. In the following first we will describe the general Lorentz structure
for each decay amplitude with the corresponding Feynman diagrams. Here also, we use 't Hooft—

Feynman gauge in our calculation as the divergences are more manageable in this gauge but at
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the cost of having extra diagrams with unphysical scalars. We present the important Feynman

rules in the Appendix G.

4.2.2.1 t—=cy

We are now going to discuss the details of the calculation of the decay width of ¢ — ¢y in this
model. The most general form of the amplitude of the decay t(p) — c(k2)y(k1) for on-shell
quarks and real photons can be given by [190,214]

1

M(t = ¢v) = ———a(ks)[0" k1, (AL Pp + BrPr)u(p)es(k1), (4.29)

m¢ + Mme

where u, u and €, correspond to the incoming, outgoing spinors and photon polarization respec-
tively; Pr,, = (1 £ 75)/2 are the usual projection operators. The coefficients Ay, and Bp yield
the information about couplings, CKM matrix elements and the loop momenta integration. We
have not included the effect of KK particle contribution on the CKM elements; for details see
Ref. [137]. Note that when writing the full amplitude for the process ¢t — ¢y following all the
Feynman rules (in the SM or in (n)mUED) one may come across terms proportional to v, Pr 1,
in the amplitudes' of Feynman diagrams. But after summing over all the amplitudes of all the
diagrams and then incorporating the GIM mechanism?, the terms proportional to YuPrL,r can-
cel. In the process all the divergences that appear in the individual diagrams also get cancelled.
These remarks hold true irrespective of whether m. is taken to be zero or not. However it is
worth mentioning that in the limit m, — 0, which is a reasonable approximation, the coefficient
Ay, vanishes. In the case where m. # 0, both Ay, and Bpr contribute. In these loop-driven pro-
cesses, the apparent divergences get cancelled among the triangle and self-energy-type diagrams.

In the general non-vanishing m. case the decay width is given by

1 (mi —mg)®

— ot el (142 Bgl?) . 4.30
167 m3 (me + my)? (’ rl"+1 R‘) ( )

t—cy —

The Feynman diagrams for this process are presented in Fig. 4.5 and in Fig. 4.6. In these
diagrams, the superscripts (n) or (m) represents the nth (or mth) KK-mode of the corresponding
particle. Since in mUED KK-number is conserved in any specific vertex we always have m = n;
but in the case of nmUED, m and n can be different, obviously satisfying the conservation of
the KK-parity. Clearly the quantities Ay and Bpr contain the sum over the KK-modes. In our
analysis we took the KK sum up to level five (as we have checked that the results of the KK

sum up to level ten is almost same as that of the sum up to level five) as the contribution for

1To be precise, for the m. # 0 case both YuPr,r are present, but in the m. = 0 case, only 7, Pr, appears.

*Basically the GIM mechanism implies the utilization of the relation, V;5Ve;[iM(m;)] = VijVep[iM(my) —
iM(ms)], where M represents the sum of the amplitudes of all the Feynman diagrams and m, is the strange
quark mass that we take to be zero.
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FIGURE 4.5: Necessary Feynman diagrams for the process ¢ — ¢y in the ’t Hooft—Feynman
gauge in nmUED. The particles in the legs contain no KK-indices as they represent the SM
particles and their KK-indices are assumed to be zero (excluding (0)-(0)-(n)).
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higher modes decouples. Also Fig. 4.12 shows that the mass of m. plays an insignificant role
in the total decay width. Unless otherwise stated we consider a vanishing m. in our numerical

analysis.

4.2.2.2 t—ch

One of the other important rare decays of the top quark is its flavor violating decay to the
charm quark (c¢) and Higgs boson (h). The most general form of the amplitude of the decay
t(p) — c(k2)h(k1) is given as

M(t = ch) = u(kz) [Fs + ivs Fp] u(p), (4.31)

where the Fg and Fp correspond to the scalar and pseudo-scalar form factors, respectively. The
assertions we made in the case of t — ¢y regarding the divergence cancellation etc. are true
here also. Besides, we keep the information of couplings, CKM elements, and loop momenta

embedded in these form factors.

It is straightforward to calculate the decay width of the process t — ch from the amplitude

mentioned above. The decay width is

1
Liyen = W\/(m? = (me +mn)?) (mf = (me —mn)?)

x ({(me +me)? = mi }| Fs|® + {(me — me)* — mp } [ Fp|?) (4.32)

with F, = iFp and in the last piece, i.e. in the form factor squared quantities, the KK sum is
taken. Also, for m. = 0 the two form factors are equal, i.e. Fg = Fp. The relevant Feynman
diagrams for this process are given in Fig. 4.7. The KK-indices m and n obey the same set of

assertions mentioned in the previous Sec. 4.2.2.1.

4.3 Results

4.3.1 Bounds Obtained from Zbb

We first begin our discussion with the present status of experimental and theoretical estimation
of the Zbb coupling. Following Gfitter Collaboration [183] and an improved estimation of R
after incorporating higher order effects in the framework of SM [184], the experimental and the

theoretical (SM) values are

Ry = 0.21629 + 0.00066 and REM = 0.21550 = 0.00003.
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FIGURE 4.7: Feynman diagrams for the process ¢t — ch in the 't Hooft—Feynman gauge in
nmUED (excluding (0)-(0)-(n)).
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FIGURE 4.8: Feynman diagrams for the process ¢ — ch in the 't Hooft-Feynman gauge in

nmUED (excluding (0)-(0)-(n)).
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Above results indicate an 1.2 standard deviation discrepancy between the experimental value of
Ry and its SM estimate. Thus Eqs. 4.25 and 4.26 along with Eq. 4.10 can be used to translate
this 1.2¢0 discrepancy on Ry to an allowed range for F,ygp: —0.3165 +0.2647. Clearly one can

easily use this to constrain the model parameters of nmUED.

Since all the amplitudes listed in Fig. 4.2 contain terms proportional to gy?, dominant contri-
butions to Funwugp come from the Feynman graphs listed in Fig. 4.2. The contributions from
diagrams shown in Fig 4.3 are proportional only to g% with an exception to the diagrams 4.3(f)
and 4.3(g); which has terms proportional to gy; (here, y; is the top quark Yukawa coupling).
Total contribution of diagrams in Fig. 4.2 is nearly 1.5 times to that of the diagrams given in

Fig 4.3.

4.3.1.1 Relook at the bound on R~! in mUED from R,

Before presenting the bounds obtained in the framework of nmUED, we would like to investigate
the limit on the R~! in case of UED keeping in mind the new estimate of SM radiative corrections
to the Zbb vertex at two loop level [184]. Evidently one can retrieve the UED contributions to
59?1) by simply setting BLKT parameters to zero. In this limit, overlap integrals (I; and I3)
used in the couplings become unity and Mg, Mgy, and Mg, all become equal to n/R in the
nth KK-level; the ratios 8, M’ in Eq. 4.24 will be unity and our expression in UED completely
agrees with the expression given in Ref. [137]. One can define a function Fgl]%D in the same spirit
following Eq. 4.26:

2 /
(n) _ 71 MW 147
F[?ED(rlTL’T/ln) - (Tln _n,rlln)2 [ (1 -3 m% ) {(rln - 7ﬁll'n,) + (1 + Tlln) In <1 + 7"1:, }
4M3, 1+ 71,
{ri, —rin+ (1 +71,)In ( H (4.33)
mp U Y\,

with ri, = mZ/m2, r},, = M3, /m2 and m,, = n/R.

In Fig. 4.9, we plot Fygp as function of R~!, the only free parameter in the model after summing
contributions (F%}Z}%D) coming from KK-levels n = 1 — 5. This has been done in the view of
recently discovered Higgs mass and its implication on the cut-off scale of UED?. Masses of the
KK excitations increase with R~ which in turn results in a decrement in the magnitude of Fygp
due to the higher values of the masses of the propagators in the loop. One can easily check from
Eq. 4.33, that in the limit 7,,, 71, — 00, Fygp is also vanishing which is the decoupling nature
of the theory. The horizontal line in Fig. 4.9 represents the 95% C.L. upper limit on the value of
Fygp calculated from difference between the experimental value of R}, and its theoretical (SM)

estimate (Fygp: —0.3165 + 0.2647). Clearly the intersection of the horizontal line with the line

3See Sec. 2.4.1 of the Chapter 2.



Chapter 4. One Loop Effect of Universal Extra Dimensional Models 95

0.8
0.6f 1
8
S 041 1
0 L L L L
200 400 600 800 1000

1/R (GeV)

FIGURE 4.9: Variation of Fygp with R~! in UED model. The horizontal line represents the 95
% C.L. upper limit on the value of Fygp calculated from the difference between the experimental
value of Ry and its theoretical (SM) estimate.

showing the variation of Fygp would lead us to the present lower bound on R™! from Ry. It
clearly points that at 95% C.L. R~! must be greater than 350 GeV, which shows a nominal
improvement over the earlier limit which was 300 GeV [215]. If we overlook the correlation
between the Higgs mass and the cut-off scale of UED, then one could sum up to 20-40 KK-
levels. This would slightly push up the magnitude of Fygp® which in turn results into a higher
value of the lower limit of R~ (370 GeV). However, this limit is still not competitive to the
bound derived from experimental data on SM Higgs production and its subsequent decay to
WW [151]°. For a detailed information on the bound on R~! in case of UED, see the Sec. 2.4.

4.3.1.2 Possible bounds on nmUED from R

In this section we are going to lay down the analysis of the bounds obtained on the parameters in

SQUED have been already listed

in Sec. 4.2.1. One has to sum over all the KK-levels to get the total contribution F,,ugp. We

nmUED by using R;. Contributions coming from each KK-level F

have taken into consideration the first 5 levels into the summation. Besides, we have explicitly
checked that taking 20 levels into the summation would not change the results®. Like the
previous chapter, here also we consider scaled BLT5, i.e. Ry ¢(= 7‘f7¢R_1). If we take scaled
BLT parameters < (—m), the zero modes become ghost-like with its norm being imaginary. Apart
from this, we have observed that from unitarity analysis Ry can be as high as 19, if we consider
up to 5th KK-level. Negative values of Ry 4 below (—7) would be physically unacceptable. Apart
from this, all other values of Ry, are theoretically acceptable. It has been already mentioned

in Sec. 4.1 that though for some choice of BLT parameters the numerical value of the overlap

4For R~ =1 TeV, values of Fygp after summing up to 5 levels and 20 levels are 0.0267 and 0.0292 respectively.

5This is due to the fact that experimental data from LHC on Higgs boson production and subsequent decay
to WW is more consistent to the SM than R in which there is 1.20 new physics window.

SFor R™' = 1 TeV and ry = 1.5, r; = 1, values of Fomuep after summing upto 5 levels and 20 levels are
0.0439 and 0.0472 respectively.
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integrals can be greater than unity, the final values of the relevant couplings will always remain

within the perturbativity limit.

In Fig. 4.10, we have presented the variation of Fy,ugp with R~ for some representative values
of the scaled BLKT parameters Ry and Ry. One common feature that comes out from all of the
plots is the monotonic decrement of Fy,ygp with increasing R~! which shows the decoupling
nature of the new physics under our consideration that has been pointed out earlier in the case
of UED. Panels (a,b and c) show the dependence of Fymurp on Ry keeping the value of Ry fixed
to 1.5, 4.5 and 10.0 respectively. While in the lower panels of Fig. 4.10, we have presented how
Famuep changes with varying Ry with two fixed values of Ry namely 1.5 (d), 4.5 (e) and 10.0
(f) respectively.

From these figures 4.10 it is clear that R4 and Ry have more or less same effects on F,uep and
hence on 5gEP. While the effect of Ry is somewhat modest, F,nugp is being more sensitive to
any change in Ry. Therefore by increasing the BLT parameters one could enhance the radiative
effects on the effective Zbb coupling. Evidently in nmUED, one could have a significant shift in
the lower bound on R~! from its UED value. For example, Ry =10.0 and Ry = 15.0, the 95 %
C.L. lower bound on R™! is around 1 TeV. This limit comes down to 448 GeV for Ry = 1 and
Ry =1.5.

The role of R~! in the framework of nmUED is quite similar as in the case of UED and has been
explained above. We would also like to examine the role of Ry and R4. However we will do so

a little later.

Finally in Fig. 4.11, we present the allowed parameter space in R, — R plane for several values
of R~'. We exhibit the contours of constant Fpmurp which corresponds to the 95 % C.L. upper
limit. The region right to a particular line of R~! is being ruled out from the consideration of
Ry, according to our analysis. Near vertical nature of the contours at lower values of Ry points
out to the modest dependence of Fy,urp on Ry that has been already shown in figure 4.10(a),
(b) and (c¢). It has been exhibited from Fig. 4.10 that with higher values of BLKT parameters
Ry and Ry, FougD is being increased in magnitude. Clearly as we go towards the right with
increasing Ry and fixed Ry for a particular value of R, Fumurp would increase. Furthermore
the higher value of R~! decreases FpmuED showing the decoupling nature of new physics. Thus
the increment of Fynuep (with Ry) has been nullified by higher values of R~ corresponding to
different lines. Thus to compensate one must tune R~! to a comparatively higher values. Besides,
we have marked axes of Fig. 4.11 with scaled masses mg1 (= Mg1R) and me; (= Me1R), in
the left panel; whereas, in the right one, we have marked the axes with scaled masses mg2 and
masz. This would facilitate one to get the bounds on masses of the n = 1,2 KK excitations
directly from this plot. For example, the line corresponding to R~' = 700 GeV intersects the
mq1 axis at around 0.5 and mgs axis at around 1.24 which implies that for this particular value

of R7!, masses of n = 1 and n = 2 KK excitations of top quarks respectively below 350 GeV
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FIGURE 4.11: Contours of constant F,murp corresponding to 95% C.L. upper limit in Ry — Ry
plane. Different lines (marked with 400, 500, 600, 700 and 800) represent different values of
R~! (in GeV). Region right to a particular contour is being ruled out at 95% C.L. from the
consideration of Ry, for a given value of R~!(in GeV) on each contour. We also present contours
of the WEW(Wp©) coupling corresponding to three different values (0.4, 0.45 and 0.5) on the
same plot for a same set of values of R~' (left one) and that of W*(2¢(2p(0) coupling for same
values (in the right). In the left one, numbers along the top axis and right hand axis correspond
to dimensionless quantities Mg R and Mg R respectively whereas numbers along the top axis
and right hand axis represent the respective dimensionless quantities Mg R and Mg2R in the
right panel.

and 870 GeV are not allowed by the data. While the corresponding lower bound for W) mass
for R~1 = 700 GeV is close to 540 GeV and lower bound for W) mass for same R~ will be
around 1 TeV which can be eventually obtained from the intersection of the same line with the

ma1 and mgo axes respectively.

The Fig 4.11 also represent the contours for constant (for three different) values of WD f1) £(0)
and W*®2 2 0 couplings respectively. One can obtain several significant messages from
these contours. Primarily the above coupling has a minimal dependence on R~!. Secondly,
the BLT parameters Ry and Ry have opposite effects on the above interactions. While this
couplings increase with Ry, increasing values of Ry would try to decrease the strength of this
interaction. For n = 1 the effect of Ry is more prominent. Similar conclusion can be drawn
to HEW/@ r1)/2) £(0) and GEM/@) 1/ ) £O) interactions. BLT parameters also have another
bearing on Fy,upp through the masses of KK excitations. Heavier KK-masses would tend to
decrease the magnitude of F,,ygp which is nothing but the evident upshot of the decoupling
nature of the theory. It has been pointed out in Fig. 2.4 in Chapter 2 that KK-masses are

decreasing function of respective BLT parameters. Thus BLT parameters have dual role to play



Chapter 4. One Loop Effect of Universal Extra Dimensional Models 99

in the dynamics of Fynuep. Let us state them one by one. An increasing Ry would increase
Famuep by increasing the relevant couplings and at the same time by decreasing the relevant
KK-masses. On the other hand an increasing Ry would decrease the masses but it also decreases
the couplings. These two effects play in opposite direction in determining the value of Fy,ugD.
However, rate at which Fy,ugp increases with decreasing KK-mass, overcome the decrement of

Fumuep due to decreasing coupling with increasing .

In passing we would like to make some comments on the terms which we have neglected by
only considering interactions of SM particles with two KK-excitations having same KK-number.
Evidently our calculation and results presented above do not take into account a number of
Feynman graphs in which propagators in the loop correspond to KK excitations of different
KK-numbers. To advocate our assumption, we present the values of Fy,,ugp for several values
of R~ for fixed Ry and Ry in Table. 4.1. While presenting these numbers we have summed
up to 5 KK-levels as before. In the second column of Table. 4.1, we have shown the values
of Fumuep when only KK-number conserving interactions are taken into account. While in
the third column, the values of F,,ygp additionally includes contributions from all possible
Feynman graphs involving KK-number violating interactions (excluding n or m = 0). Fourth
column presents only (0)-(0)-(n) type interactions; furthermore this kind of interactions fall
rapidly from R™! = 500 GeV onwards. It is very clear from the numerical values of F,,uED
that our assumption was realistic and the corrections coming from Feynman graphs involving

the KK-number non-conserving interactions are minuscule.

R (GeV) FrmueD FomueD FrimueD
(n = m terms only) | (n =m and n # m terms) | ((0)-(0)-(n) type only)
250 0.5442 0.5481 0.02278
350 0.3127 0.3148 0.01577
450 0.2003 0.2016 0.01163
550 0.1384 0.1393 0.00898
650 0.1009 0.1016 0.00717
750 0.0767 0.0773 0.00588
850 0.0602 0.0606 0.00492

TABLE 4.1: Values of F,ugp for the contributions coming, only from the KK-number conserv-
ing interactions (second column), from all possible interactions (excluding (0)-(0)-(n)) (third
column) and from only (0)-(0)-(n) type interactions to calculate the effective Zbb vertex at one
loop. Numbers are presented for several values of R~! (first column) and for Ry=1 and R,=1.5.

4.3.2 t—=cy

Before we present the mUED and nmUED results of the ¢ — ¢y decay in the presence of single
UED, it is important to relook at the SM results. The dominant decay mode of the top quark
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is to a bottom quark and a W boson and its decay width is given by

1-3 (%)4 +2 (’:Z)GI . (4.34)

For My = 80.39 GeV, m; = 174.98 GeV [217|, I'y_pw is approximately 1.5 GeV. This being the

most prominent decay mode of the top quark any branching ratio can be given as

2
Lisew = 647\‘/217\2

r
BR(t —» XY) = —=2X¥ (4.35)
Lisow
The SM prediction for the branching of ¢ — ¢y is
BR(t — ¢y) = (4.6715 £ 0.475:8) x 10714, (4.36)

where the first uncertainty corresponds to the uncertainty in bottom mass, the second due to
the CKM mixing angle uncertainties, and the third from the variation of the renormalization
scale between My (+ve sign) and 1.5m; (-ve sign) [190]. Taking the pole mass of the b quark to
be 4.18 GeV [218] our SM prediction for the ¢+ — ¢y branching ratio is 2.4 x 1073 and for the
running mass my(m;) = 2.74 GeV the branching ratio becomes 5.18 x 107!, Clearly the exact
value of this decay width, as well as the other flavor violating decays of the top quark, is highly
sensitive to the bottom quark mass, as has been pointed out in Ref. [191]. For the numerical

evaluations we have used Package-X [219] and LoopTools [220].

From these numbers it is evident that the branching ratios for flavor changing top quark decays
in the SM are exorbitantly suppressed, making the prospect of its detection at the LHC or even
higher energetic FCC quite bleak. We discuss the present LHC reaches in our summary Sec. 4.5.
On the other hand, as a positive side if any signature of these types of decays is found with a

measurable amount of enhancement that must arise from some new physics beyond the SM.

4.3.2.1 mUED Results

In the mUED scenario the loop-induced decay of the top quark to charm quark and photon gets
additional contribution from the higher mode KK particles running in the loop. The represen-
tative Feynman diagrams are shown in Fig. 4.5. Since in mUED, KK-number is a conserved
quantity the KK-indices m and n in each vertex of the diagrams respect this symmetry; to be

more precise, in all the diagrams, for mUED at least, m and n should be equal.

As has been mentioned in the model description, see Sec. 2.2, the only relevant parameter for
the mUED set-up is the inverse of the compactification radius 1/R and the masses of all the

KK particles are dependent on this quantity. The important difference from the SM in mUED
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is basically the presence of KK counterparts of SM particles in the loop as well as the presence

of charged KK scalars. Moreover, the mixing in the KK fermion sector plays an important role.
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FIGURE 4.12: The decay width of the process ¢ — ¢y as a function of the inverse compactifi-
cation radius 1/R in the case of mUED. For the m. # 0 case, the charm quark mass is taken
to be 1.275 GeV.

Fig. 4.12 summarizes the t — ¢y decay width in mUED. We have calculated the decay width by
taking the SM as well as the new physics, i.e. the mUED into account. Clearly for a higher value
of the inverse compactification radius 1/R the masses of the KK-modes become too heavy and
they decouple, effectively making a negligible contribution. The red (dash-dotted) line shows
the SM only value that we obtained using the pole mass of the b-quark. At the higher values of
1/R the convergence of the blue (solid), for m. = 0, and black (dotted), for m. # 0, line with
SM line only reflects the decoupling of the KK-modes. We take m. = 1.275 GeV [218| for the

me # 0 case.

The lower values (less than 1 TeV) of 1/R are disfavored from the LHC data [69]. Moreover
from Fig. 4.12 we see that even for the lower values of 1/R the order of magnitude of the decay
width does not change much. Thus, one can conclude that the mUED set-up can not enhance
the branching ratio of t — ¢ to any significant level from that of the SM value while remaining
in the allowed ranges, obtained from the LHC, of the inverse compactification radius. However,

the situation is different in the case of nmUED, as we see shortly.

4.3.2.2 nmUED Results

The presence of BLKT parameters makes the situation quite different from the minimal scenario.
It has already been mentioned that the BLKT parameters control the mass spectrum via the
transcendental equation [see Eq. 2.77|, as well as the couplings via the appropriate overlap
integrals. Like the mUED scenario, here also the loop-induced ¢t — ¢y process gets contributions

from the higher KK excitations in the loop. But in this case the BLT parameters play a significant
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role in determining the masses of those particles running in the loops as well as the relevant
couplings. One other important distinction from the mUED scenario is that in nmUED, KK-
number is no longer a conserved quantity, but still the conservation of KK-parity holds due to
the presence of the same BLKT parameters at the two orbifold fixed points, y = 0 and 7R.
Consequently, unlike mUED, the couplings of particles with KK-numbers (0)-(0)-(n), where n
is even, are present at tree-level. Thus, there are extra Feynman diagrams contributing in the

process, e.g. in Fig. 4.5 the appropriate diagrams with n being zero will also contribute (Fig. 4.6).

We now discuss the results in the nmUED scenario. Note that we have two BLT parameters Ry
and Ry at our disposal (as in the case of radiative correction of Zbb). Thus we consider two cases,
one being the universal BLT case, i.e. Ry = Ry making the same BLT for all types of fields and
another being the case of Ry # Ry. First, take the case of universal BLT, i.e. Ry = Ry =r/R.
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FI1GURE 4.13: The decay width of the process ¢ — ¢y as a function of the inverse compactifica-
tion radius 1/R in the case of nmUED for different values of BLT parameters. In this case we
consider a universal BLT parameter r.

In in this scenario too, all the overlap integrals that modify the couplings become unity by virtue
of the orthonormalization conditions, see Eqgs. 2.84 and 4.4. Therefore, the effect of the common
BLT parameter r/R is only to determine the masses of the KK particles running in the loop.
Clearly this situation is almost like the mUED but with the freedom that the KK-masses can
now be tuned with the BLT parameter r/R. In Fig. 4.13 we present the results for the same
BLT case for different values of the parameter. The black (dash-dot-dot) line represents our SM
value for the t — ¢y decay width; the red (solid), blue (dotted), and green (dash-dotted) curves
are for BLT parameter /R = 1.0, 5.0, and 10.0 respectively.

We see that the contributions from the KK particles decouple at lower values (compared to
the mUED case) of the compactification radius for lower values of r/R. This is expected as the
higher values of /R imply a lower (compared to the mUED case) KK-mass for a specific value of
the inverse compactification radius 1/R. Clearly for a specific value of 1/R, a higher value of the
BLT parameter would lead to a lower KK-mass than in the mUED thus making the propagator

suppression less effective. Consequently it is evident that the higher value BLKT parameters
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will result in a decoupling for higher values of 1/R. However, like in mUED, in the universal
BLT case also the value of the decay width does not change its order of magnitude from its SM
value even for lower 1/R. But unlike mUED a lower value of 1/R is not much constrained from
LHC data in the nmUED scenario. To the best of our knowledge the only collider studies made
in nmUED, to date are Refs. [164,165]. A detailed study of nmUED in the light of LHC data is

underway.

Now we take up the case of different BLT5, i.e. Ry # Ry. Clearly in this case the KK excitations
of fermions and the KK scalar/gauge bosons have different masses depending on their respective
BLT parameters. Moreover, the couplings in this case get modified by the appropriate overlap
integrals, mentioned in Eqs. 4.4. The variation of the ¢ — ¢y decay width for various choices of
BLT parameters is shown in Fig. 4.14. Different choices of BLT parameters give rise to distinct
features in the 1/ R dependence of the decay width. Unlike the mUED or universal BLT scenario,
here the total decay width (SM plus nmUED) can be smaller than the SM value for some choice
of parameters. Moreover, the higher values of the BLT parameters (see the figure in the lower
right panel of Fig. 4.14) can enhance the decay width by several orders of magnitude from the
SM value, in the lower 1/R region. For example, for Ry = 8 and Ry = 15 and 1/R = 500 GeV
the decay rate can be ~ 4.1 x 1072 GeV. But, for these sets of parameter values the masses
of first KK-level particles are less than 200 GeV, to be precise ~ 190 GeV for first KK-level
fermions and ~ 140 GeV for first KK-level bosons; and the second levels are of ~ 570 GeV
(fermions) and ~ 540 GeV (bosons). We elaborate on the implications of this in Sec. 4.4. At
this point it is worth mentioning that we find that the specific nature of the curves is mostly
determined from the contribution from the Feynman diagrams that involve the KK excitations
of the scalars. Moreover, as far as the nature of the curves are concerned, a naive interpolation
to the same BLT scenario from the different BLT scenario is not possible. In the different BLT
case there are overlap integrals that modify the appropriate couplings. These overlap integrals
depend on the KK-masses and, in some cases, on the difference of the KK-masses between two
different types of particles (e.g., in our case some overlap integrals depend on the the difference
between Mg, and Mg,). Also, in the amplitude of the diagrams the differences in the physical
masses (physical masses, mx = Mx/R) play a significant role. Thus depending on the choice
of different BLT parameters the difference between mg, and me, can be positive or negative
which, at the amplitude level, can positively or negatively contribute to the SM amplitude. So
in the different BLT case, it is possible for some parameter region that the overall decay width
be less than that of the SM prediction, leading to the specific nature of Fig. 4.14. The reverse is
also possible, e.g. we have checked that for 1/R = 600 GeV, Ry = 6.0, the KK contribution is
always positive if Ry < 0.58 and in that case one can get the nature of Fig. 4.14 similar to that
of Fig. 4.13, i.e. the curves show a monotonic increase as 1/R decreases. Clearly, if in future

experiments the ¢ — ¢y decay width comes out to be a larger value than the SM calculations
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FIGURE 4.14: The decay width of the process t — ¢y as a function of the inverse compactifi-
cation radius 1/R in the case of nmUED for different values BLT parameters Ry (= r¢/R) and

Ry (=14/R).

then the higher BLT scenario will be favored provided the constraints on the 1/R from other

observations are met.

We end the discussion on the t — ¢y decay width in nmUED with the caveat that in our study
we take a common BLT parameter for fermions Ry and for gauge/scalar fields a common Ry
and thus the situation can be generalized by considering different types of BLT parameters for

different fields and that eventually results in richer details of this decay width.

4.3.3 t—ch

The loop-induced flavor changing top quark decay to charm quark and Higgs boson was first
calculated in Ref. [206]. For m; ~ 175 GeV and my, € [40 GeV,2Myy]|, according to Ref. [206],
BR(t — ch) ~ 1077 —10~®. However, this result was erroneous, which was subsequently pointed
out and corrected in Ref. [188]. According to this, for m; = 175 GeV, m. = 0, my =5 GeV, and
myp = 120 GeV,

Br(t — ch) = 4.605 x 10714 (4.37)
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The SM prediction for the same process has recently been calculated in Refs. [191, 205, 210]
and according to these references,” the branching ratio is ~ 10715, Again, the root of all these
differences in the exact value of the branching ratio is that the choice of values of various SM
parameters, most crucially the value of my, differs in each studies. For mj; = 125 GeV and
taking the pole mass of the b-quark to be 4.18 GeV our SM prediction for the ¢ — ch branching
ratio is 1.99 x 10~ and for the running mass m;(m;) = 2.74 GeV the branching ratio becomes
3.63 x 107 °. We again emphasize that the exact estimation of the decay width is highly sensitive

to the b-quark mass, my. After this discussion we present our results in mUED and nmUED.

4.3.3.1 mUED Results

The relevant Feynman diagrams for the process t — ch in the case of mUED can be found
in Fig. 4.7. Again, the KK-indices m and n have to be taken appropriately maintaining the
conservation of KK-number. Also, the other details, inherent to the model itself, remain the

same as discussed in the case of t — cv; see Sec. 4.3.2.1.
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FIGURE 4.15: The decay width of the process ¢ — ch as a function of the inverse compactifi-
cation radius 1/R in the case of mUED.

In Fig. 4.15 we present our results for the decay width of ¢ — ch in mUED. Like the ¢ — ¢ case,
here also we take the pole mass of the b-quark. In this figure, the black (solid) line represents
our SM value of the decay width and the red (dash-dotted) curve is for the decay width in the
case of SM combined with the mUED spectrum. In this case also we find no order of magnitude
enhancement of the branching ratio for any reasonable values of 1/R. The situation is almost

similar in the nmUED scenario also, as we discuss in the next subsection.

"The branching ratio is 3 x 107** in [191], (3.00 £ 0.17) x 107*° in [210], 5.8 x 10™*® in [205] etc.
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4.3.3.2 nmUED Results

In Fig. 4.16 we present the results for the universal BLT scenario, i.e. Ry = Ry =r/R. For this
case also we find that the value of decay width is of the same order as that of the SM for all
choices of r/R.
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FIGURE 4.16: The decay width of the process t — ch as a function of the inverse compactifica-
tion radius 1/R in the case of nmUED for different BLT parameters. In this case we consider
a universal BLT parameter r.
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FIGURE 4.17: The decay width of the process ¢ — ch as a function of the inverse compactifi-
cation radius 1/R in the case of nmUED for different values of BLT parameters Ry (= ry/R)
and Ry (=174/R).
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The same thing happens in the distinct BLT (Rg4 # Ry) case also, as can be seen from Fig. 4.17,
where we plotted the t — ch decay width for various choices of BLT parameters. In this case

also a very high value of BLT parameters can significantly enhance the decay rate.

4.4 S, T,Uarameters, FCNC and Other Issues

The Peskin-Takeuchi parameters, i.e. S,T and U parameters, encode the oblique corrections to
the electroweak gauge boson propagators [50]. These parameters put stringent constraints on
many BSM physics scenarios. In nmUED these electroweak precision constraints are discussed
in [81,165,171,177]. Clearly in these cases the underlying action and some assumptions are

different from our setup. For completeness we spell out these constraints in our case.

The effects on electroweak precision observables arise due to modifications to the Fermi constant
GF at tree-level. Actually in nmUED second level KK gauge bosons have tree-level couplings
with SM fermions, and this modifies the effective four Fermi interactions and thus the Gr. Note
that this is in contrast with the mUED scenario where there is no (2)-(0)-(0) coupling at the

tree-level. The corrected Fermi constant in the case of nmUED can be given as
Gr = G% + G, (4.38)

where G (0GF) comes from the s-channel SM (even KK) W*-boson exchange. More precisely

they can be written as [171]

2

2
95 95 kN2
GYh=—22  and 5Gp=§:7( re + R I5)?, (4.39)
4v2M3, = 4\/§MV2V(k)
even

where Iéf is given in Eq. 4.4f. Now, in terms of these quantities the electroweak precision

observables can be written as [165,171]

16GF 4sin 03, 0Gp
SpmvED =0, Tymuep = ————, Upmvgp = ——%——. (4.40)
o GF o GF
Now, the most recent fit to the electroweak precision data gives [221]
S=0.05+011, T=009+0.13, U=0.01£0.11, (4.41)

from which we write
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The S,T and U parameters are not independent parameters but are correlated. The correlation

coefficients are given by [221]
psT =090, psy =-0.59, pry=—-0.83. (4.42)
Now, constraints from S, T, U parameters can be imposed by evaluating the y2, given by
2 = ATC1A, (4.43)

where AT = (S,muED — S TomvED — T, UnmtUED — [7) and the covariance matrix C is given by

2
og 0SOTPST OSOUPSU
— 2
C= OsO0TpPST or oroupru | - (444)
2
ouospsu  oUuoTPTU oy

For a maximal 20 (30) deviation, given the two degrees of freedom, we need x> < 6.18
(9.21) [218]. In Fig. 4.18 we show the allowed region of parameter in the Ry, — Ry plane consis-
tent with electroweak precision data at 20 (and 30) deviation for inverse compactification radius,
1/R = 500 and 1000 GeV. Note that the larger values of BLT parameters Ry ¢ lead to a larger
allowed parameter space that is in agreement with the result shown in Fig. 4.18 of Ref. [165].
We mention that the dominant effect on the electoweak precision observables comes from the
modification of the Fermi constant. From the one-loop contribution of KK particles another set
of subdominant modification in the precision observables results. However, a detailed one-loop

contribution from the KK particles in the case of nmUED is subject to further study.

FIGURE 4.18: The shaded region, in the Ry, — Ry plane, represents the 20 (dark blue) and 30
(light blue) deviation region satisfying the electroweak precision constraints for 1/R =500 GeV
(left) and 1000 GeV (right).
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Normally BSM models suffer from the presence of tree-level FCNCs and appropriate symmetry
etc. are imposed to get rid of them. In the most general setup of nmUED every field present in
the model can have different BLT parameters. If there are different BLT parameters for fermions
of different flavors then that leads to tree-level FCNCs. However, it has been shown in Ref. [177]
that there exist no FCNCs if the fermion BLT parameters are flavor-blind, 4.e. the BLT matrices
are proportional to the unit matrix in flavor space. In our case we have used a universal BLT
parameter for all fermions; clearly there is no tree-level FCNC in our present setup, no matter

what the values of BLT parameters are.

In case of rare top decays, we have seen, at least in the case of t — ¢y, that somewhat large
values of BLT parameters can result in an order of magnitude increment to the decay rate as
compared to the SM. As it stands larger BLT parameters lead to smaller KK-masses. In this
regard a few points are in order. Presently the bounds on new physics particles are quite high
as can be seen from the exotic particle searches of ATLAS and CMS [222,223]. In the case of
mUED, LHC dilepton searches put constraints on second KK-level particles to be m 2y > 1.4
TeV [153]. Now, for the BLT parameters and R~! that lead to a larger I't¢, compared to the
SM the second level KK particles become much lighter. Clearly, a qualitative comparison with
Ref. [153] shows that a lighter KK particle implies significant propagator enhancement leading
the dilepton cross section to a degree that is ruled out by LHC dilepton data. We have checked
that even the modification in couplings via the overlap integrals is not enough to evade these
bounds. Thus the parameter space leading to an apparent enhancement in I';_,., is already ruled
out from LHC dilepton searches. Also from Fig. 4.11, we can see that this parameter space is

ruled out by the R} value obtained by LEP collaboration.

In passing we mention that the collider signatures of nmUED can mimic supersymmetry (SUSY).
However, one must remember that n = 1 KK-masses in nmUED are more closely spaced than
the masses of SUSY partners in any conventional SUSY models. This hinders one from directly

translating available bounds on conventional SUSY models to nmUED models.

4.5 Conclusions

We have performed a complete one-loop contribution to the Zbb vertex and also to flavor-
changing top quark decays (¢ — ¢y and t — ch) in the context of minimal and non-minimal
UED. In case of nmUED, kinetic and Yukawa terms are added to the fixed points of the extra
space like dimension. These boundary-localized terms, with their coefficients as free parameters,
parametrize the quantum corrections to the masses of the KK excitations and their mutual
interactions. We have calculated the interactions necessary for our calculation. Some of these

interactions are very similar to those in UED. However, some of the interactions are modified in
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comparison to their UED counterparts by some overlap integrals involving the extra dimensional

profiles of the fields present in an interaction vertex.

The effects of BLKTs on the masses of KK-modes and their interactions can be summarized as
the following. For a given R™!, increasing BLKT parameter would drive the respective masses
to lower values. Strength of an interaction does not have such a simple dependence on the BLKT
parameters. We have derived all the necessary interactions involving the KK excitations of top
quarks, W bosons, charged Higgs and Goldstone bosons in the framework of nmUED with the
assumption of equal gauge and Higgs BLKT parameters along with equal fermion and Yukawa
BLT parameters. Gauge and Higgs BLK'T parameters have been chosen to be equal to avoid the
nontrivial scenario created by the presence of 74 in equation of motion of the gauge fields, while
unequal fermion BLKT parameter and Yukawa BLT parameter would lead to the KK-mode
mixing in the definition of physical states of KK excitations of top quarks. So for the sake of
a relatively simpler calculation we stick to the choice of equal fermion BLKT and Yukawa BLT

parameters.

We have constrained the parameter space of these models from new physics contributions of Zbb
coupling. In general, coupling of a b quark to the Z boson involves both the left- and right-chiral
projectors. However, quantum corrections which go into the coefficient of the left-chiral projector
are proportional to m? while the mg proportional terms go into the coefficient of the right-chiral
projector. We have done the calculation in the limit where my — 0. There are two main
classes of Feynman diagrams contributing to 592“3 (the contribution to Zbb vertex in nmUED
framework), in 't-Hooft Feynman gauge. First set of diagrams listed in Fig. 4.2, captures the
dominant contribution (because of Yukawa coupling which is proportional to m;) coming from
the participation of KK excitations of top quarks and charged Higgs boson/Goldstones in the
loops. The remaining set consists of contributions mainly coming from the KK excitations of W

bosons and top quarks inside the loops. These diagrams are listed in Fig. 4.3.

The explicit expressions for the contributions coming from each of the diagrams are listed in
the Section 4.2.1. Sum of the contributions to dgX* from the diagrams in Fig. 4.2 is finite and
independent of sin? y,. While the second set of diagrams needs to be regularized, after summing
up, it is still ultraviolet divergent and also contains a term which grows with R~'%. We have
used a regularization scheme following Ref. [137,216], upon which the total contribution becomes

finite and also becomes independent of sin? @y .

A recent theoretical estimation of the Zbb vertex in the framework of SM at two loop level has
squeezed the window for new physics that might be operating at TeV scale. The experimentally
measured value of Ry differs from the SM prediction at 1.2 o level. We have used the experimental

data and the recent results from the SM on Ry, to constrain the parameter space of non-minimal

1

8This term arises from the diagrams Fig. 4.3 (f) and (g), due to a direct proportionality on R™* of the vertex

W-G-2Z.
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Universal Extra Dimensional Model. We have relooked into the UED by setting the BLKT
parameters to zero in our calculation. The resulting expressions can be used to put bound on
R~ in UED model using the same experimental data and the SM estimations of Ry. It has
been found that R~! in UED model should be greater than 350 GeV at 95 % C.L.

Next we focus into our main result. Comparing the numerical estimation of Fyy,ugp with the
difference between experimental data and SM estimation we have constrained the parameters in
nmUED. First we look into the limits on R~!'. Both the BLKT parameters have positive effects
on Fnuuep. This function is very sensitive to any change in Ry while the effect of Ry is very
mild. The bottom line is that both the BLKT parameters can push the allowed value of R~! to
higher values. Depending on magnitude of BLKT parameters Ry, and Ry (which we have chosen
to be positive), lower limit on R~! could be close to 1 TeV. Finally, we show contours of constant
Fumugrp having the 95 % C.L. upper limit value for different values of R~! in Ry — Ry plane.
As for a fixed value of R™!, i.e. for a fixed curve the value of the function Fonugp increases
with increase of Ry the left side of that curve represents the allowed region of this function for

respective R71.

Furthermore we have also verified, in the SM, the results of branching ratios of flavor-changing
decays with the existing literature. As far as the experimental searches are concerned, both
ATLAS and CMS collaborations have performed some searches of FCNC top decays. For ex-
ample, using the 19.6 fb~! data at /s = 8 TeV the CMS collaboration puts an upper bound
on the rare decay to ¢y as Br(t — ¢y) < 0.182% [224]. On the other hand for the t — ch
channel, the ATLAS collaboration puts a bound of Br(t — ch) < 0.51% using 4.7 fb~! data at
Vs =7 TeV and 20.3 tb~1 at /s = 8 TeV [225]; whereas according to the CMS collaboration
Br(t — ch) < 0.56% by using 19.5 fb~! data at /s = 8 TeV [226]. Also see Ref. [227] for the
projected limits for higher energies on top FCNCs at the LHC and ILC. From these numbers
it is evident that even in the higher energetic Run-II of the LHC the sensitivity will not reach
the limit to judge the small branching ratios as obtained from the theoretical calculations in the
SM. However, there are many BSM scenarios in which these branching ratios are quite high and
at the level that can be probed in the Run-II of LHC. The aim of this chapter is also to look

into this issue of rare decays in one of the interesting BSM scenario, i.e. mUED and nmUED.

We show that both the decay widths of ¢ — ¢y and ¢ — ch do not change much from the
SM value in mUED for any reasonable choice of the inverse compactification radius 1/R. This
result is somewhat contrary to what has been obtained in Ref. [212]| by using various simplifying
assumptions. In passing we note that a similar picture arises for the rare B- and K-decays in
the case of mUED [137|. On the other hand in the non-minimal case, i.e. in the presence of
BLT parameters, if Ry > 10 and Ry # Ry the t — ¢y decay width can, in principle, enhance
up to four orders of magnitude from its SM value while respecting the electroweak precision

data. But the required R~! along with such higher values of BLT parameters are not viable
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from the LHC data. For the case Ry = R4 we found no such enhancement. However in the
case of t — ch, irrespective of whether R; and R, are equal or not the decay width does not
get any enhancement compared to its SM result. Actually the GIM suppression is still at work,
even though the KK particles are contributing to the processes, and the decay widths remain,

in most of the cases, almost at the same level as that of SM.



Summary

and Conclusions

The discovery of Higgs boson at LHC has profoundly vindicated the physics of electroweak
symmetry breaking in the Standard Model. Still, there are some evidences which surely make
an obvious need for going beyond the SM. Among all the variants of new physics, the existence
of extra spatial dimensions have many conceptual and phenomenological implications. In this
thesis, we consider a particular incarnation of extra dimensions which is termed as the Universal
Extra Dimensional (UED) model. We have considered the model in its basic and also in its

non-minimal version.

The basic category of the model (UED) is nothing but the higher dimensional version of the
SM where all the particles can propagate in the extra dimension (the bulk). Their Kaluza-Klein
excitations have simple mass fomulae and the couplings have close resemblance to that of the
SM fields. In the non-minimal version some boundary localized terms are incorporated which
eventually include the localized-kinetic and Yukawa terms as well as the mass and potential
terms of various fields. This thesis mainly includes the procedure and results for obtaining the
constraints on the model parameters from Unitarity (in scalar sector) and from some radiative

corrections.

Chapter 1 starts with a brief description of the SM. The latter part of this chapter shows
the experimental and the theoretical motivations to go beyond the SM. The second Chapter 2

113
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elaborately describes the Universal Extra Dimensional model (UED) along with its minimal and
non-minimal version. Chapter 2 also includes the bounds obtained on the extra dimensional
parameter in case of UED and mUED. After delving into the detailed description of UED and
its some specific phenomenological consequences, Chapters 3 and 4 contain some new work which

constitutes the main part of this thesis.

In Chapter 3, we have constrained the parameters of the nmUED model in the scalar as well as in
the gauge sectors from a study of Unitarity. In nmUED, the boundary terms are generated due
to radiative corrections. So those terms are loop suppressed. The coefficients of boundary terms
are the free parameters of the theory which we call the BLT parameters. Though the terms are
loop suppressed and should be small, but we do not know the effective range of BLT parameters,
or how do they behave in the four-dimensional effective theory. Unitarity analysis in gauge
and scalar sectors will give the range of BLT parameters which maintains perturbativity of the
model. We have performed this analysis in gauge and scalar sectors exploiting the equivalence
theorem to get the upper bound on gauge and scalar BLT parameters (which are same in our
analysis). Initially we have done partial wave analysis for some single channel processes and
after that we have done coupled channel analysis to further constrain the respective parameters.
We have estimated the bounds on the boundary localized parameters for specific KK-modes and
also shown that the upper bounds on scalar BLT parameters get more constraint with increasing
KK-modes. If we consider KK-modes up to 4-5, the scalar (scaled) BLT parameter can be taken
as high as 19 which falls down to nearly unity if KK-number is taken up to 25.

Chapter 4 deals with some loop induced processes in the presence of one spatial extra dimension.
This chapter is basically comprised of two parts; one is to constrain the nmUED parameter
space using the experimental data and the SM estimations of R, with R, being the ratio of
Z boson decay width to a pair of b quarks normalized to total hadronic decay width obtained
by LEP collaboration. For specific choice of BLT parameters the lower bound on the inverse of
compactification radius (R~!) can be around 1 TeV. Another part deals with some flavor changing
rare decays, t — ¢y and t — ch. For some choice of BLT parameters the respective decay
widths have some considerable enhancement with respect to the SM value, but the corresponding

parameter space is ruled out from LHC and also from LEP data (from R} value).

It is also worth-noting that in the KK-parity conserving nmUED scenario the lightest KK particle
is stable and can play the role of dark matter. But in this regard it is to be kept in mind that
for some choice of BLT parameters it may so happen that some specific KK fermion becomes
the LKP. Now, a KK fermion LKP is not preferable as it can have electric charge or if it is a KK
neutrino it is excluded, as a viable dark matter candidate, by direct detection observations. KK-
parity can be broken if there are asymmetric BLTs. Thus taking asymmetric BLT parameters
in a way that guarantees enough KK-parity breaking to make the LKP unstable and sufficiently

short-lived, the dark matter constraints can be relaxed.
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Finally we add a few comments about the possible extensions in the ambit of this model. First,
the effect of KK contribution on the CKM matrix elements (important in case of rare decays) can
be systematically taken into account in the calculation of various loop induced decays. Secondly,
in nmUED by utilizing the freedom of taking different BLT parameters for different types of fields
one can, in principle, get a richer model set-up to look into the loop induced decays. Thirdly,
and perhaps most importantly, by taking different BLT parameters at two orbifold fixed points
for the same kind of field one can break KK-parity. The violation of KK-parity would lead to
a host of new KK-parity violating vertices that can significantly modify the decay widths. It is
imperative that these effects, which can lead to some interesting observations, be examined in

detail.



Feynman Rules Relevant

for Unitarity Analysis

In the following Feynman rules, ‘n’ or ‘¢’ stands for KK-mode and ‘0’ for SM.

A.1 (0)-(n)-(n) Coupling (n : even or odd)
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The overlap integrals I*”and I'3™ can be calculated from Eqs. 3.10 and 3.12 or 3.13 respectively.

A.4  Quartic Coupling (n)-(n)-(n)-(n); n: even or odd
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In the above expressions all the symbols cipngs and gj,s where i :

1 —19and j:1 — 5, are

given explicitly in APPENDIX B. The overlap intergrals ™™, [, ['"4 ['9"" ['" are obtained

using the Eqgs. 3.10-3.14. The explicit expression of I has been given in Eq. 3.27.
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Used in Appendix A

cmi M2, 1"+ 2MEME, T — 2M% Mg, Ma, I'™,
s Mg, I + 2Miy My, 1" — 2M My Mg I'"™,

—mj Man 1™ + My Mg '™ + Mz Mg, 1",

: iy Men Magl ™ + Mz(2Mz + Mg, ) 1" — M2 Men MagI™,
cmp ™ ME, "™+ Mg, Mg, I'"™,

—mjy MagI™ + Moy (I'""(2M% + Mg,) — Mo MagI™?),

cmi Ma, 1" — M2, Mo I'™™ — (M3 — MZ,,) Mg, I,
t MonMag (mj ™™ — My, I"™™) + Mg, (2Mgy, + Mg,) '™,

Af%qfwnn —-(A4¢nﬂf¢qfnnq4—COSQHW/AJ§IW””),

—Map I + cos 20y M '™,

My (Mg, — Mg, )" + Mgy, cos 20y (I'""™ M, Man — 1" My, Mag),
—mjy Mg I™ + Moy Miy I'"" + Moy (M I'"" — May Mg 1)
—mj Mon I™™ 4+ Mg, (M, I"™™ — Mg M, I'"™) + Moy Mg, '™,

: Mq)q]/qnn — COS 20WM%I’”"‘1,

120



Appendix B. Ezplicit Expression of Abbreviations Used in Appendiz A

121

ABpng : Miy Mz, (Man '™ — MagI™) + I'"" My, My, (M3, — Mg,,)

— cos 20y M (1" My Meyn — 1" My, Mag) |

A6png : Man Mag(Mz — M) '™ — My Mgy, cos 20y 1™ + M7, Mg, 1",

ATpng : M7, (MonMagl™ + My I'™") — M, I’ (Mg, + M7 cos 20y ) ,
18yng : Moy I™™ — MegI'"™,

c19png = M3 Moy 1" — M, Mo, I™ + (M3, — M3,) Mg, 1",

Clgn

ngn

C33n:

C43n

chsy,

b3y, :
Ccl3n i —m

3ma M2 1"+ 2(My — AMZM2, + Mg )I™,

qln
q2n
q3n
q4n
¢5n

cmi Mg, I +

cmi M3, I" +

cmi M3, I" +

cmiM2 I3 4+ 2MAT"
s mj Mg, I°" + 2My, ™",

—m3 I3+ 2MZIP",

:mp I + 2M3, ™",
: M2I™" (1 — cos 20y),

Mg I (1 — cos 20yy)
}QZI3T7, 4 2M5V_[/3n,

2Myy, — AMG, M3, (1 — cos 20y) + Mg, (1 + cos40y)) 1™,

M7 (1 + cosd0w) — AMZM§E, (1 — cos 20w ) + 2Mg,,) I"",

+

tmp M3, 1" + (2Myy + AMG, MZ (1 — cos 20w) + My (1 + cos 40w )) 1™,
+
+(

(1 — cos20w) (M, (M3 — M§,) + Mg,) — MZM3, (3 + cosd0y)) I".



Expressions for ag of Relevant (n),(n) — (n),(n)

Processes in Unitarity Analysis
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1 2 — 4M2 1
X { 2 2 In < Z’rz i mh) } Z Clnnq 2
s—my s—4Mz, mh eoven — My,
2 | s — 4M%n + m%q -
T e 4M2 n 2 ’ ( . )
8 Zn mhq
1 1
o(HOVPHO)™ > HOVHO) = —q oo [2mi M I" + 40 M3 1)
167 v MWn
1 2 s —AMZ, +m?
2172 2 272 32 Wn h
M, 2MEG, M — 1
1 2 s — 4M3Vn + m%
+ 62 — ln q , (Cg)
2
(n) 4(n) (n) g(n)y _ L My 5 \2 1
CLO(GZ A — GZ A )— 1 +Mq> (mh MZ ) —_—
167 02M4 " Yo ls—m2
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L (s —4MG, + m%) _ my(mp Mg, +2M7M7,)
(s —4MZ,) mj, (s —4M7,)
s—AMZ +m? > 1 1
x In < Z; h) + cr? 5 —
my q:Zev:en e g — mi, (s —4MZ,)
s —4AM?Z2 + m? >
< In ( Z; hq> } . Z (m}QLInnq + 2Mq>an>qI,qnn)
mhq g=even
1 s —4AM?2 +m?
X ey In T ha )1 (C.4)
(S - 4MZn) mhq
1 1 2
ao(h(”)A(”) N h(n)A(n)) _ 7@@ [(mngnI” + 2M§Im) + Mf%n (m}% o M%)

1 2M2 +2M2ZM?2
x{ - S 21nX2n}—3mhs(mh an T2 ZQ”)
s—M2Z (s—m2 —MZ) (s—m2 —M2)

1 s
M3c3;, 42 - InY?2
+ Z { zC€ nnq+c nnq} {S—M%q (S_mhn MQ ) n nq}

g=even Z q

In X3n

o0 2
3ms 1"
- Z Th ,qus InY3ng|, (C.5)
g=even (S o mhn MZTL)
2
(n) my_ 1 Mz 2 2 4 1
ao(h(n)GZ — h(n)GZ ) — —167@ |:(mhIn =+ 2M(I>nI/TL) +mhn {(9_]\4,%
S 3mts
— In X2 } h In X3
(5 - mhn M%n) " (S - mhn M%n) "
1 S
MZ%c52 62 — InY?2
3 g S S| g,
oo 2 tnn
Imy I""s
2 rnng qnn
— D (MR 4 2Mpy Mg ') 55 Y3, (C.6)
g=even (8 B mhn M )
1 MyzMy Mg, m?
G geEgmFy - 1 Man(1 — cos 20y ) I"™ + ——h
ao( Z ) 167 v2My, on(1 — cos20y)I™ + -2
B 2M¢)nm,%n cos 20y /s In X4, + Z choch5,mq + 9nngCOnng)
2 2
\/S— 4MI%Vn( mhn ]\42 ) g=even MZ(](S o MZq)

g=even 4/ S — 4M3Vn( mhn ]\42 )

{ Man Mg ignn AlpngC12mg M2,

+

7 (C.7)

nng — — cSnngCl0nng ¢ InY'4,,
MWnMWq MI%VnMqu Mqu }

n n n n 1 1 n n 2
1 M2+ 2ME M2
x - S InXT7,{—3m] (i M, + ; W) S 1 v,
s M (S - mhn MWn) (S - mhn MWn)

2 (MEc132,, + c82

nnq

nnq) 1 S
— InY7
MY%Vq { §— Mg[/q (S - m}QLn - jw’l%/n)2 nq}
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2
Z 3m2 e e Y8, (C.8)
g=even o mhn M )
(n)%p (n) ey _ 1 My 2 n 2 2 (2 2 \2
ag(G™WFh™ — GMFR) = — b— | (mypI™ + 2Mg, I'™) + Mg,, (mj, — Myy)
167 v2 My,
1 ] s
- In X7, ¢ — 3mj} In X8
X{S—M2 (s —m2, — MZ, )? " n} mh(s—mhn M3, )? HAOn
2 (MEy b2, + 122, ) 1 s
W ““nnq nngq
* Z M?2 s— M2, (s—m2 — M2, )2 2 1Y Tng
g=even Waq Wq hn Wn
o 2 tnn
3my [ s
_ Z (m%[nnq—i-QquMq)qI,qnn) (S_m h M2 ) lean , (C.9)
gq=even hn
2
+ ~(n) +(n)y _ 1 Mz 2 a4 2 1
GO(H(n) GZ — H(n) GZ ) = —Em |:q2n =+ (Mq)nMWnCOS 29[/{/) {3—]\4—5[/
s
o MZ M) In X9n} —mj (mj Mg, + 2Mp, M,
s 1
X In X10,, + M3, My, cl42,  + c112
(8 _ M%n _ MI%VTL) qzev:en MWq ( n nnq nnq)
1 s
X — InY9
{S—M‘%Vq (s — M2, — M2, )? nq}
- i (M2T™ + 2 Mgy, Moy I'"™) 8262””‘1 5 Y10, , (C.10)
g=even (8 B MZ" o MWn)
ao(HMEAM _y frm=E 4y — R U [M2,q30 + (M2, + 2M3) (M2 — M2,
16w v2 M2 M2, " "

1 S
X — In X9 }
{s - M2 (s— M2, — M2, )? "
S

— (miMg, +2MZM2,) (mi Mg, + 2Mj, M) CES T RS TERE In X10,
n n
1 ]
+ (M 162, + c152,.,) - InY9,,
qze\;an Wq e i §= MI%Vq (S - M%n - MI%Vn)Z
S
ClnnqC2nnq InY10,|, (C.11)
qze\;en M%n - Z\ja/rz)2
2
ao(GWEAD 5 gt gmy = - L My [q% (M2 M ) {12
167 v M7, Mg, s — Mg,
s In X9, 2/ 219 9119 s In X10,
— - M. 2M>M
(5 — ]\4-2 — M3 n)z} " (mh an ¥ i Z’ﬂ) (S - M%n - M%Vn)2
1 sInY9,
+ (M Mz, 182, + c172,.) — :
qzev:en Wq e e s Mqu (s — M%n B Mgl/n)Q
[e.o]
2 rmng Iqnn S
- (mEI™™ + 2May MagI'™™) clpng In Y10, | , (C.12)
q%n (S - M%n - Mal/n)2
2
ma _, amtgmsy 1 MwMz 2 2 2 — a2y Ma
ag(A™Gy = GVTHT) = — g MZNME, 5 + (mjy — Mz, )(m, MWn)S — WZ%
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2M2, cos 20w M2, M2, 1 X6 ~ CTrngCl9ng
B 2 2y oo 2 s —ms
\/(8 — 4MZn) (8 — 4MWTL) g=even hq

oo
+ ) (M My, M, c1400gC180mg + 1 Tnngc1 Lnng — Miyyo(1 — cos 26w)

g=even

2

Mg/ (s — 4M3,) (5 — 4M3,,)

X Mapp """ c15pn4) InYG6,,| - (C.13)

The explicit expressions of the symbols of Xk,s and Yk,4s having £ : 1 — 10 are given in
APPENDIX D.



Explicit Expression of Abbreviations
Used in Appendix C

s 2m% - 4M‘12>n B \/(8 - 4ml2m) (3 o 4M%n)
2\/m;§ + M2 (s - 4m}2m)

s —2m? — AMZ, +2MZ, — /(s — 4m3,) (s — 4M3,)

X1, :

)

Y1 :

2 )
2\/<m2 ~M3,) + MZ, (s = AMZ,) + M (s — 4m3,)
s{2(m3,, + MZn) — s} —2(sMj + mhnMZn)

m,m + M% sM2
s{2(mj,, + M3,) — s} — 2(sM3, +mj, M3,)

X2, :

Y2,,: ,
n m‘}m+M§ —sM%q
X3, .14 (s — mhn MZn)
n sm% b
Y31+ (s =, — Mz,)" ,
smhq

X4 - \/E (S - 2M<I>n mhn MZn) \/ §—= 4M§Vn( mhn MZn)

0
2\/(s = m}, — M3, ){sMp, — M, (m}, + M3,)} + M},

Y
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NG (s+20M3, —2M3, —m2, — M2, ) = \Js — 4D, (s = m3, — MZ,)
2 (5 =t — ME )T Miyy — M (i, + M2} 1 (M3, — M3,

Y,

s —2m —AM3,, — /(s — 4m3,) (s — M)

2\/m;11 + MI%V (8 — 4m%n)

5 —2m3 — AMZ, +2M3, — /(s — 4m3,) (s — 4M3,,)

X5,

)

Y5nq : ’

2 (mt — M3,)" 4 M3, (5~ 4M3,) + M (s — )

s —2MZ — AMZ, —\/(s — 4M3,) (s - 4M13,)

X6, :

)

2/ M} + M3, (s — 4M3,)

5= 2M3 — AMZ, +2M3, — \/(s — AMZ,) (s — AM3,,)

)

Y6, : >

2\/ (M3 = M3,)" + M3, (s = AMZ,) + M5, (s — 4013,

s{2(m? + M2,) — s} —2(sMa, + m2, M2, )
m;lm + M{}Vn — SM%V

s{2(mj,, + Myy,,) — s} — 2(sMiy, +mj, M)

X7y

)

Y7 : )
" m%n + M{/an - SMIqu
2 2 2
s—mi,_ — M
X8n 14 ( h;lmQ Wn) ,
h
—m2 M2, )2
Y8nq 14+ (S Mhn > Wn) ,
Smhq

xo. . S12(ME, + Miy,) = s} = 2(sMiy + M7, My,
n - )
M%n + MIZ/LVn - SMI?V

Y9 . )
" Mén + M‘A}Vn - SMI%Vq
X10, : 1+ (5 B M%n — M%Vn)Q
n smlzl )
_ M2 _ M2 2
Y10, 14 57 Mon = Min)”

smhq



General Form of Matrix Elements

in Coupled Channel Analysis

Here, we give the general form of the matrix elements explicitly where, the sum over KK-modes,
the symmetry factors as well as the factor 1/1/2 due to the presence of dibosonic states have been
taken into account. While writing the elements, the ordering of neutral fields are important; e.g.
the combinations h(™ (™ A A will differ from h(™ A p(™) A by a factor of 1/2 as h(™ (™)
or A A altogether implies the presence of dibosonic state. Another noteworthy point is that
the sum of the KK-numbers should be even, otherwise the elements will be zero ensuring the

conservation of KK-parity.

E.1 Elements of matrix Ajsx5

2

h(O)h(O)h(O)h(O);_§ M
2\ 02 )’

2

KO RO ) ) . 3 (T
2\ 02 )’

Mmmmmmmm:_3<

<
S
N——
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V2 \ v?
2
R O ) pm) .3 <mh> o
v2 ’
2
RO R (M) ) . _3 (mQh) e,
v
3 [m
) ) ) () . _ 3 (M) pan
hO R \/ﬁ(ﬂ) 7
2
RO R R 3 (MY
2\ v?

2
V2 ’
2
v

2
B ) ) @) . _g <m2h > [,
v
2
h(n)h(m)h(p)h(Q) - -3 <Tn“2h> Jvmpa
v

E.2 Elements of matrix Digx1g

3

A A A AN+ o (M, I+ AMEMG, )

Zn

1
Zn~""Zm
+2My (M3, I7"™™ + Mg, IT"™™" + AMen Man I7™"™) } |

1

A Am) g g(m) . = fg..2302 pr2  pnmmm
v?M2 M2 {3mj, Mg, Mg,

+2My (M3, I7"™™ + Mg, IT"™™" + AMen Man I7™"™) } |
3{mj M3, Mep """ + 2M 5 (Mo Men 17" + Mg, I7m) }

A A g(0) g(m) . ,
V202 M3, Mz,
1
V202 M2, MMz, {81, My Mo May,
+2My (Mg, 17" + Mep MaopI ™™ + 2Maey, (Mam 7™ + Map ™))},
1
VZMZ, My Mgz, {3 Mo Mom May

420 (MR, L™ 4 Moy Moy [ + M (Mo ™™ + Moy ™))}
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1
7)2]\4Zn]\4Zm]\4Zp]\4Zq [

+ 2M7 { Moy (MapI7™ + Moy 1P + Mg, (MapI]" "™ + My ;™)
+ Md)m (Mépl?qmp + M@nlfqnm)}] .

A A(m) A(P) gl@) . _

3m; Men My May Mo "

E.3 Elements of matrix Fo5.95

2
0 0)— 4 (0 0)— . oMy
d O+ 30— 30+ 40)— . _20727

SO+ )= g0+ FF(m)= /(0= frim+ 5(0)= g+ . _o

O+ (O~ g+ g~ ___ 2
T AL,

¢(0)+H(n)+H(n)_H(m)_ o 92 {m}QLM(%an)mInnm + MIZ/JLV (Mq)mjimm + Mq)ﬂ]{rmn)}
SO F(m+ F(m= pim)+ v2M2, My, ’

p O+ g+ ()= pr(n)— 9

2273 73n 4 13n
- M3, + 2M{y Mo, 1
p O~ M+ = prm+ "~ v2My,, (miMan 7+ ),

50— 0+ prn)+ prm)- V2M2, Myym ’
¢(0)+H(n)_H(p)+H(Q)_ 9 2M M. M. [P M4 M. Imlm M. Inmp
L {mh SnVomViep + W( Pniq + Moply )}
¢(0)—H(n)+H(P)—H(t1)+ ) 02 My, My i My ’
2
g g gt )=, — i (M My, I" + 4My Mg, ™),
v Wn
Ry Ry ey (LD — 2 i
0= My, My,
2 2 2 nnmm 4 2 nnmm 2 ymmnn nmnm
x {mj Mg, M3, I + My (Mg, 15 + Mg, I} + 2Me, Mo I} )},
2
g+ gr(m)— gr(n)+ gr(m)— . ——— (m;%Mq%an%mInnmm + 4MIA/1VM‘I>nM<I>mI{Lmnm) ’
UZMWnMWm

H(Tb)+H(m)_H(n)+H(p)_ L 2 {m]ZZM%an)qu)pInnmp 4 2M{/1[/M<I>n (MémITpnm + M(I)p[?mnp)}

= )+ - o+ v2ME,, My M, ’

M= )+ )= grm)+ v2M3, My, ’

H ™+ g ()= grm)+ gr(p)— 9 -

D= mi Mg Mep, Me, I[P
O+ - gm) - g+ v2M2, My My, [ Moy Mam My

o+ My { Maon (Mo 177" + Map /™) + M, 17" + Mo May 17"}
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2
U2MWnMWmMWpMWq [

+ My { Mo, (Mo IP™ + MygI7""") + Moy (Mo ! + MagI{™)}]

g+ prm)= o)+ la— .

2
mth)an)mM@pM@qInmpq

E.4 Elements of matrix Bi5.1g

7,0 g g0 . L (MM, + 2M7)
T2

v2MZ ’
2 2 nmm 4 rmmn
O g0m) q0m) . L (M Mg, I"™™ + 2M ] ),
% T,
2 nm, 4 ympn
RO () g(m) g(0) . _ (1 Mo Map "™ + 2M 3 I7"")
‘ v2Mzm My ’
2 2 1™ 4 1n
h(”)h(n)A(n)A(n) . _1 (mhMénI + 2]\4ZI )
Ty,
2 2 nnmm 4 rmmnn
) m) ) gy . L (MM T i ;2Mz11 )
2 viIM7 ’
2 nnm 4 ympnn
B ) ) 4p) , _ L (Mo Map I 4 AMGIT™)
V2 V2 Mz Mz,
2 2 tmpnn 4 nnmp
A 4 3, m) () _\1[ (m}, Mg, I ”2 —’2_2MZI1 )
2 v Mz, ’
2 nmnm 4 Tnmnm
() pm) g(n) g(m) . _ L (mj, Mon M, I + 2M I
\/i UQMZnMZm ’
2 nm 4 Tpgnm
B pm) gA®) gl@) . _ (i, Map Mg "™ + 2M7 I7"™) '
V2 Mz Mz,

E.5 Elements of matrix £;oxa5

pO+p0)= 4 o) 1 (m%Mén + 2M} cos? 9W)

V2 v2MZ, ’
HOF Fm)F 4 4() , _ ﬁUQMlgnMWm (2 M2, Mo ™™
+ 2M7 {cos® Ow Moy MZIT™™ + May M 17" (1 — cos 20w) }]
SO FmF 4m) g(n) . _ \/§u2MlgnMWn (2 MR, 1%

+ 2M 5 Mey I™" {cos? 20y MZ + Mg, (1 — cos20w) }],
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1
O)E g (n)F g(n) g(m) . _
¢ " ATA ' U2MZnMZmMWn [

+ MMz (1 — cos 20w ) (Map I7™™ + Ma,I7"™)]

m2 M2, Mg, I"™™ + 2M 7} cos? 20y M, I

1
P OEHPIF AM) g(m) . _ Y Y [mE Moy, My, Map ™™ + 2M 7% cos? 20y M, I}
n m P
+ My MZ (1 — cos 20w ) (MamIP™™ + Mo, I7™™)]
(n) A(n) £ (m)+ () M3
AW A YT T — n q3n,
V20 Mg, M7,
1
A(N)A(n)H(m)-FH(m)— P [m}QquQ) Mq%mlnnmm + QM% C082 29WMq2>mI{anm
V2vrMZ, My, "
+ 4MP, MZ Mo Mo, (1 — cos 20y ) IP™™™ + 2My, M3, 17"
1
A A(m) o)+ o) — . TP [m}QLMQnMQmM%pInmpp + 2M§ cos2 29WM<12>pI{mep
n m=Wp
+ 2M3, M2 Mgy, (1 — cos 20w ) (Maon '™ + Mgy ITPP™)
+ 2Myy Mon Mo 177"
1

A gm) g+ gm)— . _
UQMZnMZmMa/n

+ 2M % cos® 20y M3, I + 2 My Mgn M, 1™

[ M3, My I

+ 2M5VM%M¢WL (]- — COS QQW) (Mq)n_[{nnnn + Méml?nnm)} :

A A(m) pm)E gro)F . _ 1
\/EUQM%nMWmMWp

+ 2M7 cos® 20y Mg, Mo, 17 + 2 My, M2, 17"

[m3 M3, My Me, """

+ 2M5V'M%M¢'n (1 — COSs 29w) (M@mff'pmn 4 MchIInnnp)] ’
1
ﬂUQM%nMWmMWn

+ 2M % cos® 20y Mgy May, 1™ + 2Mi, M3, I

A 4() pem)E ()T . _

[mij M3, My, I

+ ZM‘%VM%MCI)n (]- — COS 29W) (quI{nnnn + MCI)m {Lnnm)} ’
1
UQMZnMZmMWpMWq

+ 2M7 cos® 20w Mep Mag I + 2Myy Mon Moy 177

A Am) o)+ g(OF . _ [m% My Ma Moy Mg I ™

+ M3, M (1 — cos 20w ) { Mg, (Man I7"" 4+ Mg, I;'7"P)
+ Mag (Man 17" + Mo 1)},

1
A(n) A(m) gp(m)= gr(m)F . _
'UQMZnMZmMWnMWm

+ 2M 3 cos® 20y Mgy M I™™ + 2Miy My My ™™ 4 M, M2 (1 — cos 260yy)
X {Man (MenI7"™™" + MomI7™™™) + Moy (Mo I{"™™™ + MemI1™™™)}],

1
U2MZnMZmMWnMWp [

+ 2M7 cos® 20w M, Mo, 1™ + 2Miy Moy Mo I} + M, M2 (1 — cos 20y)

2 2 2 nmnm
[mj Mg, Mg,,I

AM Am) i)+ g(e)F . _

mi Mg, My Mg, I"™"P
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X { Mo (Mo I + Mar {7™) + May, (Mo ;"™ + Mo I )]

E.6 Elements of matrix Ci5y95

BORO o+ - _fv;M%Vn (m2 M2, +2Miy),
M.
h(O)h(n)H(n)i¢(O)ﬂF TZ;h M:;
m2 Mam —nnm
K p () g i¢(0)¢:_ﬂz2ﬁj :
n m:  Man, n
R p () ()£ 4(0)F _\[Z2M7:I;n 3n_
M.
R p(m) fr(e)£3(0F TZQh M;’;T;]nmp

()3 (m) 1 £ 5 OF . Mh Mon rnnm
RV R HYY =R 2 MWnI ,

1
PO g e= L a2 gy g )
ve My,
1
0 n m m)— nmm mmn
RO ) frim)+ pr(m) e (mj Mg, I"™™ + 2My, I7"™) |
1
KO p () gr(m)+ gr(p)F STy (mngcpqu)pI"mp + QM{/IVITP”) 7
m p
1
RO (n) pr(n)+ pr(m)F _U2MW Vi (m}QLquMcmennm + QM{}VHWW) :
1
B ) ) i _ (M2 M2, " + 208 1)
NETITE
n)p(n m m)— 1 nnmm mmnn
B () grm)+ pr(m) :_\/%QMQ (mp Mg, I + 2M I} ),
h(n)h(m)H(P)"rH(P)_ P 12 ( hM2 Inmpp+2M4 Ippnm)
v Mg,
1
h(n)h(m)H(n)+H(n)— ——— (mth)nInmnn_’_2M4 Innnm)
ve My,
1 mpnn
B () fp(m)E (o) F . _\/QUQMW e (m}QZMq)qu>pInnmp + 2M{/1V11 D ) :
m p
1
h(”)h(n)H(")iH(m):F - M. nM mInnnm + 2M Imnnn
ﬂUQMWnMWm (mh ? ? v )
B pm) g+ g@F . _ 1

2 4 rpgnm
g Vi, Mo Mo I 4 200 )
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E.7 Matrix elemnts of ME?CQOXQO

(m}, Mg, +2M7)

RO 4 ,(©0) g(n) . _
vIMg,
1O g0m)p () gy , _ (MAME, I + 2MZ 1)
’ v2M2 )
1) A ) 4y . (MM Map™™P + 2M7 ™)
U2MZmMZp ’
) g () 40 . (MM, 1"+ 2MZI™)
’ v2MZ, ’
) 40m) () g(m) . (M, I 4 2M 1)
' VM3, ’
) A ) 4 ) . (M MemMap™™™ 4+ 2Mz 17"™)
' V2 Mz Mz, ’
A ) g ) (MM, I+ 2M 1Y)
' VM3, ’
) 4G ) gy . (T Man M ™" 4 2Mp I7™"™)
. U2MZnMZm ’
h(n)A(p)h(m)A(q) . (miMq;.qu)q]nmpq + QM%Ifqnm)
' v2Mz,Mz, '

E.8 Matrix elemnts of Goe20x20

dO+ 4 0 : V2 OO 4(m) g(n)
0t 4 n)H(M) A .\ /2 ¢(0)iH(m)¢A(n)A(n)
PO+ A g+ 4() . /o pO)F g()F A1) g(0)
O+ A g+ gm) o 6 O)F fr(n)F g(n) gm)

)

¢(0)+A(”)H(p)+A(m) . ¢(0)iH(p)¢A(n)A(m)7
A )+ g(n) prin)+ .\ /9 A(n) HM+gn)—
A grm)+ g(0) grim)+ . /5 A(n) A(n)H(m)JrH(m)*?
A g®+ Am) )+ . Am) A(m) e+ e)—

A g+ g(m) grn)+ . A(")A( ) g(m)+ g (n)—

A gm)+ A(n) g+ .\ /9 A0 H(m)iH( P)F

A gm)+ A(n) g+ .\ /9 4 ”)A n)H(m)iH(n)qt’
AW g®+ A(m) o+ . () g(m) g0+ fra)F
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AW g+ gm) grm)+ . g(n) g(m) pp(n) gm)F
A )+ Am) g(e)+ . A(n) g(m) gp(n)+ ) F

E.9 Matrix elemnts of Hcc 5425

RO g+ RO g+ . /2 RO O) g+ ()=
OO g+ R0 p0) () H(n +p0)F

O+ R g+ ) /o p () () frm)E g (0)F
PO+ g+ () /5 h(n)h(n)H(n)i¢(0)3F
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Feynman Rules Relevant for
Zbb Analysis

In the following Feynman rules, all momenta and fields are assumed to flow into the vertices.

Obviously in UED the BLT parameters are vanishing and so the overlap integrals and g will

be unity and a,, = %tam_1 (:ﬁg) and Mg = k/R. Moreover for UED, the conservation of
KK-number will ensure that there will be no (0)-(0)-(n) type coupling. To avoid cluttering we
suppress the indices in the overlap integrals. Basically by I. we mean I and by I,; we imply

nn
I3

F2(n)
W+ : %’}’“CLPL
Fl(n)
W(”HQ;(n)béo): Cp = —I,\/ B cosan, W(")_I_)S-f)) i("): Cr = —I;\/ B cosan,
wHg My . ¢p = I,1/Bsin ay, w0y ™) . ¢ = I,\/Bsin ay,
W (m)+50)5(0). Cp = Ic\/_, W ()= p(0)4(0) . Cp = ]C\/B.
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H Qb CpL = —z\/B 1, U sin oy, — Iy My cos oy, |
w
H(”)—B(LO) ;(n): Cg = —i\/B (Iathqm sin o, — Iy My cos an> ,
My
G(”)JrQi(n)bS;O): Cr = \/B (Igmy sin oy, + IyMay, cos av,)
G(”)_Bg))Q;(n): Cr = —\/B (Igmy sin oy, + Iy Mgy, cos au,)
H(n)+U’(”)b(LO): Cr = zﬂ (Iam]t\y@n cos oy, + Iy My sinan) )
w
_ M.
H(n)—b(LO)U’(n); Cr= z\/B <Iam]tw on cos oy, + Iy My sinan) ,
4%
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My My
0+ op = —\/BI.my, OG0 Cp = /B I, my.
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D2 Ws
- 5 8
ZiINV\ 2ig cos O {(pr — p2)* g7 + (P2 — @) g7 + (¢ — p1)” g™}
P1 W(gn)f
F2(n>
Z£°)WW< geotg V" (CLPL + CrPr)
2l
A2 2 o Aain2 .92
70 ;(H)Q;(n) Cr, = —4sin” Oy + 3cos“ay, | 2O ) 1) Cr, 4 sin” Oy + 3sin“ay, ,
Cr = —4sin? 0y + 3cos’a, Cr = —4sin? Oy + 3sina,,
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- . g 1 _ Iz
ZPNANNNNK Semy i, D1 P2 C
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\H(n)Jr’ G(n)+

ZOHMW+HE)= ¢ = i{(=1 + 2sin? Oy ) M2, — 2 cos® Oy MZ,},
ZOGmW+Gr)=. ¢ = i{(—1 + 2sin? Oy ) M, — 2 cos? Oy M2, },
7O g —q)+. o = —Maon My,

ZOGgm=-gM+. ¢ = Mg, My .

VV,E’])i
0 g'q/ll/
7 K/vvvv\m'\'\'\’\'V

cos Oy My,

\H<")]F, G(n)ﬂF

= (—M‘%V sin? Oy + Mg, cos® Ow) ,

= (M%V sin? Oy — M2, cos® Ow),



Feynman Rules Relevant for

Rare Top Decays

All the momenta and fields are assumed to be incoming. Like in Appendix F, here also, to avoid

cluttering, we write I by I, and I™7 by I Also § = (:igj;). Obviously in UED the BLT

parameters are vanishing and so the overlap integrals and 8 will be unity and o, = % tan~! <7:7—§%>
and Mgy = k/R. As said before, for UED, the conservation of KK-number will ensure that there
will be no (0)-(0)-(n) type coupling.

"
A) L L
# g sin Oy C
F1(n)
ALO)Q;(n)Q;(n): o _% , AELO) Dmpm . o _ % 7
ALO)Q;_(n) D' . =0, ALO) D/(n)Q;(n) o -0,
AP o= 1 AOFOO . o2
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h(O)Q;(n)D’("): C’" = cos 20,75, h(O)D’(")Q;(n): C' = —cos 2,75,

h(o)fgo)tz(-o): ' = —@.

RO ¢ = -1,
m;
_HM- G-
7
- e
hO= = = = = =< 7
~
~
\H(ﬂ)ﬂ G+

WO G+ o — _MaMan + 2Mi My,
: T 7
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Explicit Expression of Overlap Integrals

Used in Appendix F and in Appendix G

1., I and I. have the following form:

1o

Iy

2
~ VxR

1 1 M2, (—rf+r14)
2 /2 2 /2 2 2 )
| 1e B g ) L B 1 2 ) (8- M)
1 1 MenMgn (=17 +14)
2M2 2M2 2 2
_\/1+”TQ“+ﬁ_ _\/1+—T¢4‘I’“+7’;—f2_ (MQn_M¢n>
1 (ry —ro)
\/1 T?qu%n T (\/TI'R—FTf)
=71 T =R
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