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1
Standard

Model

The Standard Model (SM) of particle physics is immensely successful and our best formulation

till date in explaining almost all the classification of elementary particles and their interactions

observed in high energy colliders like the Tevatron and the LHC. Fundamentally it is a quantum

field theory which elucidates the dynamics of our universe through matter and forces. All the

matter fields consist of fermions which interact among each other via vector fields. The vector

fields in the theory act as force carriers of the electro-weak and strong forces. The theory

incorporates a unified picture of three fundamental forces of the universe: the strong, the weak

and the electromagnetic forces.

In quantum field theory, so in the SM, the elementary particles are described by fields which

are local in spacetime with definite transformation properties under some particular symme-

tries. Therefore, it is necessary to start with the definitions of the symmetry group, in order to

understand the field content of the SM properly.

1



Chapter 1. Standard Model 2

1.1 Symmetries and Particle Content

Symmetries have always been powerful guiding principles in particle physics. The SM has been

formulated respecting the same path; it is a theory based on local symmetry.

Let us start with Noether’s theorem which states that any conservation law of physics originally

results from the symmetries of a particular theory. One important example is the theory of

Quantum Electrodynamics (QED). If we make a local symmetry in the free Lagrangian of the

fermion field, the invariance of the action requires new local field which is basically the gauge

field with some definite properties. The free Dirac Lagrangian can be written as

Lψ = ψ
(
i/∂ −m

)
ψ, (1.1)

where, ψ is the spin-1/2 Dirac field, ψ ≡ ψ†γ0, and γµ are the 4 × 4 Dirac matrices. This

Lagrangian is invariant under the global transformation ψ → exp(−ieQθ)ψ where, θ is the

global parameter being the same at all spacetime, Q is the charge of ψ in the unit of electron

charge e. The invariance of action under this global transformation implies a conserved Dirac

current jµ by Noether’s theorem:

∂µj
µ = 0; jµ = eQψγµψ. (1.2)

However, the Lagrangian Lψ is not invariant under local symmetry, i.e. when θ is a function of

spacetime. This evidently suggests that the derivative should be redefined as

∂µ → Dµ ≡ ∂µ − ieQAµ, (1.3)

where, Aµ is a vector field. The Lψ (given in Eq. 1.1) with the replacement ∂µ → Dµ is now

invariant under the following local transformations

ψ → ψ′ = exp(−ieQθ(x))ψ, (1.4)

Aµ → A′µ = Aµ − ∂µθ(x), (1.5)

and is finally expressed as

L′ψ = Lψ + eQψγµA
µψ. (1.6)
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Figure 1.1: The particle content of
the Standard Model.

Figure 1.2: Standard Model interac-
tions.

Thus all the terms that were invariant under the global phase rotation are now invariant under

the local phase rotation provided we make the minimal substitution ∂µ → Dµ. We obtain the

second term in Eq. 1.6 from the imposition of local invariance. It demonstrates that, in principle,

a theory having only matter fields evidently mandates the existence of vector fields that govern

the interactions amongst fermions. One can thus generalize this principle for all interactions

through specific symmetries imposed on the theory. This is basically the fundamental idea for

constructing the SM that was initially proposed by Glashow [1] and independently by Salam

and Ward [2] which was extended later by Weinberg [3] and Salam [4]. The Standard Model

(SM) is a specific form of gauge field theory based on well known gauge symmetry SU(3)c ⊗
SU(2)L⊗U(1)Y . The SU(3)c part of the gauge group characterizes the strong interactions and

is independently called Quantum Chromodynamics (QCD), whereas the SU(2)L ⊗ U(1)Y part

describes a unified picture of the electromagnetic and the weak interactions and is called the

Electroweak sector of the theory. The fundamental particles of the SM is summarized in Fig. 1.1.

The gauge symmetry of the electroweak sector is described by SU(2)L ⊗ U(1)Y . The SU(2)L

group is related to the weak force where ‘L’ signifies that only left-handed fermions transform

under this group operation, whereas the U(1)Y represents the weak hypercharge group (Y de-

notes the hypercharge). SU(2) has three generators and U(1) has one. In doublet representation

of SU(2) the generators can be represented as Ta = σa/2, where σa (a = 1, 2, 3) are the Pauli

matrices, given by
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σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.7)

However, it is convenient to consider these matrices in the following combinations:

σ+ ≡
1√
2

(σ1 + iσ2) =

(
0
√

2

0 0

)
, σ− ≡

1√
2

(σ1 − iσ2) =

(
0 0
√

2 0

)
, σ3. (1.8)

An important feature of this group is the chiral nature of interactions. Unlike strong interac-

tions1, the left- and right-chiral parts of the fields act differently under the electroweak gauge

transformations. Fermions are the set of spin-1/2 particles. Based on their electric charge and

ability to interact with strong nuclear force, they are subdivided into two types: leptons and

quarks. The leptonic sector consists of three flavors with a progressive mass hierarchy, which

contains integral or zero electric charged particles (defined in the unit of electron charge e).

Each charged lepton is also associated with a neutral left-handed particle called neutrino. We

represent the left-handed leptons as

Le =

(
νe

e−

)
L

, Lµ =

(
νµ

µ−

)
L

, Lτ =

(
ντ

τ−

)
L

, (1.9)

with weak isospin 1/2 and weak hypercharge Y (L`) = −1; where ‘`’ corresponds to three different

lepton flavors with `: e, µ, τ . The right-handed charged leptons are

E` = eR, µR, τR, (1.10)

with weak hypercharge Y (E`) = −2. The right-handed fields are singlets under SU(2). The

observed electric charges are given by Q = T3 + Y
2 . Both eL and eR have electric charge (−1),

while νeL is uncharged justifying the hypercharge assignments for those fields. There is no

right-chiral neutrino in the theory which implies that the neutrinos are massless.

Quarks are distinguished from leptons for their interactions via the strong color force and their

fractional electric charge. Due to the requirements of color neutrality and strong force confine-

ment at low energies, free quarks are not accessible in nature. Similar to the leptons, based on the

masses, there exists a generational hierarchy of distinct quark flavor doublets. The left-handed

quarks are given by
1We shall discuss it shortly.
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q1 =

(
u

d

)
L

, q2 =

(
c

s

)
L

, q3 =

(
t

b

)
L

, (1.11)

with weak isospin 1/2 and weak hypercharge Y (qi) = 1/3; and their right-handed counterparts

are represented by

uA = uR, cR, tR and dA = dR, sR, bR, (1.12)

with weak hypercharges Y (uA) = 4/3 and Y (dA) = −2/3; ‘A’ corresponds to generation index of

quark running from 1 to 3. The different properties of quarks and leptons such as mass, charge,

baryon number (B), lepton number (L ) are listed in Table. 1.1 and in Table. 1.2 [5].

Lepton Mass
(MeV)

Charge
(in unit e) Le Lµ Lτ

SU(3)c
quantum numbers

e− 0.51 −1 1 0 0 1
µ− 105.65 −1 0 1 0 1
τ− 1777.03 −1 0 0 1 1
νe < 3× 10−6 0 1 0 0 1
νµ < 0.19 0 0 1 0 1
ντ < 18.2 0 0 0 1 1

Table 1.1: Properties of Leptons

Quark Mass Charge
(in unit e) B L

SU(3)c
quantum number

u 1.8-3 MeV 2/3 1/3 0 3
d 4.5-5.3 MeV −1/3 1/3 0 3
c 1.25-1.3 GeV 2/3 1/3 0 3
s 90-100 MeV −1/3 1/3 0 3
t 174.98 GeV 2/3 1/3 0 3
b 4.15-4.21 GeV −1/3 1/3 0 3

Table 1.2: Properties of Quarks

Since identical quantum numbers can mix with each other there arises coupling terms (e.g.

Yukawa Coupling) that mix the generations of three different quarks. Alternatively, one can

diagonalize the Yukawa coupling by incorporating a new basis for quark fields. The weak eigen-

states in Eq. 1.11 are considered to be the linear combinations of the mass eigenstates. Let

u′iL and d′iL denote the mass eigenstates, i.e. quarks in the basis that diagonalizes their Higgs

couplings. This latter basis is the physical one since it diagonalizes the mass matrix. The two

bases are related by unitary transformations:

uiL = U iju u
′j
L , diL = U ijd d

′j
L . (1.13)
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However, this simplification of the Higgs coupling results in a complication in the gauge coupling.

The gauge boson current will take the following form

Jµ+
gauge =

1√
2
uiLγ

µdiL =
1√
2
u′iLγ

µVijd
′j
L . (1.14)

Here,

Vij = (U †uUd)ij , (1.15)

which is a unitary matrix called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The off-

diagonal terms in Vij enable weak-interaction transitions among the three quark generations. As

an example, for simplicity considering only two generations we can have

V1jd
′j
L = cos θcd

′
L + sin θcs

′
L. (1.16)

The term sin θc allows an s quark to decay weakly to a u quark. However, it is noteworthy that no

such mixing occurs in the leptonic sector of the SM. No difference can be made between the flavor

and the mass eigenstates, since the neutrinos are massless in the SM2. It is evident that, mixing

between different generations of quarks leads to flavor violation and experimental observations

have set high constraints on this flavor changing neutral current (FCNC). Glashow-Iliopoulos-

Maiani [6] showed that if we demand VCKM to be a unitary matrix that in turn would result

in highly suppressed flavor changing processes mediated by neutral gauge bosons. A simple

parameter counting of a n × n unitary matrix generates n(n− 1)/2 independent real mixing

angles and (n− 1)(n− 2)/2 independent complex phases. Clearly, the Cabibbo [7]-Kobayashi-

Maskawa [8] matrix (VCKM) contains three real mixing angles and one complex phase factor.

The complex phase factor is the only source of complex gauge interactions that violates CP

symmetry within the framework of the SM. The unitarity condition implies various relations

between its elements. For example, we have

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.17)

The above relation can be represented as a “unitarity” triangle. The other five unitarity triangles

can be constructed corresponding to their orthogonal relations [9, 10]. The areas of all the

unitarity triangles are the same and related to the measure of CP violation as [11–13]:

| JCP |= 2 ·∆, (1.18)

where ∆ corresponds to the area of the unitarity triangle. Currently, the best-fit values of the

various elements of the CKM matrix obtained from experiments are [5]
2It is worth mentioning that, discovery of neutrino mass necessitates a mixing matrix in the neutrino sector

as well, which is called PMNS (Pontecorvo–Maki–Nakagawa–Sakata) matrix.
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
|Vud| = 0.974 |Vus| = 0.225 |Vub| = 0.004

|Vcd| = 0.220 |Vcs| = 0.995 |Vcb| = 0.041

|Vtd| = 0.0082 |Vts| = 0.04 |Vtb| = 1.009

 . (1.19)

SM is a chiral theory, completely free of axial vector anomalies among the gauge currents. The

cancellation of anomalies requires that leptons and quarks should appear in complete multiplets

associated with the structure as (L`,E`, qA, uA, dA), which in turn results in equal number of

quarks and leptons appearing in Nature. A prerequisite condition of the theory to be renormal-

izable is that it has to be anomaly-free which eventually ensures that the higher order corrections

in any perturbation theory will respect the same gauge symmetry as that of the tree level in

that theory [14].

The electroweak gauge group provides two sets of gauge fields: set of weak isovectors Wa
µ with

coupling constant g and a weak isoscalar Bµ with corresponding coupling constant g′. For

the requirement of the gauge invariance of the Lagrangian, gauge fields Wa
µ must transform in

some way to compensate the variation of the fermionic field under an infinitesimal weak-isospin

rotation generated by G = 1 + iα ·T which is given as:

ψ → (1 + iαaT a)ψ, (1.20)

where, αa is a local parameter. This requires the transformation of the gauge fields to be

Wa
µ →Wa

µ+(1/g)∂µα
a+fabcWb

µα
c, whereas Bµ should transform as Bµ → Bµ−(1/g′)∂µα under

an infinitesimal hypercharge phase rotation. These transformation laws in consequence imply

the covariant derivative of ψ has the same transformation pattern as ψ itself. The corresponding

field-strength tensors are defined as

Faµν ≡ ∂µWa
ν − ∂νWa

µ + gfabcWb
µWc

ν (1.21)

and

Bµν = ∂µBν − ∂νBµ. (1.22)

In the above, a = 1, 2, 3 for the three components of the weak isovector, fabc is the antisymmetric

structure constant with f123 = +1.

We can now briefly sketch the SM electroweak interactions by the following Lagrangian,

Lelectroweak = Lgauge + Lleptons + Lquarks (1.23)

with

Lgauge = −1

4

∑
a

FaµνFaµν −
1

4
BµνBµν , (1.24)
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Lleptons =
∑
`

L` iγ
µ

(
∂µ − i

g

2
σ · Wµ − i

g′

2
BµY

)
L`

+
∑
`

E` iγ
µ

(
∂µ − i

g′

2
BµY

)
E`, (1.25)

where ` is the generational index and runs over e, µ, τ , and

Lquarks =
∑
A

qA iγ
µ

(
∂µ − i

g

2
σ · Wµ − i

g′

2
BµY

)
qA

+
∑
A

uA iγ
µ

(
∂µ − i

g′

2
BµY

)
uA

+
∑
A

dA iγ
µ

(
∂µ − i

g′

2
BµY

)
dA, (1.26)

where A being the generation index of quarks, runs over 1, 2, 3 (previously mentioned). The

objects in parentheses in Eqs. 1.25 and 1.26 are the covariant derivatives (Dµ).

The Lgauge describes four massless electroweak gauge bosons, viz. W1
µ, W2

µ, W3
µ, Bµ. Mass

terms such as 1
2m

2WµWµ and 1
2m

2BµBµ are prohibited by gauge symmetry. On the other hand,

massless gauge fields interact in infinite range3. In Nature, only electromagnetism matches with

this criteria with the respective gauge field called the photon. Moreover, the gauge symmetry

forbids fermion mass terms of the form mf ψ̄ψ = mf (ψ̄RψL + ψ̄LψR) in Eqs. 1.25 and 1.26, where

ψL is left-handed fermion doublet and ψR is right-handed fermion singlet. The left-chiral and

right-chiral components of the fields transform differently under gauge symmetry, i.e.

left− handed doublet : ψL → ψ′L = eiW
a·Ta + iαY ψL,

right− handed singlet : ψR → ψ′R = eiαY ψR.

This means the mass terms are not invariant under SU(2)L × U(1)Y rotations.

The masses of gauge bosons (except photon) and chiral fermions can be generated in a very

unique way. We demand that gauge symmetries are respected everywhere except at vacuum

state. The mechanism of generation of masses keeping intact the gauge invariance of the theory

which is only broken by vacuum state, is called the spontaneous breaking of the gauge symmetry.

This mechanism will be discussed elaborately in the next Sec. 1.2. This idea of symmetry

breaking was first proposed by Nambu in the context of superconductivity, later Nambu and

Jona-Lasinio suggested the idea of generation of masses of elementary particles in a similar

manner [15, 16]. Goldstone then suggested a theorem of the existence of a massless particle in

spontaneous symmetry breaking (SSB) [17], the general proof was shown in relativistic theory [18]
3However, massless gluon fields mediate the short range strong force. We will soon discuss on it.
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by Goldstone, Salam andWeinberg. In particle physics this is called the Higgs mechanism [19–22]

which is a relativistic generalization of the Ginzburg-Landau theory [23] of superconductivity.

Now, let us focus on the strong interaction part of the SM. This part, as previously mentioned, is

called Quantum Chromodynamics or QCD which is governed by the SU(3)c gauge group. Here

‘c’ stands for the color charge. Quarks are the only matter fields which interacts strongly. Each

flavor of quark has three color states. Leptons do not carry color charge and therefore do not

participate in the strong interactions. They are singlets under the SU(3) transformation. The

Lagrangian density for SU(3) gauge group can be written as [24–26]

LQCD = −1

4
GpµνGpµν +

∑
k

q̄kα
(
i 6Dαβ −mq

)
qβk , (1.27)

with

Gpµν = ∂µGpν − ∂νGpµ + gsf
′ pqm Gqµ Gmν (1.28)

where, Gpµν is the field strength tensor for the gluon fields Gpµ, p = 1, . . . , 8 and gs is the QCD

gauge coupling constant. There are eight generators λp of SU(3)c group mediate strong inter-

action among quarks. The structure constants f ′ pqm (p, q,m = 1, . . . , 8) are defined by

[λp, λq] = 2if ′ pqmλm, (1.29)

where the λ s are normalized by Tr (λpλq) = 2δpq, and Tr ([λp, λq]λm) = 4if ′ pqm.

The first term in the Lagrangian (Eq. 1.27) gives the self-interactions of gluons and Dαβ corre-

sponds to the covariant derivative for quarks; qk is the ‘k’th quark flavor; α, β = 1, 2, 3 are color

indices (qred, qgreen, qblue) and

Dαµβ = (Dµ)αβ = ∂µδαβ − igs Gkµ Lkαβ, (1.30)

where Lk = λk/2 in the fundamental representation and λks are the 3 × 3 traceless Gell-Mann

matrices:

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 ,

λ5 =


0 0 −i
0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 1 0

1 0 −i
0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .
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The transformations of quarks and gluons under the SU(3) gauge transformation are given by

ψq → ψq
′ = eiα

a Laψq,

Gpµ → Gpµ + (1/g)∂µα
p + f ′ pqmGqµαm.

The color interactions are purely vector like and hence parity conserving. These interactions are

diagonal in the flavor indices. In addition, there exist ghost fields and respective gauge-fixing

terms which help in the quantization of the SU(3) as well as in the electroweak part of the

theory. In QCD, at high energies the coupling becomes weak, enabling perturbative study at

these energy scales or at short distances and implying the asymptotic freedom [27,28]; whereas,

at low energies or at large distances it becomes strongly coupled [29] which is sometimes termed

as infrared slavery, leading to the confinement of quarks and gluons. The confinement of quarks

and gluons gives rise to a complicated scenario of non-perturbative phenomenon.

The theoretical picture of QCD described above has been rigorously verified by multitude of

collider experiments. The scaling of structure functions in the deep inelastic collisions of nucle-

ons furnished the first signatures of hadronic substructure where parton model of hadrons was

invoked to explain this phenomenon. The scaling violations, that were discovered later, provided

the indirect hint of perturbative QCD. All particle interactions of the SM have been shown in

Fig. 1.2.

1.2 Brout-Englert-Higgs Mechanism

Higgs proposed the idea of generating mass in particle physics in a relativistic invariant way [20,

21]. Though that treatment was purely classical. At that time, Brout and Englart demonstrated

that the same idea could be incorporated in non-Abelian models as well [19]. Guralnik, Hagen

and Kibble showed the different formalism how to evade Goldstone theorem [22]. The idea of

generating masses of the gauge bosons was exhibited first time by Weinberg and Salam [3, 4].

Finally, the proof of renormalizability of such a spontaneously broken gauge theory was provided

by ’t Hooft [30,31]. In this way, along with the Glashow’s idea [1] of extending the gauge group

from SU(2)L to SU(2)L⊗U(1)Y (thus giving a unified picture of the electromagnetic and weak

interactions), the work of Weinberg and Salam marked the completion of the Standard Model

of the particle physics [3, 4] (also known as Glashow-Weinberg-Salam model) where the gauge

bosons and the fermions acquire their masses via the Brout-Englert-Higgs mechanism (BEH

mechanism).

Let us introduce a complex scalar in this context. Since we intend the Lagrangian to retain

all its symmetries, we can only add SU(2)L ⊗ U(1)Y multiplets. So the complex scalar is an
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isospin doublet, i.e. it is a left-handed doublet with weak isospin 1/2. The electric charges of

the upper and the lower component of the doublet are chosen to ensure that the hypercharge or

U(1) charge is Y = +1. This requirement is very essential and important for reasons that will

become more evident later. The scalar doublet is given by

Φ =

(
φ+

φ0

)
=

 1√
2
(φ1 + iφ2)

1√
2
(φ3 + iφ4)

 . (1.31)

The Lagrangian for the field Φ which is gauge invariant may be written as,

LΦ = (DµΦ)†(DµΦ)− V (Φ), (1.32)

where V (Φ) is the scalar potential given by

V (Φ) =
1

2
µ2
h

(
4∑
i=1

φ2
i

)
+

1

4
λh

(
4∑
i=1

φ2
i

)2

. (1.33)

Figure 1.3: The Higgs potential in the
Standard Model.

The Higgs potential in Eq. 1.33, for µ2
h <

0, takes the form depicted in Fig. 1.3. Any

choice of the vacuum that breaks a symmetry

will generate the masses of the gauge bosons

in the SM. We choose φ1 = φ2 = φ4 = 0 and

φ3 = v:

Vacuum = Φ0 =
1√
2

(
0

v

)
(1.34)

This vacuum defined in such a way is electri-

cally neutral since T3 = −1
2 and with our choice

of Y = +1 we have Q = T3 + 1
2Y = 0. This choice of the vacuum breaks SU(2)L ⊗ U(1)Y ,

but leaves U(1)EM invariant, leaving only the photon massless and results in the breaking of the

gauge symmetry at the vacuum state.

Let us consider an infinitesimal rotation of Φ as (1 + iαR)Φ0 = Φ0 and invariance implies

RΦ0 = 0, where R is associated with some kind of rotation. The status of SU(2)L, U(1)Y and

U(1)EM generators under symmetry breaking are:

SU(2)L : σ1Φ0 =

(
0 1

1 0

)
1√
2

(
0

v

)
= +

1√
2

(
v

0

)
6= 0→ broken. (1.35)
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σ2Φ0 =

(
0 −i
i 0

)
1√
2

(
0

v

)
= − i√

2

(
v

0

)
6= 0→ broken. (1.36)

σ3Φ0 =

(
1 0

0 −1

)
1√
2

(
0

v

)
= − 1√

2

(
0

v

)
6= 0→ broken. (1.37)

U(1)Y : Y Φ0 =

(
1 0

0 1

)
1√
2

(
0

v

)
= +

1√
2

(
0

v

)
6= 0→ broken. (1.38)

This implies that all the four gauge bosons (W1,W2,W3 and B) acquire their masses through

the Higgs mechanism, while for the photon to remain massless the U(1)EM symmetry should

leave the vacuum invariant and indeed:

U(1)EM : QΦ0 =
1

2
(σ3 + Y )Φ0 =

(
1 0

0 0

)
1√
2

(
0

v

)
= 0→ unbroken. (1.39)

So U(1)EM is conserved as the vacuum is neutral and we have:

Φ0 → eiαQΦ0 = Φ0 (1.40)

Let us introduce the physical scalar Φ′ defined by the relation

Φ =
1√
2

(
0

v

)
+ Φ′, (1.41)

where 〈0|Φ′|0〉 = 0. The field Φ cannot be treated as quantum field since its VEV is non-zero and

so it cannot be expanded as creation and annihilation operators. In that sense Φ′ is quantum

field. Alternatively, Φ can be written as [32]

Φ =
1√
2
ei

∑
ξa 1

2
σa

(
0

v + h

)
. (1.42)

Here h is the physical Higgs scalar. The ξa are the massless pseudoscalars Nambu-Goldstone

bosons [15–18,33] that are associated with broken symmetry generators. These are the unphysical

fields in the theory. The ξ field is the phase of the field Φ. We know any phase, even if, it is a

spacetime dependent one, is irrelevant because of local U(1) symmetry. For some specific choice

of gauge, we can have

Φ→ Φ̃ = e−i
∑
ξa 1

2
σaΦ =

1√
2

(
0

v + h

)
, (1.43)

which in turn implies the disappearance of the ξ field from the Lagrangian. The Lagrangian

then contains only physical fields and the gauge in which these unphysical fields disappear from
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the physical spectrum is called unitary gauge. The scalar degrees of freedom have been eaten up

by the gauge bosons and increase the longitudinal degrees of freedom, thus creating the masses

of the gauge bosons. The covariant derivative of Φ can be written as

DµΦ̃ =

(
∂µ − i

g

2
σ · Wµ − i

g′

2
BµY

)
Φ̃. (1.44)

The gauge boson mass terms come from the square of Eq. 1.44, evaluated at the vacuum expec-

tation value of the scalar field:

(DµΦ̃)†(DµΦ̃)⇒ 1

2
(0 v)

[
g

2
σaWa

µ +
g′

2
Bµ
]2
(

0

v

)
+ h terms, (1.45)

where the interactions and mass terms involving the physical h field have been clubbed together

as the ‘h terms’. If we simplify the above expression explicitly, we find

∆L =
1

2

v2

4

[
g2{(W1

µ)2 + (W2
µ)2}+ (−gW3

µ + g′Bµ)2
]
. (1.46)

After the spontaneous breaking of the electroweak gauge group, the third component of the

SU(2)L gauge fieldW3
µ and the U(1)Y gauge field Bµ have identical quantum numbers and they

get mixed in the Higgs kinetic term. The three massive vector bosons are given by:

W±µ =
1√
2

(W1
µ ∓ iW2

µ) with mass MW =
gv

2
; (1.47)

Zµ =
1√

g2 + g′2

(
gW3

µ − g′Bµ
)

with mass MZ =

√
g2 + g′2

2
v; (1.48)

The fourth vector field, orthogonal to Zµ is the photon field which remains massless:

Aµ =
1√

g2 + g′2

(
g′W3

µ + gBµ
)

with mass MA = 0. (1.49)

The covariant derivative in terms of mass-eigenstates can be written as

Dµ = ∂µ − i g(W+
µ T

+ +W−µ T
−)− i 1√

g2 + g′2
Zµ

(
g2T 3 − g′2Y

2

)
−i g g′√

g2 + g′2
Aµ(T 3 +

Y

2
), (1.50)

with

T± =
1√
2

(T 1 ± iT 2) =
1

2
σ±. (1.51)

It is evident that the last term in Eq. 1.50 shows that the massless photon field Aµ couples

to the gauge generator (T 3 + Y
2 ) which is nothing but the electric charge quantum number Q;

hence the coefficient of the electromagnetic interaction which is the last term of Eq. 1.50 can be
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identified with the electron charge e by

e =
gg′√
g2 + g′2

. (1.52)

To further simplify the expression of Eq. 1.50, let us define the weak-mixing angle θW which is

the mixing angle of the basis (W3
µ, Bµ) and related to the (Zµ, Aµ) basis as:

(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W3
µ

Bµ

)
(1.53)

so that

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (1.54)

The Zµ coupling and then Dµ can be rewritten as

g2T 3 − g′2Y
2

= (g2 + g′2)T 3 − g′2Q, (1.55)

Dµ = ∂µ − ig(W+
µ T

+ +W−µ T
−)− i g

cos θW
Zµ(T 3 − sin2 θWQ)− ieAµQ, (1.56)

with g = e/ sin θW . Clearly, the masses of W and Z bosons are not independent, but are related

by MW = MZ cos θW . The Fermi constant is related to gauge boson mass by

GF√
2

=
g2

8M2
W

, (1.57)

where GF ' 1.16637 × 10−5GeV−2 (determined from the muon lifetime measurements). The

weak scale v is given by:

v =
2MW

g
' (
√

2GF )−1/2 ' 246 GeV. (1.58)

The fermions can have masses by Higgs mechanism. They can have gauge invariant interactions

involving the Higgs bosons. To generalize for all the fermionic fields, we can write the Yukawa-

type interactions as:

LYukawa = −yujkq̄jLΦcukR − ydjkq̄jLΦdkR − yljkL̄jLΦEkR + h.c. (1.59)

where, Φc = iσ2Φ∗; j, k represent the generational index and yu, yd, yl are the respective up-

quark, down-quark and charged lepton Yukawa coupling matrices. After spontaneous symmetry

breaking the general form of the mass term of leptons can be written as mfψLψR with the mass

matrices (mu)jk ∝ yujkv, (md)jk ∝ ydjkv, (ml)jk ∝ yljkv
4. These mass matrices are in the

4The mass terms of the fermions also break the chiral symmetry of the theory.
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flavor basis, and not in the mass basis. Due to absence of right-handed counterpart the neutrino

remains massless in the SM.

1.3 Present Experimental Status of the Standard Model

1.3.1 The Higgs

The observations from the collider experiments at center of mass (c.m.) energy
√
s ≤ 1 TeV have

profoundly consolidated the Standard Model. The last milestone in the high energy frontier has

been the discovery of the Higgs boson at the LHC [34, 35] which marks the completion of the

Standard Model (SM) of particle physics. The path towards the discovery of the Higgs boson has

been gone through many experiments, much more data have been scrutinized, and hence there

is hardly any sign of anomaly in the Higgs measurements. Precisely, it has been tested through

all its dominant production modes (gluon fusion, fusion of vector boson, W or Z Higgstrahlung,

and tt̄H production) and also through the most sensitive decays of Higgs boson at the Large

Hadron Collider (LHC): γγ, WW , ττ , 4-leptons and bb̄. One of the agreed measurement with

the theoretical expectations is the signal strength µ which is defined as the observed cross-section

times the branching fraction of a process divided by the SM expectation of that process.

) µSignal strength (
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Figure 1.4: The measurement of the signal strengths µ = σ/σSM of the various decay channels
of Higgs by the experiments ATLAS [36] (left) and CMS [37] (right).

Fig. 1.4 shows the signal strengths of the various decay channels analyzed by both ATLAS and

CMS at 25 fb−1 integrated luminosity and at c.m. energy
√
s = 7 − 8 TeV corresponding to a

production of about 106 Higgs boson in the dominant production modes. More concretely, the
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results are consistent with the SM within 1σ. By the year 2022, the LHC is expected to produce

around 300 fb−1 integrated luminosity at c.m. energy of
√
s = 13 − 14 TeV. There remains a

fair possibility that the LHC will be upgraded into the high-luminosity LHC (HL-LHC) and

expected to deliver about 3000 fb−1 of data at c.m. energy
√
s = 14 TeV by the year 2035 [38].

Fig. 1.5 shows the projected precision of signal strength by the ATLAS experiment5.

µ/µ∆
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(comb.)
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(comb.)
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µµ→H

γγ→H

 ZZ→H
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γ Z→H

b b→H
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µµ→H

Figure 1.5: The ATLAS prospects for the measurements of the signal strengths of the various
Higgs decay channels with integrated luminosity 300 fb−1 and 3000 fb−1 [38] by the year 2035.
The hashed areas indicate the theoretical uncertainties.

1.3.2 Other Aspects

Earlier, the electroweak theory was formulated mainly in the context of β decay; to put it

in another way, the construction of this theory was based on the experimental evidences of

the charged-current weak interactions. The Fermi theory of these weak interactions had been

developed and tested experimentally prior to the formulation of the SM6. The detailed analysis

of unitarity of four-fermion interactions (νµ+ e− → νe+µ−) showed that the momenta of initial

state fermions should be less than ∼ 300 GeV [39]. This necessitated the effective Lagrangian

Leff should be modified at high momentum transfer, i.e. at small distance. Some agents are

needed to transmit the action of a current from one point (say, x) to another point (say, x′)
5In these Figs. 1.4 and in 1.5, H is basically the SM Higgs h according to the notation used in this thesis.
6Before the construction of the SM, the effective Lagrangian was considered to have the form as Leff =

Ljj + LJ i + LJJ [39]. Here, Ljj corresponds to purely leptonic part such as muon decay, LJ i stands for
all partial leptonic interactions such as β decay and LJJ represents all the leptonic weak interactions such as
Λ0 → p+ π−. In these Lagrangians, all the corresponding currents were taken at the same spacetime point x.
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to generate such “effective” nonlocality7. This gave the possibility to assume the existence of

heavy massive charged gauge bosons. The smallest unitary group which contains an off-diagonal

generator (corresponding to the charged gauge boson) is SU(2) with the relevant generators σ1

and σ2. To explain the infinite range electromagnetic interaction a massless gauge boson has to

be incorporated. Only σ3 would not serve the purpose since that would lead to a contradiction

of charge assignment of particles. More precisely, the next simplest construction was to take

SU(2)× U(1), instead of SU(2).

The weak neutral current (WNC) was discovered in 1973 by the Gargamelle collaboration at

CERN [40–42] and by HPW (Harvard-Pennsylvania-Wisconsin) group at Fermilab [43]. The

structure of the WNC has been verified in many processes including (purely weak) neutrino

scattering such as νe → νe; weak-electromagnetic interference, atomic parity violation and in

polarized Möller scattering. TheW and Z bosons were discovered at CERN by the UA1 [44] and

UA2 [45] groups in 1983. Even the measurements of their masses have been in excellent agree-

ment with the SM expectations. The LEP II runs profoundly verified the SM gauge group with

the non-abelian nature as well as the spontaneous symmetry breaking of the gauge group [46].

The LEP and SLC allowed tests of the SM at a precision of ∼ 10−3. The four LEP experiments

ALEPH, DELPHI, L3, and OPAL at CERN produced some 2 × 107 Z’s at the Z-pole in the

reactions e+e− → Z → l+l−/qq̄ [47,48]. The SLD experiment at SLAC had a relatively smaller

number of production of Z’s ∼ 105 but had the significant advantage of the high polarization

(∼ 75%) of the e− beam [47, 48]. One important aspect about the Z factories was the most

precise measurements of the number of light neutrino types Nν which comes from the studies

of Z production in e+e− collisions. The Z boson decays into quarks and charged leptons. The

invisible width is assumed to be due to Nν light neutrino species each contributing to Γinv,

which is estimated by subtracting the measured visible partial widths corresponding to Z de-

cays into quarks and charged leptons, from the total Z width as given by the Standard Model.

The combined results from four LEP experiments give the stringent constraint on the number

of ordinary neutrinos as Nν = 2.9841 ± 0.0083 [46], which consequently gave the hint of the

existence of the three generation flavor structure of the SM. On the other hand, the study of

charged current interactions is now based on the study of Cabibbo-Kobayashi-Maskawa (CKM)

matrix which measures the mismatch between the family structure of the left-handed u-type and

d-type quarks. The magnitudes of |Vij | for CKM elements has been given in previous section

(Eq. 1.19).

The SM has also been verified at high level accuracy beyond the tree level. Experimental

measurements on the Z-pole at LEP has tested the radiative corrections to the gauge boson

propagators at high precision. There are four two-point functions: Πγγ(q2), ΠγZ(q2), ΠZZ(q2),

ΠWW (q2), where the measurements have been made at two energy scales: q2 = 0,M2
Z . So

7The Leff can be replaced by
∫

[jλ(x)]∗µS(x−x′)[jλ(x′)]e dx
′+ . . .; where jλ(x) being the corresponding current

density at that point x and S(x− x′) being the scattering wave amplitude [39].
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there are eight two-point correlators, corresponding to four types at two different energy scale.

Ward identity ensures Πγγ(0) = ΠγZ(0). From remaining six, three linear combinations can

be absorbed in the redefinition of the parameters: Fine-structure constant, Fermi coupling (ex-

tracted from muon decay) and MZ [49]. The remaining three combinations are called the

Peskin-Takeuchi parameters or oblique corrections or S, T and U parameters [50].

Figure 1.6: 1σ constraints (39.35% for the closed contours and 68% for the others) in the TS
plane. S and T represent the contributions of new physics only. The black dot indicates the
Standard Model values S = T = 0 [5].

The T parameter is proportional to the difference between the Z and W self-energies at q2 = 0,

while S and (S + U) are associated with the difference between the Z and W self-energy at

q2 = M2
Z/W and q2 = 0 respectively. S, T and U parameters are correlated. The most recent fit

to the electroweak precision data gives [5],

S = 0.05± 0.11, T = 0.09± 0.13, U = 0.01± 0.11. (1.60)

Fixing U = 0 (same as in Fig. 1.6) moves S and T slightly upwards,

S = 0.07± 0.08, T = 0.10± 0.07, (1.61)

with T having a 1.5σ deviation from zero [5]. Fig. 1.6 shows the allowed region in the T − S
plane. The SM contributions have been subtracted from the parameter, i.e. S → Sexp − SSM

and T → Texp − TSM. The SM point on this plane is the origin (0, 0). Evidently, this is in good



Chapter 1. Standard Model 19

agreement with experimental bounds and hence sets strong constraints on any extension of the

SM.

1.4 Shadows over the SM

SM has been immensely successful model in explaining many experimental observations regarding

particle interactions, but it suffers from a few shortcomings. Some of these issues have been

discussed below.

1.4.1 Gauge-Hierarchy Problem

Let us take a simple example of interaction of a single fermion ψ coupled to a massive scalar φ.

The Lagrangian is given by

L = iψ̄γµ∂
µψ +

1

2
∂µφ∂µφ− λf ψ̄ψφ−

m2
s

2
φ2 − λ

4
φ4. (1.62)

After the spontaneous symmetry has been broken, the fermion gets mass mf = λfv/
√

2. The

corrections of fermion mass is shown in Fig. 1.7 (a), i.e. it is given by one loop correction to the

fermionic propagators due to scalar particle. The corrected mass is given by

mf (new) = mf + δmf . (1.63)

The correction depends on the cutoff Λ of the theory:

δmf = −
3λ2

fmf

32π2
ln

Λ

mf
+ · · · (1.64)

where, · · · indicates terms independent of Λ. The correction to the mass of the fermion depends

explicitly on mf . In the limit where the fermion masses are very small, the Lagrangian 1.62 is

invariant under chiral transformations. The decreasing fermion mass increases the symmetry of

the theory and hence it is said that the fermion masses are protected by the chiral symmetry.

Similarly, we can compute corrections to the scalar propagator due to the fermion loop and

scalar loop as shown in Figs. 1.7 (b-c). Considering, Figs. 1.7 (b) and (c) the scalar obtains a

correction as

δm2
s =

Λ2

16π2
(−2λ2

f + λ). (1.65)

Unlike the corrections for fermionic mass, the mass correction for a scalar particle is found to

be quadratically divergent. For this reason, nothing can actually protect the mass of the scalar
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particle which has very large mass corrections. If we assume the theory to be valid up to the

Planck scale (MPl ∼ 1019 GeV), i.e. scale at which the quantum corrections to gravity become

important, corrections to the scalar particles will be of that order of magnitude. If the mass of

the particle and its correction are not at most of the same order, the theory is said to have a

naturalness problem. The same thing happens for the SM Higgs boson.

(a) (b) (c) (d)

Figure 1.7: One-loop quantum corrections to the fermion mass (a) and to the Higgs mass (b,
c, d) in the SM.

The radiative corrections to the fermions or the gauge bosons are always proportional to their

masses and hence one cannot generate the masses of these fields purely from radiative contri-

butions. This happens because there is a mismatch in the degrees of freedom of a massive and

massless gauge boson or fermion. In the case of fundamental scalars, the situation is entirely

different; Eq. 1.65 reflects the fact that one can generate their masses radiatively even if they

are massless at tree level. So, all in all, there is a lack of symmetry that can protect the Higgs

mass. Furthermore, the large hierarchy between the weak scale and the Planck scale makes it

difficult to explain the light Higgs mass (∼ 125 GeV) within the SM. This is known as the gauge

hierarchy problem which is, in principle, a naturalness issue with the SM.

1.4.2 Neutrino Mass and Fermion Mass Hierarchy Problem

In the SM, neutrinos have exactly zero mass since there is no right-handed neutrino. With no

suitable right-handed partner, it is impossible to explain the existence of masses of neutrinos.

Measurements of neutrino oscillations signify that neutrinos spontaneously change flavors which

in turn implies that they have non zero masses. However, the measurements of the neutrino

oscillation probabilities shed lights on the mass-squared difference of the different flavors of

the neutrinos and not on the absolute masses of neutrinos. The best constraint on the absolute

mass of the neutrinos has been obtained from the precision measurements of tritium decay which

provides an upper limit as 2 eV on the mass on electron-neutrinos (νe) [51]. Clearly, neutrinos

have masses at least seven orders of magnitude lighter than that of the electron in the SM.

Another issue that is not well explained by the SM is related to the hierarchical pattern of the

fermion masses.
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Experimentally, the CKM matrix is constrained and follows a hierarchy. In principle, the SM

gives no prediction for the hierarchy observed in the CKMmatrix. This hierarchy is related to the

hierarchy obtained from the experimental values for the masses of the fermions. Since the fermion

masses are generated from the spontaneous symmetry breaking mechanism, it is unnatural to

obtain masses with so different order of magnitude. For instance, the ratio melectron/mtop is

of the order of 3 × 10−6. This issue is usually known as the fermion mass hierarchy. These

altogether necessitate an extension of the Standard Model and indicates the existence of new

physics at the TeV scale.

1.4.3 Strong CP Problem

CP symmetry is the combination of charge conjugation (C) and parity (P). Though both

symmetries hold for electromagnetic interactions they are separately violated in weak inter-

actions [52, 53]. To ameliorate the problem of individual C and P violations, CP symmetry

had been proposed. Experimentally, the CP violation has been discovered in 1964 by Cronin

and Fitch by the experiments with K0 [54, 55]. Later the violation of CP symmetry in case of

B mesons has been observed [56–58]. If we consider the QCD Lagrangian, one can add a CP

violating term θ
32π2 g

2
sGµν G̃µν to the Lagrangian, where G̃µν = εµναβGαβ is the dual field and θ

is an arbitrary dimensionless parameter [59]. One cannot make the term zero by simply setting

the θ to zero, since weak interaction corrections result in a shift in θ by δθ|weak ∼ 10−3 which in

turn requires a fine-tuned cancellation among the tree and the weak contributions. This issue

is known as strong CP problem. The best possible theory has been introduced by Peccei and

Quinn [59,60] to solve this issue which postulates the existence of a new particle names axion,

generated from a spontaneous breaking of a new symmetry called Peccei-Quinn symmetry (PQ

symmetry).

1.4.4 Existence of Dark Matter

From various astrophysical observations it has become evident that our universe consists of 4.9%

ordinary matter (constituted out of SM particles), 26.8% dark matter (DM) and 68.3% dark

energy [61]. The earliest astrophysical evidence of DM came from the study of rotation curves in

spiral galaxies; it was observed that the outer constituents of the Coma cluster [62] were moving

far too quickly than what can be explained by the visible cluster mass. Virial theorem can

explain this observation only if one postulates that the cluster contains another large component

of mass which is invisible, viz. dark matter. The relation between the luminosity (L) and the

maximum circular velocity (vmax) of the constituent members of spiral galaxies L ∝ vβmax with

β = 3 ∼ 4, can be explained using virial theorem only if the existence of DM is taken into

account [63]. Other evidences of DM can be obtained from Gravitational lensing [64, 65] and
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Bullet cluster [66]. Some of the recent experimental observations [61,67] show that the baryonic

density and total matter density are different. This ensures that the DM is necessarily non-

baryonic. The many evidences of existence of DM mandates that DM should have the following

properties:

• DM is electrically neutral. Otherwise it would be able to emit photons which in turn could

have modified observations from astrophysical objects, like quasars.

• The DM interacts feebly with baryons.

• The DM must be stable, i.e. DM must have lifetime larger than the age of the universe.

• Large scale structure formation demands the DM to be non-relativistic.

• DM can not be comprised of SM particles as most of them are charged. Among the SM

constituents neutrinos can be a viable DM candidate. But neutrinos are very light particles,

it is of the order of eV [51]. With this small mass it can not contribute significantly to the

matter density of the Universe. Moreover, since the neutrinos are so light, they are still

relativistic and can constitute what is called hot dark matter. This type of hot DM can

not give any explanation for the galaxy formation rate of the universe after the big bang.

Thus it becomes obvious that SM can not accommodate a suitable DM candidate. The most

popular examples of DM candidates are axions and WIMPs (or weakly interacting massive

particles). Many BSM models like Supersymmetry and Inert Higgs Doublet Model can provide

suitable DM candidate. In mininal Universal Extra Dimensional (mUED) model the first KK-

level photon γ(1) (or to be precise the B(1)) is the LKP (the lightest Kaluza-Klein particle). The

stability of LKP is mandated by the conservation of KK-parity. Various aspects of LKP as a

dark matter has been discussed rigorously in Refs. [68–80]. In the case of non-minimal Universal

Extra Dimensional (nmUED) model the identity of LKP is no longer fixed like the case of UED,

rather it can change depending on the choice of parameters of the theory. This flexibility shows

that either of γ(1) (or B(1)), Z(1) (or W(1)
3 ), ν(1) and H(1) [81, 82] can be the DM candidate in

nmUED.



2
The Extra Dimensional

Models

2.1 A Historical Journey to the Birth of an Extra Dimension

Of all the properties of spacetime, dimensionality has drawn a considerable attention which has

always been a matter of curiosity and discussion among all the scientists and the philosophers

of all time. Why is the space three-dimensional? There have been two different perspectives

addressing this issue. One obvious answer is to seek for the possibility of existence of one

more dimension, a fourth dimension; other approach is completely having historical interest

though some of these are still compelling. This is to anyway deduce the only possible value of

dimensionality of space as three. One of the important arguments made by Ehrenfest [83] and

many others1 that for d = 3 planetary orbits are stable2. For d > 4, Newton’s inverse-square

law of gravitation gets modifications. Though the justification for taking d = 3 is based on the

validity of law of gravitation at all length scale, the modern-day searches for extra dimension

look for such discrepancies from inverse-square law at short distances.
1For complete lists and arguments see Refs. [84, 85].
2The stability argument does not rule out the possibility of d < 3, but the values of d = 4, 5, . . . onwards, are

obviously ruled out.

23
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Introduction of extra-dimension became immensely popular in physics with the advent of relativ-

ity. Minkowski’s geometrical interpretation of the Lorentz transformations in a four-dimensional

spacetime had already stepped towards the direction of the era of extra dimensions. Minkowski

did not initiate a fourth dimension; rather he reinterpreted time as a dimension.

But in physics, the concept of theorizing a dimension or more dimensions was developed from an

effort to unify the different forces of Nature. In 1914, a year before Einstein published General

relativity, Gunnar Nordström [86] propounded a five-dimensional vector theory concurrently

describing the theory of electromagnetism and a scalar version of gravity. On the other side,

Theodore Kaluza, in 1919 worked out a tensor theory [87]. To explain the issue related to the

query how the extra dimension is hidden from our physical world, both Nordström and Kaluza

assumed that the fields do not depend on the fifth dimension, i.e. all the derivatives of the

fields with respect to the fifth dimensional coordinate vanish. This condition is recognized as

“cylinder” condition. Kaluza actually considered a five-dimensional tensor theory in the absence

of any matter. The five-dimensional metric gMN decomposes into a four-dimensional metric

gµν , a vector potential Aµ and a scalar φ. Kaluza identified gµν with the usual four-dimensional

metric which is related to gravitation, and the vector gµ4 as the electromagnetic potential. Kaluza

ignored the scalar by setting it unity which leads to the unphysical condition FµνFµν = 0 [84,88].

To treat extra dimensions at par with other dimensions, Oskar Klein came up with the idea [89]

that the extra dimension could be compactified to very small size. This extra dimension could be

assigned a circular topology S1 with the radius of the circle very tiny. He also gave a convincing

proposal on the non-appearance of extra dimension from the physical world by suggesting that

the presence of extra dimension would not be observed unless the experiments have a resolution

higher than the radius of the compactified circle. Fields on the circle can be expanded as a

Fourier series having infinite number (n, say) of modes, which is termed as Kaluza-Klein or KK-

modes. Each mode is associated with quantum number |n|/R which is nothing but the discretized

momentum p5 in the extra dimension, R being the radius of compactified circle. The unusual

smallness of R results in very large value of momentum for all modes n > 0, which eventually

makes them beyond the reach of observation. Only the zero mode (n = 0) remains observable.

Klein thus recreated Kaluza’s cylinder conditions by incorporating a tiny compactification radius.

Since U(1) is the symmetry group associated with S1, compactification of extra dimension on

a circle essentially introduces a U(1) gauge-invariance in the theory. The U(1) invariance of

the five-dimensional theory implies that KK-fields have electric charge quantized in terms of the

mode number. So the n = 1 mode could be treated as the physical electron whereas the physical

charge of electron could be identified as the quantized-charge of Kaluza-Klein theory. But this

logic of charge-quantization works only for higher modes (from n = 1 and onwards) which on the

other hand have masses proportional to a very large scale. This internal contradiction and the
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discovery of nuclear forces, i.e. the existence of two other fundamental forces in Nature other

than electromagnetism and gravitation were the major setback of the Kaluza-Klein theory3.

Higher dimensional theories resurrected with renewed interests in the late 1970’s and 1980’s with

the advent of supergravity and superstring theories. In the 1960s, the Quantum Chromodynam-

ics was not developed and String theory was suggested as a theory of strong interactions. In

1968, Gabriele Veneziano proposed a form of scattering amplitude which described the picture

of strongly interacting particles [91,92]. This model came with the realization that the spectrum

of hadronic states could be determined from relativistic string. Initially this string picture was

strikingly successful, but the appearance of spin-2 hadron in the spectrum of states of a closed

string had no analogue in the hadronic spectrum and made this model abandoned.

Scherk and Schwarz [93] revived the idea of string by proposing it not as a theory for hadrons only,

rather they reinterpreted this theory as a theory of all interactions, which eventually includes

gravity. The spin-2 massless excitation of closed string was to be interpreted as a graviton.

Quantization of this theory leads to some negative-norm states in the string spectrum and also

some other unavoidable problems. But these problems disappear if the spacetime dimensionality

is taken to be 26. The requirement for consistency in quantum theory of strings leads to the

higher dimensionality of spacetime in string theory. So it is evident that higher dimensionality

of spacetime in string theories is not an a priori assumption. In a sense, the idea of unification

of fundamental interactions evolves naturally from string theories; the quantization of the open

and closed string follows the similar path except the open string has a spin-1 massless mode

whereas the closed string has spin-2 massless mode, indicating a possible way to the unification

of Yang-Mills theory and gravity. This quantization is for bosonic string only. To take care of

the fermions in the picture one should impose supersymmetry on the action and identify the

Majorana fermions as the superpartners to the bosonic coordinates; the spacetime dimensionality

will be 10 instead of 26 to maintain the internal consistency of the theory. However, the extra

dimensions considered in these theories are extremely small (of the order of Planck length M−1
Pl )

and were beyond the scope of any possible experimental reach.

In 1990s, people started to think of the possibility of extra dimensions much larger than the

Planck length:

• A TeV−1-size extra dimension was first propounded by Antoniadis [94] in the year 1990

related to the phenomenon of supersymmetry (SUSY) breaking.

• In the year 1996, Hořava and Witten [95, 96] proposed an extra dimension in M-theory

which can move down the string scale to the grand unification scale MGUT ∼ 1016 GeV

and thus unifying the gravity with other forces at the same scale.
3On this account see Reference [90].
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• With the advent of D-theory by Polchinski [97] in 1995, a natural setting for different

fields living in different number of extra dimensions came into picture, where the Standard

Model (SM) fields which are localized on lower-dimensional D-branes can be represented

by open strings whereas the gravitons were identified with the closed strings propagating

in all dimensions.

• In the year 1998, the idea of extra dimension mainly came into limelight in phenomenology

when Arkani-Hamed, Dimpopoulos and Dvali [98] suggested large extra dimensions (LED)

as a solution to the hierarchy problem.

• A model with a small fifth dimension but with a warped five-dimensional geometry was

proposed by Randall and Sundrum [99,100] in 1999 gives the solution to hierarchy problem.

Also, the ADS/CFT theory by Maldacena [101] in 1998 provides new possibilities to explain

and construct models related to the weak scale.

• Another extra dimensional model is Universal Extra Dimensional (UED) model where all

particles propagate along some flat compactified extra dimensions. The remarkable feature

of UED is that the remnant of translational invariance along the extra dimensions remains

preserved making the KK-modes incapable to couple to the zero-modes [102]. This model

which is the main part of this thesis, will be described elaborately in the next section of

this chapter.

Below the primary features of LED and Randall-Sundrum (RS) model will be briefly mentioned.

2.1.1 Large Extra Dimension

Gauge hierarchy problem as described in the previous chapter is actually the issue related to the

large difference between the electroweak scale (∼ 100-1000 GeV) and the Planck scale (∼ 1019

GeV). In SM, the electroweak symmetry is broken by the vacuum expectation value of the

Higgs field. This electroweak scale eventually becomes unstable under the radiative corrections

since the mass-squared of the Higgs field gets quadratic contributions from its interactions.

The natural scale to cutoff the quadratic contributions is the Planck scale where the quantum

corrections of gravity become significant. To put the problem in another way is raising the

question: why is the gravity so weak relative to the other interactions of SM? To address this

issue Arkani-Hamed, Dimpopoulos and Dvali [98] proposed a theory of 4 + d extra dimensions

with Standard Model particles being confined to a 3-brane (which is actually a 3+1 dimensional

surface) whereas only the gravitons propagate in the full d-dimensions. Evidently, the extra

dimensions have to be compactified to get the usual 3 + 1 dimensional effective theory. But

compactification can be arranged by considering only d number of extra dimensions with a

common scale R which is relatively large leading to the possibility that scale of quantum gravity
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is much lower than that of the Planck scale (MPl). The magnitude of R could vary from a

millimeter to a fermi according to the number of large extra dimensions. Newton’s law in 4 + d

dimensions is given by,

F (r) ∼ G
(4+d)
N m1m2

rd+2
=

1

Md+2
Pl(4+d)

m1m2

rd+2
, (2.1)

which can be decomposed to two expressions according to the relation between r and R as:

F (r) ∼ 1

Md+2
Pl(4+d)

m1m2

rd+2
, for r � R, (2.2)

F (r) ∼ 1

Md+2
Pl(4+d)

m1m2

Rdr2
, for r � R. (2.3)

Comparing the last expression with the four-dimensional Newton’s law,

F (r) ∼ 1

M2
Pl

m1m2

r2
, (2.4)

we have

M2
Pl ∼Md+2

Pl(4+d)R
d. (2.5)

If we take the fundamental scale MPl(4+d) ∼ 1 TeV and demand that R can be chosen to

reproduce the four-dimensional Planck scale MPl ∼ 1019 GeV, then we have

R ∼
(

M2
Pl

Md+2
Pl(4+d)

)1/d

∼ 1032/d TeV−1 ∼ 1032/d10−17 cm, (2.6)

d = 1⇒ R ∼ 1015 cm (> 1 AU),which is ruled out,

d = 2⇒ R ∼ 1 mm ,

d = 3⇒ R ∼ 10−6 cm .

So, in this model number of extra dimensions d ≥ 2 are allowed. But recent experimental

observations show that the bound on R is obtained as ≤ 30 µm [5]. On the other hand, no

significant bound is obtained for d > 3.

2.1.2 Warped Extra Dimension

The above ADD scenario solves the problem of gauge hierarchy, but it introduces another hi-

erarchy between the large extra dimension and the Planck length. To solve this issue, a model

with small compact extra dimension was proposed by Randall and Sundrum [99, 100], with a

five-dimensional warped geometry. The model has two branes placed at two fixed points of
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orbifold at which the fifth dimension is compactified. The novel feature of the model is having

warped metric caused by the back-reaction of gravity on the branes. Consideration of the back-

reaction has important cosmological implications [103,104]. A four-dimensional theory with only

four-dimensional sources necessarily leads to an expanding universe with positive cosmological

constant. In warped geometry, one can adjust the bulk cosmological constant to get an effective

vanishing four-dimensional cosmological constant.Thus the four-dimensional universe would still

appear to be static and flat for an observer on a brane. Now, an incorporation of a bulk cos-

mological constant is necessary as the five-dimensional background itself is curved. Evidently,

there is a transfer of the curvature from the four-dimensional branes, which are made flat, to the

bulk which is now significantly curved [105]. This scenario was originally suggested by Rubakov

and Shaposhnikov [103, 104]. In the minimal version of the RS model only gravity propagates

in the bulk while the SM fields are localized on the brane where the warp factor is small. The

corresponding metric in five-dimension can be written as

ds2 = e−A(y)ηµνdx
µdxν − dy2. (2.7)

The warp factor e−A(y) is a measure of the curvature (warping) along the extra dimension. It

is an exponential factor involving the fifth dimension as well as the radius of compactification;

and clearly this factor comes as a multiplicative factor with the four-dimensional Minkowski

part of the metric. This warp factor is the main ingredient that helps to address the hierarchy

issue by “warping down” the Planck scale4. For this mechanism to work, the compactification

radius should be stabilized against the quantum fluctuations and this can be performed by

incorporating a bulk scalar field which generates a potential that allows the stabilization. The

associated modulus field radion which describes the fluctuations of the magnitude of the radius

obtains a mass of the order of a TeV. Due to the presence of the discrete spectrum of graviton

resonances, the collider phenomenology of this model is quite distinct from that of the model

of LED. The massive radion offers a very distinct scenario for this model. If warped extra

dimension exists in nature, LHC data shows that the size of extra dimensions should be greater

than TeV scale [108,109].

2.2 Universal Extra Dimension

Among many variants of extra dimensional model, this thesis will be devoted to a particular

incarnation of extra dimensional theories proposed by Appelquist et al. [102]. This is termed as

Universal Extra Dimensional (UED) model which is the main focus of this thesis. The universal

in UED makes it explicit that all the Standard Model (SM) fields can propagate along the extra

spatial dimension instead of being confined to a boundary as in the case of ADD and RS model.
4For more detailed clarifications see the TASI lectures by Sundrum [106] and Gherghetta [107].
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Despite being devoid of the virtue of solving hierarchy issues unlike ADD and RS models, UED

has a wide range of phenomenological motivations.

Various phenomena of neutrino mass generation can be fit into flat five-dimensional spacetime

scenarios [110]. Such kind of scenarios provide mechanism of supersymmetry breaking [94]. Extra

dimensional models solve the puzzle of mass hierarchy in the fermion sector [111–113]. Dynamical

electroweak symmetry breaking has been studied in extra dimensional scenarios [114]. The issue

related to the gauge coupling unification is also well addressed in the flat extra dimensional

theories. Usually these theories predict a unification scale which is considerably below the usual

GUT scale [111,115–117]. Proton stability is one of the perplexing issues in particle physics. The

six-dimensional operators which result in the violations of baryon and lepton number can cause

proton decay and to maintain the constraints of proton lifetime in an SM-only theory leads to an

unnatural cutoff. But, by the very construction of the UED model (six-dimensional UED), the

operators leading to rapid proton decay can be forbidden [118]. This is the main difference with

some other BSM models (e.g. SUSY), where ad hoc introduction of some symmetry is required

to reduce the problem of rapid proton decay. Moreover and most importantly, UED provides

a stable, electrically neutral and colorless state in a natural way5 which can qualify as a viable

dark matter candidate [119].

2.2.1 A Fifth Dimension

In this section, we describe the standard Kaluza-Klein theory which involves an extension of

the 1 + 3 dimensional Minkowski world M4 to a 1 + 4 dimensional M4 × S1 world. Here the

fourth spatial dimension corresponds to a topology of a circle S1 with a radius R implying that

the extra dimension is compact. Einstein described this world as a ‘cylindrical world’ [120].

The extra dimension is denoted as y. Compactification means the physical identification of

the points y and y + 2πR along the extra dimension y which means for any field, viz. Φ, we

have Φ(y) ∼ Φ(y + 2πR). Evidently, there is a periodic boundary condition on any function of

spacetime. The coordinate is defined as

xM = {xµ, y}. (2.8)

Here, xµ (µ = 0, 1, 2, 3) is the four-dimensional non-compact spacetime coordinates; M =

0, 1, 2, 3, 5 are five-dimensional Lorentz indices with the metric convention gMN ≡ diag(+,−,−,−,
−).

5Though, in the non-minimal version of this UED model, one should add KK-parity conserving boundary-
localized terms to get a viable dark matter candidate.
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• Kaluza-Klein Modes

The existence of the so-called Kaluza-Klein modes in the five-dimensional theory comes as the

very first upshot of having an extra dimension in compact form. Let us consider the simplest

example of a free real scalar field. The action of a free scalar field in five-dimension is [121]

S5D =
1

2

∫
d4x

∫ 2πR

0
dy
[
∂MΦ(x, y)∂MΦ(x, y)−m2

0Φ2(x, y)
]
, (2.9)

where the scalar field Φ(x, y) is the field on this five-dimensional space, or bulk. The periodic

boundary condition on y allows us to perform a Fourier series expansion along the y direction

as

Φ(x, y) =
1√
2πR

∞∑
n=−∞

Φ(n)(x)einy/R. (2.10)

Here, 1/
√

2πR is just a normalization factor. In the above, each of the Fourier coefficients Φ(n)

is itself a field over the usual four-dimensional Minkowski space and these fields are the Kaluza-

Klein (KK) modes. Plugging the Fourier decomposition of Φ(x, y) (Eq. 2.10), in Eq. 2.9 and

exploiting the orthonormality of y-profiles of the Fourier modes in extra dimension and then

integrating over the extra dimension, we finally obtain the effective four-dimensional action:

S4D =
1

2

∑
n

∫
d4x

[
∂µΦ(n)(x)∂µΦ(n)(x)−

(
m2

0 +
n2

R2

)
(Φ(n)(x))2

]
. (2.11)

This implies that from the four-dimensional point of view the five-dimensional scalar field appears

as an infinite tower of KK-modes where the mass of nth KK-mode is given as

mn =

√
m2

0 +
n2

R2
. (2.12)

The set of KK-modes with monotonously increasing masses with n = 1, 2, . . . is termed as a

Kaluza-Klein tower of states. The zero-mode (n = 0) has a bulk mass m0 and is evidently

massless for m0 = 0.

The fifth directional momentum operator in quantum theory can be written as k5 = −i∂y and

we can have

k
(n)
5 Φ(x, y) =

∞∑
n=0

n

R
Φ(n)(x)einy/R, (2.13)

i.e. each KK-mode corresponds to a momentum-eigenvalue

k
(n)
5 = n/R. (2.14)
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The discrete values of momentum are the evident consequence of the periodic boundary condi-

tions. The relativistic energy of the nth KK-mode is

En =

√−→
k 2 + [k

(n)
5 ]2 +m2

0 =

√−→
k 2 +m2

n. (2.15)

The substitution of Eq. 2.14 in the above equation results in Eq. 2.12 which is nothing but the

expression for the mass of nth KK-mode. Here comes the natural conclusion that, the KK-

masses observed in four dimensions are nothing but the “frozen” components of momentum in

the extra dimension [84].

We can similarly perform a Fourier decomposition for the five-dimensional gauge field along the

compact dimension [121]:

AM (xµ, y) =
1√
2πR

∑
n

A
(n)
M (xµ)einy/R. (2.16)

The action then becomes

Sgauge =

∫
d4x

∫ 2πR

0
dy

[
−1

4
FMNFMN

]
=

∫
d4x

∫ 2πR

0
dy

[
−1

4
{FµνFµν + 2Fµ5Fµ5}

]
,

(2.17)

The derivative along y can be replaced by ∂5 → i(n/R) under Fourier series expansion. To

remove the mixing terms between A(n)
5 and A(n)

µ we can execute a gauge transformation as

A(n)
µ → A(n)

µ −
i

n/R
∂µA

(n)
5 , (2.18)

A
(n)
5 → 0, for n 6= 0. (2.19)

In this gauge we have,

Sgauge =

∫
d4x

∫ 2πR

0
dy

{(
−1

4
F (0)
µν F (0)µν +

1

2
∂µA

(0)
5 ∂µA

(0)
5

)

+
∑
n≥1

2

(
−1

4
F (−n)
µν F (n)µν +

1

2

n2

R2
A(−n)
µ A(n)

µ

) . (2.20)

So, the end result is that, on a circle, both Aµ and A5 components have zero modes; the former is

a vector whereas the latter is a scalar from the four-dimensional perspective. In case of nonzero

modes, A(n)
5 is eaten and becomes the longitudinal mode of the corresponding massive vector

field A(n)
µ . Naturally, there is no scalar mode left for nonzero KK-modes [121].

• Fermion on a Circle: Chirality Problem

One of the unavoidable ramification of one extra dimension is definition of chirality operator

in odd dimension is not possible. The possible representation of the 1 + 4 dimensional Clifford
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algebra for fermions can be given as

{ΓM ,ΓN} = 2gMN , (2.21)

with

Γµ = γµ and Γ5 = iγ5. (2.22)

Here, gMN is the Minkowski metric in five-dimension and the representation is provided by the

4 × 4 Dirac matrices. Thus, we observe that the smallest irreducible representations of five-

dimensional fermions has four complex components. The five-dimensional action for fermions is

given by

Sfermion =

∫
d4x

∫ 2πR

0
dy Ψ̄(x, y)

(
i∂µΓM −mf

)
Ψ(x, y). (2.23)

The compactification of extra dimension to a circle results in a similar periodic decomposition

of the five-dimensional fermionic field and after integrating over y the effective four-dimensional

action for Dirac fermions is given by [106]

Sfermion =

∫
d4x

∑
n

ψ̄n(x)
(
iγµ∂

µ −mf + i
n

R
γ5

)
ψn(x). (2.24)

Again, from the four-dimensional point of view, we obtain a tower of four component Dirac

spinors with mass-squared as shown in Eq. 2.12. Considering the case of mf = 0, we obtain non-

chiral massless modes; ψ(0)
α=1−4 decomposes as ∼

[
ψ

(0)
L (α = 1, 2), ψ

(0)
R (α = 3, 4)

]
, where L (R)

corresponds to left-(right-)chirality under the four-dimensional Lorentz transformation. As γ5 is

being introduced among the five-dimensional Dirac matrices and there is no other matrix with

the anti-commuting properties of γ5, so in a natural way there is no explicit chirality in this

theory. Generally, in any dimension whether it be even or odd (say j), we have j number of

gamma matrices Γl (l = 1, 2, . . . , j), satisfying {Γl,Γm} = 2glm. Then the generalized γ5 can be

obtained as

Γj+1 = Γ1Γ2 . . .Γj . (2.25)

For even number of dimension (j = 2p), Γj+1 will be nilpotent ((Γj+1)2 = 1) and anticommute

with all Γl,

{Γj+1,Γl} = 0, ∀ l = 1, 2, . . . , 2p. (2.26)

However, for odd number of dimension, j = 2p+ 1,

[Γj+1,Γl] = 0, ∀ l = 1, 2, . . . , 2p+ 1, (2.27)

and then by Schur’s lemma Γj+1 is just a multiple of unit matrix. Evidently, in odd number of

dimensions defining chiral fermion is not possible.
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2.2.2 Fields on Orbifold

So, all in all, there are two major problems in accommodating SM field in five-dimensional

theory:

• For every gauge field Aµ(x) there exists a degenerate scalar partner A5(x).

• All the fermions in the theory will essentially be vector-like.

To ameliorate both these problems we need further modification of the space. If compactification

is done, not on a circle, but on a line segment imposing suitable boundary conditions to the bulk

fields, we can evade these issues. Let us take the example of bulk scalar field Φ(x, y) with the

extra dimension being mapped to a line segment 0 ≤ y ≤ l [84, 122]. Applying the variational

principle to the action

δS[Φ] = −
∫
d4x

∫ l

0
dy
(
∂M∂MΦ† +m2

0Φ†
)
δΦ +

∫
d4x

(
∂Φ

∂y
δΦ

∣∣∣∣
y=l

− ∂Φ

∂y
δΦ

∣∣∣∣
y=0

)
. (2.28)

By virtue of variational principle the above expression must vanish for any arbitrary variations

δΦ. Thus we can immediately have the bulk (Klein-Gordon) equation

∂M∂MΦ +m2
0Φ = 0, (2.29)

and also the boundary condition

∫
d4x

(
∂Φ

∂y
δΦ

∣∣∣∣
y=l

− ∂Φ

∂y
δΦ

∣∣∣∣
y=0

)
= 0. (2.30)

This would be naturally valid on a circle if y = 0 and y = l are identified as the same point. On

the other hand, this is a line segment and the above equation can only hold if both terms vanish

individually. So we can obtain the following boundary conditions:

• At y = 0 : either N : ∂Φ
∂y

∣∣∣∣
y=0

or D : Φ(x, 0) = 0

• At y = l : either N : ∂Φ
∂y

∣∣∣∣
y=l

or D : Φ(x, l) = 0

where, D and N correspond to Dirichlet and Neumann types boundary conditions respectively.

Evidently, we can have four combinations, viz. DD, DN, ND, NN; where first letter stand for

y = 0 and the second for y = l. However, if we want to retain only the DD and NN sets of

harmonics, the line segment will have

1. a periodic boundary condition Φ(x, y) = Φ(x, y + 2l),
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2. a reflection symmetry Φ(x, y) = Φ(x, l − y) at the point y = l.

θ = 0
θ =

+π

θ = −π

Identify

+θ with − θ
(i.e. identifying y with − y)

θ = 0 θ = π

θ = 0
y = 0

θ = π
y = πR

Figure 2.1: Pictorial description of the UED compactification: orbifolding.

Physically, these conditions correspond to a S1/Z2 orbifold as depicted in Figure 2.1. We can,

therefore, relate l to a compactification radius R by l = πR. To repeat in another way, if we

have a topology of a S1/Z2 orbifold, and if Φ(x, y) = Φ(x) η(y); then the harmonics reconcilable

with the boundary conditions will be ηNN (y) and ηDD(y) functions.

Orbifold projection eliminates the phenomenologically undesirable degrees of freedom (DoF) at

the zero-mode level. The bulk scalar field can be expanded as

Φ(x, y)
y→−y−−−−→ Φ(x,−y) =

+ΦNN (x, y),

−ΦDD(x, y).
(2.31)

Clearly, depending on the choice of boundary conditions, we have two different physical scalars

given as

ΦNN (x, y) =
1√
πR

Φ
(0)
NN (x) +

√
2

πR

∞∑
n=1

Φ
(n)
NN (x) cos

(ny
R

)
, (2.32)

ΦDD(x, y) =

√
2

πR

∞∑
n=1

Φ
(n)
DD(x) sin

(ny
R

)
. (2.33)

So, ΦNN (x, y) is even under the fifth component of parity y → −y whereas the other, ΦDD(x, y)

is odd under y → −y. Here, Φ
(0)
NN (x) would play the role of the SM field. Thus, to get rid of

the SM fields and to have only KK excitations, we should impose DD boundary conditions. On

the other hand, to retain the SM field along with their KK excitations NN boundary conditions

should be imposed. This is the distinctive feature of the application of S1/Z2 topology that is

applied profitably to formulate the theory of Universal Extra Dimension (UED).

• Defining Chiral Fermion

Based on the previous discussion of the section 2.2.1, the title seems purely paradoxical and

self-contradictory, since there is no chiral projections of a Dirac fermion as there is no analogue
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of γ5 in odd dimensions. And yet, this very concept becomes feasible in four dimensions with

orbifold compactification. The Dirac matrices given in Eq. 2.22 can be used to formulate the

spinor representation of the bulk Lorentz group SO(1, 4), since compactification reduces the

symmetry to the usual Lorenz group SO(1, 3) of the four non-compact dimensions [84]. Taking

this fact into account, we can construct the projection operators

P± =
1

2

(
I± iΓ0Γ1Γ2Γ3

)
(2.34)

that act on the bulk spinor Ψ(x, y) to yield projections Ψ±(x, y) = P±Ψ(x, y) with, Ψ(x, y) =

Ψ+(x, y) + Ψ−(x, y). These projection operators are numerically same with the right and left

chiral projection operators in four dimensions; but these can not be termed as so called right-

or left-projectors as this very idea does not exist in five dimensions. But, by similar manner,

applying orbifold compactification we can have the bulk spinor as even spinor

ΨNN (x, y) =
1√
πR

ψ
(0)
NN (x) +

√
2

πR

∞∑
n=1

ψ
(n)
NN (x) cos

(ny
R

)
, (2.35)

or as an odd spinor

ΨDD(x, y) =

√
2

πR

∞∑
n=1

ψ
(n)
DD(x) sin

(ny
R

)
. (2.36)

Applying P± operators to both sides of Eq. 2.35, we obtain

Ψ+
NN (x, y) = P+ΨNN (x, y) =

1√
πR

[ψ
(0)
NN ]R(x) +

√
2

πR

∞∑
n=1

[ψ
(n)
NN ]R(x) cos

(ny
R

)
, (2.37)

Ψ−NN (x, y) = P−ΨNN (x, y) =
1√
πR

[ψ
(0)
NN ]L(x) +

√
2

πR

∞∑
n=1

[ψ
(n)
NN ]L(x) cos

(ny
R

)
. (2.38)

Since, P± operate on a four-dimensional spinor, we get P± = PR/L respectively, since chirality is

a valid concept for the four-dimensional spinors ψ(0)
NN and ψ(n)

NN . Similarly, we can get a similar

set of odd fermions

Ψ+
DD(x, y) = P+ΨDD(x, y) =

√
2

πR

∞∑
n=1

[ψ
(n)
DD]R(x) sin

(ny
R

)
, (2.39)

Ψ−DD(x, y) = P−ΨDD(x, y) =

√
2

πR

∞∑
n=1

[ψ
(n)
DD]L(x) sin

(ny
R

)
. (2.40)

However, since there can exist either N or D boundary conditions at the orbifold fixed points,

we can have any one of Eqs. 2.37 or 2.38, and again, any one of Eqs. 2.39 or 2.40. As the

zero-mode is identified with the SM fields, it clearly follows that SM fermions will be chiral.

Similar mechanism can be applicable to the five-dimensional vector field AM (x, y). The fifth

component, A5(x, y) is nothing but the polarization of the gauge field along the extra dimension

and from four-dimensional point of view, after compactification, this just behaves as a (infinite)
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tower of spinless KK-modes. Clearly, this A5 will have no zero mode and will be an odd field.

The corresponding KK decomposition for the gauge field will be

AµNN (x, y) =
1√
πR

A
µ(0)
NN (x) +

√
2

πR

∞∑
n=1

A
µ(n)
NN (x) cos

ny

R
, (2.41)

A5
DD(x, y) =

√
2

πR

∞∑
n=1

A5(n)(x) sin
ny

R
. (2.42)

Thus, introducing the trick of orbifolding we can get rid of the gauge scalars in the SM, such

type of scalars will only be present among the KK excitations, and, can in principle, be detected.

2.2.3 KK-Parity

Once, orbifolding is done, the translational invariance is broken and hence the fifth dimensional

momentum p5 is no more a conserved quantity, unlike the four-dimensional momentum. There-

fore, KK-number is evidently violated6. However, there remains an additional symmetry, an

accidental discrete symmetry, called KK-parity. “KK-parity” conservation is being manifested

as the translational symmetry y → y − πR. Thus for the nth level particle KK-parity is (−1)n.

Evidently, all SM fields are of even KK-parity. It is worth mentioning that KK-parity is not the

Z2 symmetry of S1/Z2 [122]. Conservation of KK-parity implies [123]

• the stability of the lightest level-one KK-mode (LKP),

• odd level KK-modes can only be produced in pairs,

• all direct couplings of SM particles to even number KK states are loop suppressed and can

occur through brane-localized interactions.

Generally, in the minimal version of UED, KK-parity remains a good symmetry and remains

unbroken so long as no explicit KK-parity violating interactions are introduced at the orbifold

fixed points.

2.2.4 SM in Five Dimensions

After a detailed analysis of the fundamental essence of extra dimensional theories, we are now

all set to discuss the SM embedded in five-dimensional theory, where all SM fields can propagate

in the bulk (the five-dimensional whole space). The five-dimensional action consists of the same
6KK-number is still a good quantum number in (m)UED, which remains preserved in all interactions and

decays, if we ignore the orbifolding fixed points.
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fields of SM and would respect the same SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge symmetry as that of

SM. The five-dimensional action will be given by,

S =

∫
d4x

∫ πR

0
dy (Lg + LΦ + Ll + Lq + LY ) (2.43)

where,

Lg = −1

4
FMNaFaMN −

1

4
BMNBMN −

1

4
GpMNGpMN , (2.44a)

LΦ = (DMΦ)†(DMΦ) + µ2
(5)hΦ†Φ− λ(5)h(Φ†Φ)2, (2.44b)

Ll =
∑

j=generation

[
L̄j
(
iΓMDM

)
Lj + Ēj

(
iΓMDM

)
Ej
]
, (2.44c)

Lq =
∑

j=generation

[
Q̄j
(
iΓMDM

)
Qj + Ūj

(
iΓMDM

)
Uj + D̄j

(
iΓMDM

)
Dj

]
, (2.44d)

LY =
∑

i, j=generation

[
−ỹuijQ̄iΦcUj − ỹdijQ̄iΦDj − ỹlijL̄iΦEj + h.c.

]
. (2.44e)

In the above, the Lg, LΦ, Ll, Lq correspond to the five-dimensional Lagrangian for gauge

field, scalar field, lepton and quark field respectively whereas LY denotes the five-dimensional

Yukawa Lagrangian. The symbols µ(5)h and λ(5)h respectively represent the five-dimensional

bulk Higgs mass parameter and scalar self-coupling. Here, GpM ,Wa
M and BM are the gauge fields

of the respective gauge groups SU(3)c, SU(2)L and U(1)Y ; the suffices p and a represent the

SU(3) and SU(2)L gauge indices respectively where the sum over the repeated gauge indices are

implied. In the above formulae, M,N = 0, 1, 2, 3, 5 are the five-dimensional Lorentz indices. We

will be using the mostly minus metric convention, i.e., gMN ≡ diag(+1,−1,−1,−1,−1). The

five-dimensional gamma matrices are ΓM = (γµ,−iγ5) (Sec. 2.2.1). The field strength tensor for

the gauge fields, BM , Wa
M and GpM are given by

BMN = ∂MBN − ∂NBM , (2.45)

FaMN = ∂MWa
N − ∂NWa

M + g̃fabcWb
MWc

N , (2.46)

GpMN = ∂MGpN − ∂NG
p
M + g̃sf

′ pqmGqMGmN . (2.47)

The covariant derivative, in general, is given as

DM ≡ ∂M − ig̃Wa
MT

a − ig̃′BMY, (2.48)

where g̃ and g̃′ are the five-dimensional gauge coupling constants of SU(2)L and U(1)Y respec-

tively, and T a and Y are the corresponding generators. The scalar field Φ and Φc = iτ2Φ∗

denote the standard Higgs doublet and its charge conjugated field, and ỹuij , ỹ
d
ij are the Yukawa

matrices in the five-dimensional theory; they mix different generations. The fermionic fields Q,
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D and U are the four-component Dirac spinors and carry the same quantum numbers as the

corresponding SM fields. As covariant derivative, in a sense, determines the interaction between

the fermion and the gauge boson, the explicit form of DM will be given by the interaction prop-

erties of the corresponding fermionic field. For example, the covariant derivative for the quarks

are given by

DM ≡ ∂M − ig̃Wa
MT

a − ig̃′BMY − ig̃s
λp

2
GpM , (2.49)

where λp (p = 1, 2, 3, . . . , 8) are Gell-Mann matrices which are related to the generators of SU(3)c

gauge group and g̃s corresponds to the five-dimensional gauge coupling of this gauge group. The

five-dimensional gauge couplings are dimensionful parameters, and there exist scaling relations

between the five-dimensional and its four-dimensional counterpart, which in the context of UED

is given as

gi =
g̃i√
πR

, (2.50)

where, gi is the usual four-dimensional coupling. The Fourier expansion of the fields are given

by,

Q(x, y) =
1√
πR

Q
(0)
L (x) +

√
2

πR

∑
n=1

[
Q

(n)
L (x) cos

(ny
R

)
+Q

(n)
R (x) sin

(ny
R

)]
, (2.51)

U(x, y) =
1√
πR

U
(0)
R (x) +

√
2

πR

∑
n=1

[
U

(n)
R (x) cos

(ny
R

)
+U

(n)
L (x) sin

(ny
R

)]
, (2.52)

Aµ(x, y) =
1√
πR

A(0)
µ (x) +

√
2

πR

∑
n=1

A(n)
µ (x) cos

(ny
R

)
, (2.53)

A5(x, y) =

√
2

πR

∑
n=1

A
(n)
5 (x) sin

(ny
R

)
. (2.54)

We thus obtain the desired zero modes Q(0)
L , U (0)

R and A
(0)
µ corresponding to the SM fields7.

The expansion for U is valid also for D. The expansion for lepton doublet will be similar to

that of the quark doublet Q(x, y) whereas the lepton singlet can have the expansion similar to

that of U or D. The expansion of the scalar Higgs field will have the same form as that of Aµ.

We must also expand the zero-mode Higgs doublet around its vacuum expectation value, and

express the KK Higgs doublets in terms of their component fields:

Φ(0) =

(
φ(0)+

1√
2

(
v + h(0) + i χ(0)

) ) , Φ(n) =

(
φ(n)+

1√
2

(
h(n) + i χ(n)

) ) . (2.55)

7This part will be described elaborately in the last part of this chapter.
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Here v is the usual four-dimensional Higgs VEV, h(0) is the physical zero-mode Higgs, and χ(0),

φ(0)± are the zero-mode Goldstone bosons. The h(n) are the KK excitations of CP-even Higgs

and the χ(n) are KK excitations of CP-odd scalars. The four-dimensional effective Lagrangian

would also contain bilinear terms involving the KK excitations (starting from KK-level n = 1

and above) of the 5th components of W± (Z) bosons and the KK excitations of φ(0)± (χ(0)) of

the Higgs doublet field [124]. There exists also the mixing terms between A
(n)
µ and A

(n)
5 . To

remove all these mixings, gauge-fixing Lagrangian should be added. The gauge-fixing action is

given by

SGF =

∫
d4x

∫ πR

0
dy

[
− 1

2ξ
(∂µGµ + ξ∂5G5)2 − 1

2ξ
(∂µA

µ + ξ∂5A
5)2

− 1

2ξ
{∂µZµ + ξy(∂5Z

5 − iMZχ)}2

−1

ξ

(
∂µW

µ+ + ξ(∂5W
5+ − iMWφ

+)
) (
∂µW

µ− + ξ(∂5W
5− + iMWφ

−)
)]
. (2.56)

The mass matrices upon diagonalization would lead to a tower of charged Goldstone bosons (with

mass-squared ξ(m2
n +M2

W )) and a physical charged Higgs pair (with mass-squared m2
n +M2

W );

and a tower of neutral Goldstone bosons (with mass-squared ξ(m2
n + M2

Z)) along with a tower

of physical CP-odd Higgs (with mass-squared m2
n +M2

Z). The new spectrum also consists of a

tower of KK-modes with masses m2
n for both A(n)

µ and A(n)
5 and a massless zero-mode photon.

There exist bilinear terms involving the doublet and singlet states of the fermions and the

strength (off-diagonal terms) of the mixing is proportional to fermionic mass, so that the mixing

is only important for top quark (we will denote top quark mass by mt in the following). The

detailed analysis will be elucidated in the latter part of this chapter (Sec. 2.5) while describing

the model description on non-minimal Universal Extra Dimensional model (nmUED) and as we

proceed we will point out how to revert to UED.

2.2.4.1 Particle Interactions and Couplings

The above discussions show that from the four-dimensional point of view the five-dimensional

fields appear as infinite towers of KK-modes. The KK excitations, whether follow NN or DD

boundary conditions have masses given in Eq. 2.12. The zero-mode SM particle has the mass

m0 which is the same as the bulk mass. An evident feature of this model is, in the limit of large

R−1, all the KK excitations having a particular order n will have a common mass mn ' n/R.

Later we will see that this degeneracy can be broken by radiative corrections of masses.

Now we put our attention to the interactions among the particles of UED model. Calculating

the interactions is straightforward but a bit tedious. The steps of extracting the coupling of

UED are the following:
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• Write the SM in five-dimensions.

• Replace every bulk field (scalar, fermion or vector) by its corresponding KK expansion,

keeping general mode numbers.

• Lastly, integrate over the fifth co-ordinate y to obtain the effective four-dimensional cou-

pling in compactification limit.

While calculating all these interactions, we should keep in mind that the coupling in zero-mode

sector will be exactly the same as that of SM coupling. Let us take the example of the interactions

among fermions and gauge bosons. Now, these couplings arise from the fermion kinetic term,

if̄(x, y)ΓMDMf(x, y), where f(x, y) is any arbitrary five-dimensional fermionic field. Then,

if̄(x, y)ΓMDMf(x, y) = if̄(x, y)γµDµf(x, y) + if̄(x, y)(−iγ5)D5f(x, y). (2.57)

For the time being, we focus on the first term only and write, illustratively, Dµ = ∂µ − ig̃Aµ.
Thus, the interaction between gauge field Aµ and fermion f will be g̃f̄(x, y) /A(x, y)f(x, y). By

plugging the KK expansion of each field in this term we have,

g̃

∫
d4x

∫ πR

0
dy
∑
p,q,r

[(
1√
πR

f̄ (0)(x) +

√
2√
πR

∑
p

{
f̄

(p)
NN (x) cos

(py
R

)
+ f̄

(p)
DD(x) sin

(py
R

)})

× γµ
(

1√
πR

Aµ(0)(x) +

√
2√
πR

∑
q

A
µ(q)
NN (x) cos

qy

R

)

×
(

1√
πR

f (0)(x) +

√
2√
πR

∑
r

{
f

(r)
NN (x) cos

(ry
R

)
+ f

(r)
DD(x) sin

(ry
R

)})]
. (2.58)

From this equation, we can obtain the coupling between f and Aµ for any arbitrary KK-level.

We can have the zero-mode coupling for p = q = r = 0, which is given as

g̃

(πR)3/2

∫
d4x

∫ πR

0
dyf̄ (0)(x)γµA

µ(0)(x)f (0)(x)

=
g̃√
πR

∫
d4xf̄ (0)(x)γµA

µ(0)(x)f (0)(x)

= g

∫
d4xf̄ (0)(x)γµA

µ(0)(x)f (0)(x). (2.59)

Clearly, we will get the exact zero-mode coupling as that of SM if g = g̃/
√
πR, which is the

correct scaling between the four- and five-dimensional coupling, as we mentioned in Eq. 2.50.

We can generalize a trilinear coupling for different KK-level, e.g. the coefficient of f̄ (p)A(q)f (r).

This can be written as∫
d4x

(
f̄ (p)(x)γµA

µ(q)(x)f (r)(x)
)∫ πR

0
dy

g̃

(πR)3/2

{
cos
(py
R

)
cos
(qy
R

)
cos
(ry
R

)
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+ cos
(py
R

)
cos
(qy
R

)
sin
(ry
R

)
+ sin

(py
R

)
cos
(qy
R

)
cos
(ry
R

)
+ sin

(py
R

)
cos
(qy
R

)
sin
(ry
R

)}
=

∫
d4x

(
f̄ (p)(x)γµA

µ(q)(x)f (r)(x)
)
× g{∆(np, nq, nr)}, (2.60)

where, ∆(np, nq, nr) are the admixtures of Krönecker delta symbols alongwith some normaliza-

tion factors. It can be shown that the KK-number violating couplings are vanishing. Thus a

second level particle can not interact with two zeroth level particles at tree level. This type

of coupling, however, can be possible at loop level. Also we will see later, that such type of

(2)-(0)-(0) coupling is present, even at tree level, in the non-minimal version of UED. Similar

procedure of calculation of interactions among different fields will be used in the case of non-

minimal version of UED also. Hence, we have altogether the following features of UED model

at tree level:

• The SM fields correspond to the zero modes of the bulk fields and always follow the NN

boundary conditions. For zero mode, the number of bulk fields is exactly the same as the

number of fields in the SM.

• The KK excitations, in general, have both NN and DD boundary conditions.

• The interaction at tree-level preserves the KK-number, e.g. in the above example n(p) +

n(q)+n(r) = 0, where we actually assign the opposite signs to the KK-number for the initial

and final states. This is evidently mandated from the fact that the translational invariance

is locally retained in the bulk, and hence the momentum along the fifth dimension py = n/R

remains conserved.

2.3 minimal Universal Extra Dimension

In the previous section, we have discussed UED model and have seen that this model contains

a number of almost degenerate states at each KK-level. As the extra dimensional momentum is

conserved (ignoring the fixed points of orbifold) the phenomenology of such nearly degenerate

states crucially depends on the mass splitting between the KK-modes. We know that radiative

corrections play an important role for precision measurements, but it is not expected this cor-

rection radically change the nature of processes, like the production and decay of new particles

in collider experiments. But this projection can be completely wrong in presence of extra di-

mensions as KK-masses are quantized at tree level and all the momentum preserving decays are

exactly at threshold. Hence radiative corrections [122] become the most important determining

factor and the dominant effect in deciding which decay channels are open. Under radiative cor-

rections the mass of nth KK-mode (Eq. 2.12) will be modified as
√
m2

0 + (n/R)2 + δm2
n, where

δmn is the correction in mass due to the radiative corrections. The mass correction arises from
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the higher order contributions to the two-point correlation functions. There are two types of

contributions to these mass corrections;

• corrections coming from compactification, which is called bulk correction,

• boundary correction which arises due to orbifolding.

The first type of correction comes from the S1 compactification which eventually breaks the five-

dimensional Lorentz invariance globally. This type of non-local effect results in internal loops in

Feynman diagrams, which wind around the circle of the compactified dimension (see Fig. 2.2).

The contributions generating from this type of loops are well defined and finite. The second

Figure 2.2: An example of Lorentz violating loop winding around the extra dimension [122].

type of correction is the immediate upshot of the orbifold compactification S1/Z2. Orbifolding

introduces fixed points (y = 0 and y = πR in our case) in the manifold and they results in the

additional breaking of five-dimensional Lorentz invariance. This is obviously a local effect. A

detailed calculation on radiative corrections of a field theory in S1/Z2 orbifold has been shown

in Ref. [125]. Unlike bulk contribution, the mass shift resulting from this orbifold correction

no longer remains finite, but is logarithmically divergent. To remove these divergent terms one

has to perform renormalization which in turn requires the incorporation of counterterms which

are localized at the orbifold fixed points. At this point, one can simplify this computation by

assuming that the boundary terms at the cutoff Λ are small. This means with no large boundary

terms, the logarithmic divergences can be absorbed into the cutoff Λ, where Λ is not too large.

Large boundary terms result in the mixing between different KK-levels and hence each mode

receives, in addition to the bulk correction, a shift in its mass that is logarithmically dependent

on the cutoff Λ. In that case, we have to consider both effects while calculating the radiative

corrections.

The scenario with the assumption of vanishing boundary terms at the cutoff Λ is known as

minimal UED (mUED). Considering the effect of two types of corrections, the total mass shift
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δmn for various particles are given by [119],

δmQ(n) =
n

16π2R

(
6g2
s +

27

8
g2 +

1

8
g′2
)

ln(ΛR), (2.61a)

δmU(n) =
n

16π2R

(
6g2
s + 2g′2

)
ln(ΛR), (2.61b)

δmD(n) =
n

16π2R

(
6g2
s +

1

2
g′2
)

ln(ΛR), (2.61c)

δmL(n) =
n

16π2R

(
27

8
g2 +

9

8
g′2
)

ln(ΛR), (2.61d)

δmE(n) =
n

16π2R

9

2
g′2 ln(ΛR), (2.61e)

δm2
B(n) =

g′2

16π2R2

(
−39

2

ζ(3)

π2
− n2

3
ln(ΛR)

)
, (2.61f)

δm2
W(n) =

g2

16π2R2

(
−5

2

ζ(3)

π2
+ 15n2 ln(ΛR)

)
, (2.61g)

δm2
G(n) =

g2
s

16π2R2

(
−3

2

ζ(3)

π2
+ 23n2 ln(ΛR)

)
, (2.61h)

δm2
h(n) =

n2

16π2R2

(
3g2 +

3

2
g′2 − 2λh

)
ln(ΛR), (2.61i)

where g′, g and gs are the gauge couplings for the U(1)Y , SU(2)L and SU(3)c groups respec-

tively (previously mentioned) and λh is the Higgs quartic coupling. The above expressions show

that there are no bulk corrections to the Higgs scalar mass or the fermion masses. The fac-

tor ζ(3) =
∑∞

n=1 n
−3 ≈ 1.202, is the third Riemann zeta function. The factor ln(ΛR) in the

Eqs. 2.61 corresponds to the orbifold corrections and the Λ independent contributions are from

bulk corrections. Actually, the factor is ln
(

Λ
µ′

)
, where µ′ is the renormalization scale. The

factor ΛR counts the number of KK-levels below the cutoff Λ. If the contributions coming from

Yukawa coupling is taken into account (which is important for top quark), then SU(2) doublet

quark Q and singlet U get corrections as

δYukmQ(n) =
n

16π2R

(
−3

2
(yu)2

)
ln(ΛR), (2.62a)

δYukmU(n) =
n

16π2R
(−3yu) ln(ΛR). (2.62b)

Thus to obtain the radiatively corrected mass for nth mode top quark, we should add the above

results with appropriate corrections presented in Eqs. 2.61. As we know the nonzero KK-level

fermions are vector-like, so the appropriate eigenstates and mass eigenvalues of the KK fermions

can be obtained by diagonalizing the mass matrix of the form(
n
R + δ′m(F (n)) mf

mf − n
R − δ′m(f (n))

)
, (2.63)
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where mf is the zero-mode mass obtained from electroweak symmetry breaking (EWSB), F (n)

and f (n) correspond to SU(2) doublet and singlet fermions respectively. The δ′ indicates the

total corrections obtained from both bulk as well as boundary corrections.

There are other mixings that occur among the KK excitations. There exists mixing between the

W3(n) and B(n) gauge bosons. The mass-squared matrix in the B(n) and W3(n) basis is(
1
4g
′2v2 + δ̂m2

B(n) + n2

R2 −1
4g
′gv2

−1
4g
′gv2 1

4g
2v2 + δ̂m2

W3(n) + n2

R2

)
(2.64)

The mass eigenstates and eigenvalues of the KK photons and Z bosons for each KK-mode can

be derived from the above mass matrix. The terms corresponding to δ̂ represent the corrections

due to both bulk and boundary conditions. It is evident that, for the zeroth level the diagonal

entries will have only the v2 dependent terms and the eigenvalues of this matrix will be {0, (g2 +

g′2)v2/4}, where zero corresponds to the mass eigenvalue of the SM photon and (g2 + g′2)v2/4

is the mass-squared eigenvalue of the SM Z boson. For n > 0 the full matrix in Eq. 2.64 is to be

used. Clearly, for the KK excitations, the Weinberg mixing angle θn will also be different from

that of zero-mode particles (SM) and is given by

θn =
1

2
tan−1

 g′gv2

2
[
δ̂m2
B(n) − δ̂m2

W3(n) + v2

4 (g′2 − g2)
]
 . (2.65)

However, the value of θn is small which eventually makes the KK photon more B(n)-like and the

KK Z boson more W3(n)-like [122]. They are often applied exchangeably.

Unlike four-dimensional SM, in mUED the KK W and Z boson acquire their masses by absorb-

ing the linear combination of the fifth component of the corresponding gauge fields and their

respective KK Goldstone bosons. After this, there remains four scalar states for each KK-level:

two charged scalars H(n)±, CP-even neutral scalar h(n) and CP-odd neutral scalar A(n). The

zero modes H(0)± and A(0) are the usual Goldstone bosons (φ± and χ) of the SM. The one loop

corrected masses of these extra scalar states are

m2
H(n)± = M2

W (0) +
n2

R2
+ δm2

h(n) , (2.66)

m2
A(n) = M2

Z(0) +
n2

R2
+ δm2

h(n) , (2.67)

where, δm2
h(n) is given by Eq. 2.61i.
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2.3.1 Mass Spectrum

After a detailed discussion on radiative corrections of the masses for different particles, we shall

now describe the particle spectrum of the full one loop corrected mUED. It is clear from the

previous section that, the shift in the mass is different for different types of particles (see Eqs. 2.61

and 2.62). Naturally for nonzero KK-level, mass spectrum will no longer be degenerate. As a

consequence, the phenomenology of the model will be considerably different from what would

have been the case for the tree level degenerate spectrum. As an illustration, the mass spectrum

for n = 1 corresponding a definite choice of mUED parameters (mh, 1/R and Λ)8 has been

shown in Fig. 2.3 [122]9.

(a) (b)

Figure 2.3: Particle spectrum for the first level KK particles at tree level (left) and after the
inclusion of one loop correction (right) with Higgs mass mh = 120 GeV, 1/R = 500 GeV and
ΛR = 20. Plot courtesy [122].

A significant consequence is that at any specific level the mass of KK photon (γ(n)) receives

negligible contribution from the radiative corrections. The immediate conclusion which can be

drawn from this observation is that the first level photon, i.e. γ(1) (or B(1), so to say) is the

lightest KK particle (LKP); B(1) is a particle with odd KK-parity. The decay of this particle to

any other KK-level particle is kinematically impermissible and to SM particles is forbidden as

the very upshot of the conservation of KK-parity. Thus B(1) is a stable particle having all the

properties which can be counted as a viable dark matter candidate [128,129].
8Here mh is the mass of SM Higgs boson. After the discovery of Higgs boson [34, 126] and following the

subsequent analysis in Ref. [127], mh = 125.9± 0.4 GeV.
9In this figure, H0 is basically the SM Higgs h(0) according to the notation used in this thesis.
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2.4 Constraints on (m)UED Scenario

The (m)UED model, as we have described, is fundamentally a one-parameter extension of the

SM. Several experimental and theoretical observations put constraints on the parameter space of

(m)UED. Agashe et al. [130] first pointed out the fact that charged Higgs bosons at first KK-level

could contribute to the radiative B decays through the quark transition b → sγ. Many other

processes like K and B decays and the measurement (g − 2)µ considerably restrict the mUED

model [131]. The radiative B decays set constraint on the lower bound on R−1 as, R−1 > 250

GeV. A recent study on this same decay [132] including next-to-next-to leading order QCD

corrections contributes a stricter bound as R−1 > 323 GeV. Electroweak precision tests at the

LEP-1 and LEP-2 colliders provide slightly more stringent bounds. The mUED contributions

to the S and T parameters (represented as Ŝ and T̂ respectively) are given [133] as

Ŝ =
g2ζ(2)

4(4π)2R−2

{
2

3
m2
t +

1

6
m2
h

}
,

T̂ =
g2ζ(2)

(4π)2R−2

{
m4
t

M2
W

− 5

12

sin2 θW
cos2 θW

m2
h

}
.

The above equations show that the contribution to T̂ is much greater than to that of the Ŝ

due to the effect of large quark mass. The KK excitations of top quarks as well as of KK Higgs

states in one loop contribute to these variables at significant level, whereas the electroweak gauge

boson propagators give the merest contributions. In the wake of the discovery of Higgs boson

a detailed study has been performed on the new physics contributions to these variables [134]

which provides a constraint on the parameter space as R−1 > 680 GeV.

Another studies on (g − 2)µ [135], FCNC processes [136,137], ρ-parameter [138] and studies on

some electroweak processes [139–141] results in the lower bound on R−1 ≥ 300 GeV.

The results from the LHC and the Tevatron also set limits on (m)UED parameters. The con-

straints have been obtained from LHC analysis and also from many other experiments in search-

ing of dark matter [142–144]. Some other projected bounds from the LHC is in the range of

TeV [145–147]. The contributions coming from the KK excitations in loop modify the Higgs

production and decay rate [148]. The constraints mainly arise from gg → h→ γγ,WW ∗, ZZ∗.

However, the data from the ATLAS [149] and the CMS [150] experiments show that among

all these channels, h → WW ∗ gives the most stringent constraint on R−1. The ATLAS Higgs

data with the combined center-of-mass energies 7 TeV and 8 TeV at 25 fb−1 luminosity gives

a constraint as R−1 > 460 GeV, whereas CMS provides a much stricter bound of R−1 > 1300

GeV [151]. Such kind of large deviation occur mainly due to the large difference in signal

strengths (µ value) registered by the two experiments. In all the processes described till now,

the constraints on UED parameter space comes from their loop induced contributions to those

processes. Apart from such kind of indirect constraints, some direct searches for mUED signal
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also set limits on this scenario. Level-1 KK particles are produced in pair at the LHC and there-

after they cascade into SM particles and the LKP. A search for γγ events with large missing

transverse momentum for
√
s = 7 TeV at luminosity 4.8 fb−1 by the ATLAS experiment abso-

lutely rules out R−1 up to 1.41 TeV [152]. We know that level-2 KK gauge bosons in mUED do

not interact to any SM particle (level-0) at tree level as that would result KK-number violation.

However, an effective coupling among these particles may occur at one loop level that respect

KK-parity. This has a remarkable importance since it permits the resonance production of level-

2 gauge bosons at the LHC. Many new physics models with higher symmetry group claim the

existence of additional gauge bosons (Z ′ orW ′). The level-2 electroweak gauge bosons in mUED

(γ(2), Z(2) or W (2)±) can be considered as such additional gauge boson candidates. Clearly, the

absence of such signals, can lead to bounds on level-2 KK gauge bosons. CMS search for such

resonant Z ′ in the dilepton channel results in a constraint of R−1 > 715 GeV for mUED [153].

In previous chapter, it has been already mentioned that LKP can be a viable WIMP dark matter

candidate. The level-1 KK photon (γ(1)) can be treated as LKP and hence the prospective dark

matter candidate. The relic density is defined as the measure of dark matter present in today’s

Universe. The current value of the relic density from Planck data [61] is ΩDMh
2 ∼ 0.1198±0.0026.

In an mUED scenario corresponding to a cutoff scale Λ = 20R−1, the value of R−1 which gives

the correct relic density is around 1300 GeV [75,154]. The actual constraint may vary depending

on the nature of the dark matter and the mass splitting with other particles. However, one can

avoid the bounds in many possible ways and make the constraint more flexible. For example,

constraints are less restrictive for a Z(1) WIMP or for a multi-component dark matter scenario.

Clearly, the constraints depend on various assumptions and in actual situation may be less

stringent. It is evident that one should keep the above information in mind while studying the

mUED scenario.

So, presently the strongest bound on R−1 comes from the consideration of Higgs boson produc-

tion and decay [151] or from the consideration of relic density [75]. In the last two cases, the

derived limits are comparable and yield R−1 ≥ 1.3 TeV.

2.4.1 Finding the Cutoff

In the framework of mUED, the KK-modes of SM particles, would nontrivially affect the running

of gauge couplings and as well as the Higgs self coupling λh, which in turn affects the Higgs

mass [155, 156]. The value of λh at the Higgs mass scale is rather small λh(mh) ' 6.5 × 10−2.

With this starting value, the running of λ(Q) falls to zero as the energy scale Q rises to around

4R−1 and becomes negative around Q ∼ (5− 6)R−1. In a sense, the electroweak vacuum would

destabilize at that point and hence there must be some cutoff for the mUED theory; the UED

framework ceases to work beyond this scale and it serves as a natural cutoff of this framework.
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Clearly, R−1 being the fundamental mass gap between two consecutive KK-levels, one arrives

at this energy scale after crossing the 5-6 KK-levels.

2.5 non-minimal Universal Extra Dimensional Model

We have seen in the previous section that the mass spectrum of the mUED model can be

drastically changed by radiative corrections. The mass spectrum has been calculated under the

assumption that boundary terms do not contribute to the kinetic terms. This kind of assumption

is unnatural and has been pointed out in the Ref. [157] as there exist many boundary-localized

kinetic terms which obey all the symmetries, even KK-parity. We have also observed that

the orbifold corrections are logarithmically divergent. These can be removed by introducing

boundary-localized kinetic terms. A general form of these boundary-localized kinetic terms can

be

r{δ(y) + δ(y − πR)} × (appropriate field combinations) (2.68)

The symbol r is the free parameter of the theory. Now we can tune the parameter r in such a way

that the boundary-localized terms (BLTs) can be zero at some scale (say, at 1 TeV), but they will

be induced again radiatively at some other scale. This unknown coefficient is called boundary-

localized parameter which has to be fixed from phenomenological considerations. Every bulk

term in the model has their corresponding BLT parameter. In the following, a particular non-

minimal scenario will be considered in which the kinetic and Yukawa terms of the respective fields

as well as the mass and potential terms of the scalar fields are added to their corresponding five-

dimensional actions at the boundary points. Coefficients of the boundary-localized terms (BLTs)

are the free parameters of this model.

2.5.1 A Brief Review of the Model

In this section, we will briefly review the model (mainly in electroweak sector) to set the notations

and conventions. For completeness first we will describe the general set-up of nmUED with BLTs

and as we proceed we will point out how we can go back to UED. For a more detailed discussion

of the model see Refs. [81,128,157–174].
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2.5.1.1 Lagrangian and Interactions

To begin with, consider the five-dimensional action for quarks10. The resulting action in five

dimensions is given by

Squark =

∫
d4x

∫ πR

0
dy
[
QiΓMDMQ+ rf{δ(y) + δ(y − πR)}QiγµDµPLQ

+UiΓMDMU + rf{δ(y) + δ(y − πR)}UiγµDµPRU
+DiΓMDMD + rf{δ(y) + δ(y − πR)}DiγµDµPRD

]
, (2.69)

where the four component five-dimensional fields are comprised of chiral spinors and their

Kaluza-Klein excitations and they can be written as

Qt,b(x, y) = NQ0Q
(0)
t,bL +

∞∑
n=1

{
Q

(n)
t,bL(x)f

(n)
L (y) +Q

(n)
t,bR(x)g

(n)
L (y)

}
, (2.70a)

U(x, y) = NQ0 U
(0)
R +

∞∑
n=1

{
U

(n)
L (x)f

(n)
R (y) + U

(n)
R (x)g

(n)
R (y)

}
, (2.70b)

D(x, y) = NQ0D
(0)
R +

∞∑
n=1

{
D

(n)
L (x)f

(n)
R (y) +D

(n)
R (x)g

(n)
R (y)

}
. (2.70c)

In the effective four-dimensional theory the zero-modes of Q will give rise to the SU(2)L doublet

quarks whereas the zero-mode of U (D) will be identified with the up (down) type singlet quark,

i.e. after compactification and orbifolding the zero-modes of Q will be the left-handed doublet

comprising of SM tL and bL, whereas tR and bR would emerge from the U and D respectively.

The compact form of quark doublet is Q ≡ (Qi, Qj)
T , where i and j correspond to up type and

down type quark respectively. NQ0 is the normalization constant of the fermionic wave functions

for zero-mode. In Eq. 2.69 the terms containing the parameter rf are the BLKTs. Clearly in the

UED, rf is assumed to be vanishing. It is worth mentioning that by setting BLKT parameters

to zero one can translate from nmUED to UED.

Now, from the variation of action and considering appropriate boundary conditions, one can

obtain the y-dependent mode functions f and g:

fL(y) = gR(y) = NQn


cos[MQn

(
y − πR

2

)
]

CQn
for n even,

− sin[MQn

(
y − πR

2

)
]

SQn
for n odd,

(2.71)

10Leptonic fields will follow similar procedure.
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and

gL(y) = fR(y) = NQn


sin[MQn

(
y − πR

2

)
]

CQn
for n even,

cos[MQn

(
y − πR

2

)
]

SQn
for n odd,

(2.72)

with

CQn = cos

(
MQnπR

2

)
, SQn = sin

(
MQnπR

2

)
. (2.73)

The orthonormality conditions satisfied by fs and gs are given by∫
dy [1 + rf{δ(y) + δ(y − πR)}] k(m)(y) k(n)(y) = δmn =

∫
dy l(m)(y) l(n)(y) (2.74)

where, k can be fL or gR and l corresponds to gL or fR. From the above condition one can

obtain the normalization factors as

NQn =

√
2

πR

 1√
1 +

r2
fM

2
Qn

4 +
rf
πR

 . (2.75)

For zero-mode, the normalization constant is given by

NQ0 =
1√

rf + πR
. (2.76)

In passing, we note that rf = 0 implies the usual UED normalization
√

2/(πR) for nth mode,

whereas for zero-mode it will be
√

1/(πR). The quantity MQn in the previous equations repre-

sents the KK-mass and is given by the following transcendental equations as,

rfMQn =

 −2 tan
(
MQnπR

2

)
for n even,

2 cot
(
MQnπR

2

)
for n odd.

(2.77)

Clearly for rf = 0 we get back the UED KK-mass n/R. In Fig. 2.4 we show the dependence of

KK-mass on the BLKT parameter; here we have taken 1/R to be 1 TeV.

After discussing the fermions we now describe the actions for gauge and scalar fields and the

Yukawa interactions. The respective actions are given by,

Sgauge = −1

4

∫
d4x

∫ πR

0
dy

[∑
a

(
FMNaFaMN + rg{δ(y) + δ(y − πR)}FµνaFaµν

)
+ BMNBMN + rg{δ(y) + δ(y − πR)}BµνBµν

]
, (2.78)

Sscalar =

∫
d4x

∫ πR

0
dy
[ (
DMΦ

)†
(DMΦ) + µ2

(5)hΦ†Φ− λ(5)h(Φ†Φ)
2
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Figure 2.4: Dependence of first KK-level mass on the BLKT parameter for 1/R = 1 TeV.

+ {δ(y) + δ(y − πR)}{rφ (DµΦ)† (DµΦ)

+ µ2
BΦ†Φ− λB(Φ†Φ)

2}
]
, (2.79)

Syuk = −
∫
d4x

∫ πR

0
dy

[
ỹuQ̄ΦcU + ỹdQ̄ΦD + ry{δ(y) + δ(y − πR)}

×
(
ỹuQ̄LΦ̃UR + ỹdQ̄LΦDR

)
+ h.c.

]
. (2.80)

All the conventions of field-strength tensors, Higgs doublet, gamma matrices and five-dimensional

metric are same as given in Sec. 2.2.4. The BLKT parameters for gauge and scalar fields are rg
and rφ respectively, whereas ry denotes the boundary-localized Yukawa parameter. The symbols

µ(5)h and λ(5)h respectively represent the five-dimensional bulk Higgs mass parameter and scalar

self-coupling (Sec. 2.2.4); µB and λB are the boundary-localized Higgs mass parameters and

the scalar quartic coupling respectively. In the limit, rφ = rg the scalar and gauge fields will

have the same y-dependent profile given in Eqs. 2.81 and 2.82. If the two BLT parameters are

taken to be different, the breakdown of electroweak symmetry results in a term proportional to

rφ in the differential equations governing the dynamics of the gauge profile in y direction [175].

Consequently, the y-profile solutions of the gauge field will be different from what is given below

(Eqs. 2.81 and 2.82). Throughout the analysis, these two BLKT parameters rφ and rg, will be

taken as equal to avoid the nontrivial scenario. Thus the y-dependent wave functions for scalar

or gauge fields for nth KK-mode with appropriate boundary conditions are given by

f
(n)
φ = NΦn


cos(MΦn

(
y − πR

2

)
)

CΦn

for n even,

− sin(MΦn

(
y − πR

2

)
)

SΦn

for n odd.
(2.81)
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Since the fifth component of gauge field are projected out by Z2 odd condition, no zero mode

appears for W±5 , and the y-profile for nth KK-mode is given by [165,169,171,172,176]

g
(n)
φ = NΦn


sin(MΦn

(
y − πR

2

)
)

CΦn

for n even,

cos(MΦn

(
y − πR

2

)
)

SΦn

for n odd,
(2.82)

with

CΦn = cos

(
MΦnπR

2

)
, SΦn = sin

(
MΦnπR

2

)
. (2.83)

These wave functions f (n)
φ and g(n)

φ satisfy the orthonormality conditions∫
dy [1 + rf{δ(y) + δ(y − πR)}] f (n)

φ (y) f
(m)
φ (y) = δnm =

∫
dy g

(n)
φ (y) g

(m)
φ (y), (2.84)

which give the normalization constant as

NΦn =

√
2

πR

 1√
1 +

r2
φM

2
Φn

4 +
rφ
πR

 . (2.85)

The mass MΦn of the nth KK-mode now satisfies the following transcendental equations

rφMΦn =

 −2 tan
(
MΦnπR

2

)
for n even,

2 cot
(
MΦnπR

2

)
for n odd.

(2.86)

In case of nmUED, the five-dimensional gauge couplings g̃ and g̃′, are related to their four-

dimensional counterparts g and g′ by

g (g′) = NΦ0 g̃ (g̃′) =
g̃ (g̃′)√
rg + πR

. (2.87)

For the zeroth mode of Higgs to be flat [165,177] the following conditions must hold 11.

µ2
B = rφµ

2
(5)h and λB = rφλ(5)h. (2.88)

We will use ’t Hooft–Feynman gauge in our calculation and its important to spell out the gauge

fixing action in this scenario. These actions, following Refs. [169,176], are given by,

SAGF = − 1

2ξy

∫
d4x

∫ πR

0
dy
(
∂µA

µ + ξy∂5A
5
)2
, (2.89)

11If the boundary parameters are unequal in Eq. 2.79, the mass term would involve KK-mode mixing and
diagonalization of KK-mass matrix would modify the wave functions implying a y-dependent zero mode [177].
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SZGF = − 1

2ξy

∫
d4x

∫ πR

0
dy
{
∂µZ

µ + ξy(∂5Z
5

−iMZχ{1 + rφ (δ(y) + δ(y − πR))})
}2
, (2.90)

SWGF = − 1

ξy

∫
d4x

∫ πR

0
dy
∣∣∣∂µWµ+ + ξy(∂5W

5+

−iMWφ
+{1 + rφ (δ(y) + δ(y − πR))})

∣∣∣2. (2.91)

In the above, MZ and MW are the respective masses of the Z and W boson; SAGF, SZGF and SWGF

are the gauge fixing actions for photon, Z boson and W boson respectively. The gauge fixing

parameter ξy is related to physical gauge fixing parameter ξ (equals to 1 in Feynman gauge, and

0 in Landau gauge) by [169,171,172,176]

1

ξy
=

1

ξ
{1 + rφ (δ(y) + δ(y − πR))}. (2.92)

The standard procedure to calculate the effective four-dimensional couplings is to write the

original five-dimensional interaction terms and then replacing each field by their corresponding

KK expansions and then integrate out the extra coordinate y. In (m)UED this type of couplings

are equivalent to their SM counterparts. But in case of nmUED, the couplings get modification

from the overlap integrals of the form,

Iijk =

∫ πR

0
dy f (i)

α (y) f
(j)
β (y) f (k)

γ (y), (2.93)

where the Greek indices (subscripts) denotes the type of field and the Latin indices (superscripts)

refer to the KK-level of the respective fields. This type of modification in coupling is character-

istic to the nmUED scenario. The root of this modification lies in the fact that unlike (m)UED,

the KK-mode function in nmUED has BLT parameter dependence, explicitly in normalization

factors and implicitly in KK-masses. Also note that if (i + j + k) is an odd integer then these

overlap integrals vanish due to the conservation of KK-parity.

2.5.1.2 Physical Eigenstates

In the effective four-dimensional theory, the presence of higher KK-modes of various fields will

mix to give rise to physical fields. This type of mixing will be present in fermionic as well as in

scalar/gauge sector.

In the quark sector the strength of mixing is proportional to the quark mass. Thus it is significant

for top sector. This mixing matrix can be diagonalized by separate unitary matrices for left-
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and right-handed quarks:

U
(n)
L =

(
− cosαn sinαn

sinαn cosαn

)
, U

(n)
R =

(
cosαn − sinαn

sinαn cosαn

)
, (2.94)

where αn = 1
2 tan−1

(
mt
MQn

)
with mt denoting the SM top quark mass. In nth KK-level, mass

term can be written as,

(
Q̄

(m)
iL

Ū
(m)
L

)(−MQnδ
mn miα1Imn

miα1 MQnδ
mn

)(
Q

(n)
iR

U
(n)
R

)
+ h.c., (2.95)

where MQn are the solutions of transcendental equations given in Eq. 2.77. Imn is an overlap

integral of the form ∫ πR

0
[1 + ry{δ(y) + δ(y − πR)}] f (m)

L (y)g
(n)
R (y) dy,

and

α1 =
πR+ rf
πR+ rY

.

In general Imn is nonzero whether n = m or n 6= m. However, the n 6= m case would lead to the

KK-mode mixing among the quarks of a particular flavor. An interesting point to note is that

for the choice rf = ry, Imn = δmn and obviously α1 = 1. Thus to get a simpler form of fermion

mixing matrix and avoid the mode mixing we will stick to the choice of equal ry and rf . Taking

into account of these matrices one can now relate the gauge eigenstates Q(n)
i (U (n)) and mass

eigenstates Q′(n)
i (U ′(n)) as (in this notation i refers to the up quark flavor),

Q
(n)
iL/R

= ∓ cosαnQ
′(n)
iL/R

+ sinαnU
′(n)
L/R, (2.96a)

U
(n)
L/R = ± sinαnQ

′(n)
iL/R

+ cosαnU
′(n)
L/R. (2.96b)

The mass eigenstates, in this case, share the same mass eigenvalue,

m
Q
′(n)
t

= mU ′(n) =
√
m2
t +M2

Qn ≡Mtop. (2.97)

Similar procedure follows for the down sector also. While dealing with the four-dimensional

effective Lagrangian there also exist bilinear terms involving the KK excitations (from first and

higher KK-levels) of the 5th components of Z bosons and the KK excitations of χ(0) of the

Higgs doublet field; and similarly there are mixing terms between the 5th component of W±

and the KK excitations of φ(0)± of the Higgs doublet field [124]. Mixing between A(n)
µ and A(n)

5

cancels by adding SAGF, and the new spectrum consists of a massless zero-mode photon, a tower

of KK-modes with masses M2
Φn for both A

(n)
µ and A

(n)
5 . Using the gauge fixing actions and
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appropriate mode functions of gauge and scalar fields (Eqs. 2.81, 2.82) and finally integrating

over y, the mass matrices for the mixing between KK-modes of Z5(n) and χ(n) and that for the

mixing between the KK-modes of W±(n)
5 and φ±(n) are respectively given by

(
Z5(n) χ(n)

)( M2
Z + ξM2

Φn (1− ξ)MZMΦn

(1− ξ)MZMΦn M2
Φn + ξM2

Z

)(
Z5(n)

χ(n)

)
, (2.98)

and

(
W

(n)−
5 φ(n)−

)( M2
W + ξM2

Φn −i(1− ξ)MWMΦn

i(1− ξ)MWMΦn M2
Φn + ξM2

W

)(
W

(n)+
5

φ(n)+

)
+ h.c.. (2.99)

Diagonalization of the mass matrix present in Eq. 2.98 would lead to a tower of Goldstone

modes of Z (G(n)
Z with mass-squared ξ(M2

Φn + M2
Z)) and a physical CP-odd scalars (A(n) with

mass-squared M2
Φn +M2

Z) respectively given as

G
(n)
Z =

1

MZn

(
−MΦnZ

5(n) +MZχ
(n)
)
, (2.100a)

A(n) =
1

MZn

(
MΦnχ

(n) +MZZ
5(n)
)
. (2.100b)

A similar diagonalization in Eq. 2.99 would also generate KK-tower of charged Goldstone bosons

(with mass-squared ξ(M2
Φn+M2

W )) and a physical charged Higgs pair (with mass-squaredM2
Φn+

M2
W ) given by

G±(n) =
1

MWn

(
MΦnW

±5(n) ∓ iMWφ
±(n)

)
, (2.101a)

H±(n) =
1

MWn

(
MΦnφ

±(n) ∓ iMWW
±5(n)

)
. (2.101b)

The fields Zµ(n), G(n)
Z and A(n) all possess the common mass eigenvalue asMZn ≡

√
M2

Φn +M2
Z .

SimilarlyWµ(n)±, G(n)± and H(n)± share the same mass eigenvalueMWn ≡
√
M2

Φn +M2
W in ’t-

Hooft Feynman gauge (ξ = 1). The above combinations of charged Higgs and charged Goldstone

ensure the vanishing coupling of Aµ(0)H(n)±W
(n)∓
ν

12.
12However, another important point to obtain these combinations is to remain careful about the sign used before

the non-abelian part of the field strength tensor FaMN ; the couplings required for the above combination comes
from (DµΦ)† (DµΦ) and Faµ5Fµ5a. The expressions of the charged Higgs and charged Goldstone modes do not
depend on the sign used in (DµΦ)† (DµΦ), but depends on whether FaMN is

(
∂MWa

N − ∂NWa
M + g̃fabcWb

MWc
N

)
or
(
∂MWa

N − ∂NWa
M − g̃fabcWb

MWc
N

)
. For FaMN ≡

(
∂MWa

N − ∂NWa
M − g̃fabcWb

MWc
N

)
, the combinations which

give the vanishing coupling of Aµ(0)H(n)±W
(n)∓
ν are

G±(n) =
1

MWn

(
MΦnW

±(n)
5 ∓ iMWφ

±(n)
)
,

H±(n) =
1

MWn

(
MΦnφ

±(n) ∓ iMWW
±(n)
5

)
.
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2.5.1.3 Asymmetric BLTs

In passing it is worth mentioning that we have used symmetric BLTs which respects KK-parity.

If the BLT parameter r is taken to be different at two boundary points, then we have asymmetric

BLTs which eventually violate KK-parity. The example of this is given below:

r{δ(y) + δ(y − πR)}︸ ︷︷ ︸
Symmetric BLT

and {r1δ(y) + r2δ(y − πR)}︸ ︷︷ ︸
Asymmetric BLT

.

The asymmetric BLTs do not obey KK-parity [159]. It has been mentioned that KK-parity is

nothing but a remaining translational invariance under the transformation, y → y − πR. For

symmetric BLTs, we have

r{δ(y) + δ(y − πR)} → r{δ(y − πR) + δ(y − 2πR)}
= r{δ(y − πR) + δ(y)}, (2.102)

whereas the asymmetric BLTs result in

{r1δ(y) + r2δ(y − πR)} → {r1δ(y − πR) + r2δ(y − 2πR)}
= {r1δ(y − πR) + r2δ(y)}, (2.103)

Clearly, Eqs. 2.102 and 2.103 show that under y → y − πR the symmetric BLT case remains

invariant, which preserves KK-parity, but asymmetric BLTs do not respect KK-parity. Although

violation of KK-parity would lead to unstable LKP which in turn results in the lack of good

motivation of the Universal Extra Dimensional scenario regarding dark matter, but it has some

interesting phenomenology in the context of collider physics [166, 167, 170]. In the literatures

(e.g. in Refs. [164,165,177]) sometimes, the orbifold fixed points are taken at y = +πR/2 and at

y = −πR/2. In that case, the respective BLT is written as r{δ(y−L)+δ(y+L)}. By introducing

a simple mapping y → y + πR
2 the results from here to that of Refs. [164, 165, 168–173] can be

obtained, provided the other conventions are taken care of properly. Thus we see that nmUED

differs from UED scenario in two ways. The presence of BLTs firstly modify the mass spectrum

and secondly the coupling from that of UED values. It is noteworthy that mUED scenario

corresponds to an intermediate state between UED and nmUED. In the mUED scenario, the

mass corrections are only taken into account but the couplings are left unaltered as that of the

UED case.



3
nmUED Confronts Unitarity

In the Standard Model (SM), the presence of Higgs boson ensures the complete restoration of

unitarity in the longitudinal scattering of vector bosons (VL, where V = W,Z) at tree level. In a

seminal paper by Lee, Quigg and Thacker (LQT) [178], it has been shown that the VLVL → VLVL

scattering amplitudes grow with center of mass energy (E) if Higgs boson is not included. The

immediate ramification of the absence of Higgs boson in the theory is unitarity violation which in

turn implies the breakdown of quantum mechanical sense of conservation of probability in these

scattering amplitudes. Ref. [178] shows that the Higgs mass mh should be less than 1 TeV to

respect unitarity. The discovery of Higgs boson in LHC [34,35] having mass 125 GeV (which is

obviously much lower than the bound mentioned in Ref. [178]) reflects the fact that any process

involving the longitudinal vector bosons as well as any other SM particles in external state would

remain well-behaved at any arbitrary high energies.

However, in five-dimensional Universal Extra Dimensional model with the missing Kaluza-Klein

(KK) Higgs sector, the longitudinal scattering of gauge bosons do not respect partial wave

unitarity if other KK-modes are involved. With the inclusion of higher modes of Higgs boson

the unitarity is completely preserved [142]. But this is the case of the five-dimensional Universal

Extra Dimensional model, where there is no boundary-localized terms (BLT) and the theory is

effectively one parameter theory. In this case the only parameter R−1 does not play any role

in unitarity violation. Things appear to be certainly different in non-minimal Universal Extra

Dimensional (nmUED) scenario where the BLTs are present. These terms are associated with

57
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corresponding parameters which are called boundary-localized parameters and it is still a matter

of analysis whether BLTs play any role in unitarity violation.

In nmUED, many studies have been done to find the lower limit of the inverse of compactification

radius R−1 as well as to constrain the allowed range of BLT parameters [164,169,172] till date.

But no robust studies have been performed yet to set the upper limit on these parameters. The

Refs. [122,125] have shown that the boundary terms are generated by radiative corrections and

in a sense, are loop suppressed. Still it is not apparent and not even very clear what would be

the actual range of the BLT parameters, the new parameters of the theory. Though the BLT

parameters are the coefficients of boundary-localized terms originated from radiative corrections,

no drastic conclusion, such as they should be small, can be drawn about their range like since

the other parts of the Lagrangian are dependent on these parameters too. Boundary-localized

parameters might have some higher values and still can altogether result in BLTs which are in

effect loop suppressed. These boundary terms can be considered as some effective operators with

some unknown coefficients. All in all, a study of unitarity is therefore essential for determining

the upper bound in four-dimensional effective theory. This chapter includes a detailed study

on unitarity in gauge and scalar sectors that would set an upper limit on the respective BLT

parameters.

We begin by reviewing the basic idea of implementation of unitarity constraint and a short

description of the Lagrangian and interactions required in this analysis. Then we refer the

processes needed in the analysis. After that we compute the bounds on the parameters. This

chapter follows largely from Ref. [173].

3.1 Unitarity Constraints

Any 2 → 2 scattering amplitudes,M(θ) can be expressed in terms of scattering angle θ. That

in turn can be expanded in terms of an infinite sum of partial waves as

M(θ) = 16π

∞∑
J=0

aJ (2J + 1)PJ(cos θ). (3.1)

Here, aJ represents the scattering amplitude of Jth partial wave and PJ(cos θ) is Jth order

Legendre polynomial. Refs. [178,179] show that the unitarity constraints of scattering amplitudes

can be manifested as constraints on partial-wave coefficients, in particular on the zeroth partial

wave amplitudes a0 as

|Re (a0)| ≤ 1

2
. (3.2)

By exploiting the equivalence theorem [178] in the high energy limit the unphysical scalars of

the theory can be used instead of the original longitudinal components of the gauge bosons. The
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relevant 2 → 2 scatterings should get contributions from the quartic couplings only. The con-

tributions coming from the trilinear couplings can be safely ignored as the diagrams originating

from those couplings will have an E2-suppression due to intermediate propagators. Following

Ref. [178] a t-matrix (which is t0 for J = 0) can be constructed from different two-particle states

represented as rows and columns. Evidently each matrix element corresponds to the scattering

amplitudes between the respective 2-particle state in the row and in the column. Consequently,

the unitarity constraint can be manifested as the bounds on the eigenvalues of the matrix (t0)

given by

|M| ≤ 8π. (3.3)

However, the procedure of finding the constraint as the bounds on the eigenvalues of matrix can

be extremely complicated and leads to an unpalatable scenario in the case of nmUED. In many

cases, the trilinear couplings are proportional to the KK-masses. Consequently the contributions

coming from these trilinear terms can not be ignored as the matrix elements in those cases are the

functions of s, where
√
s denotes the center of mass energy of the respective scattering processes.

So one can end up with an intractable determinant [180]. But this conclusion comes with a caveat

that single channel scattering is not enough to analyze the bad high energy behaviour in any

five-dimensional compactified theory, whereas the coupled channel analysis is preferable for the

study of unitarity violation [179]. Coupled channel analysis is performed by constructing a t0

matrix for all suitable scattering channels and obtaining the eigenvalues as functions of the model

parameters, and hence demanding that no eigenvalues should exceed 8π. Thus, in the present

scenario, we would first like to obtain the expressions of a0 for every possible 2→ 2 process in the

entire scalar sector of nmUED model. In those cases, the quartic couplings are not suppressed

by KK-masses and the BLT parameters can be constrained from Eq. 3.2. Following this we can

perform the coupled channel analysis with some selective channels which do not eventually fall

with
√
s and can further constrain the bounds on parameters using Eq. 3.3.

3.2 Lagrangian and Interactions

Now we briefly discuss the Lagrangian and interactions required in the analysis of finding the

bound on BLT parameters from unitarity. In this case, all we need are five-dimensional action for

gauge fields given in Eq. 2.78 and for the scalar fields given by Eq. 2.79. Here, the kinetic terms

for gauge and scalar fields as well as the mass and interaction terms of scalar fields are added

to their respective five-dimensional actions at the boundary points. Substituting the Eq. 2.88 in

Eq. 2.79, we can have the form of five-dimensional Lagrangian of scalar field LΦ as

LΦ =

∫ πR

0
dy
[
{1 + rφ (δ(y) + δ(y − πR))} (DµΦ)† (DµΦ)



Chapter 3. nmUED Confronts Unitarity 60

+{1 + rφ (δ(y) + δ(y − πR))}(µ2
(5)hΦ†Φ− λ(5)h(Φ†Φ)

2
)− (D5Φ)†(D5Φ)

]
. (3.4)

The terms
∫ πR

0 dy{1+rφ (δ(y) + δ(y − πR))}(µ2
(5)hΦ†Φ−λ(5)h(Φ†Φ)

2
) and

∫ πR
0 dy{−(D5Φ)†(D5

Φ)} in the above equation contribute to the required scalar interactions. Since by virtue of

the equivalence theorem in the high energy limit, we can replace all the longitudinal modes

of gauge bosons by their respective unphysical scalars or Goldstone modes [178], only scalar

interactions are required in this analysis. The Higgs doublet Φ can be expanded [181, 182] in

terms of zero-mode and its KK-tower as

Φ =
1√

rφ + πR
Φ(0) + Φ(n)f

(n)
φ ,

and consequently D5Φ can be written as

D5Φ = −MΦnΦ(n)g
(n)
φ − iX̃ (n)g

(n)
φ

Φ0√
rφ + πR

− iX̃ (p)g
(p)
φ Φ(n)f

(n)
φ ,

with

X̃ (n) =
1

2

(
g̃W(n)3

5 + g̃′B(n)
5

√
2g̃W

(n)+
5√

2g̃W
(n)−
5 −g̃W(n)3

5 + g̃′B(n)
5

)
(3.5)

Substituting all the required y-profiles in the above and integrating over the extra dimension y,

the final form of the last two parts of Eq. 3.4 (denoted as L1 and L2) can be represented as

L1 = µ2
h(Φ(0)†Φ(0))− λh(Φ(0)†Φ(0))2 + µ2

h(Φ(n)†Φ(n))− 2λh(Φ(0)†Φ(0))(Φ(n)†Φ(n))

−λh(Φ(0)†Φ(n) + Φ(n)†Φ(0))(Φ(0)†Φ(n) + Φ(n)†Φ(0))

−2λh Inpq(Φ(0)†Φ(n) + Φ(n)†Φ(0))(Φ(p)†Φ(q))− λh Inpqr(Φ(n)†Φ(p))(Φ(q)†Φ(r)), (3.6)

L2 = −M2
ΦnΦ(n)†Φ(n) − iMΦnΦ(n)†X (n)Φ(0) + iMΦnΦ(0)†X †(n)Φ(n) − Φ(0)†X †(n)X (n)Φ(0)

−iMΦn I1
npqΦ(n)†X (p)Φ(q) + iMΦq I1

pqnΦ(n)†X (p)†Φ(q) − I1
npqΦ(0)†X (n)†X (p)Φ(q)

−I1
pqnΦ(n)†X (p)†X (q)Φ(0) − I1

pqnΦ(n)†X (p)†X (q)Φ(0)

−I1
prnqΦ(n)†X (p)†X (r)Φ(q), (3.7)

where the sum over all possible KK-indices are implied. In the above, λh is the four-dimensional

counterpart of λ(5)h given as

λh =
λ(5)h

rφ + πR
,

and µh is related to its five-dimensional counterpart as

µh = µ(5)h.
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Here X s are the matrices given as

X (n) =
1

2

(
gW(n)3

5 + g′B(n)
5

√
2gW

(n)+
5√

2gW
(n)−
5 −gW(n)3

5 + g′B(n)
5

)
(3.8)

and are related to its five-dimensional counterpart X̃ as

X (n) =
X̃ (n)√
rg + πR

. (3.9)

The overlap integrals1 arising from the integrations of y-profiles are given as

Inpq =
√
rφ + πR

∫ πR

0
dy [1 + rφ{δ(y) + δ(y − πR)}]f (n)

φ f
(p)
φ f

(q)
φ , (3.10)

Inpqr = (rφ + πR)

∫ πR

0
dy [1 + rφ{δ(y) + δ(y − πR)}]f (n)

φ f
(p)
φ f

(q)
φ f

(r)
φ , (3.11)

I1
npq =

√
rφ + πR

∫ πR

0
dy g

(n)
φ g

(p)
φ f

(q)
φ , (3.12)

I1
pqn =

√
rφ + πR

∫ πR

0
dy g

(p)
φ g

(q)
φ f

(n)
φ , (3.13)

I1
prnq = (rφ + πR)

∫ πR

0
dy g

(p)
φ g

(r)
φ f

(n)
φ f

(q)
φ . (3.14)

From Eqs. 3.6 and 3.7, we obtain the mass of nth mode Higgs as mhn ≡
√
M2

Φn +m2
h, mh being

the mass of zero-mode Higgs. The overlap integrals are nonzero when the sum of all indices

(n+p+q+r) are even and their values will be zero when the sum is odd due to the conservation

of KK-parity. Substituting all the expressions (Eqs. 2.100 and 2.101) in terms of A(n), G(n)
Z ,

H(n)± and G(n)± in Eqs. 3.6 and 3.7 all the couplings and interactions can be obtained. We list

all the necessary Feynman rules in Appendices A, B and E.

3.3 Relevant Scattering Processes

Now we are all set to discuss on the relevant processes to find the upper bound on gauge

and scalar BLT parameters from unitarity analysis using Eq. 3.2. Initially we will restrict our

calculations to (n), (n) → (n), (n) processes. In these processes, the KK-numbers of the initial

and the final states are same and respective quartic couplings are not suppressed by KK-masses.

In scalar sector we have altogether 13 processes satisfying these conditions. Considering 2 → 2

processes, we have neutral two-particle states and charged two-particle states.
1Overlap integrals are actually absent in UED as the wave functions are of simple form like sin(ny

R
) or cos(ny

R
).
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The bases of neutral two-particle states are

{h(n)h(n)

√
2

,
A(n)A(n)

√
2

,
G

(n)
Z G

(n)
Z√

2
, G

(n)
Z A(n), H(n)+H(n)−, H(n)±G(n)∓

}
and

{
h(n)A(n), h(n)G

(n)
Z

}
, (3.15)

and the bases of charged two-particle states are given by{
H(n)±h(n), G(n)±h(n), H(n)±G

(n)
Z

}
and

{
H(n)±A(n), G(n)±A(n)

}
. (3.16)

Eqs. 3.15 and 3.16 show that there exist two types of neutral two-particle states and two kinds

of charged two-particle states respectively. Since we are working in CP-conserving scenario,

with h(n) being CP-even and A(n), G
(n)
Z being CP-odd it is evident that there will be no mutual

interactions among these two different kind of states. The diagrams for all necessary processes

are shown in Figs. 3.1-3.6, and their corresponding expressions of a0 are given in Appendices C

and D. In this entire analysis, we have not considered the radiative corrections of Weinberg angle

(θW ) [122] which arises due to the presence of KK-modes.
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Figure 3.1: Diagrams for the processes h(n)(1)h(n)(2) → h(n)(3)h(n)(4), A(n)(1)A(n)(2) →
A(n)(3)A(n)(4), G(n)

Z (1)A(n)(2)→ G
(n)
Z (3)A(n)(4).

The quartic couplings showed in Fig. 3.3 (a) can also generate the processes h(n)h(n) → G
(n)
Z G

(n)
Z ,

h(n)h(n) → A(n)A(n). But the amplitudes in the latter cases will be suppressed by a factor of

1/2 as compared to the amplitudes of the processes given in Fig. 3.3. This suppression occurs

due to the normalization factor 1/
√

2 arising from the presence of the same bosonic states both

in the initial and final states. Same argument will hold for the process A(n)A(n) → G
(n)
Z G

(n)
Z

resulting from the quartic interaction given in Fig. 3.1 (a). This amplitude will be also sup-

pressed by a factor of 1/2 as compared to the process A(n)G
(n)
Z → A(n)G

(n)
Z mentioned in

Fig. 3.1 for same reason. The quartic couplings in Fig. 3.5 (a) can also give rise to the pro-

cesses h(n)h(n) → H(n)+H(n)−, h(n)h(n) → G(n)+G(n)−, A(n)A(n) → H(n)+H(n)−, A(n)A(n) →
G(n)+G(n)−, G(n)

Z G
(n)
Z → H(n)+H(n)−, which will eventually be suppressed by a factor of 1/

√
2
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Figure 3.2: Diagrams for the process involving H(n)+(1)H(n)−(2)→ H(n)+(3)H(n)−(4).
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Figure 3.3: Diagrams for the processes h(n)(1)A(n)(2) → h(n)(3)A(n)(4), h(n)(1)G
(n)
Z (2) →

h(n)(3)G
(n)
Z (4).
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Figure 3.4: Diagrams for the process h(n)(1)G
(n)
Z (2)→ H(n)±(3)G(n)∓(4).
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Figure 3.5: Diagrams for the processes H(n)±(1)h(n)(2) → H(n)±(3)h(n)(4), G(n)±(1)h(n)(2)

→ G(n)±(3)h(n)(4), H(n)±(1)A(n)(2)→ H(n)±(3)A(n)(4), G(n)±(1)A(n)(2)→ G(n)±(3)A(n)(4),
H(n)±(1)G

(n)
Z (2)→ H(n)±(3)G

(n)
Z (4).
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Figure 3.6: Diagrams for the process A(n)(1)G
(n)
Z (2)→ G(n)∓(3)H(n)±(4).

as compared to the processes mentioned in Fig. 3.5, due to the presence of identical bosonic state

in the initial (or in final) state. We are not considering those processes as the a0 in that case

will result in a unitarity violation at larger value of rφ which in turn result in a less stringent

bound as compared to the processes mentioned in Figs. 3.1, 3.3 and in Fig. 3.5.

The zeroth mode partial wave amplitude a0 for each process can be studied as the function of s

(
√
s being the center of mass energy for respective processes) for different values of rφ and one

can set an upper limit on BLT parameter by Eq. 3.2. This a0 can also be studied as function

of the BLT parameter rφ for a fixed s. The value of rφ for which |Re a0| will be greater than

half even at large limit of s, would give us the required upper bound on the BLT parameter for

a particular KK-number n.

After analyzing all the relevant (n), (n) → (n), (n) channels in detail we can perform the

coupled channel analysis (mentioned in Section 3.1) for suitable set of channels to obtain further

constriant on the upper bound on BLT parameters [179]. However, it is not possible to obtain

the channels for this purpose before acquiring the results of single channel scattering analysis.
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The computation of t0 matrix with appropriate basis and the bounds obtained from this will be

analyzed elaborately in the next section after getting the results of (n), (n)→ (n), (n) scattering.

3.4 Obtaining the Bounds on BLT Parameters

3.4.1 (n), (n) → (n), (n) Processes

We start this section by a discussion about the variations of a0 for different processes as function

of s for a fixed value of BLT parameter rφ and vice versa. Since we are dealing only with the

(n), (n)→ (n), (n) processes, the variation of a0 will be analyzed for specific KK-modes. In this

single channel scattering analysis, we restrict ourselves to the KK-number up to 4. It would be

clear in the latter part of this section that to obtain suitable channels for the coupled channel

analysis it is sufficient to study the single channel analysis with KK-mode up to 4.

The Fig. 3.7 shows the variation of a0 for these six processes h(n)h(n) → h(n)h(n), A(n)A(n) →
A(n)A(n),H(n)+H(n)− → H(n)+H(n)−, h(n)A(n) → h(n)A(n),H(n)±A(n) → H(n)±A(n),H(n)±h(n)

→ H(n)±h(n). The BLKT parameter rφ is a dimensionful parameter. For convenience, we will

use scaled BLKT parameter Rφ ≡ rφ/R while presenting our results. Each plot has two hori-

zontal axes, the lower one corresponds to sR2 and the other corresponds to Rφ. The vertical

axis represents the values of a0 for different values of s and Rφ. Here the value of R−1 is taken

as 1500 GeV. These figures reflect that for n = 1, the |Re a0| is much less than half with the

variation of s even at very large value of Rφ. We can see from these figures that |Re a0| is almost

independent of s for n = 1 and there is no unitarity violation for n = 1.

The entire scenario has been changed for KK-number n = 2. From the Fig. 3.7, it is very clear

that the variation of a0 is quite different for n = 2 from the variation of a0 for n = 1. In this case,

|Re a0| can be greater than half for some specific value of Rφ for a given value of R−1. As ex-

ample, at R−1 = 1500 GeV, |Re a0| for the processes h(n)h(n) → h(n)h(n), A(n)A(n) → A(n)A(n),

H(n)+H(n)− → H(n)+H(n)−, h(n)A(n) → h(n)A(n), H(n)±A(n) → H(n)±A(n), H(n)±h(n) →
H(n)±h(n) becomes greater than half when the respective values of Rφ are 138, 138, 103, 206,

207 and 206. This will remain same even at large value of sR2. Clearly among all the processes

mentioned in Fig. 3.7, the process H(n)+H(n)− → H(n)+H(n)− gives the most stringent upper

limit on the value of Rφ (Fig. 3.7 (c)) for n = 2. One can see at Rφ = 103, the value of |Re a0|
becomes greater than half signaling the breakdown of unitarity.

The discontinuity along the curves in Fig. 3.7 corresponds to different values of pole masses

of the propagators. KK-parity conservation ensures that whether n = 1 or n = 2, only even

KK-modes can contribute along the propagators (the KK index along the propagator is denoted

by q). These plots also reflect that if a0 is considered as a function of Rφ for a particular sR2 for
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Figure 3.7: Variation of a0 as a function of sR2 for different KK-mode with different val-
ues of Rφ, and also as a function of Rφ for second KK-mode with sR2 = 50. Each plot
has two horizontal axes. The lowest one corresponds to sR2 for different values of Rφ and
the upper one shows the variation of a0 as a function of Rφ for a fixed value of sR2. Both
dependences have been shown for specific KK-modes. Variations of a0 for the processes
h(n)h(n) → h(n)h(n), A(n)A(n) → A(n)A(n), H(n)+H(n)− → H(n)+H(n)−, h(n)A(n) → h(n)A(n),
H(n)±A(n) → H(n)±A(n), H(n)±h(n) → H(n)±h(n) are presented with R−1 =1500 GeV.
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specific KK-mode (in Fig. 3.7, sR2 = 50 and n = 2), variation of |Re a0| is a straight line and

will be greater than half at the same value of Rφ at which the unitarity violation occurs with

the variation of sR2 even at large s limit.

For n = 3 and n = 4, with R−1 = 1500 GeV, the values of Rφ at which |Re a0| > 1/2 are shown

in Table 3.1. For higher values of KK-modes unitarity breaks down at relatively lower values of

Rφ reducing the allowed upper bound of BLT parameters. The data in the table exhibits that

the process H(n)+H(n)− → H(n)+H(n)− gives the tightest upper bound on Rφ; for n = 3 and

n = 4 the bounds are slightly different, Rφ should be less than 99.9 for n = 3 and 99.4 for n = 4.

Processes Value of Rφ
(n = 3)

Value of Rφ
(n = 4)

h(n)h(n) → h(n)h(n) 134.2 133.9
A(n)A(n) → A(n)A(n) 134.2 133.7

H(n)+H(n)− → H(n)+H(n)− 99.9 99.4
h(n)A(n) → h(n)A(n) 202.1 202

H(n)±A(n) → H(n)±A(n) 202.9 202.2
H(n)±h(n) → H(n)±h(n) 202 201.3

Table 3.1: Values of Rφ for the KK-modes n = 3 and n = 4 for the processes h(n)h(n)

→ h(n)h(n), A(n)A(n) → A(n)A(n), H(n)+H(n)− → H(n)+H(n)−, h(n)A(n) → h(n)A(n),
H(n)±A(n) → H(n)±A(n), H(n)±h(n) → H(n)±h(n), at which unitarity violation occurs, i.e.
|Re a0| > 1/2. Here, R−1 = 1500 GeV.

Now, it is important to check the variation of a0 as function of R−1. The Table 3.2 shows

the different values of |Re a0| of the process H(n)+H(n)− → H(n)+H(n)− corresponding to

different R−1 for KK-mode n = 2, 3 and 4. In this table, a0 is separately analyzed considering

the contributions arising due to quartic coupling and the contributions coming from quartic

coupling along with trilinear contributions. We observe that R−1 has a nominal effect on the

upper limits of Rφ and slightly shifts the bounds to a lower value for all KK-modes when R−1 is

increased. For R−1 = 1.5 TeV and n = 2, the upper bound on Rφ arising from the contributions

only from quartic interactions differs from the contributions coming from total amplitude by

0.1 only; considering the quartic interaction the upper bound would be Rφ < 103. This small

discrepancy vanishes with higher values of R−1 (say, 10 TeV) which results in a nominal shift

in bound as Rφ < 102.6 for same KK-mode. The discrepancy vanishes absolutely for R−1 from

5 TeV onwards for all KK-modes. For n = 3 and n = 4, Rφ should be less than 99.8 and 99.3

respectively at R−1 = 10 TeV. Clearly for sufficient large values of R−1, trilinear contributions

are fully suppressed by E2 and a0 solely depends on Rφ and not on R−1; the contributions are

effectively governed by quartic couplings. Evidently the sum over KK-modes in the propagators

which has been taken up to 4th KK-level does not affect the result considerably. The quartic

couplings in the processes mentioned in Fig. 3.7 are not suppressed by KK-masses and also the
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overlap integrals are independent of R−1; consequently the results have nominal dependence on

R−1.

The
Value of
R−1

in GeV

The value of Rφ for |Re a0| > 1
2

for different KK-modes
n = 2 n = 3 n = 4

From quartic
coupling

From total
amplitude

From quartic
coupling

From total
amplitude

From quartic
coupling

From total
amplitude

1500 103 103.1 99.9 99.9 99.3 99.4
2500 102.8 102.8 99.9 99.9 99.3 99.3
5000 102.6 102.6 99.8 99.8 99.3 99.3
7500 102.6 102.6 99.8 99.8 99.3 99.3
10000 102.6 102.6 99.8 99.8 99.3 99.3

Table 3.2: Value of Rφ signaling the breakdown of unitarity for the process H(n)+H(n)− →
H(n)+H(n)− for different KK-modes and for different values of R−1 (GeV). Here contributions
to a0 from quartic coupling and that from the total amplitude have been presented separately.

The Fig. 3.8 shows the variation of a0 for the processes G(n)±A(n) → G(n)±A(n), G(n)±h(n) →
G(n)±h(n), G(n)

Z A(n) → G
(n)
Z A(n), h(n)G

(n)
Z → h(n)G

(n)
Z as a function of sR2. For KK-mode n = 1

there is no unitarity violation. For n = 2, the specific nature of a0 due the contributions of quartic

coupling and that from the total amplitude have been separately presented for a particular value

of Rφ. As an example, for the process G(n)±A(n) → G(n)±A(n), |Re a0| will become 1/2 for

Rφ = 741, whereas the contributions coming from total amplitude are much less than half.

The trilinear coupling in this case is effectively proportional to KK-masses and consequently

the numerator in the terms generated from trilinear couplings is effectively proportional to the

square of KK-masses. Thus, a0 coming from the contributions of trilinear interactions falls from

much higher value than 1/2, resulting in a falling nature of a0 with variation of s initially. In

Fig. 3.8, R−1 is taken as 1500 GeV. Evidently higher value of R−1 will result in a higher rate of

falling of a0 with sR2. Besides, Fig. 3.8 shows that the E2-suppression increases with increasing

value of s. The uniratity violation will occur either at very large value of Rφ or at very large

value of s. It is very clear that the contributions coming from trilinear couplings can not be

ignored when the couplings are effectively proportional to KK-masses. Higher KK-modes follow

the similar explanations. In this case also, the sum over KK-modes in the propagators has been

taken up to 4th KK-level. Further increase in q does not change the result considerably as the

contributions from higher modes will decouple from the theory.

The other processes like A(n)G
(n)
Z → H(n)±G(n)∓, h(n)G

(n)
Z → H(n)±G(n)∓, H(n)±G

(n)
Z →

H(n)±G
(n)
Z give unitarity violation at very large values of Rφ and therefore are irrelevant to

our discussions. For some specific value of Rφ, unitarity violation occurs as a result of the large

contributions to the scattering amplitudes from the overlap integral In (for n = p = q = r, Inpqr

would be In) coming from respective quartic interactions. In the Table 3.3, the overlap integral

In is presented as a function of Rφ for different KK-modes (n = 1 − 4). This table shows that
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Figure 3.8: Variation of a0 for processes G(n)±A(n) → G(n)±A(n), G(n)±h(n) → G(n)±h(n),
G

(n)
Z A(n) → G

(n)
Z A(n), h(n)G

(n)
Z → h(n)G

(n)
Z as a function of sR2 with different KK-modes for

different values of Rφ. Here R−1 is taken as 1500 GeV.

In is very small for n = 1 even at very large value of Rφ, rather it decreases with increasing Rφ.

This eventually reflects the fact why there is no unitarity violation at n = 1.

3.4.2 Coupled Channel Analysis

In the previous section 3.4.1, we have shown a detailed analysis of unitarity violation from a set

of suitable (n), (n) → (n), (n) channels. Coupled channel analysis should be taken into account

to get further constraint on the BLT parameter Rφ. The coupled channel analysis includes

the construction of t0 matrix generated by different two-body channels as rows and columns;

restoration of unitarity demands that each of the eigenvalues of this t0 matrix should lie below

8π (Eq. 3.3). Clearly we can proceed our analysis with the processes shown in Fig. 3.7, as for

these channels unitarity violation takes place at much lower value of Rφ. In addition, there is
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Value of Rφ Value of In

(n = 1)
Value of In

(n = 2)
Value of In

(n = 3)
Value of In

(n = 4)
50 1.03 23.60 24.90 25.16
100 1.02 47.45 48.78 49.04
150 1.01 71.31 72.66 72.91
200 1.01 95.18 96.53 96.79
250 1.01 119.05 120.41 120.66
300 1.01 142.92 144.28 144.53
350 1.00 166.80 168.15 168.41
400 1.00 190.67 192.03 192.28
450 1.00 214.54 215.90 216.15
500 1.00 238.41 239.77 240.03
550 1.00 262.29 263.65 263.90
600 1.00 286.16 287.52 287.77
650 1.00 310.03 311.39 311.65
700 1.00 333.91 335.27 335.52
750 1.00 357.78 359.14 359.40
800 1.00 381.65 383.01 383.27
850 1.00 405.52 406.89 407.14
900 1.00 429.40 430.76 431.02
950 1.00 453.27 454.63 454.89
1000 1.00 477.14 478.51 478.76

Table 3.3: The overlap integral In as a function of Rφ for different KK-modes.

another advantage for taking these channels for t0 construction; they are s independent and

thus the contributions coming from trilinear couplings can safely be ignored. In this case too,

we initially start our computation with KK-modes up to 4 only.

From Fig. 3.7, we can see that there can be neutral two-particle states and charged two-particle
states in case of t0 matrix construction. In neutral scenario this t0 will be a 70× 70 matrix and
the states are given as{
h(0)h(0)

√
2

,
h(1)h(1)

√
2

,
h(2)h(2)

√
2

,
h(3)h(3)

√
2

,
h(4)h(4)

√
2

, h(0)h(1), h(0)h(2), h(0)h(3), h(0)h(4), h(1)h(2), h(1)h(3),

h(1)h(4), h(2)h(3), h(2)h(4), h(3)h(4),
A(1)A(1)

√
2

,
A(2)A(2)

√
2

,
A(3)A(3)

√
2

,
A(4)A(4)

√
2

, A(1)A(2), A(1)A(3),

A(1)A(4), A(2)A(3), A(2)A(4), A(3)A(4), φ(0)+φ(0)−, H(1)+H(1)−, H(2)+H(2)−, H(3)+H(3)−, H(4)+H(4)−,

φ(0)+H(1)−, φ(0)−H(1)+, φ(0)+H(2)−, φ(0)−H(2)+, φ(0)+H(3)−, φ(0)−H(3)+, φ(0)+H(4)−, φ(0)−H(4)+,

H(1)+H(2)−, H(2)+H(1)−, H(1)+H(3)−, H(3)+H(1)−, H(1)+H(4)−, H(4)+H(1)−, H(2)+H(3)−,

H(3)+H(2)−, H(2)+H(4)−, H(4)+H(2)−, H(3)+H(4)−, H(4)+H(3)−
}
, (3.17)

and{
h(0)A(1), h(0)A(2), h(0)A(3), h(0)A(4), h(1)A(1), h(1)A(2), h(1)A(3), h(1)A(4), h(2)A(1), h(2)A(2),
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h(2)A(3), h(2)A(4), h(3)A(1), h(3)A(2), h(3)A(3), h(3)A(4), h(4)A(1), h(4)A(2), h(4)A(3), h(4)A(4)
}
. (3.18)

As a consequence of CP conservation, 70×70 matrix will have 50×50 and 20×20 block diagonal

forms and the eigenvalues of these matrices can be separately analyzed as a function of BLT

parameter Rφ. The 50× 50 charge neutral matrix can be written as

M(1)
NC,50×50 =


A15×15 B15×10 C15×25

BT10×15 D10×10 E10×25

CT25×15 ET25×10 F25×25

 , (3.19)

where, theM(1)
NC,50×50 matrix has eigenvalues λ1la (la = 1, . . . , 50). Other charge neutral matrix

M(2)
NC,20×20 can have eigenvalues λ2lb (lb = 1, . . . , 20). General form of matrix elements are given

in Appendix E.

Similarly, charged two-particle states can have 45 × 45 matrix which comprises of 20 × 20 and

25× 25 block diagonal forms as

MCC,45×45 =

(
G20×20 020×25

025×20 H25×25

)
. (3.20)

Here, the matrices G20×20 and H25×25 have eigenvalues denoted by λ3lb (lb = 1, . . . , 20) and
λ4lc (lc = 1, . . . , 25) respectively. The set of two charge two-particle states are given by{
φ(0)+A(1), φ(0)+A(2), φ(0)+A(3), φ(0)+A(4), H(1)+A(1), H(1)+A(2), H(1)+A(3), H(1)+A(4), H(2)+A(1),

H(2)+A(2), H(2)+A(3), H(2)+A(4), H(3)+A(1), H(3)+A(2), H(3)+A(3), H(3)+A(4), H(4)+A(1), H(4)+A(2),

H(4)+A(3), H(4)+A(4)
}
, (3.21)

and{
φ(0)+h(0), φ(0)+h(1), φ(0)+h(2), φ(0)+h(3), φ(0)+h(4), H(1)+h(0), H(1)+h(1), H(1)+h(2), H(1)+h(3),

H(1)+h(4), H(2)+h(0), H(2)+h(1), H(2)+h(2), H(2)+h(3), H(2)+h(4), H(3)+h(0), H(3)+h(1), H(3)+h(2),

H(3)+h(3), H(3)+h(4), H(4)+h(0), H(4)+h(1), H(4)+h(2), H(4)+h(3), H(4)+h(4)
}
. (3.22)

Fig. 3.9 shows the variation of the largest eigenvalue corresponding to different Rφ. To find

the eigenvalues in this case, we have neglected all the masses mh,MZ ,MW with respect to KK-

masses. Further the quartic interactions in non-abelian Lagrangian part being suppressed by KK-

masses or higher power of KK-masses, the channels have negligible contributions from that part

and we have neglected that part also. Evidently, the result is R−1 independent (Appendix E).

The Table 3.2 also reflects the fact that R−1 does not play crucial role in unitarity violation.
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Figure 3.9: The variation of the largest eigenvalue (λmax) as function of Rφ.

Clearly these simplifications would not affect the actual result. Now, to respect unitarity every

eigenvalue of matrix should lie below 8π (Eq. 3.3). As consequence, the analysis of largest

eigenvalue (λmax) as function of Rφ from each set of 50, 20 or 25 number of eigenvalues would

give us the desired result. Fig. 3.9 (a) exhibits that the matrix M(1)
NC,50×50 gives the most

stringent upper bound on Rφ; at Rφ = 26.4 maximum value of λ1 exceeds 8π. Now, the upper

bound on Rφ implies a lower bound on KK-masses. In Refs. [164, 172], the dependence of KK-

masses as a function of scaled BLT parameter has been explicitly shown. The KK-mass decreases

with increasing value of Rφ so the upper bound on Rφ implies a lower bound on KK-masses.

Here, the maximum attainable value of Rφ should not exceed 26 implies a lower bound on KK-

masses which for scalars and gauge field is given by 0.22 R−1, 1.05 R−1, 2.02 R−1 and 3.02 R−1

for n = 1 − 4 respectively. Since the upper bound on Rφ is, in effect, independent of R−1, the
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results on the lower limits on KK-masses are true for any R−1.

In the above analysis, we have considered KK-modes up to 4. The higher modes will definitely

lead to higher dimensional matrices. These higher dimensional matrices would result in the

breakdown of unitarity at relatively lower value of Rφ. The above analysis shows that Eq. 3.19

gives the most stringent upper bound on Rφ and therefore we will extend our analysis with

higher KK-modes with this basis only (Eq. 3.17). In the Fig. 3.10, we can see that the upper

bound on Rφ decreases with increasing KK-modes. If nmax be the maximum KK-number taken

in the coupled channel analysis the dimension of the respective matrices would be {2(nmax +

1)2 × 2(nmax + 1)2}. Fig. 3.10 reflects that for nmax = 25 the upper bound on Rφ falls down to

nearly one. It also exhibits the fact that KK-number from 18 onwards the values of Rφ resulting

in the unitarity violation are more closely spaced. So, the inclusion of more higher modes, i.e.

KK-number from 26 onwards, will not change the upper bound on Rφ considerably.

R
φ
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20

25

30

nmax

5 10 15 20 25

Figure 3.10: The variation of Rφ (signaling the breakdown of unitarity) as function of maxi-
mum KK-number nmax considered in the analysis.

However, in Refs. [169, 172] it has been shown explicitly that in case of loop induced decay

processes (Sec. 4) higher modes from 5 or 6 onwards, will not change the physical amplitudes

significantly. In those cases, the upper bound on Rφ can be taken as high as 19, because for

nmax = 5 the violation would occur at Rφ ∼ 20. Another noteworthy issue in this case is that

the determination of the upper bound on n from unitarity analysis is not possible which can be

straightforwardly done in some other five-dimensional theories. The Ref. [179] shows that for a

fixed value of R−1 one can find a lower bound on the KK-number n as

n

R
≤ 8π2

N

1

g̃2
, (3.23)

for a five-dimensional SU(N) Yang-Mills theory. In our case, i.e. in nmUED, the scenario

is somewhat more nontrivial with the existence of the BLKT parameters which were absent
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in the simple Universal Extra Dimensional theories. In this scenario with BLT parameters, the

normalized four-dimensional gauge-singlet s-wave amplitude a0[(n), (n)→ (m), (m)] of Ref. [179]

will be modified by some overlap integrals as

a0[(n), (n)→ (m), (m)] = Innmm
n

R

Ng̃2

16π2
, (3.24)

where, Innmm is the overlap integral of Eq. 3.11. Consequently, Eq. 3.23 will be modified as

n

R
≤ 1

Innmm
8π2

Ng̃2
. (3.25)

The expression of overlap integral Innmm is given by

Innmm =
1(

1 +
(RφmΦn)2

4 +
Rφ
π

)(
1 +

(RφmΦm)2

4 +
Rφ
π

) {1 +
2Rφ
π

+
R2
φ

π2
+

1

4
(RφmΦn)2

+
1

4
(RφmΦm)2 +

1

16
(R2

φmΦnmΦm)2 −
R2
φ

4π2
(RφmΦn)2 −

R2
φ

4π2
(RφmΦm)2

+
Rφ
16π

(R2
φmΦnmΦm)2

}
. (3.26)

If we consider a0[(n), (n)→ (n), (n)] instead of a0[(n), (n)→ (m), (m)] in Eq. 3.24, the overlap

integral Innmm will be replaced by In and that is given as

In =
3(

1 +
(RφmΦn)2

4 +
Rφ
π

)2

{
1

2
+
Rφ
π

+
R2
φ

2π2
+

1

4
(RφmΦn)2 +

Rφ
8π

(RφmΦn)2

− 1

8π2
(R2

φmΦn)2 +
1

32
(RφmΦn)4 +

Rφ
32π

(RφmΦn)4

}
. (3.27)

Clearly, the overlap integrals are not directly proportional to the BLT parameter Rφ. Moreover,

these overlap integrals are explicit functions of Rφ as well as of mΦn ≡ MΦnR. On the other

hand, mΦn has an implicit dependence on the KK-number n. Overall, there would exist one

possibility to find out the bound on n through unitarity analysis that at some nmax unitarity

violation would occur at every possible value of Rφ. As from Eq. 2.87 it is very clear that

Rφ should be greater than (−π), so if an nmax is to be considered as the upper bound in the

nmUED scenario, violation would occur at least for Rφ = (−2.99) or Rφ = (−3.0). Though the

Fig. 3.10 reflects that the inclusion of higher KK-modes would result in unitarity violation at

much lower value of Rφ, it also exhibits that from KK-number 18 onwards the values of Rφ at

which the unitarity violation occurs are more closely spaced. Even the difference between the

values of Rφ which violate the unitarity at KK-number 24 and 25 is less than 0.2. Therefore,

after KK-number 25 there will not be any considerable change in the result, or to be specific the

violation would never occur at Rφ = (−2.99) or at (−3.0) for any nmax.
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3.5 Conclusions

In this chapter, we have done simple partial wave unitarity analysis as well as coupled channel

analysis in gauge and scalar sectors in non-minimal Universal Extra Dimensional (nmUED)

model where kinetic terms involving fields as well as mass and potential terms of the scalar

fields are added to their respective five-dimensional actions at the fixed boundary points. By

exploiting the equivalence theorem, we have used all the Goldstone modes or unphysical scalars

instead of the longitudinal modes of vector bosons. First, all the necessary two-body (n), (n)

→ (n), (n) tree level scattering amplitudes have been calculated to study the upper bound on

scalar BLT parameter by the simple method of partial wave analysis. After that coupled channel

analysis (t0-matrix construction) has been performed for some selective channels to get further

constraint.

Any 2→ 2 scattering amplitudes can be expressed in terms of an infinite sum of partial waves.

For a process to respect unitarity the zeroth partial wave amplitude a0 should obey the condition

|Re a0| ≤ 1/2. Initially the analysis of unitarity with t-matrix construction has not been taken

into account as in many cases, contributions coming from trilinear couplings can not be ignored

where the interactions are effectively proportional to KK-masses and consequently the contribu-

tions are not E2-suppressed. Therefore, it is evident that some entries of the matrix elements

are not simple numbers but are also the functions of center of mass energy
√
s of respective

processes. So to obtain the suitable channels for t0 construction we should first consider the

single channel analysis for (n), (n) → (n), (n) processes.

While dealing with the single channel scattering processes we have restricted our calculations to

two-body scattering processes for specific KK-modes with the condition that KK-numbers for all

initial and final particles in the respective processes are same. We have taken only those processes

whose quartic interactions are not suppressed by KK-masses. Following these conditions we have

altogether thirteen quartic interactions in the entire scalar sectors in nmUED scenario. Besides,

the quartic interactions having two same neutral particles in initial states and another same two

neutral particles in final states, can generate two kinds of processes. Also the processes that

involve two same or different charged particles in initial states and same two neutral particles in

final states can give rise to two different kinds of processes. So, only those processes have been

preferred where the amplitudes are not suppressed by the factor of 1/2 or by 1/
√

2 arising from

normalization factors for the presence of identical bosonic states, as that suppression would result

in breakdown of unitarity at some larger value of Rφ and thus giving a relative less stringent

bound. Here, Rφ is the scaled scalar boundary-localized parameter determined as ≡ rφ/R.

Among all thirteen processes, H(n)+H(n)− → H(n)+H(n)− gives the most stringent constraint

on the upper limit on Rφ. A detailed analysis on (n), (n) → (n), (n) reflects that the channels

involving the processes h(n)h(n) → h(n)h(n), A(n)A(n) → A(n)A(n), H(n)+H(n)− → H(n)+H(n)−,



Chapter 3. nmUED Confronts Unitarity 76

h(n)A(n) → h(n)A(n), H(n)±A(n) → H(n)±A(n), H(n)±h(n) → H(n)±h(n) are preferable for cou-

pled channel analysis, which is actually the construction of t0 matrix generated by two-body

states as rows and columns. Consequently each matrix element corresponds to the amplitude

of respective processes and each eigenvalue of the matrices should lie below 8π to respect the

unitarity. Coupled channel analysis leads to an upper bound on Rφ corresponding to maximum

KK-number (nmax) taken in the analysis. If nmax is taken to be 4, the BLT parameter Rφ
should be less than 26.4. The results, in effect, are independent of R−1. As the KK-masses

decrease with increasing value of Rφ, the upper limit on BLT parameter in turn implies a lower

bound on KK-masses for gauge or scalar fields. For nmax = 4, the upper limit on Rφ∼ 26 leads

to lower bounds on KK-masses ∼ 0.22 R−1, 1.05 R−1, 2.02 R−1 and 3.02 R−1 for n = 1 − 4

respectively. As we know that R−1 does not play any role in determining the upper limit on Rφ,

the results on the lower bounds on KK-masses are true for any R−1. Besides, the value of Rφ
corresponding to the violation of unitarity decreases if nmax in the analysis is being increased.

If we take nmax = 25, the upper bound on Rφ falls down to nearly one. From KK-mode 18

onwards, the constraints on the upper limit on scalar BLT parameter change very slowly and

will not change significantly for KK-modes higher than 25. Therefore, in this theory, there will

be no upper bound on the KK-number n from unitarity analysis.



4
One Loop Effect of

Universal Extra Dimensional Models

In this chapter we study the effects of higher KK-modes (with one extra special dimension) in

some loop-induced decay processes. The four LEP experiments ALEPH, DELPHI, L3 and OPAL

had made high-statistics studies on the precision measurements at the Z boson resonance in the

years 1989-95. Precision electroweak variables like Rb (Z boson decay width to a pair of b quarks

normalized to total hadronic decay width), AbFB (forward-backward asymmetry of b quarks at

Z pole), ρ(T)-parameter measured by LEP and SLC always play the role of a guiding light in

search of the new physics. Incidentally, these electroweak precision variables are very sensitive

to radiative corrections and these quantum corrections get significant contributions from large

top quark mass. Furthermore, a recent estimation of the Standard Model (SM) contribution to

Rb at two loop level points to a 1.2σ discrepancy between the experimental data and the SM

estimate [183,184].

Now let us shift our attention to the flavor changing neutral current (FCNC) interactions in

the SM. An important aspect of SM is the absence of the FCNC interactions at the tree-level.

However, FCNC is possible in the loop-level, but that too is strongly suppressed by the Glashow-

Iliopoulos-Maiani (GIM) mechanism. Generally these types of loop-driven processes involve two

different generations of fermions in the initial and in the final states where all possible generation

of fermions run in the loop. These FCNC processes are strongly suppressed in the SM; evidently

77
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the discovery of any such process would be a clear hint of some BSM physics. So in the case of any

BSM scenario for these types of processes no BSM particle has to be produced on-shell but their

effects in the loop would be enough to look into the picture at hand. This is specially important

in a time when there is a lack of any direct evidence of new physics at the LHC. In this same vein

many BSM scenarios have been studied through these type of FCNC processes. One important

place to look for such FCNC processes is the rare decays of top quark in the context of some new

physics model. Many studies have been performed to consider the rare decays of the top quark

in the SM [185–197] as well as in various BSM scenarios, e.g. in supersymmetry [198–205], two

Higgs doublet model (2HDM) [206–210], warped extra dimension [211], UED [212] etc. A study

on the FCNC top decays based on a model independent effective field theory can be found in

Refs. [213,214].

In this chapter we will see the one-loop induced effects of one extra dimension in the processes

like Zbb̄ and some rare top decays (t→ cγ and t→ ch). We would like to investigate how one of

the precisely known electroweak variable Rb could constrain the nmUED parameter space. We

will preface this by a brief description of required Lagrangian and overlap integrals. That will

be followed by a discussion on processes with necessary Feynman diagrams. In the subsequent

sections we elaborate on the results and the bounds obtained in the cases of mUED and nmUED.

This chapter is mainly based on Refs. [169,172].

4.1 Lagrangian and Overlap Integrals

This section includes a short description of required Lagrangian and overlap integrals. In the

analysis of loop induced processes by extra dimension, the five dimensional kinetic and Yukawa

terms of the respective fields are needed at boundary points. Clearly, the five dimensional actions

given in Eq. 2.69 and in Eqs. 2.78-2.80 in the Chapter 2 are required in this study.

First we should briefly discuss the mass matrices in quark sector. From Eq. 2.95 in Section. 2.5,

we know that the strength of mixing is proportional to the quark mass and hence is significant

for the top sector. In case of new physics effect on Zbb̄ coupling all we need the third generation

top quark mass and therefore all the related discussion on the physical eigenstates and mixing

strength in quark sector are given in Sec. 2.5.1.2. However, in rare top decays, to incorporate

the GIM mechanism, we consider the mixing in the down sector too. In that case, αn is given

by 1
2 tan−1

(
mb
MQn

)
where mb denotes the SM bottom quark mass. In the nth KK-level, the mass

term can be written as

(
Q̄

(m)
jL

D̄
(m)
L

)(−MQnδ
mn mjα1Imn

mjα1 MQnδ
mn

)(
Q

(n)
jR

D
(n)
R

)
+ h.c. (4.1)
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We can relate the gauge eigenstates Q(n)
j (D(n)) and mass eigenstates Q′(n)

j (D′(n)) in a similar

way as (in this notation j refers to the down quark flavor),

Q
(n)
jL/R

= ∓ cosαnQ
′(n)
jL/R

+ sinαnD
′(n)
L/R, (4.2a)

D
(n)
L/R = ± sinαnQ

′(n)
jL/R

+ cosαnD
′(n)
L/R. (4.2b)

The mass eigenstates, in this case, also share the same mass eigenvalue,

m
Q
′(n)
b

= mD′(n) =
√
m2
b +M2

Qn ≡Mbottom. (4.3)

Now we mention about a few overlap integrals that appear in our calculations,

I lkA =

∫ πR

0
dy [1 + rf{δ(y) + δ(y − πR)}] f (l)

QtL
(y) f

(k)
φ (y)(f

(k)
Wµ

(y)) f
(0)
bL

(y), (4.4a)

=

∫ πR

0
dy [1 + rf{δ(y) + δ(y − πR)}] f (l)

QbL
(y) f

(k)
φ (y)(f

(k)
Wµ

(y)) f
(0)
tR

(y), (4.4b)

I lkB =

∫ πR

0
dy f

(l)
QtR

(y) f
(k)
W5

(y) f
(0)
bL

(y), (4.4c)

=

∫ πR

0
dy f

(l)
QbR

(y) f
(k)
W5

(y) f
(0)
tL

(y), (4.4d)

IkC =

∫ πR

0
dy [1 + rf{δ(y) + δ(y − πR)}] f (0)

QtR
(y) f

(k)
φ (y)(f

(k)
Wµ

(y)) f
(0)
bL

(y), (4.4e)

=

∫ πR

0
dy [1 + rf{δ(y) + δ(y − πR)}] f (0)

QtL
(y) f

(k)
φ (y)(f

(k)
Wµ

(y)) f
(0)
bR

(y). (4.4f)

The overlap integrals given in Eqs. 4.4a, 4.4c and in Eq. 4.4e arise in the analysis of Zbb̄ whereas

the same overlap integrals given in Eqs. 4.4b, 4.4d and in Eq. 4.4f appear in the study of flavor-

changing rare top decays. These are the overlap integrals that modify the respective couplings.

These overlap integrals can also be written as

I lkA =
1√

rf + πR
I lka , (4.5a)

I lkB =
1√

rf + πR
I lkb , (4.5b)

IkC =
1√

rf + πR
Ikc , (4.5c)

where the integral parts of Eqs. 4.4 have been embedded in the new overlap integrals, viz.

I lka , I
lk
b , I

k
c ; apart from the integral part Ikc includes another parameter-dependent multiplicative

factor 1/
√
rf + πR. Fig. 4.1 shows characteristic behavior of the overlap integrals with respect

to various BLT parameters. It should be kept in mind that even though for some choice of
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Figure 4.1: Characteristic dependence of overlap integrals on the BLT parameters. Here
Rφ,f = rφ,f/R and we take only first KK-modes into account, i.e. we take j, k = 1 in Eqs. 4.4.

BLT parameters the numerical value of the overlap integrals can be greater than unity, the final

values of the relevant couplings remain within the perturbativity limit.

Besides, in cases of the overlap integrals I lka and I lkb when l differs from k (in the case of even

l + k) values of the integrals diminish generally by an order of magnitude than the l = k case.

For example, when Rf = 1 and Rφ = 2: I11
a = 0.82, I22

a = 0.88, I33
a = 0.92, I44

a = 0.94,

I55
a = 0.96, I31

a = 0.01, I51
a = 0.004, I53

a = 0.03, I42
a = 0.03; I11

b ∼ I22
b ∼ I33

b ∼ I44
b ∼ I55

b = 0.99

and I31
b = 0.07, I51

b = 0.02, I42
b = 0.08. In case of Zbb̄ analysis we will be only considering the

interactions with l = k neglecting the other sub-dominant contributions coming from interactions

in which l 6= k. This kind of approximation is not used in the analysis of rare decays. The

expressions for the integrals (after integrating over y) are given in Appendix H along with the

necessary Feynman rules given in Appendices F and G.

4.2 A Brief Description of Loop-induced Processes

This section starts with the analysis of the radiative calculation of Zbb̄ vertex. The subsequent

parts will describe the rare top decays (t→ cγ and t→ ch).

4.2.1 Calculation of Radiative Correction to the Zbb̄ Coupling

We are now going to lay down the details of the calculation leading to the correction of the

Zbb̄ vertex in the framework of nmUED. We will first briefly discuss the meaning of Rb and its

correlation to Zbb̄ coupling in the SM as a preamble. The tree level Zbb̄ coupling, in the SM,

can be given as
g

cos θW
b̄(0)γµ(g0

LPL + g0
RPR)b(0)Z(0)

µ , (4.6)
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where Z(0)
µ and b(0)’s are the SM fields; PR,L = (1 ± γ5)/2 are the right- and left-chirality

projectors respectively and

g0
L = −1

2
+

1

3
sin2 θW , (4.7a)

g0
R =

1

3
sin2 θW . (4.7b)

Any higher order quantum corrections, whether being from SM or from new physics (NP) can

be incorporated uniformly as the modification to this tree level couplings defined as

gL = g0
L + δgSM

L + δgNP
L , (4.8a)

gR = g0
R + δgSM

R + δgNP
R . (4.8b)

Here δgSM
L/R corresponds to the radiative corrections from SM and δgNP

L/R denotes the contributions

from new physics (NP) [215]. These corrections in turn can modify the Z decay width to b quarks

normalized to the total hadronic decay width of Z defined by a dimensionless variable

Rb ≡
Γ(Z → bb̄)

Γ(Z → hadrons)
. (4.9)

Generally, at one loop order (in SM & also in NPs), gL gets correction proportional to m2
t

whereas gR receives correction proportional to m2
b (due to the difference in couplings between

two chiralities); here mt (mb) is the zero mode top (bottom) quark mass. We have neglected the

b mass in our calculation and thus a shift in δgNP
L translates into a shift in Rb as

δRb = 2Rb(1−Rb)
ĝL

ĝ2
L + ĝ2

R

δgNP
L , (4.10)

with ĝL and ĝR given by

ĝbL =
√
ρb (−1

2
+ κb

1

3
sin2 θW ), (4.11a)

ĝbR =
1

3

√
ρb κb sin2 θW , (4.11b)

after incorporating the SM electroweak corrections only [127]. Here, ρb = 0.9869 and κb =

1.0067 [127].

Besides, the gNP
L is calculable in a given framework while Rb is an experimentally measurable

quantity. Thus Eq. 4.10 can be used to constrain the parameters of the model. We will perform

the same exercise in the framework of nmUED. Required Feynman rules have been listed in

Appendix F.
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Q
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(f)

Figure 4.2: Loop involving KK-mode of scalar and fermion propagators of Zbb̄ in the ’t
Hooft–Feynman gauge (excluding (0)-(0)-(n)).

Since we have neglected the interactions involving KK-states with unequal KK-numbers in an

interaction vertex, the number of diagrams contributing to radiative corrections of the Zbb̄ cou-

pling in nmUED are same as that of (m)UED. Fig. 4.2 shows the Feynman diagrams involving

KK excitations of top quarks and the charged Higgs/Goldstone bosons in the loop. The contri-

butions coming from the diagrams of Fig. 4.2 have the dominant effect for the presence of Yukawa

coupling which is proportional to mt. In our calculations, we have considered momentum of the

external Z(0)
µ to be zero and have also neglected the b quark mass.

The amplitude of each diagram, for nth KK-mode, can be expressed in terms of a single function,

f (n)(rn, r
′
n,M

′), defined as,

iM(n) = i
g

cos θW
u(p1, s1)f (n)(rn, r

′
n,M

′)γµPLv(p2, s2)εµ(q) , (4.12)

where rn ≡ m2
t /M

2
Qn, r

′
n ≡M2

W /M
2
Qn and M ′ ≡M2

Φn/M
2
Qn.

Amplitudes of different diagrams of Fig. 4.2 (evaluated in ’t-Hooft-Feynman gauge) are given by

f
(n)
1(a)(rn, r

′
n,M

′) =
β

(4π)2

g2

8
{−4

3
sin2 θW

(
I2
b + I2

a

m2
t

M2
W

)
+ I2

b

(
cos4 αn + sin4 αn

)
+2I2

a

m2
t

M2
W

sin2 αn cos2 αn}
[
δn − 1 + {5(rn + 1)2 + 3(r′n +M ′)2

−8(rn + 1)(r′n +M ′)− 2(1 + rn)2 ln(1 + rn)
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−2(M ′ + r′n)
2

ln(M ′ + r′n) + 4(1 + rn)(M ′ + r′n) ln(M ′ + r′n)}
/2{(rn + 1)−

(
M ′ + r′n

)
}2
]
, (4.13)

f
(n)
1(b)(rn, r

′
n,M

′) =
β

(4π)2

g2

8
{2I2

b sin2 αn cos2 αn − 2I2
a

m2
t

M2
W

sin2 αn cos2 αn}[
δn − 1 + {−3(rn + 1)2 + 3(r′n +M ′)2

−2(1 + rn)2 ln(1 + rn)− 2(M ′ + r′n)
2

ln(M ′ + r′n)

+8(1 + rn)(M ′ + r′n) ln(1 + rn)− 4(1 + rn)(M ′ + r′n) ln(M ′ + r′n)}
/2{(rn + 1)−

(
M ′ + r′n

)
}2
]
, (4.14)

f
(n)
1(c+d)(rn, r

′
n,M

′) =
β

(4π)2

g2

8
{
(
−1 + 2 sin2 θW

)(
I2
b + I2

a

m2
t

M2
W

)
− I2

b }[
δn + {3(rn + 1)2 + (r′n +M ′)2

−4(rn + 1)(r′n +M ′)− 2(1 + rn)2 ln(1 + rn)

−2(M ′ + r′n)
2

ln(M ′ + r′n) + 4(1 + rn)(M ′ + r′n) ln(M ′ + r′n)}
/2{(rn + 1)−

(
M ′ + r′n

)
}2
]
, (4.15)

f
(n)
1(e+f)(rn, r

′
n,M

′) =
β

(4π)2

g2

8

(
1− 2

3
sin2 θW

)(
I2
b + I2

a

m2
t

M2
W

)
[
δn + {3(rn + 1)2 + (r′n +M ′)2

−4(rn + 1)(r′n +M ′)− 2(1 + rn)2 ln(1 + rn)

−2(M ′ + r′n)
2

ln(M ′ + r′n) + 4(1 + rn)(M ′ + r′n) ln(M ′ + r′n)}
/2{(rn + 1)−

(
M ′ + r′n

)
}2
]
. (4.16)

Here δn ≡ 2/ε − γ + log(4π) + log(µ2/M2
Qn) and µ is the ’t-Hooft mass scale; β ≡ πR+rφ

πR+rf
. The

symbols Ia and Ib stand for the overlap integrals given in Eq. 4.5a and in Eq. 4.5b respectively

for n = m. Amplitudes of the diagrams 4.2(e) and 4.2(f) are multiplied by a factor of 1/2 which

comes from the usual convention of contributing one-half of this correction into self-energy and

the other half in the wave function renormalization. Total amplitude (iM(n)
1 ) of diagrams in

Fig. 4.2 is obtained by adding the individual amplitudes for each diagram and is given by the

following expression:

iM(n)
1 =

i

(4π)2

g3

4 cos θW
u (p1, s1)

rnβ

{(rn + 1)− (M ′ + r′n)}2
(
−I2

b + I2
a

m2
t

M2
W

)
×
[
(1 + rn)− (M ′ + r′n) + (M ′ + r′n) ln

(
M ′ + r′n
1 + rn

)]
γµPLv (p2, s2) εµ(q). (4.17)

From the above equation, it is evident that terms proportional to δn as well as to sin2 θW cancel

among themselves. In passing we would like to comment that any correction proportional to

sin2 θW in the Zbb̄ vertex must be reflected in the renormalization of charge (of b quark). This
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implies that any finite renormalization to the γbb̄ vertex must be the same (in amplitude) to any

correction proportional to sin2 θW in the Zbb̄ coupling. We have explicitly checked that both

of these corrections coming from diagrams of the same topology depicted in Fig. 4.2 identically

vanishes.
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Figure 4.3: Loop involving KK-mode of W and Goldstone propagators of Zbb̄ in the ’t Hooft–
Feynman gauge (excluding (0)-(0)-(n)).

There is a second set of diagrams contributing to the effective Zbb̄ interaction arising from the

KK excitations of W bosons and quarks. These have sub-dominant contributions with respect

to the contributions coming from Fig. 4.2.

In the following we present the amplitudes of all diagrams given in Fig. 4.3 :

f
(n)
2(a)(rn, r

′
n,M

′) =
I2
aβ

(4π)2

g2

4
{−4

3
sin2 θW + cos4 αn + sin4 αn}

[
δn − 2

+{5(rn + 1)2 + 3(r′n +M ′)2

−8(rn + 1)(r′n +M ′)− 2(1 + rn)2 ln(1 + rn)

−2(M ′ + r′n)
2

ln(M ′ + r′n) + 4(1 + rn)(M ′ + r′n) ln(M ′ + r′n)}
/2{(rn + 1)−

(
M ′ + r′n

)
}2
]
, (4.18)

f
(n)
2(b)(rn, r

′
n,M

′) =
I2
aβ

(4π)2

g2

4
{2 sin2 αn cos2 αn}

[
δn − 2 + {−3(rn + 1)2

+3(r′n +M ′)2 − 2(1 + rn)2 ln(1 + rn)− 2(M ′ + r′n)
2

ln(M ′ + r′n)

+8(1 + rn)(M ′ + r′n) ln(1 + rn)− 4(1 + rn)(M ′ + r′n) ln(M ′ + r′n)}
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/2{(rn + 1)−
(
M ′ + r′n

)
}2
]
, (4.19)

f
(n)
2(c)(rn, r

′
n,M

′) = − I2
aβ

(4π)2

g2

4

(
6 cos2 θW

) [
δn −

2

3
+ {3(rn + 1)2 + (r′n +M ′)2

−4(rn + 1)(r′n +M ′)− 2(1 + rn)2 ln(1 + rn)

−2(M ′ + r′n)
2

ln(M ′ + r′n) + 4(1 + rn)(M ′ + r′n) ln(M ′ + r′n)}
/2{(rn + 1)−

(
M ′ + r′n

)
}2
]
, (4.20)

f
(n)
2(d+e)(rn, r

′
n,M

′) =
I2
aβ

(4π)2

g2

4

(
1− 2

3
sin2 θW

)[
δn − 1 + {3(rn + 1)2 + (r′n +M ′)2

−4(rn + 1)(r′n +M ′)− 2(1 + rn)2 ln(1 + rn)

−2(M ′ + r′n)
2

ln(M ′ + r′n) + 4(1 + rn)(M ′ + r′n) ln(M ′ + r′n)}
/2{(rn + 1)−

(
M ′ + r′n

)
}2
]
, (4.21)

f
(n)
2(f+g)(rn, r

′
n,M

′) =
I2
aβ

(4π)2
g2{(rn + 1) sin2 θW − 1}

{−(1 + rn) + (M ′ + r′n) + (1 + rn) ln

(
1 + rn
M ′ + r′n

)
}

/{(rn + 1)−
(
M ′ + r′n

)
}2. (4.22)

In the diagrams of Fig. 4.3, the divergences along with the terms proportional to sin2 θW do not

cancel among themselves. The divergent terms are rn independent. Following the prescription

given in Ref. [216], we can write the renormalized amplitude as:

iM(n)
2R (rn, r

′
n,M

′) = iM(n)
2 (rn, r

′
n,M

′)− iM(n)
2 (rn = 0, r′n,M

′). (4.23)

Finally summing up the contributions coming from all diagrams we have,

iM(n)
total = iM(n)

1 + iM(n)
2R =

i

(4π)2

g3

4 cos θW
u (p1, s1)

rnβ

{(rn + 1)− (M ′ + r′n)}2[{
−I2

b + I2
a

(
−2 +

m2
t

M2
W

)}{
(1 + rn)− (r′n +M ′) + (r′n +M ′) ln

(
r′n +M ′

1 + rn

)}

+4I2
a

{
−(1 + rn) + (r′n +M ′) + (1 + rn) ln

(
1 + rn
r′n +M ′

)}]
γµPLv (p2, s2) εµ(q). (4.24)

Therefore, for each mode, the correction in gL:

δg
(n)NP
L =

∑
i

fni (rn, r
′
n,M

′) =

√
2GFm

2
t

16π2
F

(n)
nmUED(rn, r

′
n,M

′), (4.25)
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where

F
(n)
nmUED(rn, r

′
n,M

′) =
rnβ

[(1 + rn)− (r′n +M ′)]2

[{
I2
a

(
1− 2M2

W

m2
t

)
− I2

b

M2
W

m2
t

}
×
{

(1 + rn)− (r′n +M ′) + (r′n +M ′) ln

(
r′n +m′

1 + rn

)}
+

4M2
W

m2
t

I2
a

{
−(1 + rn) + (r′n +M ′) + (1 + rn) ln

(
1 + rn
r′n +M ′

)}]
. (4.26)

The total new physics contribution δgNP
L and similarly FnmUED, can be obtained by summing

δg
(n)NP
L over KK-modes (n). It can be verified that the new physics contribution δgNP

L and hence

FnmUED goes to zero when R−1 →∞, as expected in a decoupling theory.

4.2.1.1 Additional Diagrams

Here we mention the additional contributions to Zbb̄ coupling arising only in nmUED scenario.

Though these diagrams have negligible contributions, we still include a brief discussion for the

completion of the analysis. Their contributions will be discussed explicitly in the next section

(Sec. 4.3.1.2).

In nmUED, we can have the contributions from F
(n,m)
nmUED (i.e. from m = n and m 6= n con-

tributions) instead of F
(n)
nmUED (only m = n contributions), though the differences coming from

these two are almost negligible. Moreover, there exists additional contributions coming from

F
(00n)
nmUED. In case of m,n contributions the number of diagrams shown in Figs. 4.2, 4.3 remain

the same, with all nth mode contributions from scalars and gauge fields replaced by its mth

mode. Besides the M ′ in Eq. 4.24 will now be M2
Φm/M

2
Qn. The diagrams of (0)-(0)-(n) type are

shown in Fig 4.4. Here n is only even.

The diagrams in Fig. 4.4 follow the same analysis as that of Figs. 4.2 and 4.3. As we are dealing

with KK-parity conserving scenario, only those diagrams are allowed which include vertices

allowed by KK-parity. The contribution from (0)-(0)-(n) type diagrams is given by

F
(00n)
nmUED(an, a

′
n) =

anβI
2
c

[an − a′n − 1]2

[{
an − a′n − 1

}(
1− 6M2

W

m2
t

)
− (1 + a′n) ln

(
an

1 + a′n

)

+
2M2

W

m2
t

(2an + a′n + 1) ln

(
an

1 + a′n

)]
, (4.27)

with an ≡ m2
t /M

2
Φn, a

′
n ≡ M2

W /M
2
Φn. So if we consider all KK-number violating as well as

KK-number conserving contributions, the FnmUED can be given by

FnmUED =

∞∑
n,m

F
(n,m)
nmUED +

∞∑
n=even

F
(00n)
nmUED. (4.28)
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Figure 4.4: Loop involving (0)-(0)-(n) contributions of Zbb̄ in the ’t Hooft–Feynman gauge.

With R−1 →∞, the new physics contributions will go to zero.

4.2.2 Rare Top Decays

This section deals with some of the rare decays of the top quark in the nmUED model. In

the SM, the flavor changing rare decays of top quarks occur at loop level. On top of this loop

suppression, there exist CKM and GIM suppression [190,191,206]. Here we consider the decays,

t→ cγ and t→ ch. Evidently in the present model, the higher KK-mode particles contribute in

these loop-driven processes. In the following first we will describe the general Lorentz structure

for each decay amplitude with the corresponding Feynman diagrams. Here also, we use ’t Hooft–

Feynman gauge in our calculation as the divergences are more manageable in this gauge but at
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the cost of having extra diagrams with unphysical scalars. We present the important Feynman

rules in the Appendix G.

4.2.2.1 t→ cγ

We are now going to discuss the details of the calculation of the decay width of t → cγ in this

model. The most general form of the amplitude of the decay t(p) → c(k2)γ(k1) for on-shell

quarks and real photons can be given by [190,214]

M(t→ cγ) =
i

mt +mc
ū(k2)[σµνk1ν (ALPL +BRPR)]u(p)ε∗µ(k1), (4.29)

where u, ū and εµ correspond to the incoming, outgoing spinors and photon polarization respec-

tively; PR,L = (1 ± γ5)/2 are the usual projection operators. The coefficients AL and BR yield

the information about couplings, CKM matrix elements and the loop momenta integration. We

have not included the effect of KK particle contribution on the CKM elements; for details see

Ref. [137]. Note that when writing the full amplitude for the process t → cγ following all the

Feynman rules (in the SM or in (n)mUED) one may come across terms proportional to γµPR,L
in the amplitudes1 of Feynman diagrams. But after summing over all the amplitudes of all the

diagrams and then incorporating the GIM mechanism2, the terms proportional to γµPL,R can-

cel. In the process all the divergences that appear in the individual diagrams also get cancelled.

These remarks hold true irrespective of whether mc is taken to be zero or not. However it is

worth mentioning that in the limit mc → 0, which is a reasonable approximation, the coefficient

AL vanishes. In the case where mc 6= 0, both AL and BR contribute. In these loop-driven pro-

cesses, the apparent divergences get cancelled among the triangle and self-energy-type diagrams.

In the general non-vanishing mc case the decay width is given by

Γt→cγ =
1

16π

(m2
t −m2

c)
3

m3
t (mc +mt)2

(
|AL|2 + |BR|2

)
. (4.30)

The Feynman diagrams for this process are presented in Fig. 4.5 and in Fig. 4.6. In these

diagrams, the superscripts (n) or (m) represents the nth (ormth) KK-mode of the corresponding

particle. Since in mUED KK-number is conserved in any specific vertex we always have m = n;

but in the case of nmUED, m and n can be different, obviously satisfying the conservation of

the KK-parity. Clearly the quantities AL and BR contain the sum over the KK-modes. In our

analysis we took the KK sum up to level five (as we have checked that the results of the KK

sum up to level ten is almost same as that of the sum up to level five) as the contribution for
1To be precise, for the mc 6= 0 case both γµPL,R are present, but in the mc = 0 case, only γµPL appears.
2Basically the GIM mechanism implies the utilization of the relation, V ∗tjVcj [iM(mj)] = V ∗tbVcb[iM(mb) −

iM(ms)], where M represents the sum of the amplitudes of all the Feynman diagrams and ms is the strange
quark mass that we take to be zero.
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Figure 4.5: Necessary Feynman diagrams for the process t → cγ in the ’t Hooft–Feynman
gauge in nmUED. The particles in the legs contain no KK-indices as they represent the SM
particles and their KK-indices are assumed to be zero (excluding (0)-(0)-(n)).
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Figure 4.6: Necessary (0)-(0)-(n) type Feynman diagrams for the process t → cγ in the ’t
Hooft–Feynman gauge in nmUED.
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higher modes decouples. Also Fig. 4.12 shows that the mass of mc plays an insignificant role

in the total decay width. Unless otherwise stated we consider a vanishing mc in our numerical

analysis.

4.2.2.2 t→ ch

One of the other important rare decays of the top quark is its flavor violating decay to the

charm quark (c) and Higgs boson (h). The most general form of the amplitude of the decay

t(p)→ c(k2)h(k1) is given as

M(t→ ch) = ū(k2) [FS + iγ5FP ]u(p), (4.31)

where the FS and FP correspond to the scalar and pseudo-scalar form factors, respectively. The

assertions we made in the case of t → cγ regarding the divergence cancellation etc. are true

here also. Besides, we keep the information of couplings, CKM elements, and loop momenta

embedded in these form factors.

It is straightforward to calculate the decay width of the process t → ch from the amplitude

mentioned above. The decay width is

Γt→ch =
1

16πm3
t

√(
m2
t − (mc +mh)2

) (
m2
t − (mc −mh)2

)
×
(
{(mc +mt)

2 −m2
h}|FS |2 + {(mc −mt)

2 −m2
h}|F ′P |2

)
, (4.32)

with F ′P = iFP and in the last piece, i.e. in the form factor squared quantities, the KK sum is

taken. Also, for mc = 0 the two form factors are equal, i.e. FS = F ′P . The relevant Feynman

diagrams for this process are given in Fig. 4.7. The KK-indices m and n obey the same set of

assertions mentioned in the previous Sec. 4.2.2.1.

4.3 Results

4.3.1 Bounds Obtained from Zbb̄

We first begin our discussion with the present status of experimental and theoretical estimation

of the Zbb̄ coupling. Following Gfitter Collaboration [183] and an improved estimation of Rb
after incorporating higher order effects in the framework of SM [184], the experimental and the

theoretical (SM) values are

Rexp
b = 0.21629± 0.00066 and RSM

b = 0.21550± 0.00003.
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Figure 4.7: Feynman diagrams for the process t → ch in the ’t Hooft–Feynman gauge in
nmUED (excluding (0)-(0)-(n)).
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Figure 4.8: Feynman diagrams for the process t → ch in the ’t Hooft–Feynman gauge in
nmUED (excluding (0)-(0)-(n)).
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Above results indicate an 1.2 standard deviation discrepancy between the experimental value of

Rb and its SM estimate. Thus Eqs. 4.25 and 4.26 along with Eq. 4.10 can be used to translate

this 1.2σ discrepancy on Rb to an allowed range for FnmUED: −0.3165± 0.2647. Clearly one can

easily use this to constrain the model parameters of nmUED.

Since all the amplitudes listed in Fig. 4.2 contain terms proportional to gy2
t , dominant contri-

butions to FnmUED come from the Feynman graphs listed in Fig. 4.2. The contributions from

diagrams shown in Fig 4.3 are proportional only to g3 with an exception to the diagrams 4.3(f)

and 4.3(g); which has terms proportional to g2yt (here, yt is the top quark Yukawa coupling).

Total contribution of diagrams in Fig. 4.2 is nearly 1.5 times to that of the diagrams given in

Fig 4.3.

4.3.1.1 Relook at the bound on R−1 in mUED from Rb

Before presenting the bounds obtained in the framework of nmUED, we would like to investigate

the limit on the R−1 in case of UED keeping in mind the new estimate of SM radiative corrections

to the Zbb̄ vertex at two loop level [184]. Evidently one can retrieve the UED contributions to

δgNP
L by simply setting BLKT parameters to zero. In this limit, overlap integrals (I1 and I2)

used in the couplings become unity and MQn,Mgn and MΦn all become equal to n/R in the

nth KK-level; the ratios β, M ′ in Eq. 4.24 will be unity and our expression in UED completely

agrees with the expression given in Ref. [137]. One can define a function F
(n)
UED in the same spirit

following Eq. 4.26:

F
(n)
UED(r1n, r

′
1n) =

r1n

(r1n − r′1n)2

[(
1− 3

M2
W

m2
t

)
{(r1n − r′1n) + (1 + r′1n) ln

(
1 + r′1n
1 + r1n

)
}

+
4M2

W

m2
t

{r′1n − r1n + (1 + r1n) ln

(
1 + r1n

1 + r′1n

)
}
]
, (4.33)

with r1n ≡ m2
t /m

2
n, r′1n ≡M2

W /m
2
n and mn = n/R.

In Fig. 4.9, we plot FUED as function of R−1, the only free parameter in the model after summing

contributions (F(n)
UED) coming from KK-levels n = 1 − 5. This has been done in the view of

recently discovered Higgs mass and its implication on the cut-off scale of UED3. Masses of the

KK excitations increase with R−1 which in turn results in a decrement in the magnitude of FUED

due to the higher values of the masses of the propagators in the loop. One can easily check from

Eq. 4.33, that in the limit r′1n, r1n →∞, FUED is also vanishing which is the decoupling nature

of the theory. The horizontal line in Fig. 4.9 represents the 95% C.L. upper limit on the value of

FUED calculated from difference between the experimental value of Rb and its theoretical (SM)

estimate (FUED: −0.3165± 0.2647). Clearly the intersection of the horizontal line with the line
3See Sec. 2.4.1 of the Chapter 2.
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Figure 4.9: Variation of FUED with R−1 in UED model. The horizontal line represents the 95
% C.L. upper limit on the value of FUED calculated from the difference between the experimental
value of Rb and its theoretical (SM) estimate.

showing the variation of FUED would lead us to the present lower bound on R−1 from Rb. It

clearly points that at 95% C.L. R−1 must be greater than 350 GeV, which shows a nominal

improvement over the earlier limit which was 300 GeV [215]. If we overlook the correlation

between the Higgs mass and the cut-off scale of UED, then one could sum up to 20-40 KK-

levels. This would slightly push up the magnitude of FUED
4 which in turn results into a higher

value of the lower limit of R−1 (370 GeV). However, this limit is still not competitive to the

bound derived from experimental data on SM Higgs production and its subsequent decay to

WW [151]5. For a detailed information on the bound on R−1 in case of UED, see the Sec. 2.4.

4.3.1.2 Possible bounds on nmUED from Rb

In this section we are going to lay down the analysis of the bounds obtained on the parameters in

nmUED by using Rb. Contributions coming from each KK-level F
(n)
nmUED have been already listed

in Sec. 4.2.1. One has to sum over all the KK-levels to get the total contribution FnmUED. We

have taken into consideration the first 5 levels into the summation. Besides, we have explicitly

checked that taking 20 levels into the summation would not change the results6. Like the

previous chapter, here also we consider scaled BLTs, i.e. Rφ,f (≡ rf,φR
−1). If we take scaled

BLT parameters< (−π), the zero modes become ghost-like with its norm being imaginary. Apart

from this, we have observed that from unitarity analysis Rφ can be as high as 19, if we consider

up to 5th KK-level. Negative values of Rf,φ below (−π) would be physically unacceptable. Apart

from this, all other values of Rf,φ are theoretically acceptable. It has been already mentioned

in Sec. 4.1 that though for some choice of BLT parameters the numerical value of the overlap
4For R−1 = 1 TeV, values of FUED after summing up to 5 levels and 20 levels are 0.0267 and 0.0292 respectively.
5This is due to the fact that experimental data from LHC on Higgs boson production and subsequent decay

to WW is more consistent to the SM than Rb in which there is 1.2σ new physics window.
6For R−1 = 1 TeV and rφ = 1.5, rf = 1, values of FnmUED after summing upto 5 levels and 20 levels are

0.0439 and 0.0472 respectively.
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Figure 4.10: Variation of FnmUED as function of R−1 for different values of BLKT parameters.
The horizontal line represents the 95 % C.L. upper limit of the value of FnmUED calculated from
difference between the experimental value of Rb and its theoretical (SM) estimate.
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integrals can be greater than unity, the final values of the relevant couplings will always remain

within the perturbativity limit.

In Fig. 4.10, we have presented the variation of FnmUED with R−1 for some representative values

of the scaled BLKT parameters Rφ and Rf . One common feature that comes out from all of the

plots is the monotonic decrement of FnmUED with increasing R−1 which shows the decoupling

nature of the new physics under our consideration that has been pointed out earlier in the case

of UED. Panels (a,b and c) show the dependence of FnmUED on Rφ keeping the value of Rf fixed

to 1.5, 4.5 and 10.0 respectively. While in the lower panels of Fig. 4.10, we have presented how

FnmUED changes with varying Rf with two fixed values of Rφ namely 1.5 (d), 4.5 (e) and 10.0

(f) respectively.

From these figures 4.10 it is clear that Rφ and Rf have more or less same effects on FnmUED and

hence on δgNP
L . While the effect of Rφ is somewhat modest, FnmUED is being more sensitive to

any change in Rf . Therefore by increasing the BLT parameters one could enhance the radiative

effects on the effective Zbb̄ coupling. Evidently in nmUED, one could have a significant shift in

the lower bound on R−1 from its UED value. For example, Rφ = 10.0 and Rf = 15.0, the 95 %

C.L. lower bound on R−1 is around 1 TeV. This limit comes down to 448 GeV for Rf = 1 and

Rφ = 1.5.

The role of R−1 in the framework of nmUED is quite similar as in the case of UED and has been

explained above. We would also like to examine the role of Rf and Rφ. However we will do so

a little later.

Finally in Fig. 4.11, we present the allowed parameter space in Rφ−Rf plane for several values

of R−1. We exhibit the contours of constant FnmUED which corresponds to the 95 % C.L. upper

limit. The region right to a particular line of R−1 is being ruled out from the consideration of

Rb according to our analysis. Near vertical nature of the contours at lower values of Rf points

out to the modest dependence of FnmUED on Rφ that has been already shown in figure 4.10(a),

(b) and (c). It has been exhibited from Fig. 4.10 that with higher values of BLKT parameters

Rf and Rφ, FnmUED is being increased in magnitude. Clearly as we go towards the right with

increasing Rf and fixed Rφ for a particular value of R−1, FnmUED would increase. Furthermore

the higher value of R−1 decreases FnmUED showing the decoupling nature of new physics. Thus

the increment of FnmUED (with Rf ) has been nullified by higher values of R−1 corresponding to

different lines. Thus to compensate one must tune R−1 to a comparatively higher values. Besides,

we have marked axes of Fig. 4.11 with scaled masses mQ1 (≡ MQ1R) and mΦ1 (≡ MΦ1R), in

the left panel; whereas, in the right one, we have marked the axes with scaled masses mQ2 and

mΦ2. This would facilitate one to get the bounds on masses of the n = 1, 2 KK excitations

directly from this plot. For example, the line corresponding to R−1 = 700 GeV intersects the

mQ1 axis at around 0.5 and mQ2 axis at around 1.24 which implies that for this particular value

of R−1, masses of n = 1 and n = 2 KK excitations of top quarks respectively below 350 GeV
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Figure 4.11: Contours of constant FnmUED corresponding to 95% C.L. upper limit in Rφ−Rf
plane. Different lines (marked with 400, 500, 600, 700 and 800) represent different values of
R−1 (in GeV). Region right to a particular contour is being ruled out at 95% C.L. from the
consideration of Rb for a given value of R−1(in GeV) on each contour. We also present contours
of the W±(1)t(1)b(0) coupling corresponding to three different values (0.4, 0.45 and 0.5) on the
same plot for a same set of values of R−1 (left one) and that of W±(2)t(2)b(0) coupling for same
values (in the right). In the left one, numbers along the top axis and right hand axis correspond
to dimensionless quantities MQ1R and MΦ1R respectively whereas numbers along the top axis
and right hand axis represent the respective dimensionless quantities MQ2R and MΦ2R in the
right panel.

and 870 GeV are not allowed by the data. While the corresponding lower bound for W (1) mass

for R−1 = 700 GeV is close to 540 GeV and lower bound for W (2) mass for same R−1 will be

around 1 TeV which can be eventually obtained from the intersection of the same line with the

mΦ1 and mΦ2 axes respectively.

The Fig 4.11 also represent the contours for constant (for three different) values ofW±(1)f (1)f (0)

and W±(2)f (2)f (0) couplings respectively. One can obtain several significant messages from

these contours. Primarily the above coupling has a minimal dependence on R−1. Secondly,

the BLT parameters Rf and Rφ have opposite effects on the above interactions. While this

couplings increase with Rφ, increasing values of Rf would try to decrease the strength of this

interaction. For n = 1 the effect of Rf is more prominent. Similar conclusion can be drawn

to H±(1)/(2)f (1)/(2)f (0) and G±(1)/(2)f (1)/(2)f (0) interactions. BLT parameters also have another

bearing on FnmUED through the masses of KK excitations. Heavier KK-masses would tend to

decrease the magnitude of FnmUED which is nothing but the evident upshot of the decoupling

nature of the theory. It has been pointed out in Fig. 2.4 in Chapter 2 that KK-masses are

decreasing function of respective BLT parameters. Thus BLT parameters have dual role to play
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in the dynamics of FnmUED. Let us state them one by one. An increasing Rφ would increase

FnmUED by increasing the relevant couplings and at the same time by decreasing the relevant

KK-masses. On the other hand an increasing Rf would decrease the masses but it also decreases

the couplings. These two effects play in opposite direction in determining the value of FnmUED.

However, rate at which FnmUED increases with decreasing KK-mass, overcome the decrement of

FnmUED due to decreasing coupling with increasing Rf .

In passing we would like to make some comments on the terms which we have neglected by

only considering interactions of SM particles with two KK-excitations having same KK-number.

Evidently our calculation and results presented above do not take into account a number of

Feynman graphs in which propagators in the loop correspond to KK excitations of different

KK-numbers. To advocate our assumption, we present the values of FnmUED for several values

of R−1 for fixed Rφ and Rf in Table. 4.1. While presenting these numbers we have summed

up to 5 KK-levels as before. In the second column of Table. 4.1, we have shown the values

of FnmUED when only KK-number conserving interactions are taken into account. While in

the third column, the values of FnmUED additionally includes contributions from all possible

Feynman graphs involving KK-number violating interactions (excluding n or m = 0). Fourth

column presents only (0)-(0)-(n) type interactions; furthermore this kind of interactions fall

rapidly from R−1 = 500 GeV onwards. It is very clear from the numerical values of FnmUED

that our assumption was realistic and the corrections coming from Feynman graphs involving

the KK-number non-conserving interactions are minuscule.

R−1 (GeV) FnmUED

(n = m terms only)
FnmUED

(n = m and n 6= m terms)
FnmUED

((0)-(0)-(n) type only)
250 0.5442 0.5481 0.02278
350 0.3127 0.3148 0.01577
450 0.2003 0.2016 0.01163
550 0.1384 0.1393 0.00898
650 0.1009 0.1016 0.00717
750 0.0767 0.0773 0.00588
850 0.0602 0.0606 0.00492

Table 4.1: Values of FnmUED for the contributions coming, only from the KK-number conserv-
ing interactions (second column), from all possible interactions (excluding (0)-(0)-(n)) (third
column) and from only (0)-(0)-(n) type interactions to calculate the effective Zbb̄ vertex at one
loop. Numbers are presented for several values of R−1 (first column) and for Rf=1 and Rφ=1.5.

4.3.2 t→ cγ

Before we present the mUED and nmUED results of the t→ cγ decay in the presence of single

UED, it is important to relook at the SM results. The dominant decay mode of the top quark
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is to a bottom quark and a W boson and its decay width is given by

Γt→bW =
g2

64π
|Vtb|2

[
1− 3

(
mW

mt

)4

+ 2

(
mW

mt

)6
]
. (4.34)

For MW = 80.39 GeV, mt = 174.98 GeV [217], Γt→bW is approximately 1.5 GeV. This being the

most prominent decay mode of the top quark any branching ratio can be given as

BR(t→ XY ) =
Γt→XY
Γt→bW

. (4.35)

The SM prediction for the branching of t→ cγ is

BR(t→ cγ) =
(
4.6+1.2
−1.0 ± 0.4+1.6

−0.5

)
× 10−14, (4.36)

where the first uncertainty corresponds to the uncertainty in bottom mass, the second due to

the CKM mixing angle uncertainties, and the third from the variation of the renormalization

scale between MZ (+ve sign) and 1.5mt (-ve sign) [190]. Taking the pole mass of the b quark to

be 4.18 GeV [218] our SM prediction for the t → cγ branching ratio is 2.4 × 10−13 and for the

running mass m̄b(mt) = 2.74 GeV the branching ratio becomes 5.18× 10−14. Clearly the exact

value of this decay width, as well as the other flavor violating decays of the top quark, is highly

sensitive to the bottom quark mass, as has been pointed out in Ref. [191]. For the numerical

evaluations we have used Package-X [219] and LoopTools [220].

From these numbers it is evident that the branching ratios for flavor changing top quark decays

in the SM are exorbitantly suppressed, making the prospect of its detection at the LHC or even

higher energetic FCC quite bleak. We discuss the present LHC reaches in our summary Sec. 4.5.

On the other hand, as a positive side if any signature of these types of decays is found with a

measurable amount of enhancement that must arise from some new physics beyond the SM.

4.3.2.1 mUED Results

In the mUED scenario the loop-induced decay of the top quark to charm quark and photon gets

additional contribution from the higher mode KK particles running in the loop. The represen-

tative Feynman diagrams are shown in Fig. 4.5. Since in mUED, KK-number is a conserved

quantity the KK-indices m and n in each vertex of the diagrams respect this symmetry; to be

more precise, in all the diagrams, for mUED at least, m and n should be equal.

As has been mentioned in the model description, see Sec. 2.2, the only relevant parameter for

the mUED set-up is the inverse of the compactification radius 1/R and the masses of all the

KK particles are dependent on this quantity. The important difference from the SM in mUED
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is basically the presence of KK counterparts of SM particles in the loop as well as the presence

of charged KK scalars. Moreover, the mixing in the KK fermion sector plays an important role.
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Figure 4.12: The decay width of the process t → cγ as a function of the inverse compactifi-
cation radius 1/R in the case of mUED. For the mc 6= 0 case, the charm quark mass is taken
to be 1.275 GeV.

Fig. 4.12 summarizes the t→ cγ decay width in mUED. We have calculated the decay width by

taking the SM as well as the new physics, i.e. the mUED into account. Clearly for a higher value

of the inverse compactification radius 1/R the masses of the KK-modes become too heavy and

they decouple, effectively making a negligible contribution. The red (dash-dotted) line shows

the SM only value that we obtained using the pole mass of the b-quark. At the higher values of

1/R the convergence of the blue (solid), for mc = 0, and black (dotted), for mc 6= 0, line with

SM line only reflects the decoupling of the KK-modes. We take mc = 1.275 GeV [218] for the

mc 6= 0 case.

The lower values (less than 1 TeV) of 1/R are disfavored from the LHC data [69]. Moreover

from Fig. 4.12 we see that even for the lower values of 1/R the order of magnitude of the decay

width does not change much. Thus, one can conclude that the mUED set-up can not enhance

the branching ratio of t→ cγ to any significant level from that of the SM value while remaining

in the allowed ranges, obtained from the LHC, of the inverse compactification radius. However,

the situation is different in the case of nmUED, as we see shortly.

4.3.2.2 nmUED Results

The presence of BLKT parameters makes the situation quite different from the minimal scenario.

It has already been mentioned that the BLKT parameters control the mass spectrum via the

transcendental equation [see Eq. 2.77], as well as the couplings via the appropriate overlap

integrals. Like the mUED scenario, here also the loop-induced t→ cγ process gets contributions

from the higher KK excitations in the loop. But in this case the BLT parameters play a significant
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role in determining the masses of those particles running in the loops as well as the relevant

couplings. One other important distinction from the mUED scenario is that in nmUED, KK-

number is no longer a conserved quantity, but still the conservation of KK-parity holds due to

the presence of the same BLKT parameters at the two orbifold fixed points, y = 0 and πR.

Consequently, unlike mUED, the couplings of particles with KK-numbers (0)-(0)-(n), where n

is even, are present at tree-level. Thus, there are extra Feynman diagrams contributing in the

process, e.g. in Fig. 4.5 the appropriate diagrams with n being zero will also contribute (Fig. 4.6).

We now discuss the results in the nmUED scenario. Note that we have two BLT parameters Rφ
and Rf at our disposal (as in the case of radiative correction of Zbb̄). Thus we consider two cases,

one being the universal BLT case, i.e. Rφ = Rf making the same BLT for all types of fields and

another being the case of Rφ 6= Rf . First, take the case of universal BLT, i.e. Rφ = Rf ≡ r/R.
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Figure 4.13: The decay width of the process t→ cγ as a function of the inverse compactifica-
tion radius 1/R in the case of nmUED for different values of BLT parameters. In this case we
consider a universal BLT parameter r.

In in this scenario too, all the overlap integrals that modify the couplings become unity by virtue

of the orthonormalization conditions, see Eqs. 2.84 and 4.4. Therefore, the effect of the common

BLT parameter r/R is only to determine the masses of the KK particles running in the loop.

Clearly this situation is almost like the mUED but with the freedom that the KK-masses can

now be tuned with the BLT parameter r/R. In Fig. 4.13 we present the results for the same

BLT case for different values of the parameter. The black (dash-dot-dot) line represents our SM

value for the t→ cγ decay width; the red (solid), blue (dotted), and green (dash-dotted) curves

are for BLT parameter r/R = 1.0, 5.0, and 10.0 respectively.

We see that the contributions from the KK particles decouple at lower values (compared to

the mUED case) of the compactification radius for lower values of r/R. This is expected as the

higher values of r/R imply a lower (compared to the mUED case) KK-mass for a specific value of

the inverse compactification radius 1/R. Clearly for a specific value of 1/R, a higher value of the

BLT parameter would lead to a lower KK-mass than in the mUED thus making the propagator

suppression less effective. Consequently it is evident that the higher value BLKT parameters
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will result in a decoupling for higher values of 1/R. However, like in mUED, in the universal

BLT case also the value of the decay width does not change its order of magnitude from its SM

value even for lower 1/R. But unlike mUED a lower value of 1/R is not much constrained from

LHC data in the nmUED scenario. To the best of our knowledge the only collider studies made

in nmUED, to date are Refs. [164,165]. A detailed study of nmUED in the light of LHC data is

underway.

Now we take up the case of different BLTs, i.e. Rφ 6= Rf . Clearly in this case the KK excitations

of fermions and the KK scalar/gauge bosons have different masses depending on their respective

BLT parameters. Moreover, the couplings in this case get modified by the appropriate overlap

integrals, mentioned in Eqs. 4.4. The variation of the t→ cγ decay width for various choices of

BLT parameters is shown in Fig. 4.14. Different choices of BLT parameters give rise to distinct

features in the 1/R dependence of the decay width. Unlike the mUED or universal BLT scenario,

here the total decay width (SM plus nmUED) can be smaller than the SM value for some choice

of parameters. Moreover, the higher values of the BLT parameters (see the figure in the lower

right panel of Fig. 4.14) can enhance the decay width by several orders of magnitude from the

SM value, in the lower 1/R region. For example, for Rf = 8 and Rφ = 15 and 1/R = 500 GeV

the decay rate can be ∼ 4.1 × 10−12 GeV. But, for these sets of parameter values the masses

of first KK-level particles are less than 200 GeV, to be precise ∼ 190 GeV for first KK-level

fermions and ∼ 140 GeV for first KK-level bosons; and the second levels are of ∼ 570 GeV

(fermions) and ∼ 540 GeV (bosons). We elaborate on the implications of this in Sec. 4.4. At

this point it is worth mentioning that we find that the specific nature of the curves is mostly

determined from the contribution from the Feynman diagrams that involve the KK excitations

of the scalars. Moreover, as far as the nature of the curves are concerned, a naïve interpolation

to the same BLT scenario from the different BLT scenario is not possible. In the different BLT

case there are overlap integrals that modify the appropriate couplings. These overlap integrals

depend on the KK-masses and, in some cases, on the difference of the KK-masses between two

different types of particles (e.g., in our case some overlap integrals depend on the the difference

between MΦn and MQn). Also, in the amplitude of the diagrams the differences in the physical

masses (physical masses, mX = MX/R) play a significant role. Thus depending on the choice

of different BLT parameters the difference between mQn and mΦn can be positive or negative

which, at the amplitude level, can positively or negatively contribute to the SM amplitude. So

in the different BLT case, it is possible for some parameter region that the overall decay width

be less than that of the SM prediction, leading to the specific nature of Fig. 4.14. The reverse is

also possible, e.g. we have checked that for 1/R = 600 GeV, Rφ = 6.0, the KK contribution is

always positive if Rf < 0.58 and in that case one can get the nature of Fig. 4.14 similar to that

of Fig. 4.13, i.e. the curves show a monotonic increase as 1/R decreases. Clearly, if in future

experiments the t → cγ decay width comes out to be a larger value than the SM calculations
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Figure 4.14: The decay width of the process t → cγ as a function of the inverse compactifi-
cation radius 1/R in the case of nmUED for different values BLT parameters Rf (= rf/R) and
Rφ (= rφ/R).

then the higher BLT scenario will be favored provided the constraints on the 1/R from other

observations are met.

We end the discussion on the t→ cγ decay width in nmUED with the caveat that in our study

we take a common BLT parameter for fermions Rf and for gauge/scalar fields a common Rφ

and thus the situation can be generalized by considering different types of BLT parameters for

different fields and that eventually results in richer details of this decay width.

4.3.3 t→ ch

The loop-induced flavor changing top quark decay to charm quark and Higgs boson was first

calculated in Ref. [206]. For mt ' 175 GeV and mh ∈ [40 GeV, 2MW ], according to Ref. [206],

BR(t→ ch) ' 10−7−10−8. However, this result was erroneous, which was subsequently pointed

out and corrected in Ref. [188]. According to this, for mt = 175 GeV, mc = 0, mb = 5 GeV, and

mh = 120 GeV,

Br(t→ ch) = 4.605× 10−14. (4.37)
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The SM prediction for the same process has recently been calculated in Refs. [191, 205, 210]

and according to these references,7 the branching ratio is ∼ 10−15. Again, the root of all these

differences in the exact value of the branching ratio is that the choice of values of various SM

parameters, most crucially the value of mb, differs in each studies. For mh = 125 GeV and

taking the pole mass of the b-quark to be 4.18 GeV our SM prediction for the t→ ch branching

ratio is 1.99× 10−14 and for the running mass m̄b(mt) = 2.74 GeV the branching ratio becomes

3.63×10−15. We again emphasize that the exact estimation of the decay width is highly sensitive

to the b-quark mass, mb. After this discussion we present our results in mUED and nmUED.

4.3.3.1 mUED Results

The relevant Feynman diagrams for the process t → ch in the case of mUED can be found

in Fig. 4.7. Again, the KK-indices m and n have to be taken appropriately maintaining the

conservation of KK-number. Also, the other details, inherent to the model itself, remain the

same as discussed in the case of t→ cγ; see Sec. 4.3.2.1.
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Figure 4.15: The decay width of the process t → ch as a function of the inverse compactifi-
cation radius 1/R in the case of mUED.

In Fig. 4.15 we present our results for the decay width of t→ ch in mUED. Like the t→ cγ case,

here also we take the pole mass of the b-quark. In this figure, the black (solid) line represents

our SM value of the decay width and the red (dash-dotted) curve is for the decay width in the

case of SM combined with the mUED spectrum. In this case also we find no order of magnitude

enhancement of the branching ratio for any reasonable values of 1/R. The situation is almost

similar in the nmUED scenario also, as we discuss in the next subsection.
7The branching ratio is 3× 10−15 in [191], (3.00± 0.17)× 10−15 in [210], 5.8× 10−15 in [205] etc.



Chapter 4. One Loop Effect of Universal Extra Dimensional Models 106

4.3.3.2 nmUED Results

In Fig. 4.16 we present the results for the universal BLT scenario, i.e. Rφ = Rf ≡ r/R. For this
case also we find that the value of decay width is of the same order as that of the SM for all

choices of r/R.
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Figure 4.16: The decay width of the process t→ ch as a function of the inverse compactifica-
tion radius 1/R in the case of nmUED for different BLT parameters. In this case we consider
a universal BLT parameter r.

1/R

Γ t
→

 c
h 

G
eV

)
(1

0-1
4 

(GeV)

SM

Rφ = 0.5 Rf = 1
Rf = 3
Rf = 7

 

2.5

3

3.5

4

4.5

500 1000 1500 2000 2500

SM

 (1
0-1

4 G
eV

)
Γ t

→
 c

h

(GeV)1/R

Rφ = 4.0 Rf = 1
Rf = 3
Rf = 7

2.5

3

3.5

4

4.5

500 1000 1500 2000 2500

SM

(1
0-

14
G
eV

)
Γ t

→
 c

h 

(GeV)1/R

Rf = 4.0 Rφ = 1
Rφ = 3
Rφ = 7

2.8

3

3.2

3.4

3.6

500 1000 1500 2000 2500

SM

(1
0-1

4  G
eV

)
Γ t

→
 c

h

(GeV)1/R

Rf = 8.0 Rφ = 5
Rφ = 10
Rφ = 12

2.9

3

3.1

3.2

3.3

3.4

500 1000 1500 2000 2500

Figure 4.17: The decay width of the process t → ch as a function of the inverse compactifi-
cation radius 1/R in the case of nmUED for different values of BLT parameters Rf (= rf/R)
and Rφ (= rφ/R).
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The same thing happens in the distinct BLT (Rφ 6= Rf ) case also, as can be seen from Fig. 4.17,

where we plotted the t → ch decay width for various choices of BLT parameters. In this case

also a very high value of BLT parameters can significantly enhance the decay rate.

4.4 S, T, Uarameters, FCNC and Other Issues

The Peskin-Takeuchi parameters, i.e. S, T and U parameters, encode the oblique corrections to

the electroweak gauge boson propagators [50]. These parameters put stringent constraints on

many BSM physics scenarios. In nmUED these electroweak precision constraints are discussed

in [81, 165, 171, 177]. Clearly in these cases the underlying action and some assumptions are

different from our setup. For completeness we spell out these constraints in our case.

The effects on electroweak precision observables arise due to modifications to the Fermi constant

GF at tree-level. Actually in nmUED second level KK gauge bosons have tree-level couplings

with SM fermions, and this modifies the effective four Fermi interactions and thus the GF . Note

that this is in contrast with the mUED scenario where there is no (2)-(0)-(0) coupling at the

tree-level. The corrected Fermi constant in the case of nmUED can be given as

GF = G0
F + δGF , (4.38)

where G0
F (δGF ) comes from the s-channel SM (even KK) W±-boson exchange. More precisely

they can be written as [171]

G0
F =

g2
2

4
√

2M2
W

and δGF =
∑
k≥2
even

g2
2

4
√

2M2
W (k)

(
√
rφ + πR Ik3 )2, (4.39)

where Ik3 is given in Eq. 4.4f. Now, in terms of these quantities the electroweak precision

observables can be written as [165,171]

SnmUED = 0, TnmUED = − 1

α

δGF
GF

, UnmUED =
4 sin θ2

W

α

δGF
GF

. (4.40)

Now, the most recent fit to the electroweak precision data gives [221]

S = 0.05± 0.11, T = 0.09± 0.13, U = 0.01± 0.11, (4.41)

from which we write

Ŝ = 0.05, σS = 0.11,

T̂ = 0.09, σT = 0.13,

Û = 0.01, σU = 0.11 .
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The S, T and U parameters are not independent parameters but are correlated. The correlation

coefficients are given by [221]

ρST = 0.90, ρSU = −0.59, ρTU = −0.83. (4.42)

Now, constraints from S, T, U parameters can be imposed by evaluating the χ2, given by

χ2 = ATC−1A, (4.43)

where AT = (SnmUED − Ŝ, TnmUED − T̂ , UnmUED − Û) and the covariance matrix C is given by

C =


σ2
S σSσTρST σSσUρSU

σSσTρST σ2
T σTσUρTU

σUσSρSU σUσTρTU σ2
U

 . (4.44)

For a maximal 2σ (3σ) deviation, given the two degrees of freedom, we need χ2 ≤ 6.18

(9.21) [218]. In Fig. 4.18 we show the allowed region of parameter in the Rφ −Rf plane consis-

tent with electroweak precision data at 2σ (and 3σ) deviation for inverse compactification radius,

1/R = 500 and 1000 GeV. Note that the larger values of BLT parameters Rφ,f lead to a larger

allowed parameter space that is in agreement with the result shown in Fig. 4.18 of Ref. [165].

We mention that the dominant effect on the electoweak precision observables comes from the

modification of the Fermi constant. From the one-loop contribution of KK particles another set

of subdominant modification in the precision observables results. However, a detailed one-loop

contribution from the KK particles in the case of nmUED is subject to further study.
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Figure 4.18: The shaded region, in the Rφ −Rf plane, represents the 2σ (dark blue) and 3σ
(light blue) deviation region satisfying the electroweak precision constraints for 1/R =500 GeV
(left) and 1000 GeV (right).
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Normally BSM models suffer from the presence of tree-level FCNCs and appropriate symmetry

etc. are imposed to get rid of them. In the most general setup of nmUED every field present in

the model can have different BLT parameters. If there are different BLT parameters for fermions

of different flavors then that leads to tree-level FCNCs. However, it has been shown in Ref. [177]

that there exist no FCNCs if the fermion BLT parameters are flavor-blind, i.e. the BLT matrices

are proportional to the unit matrix in flavor space. In our case we have used a universal BLT

parameter for all fermions; clearly there is no tree-level FCNC in our present setup, no matter

what the values of BLT parameters are.

In case of rare top decays, we have seen, at least in the case of t → cγ, that somewhat large

values of BLT parameters can result in an order of magnitude increment to the decay rate as

compared to the SM. As it stands larger BLT parameters lead to smaller KK-masses. In this

regard a few points are in order. Presently the bounds on new physics particles are quite high

as can be seen from the exotic particle searches of ATLAS and CMS [222, 223]. In the case of

mUED, LHC dilepton searches put constraints on second KK-level particles to be mKK(2) ≥ 1.4

TeV [153]. Now, for the BLT parameters and R−1 that lead to a larger Γt→cγ compared to the

SM the second level KK particles become much lighter. Clearly, a qualitative comparison with

Ref. [153] shows that a lighter KK particle implies significant propagator enhancement leading

the dilepton cross section to a degree that is ruled out by LHC dilepton data. We have checked

that even the modification in couplings via the overlap integrals is not enough to evade these

bounds. Thus the parameter space leading to an apparent enhancement in Γt→cγ is already ruled

out from LHC dilepton searches. Also from Fig. 4.11, we can see that this parameter space is

ruled out by the Rb value obtained by LEP collaboration.

In passing we mention that the collider signatures of nmUED can mimic supersymmetry (SUSY).

However, one must remember that n = 1 KK-masses in nmUED are more closely spaced than

the masses of SUSY partners in any conventional SUSY models. This hinders one from directly

translating available bounds on conventional SUSY models to nmUED models.

4.5 Conclusions

We have performed a complete one-loop contribution to the Zbb̄ vertex and also to flavor-

changing top quark decays (t → cγ and t → ch) in the context of minimal and non-minimal

UED. In case of nmUED, kinetic and Yukawa terms are added to the fixed points of the extra

space like dimension. These boundary-localized terms, with their coefficients as free parameters,

parametrize the quantum corrections to the masses of the KK excitations and their mutual

interactions. We have calculated the interactions necessary for our calculation. Some of these

interactions are very similar to those in UED. However, some of the interactions are modified in
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comparison to their UED counterparts by some overlap integrals involving the extra dimensional

profiles of the fields present in an interaction vertex.

The effects of BLKTs on the masses of KK-modes and their interactions can be summarized as

the following. For a given R−1, increasing BLKT parameter would drive the respective masses

to lower values. Strength of an interaction does not have such a simple dependence on the BLKT

parameters. We have derived all the necessary interactions involving the KK excitations of top

quarks, W bosons, charged Higgs and Goldstone bosons in the framework of nmUED with the

assumption of equal gauge and Higgs BLKT parameters along with equal fermion and Yukawa

BLT parameters. Gauge and Higgs BLKT parameters have been chosen to be equal to avoid the

nontrivial scenario created by the presence of rφ in equation of motion of the gauge fields, while

unequal fermion BLKT parameter and Yukawa BLT parameter would lead to the KK-mode

mixing in the definition of physical states of KK excitations of top quarks. So for the sake of

a relatively simpler calculation we stick to the choice of equal fermion BLKT and Yukawa BLT

parameters.

We have constrained the parameter space of these models from new physics contributions of Zbb̄

coupling. In general, coupling of a b quark to the Z boson involves both the left- and right-chiral

projectors. However, quantum corrections which go into the coefficient of the left-chiral projector

are proportional to m2
t while the m2

b proportional terms go into the coefficient of the right-chiral

projector. We have done the calculation in the limit where mb → 0. There are two main

classes of Feynman diagrams contributing to δgNP
L (the contribution to Zbb̄ vertex in nmUED

framework), in ’t-Hooft Feynman gauge. First set of diagrams listed in Fig. 4.2, captures the

dominant contribution (because of Yukawa coupling which is proportional to mt) coming from

the participation of KK excitations of top quarks and charged Higgs boson/Goldstones in the

loops. The remaining set consists of contributions mainly coming from the KK excitations of W

bosons and top quarks inside the loops. These diagrams are listed in Fig. 4.3.

The explicit expressions for the contributions coming from each of the diagrams are listed in

the Section 4.2.1. Sum of the contributions to δgNP
L from the diagrams in Fig. 4.2 is finite and

independent of sin2 θW . While the second set of diagrams needs to be regularized, after summing

up, it is still ultraviolet divergent and also contains a term which grows with R−18. We have

used a regularization scheme following Ref. [137,216], upon which the total contribution becomes

finite and also becomes independent of sin2 θW .

A recent theoretical estimation of the Zbb̄ vertex in the framework of SM at two loop level has

squeezed the window for new physics that might be operating at TeV scale. The experimentally

measured value of Rb differs from the SM prediction at 1.2 σ level. We have used the experimental

data and the recent results from the SM on Rb, to constrain the parameter space of non-minimal
8This term arises from the diagrams Fig. 4.3 (f) and (g), due to a direct proportionality on R−1 of the vertex

W −G− Z.
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Universal Extra Dimensional Model. We have relooked into the UED by setting the BLKT

parameters to zero in our calculation. The resulting expressions can be used to put bound on

R−1 in UED model using the same experimental data and the SM estimations of Rb. It has

been found that R−1 in UED model should be greater than 350 GeV at 95 % C.L.

Next we focus into our main result. Comparing the numerical estimation of FnmUED with the

difference between experimental data and SM estimation we have constrained the parameters in

nmUED. First we look into the limits on R−1. Both the BLKT parameters have positive effects

on FnmUED. This function is very sensitive to any change in Rf while the effect of Rφ is very

mild. The bottom line is that both the BLKT parameters can push the allowed value of R−1 to

higher values. Depending on magnitude of BLKT parameters Rφ and Rf (which we have chosen

to be positive), lower limit on R−1 could be close to 1 TeV. Finally, we show contours of constant

FnmUED having the 95 % C.L. upper limit value for different values of R−1 in Rφ − Rf plane.

As for a fixed value of R−1, i.e. for a fixed curve the value of the function FnmUED increases

with increase of Rf the left side of that curve represents the allowed region of this function for

respective R−1.

Furthermore we have also verified, in the SM, the results of branching ratios of flavor-changing

decays with the existing literature. As far as the experimental searches are concerned, both

ATLAS and CMS collaborations have performed some searches of FCNC top decays. For ex-

ample, using the 19.6 fb−1 data at
√
s = 8 TeV the CMS collaboration puts an upper bound

on the rare decay to cγ as Br(t → cγ) < 0.182% [224]. On the other hand for the t → ch

channel, the ATLAS collaboration puts a bound of Br(t → ch) < 0.51% using 4.7 fb−1 data at
√
s = 7 TeV and 20.3 fb−1 at

√
s = 8 TeV [225]; whereas according to the CMS collaboration

Br(t → ch) < 0.56% by using 19.5 fb−1 data at
√
s = 8 TeV [226]. Also see Ref. [227] for the

projected limits for higher energies on top FCNCs at the LHC and ILC. From these numbers

it is evident that even in the higher energetic Run-II of the LHC the sensitivity will not reach

the limit to judge the small branching ratios as obtained from the theoretical calculations in the

SM. However, there are many BSM scenarios in which these branching ratios are quite high and

at the level that can be probed in the Run-II of LHC. The aim of this chapter is also to look

into this issue of rare decays in one of the interesting BSM scenario, i.e. mUED and nmUED.

We show that both the decay widths of t → cγ and t → ch do not change much from the

SM value in mUED for any reasonable choice of the inverse compactification radius 1/R. This

result is somewhat contrary to what has been obtained in Ref. [212] by using various simplifying

assumptions. In passing we note that a similar picture arises for the rare B- and K-decays in

the case of mUED [137]. On the other hand in the non-minimal case, i.e. in the presence of

BLT parameters, if Rf,φ ≥ 10 and Rf 6= Rφ the t → cγ decay width can, in principle, enhance

up to four orders of magnitude from its SM value while respecting the electroweak precision

data. But the required R−1 along with such higher values of BLT parameters are not viable
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from the LHC data. For the case Rf = Rφ we found no such enhancement. However in the

case of t → ch, irrespective of whether Rf and Rφ are equal or not the decay width does not

get any enhancement compared to its SM result. Actually the GIM suppression is still at work,

even though the KK particles are contributing to the processes, and the decay widths remain,

in most of the cases, almost at the same level as that of SM.



5
Summary

and Conclusions

The discovery of Higgs boson at LHC has profoundly vindicated the physics of electroweak

symmetry breaking in the Standard Model. Still, there are some evidences which surely make

an obvious need for going beyond the SM. Among all the variants of new physics, the existence

of extra spatial dimensions have many conceptual and phenomenological implications. In this

thesis, we consider a particular incarnation of extra dimensions which is termed as the Universal

Extra Dimensional (UED) model. We have considered the model in its basic and also in its

non-minimal version.

The basic category of the model (UED) is nothing but the higher dimensional version of the

SM where all the particles can propagate in the extra dimension (the bulk). Their Kaluza-Klein

excitations have simple mass fomulae and the couplings have close resemblance to that of the

SM fields. In the non-minimal version some boundary localized terms are incorporated which

eventually include the localized-kinetic and Yukawa terms as well as the mass and potential

terms of various fields. This thesis mainly includes the procedure and results for obtaining the

constraints on the model parameters from Unitarity (in scalar sector) and from some radiative

corrections.

Chapter 1 starts with a brief description of the SM. The latter part of this chapter shows

the experimental and the theoretical motivations to go beyond the SM. The second Chapter 2

113
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elaborately describes the Universal Extra Dimensional model (UED) along with its minimal and

non-minimal version. Chapter 2 also includes the bounds obtained on the extra dimensional

parameter in case of UED and mUED. After delving into the detailed description of UED and

its some specific phenomenological consequences, Chapters 3 and 4 contain some new work which

constitutes the main part of this thesis.

In Chapter 3, we have constrained the parameters of the nmUED model in the scalar as well as in

the gauge sectors from a study of Unitarity. In nmUED, the boundary terms are generated due

to radiative corrections. So those terms are loop suppressed. The coefficients of boundary terms

are the free parameters of the theory which we call the BLT parameters. Though the terms are

loop suppressed and should be small, but we do not know the effective range of BLT parameters,

or how do they behave in the four-dimensional effective theory. Unitarity analysis in gauge

and scalar sectors will give the range of BLT parameters which maintains perturbativity of the

model. We have performed this analysis in gauge and scalar sectors exploiting the equivalence

theorem to get the upper bound on gauge and scalar BLT parameters (which are same in our

analysis). Initially we have done partial wave analysis for some single channel processes and

after that we have done coupled channel analysis to further constrain the respective parameters.

We have estimated the bounds on the boundary localized parameters for specific KK-modes and

also shown that the upper bounds on scalar BLT parameters get more constraint with increasing

KK-modes. If we consider KK-modes up to 4-5, the scalar (scaled) BLT parameter can be taken

as high as 19 which falls down to nearly unity if KK-number is taken up to 25.

Chapter 4 deals with some loop induced processes in the presence of one spatial extra dimension.

This chapter is basically comprised of two parts; one is to constrain the nmUED parameter

space using the experimental data and the SM estimations of Rb with Rb being the ratio of

Z boson decay width to a pair of b quarks normalized to total hadronic decay width obtained

by LEP collaboration. For specific choice of BLT parameters the lower bound on the inverse of

compactification radius (R−1) can be around 1 TeV. Another part deals with some flavor changing

rare decays, t → cγ and t → ch. For some choice of BLT parameters the respective decay

widths have some considerable enhancement with respect to the SM value, but the corresponding

parameter space is ruled out from LHC and also from LEP data (from Rb value).

It is also worth-noting that in the KK-parity conserving nmUED scenario the lightest KK particle

is stable and can play the role of dark matter. But in this regard it is to be kept in mind that

for some choice of BLT parameters it may so happen that some specific KK fermion becomes

the LKP. Now, a KK fermion LKP is not preferable as it can have electric charge or if it is a KK

neutrino it is excluded, as a viable dark matter candidate, by direct detection observations. KK-

parity can be broken if there are asymmetric BLTs. Thus taking asymmetric BLT parameters

in a way that guarantees enough KK-parity breaking to make the LKP unstable and sufficiently

short-lived, the dark matter constraints can be relaxed.
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Finally we add a few comments about the possible extensions in the ambit of this model. First,

the effect of KK contribution on the CKM matrix elements (important in case of rare decays) can

be systematically taken into account in the calculation of various loop induced decays. Secondly,

in nmUED by utilizing the freedom of taking different BLT parameters for different types of fields

one can, in principle, get a richer model set-up to look into the loop induced decays. Thirdly,

and perhaps most importantly, by taking different BLT parameters at two orbifold fixed points

for the same kind of field one can break KK-parity. The violation of KK-parity would lead to

a host of new KK-parity violating vertices that can significantly modify the decay widths. It is

imperative that these effects, which can lead to some interesting observations, be examined in

detail.



A
Feynman Rules Relevant

for Unitarity Analysis

In the following Feynman rules, ‘n’ or ‘q’ stands for KK-mode and ‘0’ for SM.

A.1 (0)-(n)-(n) Coupling (n : even or odd)

h(0)h(n)h(n) : −3i

(
m2
h

v

)
,

h(0)A(n)A(n) : − i
v

(
m2
hM

2
Φn + 2M2

ZM
2
Zn

M2
Zn

)
,

h(0)G
(n)
Z G

(n)
Z : − i

v

(
m2
hM

2
Z

M2
Zn

)
,

h(0)A(n)G
(n)
Z : −iMZMΦn

v

(
m2
h −M2

Zn

M2
Zn

)
,

χ(0)h(n)A(n) : − i
v
MΦn

(
m2
h −M2

Z

MZn

)
,

χ(0)h(n)G
(n)
Z : −iMZ

v

(
m2
hn

MZn

)
,

h(0)H(n)+H(n)− : − i
v

(
m2
hM

2
Φn + 2M2

WM
2
Wn

M2
Wn

)
,
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h(0)G(n)+G(n)− : −im
2
h

v

(
M2
W

M2
Wn

)
,

h(0)G(n)±H(n)∓ : ±MΦnMW

v

(
m2
h −M2

Wn

M2
Wn

)
,

φ(0)∓h(n)G(n)± : ±MW

v

(
m2
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MWn

)
,

φ(0)∓h(n)H(n)± : −iMΦn

v

(
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W
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)
,
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v
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(
MWn

MZn

)
,
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W
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W
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vMZnMWn

,
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v
.

A.2 (n)-(n)-(q) Coupling; n : even or odd, q : even

h(n)h(n)h(q) : −3i

(
m2
h

v

)
Innq,

A(n)A(n)h(q) : − i

vM2
Zn

c1nnq,
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vM2
Wn

c2nnq,

h(n)A(n)G
(q)
Z :

iMZ

vMZnMZq
c3nnq,

h(n)A(n)A(q) : − i

vMZnMZq
c4nnq,

G
(n)
Z G

(n)
Z h(q) : − iM2

Z

vM2
Zn

(
m2
hI
nnq + 2MΦnMΦqI

′qnn) ,
G

(n)
Z h(n)G

(q)
Z : − iM2

Z

vMZnMZq
c5nnq,

h(n)G
(n)
Z A(q) :

iMZ

vMZnMZq
c6nnq,

A(n)G
(n)
Z h(q) : −i MZ
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′qnn) ,



Appendix A. Feynman Rules Relevant for Unitarity Analysis 118

G(n)∓G(q)±h(n) : −i M2
W

vMWnMWq
c5nnq,

H(n)±G(n)∓A(q) :
iMW

vMZq
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A.3 (n)-(n)-(n) Coupling; n : even
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G(n)±H(n)∓A(n) : i
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(n)
Z : −iMWMZ
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The overlap integrals I3nand I
′3n can be calculated from Eqs. 3.10 and 3.12 or 3.13 respectively.

A.4 Quartic Coupling (n)-(n)-(n)-(n); n : even or odd
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v2M4
Wn

(
m2
hM

4
ΦnI

n + 4M4
WM

2
ΦnI

′n) ,
h(n)G

(n)
Z H(n)±G(n)∓ : −iMWMZMΦn

v2MZn
(1− cos 2θW ) I ′n,

h(n)h(n)H(n)+H(n)− : − i

v2M2
Wn

(
m2
hM

2
ΦnI

n + 2M4
W I
′n) ,

h(n)h(n)G(n)+G(n)− : − iM2
W

v2M2
Wn

(
m2
hI
n + 2M2

ΦnI
′n) ,

G
(n)
Z G

(n)
Z H(n)+H(n)− : − iM2

Z

v2M2
WnM

2
Zn

q2n,

A(n)A(n)H(n)+H(n)− : − iM2
Φn

v2M2
WnM

2
Zn

q3n,

A(n)A(n)G(n)+G(n)− : − iM2
W

v2M2
WnM

2
Zn

q4n,

A(n)G
(n)
Z G(n)±H(n)∓ : ± MWMZ

v2M2
WnM

2
Zn

q5n.

In the above expressions all the symbols cinnqs and qjns where i : 1 → 19 and j : 1 → 5, are

given explicitly in APPENDIX B. The overlap intergrals Innq, In, I ′nnq, I ′qnn, I ′n are obtained

using the Eqs. 3.10-3.14. The explicit expression of In has been given in Eq. 3.27.



B
Explicit Expression of Abbreviations

Used in Appendix A

c1nnq : m2
hM

2
ΦnI

nnq + 2M2
ZM

2
ZnI

′nnq − 2M2
ZMΦnMΦqI

′qnn,

c2nnq : m2
hM

2
ΦnI

nnq + 2M2
WM

2
WnI

′nnq − 2M2
WMΦnMΦqI

′qnn,

c3nnq : −m2
hMΦnI

nnq +M2
ZMΦqI

′qnn +M2
ZMΦnI

′nnq,

c4nnq : m2
hMΦnMΦqI

nnq +M2
Z(2M2

Z +M2
Φq)I

′qnn −M2
ZMΦnMΦqI

′nnq,

c5nnq : m2
hI
nnq +M2

ΦnI
′nnq +MΦnMΦqI

′qnn,

c6nnq : −m2
hMΦqI

nnq +MΦn(I ′qnn(2M2
Z +M2

Φq)−MΦnMΦqI
′nnq),

c7nnq : m2
hMΦnI

nnq −M2
ZnMΦnI

′nnq − (M2
Z −M2

Φn)MΦqI
′qnn,

c8nnq : MΦnMΦq

(
m2
hI
nnq −M2

W I
′nnq)+M2

W

(
2M2

W +M2
Φq

)
I ′qnn,

c9nnq : M2
ZqI
′qnn −

(
MΦnMΦqI

′nnq + cos 2θWM
2
ZI
′qnn) ,

c10nnq : −MΦnI
′nnq + cos 2θWMΦqI

′qnn,

c11nnq : M2
W (M2

Φq −M2
Φn)I ′qnn +MΦn cos 2θW (I ′qnnM2

WqMΦn − I ′nnqM2
WnMΦq),

c12nnq : −m2
hMΦqI

nnq +MΦnM
2
WqI

′qnn +MΦn

(
M2
W I
′qnn −MΦnMΦqI

′nnq) ,
c13nnq : −m2

hMΦnI
nnq +MΦn(M2

W I
′nnq −MΦqMΦnI

′qnn) +MΦqM
2
WnI

′qnn,

c14nnq : MΦqI
′qnn − cos 2θWMΦnI

′nnq,
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c15nnq : M2
WM

2
Zn

(
MΦnI

′qnn −MΦqI
′nnq)+ I ′qnnMΦnM

2
W

(
M2

Φq −M2
Φn

)
− cos 2θWM

2
Z

(
I ′qnnM2

WqMΦn − I ′nnqM2
WnMΦq

)
,

c16nnq : MΦnMΦq(M
2
Z −M2

W )I ′qnn −M2
ZM

2
Wn cos 2θW I

′nnq +M2
ZnM

2
W I
′nnq,

c17nnq : M2
Zn

(
MΦnMΦqI

′nnq +M2
W I
′qnn)−M2

WqI
′qnn (M2

Φn +M2
Z cos 2θW

)
,

c18nnq : MΦnI
′nnq −MΦqI

′qnn,

c19nnq : m2
hMΦnI

nnq −M2
WnMΦnI

′nnq + (M2
Φn −M2

W )MΦqI
′qnn,

c13n : m2
hM

2
ΦnI

3n + 2M4
ZI
′3n,

c23n : m2
hM

2
ΦnI

3n + 2M4
W I
′3n,

c33n : −m2
hI

3n + 2M2
ZI
′3n,

c43n : m2
hI

3n + 2M2
ΦnI

′3n,

c53n : M2
ZI
′3n (1− cos 2θW ) ,

c63n : MΦnI
′3n (1− cos 2θW ) ,

c73n : −m2
hI

3n + 2M2
W I
′3n,

q1n : 3m2
hM

2
ΦnI

n + 2(M4
Z − 4M2

ZM
2
Φn +M4

Φn)I ′n,

q2n : m2
hM

2
ΦnI

n +
(
2M4

W − 4M2
WM

2
Φn(1− cos 2θW ) +M4

Φn(1 + cos 4θW )
)
I ′n,

q3n : m2
hM

2
ΦnI

n +
(
2M4

W + 4M2
WM

2
Z(1− cos 2θW ) +M4

Z(1 + cos 4θW )
)
I ′n,

q4n : m2
hM

2
ΦnI

n +
(
M4
Z(1 + cos 4θW )− 4M2

ZM
2
Φn(1− cos 2θW ) + 2M4

Φn

)
I ′n,

q5n : m2
hM

2
ΦnI

n +
(
(1− cos 2θW )

(
M2
W (M2

Z −M2
Φn) +M4

Φn

)
−M2

ZM
2
Φn(3 + cos 4θW )

)
I ′n.



C
Expressions for a0 of Relevant (n),(n) → (n),(n)

Processes in Unitarity Analysis

a0(h(n)h(n) → h(n)h(n)) = − 3

16π

m2
h

v2

[
In + 3m2

h

{
1

s−m2
h

− 2

s− 4m2
hn

ln

(
s− 3m2

h − 4M2
Φn

m2
h

)}
+ 3m2

h

∞∑
q=even

Innq2

{
1

s−m2
hq

− 2

s− 4m2
hn

ln

(
s− 3m2

h − 4M2
Φn +M2

Φq

m2
hq

)}]
, (C.1)

a0(A(n)A(n) → A(n)A(n)) = − 1

16π

1

v2M4
Zn

[
3(m2

hM
4
ΦnI

n + 4M4
ZM

2
ΦnI

′n) + (m2
hM

2
Φn + 2M2

ZM
2
Zn)2

×
{

1

s−m2
h

− 2

s− 4M2
Zn

ln

(
s− 4M2

Zn +m2
h

m2
h

)}
+

∞∑
q=even

c12
nnq

{
1

s−m2
hq

− 2

s− 4M2
Zn

ln

(
s− 4M2

Zn +m2
hq

m2
hq

)}]
, (C.2)

a0(H(n)+H(n)− → H(n)+H(n)−) = − 1

16π

1

v2M4
Wn

[
2(m2

hM
4
ΦnI

n + 4M4
WM

2
ΦnI

′n)

+ (m2
hM

2
Φn + 2M2

WM
2
Wn)2

{
1

s−m2
h

− 2

s− 4M2
Wn

ln

(
s− 4M2

Wn +m2
h

m2
h

)}
+

∞∑
q=even

c22
nnq

{
1

s−m2
hq

− 2

s− 4M2
Wn

ln

(
s− 4M2

Wn +m2
hq

m2
hq

)}]
, (C.3)

a0(G
(n)
Z A(n) → G

(n)
Z A(n)) = − 1

16π

M2
Z

v2M4
Zn

[
q1n +M2

Φn

(
m2
h −M2

Zn

)2{ 1

s−m2
h
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− 1(
s− 4M2

Zn

) ln

(
s− 4M2

Zn +m2
h

m2
h

)}
− m2

h(m2
hM

2
Φn + 2M2

ZM
2
Zn)(

s− 4M2
Zn

)
× ln

(
s− 4M2

Zn +m2
h

m2
h

)
+

∞∑
q=even

c72
nnq

{
1

s−m2
hq

− 1(
s− 4M2

Zn

)
× ln

(
s− 4M2

Zn +m2
hq

m2
hq

)}
−

∞∑
q=even

(
m2
hI
nnq + 2MΦnMΦqI

′qnn)
× c1nnq(

s− 4M2
Zn

) ln

(
s− 4M2

Zn +m2
hq

m2
hq

)]
, (C.4)

a0(h(n)A(n) → h(n)A(n)) = − 1

16π

1

v2M2
Zn

[(
m2
hM

2
ΦnI

n + 2M4
ZI
′n)+M2

Φn

(
m2
h −M2

Z

)2
×
{

1

s−M2
Z

− s

(s−m2
hn −M2

Zn)2
lnX2n

}
− 3m2

hs

(
m2
hM

2
Φn + 2M2

ZM
2
Zn

)
(s−m2

hn −M2
Zn)2

lnX3n

+

∞∑
q=even

1

M2
Zq

{M2
Zc3

2
nnq + c42

nnq}
{

1

s−M2
Zq

− s

(s−m2
hn −M2

Zn)2
lnY 2nq

}

−
∞∑

q=even

3m2
hI
nnqc1nnqs

(s−m2
hn −M2

Zn)2
lnY 3nq

]
, (C.5)

a0(h(n)G
(n)
Z → h(n)G

(n)
Z ) = − 1

16π

M2
Z

v2M2
Zn

[(
m2
hI
n + 2M2

ΦnI
′n)+m4

hn

{
1

s−M2
Z

− s

(s−m2
hn −M2

Zn)2
lnX2n

}
− 3m4

hs

(s−m2
hn −M2

Zn)2
lnX3n

+
∞∑

q=even

1

M2
Zq

{M2
Zc5

2
nnq + c62

nnq}
{

1

s−M2
Zq

− s

(s−m2
hn −M2

Zn)2
lnY 2nq

}

−
∞∑

q=even

(
m2
hI
nnq + 2MΦnMΦqI

′qnn) 3m2
hI
nnqs

(s−m2
hn −M2

Zn)2
lnY 3nq

]
, (C.6)

a0(h(n)G
(n)
Z → H(n)±G(n)∓) = − 1

16π

MZMW

v2MZn

[
MΦn(1− cos 2θW )I ′n +

MΦnm
2
h

(s−M2
Z)

− 2MΦnm
2
hn cos 2θW

√
s√

s− 4M2
Wn(s−m2

hn −M2
Zn)

lnX4n +

∞∑
q=even

(−M2
Zc10nnqc5nnq + c9nnqc6nnq)

M2
Zq(s−M2

Zq)

+

∞∑
q=even

2
√
s√

s− 4M2
Wn(s−m2

hn −M2
Zn)

×
{
MΦnMΦq

M2
WnMWq

I ′qnnc8nnq −
c11nnqc12nnq
M2
WnM

2
Wq

− M2
W

M2
Wq

c5nnqc10nnq

}
lnY 4nq

]
, (C.7)

a0(H(n)±h(n) → H(n)±h(n)) = − 1

16π

1

v2M2
Wn

[(
m2
hM

2
ΦnI

n + 2M4
W I
′n)+M2

Φn

(
m2
h −M2

W

)2
×
{

1

s−M2
W

− s

(s−m2
hn −M2

Wn)2
lnX7n

}
− 3m2

h

(
m2
hM

2
Φn + 2M2

WM
2
Wn

)
s

(s−m2
hn −M2

Wn)2
lnX8n

+

∞∑
q=even

(
M2
W c132

nnq + c82
nnq

)
M2
Wq

{
1

s−M2
Wq

− s

(s−m2
hn −M2

Wn)2
lnY 7nq

}
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−
∞∑

q=even

3m2
hI
nnq c2nnqs

(s−m2
hn −M2

Wn)2
lnY 8nq

]
, (C.8)

a0(G(n)±h(n) → G(n)±h(n)) = − 1

16π

M2
W

v2M2
Wn

[(
m2
hI
n + 2M2

ΦnI
′n)+M2

Φn

(
m2
h −M2

W

)2
×
{

1

s−M2
W

− s

(s−m2
hn −M2

Wn)2
lnX7n

}
− 3m4

h

s

(s−m2
hn −M2

Wn)2
lnX8n

+

∞∑
q=even

(
M2
W c5

2
nnq + c122

nnq

)
M2
Wq

{
1

s−M2
Wq

− s

(s−m2
hn −M2

Wn)2
lnY 7nq

}

−
∞∑

q=even

(
m2
hI
nnq + 2MΦnMΦqI

′qnn) 3m2
hI
nnqs

(s−m2
hn −M2

Wn)2
lnY 8nq

]
, (C.9)

a0(H(n)±G
(n)
Z → H(n)±G

(n)
Z ) = − 1

16π

M2
Z

v2M2
ZnM

2
Wn

[
q2n + (M2

ΦnM
4
Wncos22θW )

{
1

s−M2
W

− s

(s−M2
Zn −M2

Wn)2
lnX9n

}
−m2

h

(
m2
hM

2
Φn + 2M2

WM
2
Wn

)
× s

(s−M2
Zn −M2

Wn)2
lnX10n +

∞∑
q=even

1

M2
Wq

(
M2
WM

4
Wnc142

nnq + c112
nnq

)
×
{

1

s−M2
Wq

− s

(s−M2
Zn −M2

Wn)2
lnY 9nq

}

−
∞∑

q=even

(
m2
hI
nnq + 2MΦnMΦqI

′qnn) s c2nnq
(s−M2

Zn −M2
Wn)2

lnY 10nq

]
, (C.10)

a0(H(n)±A(n) → H(n)±A(n)) = − 1

16π

M2
Z

v2M2
ZnM

2
Wn

[
M2

Φnq3n + (M2
Φn + 2M2

W )(M2
Z −M2

W )2

×
{

1

s−M2
W

− s

(s−M2
Zn −M2

Wn)2
lnX9n

}
−
(
m2
hM

2
Φn + 2M2

ZM
2
Zn

) (
m2
hM

2
Φn + 2M2

WM
2
Wn

) s

(s−M2
Zn −M2

Wn)2
lnX10n

+
∞∑

q=even

1

M2
Wq

(
M2
W c162

nnq + c152
nnq

){ 1

s−M2
Wq

− s

(s−M2
Zn −M2

Wn)2
lnY 9nq

}

−
∞∑

q=even

c1nnqc2nnq
s

(s−M2
Zn −M2

Wn)2
lnY 10nq

]
, (C.11)

a0(G(n)±A(n) → G(n)±A(n)) = − 1

16π

M2
W

v2M2
ZnM

2
Wn

[
q4n + (M2

ΦnM
4
Zn)

{
1

s−M2
W

− s lnX9n
(s−M2

Zn −M2
Wn)2

}
−m2

h

(
m2
hM

2
Φn + 2M2

ZM
2
Zn

) s lnX10n
(s−M2

Zn −M2
Wn)2

+

∞∑
q=even

1

M2
Wq

(
M2
WM

4
Znc182

nnq + c172
nnq

){ 1

s−M2
Wq

− s lnY 9nq
(s−M2

Zn −M2
Wn)2

}

−
∞∑

q=even

(
m2
hI
nnq + 2MΦnMΦqI

′qnn) c1nnq s

(s−M2
Zn −M2

Wn)2
lnY 10nq

]
, (C.12)

a0(A(n)G
(n)
Z → G(n)±H(n)∓) = − 1

16π

MWMZ

v2M2
ZnM

2
Wn

[
q5 + (m2

h −M2
Zn)(m2

h −M2
Wn)

M2
Φn

s−m2
h
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− 2M2
Φn cos 2θWM

2
ZnM

2
Wn√(

s− 4M2
Zn

) (
s− 4M2

Wn

) lnX6n +
∞∑

q=even

c7nnqc19nnq
s−m2

hq

+

∞∑
q=even

(
M2
WM

2
WnM

2
Znc14nnqc18nnq + c17nnqc11nnq −M2

Wq(1− cos 2θW )

×MΦnI
′qnnc15nnq

) 2

M2
Wq

√(
s− 4M2

Zn

) (
s− 4M2

Wn

) lnY 6nq

 . (C.13)

The explicit expressions of the symbols of Xkns and Y knqs having k : 1 → 10 are given in

APPENDIX D.



D
Explicit Expression of Abbreviations

Used in Appendix C

X1n :
s− 2m2

h − 4M2
Φn −

√(
s− 4m2

hn

) (
s− 4M2

Zn

)
2
√
m4
h +M2

Z

(
s− 4m2

hn

) ,

Y 1nq :
s− 2m2

h − 4M2
Φn + 2M2

Φq −
√(

s− 4m2
hn

) (
s− 4M2

Zn

)
2

√(
m2
h −M2

Φq

)2
+M2

Φq

(
s− 4M2

Φn

)
+M2

Z

(
s− 4m2

hn

) ,
X2n :

s{2(m2
hn +M2

Zn)− s} − 2(sM2
Z +m2

hnM
2
Zn)

m4
hn +M4

Zn − sM2
Z

,

Y 2nq :
s{2(m2

hn +M2
Zn)− s} − 2(sM2

Zq +m2
hnM

2
Zn)

m4
hn +M4

Zn − sM2
Zq

,

X3n : 1 +
(s−m2

hn −M2
Zn)2

sm2
h

,

Y 3nq : 1 +
(s−m2

hn −M2
Zn)2

sm2
hq

,

X4n :

√
s
(
s− 2M2

Φn −m2
hn −M2

Zn

)
−
√
s− 4M2

Wn(s−m2
hn −M2

Zn)

2
√

(s−m2
hn −M2

Zn){sM2
W −M2

Wn(m2
hn +M2

Zn)}+ sM4
Φn

,
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Y 4nq :

√
s
(
s+ 2M2

Φq − 2M2
Φn −m2

hn −M2
Zn

)
−
√
s− 4M2

Wn(s−m2
hn −M2

Zn)

2
√

(s−m2
hn −M2

Zn){sM2
Wq −M2

Wn(m2
hn +M2

Zn)}+ s(M2
Φq −M2

Φn)2
,

X5n :
s− 2m2

h − 4M2
Φn −

√(
s− 4m2

hn

) (
s− 4M2

Wn

)
2
√
m4
h +M2

W

(
s− 4m2

hn

) ,

Y 5nq :
s− 2m2

h − 4M2
Φn + 2M2

Φq −
√(

s− 4m2
hn

) (
s− 4M2

Wn

)
2

√(
m2
h −M2

Φq

)2
+M2

Φq

(
s− 4M2

Φn

)
+M2

W

(
s− 4m2

hn

) ,

X6n :
s− 2M2

Z − 4M2
Φn −

√(
s− 4M2

Zn

) (
s− 4M2

Wn

)
2
√
M4
Z +M2

W

(
s− 4M2

Zn

) ,

Y 6nq :
s− 2M2

Z − 4M2
Φn + 2M2

Φq −
√(

s− 4M2
Zn

) (
s− 4M2

Wn

)
2

√(
M2
Z −M2

Φq

)2
+M2

Φq

(
s− 4M2

Φn

)
+M2

W

(
s− 4M2

Zn

) ,
X7n :

s{2(m2
hn +M2

Wn)− s} − 2(sM2
W +m2

hnM
2
Wn)

m4
hn +M4

Wn − sM2
W

,

Y 7nq :
s{2(m2

hn +M2
Wn)− s} − 2(sM2

Wq +m2
hnM

2
Wn)

m4
hn +M4

Wn − sM2
Wq

,

X8n : 1 +
(s−m2

hn −M2
Wn)2

sm2
h

,

Y 8nq : 1 +
(s−m2

hn −M2
Wn)2

sm2
hq

,

X9n :
s{2(M2

Zn +M2
Wn)− s} − 2(sM2

W +M2
ZnM

2
Wn)

M4
Zn +M4

Wn − sM2
W

,

Y 9nq :
s{2(M2

Zn +M2
Wn)− s} − 2(sM2

Wq +M2
ZnM

2
Wn)

M4
Zn +M4

Wn − sM2
Wq

,

X10n : 1 +
(s−M2

Zn −M2
Wn)2

sm2
h

,

Y 10nq : 1 +
(s−M2

Zn −M2
Wn)2

sm2
hq

.



E
General Form of Matrix Elements

in Coupled Channel Analysis

Here, we give the general form of the matrix elements explicitly where, the sum over KK-modes,

the symmetry factors as well as the factor 1/
√

2 due to the presence of dibosonic states have been

taken into account. While writing the elements, the ordering of neutral fields are important; e.g.

the combinations h(n)h(n)A(n)A(n) will differ from h(n)A(n)h(n)A(n) by a factor of 1/2 as h(n)h(n)

or A(n)A(n) altogether implies the presence of dibosonic state. Another noteworthy point is that

the sum of the KK-numbers should be even, otherwise the elements will be zero ensuring the

conservation of KK-parity.

E.1 Elements of matrix A15×15

h(0)h(0)h(0)h(0) : −3

2

(
m2
h

v2

)
,

h(0)h(0)h(n)h(n) : −3

2

(
m2
h

v2

)
,

h(0)h(n)h(0)h(n) : −3

(
m2
h

v2

)
,

128
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h(n)h(n)h(0)h(m) : − 3√
2

(
m2
h

v2

)
Innm,

h(n)h(0)h(n)h(m) : −3

(
m2
h

v2

)
Innm,

h(0)h(n)h(m)h(p) : −3

(
m2
h

v2

)
Inmp,

h(0)h(n)h(n)h(n) : − 3√
2

(
m2
h

v2

)
I3n,

h(n)h(n)h(n)h(n) : −3

2

(
m2
h

v2

)
In,

h(n)h(n)h(m)h(m) : −3

2

(
m2
h

v2

)
Innmm,

h(n)h(m)h(n)h(m) : −3

(
m2
h

v2

)
Innmm,

h(n)h(n)h(n)h(m) : − 3√
2

(
m2
h

v2

)
Innnm,

h(n)h(n)h(m)h(p) : − 3√
2

(
m2
h

v2

)
Innmp,

h(n)h(m)h(n)h(p) : −3

(
m2
h

v2

)
Innmp,

h(n)h(m)h(p)h(q) : −3

(
m2
h

v2

)
Inmpq.

E.2 Elements of matrix D10×10

A(n)A(n)A(n)A(n) : − 3

2v2M4
Zn

(
m2
hM

4
ΦnI

n + 4M4
ZM

2
ΦnI

′n) ,
A(n)A(n)A(m)A(m) : − 1

2v2M2
ZnM

2
Zm

{
3m2

hM
2
ΦnM

2
ΦmI

nnmm

+ 2M4
Z

(
M2

ΦmI
nnmm
1 +M2

ΦnI
mmnn
1 + 4MΦnMΦmI

nmnm
1

)}
,

A(n)A(m)A(n)A(m) : − 1

v2M2
ZnM

2
Zm

{
3m2

hM
2
ΦnM

2
ΦmI

nnmm

+ 2M4
Z

(
M2

ΦmI
nnmm
1 +M2

ΦnI
mmnn
1 + 4MΦnMΦmI

nmnm
1

)}
,

A(n)A(n)A(n)A(m) : −3
{
m2
hM

3
ΦnMΦmI

nnnm + 2M4
Z

(
MΦnMΦmI

nnnm
1 +M2

ΦnI
mnnn
1

)}
√

2v2M3
ZnMZm

,

A(n)A(n)A(m)A(p) : − 1√
2v2M2

ZnMZmMZp

{
3m2

hM
2
ΦnMΦmMΦpI

nnmp

+ 2M4
Z

(
M2

ΦnI
mpnn
1 +MΦmMΦpI

nnmp
1 + 2MΦn (MΦmI

npmn
1 +MΦpI

mnnp
1 )

)}
,

A(n)A(m)A(n)A(p) : − 1

v2M2
ZnMZmMZp

{
3m2

hM
2
ΦnMΦmMΦpI

nnmp

+ 2M4
Z

(
M2

ΦnI
mpnn
1 +MΦmMΦpI

nnmp
1 + 2MΦn (MΦmI

npmn
1 +MΦpI

mnnp
1 )

)}
,
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A(n)A(m)A(p)A(q) : − 1

v2MZnMZmMZpMZq

[
3m2

hMΦnMΦmMΦpMΦqI
nmpq

+ 2M4
Z {MΦq (MΦpI

nmpq
1 +MΦmI

npmq
1 ) +MΦn (MΦpI

mqnp
1 +MΦqI

mpnq
1 )

+MΦm (MΦpI
nqmp
1 +MΦnI

pqnm
1 )}] .

E.3 Elements of matrix F25×25

φ(0)+φ(0)−φ(0)+φ(0)− : −2
m2
h

v2
,

φ(0)+H(n)−φ(0)+H(n)−/φ(0)−H(n)+φ(0)−H(n)+ : −2
m2
hM

2
Φn

v2M2
Wn

,

φ(0)+φ(0)−H(n)+H(n)− : − 2

v2M2
Wn

(
m2
hM

2
Φn +M4

W

)
,φ(0)+H(n)+H(n)−H(m)−

φ(0)−H(n)+H(n)−H(m)+
: −2

{
m2
hM

2
ΦnMΦmI

nnm +M4
W (MΦmI

nnm
1 +MΦnI

mnn
1 )

}
v2M2

WnMWm
,

φ(0)+H(n)+H(n)−H(n)−

φ(0)−H(n)+H(n)−H(n)+
: − 2

v2M3
Wn

(
m2
hM

3
ΦnI

3n + 2M4
WMΦnI

′3n) ,
φ(0)+H(n)−H(n)−H(m)+

φ(0)−H(n)+H(n)+H(m)−
: −2

(
m2
hM

2
ΦnMΦmI

nnm + 2M4
WMΦnI

mnn
1

)
v2M2

WnMWm
,

φ(0)+H(n)−H(p)+H(q)−

φ(0)−H(n)+H(p)−H(q)+
: −2

{
m2
hMΦnMΦmMΦpI

nmp +M4
W (MΦnI

mpn
1 +MΦpI

nmp
1 )

}
v2MWnMWmMWp

,

H(n)+H(n)−H(n)+H(n)− : − 2

v2M4
Wn

(
m2
hM

4
ΦnI

n + 4M4
WM

2
ΦnI

′n) ,
H(n)+H(n)−H(m)+H(m)− : − 2

v2M2
WnM

2
Wm

×
{
m2
hM

2
ΦnM

2
ΦmI

nnmm +M4
W

(
M2

ΦmI
nnmm
1 +M2

ΦnI
mmnn
1 + 2MΦnMΦmI

nmnm
1

)}
,

H(n)+H(m)−H(n)+H(m)− : − 2

v2M2
WnM

2
Wm

(
m2
hM

2
ΦnM

2
ΦmI

nnmm + 4M4
WMΦnMΦmI

nmnm
1

)
,H(n)+H(m)−H(n)+H(p)−

H(n)−H(m)+H(n)−H(p)+
: −2

{
m2
hM

2
ΦnMΦmMΦpI

nnmp + 2M4
WMΦn (MΦmI

npnm
1 +MΦpI

nmnp
1 )

}
v2M2

WnMWmMWp
,

H(n)+H(n)−H(n)+H(m)−

H(n)−H(n)+H(n)−H(m)+
: −2

{
m2
hM

3
ΦnMΦmI

nnnm + 2M4
WMΦn (MΦmI

nnnm
1 +MΦnI

mnnn
1 )

}
v2M3

WnMWm
,

H(n)+H(n)−H(m)+H(p)−

H(n)+H(n)−H(m)−H(p)+
: − 2

v2M2
WnMWmMWp

[
m2
hM

2
ΦnMΦmMΦpI

nnmp

+M4
W

{
MΦn (MΦmI

npnm
1 +MΦpI

nmnp
1 ) +M2

ΦnI
mpnn
1 +MΦmMΦpI

nnmp
1

}]
,
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H(n)+H(m)−H(p)+H(q)− : − 2

v2MWnMWmMWpMWq

[
m2
hMΦnMΦmMΦpMΦqI

nmpq

+M4
W {MΦn (MΦmI

pqnm
1 +MΦqI

mpnq
1 ) +MΦp (MΦmI

nqmp
1 +MΦqI

nmpq
1 )}

]
.

E.4 Elements of matrix B15×10

h(0)h(0)A(n)A(n) : −1

2

(
m2
hM

2
Φn + 2M4

Z

)
v2M2

Zn

,

h(0)h(n)A(m)A(m) : − 1√
2

(
m2
hM

2
ΦmI

nmm + 2M4
ZI

mmn
1

)
v2M2

Zm

,

h(0)h(n)A(m)A(p) : −
(
m2
hMΦmMΦpI

nmp + 2M4
ZI

mpn
1

)
v2MZmMZp

,

h(n)h(n)A(n)A(n) : −1

2

(
m2
hM

2
ΦnI

n + 2M4
ZI
′n)

v2M2
Zn

,

h(n)h(n)A(m)A(m) : −1

2

(
m2
hM

2
ΦmI

nnmm + 2M4
ZI

mmnn
1

)
v2M2

Zm

,

h(n)h(n)A(m)A(p) : − 1√
2

(
m2
hMΦmMΦpI

nnmp + 2M4
ZI

mpnn
1

)
v2MZmMZp

,

A(n)A(n)h(m)h(p) : − 1√
2

(
m2
hM

2
ΦnI

mpnn + 2M4
ZI

nnmp
1

)
v2M2

Zn

,

h(n)h(m)A(n)A(m) : − 1√
2

(
m2
hMΦnMΦmI

nmnm + 2M4
ZI

nmnm
1

)
v2MZnMZm

,

h(n)h(m)A(p)A(q) : −
(
m2
hMΦpMΦqI

nmpq + 2M4
ZI

pqnm
1

)
v2MZpMZq

.

E.5 Elements of matrix E10×25

φ(0)+φ(0)−A(n)A(n) : − 1√
2

(
m2
hM

2
Φn + 2M4

Z cos2 θW
)

v2M2
Zn

,

φ(0)±H(m)∓A(n)A(n) : − 1√
2v2M2

ZnMWm

[
m2
hM

2
ΦnMΦmI

nnm

+ 2M2
Z

{
cos2 θWMΦmM

2
ZI

nnm
1 +MΦnM

2
W I

mnn
1 (1− cos 2θW )

}]
,

φ(0)±H(n)∓A(n)A(n) : − 1√
2v2M2

ZnMWn

[
m2
hM

3
ΦnI

3n

+ 2M2
ZMΦnI

′3n {cos2 2θWM
2
Z +M2

W (1− cos 2θW )
}]
,
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φ(0)±H(n)∓A(n)A(m) : − 1

v2MZnMZmMWn

[
m2
hM

2
ΦnMΦmI

nnm + 2M4
Z cos2 2θWMΦnI

mnn
1

+M2
WM

2
Z (1− cos 2θW ) (MΦmI

nnm
1 +MΦnI

mnn
1 )

]
,

φ(0)±H(p)∓A(n)A(m) : − 1

v2MZnMZmMWp

[
m2
hMΦnMΦmMΦpI

nmp + 2M4
Z cos2 2θWMΦpI

nmp
1

+M2
WM

2
Z (1− cos 2θW ) (MΦmI

pnm
1 +MΦnI

pmn
1 )

]
,

A(n)A(n)H(n)+H(n)− : − M2
Φn√

2v2M2
WnM

2
Zn

q3n,

A(n)A(n)H(m)+H(m)− : − 1√
2v2M2

ZnM
2
Wm

[
m2
hM

2
ΦnM

2
ΦmI

nnmm + 2M4
Z cos2 2θWM

2
ΦmI

nnmm
1

+ 4M2
WM

2
ZMΦnMΦm (1− cos 2θW ) Inmnm1 + 2M4

WM
2
ΦnI

mmnn
1

]
,

A(n)A(m)H(p)+H(p)− : − 1

v2MZnMZmM2
Wp

[
m2
hMΦnMΦmM

2
ΦpI

nmpp + 2M4
Z cos2 2θWM

2
ΦpI

nmpp
1

+ 2M2
WM

2
ZMΦp (1− cos 2θW ) (MΦnI

pmnp
1 +MΦmI

nppm
1 )

+ 2M4
WMΦnMΦmI

ppnm
1

]
,

A(n)A(m)H(n)+H(n)− : − 1

v2MZnMZmM2
Wn

[
m2
hM

3
ΦnMΦmI

nnnm

+ 2M4
Z cos2 2θWM

2
ΦnI

mnnn
1 + 2M4

WMΦnMΦmI
nnnm
1

+ 2M2
WM

2
ZMΦn (1− cos 2θW ) (MΦnI

mnnn
1 +MΦmI

nnnm
1 )

]
,

A(n)A(n)H(m)±H(p)∓ : − 1√
2v2M2

ZnMWmMWp

[
m2
hM

2
ΦnMΦmMΦpI

nnmp

+ 2M4
Z cos2 2θWMΦmMΦpI

nnmp
1 + 2M4

WM
2
ΦnI

mpnn
1

+ 2M2
WM

2
ZMΦn (1− cos 2θW ) (MΦmI

npmn
1 +MΦpI

mnnp
1 )

]
,

A(n)A(n)H(m)±H(n)∓ : − 1√
2v2M2

ZnMWmMWn

[
m2
hM

3
ΦnMΦmI

nnnm

+ 2M4
Z cos2 2θWMΦnMΦmI

nnnm
1 + 2M4

WM
2
ΦnI

mnnn
1

+ 2M2
WM

2
ZMΦn (1− cos 2θW ) (MΦnI

mnnn
1 +MΦmI

nnnm
1 )

]
,

A(n)A(m)H(p)±H(q)∓ : − 1

v2MZnMZmMWpMWq

[
m2
hMΦnMΦmMΦpMΦqI

nmpq

+ 2M4
Z cos2 2θWMΦpMΦqI

nmpq
1 + 2M4

WMΦnMΦmI
pqnm
1

+M2
WM

2
Z (1− cos 2θW ) {MΦp (MΦnI

mqnp
1 +MΦmI

nqmp
1 )

+MΦq (MΦnI
mpnp
1 +MΦmI

npmq
1 )}] ,

A(n)A(m)H(n)±H(m)∓ : − 1

v2MZnMZmMWnMWm

[
m2
hM

2
ΦnM

2
ΦmI

nmnm

+ 2M4
Z cos2 2θWMΦnMΦmI

nmnm
1 + 2M4

WMΦnMΦmI
nmnm
1 +M2

WM
2
Z (1− cos 2θW )

× {MΦn (MΦnI
mmnn
1 +MΦmI

nnmm
1 ) +MΦm (MΦnI

mnnm
1 +MΦmI

nnmm
1 )}] ,

A(n)A(m)H(n)±H(p)∓ : − 1

v2MZnMZmMWnMWp

[
m2
hM

2
ΦnMΦmMΦpI

nmnp

+ 2M4
Z cos2 2θWMΦnMΦpI

nmnp
1 + 2M4

WMΦnMΦmI
npnm
1 +M2

WM
2
Z (1− cos 2θW )
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× {MΦn (MΦnI
mpnn
1 +MΦmI

npmn
1 ) +MΦp (MΦnI

mnnp
1 +MΦmI

nnmp
1 )}] .

E.6 Elements of matrix C15×25

h(0)h(0)H(n)+H(n)− : − 1√
2v2M2

Wn

(
m2
hM

2
Φn + 2M4

W

)
,

h(0)h(n)H(n)±φ(0)∓ : −m
2
h

v2

MΦn

MWn
,

h(n)h(n)H(m)±φ(0)∓ : − m2
h√

2v2

MΦm

MWm
Innm,

h(n)h(n)H(n)±φ(0)∓ : − m2
h√

2v2

MΦn

MWn
I3n,

h(n)h(m)H(p)±φ(0)∓ : −m
2
h

v2

MΦp

MWp
Inmp,

h(n)h(m)H(n)±φ(0)∓ : −m
2
h

v2

MΦn

MWn
Innm,

h(0)h(n)H(n)+H(n)− : − 1

v2M2
Wn

(
m2
hM

2
ΦnI

3n + 2M4
W I
′3n) ,

h(0)h(n)H(m)+H(m)− : − 1

v2M2
Wm

(
m2
hM

2
ΦmI

nmm + 2M4
W I

mmn
1

)
,

h(0)h(n)H(m)±H(p)∓ : − 1

v2MWmMWp

(
m2
hMΦmMΦpI

nmp + 2M4
W I

mpn
1

)
,

h(0)h(n)H(n)±H(m)∓ : − 1

v2MWnMWm

(
m2
hMΦnMΦmI

nnm + 2M4
W I

mnn
1

)
,

h(n)h(n)H(n)+H(n)− : − 1√
2v2M2

Wn

(
m2
hM

2
ΦnI

n + 2M4
W I
′n) ,

h(n)h(n)H(m)+H(m)− : − 1√
2v2M2

Wm

(
m2
hM

2
ΦmI

nnmm + 2M4
W I

mmnn
1

)
,

h(n)h(m)H(p)+H(p)− : − 1

v2M2
Wp

(
m2
hM

2
ΦpI

nmpp + 2M4
W I

ppnm
1

)
,

h(n)h(m)H(n)+H(n)− : − 1

v2M2
Wn

(
m2
hM

2
ΦnI

nmnn + 2M4
W I

nnnm
1

)
,

h(n)h(n)H(m)±H(p)∓ : − 1√
2v2MWmMWp

(
m2
hMΦmMΦpI

nnmp + 2M4
W I

mpnn
1

)
,

h(n)h(n)H(n)±H(m)∓ : − 1√
2v2MWnMWm

(
m2
hMΦnMΦmI

nnnm + 2M4
W I

mnnn
1

)
,

h(n)h(m)H(p)±H(q)∓ : − 1

v2MWpMWq

(
m2
hMΦpMΦqI

nmpq + 2M4
W I

pqnm
1

)
.
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E.7 Matrix elemnts of M(2)
NC,20×20

h(0)A(n)h(0)A(n) : −
(
m2
hM

2
Φn + 2M4

Z

)
v2M2

Zn

,

h(0)A(m)h(n)A(m) : −
(
m2
hM

2
ΦmI

nmm + 2M4
ZI

mmn
1

)
v2M2

Zm

,

h(0)A(m)h(n)A(p) : −
(
m2
hMΦmMΦpI

nmp + 2M4
ZI

mpn
1

)
v2MZmMZp

,

h(n)A(n)h(n)A(n) : −
(
m2
hM

2
ΦnI

n + 2M4
ZI
′n)

v2M2
Zn

,

h(n)A(m)h(n)A(m) : −
(
m2
hM

2
ΦmI

nnmm + 2M4
ZI

mmnn
1

)
v2M2

Zm

,

h(n)A(m)h(n)A(p) : −
(
m2
hMΦmMΦpI

nnmp + 2M4
ZI

mpnn
1

)
v2MZmMZp

,

A(n)h(m)A(n)h(p) : −
(
m2
hM

2
ΦnI

mpnn + 2M4
ZI

nnmp
1

)
v2M2

Zn

,

h(n)A(n)h(m)A(m) : −
(
m2
hMΦnMΦmI

nmnm + 2M4
ZI

nmnm
1

)
v2MZnMZm

,

h(n)A(p)h(m)A(q) : −
(
m2
hMΦpMΦqI

nmpq + 2M4
ZI

pqnm
1

)
v2MZpMZq

.

E.8 Matrix elemnts of GCC,20×20

φ(0)+A(n)φ(0)+A(n) :
√

2 φ(0)+φ(0)−A(n)A(n),

φ(0)+A(n)H(m)+A(n) :
√

2 φ(0)±H(m)∓A(n)A(n),

φ(0)+A(n)H(n)+A(n) :
√

2 φ(0)±H(n)∓A(n)A(n),

φ(0)+A(n)H(n)+A(m) : φ(0)±H(n)∓A(n)A(m),

φ(0)+A(n)H(p)+A(m) : φ(0)±H(p)∓A(n)A(m),

A(n)H(n)+A(n)H(n)+ :
√

2 A(n)A(n)H(n)+H(n)−,

A(n)H(m)+A(n)H(m)+ :
√

2 A(n)A(n)H(m)+H(m)−,

A(n)H(p)+A(m)H(p)+ : A(n)A(m)H(p)+H(p)−,

A(n)H(n)+A(m)H(n)+ : A(n)A(m)H(n)+H(n)−,

A(n)H(m)+A(n)H(p)+ :
√

2 A(n)A(n)H(m)±H(p)∓,

A(n)H(m)+A(n)H(n)+ :
√

2 A(n)A(n)H(m)±H(n)∓,

A(n)H(p)+A(m)H(q)+ : A(n)A(m)H(p)±H(q)∓,
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A(n)H(n)+A(m)H(m)+ : A(n)A(m)H(n)±H(m)∓,

A(n)H(n)+A(m)H(p)+ : A(n)A(m)H(n)±H(p)∓.

E.9 Matrix elemnts of HCC,25×25

h(0)H(n)+h(0)H(n)+ :
√

2 h(0)h(0)H(n)+H(n)−,

φ(0)+h(0)H(n)+h(n) : h(0)h(n)H(n)±φ(0)∓,

φ(0)+h(n)H(m)+h(n) :
√

2 h(n)h(n)H(m)±φ(0)∓,

φ(0)+h(n)H(n)+h(n) :
√

2 h(n)h(n)H(n)±φ(0)∓,

φ(0)+h(n)H(p)+h(m) : h(n)h(m)H(p)±φ(0)∓,

φ(0)+h(n)H(n)+h(m) : h(n)h(m)H(n)±φ(0)∓,

h(0)H(n)+h(n)H(n)+ : h(0)h(n)H(n)+H(n)−,

h(0)H(m)+h(n)H(m)+ : h(0)h(n)H(m)+H(m)−,

h(0)H(m)+h(n)H(p)+ : h(0)h(n)H(m)±H(p)∓,

h(0)H(n)+h(n)H(m)+ : h(0)h(n)H(n)±H(m)∓,

h(n)H(n)+h(n)H(n)+ :
√

2 h(n)h(n)H(n)+H(n)−,

h(n)H(p)+h(m)H(p)+ : h(n)h(m)H(p)+H(p)−,

h(n)H(m)+h(n)H(m)+ :
√

2 h(n)h(n)H(m)+H(m)−,

h(n)H(n)+h(m)H(n)+ : h(n)h(m)H(n)+H(n)−,

h(n)H(m)+h(n)H(p)+ : h(n)h(n)H(m)±H(p)∓,

h(n)H(n)+h(n)H(m)+ :
√

2 h(n)h(n)H(n)±H(m)∓,

h(n)H(p)+h(m)H(q)+ : h(n)h(m)H(p)±H(q)∓.



F
Feynman Rules Relevant for

Zbb̄ Analysis

In the following Feynman rules, all momenta and fields are assumed to flow into the vertices.

Obviously in UED the BLT parameters are vanishing and so the overlap integrals and β will

be unity and αn = 1
2 tan−1

(
mt
n/R

)
and MΦk = k/R. Moreover for UED, the conservation of

KK-number will ensure that there will be no (0)-(0)-(n) type coupling. To avoid cluttering we

suppress the indices in the overlap integrals. Basically by Ic we mean Imc and by Ia,b we imply

Inna,b .

W (n)±
µ

F
(n)
2

F̄
(n)
1

: ig√
2
γµCLPL

W (n)+Q̄
′(n)
t b

(0)
L : CL = −Ia

√
β cosαn, W (n)−b̄

(0)
L Q

′(n)
t : CL = −Ia

√
β cosαn,

W (n)+Ū ′(n)b
(0)
L : CL = Ia

√
β sinαn, W (n)−b̄

(0)
L U ′(n) : CL = Ia

√
β sinαn,

W (n)+t̄(0)b(0) : CL = Ic
√
β, W (n)−b̄(0)t(0) : CL = Ic

√
β.
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H(n)±/G(n)±

F
(n)
2

F̄
(n)
1

: g√
2MWn

CL/RPL/R

H(n)+Q̄
′(n)
t b

(0)
L : CL = −i

√
β

(
Ia
mtMΦn

MW
sinαn − IbMW cosαn

)
,

H(n)−b̄
(0)
L Q

′(n)
t : CR = −i

√
β

(
Ia
mtMΦn

MW
sinαn − IbMW cosαn

)
,

G(n)+Q̄
′(n)
t b

(0)
L : CL =

√
β (Iamt sinαn + IbMΦn cosαn) ,

G(n)−b̄
(0)
L Q

′(n)
t : CR = −

√
β (Iamt sinαn + IbMΦn cosαn) ,

H(n)+Ū ′(n)b
(0)
L : CL = i

√
β

(
Ia
mtMΦn

MW
cosαn + IbMW sinαn

)
,

H(n)−b̄
(0)
L U ′(n) : CR = i

√
β

(
Ia
mtMΦn

MW
cosαn + IbMW sinαn

)
,

G(n)+Ū ′(n)b
(0)
L : CL = −

√
β (Iamt cosαn − IbMΦn sinαn) ,

G(n)−b̄
(0)
L U ′(n) : CR =

√
β (Iamt cosαn − IbMΦn sinαn) ,

t̄(0)H(n)+b(0) : CL = i
√
β Ic

MΦn

MW
mt, b̄(0)H(n)−t(0) : CR = i

√
β Ic

MΦn

MW
mt,

t̄(0)G(n)+b(0) : CL = −
√
β Icmt, b̄(0)G(n)−t(0) : CR =

√
β Icmt.

Z(0)
µ

W
(n)+
β

W (n)−
α

: ig cos θW{(p1 − p2)
µ gαβ + (p2 − q)α gβµ + (q − p1)

β gαµ}

p2

p1

q

Z(0)
µ

F
(n)
2

F̄
(n)
1

: ig
6 cos θW

γµ (CLPL + CRPR)

Z(0)Q̄
′(n)
t Q

′(n)
t :

 CL = −4 sin2 θW + 3cos2αn

CR = −4 sin2 θW + 3cos2αn
, Z(0)Ū ′(n)U ′(n) :

 CL = −4 sin2 θW + 3sin2αn

CR = −4 sin2 θW + 3sin2αn
,

Z(0)Q̄
′(n)
t U ′(n) :

 CL = −3 sinαn cosαn

CR = −3 sinαn cosαn
, Z(0)Ū ′(n)Q

′(n)
t :

 CL = −3 sinαn cosαn

CR = −3 sinαn cosαn
.
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Z(0)
µ

H(n)−, G(n)−

H(n)+, G(n)+

: g
2 cos θW

1
M ′2

Wn
(p1 − p2)

µC

p1

p2

Z(0)H(n)+H(n)− : C = i{(−1 + 2 sin2 θW )M2
Φn − 2 cos2 θWM

2
W },

Z(0)G(n)+G(n)− : C = i{(−1 + 2 sin2 θW )M2
W − 2 cos2 θWM

2
Φn},

Z(0)H(n)−G(n)+ : C = −MΦnMW ,

Z(0)G(n)−H(n)+ : C = MΦnMW .

Z(0)
µ

W (n)±
ν

H(n)∓, G(n)∓

: ggµν

cos θWMWn
C

Z(0)W (n)+G(n)− : C =
(
−M2

W sin2 θW +M2
Φn cos2 θW

)
,

Z(0)W (n)−G(n)+ : C =
(
M2
W sin2 θW −M2

Φn cos2 θW
)
,

Z(0)W (n)+H(n)− : C = −iMΦnMW ,

Z(0)W (n)−H(n)+ : C = −iMΦnMW .



G
Feynman Rules Relevant for

Rare Top Decays

All the momenta and fields are assumed to be incoming. Like in Appendix F, here also, to avoid

cluttering, we write Imc by Ic and Inma,b by Ia,b. Also β =
(
π+Rφ
π+Rf

)
. Obviously in UED the BLT

parameters are vanishing and so the overlap integrals and β will be unity and αn = 1
2 tan−1

(
mj
n/R

)
andMΦk = k/R. As said before, for UED, the conservation of KK-number will ensure that there

will be no (0)-(0)-(n) type coupling.

A(0)
µ

F
(n)
2

F̄
(n)
1

: ig sin θWγµC ′

A(0)
µ Q̄

′(n)
j Q

′(n)
j : C ′ = −1

3
, A(0)

µ D̄′(n)D′(n) : C ′ = −1
3
,

A(0)
µ Q̄

′(n)
j D′(n) : C ′ = 0 , A(0)

µ D̄′(n)Q
′(n)
j : C ′ = 0 ,

A(0)
µ b̄

(0)
j b

(0)
j : C ′ = −1

3
, A(0)

µ t̄
(0)
i t

(0)
i : C ′ = 2

3
.
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A(0)
µ

H(n)−, G(n)−

H(n)+, G(n)+

: −ig sin θW (p1 − p2)
µC ′

p1

p2

A(0)
µ H(n)+H(n)− : C ′ = 1, A(0)

µ G(n)+G(n)− : C ′ = 1, A(0)
µ H(n)±G(n)∓ : C ′ = 0.

A(0)
µ

W
(n)+
β

W (n)−
α

: ig sin θW{(p1 − p2)
µ gαβ + (p2 − q)α gβµ + (q − p1)

β gαµ}

p2

p1

q

A(0)
µ

W (n)±
ν

G(n)∓

: g sin θWgµνMWnC
′

A(0)
µ G(n)−W (n)+

ν : C ′ = 1, A(0)
µ G(n)+W (n)−

ν : C ′ = −1.

W (m)±
µ

F
(n)
j

F̄
(n)
i

: ig√
2
γµCLPL

W (m)+t̄
(0)
i Q

′(n)
j : CL = −Ia

√
β cosαnVij , W (m)−Q̄

′(n)
j t

(0)
i : CL = −Ia

√
β cosαnV

∗
ij ,

W (m)+t̄
(0)
i D

′(n)
j : CL = Ia

√
β sinαnVij , W (m)−D̄

′(n)
j t

(0)
i : CL = Ia

√
β sinαnV

∗
ij ,

W (m)+t̄
(0)
i b

(0)
j : CL = Ic

√
βVij , W (m)−b̄

(0)
j t

(0)
i : CL = Ic

√
βV ∗ij .

W (n)∓
µ

h(0)

H(n)±, G(n)±

: g
2(p1 − p2)

µC ′
p1

p2

h(0)H(n)±W (n)∓ : C ′ = ∓i MΦn

MWn
, h(0)G(n)±W (n)∓ : C ′ =

MW

MWn
.
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H(m)±/G(m)±

F
(n)
j

F̄
(n)
i

: g√
2MWm

(CLPL + CRPR)

t̄
(0)
i G(m)+Q

′(n)
j :

 CL =
√
βIami cosαnVij

CR = −
√
β (Iamj sinαn + IbMΦm cosαn)Vij

,

Q̄
′(n)
j G(m)−t

(0)
i :

 CL =
√
β (Iamj sinαn + IbMΦm cosαn)V ∗ij

CR = −
√
βIami cosαnV

∗
ij

,

t̄
(0)
i G(m)+D

′(n)
j :

 CL = −
√
βIami sinαnVij

CR =
√
β (Iamj cosαn − IbMΦm sinαn)Vij

,

D̄
′(n)
j G(m)−t

(0)
i :

 CL = −
√
β (Iamj cosαn − IbMΦm sinαn)V ∗ij

CR =
√
βIami sinαnV

∗
ij

,

t̄
(0)
i H(m)+Q

′(n)
j :


CL = −i

√
βIa

miMΦm

MW
cosαnVij

CR = i
√
β

(
Ia
mjMΦm

MW
sinαn − IbMW cosαn

)
Vij

,

Q̄
′(n)
j H(m)−t

(0)
i :


CL = i

√
β

(
Ia
mjMΦm

MW
sinαn − IbMW cosαn

)
V ∗ij

CR = −i
√
βIa

miMΦm

MW
cosαnV

∗
ij

,

t̄
(0)
i H(m)+D

′(n)
j :


CL = i

√
βIa

miMΦm

MW
sinαnVij

CR = −i
√
β

(
Ia
mjMΦm

MW
cosαn + IbMW sinαn

)
Vij

,

D̄
′(n)
j G(m)−t

(0)
i :


CL = −i

√
β

(
Ia
mjMΦm

MW
cosαn + IbMW sinαn

)
V ∗ij

CR = i
√
βIa

miMΦm

MW
sinαnV

∗
ij

,

t̄
(0)
i G(m)+b

(0)
j :

 CL = −
√
βIcmiVij

CR =
√
βIcmjVij

, b̄
(0)
j G(m)−t

(0)
i :

 CL = −
√
βIcmjV

∗
ij

CR =
√
βIcmiV

∗
ij

,

t̄
(0)
i H(m)+b

(0)
j :


CL = i

√
βIc

MΦm

MW
miVij

CR = −i
√
βIc

MΦm

MW
mjVij

, b̄
(0)
j H(m)−t

(0)
i :


CL = −i

√
βIc

MΦm

MW
mjV

∗
ij

CR = i
√
βIc

MΦm

MW
miV

∗
ij

.
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h(0)

W (n)−
µ

W (n)+
ν

: igMWgµν

h(0)

F
(n)
2

F̄
(n)
1

: ig
2

mj

MW
C ′

h(0)Q̄
′(n)
j Q

′(n)
j : C ′ = − sin 2αn, h(0)D̄′(n)D′(n) : C ′ = − sin 2αn,

h(0)Q̄
′(n)
j D′(n) : C ′ = cos 2αnγ5, h(0)D̄′(n)Q

′(n)
j : C ′ = − cos 2αnγ5,

h(0)b̄
(0)
j b

(0)
j : C ′ = −1, h(0)t̄

(0)
i t

(0)
i : C ′ = −mi

mj
.

h(0)

H(n)−, G(n)−

H(n)+, G(n)+

: g
2

C ′
M2

Wn

h(0)H(n)+H(n)− : C ′ = −im2
hMW , h(0)G(n)+G(n)− : C ′ = −im

2
hM

2
Φn + 2M2

WM
2
Wn

MW
,

h(0)H(n)+G(n)− : C ′ = −MΦn(m2
h −M2

Wn), h(0)H(n)−G(n)+ : C ′ = MΦn(m2
h −M2

Wn).



H
Explicit Expression of Overlap Integrals
Used in Appendix F and in Appendix G

Ia, Ib and Ic have the following form:

Ia =
2

πR

 1√
1 +

r2
fM

2
Qn

4 +
rf
πR

 1√
1 +

r2
φM

2
Φn

4 +
rφ
πR

M2
Φn (−rf + rφ)(
M2
Qn −M2

Φn

) ,
Ib =

2

πR

 1√
1 +

r2
fM

2
Qn

4 +
rf
πR

 1√
1 +

r2
φM

2
Φn

4 +
rφ
πR

MΦnMQn (−rf + rφ)(
M2
Qn −M2

Φn

) ,

Ic =

√
2

πR

 1√
1 +

r2
φM

2
Φn

4 +
rφ
πR

 (rf − rφ)(√
π R+ rf

) .

143



Bibliography

[1] S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579–588.

[2] A. Salam and J. C. Ward, Electromagnetic and weak interactions, Phys. Lett. 13 (1964)

168–171.

[3] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264–1266.

[4] A. Salam, Weak and electromagnetic interactions, in Elementary particle theory

(N. Svartholm, ed.), pp. 367–377, Almquist & Wiksell.

[5] Particle Data Group Collaboration, C. Patrignani et al., Review of Particle Physics,

Chin. Phys. C40 (2016), no. 10 100001.

[6] S. L. Glashow, J. Iliopoulos, and L. Maiani, Weak Interactions with Lepton-Hadron

Symmetry, Phys. Rev. D2 (1970) 1285–1292.

[7] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963)

531–533. [,648(1963)].

[8] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak

Interaction, Prog. Theor. Phys. 49 (1973) 652–657.

[9] R. Aleksan, B. Kayser, and D. London, Determining the quark mixing matrix from CP

violating asymmetries, Phys. Rev. Lett. 73 (1994) 18–20, [hep-ph/9403341].

[10] I. I. Y. Bigi and A. I. Sanda, On the other five KM triangles, hep-ph/9909479.

[11] C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model

and a Measure of Maximal CP Violation, Phys. Rev. Lett. 55 (1985) 1039.

[12] C. Jarlskog, A Basis Independent Formulation of the Connection Between Quark Mass

Matrices, CP Violation and Experiment, Z. Phys. C29 (1985) 491–497.

[13] C. Jarlskog and R. Stora, Unitarity Polygons and CP Violation Areas and Phases in the

Standard Electroweak Model, Phys. Lett. B208 (1988) 268–274.

144

http://arxiv.org/abs/hep-ph/9403341
http://arxiv.org/abs/hep-ph/9909479


Bibliography 145

[14] C. Bouchiat, J. Iliopoulos, and P. Meyer, An Anomaly Free Version of Weinberg’s Model,

Phys. Lett. B38 (1972) 519–523.

[15] Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an

Analogy with Superconductivity. 1., Phys. Rev. 122 (1961) 345–358.

[16] Y. Nambu and G. Jona-Lasinio, DYNAMICAL MODEL OF ELEMENTARY

PARTICLES BASED ON AN ANALOGY WITH SUPERCONDUCTIVITY. II, Phys.

Rev. 124 (1961) 246–254.

[17] J. Goldstone, Field Theories with Superconductor Solutions, Nuovo Cim. 19 (1961)

154–164.

[18] J. Goldstone, A. Salam, and S. Weinberg, Broken Symmetries, Phys. Rev. 127 (1962)

965–970.

[19] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys.

Rev. Lett. 13 (1964) 321–323.

[20] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12

(1964) 132–133.

[21] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13

(1964) 508–509.

[22] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Global Conservation Laws and

Massless Particles, Phys. Rev. Lett. 13 (1964) 585–587.

[23] V. L. Ginzburg and L. D. Landau, On the Theory of superconductivity, Zh. Eksp. Teor.

Fiz. 20 (1950) 1064–1082.

[24] D. J. Gross, The discovery of asymptotic freedom and the emergence of qcd, Proc. Nat.

Acad. Sci. 102 (2005) 9099–9108.

[25] S. Bethke, Experimental tests of asymptotic freedom, Prog. Part. Nucl. Phys. 58 (2007)

351–386, [hep-ex/0606035].

[26] C. Amsler and A. Masoni, The η(1405), η(1475), f1(1420), and f1(1510), .

[27] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys.

Rev. Lett. 30 (1973) 1343–1346.

[28] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30

(1973) 1346–1349.

[29] H. Fritzsch, M. Gell-Mann, and H. Leutwyler, Advantages of the Color Octet Gluon

Picture, Phys. Lett. B47 (1973) 365–368.

http://arxiv.org/abs/hep-ex/0606035


Bibliography 146

[30] G. ’t Hooft, Renormalization of Massless Yang-Mills Fields, Nucl. Phys. B33 (1971)

173–199.

[31] G. ’t Hooft, Renormalizable Lagrangians for Massive Yang-Mills Fields, Nucl. Phys. B35

(1971) 167–188.

[32] T. W. B. Kibble, Symmetry breaking in nonAbelian gauge theories, Phys. Rev. 155

(1967) 1554–1561.

[33] Y. Nambu, Axial vector current conservation in weak interactions, Phys. Rev. Lett. 4

(1960) 380–382.

[34] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the

Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716

(2012) 1–29, [arXiv:1207.7214].

[35] CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125

GeV with the CMS experiment at the LHC, Phys. Lett. B716 (2012) 30–61,

[arXiv:1207.7235].

[36] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/HIGGS/.

[37] CMS Collaboration, V. Khachatryan et al., Precise determination of the mass of the

Higgs boson and tests of compatibility of its couplings with the standard model predictions

using proton collisions at 7 and 8 TeV, Eur. Phys. J. C75 (2015), no. 5 212,

[arXiv:1412.8662].

[38] Projections for measurements of Higgs boson signal strengths and coupling parameters

with the ATLAS detector at a HL-LHC, Tech. Rep. ATL-PHYS-PUB-2014-016, CERN,

Geneva, Oct, 2014.

[39] T. D. Lee and C. S. Wu, WEAK INTERACTIONS, Ann. Rev. Nucl. Part. Sci. 15 (1965)

381–476.

[40] Gargamelle Neutrino Collaboration, F. J. Hasert et al., Observation of Neutrino Like

Interactions Without Muon Or Electron in the Gargamelle Neutrino Experiment, Phys.

Lett. 46B (1973) 138–140.

[41] F. J. Hasert et al., Search for Elastic νµ Electron Scattering, Phys. Lett. 46B (1973)

121–124.

[42] Gargamelle Neutrino Collaboration, F. J. Hasert et al., Observation of Neutrino Like

Interactions without Muon or Electron in the Gargamelle Neutrino Experiment, Nucl.

Phys. B73 (1974) 1–22.

http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/HIGGS/
http://arxiv.org/abs/1412.8662


Bibliography 147

[43] A. Benvenuti et al., Observation of Muonless Neutrino Induced Inelastic Interactions,

Phys. Rev. Lett. 32 (1974) 800–803.

[44] UA1 Collaboration, G. Arnison et al., Recent Results on Intermediate Vector Boson

Properties at the CERN Super Proton Synchrotron Collider, Phys. Lett. B166 (1986)

484–490.

[45] UA2 Collaboration, R. Ansari et al., Measurement of the Standard Model Parameters

from a Study of W and Z Bosons, Phys. Lett. B186 (1987) 440–451.

[46] Particle Data Group Collaboration, D. E. Groom et al., Review of particle physics.

Particle Data Group, Eur. Phys. J. C15 (2000) 1–878.

[47] SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour

Group, OPAL, LEP Electroweak Working Group, L3 Collaboration, S. Schael

et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006)

257–454, [hep-ex/0509008].

[48] H. Park, A Measurement of the left-right cross-section asymmetry in Z0 production with

polarized e+ e- collisions. PhD thesis, Oregon U., 1993.

[49] G. Bhattacharyya, A Pedagogical Review of Electroweak Symmetry Breaking Scenarios,

Rept. Prog. Phys. 74 (2011) 026201, [arXiv:0910.5095].

[50] M. E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.

D46 (1992) 381–409.

[51] E. Otten and C. Weinheimer, Neutrino mass limit from tritium beta decay,

Rept.Prog.Phys. 71 (2008) 086201, [arXiv:0909.2104].

[52] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Experimental

Test of Parity Conservation in Beta Decay, Phys. Rev. 105 (1957) 1413–1414.

[53] T. D. Lee and C.-N. Yang, Question of Parity Conservation in Weak Interactions, Phys.

Rev. 104 (1956) 254–258.

[54] D. Griffiths, Introduction to Elementary Particles. Wiley-VCH, 2008.

[55] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2 pi Decay

of the k(2)0 Meson, Phys. Rev. Lett. 13 (1964) 138–140.

[56] BaBar Collaboration, B. Aubert et al., Measurement of CP violating asymmetries in B0

decays to CP eigenstates, Phys. Rev. Lett. 86 (2001) 2515–2522, [hep-ex/0102030].

[57] Belle Collaboration, A. Abashian et al., Measurement of the CP violation parameter

sin 2φ1 in B0
d meson decays, Phys. Rev. Lett. 86 (2001) 2509–2514, [hep-ex/0102018].

http://arxiv.org/abs/hep-ex/0509008
http://arxiv.org/abs/0910.5095
http://arxiv.org/abs/0909.2104
http://arxiv.org/abs/hep-ex/0102030
http://arxiv.org/abs/hep-ex/0102018


Bibliography 148

[58] A. B. Carter and A. I. Sanda, CP Violation in B Meson Decays, Phys. Rev. D23 (1981)

1567.

[59] R. D. Peccei, The Strong CP Problem, Adv. Ser. Direct. High Energy Phys. 3 (1989)

503–551.

[60] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons, Phys.

Rev. Lett. 38 (1977) 1440–1443.

[61] Planck Collaboration, P. A. R. Ade et al., Planck 2013 results. XVI. Cosmological

parameters, Astron. Astrophys. 571 (2014) A16, [arXiv:1303.5076].

[62] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta 6 (1933)

110–127. [Gen. Rel. Grav.41,207(2009)].

[63] M. Aaronson, J. Huchra, and J. Mould, The infrared luminosity/H I velocity-width

relation and its application to the distance scale, ApJ 229 (Apr., 1979) 1–13.

[64] J. A. Tyson, G. P. Kochanski, and I. P. Dell’Antonio, Detailed mass map of

CL0024+1654 from strong lensing, Astrophys.J. 498 (1998) L107, [astro-ph/9801193].

[65] R. Massey, J. Rhodes, R. Ellis, N. Scoville, A. Leauthaud, et al., Dark matter maps

reveal cosmic scaffolding, Nature 445 (2007) 286, [astro-ph/0701594].

[66] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, et al., A direct

empirical proof of the existence of dark matter, Astrophys.J. 648 (2006) L109–L113,

[astro-ph/0608407].

[67] G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R.

Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold,

N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, and E. L.

Wright, Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:

Cosmological Parameter Results, ApJS 208 (Oct., 2013) 19, [arXiv:1212.5226].

[68] S. Arrenberg, L. Baudis, K. Kong, K. T. Matchev, and J. Yoo, Kaluza-Klein Dark Matter:

Direct Detection vis-a-vis LHC, Phys.Rev. D78 (2008) 056002, [arXiv:0805.4210].

[69] G. Servant, Status Report on Universal Extra Dimensions After LHC8,

arXiv:1401.4176.

[70] G. Servant and T. M. Tait, Elastic scattering and direct detection of Kaluza-Klein dark

matter, New J.Phys. 4 (2002) 99, [hep-ph/0209262].

[71] G. Servant and T. M. Tait, Is the lightest Kaluza-Klein particle a viable dark matter

candidate?, Nucl.Phys. B650 (2003) 391–419, [hep-ph/0206071].

http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/astro-ph/9801193
http://arxiv.org/abs/astro-ph/0701594
http://arxiv.org/abs/astro-ph/0608407
http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/0805.4210
http://arxiv.org/abs/1401.4176
http://arxiv.org/abs/hep-ph/0209262
http://arxiv.org/abs/hep-ph/0206071


Bibliography 149

[72] K. Kong and K. T. Matchev, Precise calculation of the relic density of Kaluza-Klein dark

matter in universal extra dimensions, JHEP 0601 (2006) 038, [hep-ph/0509119].

[73] T. Flacke and D. W. Maybury, Constraints on UED KK-neutrino dark matter from

magnetic dipole moments, Int.J.Mod.Phys. D16 (2007) 1593–1600, [hep-ph/0601161].

[74] F. Burnell and G. D. Kribs, The Abundance of Kaluza-Klein dark matter with

coannihilation, Phys.Rev. D73 (2006) 015001, [hep-ph/0509118].

[75] G. Belanger, M. Kakizaki, and A. Pukhov, Dark matter in UED: The Role of the second

KK level, JCAP 1102 (2011) 009, [arXiv:1012.2577].

[76] T. Flacke, D. Hooper, and J. March-Russell, Improved bounds on universal extra

dimensions and consequences for LKP dark matter, Phys.Rev. D73 (2006) 095002,

[hep-ph/0509352].

[77] S. Arrenberg, L. Baudis, K. Kong, K. T. Matchev, and J. Yoo, Kaluza-Klein Dark

Matter: Direct Detection vis-a-vis LHC (2013 update), arXiv:1307.6581.

[78] M. Kakizaki, S. Matsumoto, Y. Sato, and M. Senami, Relic abundance of LKP dark

matter in UED model including effects of second KK resonances, Nucl.Phys. B735

(2006) 84–95, [hep-ph/0508283].

[79] M. Kakizaki, S. Matsumoto, Y. Sato, and M. Senami, Significant effects of second KK

particles on LKP dark matter physics, Phys.Rev. D71 (2005) 123522, [hep-ph/0502059].

[80] M. Kakizaki, S. Matsumoto, and M. Senami, Relic abundance of dark matter in the

minimal universal extra dimension model, Phys.Rev. D74 (2006) 023504,

[hep-ph/0605280].

[81] T. Flacke, A. Menon, and D. J. Phalen, Non-minimal universal extra dimensions,

Phys.Rev. D79 (2009) 056009, [arXiv:0811.1598].

[82] T. Flacke, Phenomenology of dark matter in non-minimal UED, AIP Conf.Proc. 1200

(2010) 583–586.

[83] P. Ehrenfest, In that way does it become manifest in the fundamental laws of physics that

space has three dimensions?, Proceedings of the Amsterdam Academy 20 (1917) 200–209.

[84] S. Raychaudhuri and K. Sridhar, Particle Physics of Brane Worlds and Extra

Dimensions. Cambridge University Press.

[85] M. Tegmark, On the dimensionality of space-time, Class. Quant. Grav. 14 (1997)

L69–L75.

http://arxiv.org/abs/hep-ph/0509119
http://arxiv.org/abs/hep-ph/0601161
http://arxiv.org/abs/hep-ph/0509118
http://arxiv.org/abs/1012.2577
http://arxiv.org/abs/hep-ph/0509352
http://arxiv.org/abs/1307.6581
http://arxiv.org/abs/hep-ph/0508283
http://arxiv.org/abs/hep-ph/0502059
http://arxiv.org/abs/hep-ph/0605280
http://arxiv.org/abs/0811.1598


Bibliography 150

[86] G. Nordstrom, On the possibility of unifying the electromagnetic and the gravitational

fields, Phys.Z. 15 (1914) 504–506, [physics/0702221].

[87] T. Kaluza, On the Problem of Unity in Physics, Sitzungsber.Preuss.Akad.Wiss.Berlin

(Math.Phys.) 1921 (1921) 966–972.

[88] P. Jordan, Formation of the Stars and Development of the Universe, Nature 164 (1949)

637–640.

[89] O. Klein, Quantum Theory and Five-Dimensional Theory of Relativity. (In German and

English), Z.Phys. 37 (1926) 895–906.

[90] E. Witten, Search for a Realistic Kaluza-Klein Theory, Nucl. Phys. B186 (1981) 412.

[91] G. Veneziano, Construction of a crossing - symmetric, Regge behaved amplitude for

linearly rising trajectories, Nuovo Cim. A57 (1968) 190–197.

[92] C. Lovelace, Veneziano theory, Proc. Roy. Soc. Lond. A318 (1970) 321–354.

[93] J. Scherk and J. H. Schwarz, Dual Models for Nonhadrons, Nucl. Phys. B81 (1974)

118–144.

[94] I. Antoniadis, A Possible new dimension at a few TeV, Phys.Lett. B246 (1990) 377–384.

[95] P. Horava and E. Witten, Heterotic and type I string dynamics from eleven-dimensions,

Nucl. Phys. B460 (1996) 506–524, [hep-th/9510209].

[96] P. Horava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary,

Nucl. Phys. B475 (1996) 94–114, [hep-th/9603142].

[97] J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995)

4724–4727, [hep-th/9510017].

[98] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, The Hierarchy problem and new

dimensions at a millimeter, Phys. Lett. B429 (1998) 263–272, [hep-ph/9803315].

[99] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370–3373, [hep-ph/9905221].

[100] L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83

(1999) 4690–4693, [hep-th/9906064].

[101] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113–1133, [hep-th/9711200]. [Adv. Theor. Math.

Phys.2,231(1998)].

http://arxiv.org/abs/physics/0702221
http://arxiv.org/abs/hep-th/9510209
http://arxiv.org/abs/hep-th/9603142
http://arxiv.org/abs/hep-th/9510017
http://arxiv.org/abs/hep-ph/9803315
http://arxiv.org/abs/hep-ph/9905221
http://arxiv.org/abs/hep-th/9906064
http://arxiv.org/abs/hep-th/9711200


Bibliography 151

[102] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, Bounds on universal extra dimensions,

Phys. Rev. D64 (2001) 035002, [hep-ph/0012100].

[103] V. Rubakov and M. Shaposhnikov, Do We Live Inside a Domain Wall?, Phys.Lett. B125

(1983) 136–138.

[104] V. Rubakov and M. Shaposhnikov, Extra Space-Time Dimensions: Towards a Solution to

the Cosmological Constant Problem, Phys.Lett. B125 (1983) 139.

[105] C. Csaki, TASI lectures on extra dimensions and branes, in From fields to strings:

Circumnavigating theoretical physics. Ian Kogan memorial collection (3 volume set),

pp. 605–698, 2004. hep-ph/0404096. [,967(2004)].

[106] R. Sundrum, Tasi 2004 lectures: To the fifth dimension and back, hep-th/0508134.

[107] T. Gherghetta, TASI Lectures on a Holographic View of Beyond the Standard Model

Physics, arXiv:1008.2570.

[108] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/

EXOTICS/ATLAS_Exotics_Summary/history.html.

[109] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO#CMS_EXO_

Summary_of_Mass_Limits.

[110] R. N. Mohapatra and A. Perez-Lorenzana, Neutrino mass, proton decay and dark matter

in TeV scale universal extra dimension models, Phys. Rev. D67 (2003) 075015,

[hep-ph/0212254].

[111] K. R. Dienes, E. Dudas, and T. Gherghetta, Extra space-time dimensions and

unification, Phys. Lett. B436 (1998) 55–65, [hep-ph/9803466].

[112] N. Arkani-Hamed and S. Dimopoulos, New origin for approximate symmetries from

distant breaking in extra dimensions, Phys. Rev. D65 (2002) 052003, [hep-ph/9811353].

[113] B. A. Dobrescu and E. Poppitz, Number of fermion generations derived from anomaly

cancellation, Phys. Rev. Lett. 87 (2001) 031801, [hep-ph/0102010].

[114] H.-C. Cheng, B. A. Dobrescu, and C. T. Hill, Electroweak symmetry breaking and extra

dimensions, Nucl. Phys. B589 (2000) 249–268, [hep-ph/9912343].

[115] K. R. Dienes, E. Dudas, and T. Gherghetta, Grand unification at intermediate mass

scales through extra dimensions, Nucl.Phys. B537 (1999) 47–108, [hep-ph/9806292].

[116] A. Perez-Lorenzana and R. Mohapatra, Effect of extra dimensions on gauge coupling

unification, Nucl.Phys. B559 (1999) 255, [hep-ph/9904504].

http://arxiv.org/abs/hep-ph/0012100
http://arxiv.org/abs/hep-ph/0404096
http://arxiv.org/abs/hep-th/0508134
http://arxiv.org/abs/1008.2570
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ATLAS_Exotics_Summary/history.html
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ATLAS_Exotics_Summary/history.html
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO#CMS_EXO_Summary_of_Mass_Limits
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO#CMS_EXO_Summary_of_Mass_Limits
http://arxiv.org/abs/hep-ph/0212254
http://arxiv.org/abs/hep-ph/9803466
http://arxiv.org/abs/hep-ph/9811353
http://arxiv.org/abs/hep-ph/0102010
http://arxiv.org/abs/hep-ph/9912343
http://arxiv.org/abs/hep-ph/9806292
http://arxiv.org/abs/hep-ph/9904504


Bibliography 152

[117] G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton

decay, Phys.Lett. B511 (2001) 257–264, [hep-ph/0102301].

[118] T. Appelquist, B. A. Dobrescu, E. Ponton, and H.-U. Yee, Proton stability in

six-dimensions, Phys.Rev.Lett. 87 (2001) 181802, [hep-ph/0107056].

[119] D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra

dimensions, Phys.Rept. 453 (2007) 29–115, [hep-ph/0701197].

[120] L. O’Raifeartaigh and N. Straumann, Early history of gauge theories and Kaluza-Klein

theories, hep-ph/9810524.

[121] H.-C. Cheng, Introduction to Extra Dimensions, in Physics of the large and the small,

TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle

Physics, Boulder, Colorado, USA, 1-26 June 2009, pp. 125–162, 2011. arXiv:1003.1162.

[122] H.-C. Cheng, K. T. Matchev, and M. Schmaltz, Radiative corrections to Kaluza-Klein

masses, Phys.Rev. D66 (2002) 036005, [hep-ph/0204342].

[123] G. D. Kribs, TASI 2004 lectures on the phenomenology of extra dimensions, in Physics in

D >= 4. Proceedings, Theoretical Advanced Study Institute in elementary particle physics,

TASI 2004, Boulder, USA, June 6-July 2, 2004, pp. 633–699, 2006. hep-ph/0605325.

[124] F. J. Petriello, Kaluza-Klein effects on Higgs physics in universal extra dimensions,

JHEP 05 (2002) 003, [hep-ph/0204067].

[125] H. Georgi, A. K. Grant, and G. Hailu, Brane couplings from bulk loops, Phys.Lett. B506

(2001) 207–214, [hep-ph/0012379].

[126] CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125

GeV with the CMS experiment at the LHC, Phys.Lett. B716 (2012) 30–61,

[arXiv:1207.7235].

[127] Particle Data Group Collaboration, J. Beringer et al., Review of Particle Physics

(RPP), Phys.Rev. D86 (2012) 010001.

[128] A. Datta, U. K. Dey, A. Raychaudhuri, and A. Shaw, Boundary Localized Terms in

Universal Extra-Dimensional Models through a Dark Matter perspective, Phys. Rev. D88

(2013) 016011, [arXiv:1305.4507].

[129] T. Flacke, D. W. Kang, K. Kong, G. Mohlabeng, and S. C. Park, Electroweak

Kaluza-Klein Dark Matter, arXiv:1702.02949.

[130] K. Agashe, N. G. Deshpande, and G. H. Wu, Universal extra dimensions and b→ sγ,

Phys. Lett. B514 (2001) 309–314, [hep-ph/0105084].

http://arxiv.org/abs/hep-ph/0102301
http://arxiv.org/abs/hep-ph/0107056
http://arxiv.org/abs/hep-ph/0701197
http://arxiv.org/abs/hep-ph/9810524
http://arxiv.org/abs/1003.1162
http://arxiv.org/abs/hep-ph/0204342
http://arxiv.org/abs/hep-ph/0605325
http://arxiv.org/abs/hep-ph/0204067
http://arxiv.org/abs/hep-ph/0012379
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1305.4507
http://arxiv.org/abs/1702.02949
http://arxiv.org/abs/hep-ph/0105084


Bibliography 153

[131] A. J. Buras, A. Poschenrieder, M. Spranger, and A. Weiler, The Impact of universal extra

dimensions on B —> X(s) gamma, B —> X(s) gluon, B —> X(s) mu+ mu-, K(L) —>

pi0 e+ e- and epsilon-prime / epsilon, Nucl. Phys. B678 (2004) 455–490,

[hep-ph/0306158].

[132] Indian Association for the Cultivation of Science Collaboration, A. Datta and

A. Shaw, Effects of non-minimal Universal Extra Dimension on B → Xsγ, Phys. Rev.

D95 (2017), no. 1 015033, [arXiv:1610.09924].

[133] I. Gogoladze and C. Macesanu, Precision electroweak constraints on Universal Extra

Dimensions revisited, Phys. Rev. D74 (2006) 093012, [hep-ph/0605207].

[134] T. Kakuda, K. Nishiwaki, K.-y. Oda, and R. Watanabe, Universal extra dimensions after

Higgs discovery, Phys. Rev. D88 (2013) 035007, [arXiv:1305.1686].

[135] P. Nath and M. Yamaguchi, Effects of Kaluza-Klein excitations on (g(mu)-2), Phys. Rev.

D60 (1999) 116006, [hep-ph/9903298].

[136] D. Chakraverty, K. Huitu, and A. Kundu, Effects of universal extra dimensions on B0 -

antiB0 mixing, Phys. Lett. B558 (2003) 173–181, [hep-ph/0212047].

[137] A. J. Buras, M. Spranger, and A. Weiler, The Impact of universal extra dimensions on

the unitarity triangle and rare K and B decays, Nucl. Phys. B660 (2003) 225–268,

[hep-ph/0212143].

[138] T. Appelquist and H.-U. Yee, Universal extra dimensions and the Higgs boson mass,

Phys. Rev. D67 (2003) 055002, [hep-ph/0211023].

[139] T. G. Rizzo and J. D. Wells, Electroweak precision measurements and collider probes of

the standard model with large extra dimensions, Phys. Rev. D61 (2000) 016007,

[hep-ph/9906234].

[140] A. Strumia, Bounds on Kaluza-Klein excitations of the SM vector bosons from

electroweak tests, Phys. Lett. B466 (1999) 107–114, [hep-ph/9906266].

[141] C. D. Carone, Electroweak constraints on extended models with extra dimensions, Phys.

Rev. D61 (2000) 015008, [hep-ph/9907362].

[142] A. Belyaev, M. Brown, J. Moreno, and C. Papineau, Discovering Minimal Universal

Extra Dimensions (MUED) at the LHC, JHEP 06 (2013) 080, [arXiv:1212.4858].

[143] M. Battaglia, A. K. Datta, A. De Roeck, K. Kong, and K. T. Matchev, Contrasting

supersymmetry and universal extra dimensions at colliders, eConf C050318 (2005) 0302,

[hep-ph/0507284].

http://arxiv.org/abs/hep-ph/0306158
http://arxiv.org/abs/1610.09924
http://arxiv.org/abs/hep-ph/0605207
http://arxiv.org/abs/1305.1686
http://arxiv.org/abs/hep-ph/9903298
http://arxiv.org/abs/hep-ph/0212047
http://arxiv.org/abs/hep-ph/0212143
http://arxiv.org/abs/hep-ph/0211023
http://arxiv.org/abs/hep-ph/9906234
http://arxiv.org/abs/hep-ph/9906266
http://arxiv.org/abs/hep-ph/9907362
http://arxiv.org/abs/1212.4858
http://arxiv.org/abs/hep-ph/0507284


Bibliography 154

[144] A. Datta, K. Kong, and K. T. Matchev, Discrimination of supersymmetry and universal

extra dimensions at hadron colliders, Phys. Rev. D72 (2005) 096006, [hep-ph/0509246].

[Erratum: Phys. Rev.D72,119901(2005)].

[145] B. Bhattacherjee and K. Ghosh, Search for the minimal universal extra dimension model

at the LHC with
√
s=7 TeV, Phys. Rev. D83 (2011) 034003, [arXiv:1006.3043].

[146] H. Murayama, M. M. Nojiri, and K. Tobioka, Improved discovery of a nearly degenerate

model: MUED using MT2 at the LHC, Phys. Rev. D84 (2011) 094015,

[arXiv:1107.3369].

[147] A. Datta, A. Datta, and S. Poddar, Enriching the exploration of the mUED model with

event shape variables at the CERN LHC, Phys. Lett. B712 (2012) 219–225,

[arXiv:1111.2912].

[148] G. Belanger, A. Belyaev, M. Brown, M. Kakizaki, and A. Pukhov, Testing Minimal

Universal Extra Dimensions Using Higgs Boson Searches at the LHC, Phys. Rev. D87

(2013), no. 1 016008, [arXiv:1207.0798].

[149] ATLAS Collaboration, G. Aad et al., Measurements of Higgs boson production and

couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B726

(2013) 88–119, [arXiv:1307.1427]. [Erratum: Phys. Lett.B734,406(2014)].

[150] CMS Collaboration Collaboration, Combination of standard model Higgs boson

searches and measurements of the properties of the new boson with a mass near 125 GeV,

Tech. Rep. CMS-PAS-HIG-13-005, CERN, Geneva, 2013.

[151] A. Datta, A. Patra, and S. Raychaudhuri, Higgs Boson Decay Constraints on a Model

with a Universal Extra Dimension, Phys. Rev. D89 (2014), no. 9 093008,

[arXiv:1311.0926].

[152] ATLAS Collaboration Collaboration, Search for Diphoton Events with Large Missing

Transverse Momentum in 7 TeV pp Collision Data with the ATLAS Detector, Tech. Rep.

ATLAS-CONF-2012-072, CERN, Geneva, Jul, 2012.

[153] L. Edelhäuser, T. Flacke, and M. Krämer, Constraints on models with universal extra

dimensions from dilepton searches at the LHC, JHEP 08 (2013) 091, [arXiv:1302.6076].

[154] J. M. Cornell, S. Profumo, and W. Shepherd, Dark matter in minimal universal extra

dimensions with a stable vacuum and the “right” Higgs boson, Phys. Rev. D89 (2014),

no. 5 056005, [arXiv:1401.7050].

[155] M. Blennow, H. Melbeus, T. Ohlsson, and H. Zhang, RG running in a minimal UED

model in light of recent LHC Higgs mass bounds, Phys. Lett. B712 (2012) 419–424,

[arXiv:1112.5339].

http://arxiv.org/abs/hep-ph/0509246
http://arxiv.org/abs/1006.3043
http://arxiv.org/abs/1107.3369
http://arxiv.org/abs/1111.2912
http://arxiv.org/abs/1207.0798
http://arxiv.org/abs/1307.1427
http://arxiv.org/abs/1311.0926
http://arxiv.org/abs/1302.6076
http://arxiv.org/abs/1401.7050
http://arxiv.org/abs/1112.5339


Bibliography 155

[156] A. Datta and S. Raychaudhuri, Vacuum Stability Constraints and LHC Searches for a

Model with a Universal Extra Dimension, Phys. Rev. D87 (2013), no. 3 035018,

[arXiv:1207.0476].

[157] T. Flacke, K. Kong, and S. C. Park, A Review on Non-Minimal Universal Extra

Dimensions, Mod. Phys. Lett. A30 (2015), no. 05 1530003, [arXiv:1408.4024].

[158] G. R. Dvali, G. Gabadadze, M. Kolanovic, and F. Nitti, The Power of brane induced

gravity, Phys. Rev. D64 (2001) 084004, [hep-ph/0102216].

[159] M. Carena, T. M. P. Tait, and C. E. M. Wagner, Branes and orbifolds are opaque, Acta

Phys. Polon. B33 (2002) 2355, [hep-ph/0207056].

[160] F. del Aguila, M. Perez-Victoria, and J. Santiago, Bulk fields with general brane kinetic

terms, JHEP 0302 (2003) 051, [hep-th/0302023].

[161] F. del Aguila, M. Perez-Victoria, and J. Santiago, Bulk fields with brane terms,

Eur.Phys.J. C33 (2004) S773–S775, [hep-ph/0310352].

[162] F. del Aguila, M. Perez-Victoria, and J. Santiago, Physics of brane kinetic terms, Acta

Phys.Polon. B34 (2003) 5511–5522, [hep-ph/0310353].

[163] F. del Aguila, M. Perez-Victoria, and J. Santiago, Effective description of brane terms in

extra dimensions, JHEP 10 (2006) 056, [hep-ph/0601222].

[164] A. Datta, K. Nishiwaki, and S. Niyogi, Non-minimal Universal Extra Dimensions: The

Strongly Interacting Sector at the Large Hadron Collider, JHEP 1211 (2012) 154,

[arXiv:1206.3987].

[165] A. Datta, K. Nishiwaki, and S. Niyogi, Non-minimal Universal Extra Dimensions with

Brane Local Terms: The Top Quark Sector, JHEP 1401 (2014) 104, [arXiv:1310.6994].

[166] A. Datta, U. K. Dey, A. Shaw, and A. Raychaudhuri, Universal Extra-Dimensional

Models with Boundary Localized Kinetic Terms: Probing at the LHC, Phys.Rev. D87

(2013) 076002, [arXiv:1205.4334].

[167] A. Datta, A. Raychaudhuri, and A. Shaw, LHC limits on KK-parity non-conservation in

the strong sector of universal extra-dimension models, Phys.Lett. B730 (2014) 42–49,

[arXiv:1310.2021].

[168] U. K. Dey and T. S. Ray, Constraining minimal and nonminimal universal extra

dimension models with Higgs couplings, Phys.Rev. D88 (2013), no. 5 056016,

[arXiv:1305.1016].

[169] T. Jha and A. Datta, Z → bb in non-minimal Universal Extra Dimensional Model, JHEP

1503 (2015) 012, [arXiv:1410.5098].

http://arxiv.org/abs/1207.0476
http://arxiv.org/abs/1408.4024
http://arxiv.org/abs/hep-ph/0102216
http://arxiv.org/abs/hep-ph/0207056
http://arxiv.org/abs/hep-th/0302023
http://arxiv.org/abs/hep-ph/0310352
http://arxiv.org/abs/hep-ph/0310353
http://arxiv.org/abs/hep-ph/0601222
http://arxiv.org/abs/1206.3987
http://arxiv.org/abs/1310.6994
http://arxiv.org/abs/1205.4334
http://arxiv.org/abs/1310.2021
http://arxiv.org/abs/1305.1016
http://arxiv.org/abs/1410.5098


Bibliography 156

[170] A. Shaw, KK-parity non-conservation in UED confronts LHC data, Eur. Phys. J. C75

(2015), no. 1 33, [arXiv:1405.3139].

[171] A. Datta and A. Shaw, Nonminimal universal extra dimensional model confronts

Bs → µ+µ−, Phys. Rev. D93 (2016), no. 5 055048, [arXiv:1506.08024].

[172] U. K. Dey and T. Jha, Rare top decays in minimal and nonminimal universal extra

dimension models, Phys. Rev. D94 (2016), no. 5 056011, [arXiv:1602.03286].

[173] T. Jha, Unitarity Constraints on non-minimal Universal Extra Dimensional Model,

arXiv:1604.02481.

[174] F. del Aguila, M. Perez-Victoria, and J. Santiago, Some consequences of brane kinetic

terms for bulk fermions, hep-ph/0305119.

[175] A. Datta and A. Shaw, A note on gauge-fixing in the electroweak sector of UED with

BLKTs, arXiv:1408.0635.

[176] A. Muck, The standard model in 5D: Theoretical consistency and experimental

constraints. PhD thesis, Wurzburg U., 2004.

[177] T. Flacke, K. Kong, and S. C. Park, Phenomenology of Universal Extra Dimensions with

Bulk-Masses and Brane-Localized Terms, JHEP 05 (2013) 111, [arXiv:1303.0872].

[178] B. W. Lee, C. Quigg, and H. B. Thacker, Weak Interactions at Very High-Energies: The

Role of the Higgs Boson Mass, Phys. Rev. D16 (1977) 1519.

[179] R. S. Chivukula, D. A. Dicus, and H.-J. He, Unitarity of compactified five-dimensional

Yang-Mills theory, Phys. Lett. B525 (2002) 175–182, [hep-ph/0111016].

[180] S. De Curtis, D. Dominici, and J. R. Pelaez, Strong tree level unitarity violations in the

extra dimensional standard model with scalars in the bulk, Phys. Rev. D67 (2003)

076010, [hep-ph/0301059].

[181] A. Cordero-Cid, H. Novales-Sanchez, and J. J. Toscano, The Standard Model with one

universal extra dimension, Pramana 80 (2013) 369–412, [arXiv:1108.2926].

[182] I. García-Jiménez, M. A. López-Osorio, E. Martínez-Pascual, G. I. Nápoles-Cañedo,

H. Novales-Sánchez, and J. J. Toscano, Standard Model with extra dimensions and its

zeta function regularization, arXiv:1603.03128.

[183] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy, R. Kogler, K. Moenig,

M. Schott, and J. Stelzer, The Electroweak Fit of the Standard Model after the Discovery

of a New Boson at the LHC, Eur. Phys. J. C72 (2012) 2205, [arXiv:1209.2716].

http://arxiv.org/abs/1405.3139
http://arxiv.org/abs/1506.08024
http://arxiv.org/abs/1602.03286
http://arxiv.org/abs/1604.02481
http://arxiv.org/abs/hep-ph/0305119
http://arxiv.org/abs/1408.0635
http://arxiv.org/abs/1303.0872
http://arxiv.org/abs/hep-ph/0111016
http://arxiv.org/abs/hep-ph/0301059
http://arxiv.org/abs/1108.2926
http://arxiv.org/abs/1603.03128
http://arxiv.org/abs/1209.2716


Bibliography 157

[184] A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to sin2θbb̄eff and Rb using

numerical Mellin-Barnes integrals, JHEP 08 (2012) 050, [arXiv:1205.0299]. [Erratum:

JHEP10,044(2013)].

[185] N. G. Deshpande and G. Eilam, FLAVOR CHANGING ELECTROMAGNETIC

TRANSITIONS, Phys.Rev. D26 (1982) 2463.

[186] N. G. Deshpande and M. Nazerimonfared, Flavor Changing Electromagnetic Vertex in a

Nonlinear Rξ Gauge, Nucl.Phys. B213 (1983) 390–408.

[187] J. Diaz-Cruz, R. Martinez, M. Perez, and A. Rosado, Flavor Changing Radiative Decay

of the t Quark, Phys.Rev. D41 (1990) 891–894.

[188] B. Mele, S. Petrarca, and A. Soddu, A New evaluation of the t→ cH decay width in the

standard model, Phys.Lett. B435 (1998) 401–406, [hep-ph/9805498].

[189] B. Mele, S. Petrarca, and A. Soddu, The t→ cH decay width in the standard model,

hep-ph/9912235.

[190] J. Aguilar-Saavedra and B. Nobre, Rare top decays t→ cγ, t→ cg and CKM unitarity,

Phys.Lett. B553 (2003) 251–260, [hep-ph/0210360].

[191] J. Aguilar-Saavedra, Top flavor-changing neutral interactions: Theoretical expectations

and experimental detection, Acta Phys.Polon. B35 (2004) 2695–2710, [hep-ph/0409342].

[192] K.-F. Chen, W.-S. Hou, C. Kao, and M. Kohda, When the Higgs meets the Top: Search

for t→ ch0 at the LHC, Phys. Lett. B725 (2013) 378–381, [arXiv:1304.8037].

[193] H. Khanpour, S. Khatibi, M. K. Yanehsari, and M. M. Najafabadi, Single top quark

production as a probe of anomalous tqγ and tqZ couplings at the FCC-ee,

arXiv:1408.2090.

[194] H. Hesari, H. Khanpour, M. K. Yanehsari, and M. M. Najafabadi, Probing the Top

Quark Flavour-Changing Neutral Current at a Future Electron-Positron Collider, Adv.

High Energy Phys. 2014 (2014) 476490, [arXiv:1412.8572].

[195] D. Kim and M. Park, Enhancement of new physics signal sensitivity with mistagged

charm quarks, arXiv:1507.03990.

[196] H. Hesari, H. Khanpour, and M. M. Najafabadi, Direct and Indirect Searches for

Top-Higgs FCNC Couplings, Phys. Rev. D92 (2015), no. 11 113012, [arXiv:1508.07579].

[197] S. Khatibi and M. M. Najafabadi, Top quark flavor changing via photon,

arXiv:1511.00220.

http://arxiv.org/abs/1205.0299
http://arxiv.org/abs/hep-ph/9805498
http://arxiv.org/abs/hep-ph/9912235
http://arxiv.org/abs/hep-ph/0210360
http://arxiv.org/abs/hep-ph/0409342
http://arxiv.org/abs/1304.8037
http://arxiv.org/abs/1408.2090
http://arxiv.org/abs/1412.8572
http://arxiv.org/abs/1507.03990
http://arxiv.org/abs/1508.07579
http://arxiv.org/abs/1511.00220


Bibliography 158

[198] J. Guasch and J. Sola, FCNC top quark decays: A Door to SUSY physics in high

luminosity colliders?, Nucl. Phys. B562 (1999) 3–28, [hep-ph/9906268].

[199] G. Eilam, A. Gemintern, T. Han, J. M. Yang, and X. Zhang, Top quark rare decay

t→ ch in R-parity violating SUSY, Phys. Lett. B510 (2001) 227–235, [hep-ph/0102037].

[200] M. Frank and I. Turan, t→ cg, cγ, cZ in the left-right supersymmetric model, Phys.Rev.

D72 (2005) 035008, [hep-ph/0506197].

[201] J. J. Cao, G. Eilam, M. Frank, K. Hikasa, G. L. Liu, I. Turan, and J. M. Yang,

SUSY-induced FCNC top-quark processes at the large hadron collider, Phys. Rev. D75

(2007) 075021, [hep-ph/0702264].

[202] J. Cao, Z. Heng, L. Wu, and J. M. Yang, R-parity violating effects in top quark FCNC

productions at LHC, Phys. Rev. D79 (2009) 054003, [arXiv:0812.1698].

[203] J. Cao, C. Han, L. Wu, J. M. Yang, and M. Zhang, SUSY induced top quark FCNC decay

t→ ch after Run I of LHC, Eur. Phys. J. C74 (2014), no. 9 3058, [arXiv:1404.1241].

[204] A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho, and K. Tamvakis, Rare Top-quark Decays

to Higgs boson in MSSM, JHEP 11 (2014) 137, [arXiv:1409.6546].

[205] D. Bardhan, G. Bhattacharyya, D. Ghosh, M. Patra, and S. Raychaudhuri, A Detailed

Analysis of Flavour-changing Decays of Top Quarks as a Probe of New Physics at the

LHC, arXiv:1601.04165.

[206] G. Eilam, J. Hewett, and A. Soni, Rare decays of the top quark in the standard and two

Higgs doublet models, Phys.Rev. D44 (1991) 1473–1484.

[207] E. O. Iltan, t→ cH0 decay in the general two Higgs doublet model, Phys. Rev. D65

(2002) 075017, [hep-ph/0111318].

[208] A. Arhrib, Top and Higgs flavor changing neutral couplings in two Higgs doublets model,

Phys. Rev. D72 (2005) 075016, [hep-ph/0510107].

[209] R. Gaitán, R. Martinez, and J. H. M. de Oca, Rare top decay t→ cγ with flavor changing

neutral scalar interactions in THDM, arXiv:1503.04391.

[210] G. Abbas, A. Celis, X.-Q. Li, J. Lu, and A. Pich, Flavour-changing top decays in the

aligned two-Higgs-doublet model, JHEP 06 (2015) 005, [arXiv:1503.06423].

[211] T.-J. Gao, T.-F. Feng, and J.-B. Chen, t→ cγ and t→ cg in warped extra dimensions,

JHEP 1302 (2013) 029, [arXiv:1303.0082].

[212] G. Gonzalez-Sprinberg, R. Martinez, and J. A. Rodriguez, FCNC top quark decays in

extra dimensions, Eur.Phys.J. C51 (2007) 919–926.

http://arxiv.org/abs/hep-ph/9906268
http://arxiv.org/abs/hep-ph/0102037
http://arxiv.org/abs/hep-ph/0506197
http://arxiv.org/abs/hep-ph/0702264
http://arxiv.org/abs/0812.1698
http://arxiv.org/abs/1404.1241
http://arxiv.org/abs/1409.6546
http://arxiv.org/abs/1601.04165
http://arxiv.org/abs/hep-ph/0111318
http://arxiv.org/abs/hep-ph/0510107
http://arxiv.org/abs/1503.04391
http://arxiv.org/abs/1503.06423
http://arxiv.org/abs/1303.0082


Bibliography 159

[213] A. Cordero-Cid, M. A. Perez, G. Tavares-Velasco, and J. J. Toscano, Effective

Lagrangian approach to Higgs-mediated FCNC top quark decays, Phys. Rev. D70 (2004)

074003, [hep-ph/0407127].

[214] A. Datta and M. Duraisamy, Model Independent Predictions for Rare Top Decays with

Weak Coupling, Phys.Rev. D81 (2010) 074008, [arXiv:0912.4785].

[215] J. F. Oliver, J. Papavassiliou, and A. Santamaria, Universal extra dimensions and Z —>

b anti-b, Phys. Rev. D67 (2003) 056002, [hep-ph/0212391].

[216] J. Bernabeu, A. Pich, and A. Santamaria, Gamma (Z —> B anti-B): A Signature of

Hard Mass Terms for a Heavy Top, Phys. Lett. B200 (1988) 569–574.

[217] D0 Collaboration, V. M. Abazov et al., Precision measurement of the top-quark mass in

lepton+jets final states, Phys. Rev. Lett. 113 (2014) 032002, [arXiv:1405.1756].

[218] Particle Data Group Collaboration, K. A. Olive et al., Review of Particle Physics,

Chin. Phys. C38 (2014) 090001.

[219] H. H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop

integrals, Comput. Phys. Commun. 197 (2015) 276–290, [arXiv:1503.01469].

[220] T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions

and D-dimensions, Comput. Phys. Commun. 118 (1999) 153–165, [hep-ph/9807565].

[221] Gfitter Group Collaboration, M. Baak, J. Cúth, J. Haller, A. Hoecker, R. Kogler,

K. Mönig, M. Schott, and J. Stelzer, The global electroweak fit at NNLO and prospects

for the LHC and ILC, Eur. Phys. J. C74 (2014) 3046, [arXiv:1407.3792].

[222] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/

EXOTICS/ATLAS_Exotics_Summary/ATLAS_Exotics_Summary.pdf.

[223] https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsCombined/

exo-limits_DecJamboree2015.pdf.

[224] CMS Collaboration, Search for anomalous single top quark production in association

with a photon, Tech. Rep. CMS-PAS-TOP-14-003, CERN, Geneva, 2014.

[225] ATLAS Collaboration, G. Aad et al., Search for top quark decays t→ qH with H → γγ

using the ATLAS detector, JHEP 1406 (2014) 008, [arXiv:1403.6293].

[226] CMS Collaboration, Combined multilepton and diphoton limit on t→ cH, Tech. Rep.

CMS-PAS-HIG-13-034, CERN, Geneva, 2014.

[227] Top Quark Working Group Collaboration, K. Agashe et al., Working Group Report:

Top Quark, arXiv:1311.2028.

http://arxiv.org/abs/hep-ph/0407127
http://arxiv.org/abs/0912.4785
http://arxiv.org/abs/hep-ph/0212391
http://arxiv.org/abs/1405.1756
http://arxiv.org/abs/1503.01469
http://arxiv.org/abs/hep-ph/9807565
http://arxiv.org/abs/1407.3792
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ATLAS_Exotics_Summary/ATLAS_Exotics_Summary.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ATLAS_Exotics_Summary/ATLAS_Exotics_Summary.pdf
https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsCombined/exo-limits_DecJamboree2015.pdf
https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsCombined/exo-limits_DecJamboree2015.pdf
http://arxiv.org/abs/1403.6293
http://arxiv.org/abs/1311.2028

