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Abstract: Existing approaches to quantum gravity exhibit plenty of
startling conceptual issues. Here I restrict my attention to the canon-
ical approach. Both classical and quantum canonical gravity are dis-
cussed. Most conceptual problems circle around the problem of time
– the absence of any external time parameter. I then turn to quan-
tum cosmology, where these and more problems can be discussed in a
transparent way. I conclude with brief remarks on singularity avoid-
ance, the arrow of time, and the interpretation of quantum theory in
general.

Introduction

In his book The Meaning of Relativity, Albert Einstein emphasizes the fol-
lowing point [1]:

Es widerstrebt dem wissenschaftlichen Verstande, ein Ding zu
setzen, das zwar wirkt, aber auf das nicht gewirkt werden
kann.1

This statement expresses our modern understanding of space and time. In
contrast to Newtonian physics, no absolute fields exist in general relativity;
space and time are fully dynamical. Spacetime acts on matter, but matter
also acts on spacetime. The mutual relationship between both is described
by the non-linear Einstein field equations. There is no fixed, absolute back-
ground any more; spacetime as described by the metric of general relativ-
ity is fully dynamical. This feature is called background independence and
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1It is contrary to the scientific mode of understanding to postulate a thing that

acts, but which cannot be acted upon.
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is of central relevance for general relativity, but also for quantum gravity,
since it is the dynamical fields that are subject to quantization. An absolute
(‘background’) field can be characterized by the fact that there exist coor-
dinates which assign universal values to all components of a field; such
a field must not be quantized. A prominent example for a background
field is the spacetime metric of special relativity, for which priviledged co-
ordinates exist (the inertial coordinates) in which the metric assumes the
standard form diag(-1,1,1,1).

In my contribution, I shall give a brief review of the central conceptual
issues that arise in both classical and quantum gravity and that are all more
or less directly connected with background independence and the related
problem of time. Attention is restricted to the canonical approach, because
there these issues are most transparent. A detailed exposition covering all
aspects of quantum gravity can be found in my book [2]; an introduction
into classical and quantum canonical gravity from a conceptual point of
view can also be found in our essay [3].

A theory of quantum gravity seems to be needed because the singularity
theorems predict that general relativity cannot be fundamentally complete.
In particular, the origin of our Universe and the final fate of black holes do
not seem to be comprehensible without quantum gravity. Unfortunately,
no final theory exists to date, so discussing conceptual issues in quantum
gravity means to discuss them in existing approaches to such a theory. How-
ever, one can put forward various arguments in support of the generality
of these issues in most approaches. This should become clear from the
following discussion.

What are the main approaches to quantum gravity? There exist presently
two main classes:

• Quantum general relativity: this includes all approaches that arise from
an application of formal quantization rules to general relativity. They
can be subdivided further into:

– Covariant approaches (such as perturbation theory, path integrals,
and others), which are characterized by the fact that spacetime
covariance plays a crucial role in some parts of the formalism,
and

– Canonical approaches (such as geometrodynamics, connection dy-
namics, loop dynamics, and others), in which a Hamiltonian for-
malism is being used.

• String theory: this is intended to be a unified quantum theory of all
interactions, in which the quantized gravitational field can be distin-
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guished as a separate field only in appropriate limits, for example,
for energies lower than the fundamental string energy scale.

There also exist other even more fundamental approaches (such as the
quantization of topology) which, however, have not been developed as
far as the main approaches. In the following, I shall restrict myself to
the canonical formalism. I start with classical canonical gravity, proceed
then to quantum canonical gravity, and conclude with quantum cosmol-
ogy where the conceptual issues of the full approach (and further issues)
are exhibited clearly and explicitly.

Canonical classical gravity

The canonical formalism starts with the ‘3+1 decomposition’ of general rel-
ativity [2]. Spacetime is assumed to be globally hyperbolic, that is, to be of
the form R × Σ, where Σ denotes a three-dimensional manifold; spacetime
is thus foliated into a set of spacelike hypersurfaces Σt. The dynamical
variable is the three-dimensional metric, hab, which can be obtained as the
metric that is induced by the spacetime metric gµν on each Σt. Instead
of considering the three-metrics on each Σt, one can adopt the equivalent
viewpoint and consider a t-dependent three-metric on the given manifold
Σ. For each choice of Σ in the topological sense one obtains a different
version of canonical gravity.

This lends itself to a more fundamental viewpoint: instead of starting with
a four-dimensional spacetime, M, to be foliated, we assume that only Σ

is given. Then, only after solving the field equations can we construct
spacetime and interpret the time dependence of the metric h of Σ as be-
ing brought about by ‘wafting’ Σ through M via a one-parameter family of
hypersurfaces Σt. The field equations can actually be divided into

• six dynamical evolution equations for hab and its canonical momen-
tum πab, and

• four constraints, which are restrictions on the initial data, that is, re-
strictions on the allowed choices for hab and πab on an ‘initial’ hyper-
surface.

After having solved these equations, spacetime can be interpreted as a ‘tra-
jectory of spaces’. The origin of the constraints is the diffeomorphism in-
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variance of general relativity. They have the explicit form

H[h, π] = 2κ Gab cdπabπcd − (2κ)−1
√

h((3)R − 2Λ) +
√

hρ ≈ 0 , (1)

Da[h, π] = −2∇bπab +
√

hja ≈ 0 , (2)

where κ = 8πG/c4, Λ is the cosmological constant, (3)R is the three-
dimensional Ricci scalar, and

Gab cd = 1
2
√

h
(hachbd + hadhbc − habhcd) (3)

is called the DeWitt metric; it plays the role of a metric on the space of all
three-metrics. While (1) is called Hamiltonian constraint, the three con-
straints (2) are called momentum or diffeomorphism constraints.

There are two important theorems which connect the constraints with the
evolution. The first one states:

Constraints are preserved in time ⇐⇒ energy–momentum ten-
sor of matter has vanishing covariant divergence.

This can be compared with the corresponding situation in electrodynamics:
the Gauss constraint ∇E = 4πρ is preserved in time if and only if electric
charge is conserved in time. The second theorem states:

Einstein’s equations are the unique propagation law consistent
with the constraints.

Again, this can be compared with the situation in electrodynamics:
Maxwell’s equations are the unique propagation law consistent with the
Gauss constraint. Constraints and evolution equations are thus inextrica-
bly mixed.

A central conceptual issue in quantum gravity is the ‘problem of time’.
Part of this problem is already present in the classical theory. Namely,
if we restrict ourselves for simplicity to compact three-spaces Σ, the total
Hamiltonian is a combination of pure constraints; all of the evolution will
therefore be generated by constraints and is thus, in a sense, pure gauge.
How can this be reconciled with the usual interpretation of the Hamilto-
nian as a generator of time translations? The point is that the evolutions
along different spacelike hypersurfaces are equivalent and lead to the same
spacetime satisfying Einstein’s equations. This freedom is expressed by the
fact that the Hamiltonian generates both gauge transformations and time
translations (hypersurface deformations). In other words, no external time
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parameter exists. All physical time parameters are to be constructed from
within the system, that is, as a functional of the canonical variables; a pri-
ori there is no preferred choice of such an intrinsic time parameter. The
absence of an extrinsic time and the non-preference of an intrinsic time is
known as the problem of time in classical canonical gravity. As we shall see
below, this leads in quantum gravity to stationary fundamental equations
for a wave function which only depends on variables defined on the three-
dimensional space Σ.

Above we have defined the DeWitt metric – the metric on the space of all
three-metrics, see (3). Its signature is responsible for the structure of the
kinetic term in the Hamiltonian constraint (1). As it turns out, the DeWitt-
metric possesses an indefinite structure [2, 3]. It can be viewed at each
spacepoint as a symmetric 6 × 6-matrix. This matrix can be diagonalized,
and it is found thereby that the diagonal contains one minus and five plus
signs; the DeWitt-metric is thus indefinite, and the kinetic term in (1) is
indefinite, too. Due to the pointwise Lorentzian signature of Gab cd, it is of
a hyper-Lorentzian structure with infinitely many negative, null, and posi-
tive directions. This property will be of central relevance in the quantum
theory.

Canonical quantum gravity

The classical constraints (1) and (2) can be implemented in the quantum
theory in various ways; after all, the quantum theory can only be heuristi-
cally constructed and never be derived from the underlying classical the-
ory. One possibility would be to try to solve the constraints classically and
quantize only the remaining physical variables. However, this ‘reduced
quantization’ leads to many problems; in particular, it is hard to perform
in practice except for the simplest models [4, 2]. The alternative method
is to implement the constraints à la Dirac as restrictions on physically al-
lowed wave functionals. Replacing the canonical momenta by −i/h̄ times
functional derivatives with respect to the three-metric, the Hamiltonian
constraint becomes the Wheeler–DeWitt equation:2

ĤΨ ≡
(

−2κh̄2Gabcd
δ2

δhabδhcd
− (2κ)−1

√
h
(

(3)R − 2Λ
)

)

Ψ = 0. (4)

2For simplicity, we neglect here the non-gravitational fields, which occur in ad-
dition to the three-metric.
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The kinetic term can only be interpreted as being formal, because the
factor-ordering problem and the connected problem of regularizing the
functional derivatives have not been addressed.

The quantization of the momentum constraints (2) leads to the equations

D̂aΨ ≡ −2∇b
h̄

i

δΨ

δhab
= 0, (5)

which are called quantum diffeomorphism (momentum) constraints. They ex-
press the invariance of the wave functional under infinitesimal coordinate
transformations on the three-dimensional space.

The ‘problem of time’, which was already discussed above in the context of
the classical theory, is being enforced in the quantum theory. Namly, space-
time as such has completely disappeared! All that remains in the formal-
ism is a wave functional which depends on the metric (and matter fields)
on a three-dimensional manifold Σ. In retrospect, this is not surprising. A
classical spacetime as a succession of three-dimensional hypersurfaces is
fully analogous to a particle trajectory in mechanics (a succession of posi-
tions). In the same way that the particle trajectory vanishes in quantum
mechanics, the spacetime vanishes in quantum gravity. This feature is in-
dependent of this particular quantization of Einstein’s equations; it holds
for any theory which at the classical level does not contain an external time
parameter.

The absence of an external time and of spacetime does not necessarily
mean that no sensible notions of time can be defined. Regarding the ki-
netic term in (4), one recognizes in view of (3) that is possesses an indef-
inite structure [2, 3]. The Wheeler–DeWitt equation thus has the form of
a wave equation (more precisely, a local hyperbolic equation). Part of the
three-metric thus comes with a positive sign in the kinetic term and can
therefore be called intrinsic time, in full analogy to the time variable occur-
ring in a standard wave equation. It turns out that it is just the scale part of
the three-metric (the three-volume in simple models) which plays the role
of intrinsic time.

A conceptual problem that is related to the problem of time, is the Hilbert-
space problem: which inner product, if any, does one have to choose
between wave functionals? From the point of view of the standard
Schrödinger picture, one would like to employ the Schrödinger inner prod-
uct (square integrable wave functionals). On the other hand, in view of the
fact that (4) resembles more a wave equation, one would prefer a Klein–
Gordon type of inner product, which is, however, indefinite. Every choice
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has its merits and its disadvantages, so it seems difficult to make a definite
choice [2, 4].

What is an observable in quantum gravity? This question, too, is related
with the problem of time. One would assume that all observables have
to commute with both the Hamiltonian and momentum constraints. But
this would mean that all observables would be constants of motion, be-
cause the total Hamiltonian is a sum of these constraints. Is therefore all
change observed in Nature a pure illusion? The answer is no because we
view the world from inside. As we shall see below, observers in the semi-
classical approximation will have an approximate time variable at their
disposal, which can be approximately identified with the standard time of
non-relativistic physics. The timeless view of constants of motion would
correspond to a hypothetical perspective from outside the world where
everything (all branches of the wave functional) would be present at once.

So far we have restricted our discussion to quantum geometrodynamics.
Of course, other canonical variables can be chosen. The most prominent
choice at the moment is to choose holonomies and fluxes, leading to loop
quantum gravity [5, 6]. While the details differ from quantum geometro-
dynamics, the timeless nature of the constraints remains, with all of the
above consequences. A mathematically sound Hilbert-space structure can
be constructed at least on the kinematical level, that is, before all the con-
straints are implemented; this inner product is of the Schrödinger type. For
more details on loop quantum gravity, I refer to the literature [5, 2].

Quantum cosmology

Most of the conceptual issues in quantum gravity can be discussed in a
transparent way in quantum cosmology. Quantum cosmology is the ap-
plication of quantum theory to the Universe as a whole. That the whole
cosmos must be fundamentally described in quantum terms follows from
very general arguments, which are independent of gravity. All systems, ex-
cept the most microscopic ones, are quantum entangled with their natural
environment; this leads to their classical appearance – through a process
called decoherence [7]. Since every environment has again an environment,
this leads to the conclusion that the whole Universe must be described in
quantum terms. It is only because the gravitational interaction dominates
on large scales that we need a theory of quantum gravity to cope with
quantum cosmology [2, 8, 9].
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It is important to note that quantum effects in cosmology are not a priori
restricted to the Planck scale, which reads

lP =

√

h̄G

c3
≈ 1.62× 10−33 cm, (6)

tP =
lP
c

=

√

h̄G

c5
≈ 5.40× 10−44 s, (7)

mP =
h̄

lPc
=

√

h̄c

G
≈ 2.17× 10−5 g ≈ 1.22× 1019 GeV. (8)

The reason is that the superposition principle, which allows to form non-
trivial quantum states, holds at any scale, not only the Planck scale.3

The simplest model of quantum cosmology is obtained if one quantizes di-
rectly a Friedmann–Lemaı̂tre universe; it is characterized by a scale factor,
a, and we choose in addition a homogeneous massive scalar field, φ. The
classical spacetime metric is of the form

ds2 = −N2(t)dt2 + a2(t)dΩ2
3, (9)

where N(t) is the lapse function which encodes the invariance of the clas-
sical theory under reparametrizations of the time coordinate t → f (t). In
the quantum theory, t disappears and only a and φ remain as the variables
on which the wave function ψ(a, φ) depends.

The Wheeler–DeWitt equation then reads (with a convenient choice of
units 2G/3π = 1 and for the case of a closed universe)

1

2

(

h̄2

a2

∂

∂a

(

a
∂

∂a

)

− h̄2

a3

∂2

∂φ2
− a +

Λa3

3
+ m2a3φ2

)

ψ(a, φ) = 0. (10)

The factor ordering has been chosen in order to achieve covariance in the
two-dimensional configuration space comprised of a and φ. The wave-
nature of this equation is evident, and it is seen that the intrinsic time
variable is given by the scale factor itself. The quantum diffeomorphism
constraint is automatically satisfied by the ansatz (9). Solutions of the
Wheeler–DeWitt equation in the context of quantum cosmology are often
called ‘wave function of the universe’.

The new concept of time has far-reaching consequences: the classical and
the quantum model exhibit two drastically different concepts of determin-
ism, see Figure 1.

3This is, of course, an assumption, but an assumption which is applied in almost
all discussions of quantum cosmology.
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Classical theory

�

a

Give e.g. hereinitial 
onditions
Figure 1. (a) Recollapsing part is

deterministic successor
of expanding part.

Quantum theory

�

a

Give initial 
onditionson a = 
onstant
(b) ‘Recollapsing’ wave packet must be

present ‘initially’.

Consider the case of a classically recollapsing universe. In the classi-
cal case (left) we have a trajectory in configuration space: although it
can be parametrized in many ways, the important point is that it can be
parametrized by some time parameter. Therefore, upon solving the clas-
sical equations of motion, the recollapsing part of the trajectory is the de-
terministic successor of the expanding part: the model universe expands,
reaches a maximum point, and recollapses.

Not so for the quantum model. There is no classical trajectory and no clas-
sical time parameter and one must take the wave equation (10) as it stands.
The wave function only distinguishes small a from large a, not earlier t
from later t. There is thus no intrinsic difference between big bang and
big crunch. If one wants to construct a wave packet following the classical
trajectory as a narrow tube, one has to impose the presence of two packets
as an initial condition at small a; if one chose only one packet, one would
obtain a wave function which is spread out over configuration space and
which does not resemble anything close to a narrow wave packet.

Wave packets are of crucial importance when studying the validity of the
semiclassical approximation. In quantum mechanics, narrow wave pack-
ets remain narrow if the WKB approximation holds. In quantum cosmol-
ogy, this issue has to be studied from the new viewpoint of the Wheeler–
DeWitt equation (10). If the classical model describes a recollapsing uni-
verse, one has to impose in the quantum theory onto the wave function
the restriction that it go to zero for a → ∞; with respect to intrinsic time,
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this corresponds to a ‘final condition’. Calculations show that it is then
not possible to have narrow wave packets all along the classical trajectory;
the packet disperses, see [2, 9] and the references therein. Again, this is a
consequence of the novel concept of time.

But how do classical properties arise if wave packets necessarily disperse?
The answer to this question is again decoherence [7]. In order to study this
process, additional degrees of freedom must be introduced. They can then
act as an ‘environment’ which becomes quantum entangled with a and φ,
causing their classical appearance.

A straightforward way to introduce a large number of additional degrees
of freedom is to consider small inhomogeneities superimposed on the ho-
mogeneous three-sphere of the closed Friedmann universe [10]. These in-
homogeneities are described by small multipoles denoted by the set of
variables {xn}; they describe small gravitational waves and density per-
turbations. One then finds the more general Wheeler–DeWitt equation

(

H0 + ∑
n

Hn(a, φ, xn)

)

Ψ(a, φ, {xn}) = 0, (11)

where

Ψ(a, φ, {xn}) = ψ0(a, φ) ∏
n

ψn(a, φ, xn),

and H0ψ0 = 0 is the original ‘unperturbed’ Wheeler–DeWitt equation (10).

If ψ0 is of WKB form, ψ0 ≈ C exp(iS0/h̄) (with a slowly varying prefactor
C), one gets [10, 11]

ih̄
∂ψn

∂t
≈ Hnψn (12)

with
∂

∂t
≡ ∇S0 · ∇ . (13)

The multipoles therefore obey separate Schrödinger equations with respect
to some approximate time parameter t. This parameter is called ‘WKB time’
– it controls the dynamics in this approximation and corresponds to the
Friedmann time parameter of the classical model. This is the limit where
the standard formalism of quantum theory with its Hilbert-space structure
applies. A Hilbert space is needed to implement the probability interpreta-
tion of quantum theory, in particular, the conservation of probability with
respect to external time t. Whether a Hilbert-space structure is needed in
timeless quantum gravity, too, is thus an open issue.
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This ‘emergence of time’ from timeless quantum gravity is one of the sat-
isfactory features of quantum geometrodynamics. A corresponding recov-
ery is not yet known in loop quantum gravity. An analogous feature can
be discussed in Euclidean quantum gravity where the fundamental con-
cept is a Euclidean path integral. A suggestion to find the quantum state
of the Universe is encoded, for example, in the no-boundary condition of
Hartle and Hawking [12, 2]. The time parameter t appears there in the
limit where the saddle point approximation holds (corresponding to the
WKB approximation) and where the saddle point gives a complex time in
the Euclidean formulation – corresponding to the ordinary real time t as in
(13).

In order to study the decoherence for a and φ, one has to solve the full
Wheeler–DeWitt equation (11) and trace out all the multipoles from the
resulting full quantum state. This gives a density matrix whose diagonal
terms are suppressed in the generic case, which means that interferences
between universes of different sizes can be neglected and the universe can
be treated classically for most of its evolution [2, 9]. Moreover, one can
also understand why and how interferences between the exp(iS0/h̄)- and
exp(−iS0/h̄)-branches of a wave function become suppressed by decoher-
ence. A calculation within a particular model leads, for example, to the fol-
lowing suppression term for the interference between these two branches
[13]:

exp

(

−πmH2
0 a3

128h̄

)

∼ exp
(

−1043
)

,

where the number arises for today’s universe if some natural values are
inserted for the Hubble parameter H0 and the mass m of a fundamental
Higgs field. One recognizes that today the universe behaves indeed very
classically!

Once a classical background is established as an approximate concept, one
can then address the quantum-to-classical transition for the relevant part of
the multipoles itself on this background, which are the density fluctuations
serving as the seeds for galaxy formation [14].

Using the above introduced concepts, one can also discuss the issues of
singularity avoidance and arrow of time. Both issues can have to do with
quantum effects far away from the Planck scale. As for the former example,
classical models exist which exhibit a singularity at large scale factor, that
is, far away from the Planck scale. For example, by choosing a scalar-field
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potential of the form

V(φ) = V0

(

sinh (|φ|) − 1

sinh (|φ|)

)

,

one can obtain a ‘big-brake singularity’ – the universe suddenly stops its
expansion in the future, while keeping both the scale factor and its time
derivative finite, but leading to an infinite value for the deceleration. Dis-
cussing the corresponding quantum model, it was shown upon solving the
Wheeler–DeWitt equation that all normalizable solutions vanish at the clas-
sical singularity, thus entailing complete singularity avoidance [15]. Sin-
gularity avoidance is also a central feature of loop quantum cosmology,
which is discussed in another contribution to this volume [6].

As for the arrow of time, its origin can in principle be understood from
quantum cosmology. The reason is that the Wheeler–DeWitt equation (10)
is asymmetric with respect to intrinsic time a. Choosing a simple initial
wave function which factorizes between the a and φ-part and the higher
multipoles, the full solution is a wave function whose quantum entangle-
ment between these two parts increases with a. Integrating out the mul-
tipoles leads to a density matrix whose impurity increases with a. This,
in turn, leads to an increasing entanglement entropy which could be at
the heart of the Second Law of thermodynamics [9]. An interesting conse-
quence would be a formal reversal of the arrow of time at the region of the
classical turning point [9, 16] – another quantum effect far from the Planck
scale.

Last but not least, quantum cosmology has an important bearing on our
understanding of quantum theory itself. Both quantum general relativity
and string theory preserve the linear structure for the quantum states, that
is, stick to the strict validity of the superposition principle. Since the Uni-
verse as a whole by definition contains all degrees of freedom, it must also
describe all observers in quantum terms. The only interpretation known
so far is the ‘Everett interpretation’, with decoherence as an essential part
[7]. I thus want to conclude with the following quote from one of the pio-
neering papers on canonical quantum gravity [17]:

Everett’s view of the world is a very natural one to adopt in the
quantum theory of gravity, where one is accustomed to speak
without embarassment of the ‘wave function of the universe.’ It
is possible that Everett’s view is not only natural but essential.
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