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Abstract

Let (Mn, g) be a Riemannian manifold. Say K → E → M is a principal K-bundle

with connection A. We define a natural evolution equation for the pair (g, A) combin-

ing the Ricci flow for g and the Yang-Mills flow for A which we dub Ricci Yang-Mills

flow. We show that these equations are, up to diffeomorphism equivalence, the gra-

dient flow equations for a Riemannian functional on M . Associated to this energy

functional is an entropy functional which is monotonically increasing in areas close

to a developing singularity. This entropy functional is used to prove a non-collapsing

theorem for certain solutions to Ricci Yang-Mills flow.

We show that these equations, after an appropriate change of gauge, are equiva-

lent to a strictly parabolic system, and hence prove general unique short-time exis-

tence of solutions. Furthermore we prove derivative estimates of Bernstein-Shi type.

These can be used to find a complete obstruction to long-time existence, as well as

to prove a compactness theorem for Ricci Yang Mills flow solutions.

Our main result is a fairly general long-time existence and convergence theorem

for volume-normalized solutions to Ricci Yang-Mills flow. The limiting pair (g, A)

satisfies equations coupling the Einstein and Yang-Mills conditions on g and A re-

spectively. Roughly these conditions are that the associated curvature FA must be

large, and satisfy a certain “stability” condition determined by a quadratic action of

FA on symmetric two-tensors.
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Chapter 1

Introduction

1.1 Background

“Does every smooth compact manifold admit a best metric?” This basic question

was first posed by Rene Thom to Marcel Berger [2] in the early 1960’s . Of course the

question above is not precise mathematically. Indeed, part of the question involves

finding a proper definition of “best.” The guiding example for answering this question

has always been the classical uniformization theorem for surfaces. In particular this

example tells us that the definition of “best metrics” should use the Riemannian

curvature tensor and furthermore be invariant under the action of the diffeomorphism

group of the underlying manifold. Secondly we would hope that constant curvature

metrics, should they exist, fall into this class of metrics. Third is that we should

not necessarily expect our “best” metrics to be unique, indeed a finite-dimensional

moduli space of “best metrics” is acceptable.

While a huge amount of work has been done in answering this question, here we

will only give a very brief history of some partial answers. The first natural question
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to ask is whether Einstein metrics, that is, metrics satisfying

rc = λg (1.1)

where rc is the Ricci tensor of the Riemannian metric g and λ ∈ R, fulfill the require-

ments of the Thom question. Indeed for three-dimensional manifolds this condition

is equivalent to the metric having constant curvature, making it a very natural can-

didate for the definition of “best metric.” However because of this very fact it is

immediately clear that not every three-manifold can admit such a metric, for ex-

ample the manifold S2 × S1. The constant curvature metrics give but three classes

(depending on the sign of the curvature) of natural metrics one could expect on a

three-manifold. In his famous Geometrization Conjecture Thurston proposed [30]

that given a three-manifold, one could decompose it into pieces using certain surg-

eries, and that each resulting piece admitted one of eight canonical “geometries.” The

recent proof of this conjecture [11] [21] [25] [26] [27] [31] is the crowning achievement

of decades of work in geometric analysis, and we will describe it later.

For manifolds with dimension greater than three, Einstein metrics need not have

constant curvature, and one naive guess would be that every such manifold admits

an Einstein metric. However, the Hitchin-Thorpe inequality [19] [29] says that a

four-manifold admits an Einstein metric only if

(2χ + 3 |τ |) (M) ≥ 0

where χ(M) denotes the Euler characteristic and τ(M) the signature of M . This

inequality is a consequence of the generalized Gauss-Bonnet theorem [1] and the

Hirzebruch signature theorem [18]. Thus other classes of metrics must be considered

for four-manifolds. In particular Berger [2] proposed metrics minimizing a global
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Lp norm of curvature as potential “best metrics”. For scaling reasons it is most

sensible to consider metrics minimizing the Ln/2-norm of curvature on a Riemannian

n-manifold. While in general these metrics are not well understood, in dimension 4

much progress has been made. Einstein metrics fall into this class, but other natural

classes of metrics do as well. Claude Lebrun found simply connected 4-manifolds

which admit no such minimizing metric, and also showed that the existence of such

metrics depends strictly on the diffeotype of the underlying topological manifold [23].

We close by noting that the question of whether every manifold of dimension five or

greater admits an Einstein metric is still completely open.

We note that in all of the examples above the notion of “best metric” has only

involved the Riemannian curvature tensor. Here we propose a definition of “best

metric” which uses an auxiliary term. In particular we will introduce the self-duality

equations into the definition of “best metric.” Let (M4, g) be a Riemannian four-

manifold, and let S1 → E → M denote a circle bundle over M . Let A be a connection

on this bundle, and let F = dA denote the curvature of this connection. Consider

the system of equations

rcij −
1

2
gklFikFjl = λgij

d∗F = 0

(1.2)

where d∗ is the L2-adjoint of the exterior derivative d. We first point out that given

any Einstein metric g, we can get a solution of (1.2) by taking the trivial bundle

S1 × M with the flat connection. In chapter 2 we will give a simple example of a

manifold which admits no Einstein metric but does admit a solution to (1.2). These

equations arise naturally from adding the energy
∫
|F |2 dV , considered as a functional
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in both the metric and the two-form F , to the scalar curvature Lagrangian which

gives the Einstein equation.

The equation d∗F = 0 is known as the Yang-Mills equation for A. These equations

were introduced by physicists in an attempt to understand electromagnetism and

the nuclear strong interaction. An important subclass of Yang-Mills connections on

principal bundles over four-manifolds are the self-dual and anti-self-dual connections.

Indeed such connections are intimately linked with the topology of four-manifolds,

and they have had a tremendous impact on our understanding of four-manifold

geometry and topology. We hasten to add that the tensor gklFikFjl is itself scalar,

i.e. its traceless piece vanishes, if and only if the connection A is self-dual or anti-self

dual with respect to g (see lemma A.4). Since in every case described above the

existence of best metrics is intimately linked to the topology and smooth structure

of the underlying manifold, it is natural to combine the Riemannian curvature with

the equations of self-duality to find “best metrics,” and indeed equation (1.2) does

this in a very simple way.

While (1.2) is clearly a natural equation, this alone does not justify its study.

To describe our reasoning for introducing these equations, let us give a very broad

overview of the proof of the Geometrization Conjecture. In 1983 Hamilton [14]

introduced the Ricci flow equation

d

dt
gij = − 2 rcij

g(0) = g0

(1.3)

and showed that if g0 has positive Ricci curvature then the solution to (1.3), after

dilating to fix the volume of the time-dependent metric, exists for all time and
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converges to a spherical space form. In light of this result, it was thought that given

any metric on any three-manifold, it might be possible to completely describe the

behaviour of the solution to (1.3). It was conjectured that only certain fairly simple

singularities would occur, and furthermore that by performing “surgeries” one could

remove these singularities and then continue the Ricci flow [16]. Ideally all of the

limiting objects would admit rigid geometries, and thus we could understand their

topological structure. This picture was validated in the spectacular work of Perelman

[11] [21] [25] [26] [27] [31] resulting in a proof of the Geometrization Conjecture, and

in particular the Poincare Conjecture.

This amazing result shows how strong geometric evolution equations can be in

understanding the geometry and topology of manifolds. In fact, the Ricci flow equa-

tion can be used to give a proof of the uniformization theorem for surfaces [10],

and also to show the existence of Kahler-Einstein metrics on Kahler manifolds with

zero or negative first Chern class [13]. Also there is the recent result of Böhm and

Wilking [4] showing that any manifold admitting a metric of strictly positive cur-

vature operator admits a metric of constant positive sectional curvature. Despite

these successes, analysing the behaviour of solutions to the Ricci flow on manifolds

of dimension 4 or higher remains extremely difficult. One could argue that the main

reason for this difficulty is simply the complexity of the Riemannian curvature tensor

in these dimensions. Thus, using the notation from above, we propose to study the
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following system of equations:

d

dt
gij = − 2 rcij +gklFikFjl

d

dt
A = − d∗F

(1.4)

which we dub Ricci Yang-Mills flow, and ask the following question which motivates

the rest of this thesis:

Main Question: To what extent can the bundle curvature FA be used to control

the behaviour of solutions to Ricci Yang-Mills flow, and thus produce metrics and

connections on manifolds which satisfy (1.2)?

Indeed we will study a version of equation (1.4) associated to a general principal

bundle. Given that the bundle curvature F is typically much simpler than the full

Riemannian curvature tensor, this question justifies introducing F into the already

complicated Ricci flow equation. This perspective is also our original motivation for

introducing the system (1.2).

1.2 Statements of Results

Here we will state the main results of this thesis and briefly describe their significance.

In what follows a bundle metric is a natural metric on a principal bundle defined in

chapter 2. The Ricci Yang-Mills flow can be defined in terms of these metrics, which

we will denote below as G. Also, the curvature of this metric G will be denoted by

Rm.

Proposition 6.1 (Short-time Existence): Given (g, A) as above there exists ε > 0

so that a unique solution to Ricci Yang-Mills flow exists on [0, ε) with initial condition
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(g, A).

One expects this short-time existence result from the corresponding results for

the Ricci and Yang-Mills flow. Since the coupling introduces lower-order terms into

the individual Ricci and Yang-Mills flows, the proof is a straightforward modification

of the proof of short-time existence of Ricci flow using a diffeomorphism gauge-fixing

procedure. Given this result, one can compute the evolution of the curvatures. On a

formal level these equations are very close to the evolution equations for Ricci flow.

Thus one can prove many further analytical properties of Ricci Yang-Mills flow.

Theorem 6.2 (Bernstein-Shi Derivative Estimates): Let (E, G(t)) be a solu-

tion to RYM-flow on a compact principal bundle. For each α > 0 and every m ∈ N

there exists a constant Cm depending only on m, n and max{α, 1} such that if

|Rm| ≤ K for all x ∈ Mn and t ∈
[
0,

α

K

]
then

|∇m Rm| ≤ CmK

tm/2
for all x ∈ Mn and t ∈

(
0,

α

K

]

Proposition 6.6 (Long Time Existence Obstruction): Let G0 be a bundle

metric on E → M a principal bundle. Then Ricci Yang-Mills flow (and its normal-

izations) has a unique solution G(t) on a maximal time interval 0 ≤ t < T ≤ ∞.

Moreover, if T < ∞ then

lim
t↗T

(
sup
x∈E

|Rm(x, t)|
)

= ∞

Theorem 6.10 (Compactness Theorem): Let

{Ei, Gi(t), pi, Fi : i ∈ N}
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be a sequence of complete solutions to Ricci Yang-Mills flow existing for t ∈ (α, ω)

where −∞ ≤ α < 0 < ω ≤ ∞. Each solution has a fixed origin pi ∈ Mi and a frame

Fi at pi which is orthonormal with respect to Gi(0). Suppose there exists K < ∞

such that

sup
Ei×(α,ω)

|Rm| ≤ K

and δ > 0 such that:

injGi(0)
(Ei) ≥ δ for all i ∈ N

Then there exists a subsequence which converges in the pointed category to a complete

solution

{E∞, G∞(t), p∞, F∞}

to Ricci Yang-Mills flow on (α, ω) with the same bounds on curvature and injectivity

radius.

This compactness result will be a useful tool in producing models for singular

solutions to Ricci Yang-Mills flow. Typically one blows up a forming singularity on

the scale of curvature and attempts to derive a limit space using the compactness

theorem. One must have the crucial injectivity radius estimate to apply theorem 6.10.

For the Ricci flow, Perelman [25] showed a noncollapsing result which provides such

an estimate. Using similar techniques we are able to show a noncollapsing estimate

for a low energy singularity of Ricci Yang-Mills flow. Low energy singularities are

defined in definition 3.9, and the definition for a sequence to be locally collapsing is

definition 3.13.

Theorem 3.14 (No Local Collapsing of Low Energy Solutions): Let (M, g(t), A(t))
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be a low energy solution to Ricci Yang-Mills flow on [0, T ), T < ∞. Then (M, g(t), A(t))

is not locally collapsing at T .

We also show that the Ricci Yang-Mills flow is the gradient flow for a particular

energy functional. This result can be used to show

Proposition 3.7 (Steady Breathers are Gradient Solitons) If M is closed any

steady breather on M is a steady gradient soliton.

We also prove a formula satisfied by gradient Ricci Yang-Mills solitons, which are

defined in definition 3.15.

Proposition 3.17 (Formula for Gradient Ricci Yang-Mills Solitons): A Gra-

dient Ricci Yang-Mills solition satisfies

∇
(

R− 3

4
|F |2 + |∇f |2 + 2λf

)
= 0

Next we have a result which shows an interesting pinching property of Ricci Yang-

Mills flow on a U(1)-bundle. Let ηij = F k
i Fkj. As we mentioned above, lemma A.4

shows that the pinching of the eigenvalues η is related to the (anti-)self-duality of

F . This next proposition shows that if one has a curvature bound and a bound on

A∇F , which we refer to as the ε-low-order estimate and is clarified in chapter 4, and

furthermore F is symplectic initially, then one expects exponential decay of
∣∣∣◦η∣∣∣, but

only up to a certain point depending on the curvature bound. Indeed one does not

expect that F will become exactly self-dual in a convergent limit typically because

this implies a decoupling of the Einstein and Yang-Mills equations.

Proposition 4.7 (Pinching of η): Suppose (g(t), A(t)) is a solution to Ricci Yang-

Mills flow on a U(1)-bundle over a four-manifold which exists on [0, T ). Suppose that
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on this time interval the ε-low-order estimate holds and moreover

min
M×[0,T )

|F |2 ≥ ζ

∫
− |F |2

There exists universal C > 0 (not depending on any of the constants/objects above)

so that
∣∣∣◦η∣∣∣2 / |F |4 is bounded above by the solution to the ODE

d

dt
φ(t) = C

(
ε +

ε2

ζ

)
[F∧2]− ζ[F∧2]φ (1− 4φ)

φ(0) = sup
(M,g0,A0)

∣∣∣◦η∣∣∣2
|F |4

where [F∧2] =
∣∣∫ F ∧ F

∣∣.
Next we have our main analytic result, which describes conditions under which

we can prove convergence of the volume-normalized Ricci Yang-Mills flow. Roughly

the statement says that if one has a principle bundle over M4 satisfying a particular

curvature condition (µ-stability, see definition 7.5)) at each point, and moreover this

bundle curvature is very large compared to the base curvature and the tensor A∇F ,

then the flow will exist for all time and converge. The curvature of the standard

SU(2)-instanton on S4 satisfies the (pointwise) condition of µ-stability. Indeed the

round instanton on S4 gives a global example of a connection satisfying the stabil-

ity condition. Other global examples include connections arising from Riemannian

metrics on manifolds which are half-conformally flat. This result, and how to use it,

is described in more depth in chapter 7. In the statement below ηij = θFki θF
k
j .

Theorem 7.9 (Main Convergence Result): Let E → (M4, g) be a principal

bundle. For fixed µ > 0, B > 0, Ω > 0 there exists a large N > 0 depending on µ,
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B, Ω and the base metric g with the following property: if A is a µ-stable connection

on E which satisfies ∣∣∣◦η∣∣∣
C0

+
∣∣∣ g∇◦

η
∣∣∣
C0

+
∣∣∣ g∇2 ◦η

∣∣∣
C0
≤ Ω

and

1

B
max

M
|F |2 ≤ |F |2 (x) ≤ B min

M
|F |2 for all x ∈ M

and

min
M
|F |2 > N2

and furthermore ∣∣ A∇F
∣∣
C0 < B |F |C0(M0)

then the volume normalized Ricci Yang-Mills flow with initial condition (g, A) exists

for all time and converges to an Einstein-Yang-Mills metric.
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Chapter 2

Definition of Ricci Yang-Mills Flow

2.1 Metrics on Principal Bundles

Let K be a compact Lie group with Lie algebra k. Let (Mn, g) be a Riemannian

manifold, and say E is a principal K-bundle on M with connection A. Fix U ⊂ M

a local coordinate patch. Over U the bundle E is trivial, so we have a local cross-

section s : U → E. Let A := s∗A be the local representation of the connection with

respect to this section. Let xi be coordinate functions on U , and let vθ denote a basis

for the Lie algebra k. Using this we can write

A = Aidxi (2.1)

where each Ai = Aθ
i vθ is a k-valued function on M .

Let g denote a smooth family of bi-invariant metrics on K parametrized by the

base manifold M . Let vθ denote a left-invariant coframe on K. Using the local

product structure of E over U , both dxi and vθ are defined locally on E. Following

the usual Kaluza-Klein ansatz, we can write down the following metric

G = gijdxidxj + gθρ(v
θ + Aθ

kdxk)(vρ + Aρ
l dxl) (2.2)

12



It follows from [3] 9.15 that this definition in fact gives a well-defined global metric

on E. We will call the metric determined by this data G = G(g, A, g). Also, we will

now go ahead and make an important simplifying assumption. We will assume that

the metric g is given by the Killing form for k over each point. In particular then the

functions gθρv
θvρ are constant.

Definition: 2.1. We call a metric satisfying the above properties a bundle metric.

We now introduce some more convenient notation. Let us choose the local basis

for one-forms on E given by ωi = dxi, ωθ = vθ + Aθ
i dxi. Then the dual basis for the

tangent space is given by eθ the dual to vθ taken with respect to the metric g, and

ei = ∂
∂xi − Aθ

i eθ. In this basis the metric is:

G =

(
gij 0
0 gθρ

)

Recall the formula for the curvature of A

F = dA + A ∧ A (2.3)

Define [ei, ej] = Cα
ijeα. Note the basic computation

[ei, ej] =

[
∂

∂xi
− Aµ

i eµ,
∂

∂xj
− Aν

j eν

]
= Aµ

i,jeµ − Aν
j,ieν + Aµ

i A
ν
j [eµ, eν ]

=
(
Aθ

i,j − Aθ
j,i + (A ∧ A)θ

ij

)
eθ

= F θ
ijeθ

Recall the formula for the connection tensor of a Riemannian metric G:

Γk
ijGkl =

1

2
(ei(Gjl) + ej(Gil)− el(Gij)− Cilj − Cjil + Clji)

Using this formula the following lemma is immediate
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Lemma: 2.2. In the above frame a bundle metric satisfies

[ei, ej] = Fθ ij eθ, [ei, eθ] = −Aµ
i [eµ, eθ]

Γk
ij = gΓk

ij, Γ
µ
θρ = gΓµ

θρ

Γθ
ij =

1

2
Fθ ij , Γk

iθ =
1

2
θF

k
i

Γθ
iρ = gθµAν

i Cνµρ

Γθ
ρi = Γk

θρ = 0

where gΓ and gΓ are the Christoffel symbols of g and g respectively.

Note that in the term θF k
i above we have raised the first index of F , and this

will be our convention throughout. Also note that the bundle index in θF
k
i has been

lowered with respect to the metric g. We now want to compute the curvature of this

metric. We will denote the curvature tensor for G by R, the curvature tensor for

g by gr, and the curvature tensor for g by gr. In general covariant derivatives will

be taken with respect to the Levi-Civita connection associated to G. We use the

notation ∇g to refer to the Levi-Civita connection of g, ∇g the connection or g and

A∇ is the connection on k-valued differential forms.
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Lemma: 2.3. The curvature of a bundle metric G is

Rl
ijk = grl

ijk +
1

4
( Fθ jk θF

l
i − θFik θF

l
j − 2 θFij θF

l
k) (2.4)

Rl
θjk =− 1

2
A∇j θF

l
k (2.5)

Rl
θjρ =

1

4
ρF

m
j θF

l
m (2.6)

Rρ
ijθ =

1

4

(
ρFim θF

m
j − ρFjm θF

m
i

)
− gρµF ν

ijCνµθ (2.7)

Rl
θρµ = 0 (2.8)

Rν
θρµ = grν

θρµ (2.9)

Rjk = Rβ
βjk = grjk −

1

2
( θFij

θF i
k) (2.10)

Rjθ =
1

2
d∗ Fθ j (2.11)

Rθρ = grθρ +
1

4

〈
Fθ , Fρ

〉
g

(2.12)

Proof. This is an immediate consequence of lemma 2.2 and the formula for curvature,

given in proposition A.7.

Next we will define the objects which will be stationary for Ricci Yang-Mills flow.

First we need some definitions. The operator π will denote projection of a vector

field onto its vertical components, and can be written

Definition: 2.4.

π(·) = G

(
∂

∂yµ
, ·
)

gµν ∂

∂yν
(2.13)

This projection operator allows us to define the following projections of symmetric

two-tensors on E:
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Definition: 2.5. Given W ∈ S2T ∗E define:

WH = W − πW −Wπ + πWπ

WC = πW + Wπ − 2πWπ

W V = πWπ

where juxtaposition of π means to compose the lowered index with π, i.e. πW (X, Y ) =

W (π(X), Y ). The idea is that WH corresponds to the piece of W with two hori-

zontal (base manifold) components, with similar interpretations for the other two

projections.

Definition: 2.6. A metric G(g, A, g) is Einstein-Yang-Mills if

◦
RcH = 0

RcC = 0

where
◦

RcH refers to the traceless piece of RcH . The first condition is a natural

analogue of the usual Einstein condition, while the second is the condition that the

connection A is Yang-Mills. We deliberately do not require a condition on the vertical

component of the Ricci tensor.

2.2 Definition of Evolution Equation

A natural question to ask at this point is: “why not simply study the Ricci flow of a

metric of the form given in (2.2)”. Recall (see the Main Question of the introduction)

that we would like to use the curvature of a principal bundle to produce a canonical

(in this case Einstein Yang-Mills) metric on a manifold. More specifically, we would
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like to construct a flow of metrics and see the extent to which the bundle curvature F

can be used to control the behaviour of this flow. Examining the Ricci curvature in

lemma 2.3, it is clear that if F is very large compared to the base curvatures gr and gr,

then the metric G has no chance of being Einstein. This is because F contributes a

negative-semidefinite tensor to the horizontal component of the Ricci tensor, while it

contributes a positive semi-definite tensor in the vertical component. This difference

of sign prevents such a metric from being Einstein. Thus attempting to use F to

control the Ricci flow of a metric as given in (2.2) seems unlikely since Einstein

metrics are the most natural objects for Ricci flow to converge to, and indeed the

only smooth objects Ricci flow will converge to. This is one reason for introducing the

notion of an Einstein Yang-Mills metric (definition 2.6). Now we must consider the

question of finding a natural evolution equation which would produce EYM-metrics

as critical objects.

If we are going to flow to such a metric, it would be natural to renormalize the

volume of the base manifold. A cursory examination of the variation of the Ricci

tensor shows that this prevents the evolution of the Ricci tensor from resembling a

heat equation, unless the divergence of the pullback of g with respect to the total

Levi-Civita connection vanishes. It is not hard to see using lemma 2.2 that this

divergence vanishes in the case of a bundle metric. Thus we are led to fixing g

to be the Killing form along the flow, so that it stays constant in space along the

flow, allowing the divergence of the pullback of g to vanish along the flow. In the

homogeneous examples of the next section we will see another strong reason for

wanting to fix g, that is, to ignore the vertical component of the Ricci flow. In short,
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allowing g to flow will rapidly decrease the effect of F on the flow, a situation we

would like to avoid. Thus we are led to defining the following evolution equation.

Definition: 2.7. Given G(t) a family of bundle metrics of the form (2.2), we say

that G(t) is a solution to Ricci Yang-Mills flow if

Ġ = −2
(
RcH + RcC

)
(2.14)

We will sometimes abbreviate this by calling it a solution to RYM flow.

The next lemma shows our justification for calling this equation Ricci Yang-Mills

flow. In particular we see that the equation induces evolution equations on g and

A whose leading order terms are the same as the Ricci flow and Yang-Mills flow

respectively.

Lemma: 2.8. The Ricci Yang-Mills flow of a bundle metric is equivalent to

ġjk = − 2rjk + ηjk

Ȧθ
j = − d∗F θ

j

ġθρ = 0

(2.15)

where

ηjk = θF
l
j Fθ lk (2.16)

Proof. Let us differentiate expression 2.2 in time.

Ġαβdxαdxβ =
d

dt
(gij)dxidxj + gθρ

d

dt
(Aρ

j )dxj⊗̂dzθ +
d

dt
(gθρ)dzθdzρ

Now the individual evolution equations follows from (2.14) and lemma 2.3.

We will also study the following volume-normalized version of Ricci Yang-Mills flow.
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Definition: 2.9. Given G(t) a family of bundle metrics, we say that G(t) is a

solution to volume renormalized Ricci Yang-Mills flow if

Ġ = −2
(
RcH + RcC

)
+

2

n

(∫
−r − n

4(n− 2)
|F |2 −

∫
− 4− n

4(n− 2)
|F |2

)
GH (2.17)

Let us make three observations about this definition. First, we have added a term

of the form |F |2 GH to the evolution of G. Recall that for Ricci flow one cannot

simply add a conformal term 2
n
rg to fix the volume, as the resulting equation is not

parabolic. In our case the term |F |2 is zeroth-order in the metric and so this will

pose no issues as far as parabolicity is concerned. Secondly, we note that we did not

simply add the appropriate multiple of |F |2 to completely remove the trace of η in

the definition of RYM flow. This constant was chosen carefully so that a particular

Bianchi-type identity will hold for the tensor on the right hand side of (2.17). Finally,

we note that in dimension 4 only, we have removed the trace of η completely.

2.3 A Homogeneous Example

Next we will work through a specific homogeneous example which highlights the

qualitative behaviour differences between Ricci flow and Ricci Yang-Mills flow. Also

we will see the qualitative differences between the Ricci flow of the natural metric

on a principal bundle and the Ricci Yang-Mills flow.

Example: 2.10. Let N be a surface of genus g ≥ 2 and let gN
can denote a metric of

constant curvature −1. Now let M4 = S2×N equipped with the Riemmanian metric

g = gS2

can⊕gN
can. More generally, for real numbers A and B, define ABg = AgS2

can⊕BgN
can.

Let US2, UN denote the unit tangent bundles of S2 and N respectively. These circle
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bundles have curvature forms equal to the usual volume forms (denoted ωS2

can and

ωN
can) on their respective base manifolds. Let E = π∗1US2 ⊗ π∗2UN . The curvature

of this bundle is then π∗1ω
S2

can ⊕ π∗2ω
N
can. We will examine the Ricci flow of the base

metric and the Ricci Yang-Mills flow of the associated line bundle.

First of all, let us note that as a product of surfaces M has signature zero [24].

Also, the Euler characteristic of this manifold is easily computed as the product of

the Euler characteristics which is 4 − 4g. Thus we easily see that M cannot admit

an Einstein metric by the Hitchin-Thorpe inequality [19], [29] which states that if a

four-manifold M admits an Einstein metric then

2χ + 3 |τ | ≥ 0 (2.18)

As we will see, this manifold does in fact admit an EYM metric, and that for any

initial value for A and B the volume-normalized RYM flow converges to this metric.

First of all, let us see how unnormalized Ricci flow acts on the base metric. An easy

computation shows that at any point of M we may write

AB Rc =


1

1
−1

−1

 R

2
ABg =

(
(B−A)

B
(B−A)

A

)

and so the equation ġ = −2 rc reduces to the system of ODEs:

Ȧ = −2

Ḃ = 2

with solution A(t) = A0−2t, B(t) = B0+2t, which exists on the time interval [0, A0

2
).

It is easy to see that even under the volume normalized equation the sphere contracts

to a point and the higher genus surface blows up, and no natural convergence occurs.
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Indeed in surgery arguments on four-manifolds [6], [17] singularities modeled on this

space must be explicitly avoided.

Now let us examine Ricci Yang-Mills flow on E. The metric is totally homoge-

neous in space and d∗F = 0, so in particular the connection on E will not vary. An

easy computation shows

FijF
i
k =


1
A

1
A

1
B

1
B

 , |F |2 =
2(A2 + B2)

A2B2

Thus Ricci Yang-Mills flow corresponds to the system of ODEs

Ȧ = −2 +
1

A

Ḃ = 2 +
1

B

It is easy to see that this flow will exist for all time for any initial choice of A and

B. Let us now examine the volume-renormalized flow. This amounts to adding the

term
(

1
2
R− 1

4
|F |2

)
g to the evolution of g. Then we have AB = 1 for all time, thus

we are reduced to the single ODE

Ȧ = − 1 +
1

2A
− A2 − 1

2
A3

This clearly converges for any initial choice of A. It is important to note here that

the condition of F being symplectic is very important in this example, and certainly

no convergence if one chooses F to be just the volume form of one of the factors, as

then it will not influence the other factor.

Finally, let us point out an important aspect of the Ricci flow of the natural

metric on the bundle E. Specifically, this is the Ricci flow of the metric

G =
(
AgS2

can ⊕BgN
can

)
+ C

(
dy + Aidxi

)2
(2.19)
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An easy computation using lemma 2.3 shows that the Ricci flow of this metric cor-

responds to the system of ODE

Ȧ = −2 +
C

A
(2.20)

Ḃ = 2 +
C

B
(2.21)

Ċ = −A2 + B2

A2B2
C (2.22)

In particular we see that allowing the vertical metric (in this case represented by

the constant C) to vary causes the size of F to be rapidly decreased, and so the

qualitative behaviour of this flow in the limit is essentially the same as that of the

Ricci flow of the base metric, giving no natural smooth limit space.
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Chapter 3

Gradient Properties of Ricci Yang-Mills

Flow

In the study of geometric evolution equations monotonic quantities have always

played an important role. Often the system is given as the gradient flow of an energy

functional (see for instance the seminal paper of Eells and Sampson [9]) in which case

the monotone energy bound plays an important role in understanding the long-time

behaviour of solutions. Also, it was the remarkable monotonicity of the Hawking

mass [12] shown by Geroch that inspired Huisken and Ilmanen to construct weak

solutions to inverse mean curvature flow which they used to prove the Riemannian

Penrose Inequality for connected horizons [20]. In another striking example Bray

constructed a conformal flow of metrics which proved the full Riemannian Penrose

Inequality [5], and monotonicity formulas play a crucial role in the proof.

Monotonic quantities for solutions to Ricci flow have only recently been found.

As was done for Ricci flow [32] we have partially motivated the introduction of the

Ricci Yang-Mills flow using an energy functional, but as for Ricci flow the resulting
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equations are not a-priori gradient equations. In his breakthrough paper Perelman

[25] found that Ricci flow was indeed a gradient flow by explicitly introducing the

action of the diffeomorphism group on the equations. He furthermore found an

entropy functional associated to this energy and a very important related quantity

called reduced volume, both of which are monotonic along solutions to Ricci flow.

Here we follow those ideas and define an energy functional which explicitly includes

the action of the diffeomorphism group on the Ricci Yang-Mills flow equations. This

is used to show that steady breather solutions are steady gradient solitons. Next we

define an entropy functional which is monotonic if one is approaching a certain kind

of singularity. This entropy can be used to prove a non-collapsing result for type I

singularities. Ruling out collapsing-type behaviour is essential in Perelman’s analysis

of singularities of the Ricci flow on three-manifolds [27]. Though our result is not

yet strong enough for deeper applications (say surgery arguments) it is an important

first step in understanding singular behaviour of solutions to Ricci Yang-Mills flow.

We will close this chapter by making a few remarks about Ricci Yang-Mills solitons,

which are critical points for the energy functional.

3.1 Energy Functional

Let (M, g) be a Riemannian manifold and let E → M denote a principal K-bundle

over M with connection A. In this chapter ∇ will always refer to the Levi-Civita

connection of g. Consider the functional

F(g, A, f) =

∫
M

(
R− 1

4
|F |2 + |∇f |2

)
e−fdV (3.1)
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where R is the scalar curvature of the base metric, f ∈ C∞(M) and dV denotes the

volume form of g. In what follows every object, say g for instance, will implicitly be

part of a one-parameter family g(s). We define

δg =
d

ds
g(s)|s=0

and similarly use the notation δ to refer to the first variation at 0 of other quantities

with respect to the parameter s.

Lemma: 3.1. Let δgij = vij, δAi = αi, δf = h. Then

δF(v, α, h) =

∫
M

e−f
[
− vij

(
rcij −

1

2
ηij +∇i∇jf

)
− αj

(
d∗Fj −∇ifFij

)
+ (v/2− h)

(
2∆f − |∇f |2 + R− 1

4
|F |2

)]
dV

(3.2)

where v = gijvij.

Proof. We first note that δF = dδA = dα. Now we directly compute

δF(v, α, h) =

∫
M

e−f
[
−∆v +∇i∇jvij − rcij vij

+
1

2
ηijvij −

1

2
〈dα, F 〉 − vij∇if∇jf + 2 〈∇f,∇h〉

+

(
R− 1

4
|F |2 + |∇f |2

)
(v/2− h)

]
dV

=

∫
M

e−f
[
− vij

(
rcij −

1

2
ηij +∇i∇jf

)
− αj

(
d∗Fj −∇ifFij

)
+ (v/2− h)

(
2∆f − |∇f |2 + R− 1

4
|F |2

)]
dV

(3.3)
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where we performed the integration by parts

−1

2

∫
〈dα, F 〉 e−fdV = − 1

2

∫ 〈
∇jαi −∇iαj, e

−fFij

〉
dV

=
1

2

∫ (〈
αi,∇jFij −∇jfFij

〉
−
〈
αj,∇iFij −∇ifFij

〉)
e−fdV

= −
∫

αj

(
d∗Fj −∇ifFij

)
e−fdV

It is clear from the above lemma that the gradient flow equations of F are

d

dt
gij = − 2 rcij +ηij − 2∇i∇jf

d

dt
Ai = − d∗F +∇ifFij

d

dt
f = −∆f −R +

1

2
|F |2

(3.4)

Note that for this evolution system we have v/2 − h ≡ 0. What this means geo-

metrically is that the measure e−fdV remains fixed along a solution to (3.4). The

following corollary is immediate.

Corollary: 3.2. Given (g(t), A(t), f(t)) a solution to (3.4) the functional F is mono-

tonically increasing in t. In particular

d

dt
F =

∫
M

(
2

∣∣∣∣rc−1

2
ηij +∇i∇jf

∣∣∣∣2 +
∣∣d∗F −∇ifFij

∣∣2) e−fdV ≥ 0 (3.5)

We now describe how equation (3.4) does in fact correspond to Ricci Yang-Mills

flow modified by an appropriate diffeomorphism. Recall that given g and A we can

define a metric on E based on the Kaluza-Klein ansatz in (2.2). Also recall that
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locally we have the frame ei = ∂
∂xi −Ai

∂
∂y

and eθ = ∂
∂y

. Let ∇ denote the Levi-Civita

connection of G(g, A).

Lemma: 3.3. Let G be a bundle metric and fix a function f ∈ C∞(M) and let

f = π∗(f) ∈ C∞(E). Let ∇ denote the Levi-Civita connection of G. Then

∇i∇jf = ∇i∇jf

∇i∇θf = ∇θ∇if = −1

2
∇kf θFki

∇θ∇µf = 0

(3.6)

Now if φt is the one-parameter family of diffeomorphisms of M generated by the

time-dependent vector field W (t), i.e.

d

dt
φt(p) = W (φt(p), t)

φ0 = IdM

Then a straightforward calculation shows that

d

dt
(φ∗t g(t)) = φ∗t

(
d

dt
g(t)

)
+ φ∗t

(
LW (t)g(t)

)
(3.7)

Using lemma 3.3 and the formula L∇fGαβ = ∇α∇βf +∇β∇αf we see that (3.4) is

diffeomorphism equivalent to

d

dt
gij = − 2 rcij +ηij

d

dt
Ai = − d∗F

d

dt
f = −∆f + |∇f |2 −R +

1

2
|F |2

(3.8)

in the sense that we may pull back G(t) by the family of diffeomorphisms generated by

∇f to remove the terms ∇2f and ∇f ∗F from the evolutions of g and A respectively.
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Thus we see that we have explicitly introduced a diffeomorphism parameter by means

of the function f . However, we would like to remove it so as to get a monotonic

quantity which depends only on the given metric and connection. Following the

ideas of Perelman [25] we consider the quantity

λ(g, A) := infR
M e−f dV =1

F(g, A, f) (3.9)

An easy calculation shows that λ is the lowest eigenvalue of the Schrödinger operator

−4∆ + R− 1

4
|F |2 (3.10)

Proposition: 3.4. The quantity λ(g, A) is monotonically increasing along a solution

to Ricci Yang-Mills flow.

Proof. Let u(t) be a family eigenvectors for lowest eigenvector of the operators

−4∆ + R− 1

4
|F |2 (3.11)

Normalize u so that ∫
M

u(t)2dV (t) ≡ 1 (3.12)

These functions u are in fact positive, so that we may define the family of functions

e−f(t)/2 = u(t) (3.13)

The eigenvalue equation for u is equivalent to the equation

2∆f − |∇f |2 + R− 1

4
|F |2 = λ (3.14)

It is clear that for each time t, f(t) minimizes the functional F . Using (3.14) we
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note that the last term in (3.2) is∫
M

(v/2− h)

(
2∆f − |∇f |2 + R− 1

4
|F |2

)
e−fdV

= λ

∫
M

(v/2− h) e−fdV

= λ
d

dt

∫
M

e−fdV

= 0

where the last line follows using (3.12). Using this calculation and our observations

about diffeomorphism invariance above, it is clear that

dλ

dt
=

∫
M

(
2

∣∣∣∣rc−1

2
ηij +∇i∇jf

∣∣∣∣2 +
∣∣d∗F −∇ifFij

∣∣2) e−fdV ≥ 0 (3.15)

This proposition can be used to rule out certain kinds of behaviour which can

be problematic in studying singularities. In particular we can show that steady

breathers must be steady gradient solitons.

Definition: 3.5. A solution (g(t), A(t)) to Ricci Yang-Mills flow is called a breather

if there exists t1 < t2 and α > 0 so that αG(t1) and G(t2) differ only by a diffeo-

morphism, where G(t) is the associated global metric on E defined in definition 2.2.

In the cases α = 1, α < 1, α > 1 we say that the breather is steady, shrinking, or

expanding, respectively.

Definition: 3.6. We say that (g, A) is a gradient Ricci-Yang-Mills soliton if there
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exists f ∈ C∞(M) so that

rc−1

2
η +∇2f + λg = 0 (3.16)

d∗F = ∇f¬F (3.17)

the soliton is steady, shrinking, or expanding if λ = 0, λ < 0, λ > 0 respectively.

Proposition: 3.7. If M is closed any steady breather on M is a steady gradient

soliton.

Proof. We note by (3.15) that λ is monotonically increasing, and fixed if and only if

we are on a steady gradient soliton. The proposition follows.

3.2 Entropy Functional

Perelman made great strides in understanding finite-time singularities of the Ricci

flow by introducing an entropy functional. We would like to understand the be-

haviour of finite-time singularities of Ricci Yang-Mills flow. Suppose that (g(t), A(t))

is a solution to Ricci Yang-Mills flow which exists on a maximal time interval of the

form [0, T ) where T < ∞. Below we introduce a new entropy functional designed

to understand the behaviour of g and A as t ↗ T . This functional is not always

monotonic along Ricci Yang-Mills flow, but as we will show it is monotonic for cer-

tain singularities. Though not essential for the calculations, in what follows below

the parameter τ should be thought of as “backwards time,” specifically τ = T − t.

Let

W(g, A, f, τ) =

∫
M

[
τ

(
|∇f |2 + R +

1

4
|F |2

)
+ f − n

]
(4πτ)−

n
2 e−fdV (3.18)
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We hasten to point out that the sign of the term |F |2 has changed from the definition

of the energy functional F . Although the reason for doing this will be borne out

in the calculations below, we can give a nice explanation for the difficulties which

arise. Recall that the Ricci Yang-Mills flow can be though of as the Ricci flow of a

bundle metric which keeps the metric on the fiber fixed. Thus if one simply looks at

the entropy given by the scalar curvature of the corresponding bundle metric (which

would have the opposite sign on the term |F |2), which would be the Perelman entropy,

an extra term arises in the evolution corresponding to the part of the volume form

which has been fixed. Unfortunately this term has the wrong (negative) sign to get

a monotonic quantity. We now proceed with the calculations.

Lemma: 3.8. Let vij = δgij, δAi = αi, δf = h and δτ = σ. Then

δW (v, α, h, σ) =

∫
M

(4πτ)−
n
2 e−fdV

[
σ

(
|∇f |2 + R +

1

4
|F |2

)

−τvij

(
rcij +

1

2
ηij +∇i∇jf

)
− ταj

(
d∗Fj −∇ifFij

)
+ h

+

[
τ

(
2∆f − |∇f |2 + R− 1

4
|F |2

)
+ f − n

](v

2
− h− nσ

2τ

)]
(3.19)

Proof. First of all we note the variational formula

δ
(
(4πτ)−

n
2 e−fdV

)
=
(v

2
− h− nσ

2τ

)
(4πτ)−

n
2 e−fdV
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Now using (3.3) we see

δW =

∫
M

[
σ

(
|∇f |2 + R +

1

4
|F |2

)
+ τ

(v

2
− h
) (

2∆f − 2 |∇f |2
)

−τvij

(
rcij +

1

2
ηij +∇i∇jf

)
− ταj

(
d∗Fj −∇ifFij

)
+ h

+

[
τ

(
|∇f |2 + R +

1

4
|F |2

)
+ f − n

](v

2
− h− nσ

2τ

)]

· (4πτ)−
n
2 e−fdV

Now since ∫ (
∆f − |∇f |2

)
e−fdV = 0

we conclude

δW =

∫
M

[
σ

(
|∇f |2 + R +

1

4
|F |2

)
− τvij

(
rcij +

1

2
ηij +∇i∇jf

)
−ταj

(
d∗Fj −∇ifFij

)
+ h

+

[
τ

(
2∆f − |∇f |2 + R− 1

4
|F |2

)
+ f − n

](v

2
− h− nσ

2τ

)]

· (4πτ)−
n
2 e−fdV

as required.

Consider the following system of equations.

d

dt
gij = − 2

(
rcij −

1

2
ηij +∇i∇jf

)
d

dt
Ai = − d∗F +∇ifFij

d

dt
f = −∆f −R +

1

2
|F |2 +

n

2τ

d

dt
τ = − 1

(3.20)
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Note that for this system we have the equation

v

2
− h− nσ

2τ
= 0 (3.21)

which is to say the measure (4πτ)−
n
2 e−fdV is fixed. Using (3.19) we compute that

for a solution to (3.20) we have

dW
dt

=

∫
M

[(
−1

4
|F |2 − |∇f |2 −R

)
+ 2τ |rcij +∇i∇jf |2 −

1

2
τ |η|2

+τ
∣∣d∗Fj −∇ifFij

∣∣2 −∆f −R +
1

2
|F |2 +

n

2τ

]
(4πτ)−

n
2 e−fdV

=

∫
M

[
−2 (R + ∆f) +

n

2τ
+ 2τ |rcij +∇i∇jf |2

+τ
∣∣d∗Fj −∇ifFij

∣∣2 +
1

4
|F |2 − 1

2
τ |η|2

]
(4πτ)−

n
2 e−fdV

=

∫
M

[
2τ

∣∣∣∣rcij +∇i∇jf −
1

2τ
gij

∣∣∣∣2 + τ
∣∣d∗Fj −∇ifFij

∣∣2 +
1

4
|F |2 − 1

2
τ |η|2

]

· (4πτ)−
n
2 e−fdV

(3.22)

As above, this system is diffeomorphism equivalent to

d

dt
gij = − 2 rcij +ηij

d

dt
Ai = − d∗F

d

dt
f = −∆f + |∇f |2 −R +

1

2
|F |2 +

n

2τ

d

dt
τ = − 1

(3.23)

Thus we see thatW is monotonically increasing under Ricci Yang-Mills flow whenever

1
4
|F |2 − 1

2
τ |η|2 > 0. In fact only the weaker integral condition is needed. This may
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appear to be a strong condition, but note that the two terms in fact have the same

parabolic scaling factor.

3.3 Noncollapsing of Low-Energy Singularities

Definition: 3.9. Let (M, g(t), A(t)) be a solution to RYM-flow which exists on a

maximal time interval T < ∞. (M, g(t), A(t)) is a low-energy solution if

lim
t→T

(T − t) |F |2C0(Mt)
= 0 (3.24)

We point out that the only known examples of finite-time singularities to Ricci

Yang-Mills flow are all low-energy. Specifically, if one modifies example 2.10 to the

case where F is the pullback of the volume form on the higher genus surface, then

the singularity encountered is low-energy. This hypothesis codifies the sense in which

we don’t expect singularities in areas where F is nonvanishing.

Corollary: 3.10. Let (M, g(t), A(t)) be a low energy solution to RYM flow on [0, T ).

Then there exists t0 < T such that for all t0 ≤ t < T , we have

dW
dt

≥ 0 (3.25)

Proof. By assumption equation (3.24) holds, so choose t0 so that for all t0 ≤ t < T

we have (T − t) |F |2C0(Mt)
≤ 1. Then we have using lemma A.5

1

4
|F |2 − 1

2
(T − t) |η|2 ≥ 1

4
|F |2 − 1

4
(T − t) |F |4

≥ 1

4
|F |2

(
1− (T − t) |F |2

)
≥ 1

4
|F |2

(
1− (T − t) |F |2C0(Mt)

)
≥ 0
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Using this in (3.22) the result clearly follows.

Definition: 3.11. Given (M, g,A) at τ ∈ R let

µ(g, A, τ) := inf
f
{W(g, A, f, τ)|

∫
M

(4πτ)−
n
2 e−fdV = 1} (3.26)

Corollary: 3.12. Let (M, g(t), A(t)) be a low-energy solution to RYM flow on [0, T ).

Then there exists t0 < T such that for all t0 ≤ t < T we have

dµ

dt
≥ 0 (3.27)

Proof. The proof is identical to that of proposition 3.4, again exploiting the diffeo-

morphism invariance of the functional W .

Definition: 3.13. A solution to RYM flow defined on [0, T ) is said to be lo-

cally collapsing at T if there exists a sequence of times tk → T and a sequence

of metric balls Bk := Bg(tk)(pk, rk) such that
r2
k

tk
is bounded, |rm|C0(Bk) ≤ r−2

k and

limk→∞ r−n
k vol(Bk) = 0.

Theorem: 3.14. Let (M, g(t), A(t)) be a low energy solution to RYM flow on [0, T ),

T < ∞. Then (M, g(t), A(t)) is not locally collapsing at T .

Proof. Using the monotonicity of µ the proof is essentially identical to the proof of

noncollapsing for finite time singularities of Ricci flow. We follow the proof in [22].

If the solution were locally collapsing, we can find functions fk localized around the

singularity so that W(g(tk), A(tk), fk, r
2
k) → −∞ as k → ∞. Thus µ(g(tk), r

2
k) →

−∞. By the (eventual) monotonicity of µ, it then follows that µ(g(0), A(0), tk+r2
k) →

−∞ as k → ∞. Since r2
k and tk are both bounded, this contradicts continuity of

µ(g(0), A(0), τ) as a function of τ .
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So, given a low energy solution, by translating time assume without loss of gen-

erality by corollary 3.12 that µ is monotonically increasing on [0, T ). Suppose Bk is

a sequence of locally collapsing balls as in definition 3.13. Let us change variables in

W and set Φ = e−
f
2 . This gives

W(g, A, f, τ) = (4πτ)−
n
2

∫
M

[
4τ |∇Φ|2 +

(
τR +

1

4
τ |F |2 − 2 ln Φ− n

)
Φ2

]
dV

(3.28)

Set

Φk(x) = e−
ck
2 φ(distg(tk)(x, pk)/rk) (3.29)

where φ : [0,∞) → [0, 1] is a monotonically nonincreasing functions such that
φ(s) = 1 0 ≤ s ≤ 1

2

φ(s) = 0 s ≥ 1

|φ′(s)| ≤ 10 1
2
≤ s ≤ 1

The constant ck in (3.29) is determined by the condition in (3.26), so

eck =

∫
M

(4πr2
k)
−n

2 φ2(distg(tk)(x, pk)/rk)dV ≤ (4πr2
k)
−n

2 vol(Bk) (3.30)

Thus by the assumption of local collapsing, ck → −∞. By assumption we have the

bound

|F |2C0(r2
k) ≤

C

r2
k

(3.31)

along a low energy solution. Let Ak(s) denote the area of the distance sphere

S(pk, rks) around pk. For a given function v let

vk(s) = r2
kAk(s)

−1

∫
S(pk,rks)

vdΣ (3.32)
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It is clear by the assumed bound on curvature and (3.31) that both Rk(s) and |F |2k(s)

are bounded. Thus we can compute the integral in (3.28) radially to conclude

W(g(tk), A(tk), fk, r
2
k) =

∫ 1

0

[
4φ′(s)2 +

(
Rk(s) + 1

4
|F |2k(s) + ck − 2 ln φ(s)− n

)
φ2(s)

]
Ak(s)ds∫ 1

0
φ2(s)Ak(s)ds

≤ C + ck +

∫ 1

0
[4φ′(s)2 − 2 ln φ(s)φ2(s)] Ak(s)ds∫ 1

0
φ2(s)Ak(s)ds

≤ C + ck + C
vol(B(pk, rk))− vol(B(pk, rk/2))

vol(B(pk, rk/2))

≤ C + ck

(3.33)

where the last line follows from the bound on curvature and the Bishop-Gromov

inequality. So we have shown that W(g(tk), A(tk), fk, r
2
k) ≤ C + ck so that

µ(g(tk), A(tk), fk, r
2
k) → −∞

as required.

3.4 Gradient Ricci-Yang-Mills Solitons

In this section we will prove two basic formulas satisfied by gradient Ricci-Yang-Mills

solitons, which as noted above are the stationary (up to diffeomorphism equivalence)

solutions to Ricci Yang-Mills flow.

Definition: 3.15. Given (M, g) a Riemannian manifold and E → M a principal K-

bundle over M with connection A, we say that (g, A) is a gradient Ricci-Yang-Mills

soliton if there exists f ∈ C∞(M) and λ ∈ R so that

rc−1

2
η +∇2f + λg = 0 (3.34)

d∗F = ∇ifFij (3.35)
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We call the solition expanding, stationary, or shrinking if λ > 0, λ = 0 or λ < 0

respectively.

Lemma: 3.16. A gradient RYM-soliton satisfies

R− 1

2
|F |2 + ∆f + nλ = 0 (3.36)

〈d∗F,∇f〉 = 0 (3.37)

Proof. The first equation is simply the trace of (3.34). To get the second equation

simply take the inner of product of (3.35) with ∇f . The second equation also follows

by taking the divergence of (3.35).

Proposition: 3.17. A gradient RYM-solition satisfies

∇
(

R− 3

4
|F |2 + |∇f |2 + 2λf

)
= 0 (3.38)

Proof. Taking the divergence of equation (3.34), applying the Bianchi identity and

commuting derivatives gives

0 = ∇j

(
rcij −

1

2
ηij +∇i∇jf + λgij

)

=
1

2
∇iR− 1

2
(div η)i +∇i∆f −Rjkik∇kf

=
1

2
∇iR− 1

2
(div η)i +∇i∆f + rcik∇kf

(3.39)

Now from (5.25) we have

div ηi =
1

4
∇i |F |2 − (d∗θF )k

θF k
i (3.40)

Also, taking the gradient of equation (3.36) we know

∇i∆f = −∇iR +
1

2
∇i |F |2 (3.41)
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Plugging (3.40) and (3.41) into (3.39) gives

0 = −1

2
∇iR +

3

8
∇i |F |2 +

1

2
(d∗F )k F k

i + rcik∇kf (3.42)

Now, applying (3.34) we see that

rcik∇kf =

(
1

2
η −∇2f − λg

)
ik

∇kf

=
1

2
ηik∇kf − 1

2
∇i |∇f |2 − λ∇if

(3.43)

Also, using (3.35) we have

1

2
(d∗θF )k

θF k
i =

1

2

(
∇lf θFlk

)
θF k

i

= − 1

2
ηik∇kf

(3.44)

Thus, plugging (3.43) and (3.44) into (3.42) we get

0 = ∇i

(
−1

2
R +

3

8
|F |2 − 1

2
|∇f |2 − λf

)

and the result follows immediately.
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Chapter 4

Evolution of F

Here we will study the evolution of the bundle curvature F in the case of a U(1) bun-

dle over M . If we ignore the effects of the curvature of g, it is natural to expect that

if M has dimension 4 then F should get closer to being self-dual, that is we expect

to be able to bound
∣∣∣◦η∣∣∣ (see lemma A.4) and moreover to show that under certain

conditions it decays. Note that this is a stronger statement than one expects from

Yang-Mills flow alone, where any Yang-Mills (not necessarily self-dual) connection is

critical for Yang-Mills flow. We bear this expectation out, and indeed it is the term

η appearing in the evolution of g which provides the required decay.

4.1 Evolution Equations

Fix E a U(1) bundle over M . Then the curvature form F is just a two-form on M ,

and so we can use the usual Bochner formula and compute the evolution of quantities

related to F under Ricci Yang-Mills flow. We will actually study the following more
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general system of equations

ġjk = −2 rcjk +ηjk

Ḟ = ∆dF

(4.1)

which is induced by Ricci Yang-Mills flow in this case. In the propositions that follow

we compute the evolution of curvature quantities related to F along a solution to

(4.1). Note that throughout this section ∇ will always refer to the Levi-Civita

connection of g.

Proposition: 4.1. A solution to (4.1) satisfies

d

dt
η = ∆ηij − 2∇lFki∇lF k

j − ηklFikFjl

+ gklrikmnF
mnFjl + gklrjlmnF

mnFik − rcm
i ηmj − rcm

j ηmi

(4.2)

Proof. Using the Bochner formula of proposition A.2 and (4.1) we calculate

d

dt
ηij =

d

dt
gklFikFjl

= ġklFikFjl + gkl (∆dFik) Fjl + gklFik(∆dFjl)

= (2 rc−η)mng
mkgnlFikFjl + gkl (∆dFik) Fjl + gklFik(∆dFjl)

= (2 rc−η)kl FikFjl

+ gkl(∆Fik + rikmnF
mn − gmn rcim Fnk − gmn rckm Fin)Fjl

+ gklFik (∆Fjl + rjlmnF
mn − gmn rcjm Fnl − gmn rclm Fjn)

= ∆ηij − 2∇lFki∇lF k
j − ηklFikFjl

+ gklrikmnF
mnFjl + gklrjlmnF

mnFik − rcm
i ηmj − rcm

j ηmi
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Corollary: 4.2. A solution to (4.1) satisfies

d

dt
|F |2 = ∆ |F |2 − 2 |∇F |2 + 2 rm(F, F )− 2 |η|2 (4.3)

Proof. Using the above proposition we compute

d

dt
|F |2 =

d

dt
gijηij

= (2 rc−η)ij ηij + gij
(
∆ηij − 2(∇F · ∇F )ij − ηklFikFjl

)
+ gij

(
2gklrikmnF

mnFjl − 2 rcm
i ηmj

)
= ∆ |F |2 − 2 |∇F |2 + 2 rm(F, F )− 2 |η|2

Proposition: 4.3. A solution to (4.1) satisfies

d

dt

◦
η = ∆

◦
η − 2(∇F · ∇F )◦ + rm ∗F ∗2 − ◦

η
kl
FikFjl +

2

n

∣∣∣◦η∣∣∣2 g − 2

n
|F |2 ◦η (4.4)

Proof. Using the above propositions we compute

d

dt

◦
η =

d

dt

(
η − 1

n
|F |2 g

)
= ∆η − 2∇F · ∇F + rm ∗F ∗2 − ηklFikFjl

− 1

n

(
∆ |F |2 − 2 |∇F |2 − 2 |η|2

)
g − 1

n
|F |2 η

= ∆
◦
η − (∇F · ∇F )◦ + rm ∗F ∗2

p − ηklF p
ikF

p
jl +

2

n
|η|2 g − 1

n
|F |2 η

(4.5)
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But now the we can simplify the F 4 curvature term as

−ηklFikFjl +
2

n
|η|2 g − 1

n
|F |2 η

= −
(
◦
η +

1

n
|F |2 g

)kl

FikFjl

+
2

n

(∣∣∣◦η∣∣∣2 +
1

n
|F |4

)
g − 1

n
|F |2

(
◦
η +

1

n
|F |2 g

)

= − ◦
η

kl
FikFjl −

1

n
|F |2 ηij +

2

n

∣∣∣◦η∣∣∣2 g +
1

n2
|F |4 g − 1

n
|F |2 ◦η

= − ◦
η

kl
FikFjl +

2

n

∣∣∣◦η∣∣∣2 g − 2

n
|F |2 ◦η

Plugging this into (4.5) gives

d

dt

◦
η = ∆

◦
η − 2(∇F · ∇F )◦ + rm ∗F ∗2 − ◦

η
kl
FikFjl +

2

n

∣∣∣◦η∣∣∣2 g − 2

n
|F |2 ◦η

Corollary: 4.4. A solution to (4.1) satisfies

d

dt

∣∣∣◦η∣∣∣2 = ∆
∣∣∣◦η∣∣∣2 − 2

∣∣∣∇◦
η
∣∣∣2 − 2

〈
(∇F · ∇F )◦,

◦
η
〉

− 2
〈
◦
η,

◦
η

2
〉
− 2

〈
◦
η

kl
FikFjl,

◦
η
〉
− 6

n
|F |2

∣∣∣◦η∣∣∣2
+ rm ∗F ∗4

(4.6)
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Proof. Using the above proposition we compute

d

dt

∣∣∣◦η∣∣∣2 =
d

dt

(
gijgkl ◦ηik

◦
ηjl

)
= − 2ġijgkl ◦ηik

◦
ηjl + 2

〈
d

dt

◦
η,

◦
η

〉

= − 2
〈
η,

◦
η

2
〉

+ 2
〈
∆
◦
η − (∇F · ∇F )◦,

◦
η
〉

+ rm ∗F ∗4

− 2

〈
◦
η

kl
FikFjl −

2

n

∣∣∣◦η∣∣∣2 g +
2

n
|F |2 ◦η,

◦
η

〉

= ∆
∣∣∣◦η∣∣∣2 − 2

∣∣∣∇◦
η
∣∣∣2 − 2

〈
(∇F · ∇F )◦,

◦
η
〉

+ rm ∗F ∗4

− 2
〈
η,

◦
η

2
〉
− 2

〈
◦
η

kl
FikFjl +

2

n
|F |2 ◦η,

◦
η

〉

= ∆
∣∣∣◦η∣∣∣2 − 2

∣∣∣∇◦
η
∣∣∣2 − 2

〈
(∇F · ∇F )◦,

◦
η
〉

+ rm ∗F ∗4

− 2
〈
◦
η,

◦
η

2
〉
− 2

〈
◦
η

kl
FikFjl,

◦
η
〉
− 6

n
|F |2

∣∣∣◦η∣∣∣2

The next proposition applies in the case of a general K-bundle.

Proposition: 4.5. Suppose (g(t), A(t)) is a solution to Ricci Yang-Mills flow on

E → M a principal K-bundle. Then

d

dt
|F |2 = ∆ |F |2 − 2

∣∣A∇F
∣∣2 + rm ∗F ∗2 + F ∗3 − 2 |η|2 (4.7)

Moreover, a solution to volume-normalized Ricci Yang-Mills flow satisfies

d

dt
|F |2 = ∆ |F |2 − 2

∣∣A∇F
∣∣2 + rm ∗F ∗2 + F ∗3 − 2

∣∣∣◦η∣∣∣2 (4.8)

Proof. The proof is identical to that of proposition 4.2, except that one must use the

Bochner formula for the Laplacian DA, which is given in proposition A.3. Thus the

answer is the same except for the introduction of the term F ∗3.
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4.2 Pinching Behaviour

In this section we use the maximum principle to conclude statements about the

pinching behaviour of F and its related quantities. Restricting to n = 4 will be

important for these calculations. Let’s begin by remarking on the pointwise pinching

of F , i.e.
∣∣∣◦η∣∣∣2. We form the scale invariant quantity

q(x, t) =

∣∣∣◦η∣∣∣2
|F |4

(4.9)

and compute its evolution. Note that∣∣∣◦η∣∣∣2 =

∣∣∣∣η − 1

4
|F |2 g

∣∣∣∣2 = |η|2 − 1

4
|F |4

Also, since η is positive definite we have the inequality |η|2 ≤ |F |4. However, because

η only has two distinct eigenvalues, in fact |η|2 ≤ 1
2
|F |4 (see lemma A.5). Thus q ≤ 1

4

with equality if and only if F is not symplectic. Indeed, assuming that η is strictly

positive definite to begin with, i.e. assuming F is pointwise symplectic initially we

have

q ≤ 1

4
− ε0 (4.10)

everywhere. This ε0 represents the initial pinching of η. The hypothesis described

below and the proposition that both follow are discussed after the proof.

Definition: 4.6. A solution to Ricci Yang-Mills flow satisfies the ε-low order esti-

mate on [0, T ) if the following inequalities hold on [0, T ):

|∇F |g ≤ ε[F∧2]

|rm|g ≤ ε[F∧2]

(4.11)

where [F∧2] =
∣∣∫ F ∧ F

∣∣. Either of these terms is referred to as a term of low order.
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Proposition: 4.7. Suppose (g(t), A(t)) is a solution to Ricci Yang-Mills flow on a

U(1)-bundle over a four-manifold which exists on [0, T ). Suppose that on this time

interval the ε-low-order estimate holds and moreover

min
M×[0,T )

|F |2 ≥ ζ

∫
− |F |2 (4.12)

There exists universal C > 0 (not depending on any of the constants/objects above)

so that
∣∣∣◦η∣∣∣2 / |F |4 is bounded above by the solution to the ODE

d

dt
φ(t) = C

(
ε +

ε2

ζ

)
[F∧2]− ζ[F∧2]φ (1− 4φ)

φ(0) = sup
(M,g0,A0)

∣∣∣◦η∣∣∣2
|F |4

(4.13)

where [F∧2] =
∣∣∫ F ∧ F

∣∣.
Proof. Before we begin we will examine some of the quantities in the evolution of∣∣∣◦η∣∣∣2 specialized to dimension 4. After a change of basis we may assume at a fixed

point x that g(x) = I and

η =

(
λ2

1I2 0
0 λ2

2I2

)
,

◦
η =

1

2

(
(λ2

1 − λ2
2)I2 0

0 (λ2
2 − λ2

1)I2

)

where λ1 ≤ λ2. Then:

−2
〈
◦
η,

◦
η

2
〉

= − 1

4

(
(λ2

1 − λ2
2)

3 + (λ2
2 − λ2

1)
3
)

= 0

46



Also,

−2
〈
◦
η

kl
FikFjl,

◦
η
〉

= 2 tr(F
◦
η)2

= −
(
λ2

1 + λ2
2

) (
λ2

1 − λ2
2

)2
= − 1

2
|F |2

∣∣∣◦η∣∣∣2
Now let L = ∂

∂t
−∆. Using lemma A.10 with f =

∣∣∣◦η∣∣∣2 , g = |F |2 , α = 1 and β = 2

we see that:

L(q) =
1

|F |4
L(
∣∣∣◦η∣∣∣2)− 2

∣∣∣◦η∣∣∣2
|F |6

L(|F |2)

− 6

∣∣∣◦η∣∣∣2
|F |8

∣∣∇ |F |2∣∣2 + 4
1

|F |6

〈
∇
∣∣∣◦η∣∣∣2 ,∇ |F |2

〉

=
1

|F |4

(
−2
∣∣∣∇◦

η
∣∣∣2 − 2

〈
◦

(∇F · ∇F ),
◦
η

〉
+ rm ∗F ∗4 − 2 |F |2

∣∣∣◦η∣∣∣2)

− 2

∣∣∣◦η∣∣∣2
|F |6

(
− |∇F |2 + rm ∗F ∗2 − 2 |η|2

)

− 6

∣∣∣◦η∣∣∣2
|F |8

∣∣∇ |F |2∣∣2 + 4
1

|F |6

〈
∇
∣∣∣◦η∣∣∣2 ,∇ |F |2

〉

The highest order (in F ) terms are easy to collect, and they are:

q

(
−2 |F |4 + 4 |η|2

|F |2

)
= q

− |F |4 + 4
∣∣∣◦η∣∣∣2

|F |2


= − |F |2 q (1− 4q)

Finally by (4.12) and lemma A.6 we have

− |F |2 q (1− 4q) ≤ −ζ[F∧2]q (1− 4q) (4.14)
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Using the ε-low-order estimate and (4.12) also gives the bounds

C
|∇F |2

|F |2
≤ C

ε2

ζ
[F∧2] (4.15)

∣∣∣◦η∣∣∣2
|F |6

rm ∗F ∗2 ≤ Cε[F∧2] (4.16)

Thus we may apply the maximum principle (lemma A.1) to conclude that q is

bounded above by the solution to the ODE

dφ

dt
= C

(
ε +

ε2

ζ

)
[F∧2]− ζ[F∧2]φ (1− 4φ)

Let us make a few remarks on this result. Since F arises as the curvature of a U(1)-

bundle we can actually examine the family of equations parametrized by the twisting

power of this bundle, which we call p. We refer to the curvature of this bundle as Fp

and in fact Fp = pF . Above when we spoke of “ignoring the effects of the curvature

of g” what we meant was to think of picking a very large value for p so that the

bundle curvature is much larger in norm than the curvature of g. We note that if

p is chosen very large, then we may take ε = 1
p

in the definition of ε-low-order, so

that the −ζ[F∧2
p ]φ (1− 4φ) term will dominate the behaviour of the ODE component

of the evolution of
∣∣∣◦η∣∣∣2 / |F |4. In particular we will have exponential decay of this

quantity. We note also that the form of the term φ(1− 4φ) is to be expected, since

the condition q = 1
4

is equivalent to F not having full rank. Thus if for instance F

had a nontrivial kernel everywhere, we would not expect the rank of F to suddenly

jump.
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Chapter 5

General Curvature Evolution Equations

In this section we will show formulas for the evolution of curvature for a solution to

Ricci Yang-Mills flow. In the first section below we will compute variation formulae

for symmetric tensors. Then in the second section we will compute evolution equa-

tions for solutions to Ricci Yang-Mills flow. In the second section we compute evolu-

tion equations for an interesting partially normalized version of RYM flow. Finally

in the last section we compute evolution equations for the full volume-normalized

RYM flow.

5.1 Variation Formulae

In this section we will compute variation formulae for tensors in a moving frame. The

results are the same as the usual formulae for the evolution of curvature quantities

in coordinates.
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Lemma: 5.1. If Ġ = W then

ġ = WH

Ȧ = WC

Ḟ = dWC

(5.1)

Proof. This is immediate, as in lemma 2.8.

Lemma: 5.2. If Ġ = W , then

Γ̇δ
αβ =

1

2
Gδε (∇αWβε +∇βWαε −∇εWαβ) (5.2)

Proof. We start with the computation

∂

∂s
Γδ

αβ =
∂

∂s

1

2
Gδε (eαGβε + eβGαε − eεGαβ − Cαεβ − Cβαε + Cεβα)

= − 1

2
GδνĠνµG

µε (eαGβε + eβGαε − eεGαβ − Cαεβ − Cβαε + Cεβα)

+
1

2
Gδε (eαWβε + eβWαε − eεWαβ)

− 1

2
Gδε

(
Ċαεβ + Ċβαε − Ċεβα

)
= −GδνWνµΓµ

αβ +
1

2
Gδε (eαWβε + eβWαε − eεWαβ)

− 1

2
Gδε

(
Ċαεβ + Ċβαε − Ċεβα

)

(5.3)
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Now we compute

1

2
Gδε (eαWβε + eβWαε − eεWαβ)

=
1

2
Gδε

(
∇αWβε + Γµ

αβWµε + Γµ
αεWβµ +∇βWαε + Γµ

βαWµε + Γµ
βεWαµ

− ∇εWαβ − Γµ
εαWµβ − Γµ

εβWαµ

)
=

1

2
Gδε (∇αWβε +∇βWαε −∇εWαβ)

+
1

2
Gδε

((
Γµ

αβ + Γµ
βα

)
Wµε + (Γµ

αε − Γµ
εα) Wµβ +

(
Γµ

βε − Γµ
εβ

)
Wµα

)

(5.4)

Also, since our frame is independent of the variation, we clearly have that Ċδ
αβ = 0.

Thus

−1

2
Gδε

(
Ċαεβ + Ċβαε − Ċεβα

)
= − 1

2
Gδε ∂

∂s

(
Cν

αεGνβ + Cν
βαGνε − Cν

εβGνα

)
= − 1

2
Gδε

(
Cν

αεWνβ + Cν
βαWνε − Cν

εβWνα

) (5.5)

Plugging 5.4 and 5.5 into 5.3 and using that Γε
αβ −Γε

βα = Cε
αβ the result follows.

Proposition: 5.3. If Ġ = W , then

∂

∂s
Rcαβ = − 1

2
(∆LWαβ −Gµε∇α∇µWεβ −Gµε∇β∇µWεα +∇α∇β tr W ) (5.6)

where

(∆LW )αβ = ∆Wαβ + 2R(W )αβ − (Rc ·W )αβ − (W · Rc)αβ (5.7)

is the Lichneorwicz Laplacian.

Proof. We begin with the equation

Rcαβ = Rµ
µαβ = eµΓµ

αβ − eαΓµ
µβ + Γν

αβΓµ
µν − Γν

µβΓµ
αν − Cν

µαΓµ
νβ
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Taking the variation of this equation gives

∂

∂s
Rcαβ = eµΓ̇µ

αβ − eαΓ̇µ
µβ

+ Γ̇ν
αβΓµ

µν + Γν
αβΓ̇µ

µν − Γ̇ν
µβΓµ

αν − Γν
µβΓ̇µ

αν − Cν
µαΓ̇µ

νβ

(5.8)

Now we compute

eµΓ̇µ
αβ = ∇µΓ̇µ

αβ + Γν
µαΓ̇µ

νβ + Γν
µβΓ̇µ

αν − Γµ
µνΓ̇

ν
αβ

−eαΓ̇µ
µβ = −∇αΓ̇µ

µβ − Γν
αµΓ̇µ

νβ − Γν
αβΓ̇µ

µν + Γµ
ανΓ̇

ν
µβ

= −∇αΓ̇µ
µβ − Γν

αβΓ̇µ
µν

Plugging this into (5.8) gives

∂

∂s
Rcαβ = ∇µΓ̇µ

αβ −∇αΓ̇µ
µβ + Γ̇ν

µβ (Γµ
να − Γµ

αν − Cµ
να)

= ∇µΓ̇µ
αβ −∇αΓ̇µ

µβ

(5.9)

where the last line follows because Γµ
να − Γµ

αν − Cµ
να = 0. We now plug 5.2 into 5.9.

This gives

∂

∂s
Rcαβ =

1

2
Gµε∇µ (∇αWβε +∇βWαε −∇εWαβ)

− 1

2
Gµε∇α (∇µWβε +∇βWµε −∇εWµβ)

(5.10)

First we note that

−1

2
Gµε∇α (∇µWβε −∇εWµβ) = 0 (5.11)

We commute the derivatives to compute

1

2
Gµε∇µ∇αWβε =

1

2
Gµε (∇α∇µWεβ) +

1

2
GµεGνρ (RµαβρWνε + RµαερWβν) (5.12)

and similarly

1

2
Gµε∇µ∇βWαε =

1

2
Gµε (∇β∇µWεα) +

1

2
GµεGνρ (RµβαρWνε + RµβερWαν) (5.13)
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Note that in the two formulas above the second derivatives represent total second

covariant derivatives, so that their commutators alone give curvature. Plugging 5.11

- 5.13 into 5.10 gives

∂

∂s
Rcαβ = − 1

2
(∆Wαβ −Gµε∇α∇µWεβ −Gµε∇β∇µWεα +∇α∇β tr W )

+
1

2
GµεGνρ (RµαβρWνε + RµαερWβν + RµβαρWνε + RµβερWαν)

(5.14)

The Laplacian term and the curvature terms clearly combine to give

−1

2
∆LWαβ = −1

2
(∆Wαβ + 2R(W )αβ − (Rc ·W )αβ − (W · Rc)αβ) (5.15)

And the result follows.

Proposition: 5.4. If Ġ = W and Y (t) is a family of symmetric two-tensors such

that Ẏ = Z, then

d

dt

(
Y H + Y C

)
=
(
ZH + ZC

)
+ π∗

(〈
WC , Y C

〉
g

)
(5.16)

Proof. First of all, we write Y H + Y C = Y − Y V . Then in our frame this reads(
Y H + Y C

)
αβ

= Yαβ −
(
GV
)µ

α
Yµν

(
GV
)ν

β (5.17)

We would like to take the variation of this equation. First of all we take the variation

d

dt

(
GV
)β

α
=

d

dt

(
GV
)

αδ
Gδβ

=
(
W V

)β
α
−
(
GV
)

αδ
GδµWµνG

νβ

=
(
W V

)β
α
−
(
GV
)µ

α
W β

µ

(5.18)
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Thus we see

d

dt

(
Y H + Y C

)
αβ

= Zαβ −
(
GV
)µ

α
Zµν

(
GV
)ν

β

−
((

W V
)µ

α
−
(
GV
)δ

α
W µ

δ

)
Yµν

(
GV
)ν

β

−
(
GV
)µ

α
Yµν

((
W V

)ν
β
−
(
GV
)δ

β
W ν

δ

)
=
(
ZH + ZC

)
αβ

+
(
WC

)µ
α
Yµν

(
GV
)ν

β
+
(
GV
)µ

α
Yµν

(
WC

)ν
β

=
(
ZH + ZC

)
αβ

+ π∗
(〈

WC
α , Y C

β

〉
g

)

Proposition: 5.5. If Ġ = W then

∂

∂s
(d∗F )θ

i =
(
d∗dWC

)θ
i
−
(
WH

)jk A∇jF
θ
ki

− 1

2
gjkgmn

(
g∇jW

H
kn + g∇kW

H
jn − g∇nW

H
jk

)
F θ

mi

− 1

2
gjkgmn

(
g∇jW

H
in − g∇nW

H
ji

)
F θ

km

(5.19)

Proof. Let τ denote the Christoffel symbol of g. Using normal coordinates for g we

may assume that τ vanishes at a chosen point. Using lemma 5.1 and proposition A.8
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we compute that

∂

∂s
(d∗F )θ

i =
∂

∂s

(
gjk A∇jF

θ
ki

)
=

∂

∂s

(
gjk
(
∂jF

θ
ki − τm

jkF
θ
mi − τm

ji F
θ
km

))
= − gjpġpqg

qk A∇jF
θ
ki + gjk

(
∂jḞ

θ
ki − τ̇m

jkF
θ
mi − τ̇m

ji F
θ
km

)
= −

(
WH

)jk A∇jF
θ
ki + gjk

(
d∗dWC

)θ
i

− 1

2
gjkgmn

(
g∇jW

H
kn + g∇kW

H
jn − g∇nW

H
jk

)
F θ

mi

− 1

2
gjkgmn

(
g∇jW

H
in + g∇iW

H
jn − g∇nW

H
ji

)
F θ

km

(5.20)

It is clear that gjkgmn g∇iWjn θFkm = 0. Plugging this into (5.20) gives the result.

5.2 Curvature Evolution Equations

5.2.1 Bianchi-type Identities

In this subsection we will compute certain curvature identities which are related to

the usual Bianchi identities for the Riemannian curvature tensor. Just to simplify

notation, given a metric G of the form (2.2) let

N := RcH + RcC (5.21)

Lemma: 5.6. Let G be a bundle metric. Then

(div N)i =
1

2
∇ir −

1

8
∇i |F |2

(div N)θ = 0

(5.22)
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Proof. We note using lemma 2.3 that for a bundle metric we have RcH = rc−1
2
η and

RcC = 1
2
d∗F . Using this and lemma 2.2 we compute

(div N)i = Gαβ
(
∂αNβi − Γν

αβNνi − Γν
αiNβν

)
= (gdiv NH)i −

1

2
θF n

i Nθn −
1

2
gab

θFaiN
θ
b

= (gdiv NH)i −
1

2
θF k

i (d∗F )kθ

(5.23)

Now, using the usual contracted differential Bianchi identity for the Ricci tensor of

g we see

(gdiv NH)i =

(
g div

(
rc−1

2
η

))
i

=
1

2
∇ir −

1

2
(g div η)i

(5.24)

Finally we compute, using that dF = 0,

(g div η)i = g∇m
(
gkl

θFki
θFlm

)
= gkl( A∇mF θ

ki) θFlm − θF k
i (d∗F )kθ

= − gklgmn
(

A∇iF
θ
mk + A∇kF

θ
im

)
θFln − θF k

i (d∗F )kθ

=
1

2
∇i |F |2 − gmn

(
A∇kF θ

mi

)
θFnk − θF k

i (d∗F )kθ

=
1

4
∇i |F |2 − θF k

i (d∗F )kθ

(5.25)

where the last line follows by rearranging the fourth and second lines. Plugging

(5.25) into (5.24) and then plugging the result into (5.23) gives the first claim. As

56



for the second, we compute

(div N)θ = Gαβ
(
∂αNβθ − Γν

αβNνθ − Γν
αθNβν

)
=

1

2
(d∗(d∗F ))− 1

2
tr
(

θF ·NH
)

= 0

(5.26)

since (d∗d∗F ) = 0 and the trace of the product of a symmetric and a skew-symmetric

matrix is zero.

Lemma: 5.7. Let G be a bundle metric. Then

∇α(div N)β = ∇α∇β

(
1

2
r − 1

8
|F |2

)
(5.27)

Proof. We compute using (5.22)

∇i (div N)j =
(
∂i div Nj − Γα

ij div Nα

)
= ∇i

(
1

2
∇jr −

1

8
∇j |F |2

)

=
1

2
∇i∇jr −

1

8
∇i∇j |F |2

(5.28)

Next we compute

∇i (div N)θ = (∂i div Nθ − Γα
iθ div Nα)

= − 1

2
θF

k
i (div Nk)

= − 1

2
θF

k
i

(
1

2
∇kr −

1

8
∇k |F |2

) (5.29)

and similarly

∇θ (div N)j =
(
∂θ div Nj − Γα

θj div Nα

)
= − 1

2
θF

k
j (div Nk)

= − 1

2
θF

k
j

(
1

2
∇kr −

1

8
∇k |F |2

) (5.30)
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Finally we have

∇θ (div N)ρ =
(
∂θ div Nρ − Γα

θρ div Nα

)
= 0

(5.31)

Comparing these results with lemma 3.3 gives the result.

5.2.2 Curvature Evolution for RYM Flow

Before stating these evolution equations let us introduce an important piece of nota-

tion. If A and B are two tensors on a Riemannian manifold, we denote by A ∗B any

quantity obtained from A⊗B by one or more of the following operations: summation

over pairs of matching upper and lower indices, contraction on upper indices with

respect to the metric, contraction on lower indices with respect to the metric inverse,

and multiplication by constants depending only on the dimension of the total space

and the ranks of A and B.

Proposition: 5.8. A solution to Ricci Yang-Mills flow satisfies

d

dt
Rm = ∆ Rm +F ∗ ∇Rm + Rm∗2 (5.32)

Proof. Recall ([7] lemma 7.4) that in the case of the usual Ricci flow we have

d

dt
Rm = ∆ Rm + Rm∗2

Now, in our case we have Ġ = −2N = −2 Rc +2 RcV . Thus to compute the evolution

for the curvature tensor we can start with the evolution given by usual Ricci flow

and compute the evolution of curvature given by Ġ = 2 RcV = 1
2
π∗
(
〈F, F 〉g

)
. We

know that in general the evolution of curvature is given by second derivatives of the
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evolution of G. Thus we see that for Ġ = 1
2
π∗
(
〈F, F 〉g

)
we have

d

dt
Rm = ∇2 (F ∗ F )

=
(
∇2F

)
∗ F + (∇F )∗2

(5.33)

Now using lemma 2.3 it is clear that we formally have ∇F = Rm, thus this term

may be written F ∗ ∇Rm + Rm∗2 and the result follows.

Proposition: 5.9. A solution to Ricci Yang-Mills flow satisfies

d

dt
∇k Rm = ∆∇k Rm +F ∗ ∇k+1 Rm +

k∑
j=0

∇j Rm ∗∇k−j Rm (5.34)

Proof. First consider the case k = 1. Using lemma 5.2 and proposition 5.8 we see

d

dt
∇Rm =

d

dt
(∂ Rm +Γ ∗ Rm)

= ∂
(
∆ Rm +F ∗ ∇Rm + Rm∗2)

+∇Rm ∗Rm +F ∗
(
∆ Rm +F ∗ ∇Rm + Rm∗2)

= ∇∆ Rm +F ∗ ∇2 Rm +∇Rm ∗Rm +F ∗ Rm∗2

(5.35)

Using the formula

∇∆A = ∆∇A + Rm ∗∇A +∇Rm ∗A (5.36)
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gives the result for k = 1. As for the general case we compute as above

d

dt
∇k+1 Rm =

d

dt
(∂ + Γ) ∗ · · · ∗ (∂ + Γ) ∗ Rm

= (∇Rm) ∗ (∂ + Γ) ∗ . . . (∂ + Γ) ∗ Rm

+ (∂ + Γ) ∗ (∇Rm) ∗ (∂ + Γ) ∗ · · · ∗ (∂ + Γ) ∗ Rm

+ · · ·+ (∂ + Γ) ∗ · · · ∗ (∂ + Γ) ∗ (∇Rm) ∗ Rm

+∇k

(
d

dt
Rm

)
= ∇Rm ∗∇k−1 Rm +∇2 Rm ∗∇k−2 Rm + · · ·+∇k Rm ∗Rm

+∇k
(
∆ Rm +F ∗ ∇Rm + Rm∗2)

= ∇k∆ Rm +∇k (F ∗ ∇Rm) +
k∑

j=0

∇j Rm ∗∇k−j Rm

(5.37)

Iterating (5.36) it is easy to see that

∇k∆ Rm = ∆∇k Rm +
k∑

j=0

∇j Rm ∗∇k−j Rm (5.38)

Also, we have using lemma 2.3 that ∇F = Rm formally, thus

∇k (F ∗ ∇Rm) =
k∑

j=0

(
∇jF ∗ ∇k+1−j Rm

)

= F ∗ ∇k+1 Rm +
k∑

j=1

(
∇jF ∗ ∇k+1−j Rm

)

= F ∗ ∇k+1 Rm +
k∑

j=0

(
∇j Rm ∗∇k−j Rm

)
(5.39)

Plugging (5.39) and (5.38) into (5.37) gives the result.
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Proposition: 5.10. A solution to Ricci Yang-Mills flow satisfies

Ṙcαβ = ∆LNαβ −
1

4
∇α∇β |F |2 (5.40)

Proof. Plugging W = −2N into (5.6) gives

d

dt
Rcαβ = ∆LNαβ −Gµε∇α∇µNεβ −Gµε∇β∇µNεα +∇α∇β tr N (5.41)

Now using lemma 5.7 we compute

−Gµε∇α∇µNεβ −Gµε∇β∇µNεα +∇α∇β tr N

= −∇α (div N)β −∇β (div N)α +∇α∇β tr N

= −∇α∇β

(
r − 1

4
|F |2

)
+∇α∇β

(
r − 1

2
|F |2

)

= − 1

4
∇α∇β |F |2

(5.42)

5.2.3 Curvature Evolution for a Renormalized Equation

In this section we will consider a particular renormalization of Ricci Yang-Mills flow.

The term −1
4
∇α∇β |F |2 in (5.40) suggests that we add a multiple of |F |2 GH to

the evolution of G directly to cancel this term and give a more natural heat-type

equation. Since this term is lower order in the metric, it is clear that this poses no

short-time existence problems, as opposed to trying to add the scalar curvature to

the usual Ricci flow. So, consider the equation

Ġ = −2S := −2

(
RcH + RcC +

1

4(n− 2)
|F |2 GH

)
(5.43)

The factor of 1
4(n−2)

is chosen with perfect hindsight.
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Proposition: 5.11. A solution to equation (5.43) satisfies

d

dt
Rcαβ = ∆LSαβ (5.44)

Proof. Using proposition 5.6 with W = − 1
2(n−2)

|F |2 GH and proposition 5.10 shows

that a solution to (5.43) satisfies

Ṙcαβ = ∆LNαβ −
1

4
∇α∇β |F |2 +

1

4(n− 2)
∆L

(
|F |2 GH

)
− 1

4(n− 2)
Gµε∇α∇µ

(
|F |2 GH

)
εβ
− 1

4(n− 2)
Gµε∇β∇µ

(
|F |2 GH

)
εα

+
n

4(n− 2)
∇α∇β |F |2

= ∆LSαβ

(5.45)

where in the last line we have used that div GH = 0

Next we would like to compute the evolution of S itself. To do this we will of course

need to first compute the evolution of |F |2. So, we have

Proposition: 5.12. A solution to equation (5.43) satisfies

d

dt
|F |2 = 4

〈
SH , η

〉
+ 8

〈
A∇SC , F

〉
(5.46)

Proof. First of all given the equation Ȧ = −2SC and F θ
ij = Aθ

i,j −Aθ
j,i +(A ∧ A)θ

ij we

clearly see that Ḟ θ
ij = −2

(
A∇j

(
SC
)θ

i
− A∇i

(
SC
)θ

j

)
. Thus we compute

d

dt
|F |2 =

d

dt

(
gθρgijgkl

θFik ρFjl

)
= − 2gimġmng

njgkl θFik θFjl − 4
〈

A∇j

(
SC
)θ

i
− A∇i

(
SC
)θ

j
, F θ

ij

〉
= 4

〈
SH , η

〉
+ 8

〈
A∇SC , F

〉
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Proposition: 5.13. A solution to equation (5.43) satisfies

d

dt
S = (∆LS)H + (∆LS)C − 1

2(n− 2)
|F |2 SH

+

(
1

n− 2

〈
SH , η

〉
+

2

n− 2

〈
A∇SC , F

〉)
GH

− π∗
(〈

SC , SC
〉

g

)
(5.47)

Proof. Let A = Rc + 1
4(n−2)

|F |2 GH . We combine propositions 5.11 and 5.12 to com-

pute

d

dt
A = ∆LS − 1

2(n− 2)
|F |2 SH

+

(
1

n− 2

〈
SH , η

〉
+

2

n− 2

〈
A∇SC , F

〉)
GH

(5.48)

Using that S = AH + AC we can apply proposition 5.4 to get the result.

Proposition: 5.14. A solution to equation (5.43) satisfies

d

dt
r = ∆r + 2 〈S, rc〉+ 2

∣∣SC
∣∣2 +

4− n

4(n− 2)
∆ |F |2 + 2

〈
A∇SC , F

〉
(5.49)

Proof. We use the equation r = tr Rc +1
4
|F |2 and compute

d

dt
r =

d

dt

(
Gαβ Rcαβ +

1

4
|F |2

)
= −GαµĠµνG

νβ Rcαβ +Gαβ∆LSαβ +
〈
SH , η

〉
+ 2

〈
A∇SC , F

〉
= 〈S, 2 Rc +η〉+ Gαβ∆LSαβ + 2

〈
A∇SC , F

〉
= 2

〈
SH , rc

〉
+ 2

∣∣SC
∣∣2 + Gαβ∆LSαβ + 2

〈
A∇SC , F

〉

(5.50)
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Now we simplify

Gαβ∆Sαβ = ∆ tr S

= ∆

(
r +

(
n

4(n− 2)
− 1

2

)
|F |2

)

= ∆r +
4− n

4(n− 2)
∆ |F |2

(5.51)

Also, it is a general fact that trR(S), the trace of the curvature term appearing in

the Lichnerowicz Laplacian, vanishes (see proposition A.8). Thus

d

dt
r = ∆r + 2 〈S, rc〉+ 2

∣∣SC
∣∣2 +

4− n

4(n− 2)
∆ |F |2 + 2

〈
A∇SC , F

〉
(5.52)

Proposition: 5.15. A solution to (5.43) satisfies

d

dt
d∗F θ

i = ∆dd
∗F θ

i + 2
(
SH
)jk A∇jF

θ
ki + 2gjkglm g∇jS

H
li F θ

km

+
(
F θ · ρF · d∗F ρ

)
i

(5.53)

Proof. We apply proposition 5.5 with W = −2S. This gives

d

dt
d∗F θ

i = − d∗dd∗F θ
i + 2

(
SH
)jk A∇jF

θ
ki

+ gjkgmn
(

g∇jS
H
kn + g∇kS

H
jn − g∇nS

H
jk

)
F θ

mi

+ gjkgmn
(

g∇jS
H
in − g∇nS

H
ji

)
F θ

km

(5.54)

First of all, since d∗d∗F = 0 we have that −d∗dd∗Fi = ∆dd
∗Fi. Next we simplify
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using the Bianchi identity and the proof of lemma 5.6

gjkgmn
(

g∇jS
H
kn + g∇kS

H
jn − g∇nS

H
jk

)
θFmi

= gmn

(
− (g div η)n +

1

4
∇n |F |2

)
F θ

mi

= gmn
(

ρF
k
n (d∗F )ρ

k

)
F θ

mi

= (F θ · ρF · d∗F ρ)i

Finally using the skew-symmetry of F we simplify

gjkgmn
(

g∇jS
H
in − g∇nS

H
ji

)
F θ

km = 2gjkglm g∇jS
H
li F θ

km

5.2.4 Curvature Evolution for Volume Renormalized RYM-flow

In this subsection we will consider volume renormalized RYM flow. Noting that

tr S = r+ 4−n
4(n−2)

|F |2 we define V = RcH + RcC + 1
4(n−2)

|F |2 GH− 1
n

(∫
−r +

∫
− 4−n

4(n−2)
|F |2

)
GH ,

and then we can write volume renormalized RYM flow as

d

dt
G = −2V = −2

(
S − 1

n

(∫
−r +

∫
− 4− n

4(n− 2)
|F |2

)
GH

)
(5.55)

In computing the evolution equations of various tensors we will compute the effect

of the renormalization term and use the results of the previous section.

Proposition: 5.16. A solution to volume renormalized RYM flow satisfies

d

dt
Rcαβ = ∆LVαβ (5.56)

Proof. Use (5.6) with W = 2
n

(∫
−r +

∫
− 4−n

4(n−2)

)
GH (and the fact that the divergence

of GH vanishes) and proposition 5.11 to see that under volume renormalized RYM
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flow we have

d

dt
Rcαβ = ∆LSαβ −∆L

(
1

n

(∫
−r +

∫
− 4− n

4(n− 2)

)
GH

)
= ∆LV

Proposition: 5.17. A solution to volume renormalized RYM flow satisfies

d

dt
|F |2 = 4

〈
V H , η

〉
+ 8

〈
A∇V C , F

〉
(5.57)

Proof. It is not hard to see that given d
dt

G = cGH one has d
dt

F = 0, and hence

d
dt
|F |2 = −2c |F |2. Thus using proposition 5.12 and the fact that SC = V C we have

d

dt
|F |2 = 4

〈
SH , η

〉
+ 8

〈
A∇SC , F

〉
− 4

n

(∫
−r +

∫
− 4− n

4(n− 2)
|F |2

)
|F |2

= 4
〈
V H , η

〉
+ 8

〈
A∇V C , F

〉 (5.58)

Proposition: 5.18. A solution to volume renormalized RYM flow satisfies

d

dt
r = ∆r + 2 〈V, rc〉+ 2

∣∣V C
∣∣2 +

4− n

4(n− 2)
∆ |F |2 + 2

〈
A∇V C , F

〉
(5.59)

Proof. It is clear that for Ġ = cGH we have ṙ = −cr. Thus using proposition 5.14

we compute

d

dt
r = ∆r + 2 〈S, rc〉+ 2

∣∣SC
∣∣2 +

4− n

4(n− 2)
∆ |F |2 + 2

〈
A∇SC , F

〉
− 2

n

(∫
−r +

∫
− 4− n

4(n− 2)
|F |2

)
r

= ∆r + 2 〈V, rc〉+ 2
∣∣V C

∣∣2 +
4− n

4(n− 2)
∆ |F |2 + 2

〈
A∇V C , F

〉
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Before the next proposition we recall that for a function f ∈ C∞(M) we define∫
−f :=

(∫
fdV

)
/ vol M (5.60)

Proposition: 5.19. A solution to volume renormalized RYM flow with n = 4 sat-

isfies

d

dt

∫
−r =

∫
−2 〈V, rc〉 − rδr (5.61)

Proof. Recall that the volume stays fixed under volume renormalized RYM flow.

Without loss of generality assume vol(Mt) ≡ 1 for all t. Using proposition 5.18 and

plugging in n = 4 we see that

d

dt

∫
−r =

d

dt

(∫
rdV

)
/ (vol M)

=
d

dt

(∫
rdV

)

=

∫ (
d

dt
r

)
dV −

∫
rδrdV

=

∫
2 〈V, rc〉+ 2

∣∣V C
∣∣2 + 2

〈
g∇V C , F

〉
− rδr

=

∫
2 〈V, rc〉 − rδr

where the last line follows because the term 2
∣∣V C

∣∣2 + 2
〈

g∇V C , F
〉

vanishes upon

integrating by parts. The result follows.

Corollary: 5.20. A solution to volume renormalized RYM flow with n = 4 satisfies

d

dt
(δr)2 = ∆ (δr)2 − 2 |∇r|2 + 4 〈V, rc〉 δr + 4

∣∣V C
∣∣2 δr + 4

〈
A∇V C , F

〉
δr

− 4

(∫
−〈V, rc〉

)
δr + 2

(∫
−rδr

)
δr

(5.62)
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Proof. This is immediate using propositions 5.18 and 5.19.

Proposition: 5.21. A solution to volume renormalized RYM flow satisfies

d

dt
S = (∆LV )H + (∆LV )C − 1

2(n− 2)
|F |2 V H

+

(
1

n− 2

〈
V H , η

〉
+

2

n− 2

〈
A∇V C , F

〉)
GH

− π∗
(〈

V C , V C
〉

g

)
(5.63)

Proof. Let Z = Rc + 1
4(n−2)

|F |2 GH . Combine propositions 5.16 and 5.17 to compute

d

dt
Zαβ = ∆LVαβ −

1

2(n− 2)
|F |2 V H

+

(
1

n− 2

〈
V H , η

〉
+

2

n− 2

〈
A∇V C , F

〉)
GH

(5.64)

Now using that S = ZH + ZC we apply proposition 5.4 to get the result.

Proposition: 5.22. A solution to volume renormalized RYM flow satisfies

d

dt
d∗F θ

i = ∆dd
∗F θ

i + 2
(
V H
)jk A∇jF

θ
ki + 2gjkglm g∇jV

H
li F θ

km

+
(

θF · ρF · d∗ Fρ

)
i

(5.65)

Proof. Applying proposition 5.5 with W = cGH shows that under this variation one

has d
dt

d∗F θ
i = −cd∗F θ

i . Thus combining this with proposition 5.15 we have

d

dt
d∗F θ

i = ∆dd
∗F θ

i + 2
(
SH
)jk A∇jF

θ
ki + 2gjkglm g∇jS

H
li F θ

km

+
(
F θ · ρF · d∗F ρ

)
i

− 2

n

(∫
−r +

∫
− 4− n

4(n− 2)
|F |2

)
d∗F θ

i

= ∆dd
∗F θ

i + 2
(
V H
)jk A∇jF

θ
ki + 2gjkglm g∇jV

H
li F θ

km

+
(
F θ · ρF · d∗F ρ

)
i
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Proposition: 5.23. A solution to volume normalized RYM flow satisfies

d

dt
|V |2 = ∆ |V |2 − 2 |∇V |2 + Rm ∗V ∗2 (5.66)

d

dt
|∇V |2 = ∆ |∇V |2 − 2

∣∣∇2V
∣∣2 + Rm ∗∇V ∗2 +∇Rm ∗V ∗ ∇V (5.67)

d

dt

∣∣∇2V
∣∣2 = ∆

∣∣∇2V
∣∣− 2

∣∣∇3V
∣∣2 + Rm ∗∇2V ∗2 (5.68)

+∇Rm ∗∇V ∗ ∇2V +∇2 Rm ∗V ∗ ∇2V (5.69)

Proof. Using propositions 5.17, 5.18, 5.21 and the basic integration by parts∫
M

〈
A∇V C , F

〉
= −

∫
M

〈
V C , d∗F

〉
= V ∗ Rm

we see

d

dt
V = ∆V + Rm ∗V (5.70)

from which the first claim follows immediately. We can also use this to compute

d

dt
∇V =

d

dt
(∂V + Γ ∗ V )

= ∂
d

dt
V +∇Rm ∗V

= ∇ (∆V + Rm ∗V ) +∇Rm ∗V

= ∆∇V +∇Rm ∗V + Rm ∗∇V

from which the second result follows immediately. The third is entirely similar.
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Chapter 6

Analytic Properties of Ricci Yang Mills

Flow

In this chapter we will discuss many analytic properties of Ricci Yang-Mills flow.

Based on the calculations of the previous chapter and our intuition from the study of

Ricci flow, we expect that the Ricci Yang-Mills flow should behave like a nonlinear

parabolic equation. In the first section we will bear this out and show that for any

initial condition the flow always exists for a short time. Next we prove a lower

bound for the existence time based on an initial curvature bound. Also we will find

the obstruction to long-time existence of a solution to Ricci Yang-Mills flow.

In the second section we prove certain decay estimates for the derivatives of the

curvature along a solution to Ricci Yang-Mills flow. These are natural heat kernel

estimates, and the corresponding estimates for the Ricci flow are called Bernstein-

Bando-Shi estimates. Our proof of these will closely follow the corresponding proof

for Ricci flow found in [7]. The estimates will play a crucial role in the proof of our

main convergence theorem. Also using these estimates we will prove a compactness
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theorem for solutions to Ricci Yang-Mills flow.

6.1 Existence Properties

Proposition: 6.1. Given G0 a smooth bundle metric, there exists ε > 0 so that a

unique solution to Ricci Yang-Mills flow exists on [0, ε) with initial condition G0.

Proof. To prove this theorem we will use the interpretation of Ricci Yang-Mills flow

as a coupled system of equations, i.e. the viewpoint of lemma 2.8. In particular we

must solve the equations

d

dt
gij = − 2 rcij +ηij

d

dt
A = − d∗AF

g(0) = g0

A(0) = A0

(6.1)

for arbitrary initial g0, A0. Recall that short-time existence for both Ricci flow and

Yang-Mills flow is proved by using a gauge-fixing procedure. Here we will combine

both of these gauge-fixing procedures.

First we must compute the linearization of the operator −2 rc +η. As far as

parabolicity is concerned, we only need to consider the rc term as it will contain the

highest derivatives of the variation of g. In particular, we recall the following formula

from [7] pg. 79

−2[D(rc)(h)]jk = ∆hjk + gpq (∇j∇qhpq −∇j∇qhpk −∇k∇qhpj) +R(h)

where now we have grouped all of the lower order terms together into R(h). Fix ∇̃

a torsion-free connection on M . For instance we could take ∇̃ = g∇(0). Now define
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the vector field

W k = gpq
(
Γk

pq − Γ̃k
pq

)
and consider the differential operator

P (g) := LW g

The calculation in ([7] pg. 80) shows that

σ[D(−2 rc +P )](ζ)(h) = |ζ|2 h (6.2)

Now let us set up the gauge-fixing procedure for the Yang-Mills flow. We note that

above we found that by adding a certain Lie derivative of the metric to the Ricci flow

equation (which can be accounted for by a diffeomorphism flow), it was equivalent to

a parabolic equation. We will follow the exact same procedure in showing that the

Yang-Mills flow is equivalent to a parabolic system, now using gauge transformations

of the principal bundle. In particular, paramaterize a family of connections A(t) as

A(t) = A0 + at (6.3)

where at ∈ Ω1(g). Consider the function

βt = d∗Aat ∈ Ω0(g) (6.4)

Then there is the computation

− (d∗AFA + dβ) = − (d∗AdAA + dAd∗Aa)

= −∆Aa
(6.5)

which is a strictly elliptic operator acting on the one-form a. Motivated by this

72



discussion we define the following gauge-fixed flow

d

dt
gij = − 2 rcij +ηij + LW g

d

dt
A = − d∗A,φ∗(g)FA + dβ

g(0) = g0

A(0) = A0

(6.6)

where W and β satisfy

W k = gpq
(
Γk

pq − Γ̃k
pq

)
β = d∗A (A(t)− A0)

(6.7)

and φt : M → M is the unique one-parameter family of diffeomorphisms satisfying

∂

∂t
φt = −W (t)

φ0 = IdM

(6.8)

What is immediately clear from equations (6.2) and (6.5) is that (6.6) is a strictly

parabolic system of equations, and as such has unique short-time existence of solu-

tions on compact manifolds. Thus there exists ε > 0 so that the solution (g(t), A(t))

to (6.6) exists on [0, ε). Let g(t) = φ∗t g(t). Analagous to the diffeomorphism gauge

φ, let ut : E → E to be the unique one-parameter family of gauge transformations

so that A(t) = ut(A(t)) satisfies

d∗
A

(
∂

∂t
A(t)

)
= 0

u0 = IdE

(6.9)

This is the Coloumb gauge condition for the time-varying connection B(t), and its

existence is proved in [8]. Indeed it is equivalent to solving an ODE over M .
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We claim that the pair (g, A) is a solution to RYM flow. First we will show that

g satisfies the right equation. Since the crux of this calculation is the removal of

the Lie derivative term in the gauge-fixed flow, we briefly introduce the shorthand

H = −2 rc +η. We may now calculate

∂

∂t
g(t) =

∂

∂t
(φ∗t g(t))

= φ∗t

(
∂

∂t
g(t)

)
+

∂

∂s
|s=0

(
φ∗t+sg(t)

)
= φ∗t

(
H(g(t)) + LW (t)g(t)

)
+

∂

∂s
|s=0

[(
φ−1

t ◦ φt+s

)∗
φ∗t g(t)

]
= H (φ∗t g(t)) + φ∗t

(
LW (t)g(t)

)
− L[(φ−1

t )∗W (t)]φ
∗
t g(t)

= H(g(t))

(6.10)

Note that since η is a well-defined tensor on the base manifold M , this formula

holds independent of any gauge-transformation we may apply to the time-varying

connection A. Next we calculate

∂

∂t
A(t) =

∂

∂t
utA(t)

= −
(

d∗
A
FA + dA

(
uβu−1 +

∂u

∂t
u−1

)) (6.11)

Using the Coloumb gauge condition, taking d∗
A

of the equation above yields 0, and

since d∗
A
d∗

A
FA = 0, this means that we have d∗

A
dA

(
uβu−1 + ∂u

∂t
u−1
)

= 0, which

implies that dA

(
uβu−1 + ∂u

∂t
u−1
)

= 0 since M is compact. Thus we see that indeed

A(t) satisfies the required equation, and so we have shown short-time existence of

solutions to RYM flow.
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Now we must show uniqueness. To do this we will use the important fact that the

diffeomorphisms φt satisfy the harmonic map heat flow with respect to the pulled-

back metric φ∗g(t) ([7] pg. 89), i.e.

d

dt
φt = ∆g(t),egφt

φ0 = IdM

(6.12)

Note then that if we push-forward a solution to Ricci Yang-Mills flow by this family

of diffeomorphisms, then the metric satisfies its part of the gauge-fixed flow.

Next we point out that the gauge transformation of the bundle obeys a parabolic

equation as well. In particular, given a solution A(t) of Yang-Mills flow, let u(t) be

the unique solution to the parabolic equation
d

dt
u = ∆A(t)u

u0 = IdE

(6.13)

Then the family of connections u−1
t A(t) satisfy the Yang-Mills component of the

gauge-fixed flow. Using these facts we can prove uniqueness of solutions as fol-

lows. Suppose (gi(t), Ai(t)) are two solutions to Ricci Yang-Mills flow with the

same initial condition g0, A0. One can construct the gauge transformations as above

φi(t), ui(t) with respect to these two solutions. As noted above, the resulting pairs

(gi(t), Ai(t)) =
(
(φi(t))∗ gi(t), u

−1
i (t)Ai(t)

)
are both solutions to the gauge-fixed flow

with the same initial conditions. Since this is a strictly parabolic system, these so-

lutions are unique. But given these solutions, we may reinterpret φi(t) and ui(t)

as above as solutions to ODE with respect to the (same) pair (A(t), g(t)). Thus

φ1(t) = φ2(t) and u1(t) = u2(t) for all time and so the original solutions to Ricci

Yang-Mills flow are equal for all time.
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6.2 Derivative Estimates and Existence Obstructions

In this section we will derive derivative estimates for the curvature tensor for solutions

to RYM-flow and use them to prove a compactness theorem for such solutions. Our

estimates are the basic analogue of the Bernstein-Shi estimates for Ricci flow, and

the method we use to prove them is directly analagous to the technique used in [7].

We also point out that although we have stated the results for solutions to RYM

flow, they in fact hold for the different renormalizations of RYM flow as well. To

see this one simply notes that the proofs below only use that the curvature and

its derivatives obey evolution equations with certain orders of nonlinearity. For a

solution to a renormalization of RYM flow the curvature obeys an evolution equation

with the same nonlinearity as RYM flow, and thus the proof will apply in these cases

as well.

Theorem: 6.2. Let (E, G(t)) be a solution to RYM-flow on a compact principal

bundle E. For each α > 0 and every m ∈ N there exists a constant Cm depending

only on m, n and max{α, 1} such that if

|Rm| ≤ K for all x ∈ Mn and t ∈
[
0,

α

K

]
then

|∇m Rm| ≤ CmK

tm/2
for all x ∈ Mn and t ∈

(
0,

α

K

]
Remark:. We note that one does not actually require that E is compact, instead we

merely require that the maximum principle with respect to the time varying metrics

G(t) must hold on E. This is true for all of the results in this section.
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Proof. We first recall using lemma 2.3 that both A∇F and F ∗2 are bounded by

|Rm|, so that the assumption |Rm| ≤ K implies
∣∣ A∇F

∣∣ ≤ K and |F |2 ≤ K. Thus

an easy consequence of proposition 5.8 is

d

dt
|Rm|2 = ∆ |Rm|2 − 2 |∇Rm|2 + F ∗ ∇Rm ∗Rm + Rm∗3

≤ ∆ |Rm|2 − 2 |∇Rm|2 + C |∇Rm| |F | |Rm|+ C ′ |Rm|3

≤ ∆ |Rm|2 − |∇Rm|2 + C ′′ |Rm|3

(6.14)

So let us consider the case m = 1. Proposition 5.9 gives

d

dt
|∇Rm|2 = ∆ |∇Rm|2 − 2

∣∣∇2 Rm
∣∣2 + F ∗ ∇2 Rm ∗∇Rm

+ Rm ∗∇Rm∗2 +F ∗ Rm ∗Rm ∗∇Rm

≤ ∆ |∇Rm|2 −
∣∣∇2 Rm

∣∣2 + c1 |Rm| |∇Rm|2 + c2 |Rm|4

(6.15)

We now define

Z(x, t) := t |∇Rm|2 + β |Rm|2 (6.16)

where β is a constant which will be determined below. Using 6.14 and 6.15 we get

the estimate

d

dt
Z ≤ ∆Z + (1 + c1t |Rm| − β) |∇Rm|2 + c2t |Rm|4 + C3β |Rm|3

Now, using that |Rm| ≤ K for all t ∈ [0, α/K] we have

d

dt
Z ≤ ∆Z + (1 + c1α− β) |∇Rm|2 + (c2α + C ′′β) K3

Choose β ≥ (1 + c1α), and we then have

d

dt
Z ≤ ∆Z + c4 (β + α) K3
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Thus using the parabolic maximum principle we conclude

sup
x∈M

Z(x, t) ≤ βK2 + c4 (α + β) K3t ≤ (1 + c4(α + β)α) K2 ≤ C2
1K

2

where C1 depends only on n and max{α, 1}. Thus

|∇Rm| ≤
√

Z

t
≤ C1K

t1/2
for 0 < t ≤ α

K

Now we proceed by induction, assuming we have the required estimate on |∇j Rm|

for all 1 ≤ j < m. We first make a basic estimate on the evolution of
∣∣∇k Rm

∣∣2 , 1 ≤

k ≤ m using proposition 5.9.

d

dt

∣∣∇k Rm
∣∣2 = ∆

∣∣∇k Rm
∣∣2 − 2

∣∣∇k+1 Rm
∣∣2 + F ∗ ∇k+1 Rm ∗∇k Rm

+
k∑

j=0

∇j Rm ∗∇k−j Rm ∗∇k Rm

≤ ∆
∣∣∇k Rm

∣∣2 − ∣∣∇k+1 Rm
∣∣2

+ C
k∑

j=0

∣∣∇j Rm
∣∣ ∣∣∇k−j Rm

∣∣ ∣∣∇k Rm
∣∣

≤ ∆
∣∣∇k Rm

∣∣2 − ∣∣∇k+1 Rm
∣∣2

+ C

(
K
∣∣∇k Rm

∣∣2 +
K2

tk/2

∣∣∇k Rm
∣∣)

≤ ∆
∣∣∇k Rm

∣∣2 − ∣∣∇k+1 Rm
∣∣2 + CK

(∣∣∇k Rm
∣∣2 +

K2

tk

)

(6.17)

where in the second to last line we used the inductive hypothesis and the estimate

|Rm| ≤ K. This estimate is exactly of the form given in [7] line 7.5 pg. 229. The

inductive proof now follows precisely as there using this estimate.
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Corollary: 6.3. Let (E, G(t)) be a solution to RYM flow on a compact principal

bundle E. If there exist β > 0 and K > 0 so that

|Rm(x, t)| ≤ K for all x ∈ M and t ∈ [0, T ] (6.18)

where T > β/K then for each m ∈ N there exists a constant Cm depending only on

m and min{β, 1} so that

|∇m Rm(x, t)| ≤ CmK1+m/2 for all x ∈ Mn and t ∈
[
min{β, 1}

K
, T

]
Proof. Let β′ = min{β, 1}. Fix a time t0 ∈ [β′/K, T ]. Translate time so that the flow

starts at t0 − β′/K. In fact, by changing notation we may assume that t0 = β′/K.

Note that the curvature is still bounded by K up to time t0, so applying theorem 6.2

with α = β′ we get constants Cm depending only on m so that

|∇m Rm(x, t)| ≤ CmK

tm/2
(6.19)

for all x ∈ M and t ∈ (0, β′/K]. So, for t ∈
[

β′

2K
, β′

K

]
we have

tm/2 ≥ β′m/22−m/2K−m/2 (6.20)

so that in particular we find

|∇m Rm(x, t0)| ≤
(

2m/2Cm

β′m/2

)
K1+m/2 for all x ∈ M (6.21)

and since t0 ∈ [β′/K, T ] was arbitrary the result follows.

Proposition: 6.4. Let (E, G(t) be a solution to RYM flow on a compact manifold,

and fix a background metric G and connection ∇. If there exists K > 0 so that

|Rm(x, t)|G ≤ K for all x ∈ E and t ∈ [0, T ) (6.22)

then for every m ∈ N there exists a constant Cm depending on m, K, T,G0 and (G,∇)

so that ∣∣∇m
G(x, t)

∣∣
G
≤ Cm for all x ∈ E and t ∈ [0, T ) (6.23)
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Proof. Since E is compact and the metric G and connection ∇ are fixed it suffices

to show the bound

|∂mG(x, t)| ≤ Cm (6.24)

in a coordinate chart. First we need the following lemma ([7] lemma 6.49).

Lemma: 6.5. Let Mn be a closed manifold. For 0 ≤ t < T ≤ ∞ let g(t) be a smooth

one-parameter family of metrics on Mn. If there exists a constant C < ∞ so that∫ T

0

∣∣∣∣ ddt
g(x, t)

∣∣∣∣
g(t)

dt ≤ C (6.25)

for all x ∈ M then

e−Cg(x, 0) ≤ g(x, t) ≤ eCg(x, 0) (6.26)

for all x ∈ M and t ∈ [0, T ). Furthermore, as t ↗ T the metrics g(t) converge

uniformly to a continuous metric g(T ) such that for all x ∈ M

e−Cg(x, 0) ≤ g(T ) ≤ eCg(x, 0) (6.27)

Using this and our assumption of bounded curvature it is clear that we have

uniform pointwise upper and lower bounds for the metric G(t) on [0, T ). To estimate

the first derivatives of the metric we write∣∣∣∣ ddt

(
∂

∂xi
Gjk

)∣∣∣∣ = |∂ Rm|

= |∇Rm +Γ ∗ Rm|

≤ |∇Rm|+ CK |Γ|

(6.28)

Using our assumed curvature bound. Next, using corollary 6.3 we see that the

covariant derivatives of the curvature are bounded (here the constant depends on

T ). Thus we may bound ∣∣∣∣ ddt
Γ

∣∣∣∣ = |∇Rm| ≤ C (6.29)
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so that we can conclude that Γ is bounded on our finite time interval. Using these

facts in (6.28) clearly gives a bound on the time derivative of ∂
∂xi Gjk and thus we

can conclude a bound on this derivative on [0, T ). All of the higher-order derivative

bounds are similar, and the result follows.

Proposition: 6.6. Let G0 be a bundle metric on E → M a principal bundle. Then

Ricci Yang-Mills flow (and its normalizations) has a unique solution G(t) on a max-

imal time interval 0 ≤ t < T ≤ ∞. Moreover, if T < ∞ then

lim
t↗T

(
sup
x∈E

|Rm(x, t)|
)

= ∞ (6.30)

Proof. First we will show that

lim sup
t↗T

sup
x∈E

|Rm(x, t)| = ∞ (6.31)

First by proposition 6.1 we know that the solution exists for a short time. Suppose

there exists K < ∞ so that supt∈[0,T ) supx∈E |Rm(x, t)| ≤ K. Using lemma 6.5 we

have uniform convergence to a continuous metric G(T ). Using proposition 6.4 we

have uniform bounds on all of the coordinate derivatives of G. This allows us to

conclude that G(t) → G(T ) in any Cm norm. Since G(T ) is now smooth, we can

apply proposition 6.1 to conclude that a unique solution to Ricci Yang-Mills flow

exists with initial condition G(T ), which contradicts maximality of T .

Now we must show that in fact not just the lim sup but in fact the supremum of

curvature goes to infinity. Suppose not, then there exists K0 < ∞ and a sequence of

times ti ↗ T so that supx∈E |Rm(x, ti)| ≤ K0. In the next proposition we will show

the existence of a universal constant c so that

sup
x∈E

|Rm(x, t)| ≤ 2 sup
x∈E

|Rm(x, ti)| ≤ 2K0 (6.32)
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for any time t satisfying ti ≤ t ≤ {T, ti +
c

K0
}. Since ti ↗ T it is clear that for i large

enough ti + c
K0
≥ T , so that

sup
ti≤t<T

sup
x∈E

|Rm(x, t)| ≤ 2K0 (6.33)

which contradicts the claim above, and so the proposition follows.

Proposition: 6.7. There exists c > 0 depending only on the dimension of the total

space E so that if (E, G(t)), t ∈ [0, T ] is a solution to Ricci Yang-Mills flow on a

compact manifold and

M(t) := sup
x∈E

|Rm(x, t)|G(x,t)

then

M(t) ≤ 2M(0) for all 0 ≤ t ≤ min

{
T,

c

M(0)

}

Proof. A simple consequence of proposition 5.8 is that

d

dt
|Rm| = ∆ |Rm|2 − 2 |∇Rm|2 + F ∗ ∇Rm ∗Rm + Rm∗3

≤ ∆ |Rm|2 − |∇Rm|2 + C |Rm|3

where the constant C depends only on dimension. Thus by the maximum principle

M(t) satisfies

dM

dt
≤ CM3

2M
=

C

2
M2

This implies that

M(t) ≤ 1
1

M(0)
− C

2
t

(6.34)

Thus M(t) ≤ 2M(0) as long as 0 ≤ t ≤ min{T, c/M(0)}.
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6.3 Compactness of Ricci Yang-Mills Flow Solutions

In this section we will prove a compactness result for solutions to Ricci Yang-Mills

flow. Our proof is a straightforward modification of the case of regular Ricci flow.

We use our Bernstein-Bando-Shi type estimates from theorem 6.2 to reduce to the

case where one has a uniform bound on curvatures and their derivatives, and then

apply a convergence result from [15]. We start with the basic definitions of evolving

Riemannian manifolds and a convergent sequence of such.

Definition: 6.8. Given M a smooth manifold and g(t) a smooth 1-parameter family

of complete metrics on M , p ∈ M and F a local frame centered at p, we call the

grouping (M, g(t), p, F ) an evolving complete marked Riemannian manifold. If the

metric does not vary this is simply a complete marked Riemannian manifold.

Definition: 6.9. We say that a sequence Mi = {Mi, gi(t), pi, Fi} of evolving com-

plete marked Riemannian manifolds converges to the evolving complete marked Rie-

mannian manifold M = {M, g(t), p, F} if there exists a sequence of open sets Ui in

M containing p and a sequence of diffeomorphisms φi mapping Ui to Vi ⊂ Mi and

mapping p to pi and F to Fi such that any compact set in M eventually lies in all

Ui and the pullbacks φ∗(gi) converge to g uniformly on compact sets in M × (α, ω)

together with all of their derivatives.

Theorem: 6.10. Compactness Theorem Let

{Ei, Gi(t), pi, Fi : i ∈ N}

be a sequence of connected complete solutions to Ricci Yang-Mills flow existing for

t ∈ (α, ω) where −∞ ≤ α < 0 < ω ≤ ∞. Each solution has a fixed origin pi ∈ Mi

83



and a frame Fi at pi which is orthonormal with respect to Gi(0). Suppose there exists

K < ∞ such that

sup
Ei×(α,ω)

|Rm| ≤ K

and δ > 0 such that:

injGi(0)
(pi) ≥ δ for all i ∈ N

Then there exists a subsequence which converges in the pointed category to a complete

solution

{E∞, G∞(t), p∞, F∞}

to Ricci Yang-Mills flow on (α, ω) with the same bounds on curvature and injectivity

radius.

Proof. First of all by a diagonalization argument it suffices to prove the case where

α > −∞ and ω < ∞. So, for fixed ε > 0, using our assumption of uniformly bounded

curvature, theorem 6.2 gives us uniform C0 bounds on covariant derivatives of Rm

of arbitrarily high order on (α + ε, ω). So if we can prove the theorem for sequences

with uniform Ck bounds on curvature then we can do another diagonalization as

ε → 0 to conclude the theorem. Thus we make this assumption.

Fix a sequence (Ei, Gi, pi, Fi) of complete marked solutions to Ricci Yang-Mills

flow satisfying the hypotheses of the theorem as well as uniform Ck bounds on

curvature. We will use the following theorem ([15] Theorem 2.3).

Theorem: 6.11. Given any sequence Mi = (Mi, gi, pi, Fi) of complete marked Rie-

mannian manifolds such that there exist constants Cm, m ≥ 0 independent of i so

that

| ∇gi
m rm(gi)| ≤ Cm
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and δ > 0 independent of i so that

injgi(t)
(pi) ≥ δ

there exists a convergent subsequence.

In particular, this shows that the slices at time 0 contain a subsequence which

converges to a metric G on a manifold (E, p). Recall that this convergence means

that there exist a sequence of open sets {Ui} in M containing p and a sequence

of maps Fi : Ui → Vi ⊂ Mi such that G̃i := F ∗
i (gi) converges uniformly in C∞

to G. Note that these pullbacks G̃i still have uniform bounds on all derivatives of

curvatures and are defined on (α, ω), whereas G is only defined at time 0. We now

want to show that we have uniform bounds on the covariant derivatives of G̃i taken

with respect to the metric G to conclude the existence of a convergent subsequence

on this new manifold. We sketch the proof here for solutions to Ricci Yang-Mills

flow, as it is identical to the proof of lemma 2.4 in [15].

Lemma: 6.12. Let (E, G) be a principal bundle with bundle metric, K a compact

subset of E and Gi a collection of solutions Ricci Yang-Mills flow defined on neigh-

borhoods of K × [a, b] where 0 ∈ [a, b]. Let ∇ denote the covariant derivative with

respect to G and ∇i denote the covariant derivative with respect to Gi.

Suppose that the metrics Gi are uniformly equivalent to G at t = 0 on K and

that the covariant derivatives of Gi with respect to G are uniformly bounded at t = 0

on K. Finally assume that the covariant derivatives of the curvatures of Rmi with

respect to Gi are uniformly bounded on K× [a, b]. Then the metrics Gi are uniformly

equivalent to G on K × [a, b], and the covariant derivatives of Gi with respect to G

are uniformly bounded on K × [a, b].
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Proof. We have assumed the bound

cG(V, V ) ≤ Gi(V, V ) ≤ CG(V, V )

at time t = 0. Using the equation

d

dt
Gi(V, V ) = −2

(
RcH

i + RcC
i

)
(V, V )

and the bound

|Rci(V, V )| ≤ C |Gi(V, V )|

we get ∣∣∣∣ ddt
ln Gi(V, V )

∣∣∣∣ ≤ C

which allows us to extend the bound on ln Gi(V, V ) at t = 0 to the finite time interval

[a, b]. The derivative bounds are the same, simply bounding the time derivative using

our assumption of uniform bounds on all derivatives of curvature. See [15] pg. 550

for more detail.

Applying this lemma to the sequence of metrics G̃i above it is clear that the

metric G is defined on [a, b] and is a solution to Ricci Yang-Mills flow. In particular

it is clear that the infinitesimal isometries of the K-action are preserved under this

convergence process, so that the limiting space still retains the structure of a principal

K-bundle.
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Chapter 7

Convergence Theorem

7.1 Estimating the Volume-Normalized Equation for n = 4

Fix n = 4. Consider the tensor T = RcH + RcC −1
4
rGH + 1

8
|F |2 GH . Note that in

this dimension V = T + 1
4
δr. We begin by computing the evolution of |T |2. We will

denote the 1-form that represents TC , i.e. 1
2
d∗F , by ω. This is to avoid any confusion

about taking the inner products of one forms or symmetric matrices. In particular

note
∣∣TC

∣∣2 = 2 |ω|2. We will make use the following convenient shorthand notation.

Definition: 7.1. In the calculations below, the letter Q will refer to any universal

linear expression using the tensors rm and A∇F . We will refer to both of these as

terms of low order

We will often use the fact that

◦
η = 2

(
◦
rc− T

)
= Q− 2T
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Proposition: 7.2. A solution to volume renormalized RYM flow with n = 4 satisfies

d

dt
|d∗F |2 = ∆ |d∗F |2 − 2

∣∣ A∇d∗F
∣∣2

+ 4
〈

g∇jTli θF
jl, d∗F θ

i

〉
+

4

n

〈
g∇jr θF

j
i , d∗F θ

i

〉
+ 2

(
θF · ρF · d∗ Fρ

)
i
d∗F θ

i + Q ∗ T ∗2 + V ∗ T ∗2

(7.1)

Proof. We start with the calculation

d

dt
|d∗F |2 =

d

dt
gijd∗Fid

∗Fj

= − gimġmng
njd∗Fid

∗Fj + 2

〈
d

dt
d∗F, d∗F

〉

= V ∗ T ∗2 + 2

〈
d

dt
d∗F, d∗F

〉

Now using proposition 5.22 with n = 4 and the Bochner formula we see

2

〈
d

dt
d∗F, d∗F

〉
= 2 〈∆dd

∗Fi, d
∗Fi〉+ 4

〈
g∇jVli θF

jl, d∗F θ
i

〉
+ 2 ( θF · ρF · d∗F ρ)i d

∗F θ
i + Q ∗ T ∗2

= 2 〈∆d∗F, d∗F 〉+ 4
〈

g∇jVli θF
jl, d∗F θ

i

〉
+ 2 ( θF · ρF · d∗F ρ)i d

∗F θ
i + Q ∗ T ∗2

= ∆ |d∗F |2 − 2
∣∣ A∇d∗F

∣∣2
+ 4

〈
g∇jTli θF

jl, d∗F θ
i

〉
+

4

n

〈
g∇jr θF

j
i , d∗F θ

i

〉
+ 2 ( θF · ρF · d∗F ρ)i d

∗F θ
i + Q ∗ T ∗2

Plugging this into the above calculation gives the result.
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Proposition: 7.3. A solution to volume-normalized Ricci Yang-Mills flow with n =

4 satisfies

d

dt
|T |2 = ∆ |T |2 − 2 |∇T |2 + 3 tr

(
FTHFTH

)
+ 4

〈
θF · ρF · ωρ, ωθ

〉
− 2

〈
θF · ρF · ωθ, ωρ

〉
+

1

2
|F |2 |ω|2 −

〈
θF, ρF

〉
〈ωθ, ωρ〉

−
〈
glm ( g∇lr) F θ

im, ωiθ

〉
+ δr ∗ rm ∗T + Q ∗ T ∗2 + T ∗3

(7.2)

Proof. We start with the calculation

d

dt
|T |2 =

d

dt
GαδGβεTαβTδε

= − 2GαµĠµνG
νδGβεTαβTδε + 2

〈
Ṫ , T

〉
= 4V αδGβεTαβTδε + 2

〈
Ṫ , T

〉
= T ∗3 + Q ∗ T ∗2 + 2

〈
Ṫ , T

〉
(7.3)

Now we calculate using the fact that T = S − 1
4
rGH . Thus using proposition 5.21

and the fact that T is traceless we see that

2
〈
Ṫ , T

〉
= 2

〈
d

dt

(
S − 1

4
rGH

)
, T

〉

= 2

〈
∆LV − 1

4
|F |2 V H +

1

2
rV H , T

〉

= 2 〈∆LV, T 〉 − 1

2
|F |2

∣∣TH
∣∣2

+ Q ∗ T ∗2

(7.4)
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First we simplify

2 〈∆LV, T 〉 = 2 〈∆V +R(V ), T 〉

= 2

〈
∆

(
T +

1

4
(δr)GH

)
, T

〉

+ 2

〈
R
(

T +
1

4
(δr)GH

)
, T

〉

= ∆ |T |2 − 2 |∇T |2 +
1

2

〈
∆(δrGH), T

〉
+ 2 〈R(T ), T 〉+

1

2

〈
R((δr)GH), T

〉

(7.5)

So, plugging 7.4 - 7.5 into 7.3 gives

d

dt
|T |2 = ∆ |T |2 − 2 |∇T |2 + 2 〈R(T ), T 〉 − 1

2
|F |2

∣∣TH
∣∣2

+
1

2

〈
∆
(
δrGH

)
, T
〉

+
1

2

〈
R
(
δrGH

)
, T
〉

+ Q ∗ T ∗2 + T ∗3

(7.6)

Now, using theorem B.3 we compute that

1

2

〈
∆
(
δrGH

)
, T
〉

=
1

2

〈
g∆
(
δrGH

)
− 1

2
(δr)η, TH

〉
+
〈
2δr(ωθ)− g∇l

(
δrGH

)
in θF

nl, ωθ

〉
= − 1

4
δr
〈
◦
η, TH

〉
−
〈
glm( g∇lr)F

θ
im, ωiθ

〉
+ Q ∗ T ∗2

= −
〈
glm( g∇lr)F

θ
im, ωiθ

〉
+ δr ∗ rm ∗T + Q ∗ T ∗2

Similarly using lemma 2.3 we have

1

2

〈
R((δr)GH), T

〉
= − 1

4
δr
〈
◦
η, TH

〉
= δr ∗ rm ∗T + Q ∗ T ∗2
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Next we break 2 〈R(T ), T 〉 into its parts:

2 〈R(T ), T 〉 = 2 〈2R(T )− Rc ·T − T · Rc, T 〉

Now using lemma 2.3 we compute

4 〈R(T ), T 〉 = 4RijklTilTjk + 4RiθkρTiρTθk + 4RθjρlTθlTjρ

+ 4RijθρTiρTjθ + 4RθρklTθlTρk

= 3 tr
(

Fθ · TH · Fθ · TH
)

+ 4 θF k
m

ρFm
i ωiρωkθ

− 2 θFim
ρFm

j ωjθωiρ + Q ∗ T ∗2

= 3 tr(FTHFTH) + 4
〈

θF · ρF · ωρ, ωθ

〉
− 2

〈
θF · ρF · ωθ, ωρ

〉
+ Q ∗ T ∗2

Next using lemma 2.3 we simplify

−2 〈Rc ·T, T 〉 = − 2 Rcj
i TjkTik − 2 Rcj

i TjθT
i
θ

− 2 Rciθ TθjTij − 2 Rcθi TijT
j
θ − 2 Rcθρ T θ

i Tρi

=
〈
η · TH , TH

〉
+ η · ωθ · ωθ −

1

2

〈
θF, ρF

〉
〈ωθ, ωρ〉+ Q ∗ T ∗2 + T ∗3

=
1

4
|F |2

∣∣TH
∣∣2 +

1

4
|F |2 |ω|2 − 1

2

〈
θF, ρF

〉
〈ωθ, ωρ〉+ Q ∗ T ∗2 + T ∗3

The inner product −2 〈T · Rc, T 〉 is the same since all the matrices involved are

symmetric. Plugging the above simplifications into 7.6 gives the result.

Because of the presence of the ∇r ·F ·ω term in the evolution of T it is necessary

to study the evolution of the following slightly modified quantity

Zc := |T |2 − c |ω|2 (7.7)

where c < 2. Clearly these quantities bound |T |2 up to a universal constant depend-

ing on c.
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Proposition: 7.4. A solution to volume-renormalized Ricci Yang-Mills flow with

n = 4 satisfies

d

dt
Zc ≤ ∆Zc + L0(T

H) + L1(T
C) + δr ∗ rm ∗T + Q ∗ T ∗2 + T ∗3 (7.8)

where

L0(T
H) = tr

(
θF · θF · TH · TH + 2 θF · TH · θF · TH

)
+

(
c

4(2− c)

)
|F |2

∣∣TH
∣∣2

L1(ω) = −
〈

θF, ρF
〉
〈ωθ, ωρ〉+

c2 − 4c

4

∣∣ θFijωθk

∣∣2
+ 3

(
−1 + c− 1

4
c2

)〈
θF · ρF · ωρ, ωθ

〉
+

(
−1 + c− c2

4

)〈
ρF · θF · ωρ, ωθ

〉
(7.9)

Proof. To compute the evolution of Zc, first let us reinterpret the result of proposition

7.2 using ω = 1
2
d∗F . It reads

d

dt
|ω|2 = ∆ |ω|2 − 2

∣∣ A∇ω
∣∣2

+ 2
〈

g∇jTli θF
jl, ωθi

〉
+

1

2

〈
g∇jr θF

j
i , ωθi

〉
+ 2

〈
θF · ρF · ωρ, ωθ

〉
+ Q ∗ T ∗2 + T ∗3

(7.10)
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Combining this with the result of proposition 7.3 gives

d

dt
Z = ∆ |T |2 − 2 |∇T |2 − c∆ |ω|2 + 2c

∣∣ A∇ω
∣∣2

+ 3 tr
(
FTHFTH

)
+ (4− 2c)

〈
θF · ρF · ωρ, ωθ

〉
− 2

〈
θF · ρF · ωθ, ωρ

〉
+

1

2
|F |2 |ω|2 −

〈
θF, ρF

〉
〈ωθ, ωρ〉

+
( c

2
− 1
) 〈

glm ( g∇lr) θFim, ωiθ

〉
− 2c

〈
g∇jTli θF

jl, ωiθ

〉
+ Q ∗ T ∗2 + V ∗ T ∗2

= ∆Z − 2 |∇T |2 + 2c
∣∣ A∇ω

∣∣2 + 3 tr
(
FTHFTH

)
+ (4− 2c)

〈
θF · ρF · ωρ, ωθ

〉
− 2

〈
θF · ρF · ωθ, ωρ

〉
+

1

2
|F |2 |ω|2 −

〈
θF, ρF

〉
〈ωθ, ωρ〉

+
( c

2
− 1
) 〈

glm g∇lr θFim, ωθi

〉
− 2c

〈
g∇jTli θF

jl, ωiθ

〉
+ Q ∗ T ∗2 + T ∗3

(7.11)

First we note using lemma B.1 that

3 tr
(

θFTH
θFTH

)
− 2 |∇θTij|2 = tr

(
θF θFTHTH + 2 θFTH

θFTH
)

(7.12)
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Now using parts of −2 |∇T |2 we make the bound

2c
∣∣ A∇ω

∣∣2 − 2 |∇iTθj|2 − 2 |∇iTjθ|2

= 2c | g∇ω|2 − 4

∣∣∣∣ A∇iωθj +
1

2
( θFTH)ik

∣∣∣∣2
= 2c

∣∣ A∇ω
∣∣2 − 4

∣∣ A∇ω
∣∣2 − 4

〈
A∇ωθ, θFTH

〉
− Tr

∣∣F · TH
∣∣2

≤ (4ε + 2c− 4)
∣∣ A∇ω

∣∣2 +
1

ε
Tr
∣∣F · TH

∣∣2 − Tr
∣∣F · TH

∣∣2
≤
(

2c

4− 2c

)
Tr
∣∣F · TH

∣∣2
=

(
c

4(2− c)

)
|F |2

∣∣TH
∣∣2 + Q ∗ T ∗2 + T ∗3

(7.13)

for ε = 4−2c
4

. Next we will rewrite the the term −2c
〈

g∇jTli θF
jl, ωθ

〉
using part of

−2 |∇T |2

−2

∣∣∣∣ g∇iT
H
jk −

1

2

(
θFijωθk + ρFikωρj

)∣∣∣∣2 − 2c
〈

g∇jTli θF
jl, ωθi

〉
= − 2 | g∇iTjk|2 + 2

〈
g∇iTjk,

θFijωθk + ρFikωρj

〉
− 1

2

∣∣ θFijωθk + ρFikωρj

∣∣2
− 2c

〈
g∇jTli θF

jl, ωθi

〉
= − 2

∣∣∣∣ g∇iTjk −
2− c

4

(
θFijωθk + ρFikωρj

)∣∣∣∣2 +
c2 − 4c

8

∣∣ θFijωθk + ρFikωρj

∣∣2
(7.14)

Now we want to bound the ∇r · F · ω term using the first term above. In particular

we will only use the trace component of that inner product, and use the equation
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g div TH = 1
4
∇r + θFlkω

l
θ to estimate

−2

∣∣∣∣ g∇iTjk −
2− c

4

(
θFijωθk + ρFikωρj

)∣∣∣∣2 +
( c

2
− 1
) 〈

g∇lr,
θF i

l ωθi

〉

≤ − 2

∣∣∣∣ 1

n + 1

[(
g div TH

)
k
gij +

(
g div TH

)
j
gik

]
− 2− c

4(n + 1)

(
θFlkω

l
θgij + ρFljω

l
ρgik

)∣∣∣∣2
+
( c

2
− 1
) 〈

g∇lr,
θF i

l ωθi

〉
= − 2

∣∣∣∣ 1

4(n + 1)
[∇krgij +∇jrgik] +

2 + c

4(n + 1)

(
θFlkω

l
θgij + ρFljω

l
ρgik

)∣∣∣∣2
+
( c

2
− 1
) 〈

g∇lr,
θF i

l ωθi

〉
= − 1

20
|∇r|2 − 2 + c

2(n + 1)

〈
g∇lr,

θF i
l ωθi

〉
− (2 + c)2

8(n + 1)2

∣∣ θFlkω
l
θgij + ρFljω

l
ρgik

∣∣2
+
( c

2
− 1
) 〈

g∇lr,
θF i

l ωθi

〉
= − 1

20
|∇r|2 +

4c− 12

10

〈
g∇lr,

θF i
l ωθi

〉
− (2 + c)2

200

∣∣ θFlkω
l
θgij + ρFljω

l
ρgik

∣∣2
≤ − (12− 4c)2

20

〈
θF · ρF · ωρ, ωθ

〉
− (2 + c)2

200

∣∣ θFlkω
l
θgij + ρFljω

l
ρgik

∣∣2
=

(
−7 + 5c− 3

4
c2

)〈
θF · ρF · ωρ, ωθ

〉
(7.15)

Finally let us extract and the rest of the terms from −2 |∇T |2 using lemma B.1.

First we have

−2 |∇iTθρ|2 = − 1

2
|( ρF · ωθ + θF · ωρ)|2

= θF · θF · ωρ · ωρ +
〈

θF · ρF · ωθ, ωρ

〉
= − 1

4
|F |2 |ω|2 +

〈
θF · ρF · ωθ, ωρ

〉
+ Q ∗ T ∗2 + T ∗3

(7.16)
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Next we have

−2 |∇θTρj|2 − 2 |∇θTjρ|2 = − | θF · ωρ|2

= − 1

4
|F |2 |ω|2 + Q ∗ T ∗2 + T ∗3

(7.17)

Finally we simplify

c2 − 4c

8

∣∣ θFijωθk + ρFikωρj

∣∣2 =
c2 − 4c

4

(∣∣ θFijωθk

∣∣2 − 〈 ρF · θF · ωρ, ωθ

〉)
(7.18)

Combining the above estimates allows us to conclude

d

dt
Z ≤ ∆Z + L0(T

H) + L1(ω) + δr ∗ rm ∗T + Q ∗ T ∗2 + V ∗ T ∗2

where

L0(T
H) = tr

(
θF · θF · TH · TH + 2 θF · TH · θF · TH

)
+

(
c

4(2− c)

)
|F |2

∣∣TH
∣∣2

L1(ω) = −
〈

θF, ρF
〉
〈ωθ, ωρ〉+

c2 − 4c

4

∣∣ θFijωθk

∣∣2
+ 3

(
−1 + c− 1

4
c2

)〈
θF · ρF · ωρ, ωθ

〉
+

(
−1 + c− c2

4

)〈
ρF · θF · ωρ, ωθ

〉

Definition: 7.5. We say that a connection A is µ-stable if there exists c < 2 so that

for any W ∈ Sym2 T ∗M and ω ∈
∧1 (g) we have

L0(W ) ≤ − µ |F |2 |W |2

L1(ω) ≤ − µ |F |2 |ω|2
(7.19)

Proposition: 7.6. The standard anti-self-dual SU(2) instanton is stable.
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Proof. The stability condition is a condition that must be satisfied by the curvature of

the bundle at each point. Recall that the curvature of the standard SU(2) instanton

at a point is given by

F = λ
(
dx12 − dx34

)
i + λ

(
dx13 + dx24

)
j + λ

(
dx14 − dx23

)
k

where λ ∈ R≥0 and i, j, k are the standard basis for the imaginary quaternions.

Without loss of generality we may assume that the metric is given by the identity

matrix at our fixed point. Let W be any symmetric two-tensor, i.e.

W = (wij)

A straightforward computation shows that

tr
(

θF · θF ·WH ·WH + 2 θF ·WH · θF ·WH
)

= − 2λ2
∑
i6=j

w2
ij − 4λ2

∑
i6=j

wiiwjj − 3λ2
∑

i

w2
ii

(7.20)

But now we can simplify

−4λ2
∑
i6=j

wiiwjj = − 2λ2
∑

i

(
wii

∑
j 6=i

wjj

)

= 2λ2
∑

i

w2
ii − 2λ2 (tr W )2

≤ 2λ2
∑

i

w2
ii

Using this gives

tr
(

θF · θF ·WH ·WH + 2 θF ·WH · θF ·WH
)

≤ −2λ2
∑
i6=j

w2
ij − λ2

∑
i

w2
ii

≤ −λ2 |W |2

≤ − 1

12
|F |2 |W |2

(7.21)
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Thus we see that for any choice of c < 1
2

the first condition of stability will hold.

Now we turn to the second condition. Fix ω an arbitrary su(2)-valued one-form. For

concreteness fix c = 1
2
. Noting that {F θ, F ρ} = 0 for θ 6= ρ we see

−27

16

〈
θF · ρF · ωρ, ωθ

〉
− 9

16

〈
ρF · θF · ωρ, ωθ

〉
= − 36

16

〈
θF · θF · ωθ, ωθ

〉
− 9

8

∑
θ 6=ρ

〈
θF · ρF · ωρ, ωθ

〉

≤ 9

16

∣∣ θF
∣∣2 |ωθ|2 +

9

16

∑
θ 6=ρ

|Fθ · ωθ|2 + |Fρ · ωρ|2

≤ 9

16
|Fθ|2 |ωθ|2 +

9

4

∑
θ

|Fθ · ωθ|2

=
18

16
|Fθ|2 |ωθ|2

Also we compute

−
〈

θF, ρF
〉
〈ωθ, ωρ〉 = − |Fθ|2 |ωθ|2

and

− 7

16

∣∣ θFijωθk

∣∣2 = − 7

16
|Fθ|2 |ωθ|2

and hence it is clear that the second condition of stability holds. Thus for any

choice of c slightly less than 1
2

both conditions of stability will hold, and the result

follows.

7.2 Proof of Main Convergence Theorem

In this section we will prove the main convergence result. Our proof is loosely

modeled on Ye’s result [32] on convergence of Ricci flow assuming certain “stability
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conditions.” Roughly, Ye assumes L2-stability of the Einstein operator, which is

the curvature operator appearing in the evolution of the traceless Ricci tensor. This

assumption implies exponential L2-decay of the traceless Ricci tensor for a short time.

By applying the Moser weak maximum principle, which requires certain delicate

assumptions on the volume and diameter, he bootstraps this decay using Bernstein-

Shi estimates to conclude exponential decay of the C0 norm of the second covariant

derivative of the traceless Ricci tensor. Decay of this form can be integrated over

an arbitrarily large time interval to show a bound on the curvature for all time, and

also continued decay for all time. Though most of the estimates are straightforward,

the overall proof is fairly delicate, due mostly to the fact that only a weak stability

is assumed, and so the Moser weak maximum principle must be used.

Let us describe the hypotheses of theorem 7.9. We have stated the hypotheses to

emulate the “high power of a line bundle” case as much as possible. In particular,

if one had a line bundle L → M satisfying µ-stability, then a sufficiently high power

of the bundle (in other words dropping a sufficiently large constant in front of the

bundle curvature) would satisfy the hypotheses of the theorem. We have repackaged

this idea and phrased it as a sequence of connections with arbitrarily large minimum

of curvature, uniform control over max |F |2 / min |F |2, and also a uniform bound∣∣ A∇F
∣∣ ≤ C |F |.

Now we will describe the proof of theorem 7.9. The assumption of large, stable

bundle curvature F amounts to assuming very fast (on the order of |F |2) C0-decay

of the tensor T . Due to a particular technical problem we will first prove a much

weaker convergence result which in addition to the hypotheses of theorem 7.9 also
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assumes that ||T ||L2 is initially very small, small even depending on the size of the

bundle curvature. We prove this theorem because the proof illustrates the techniques

of proving the main theorem in a more straightforward way.

The proof has two main steps. Roughly, if the base curvature rm stays small

enough with respect to the bundle curvature, then we should have decay of T and

convergence of the Ricci Yang-Mills flow. We first show such a bound on the guar-

anteed short interval of existence of length

[
0, 1

|F |2 C0(M0)

)
. These bounds are very

straightforward ODE estimates. After a time interval of this length, one has the

Bernstein-Shi type derivative estimates available to us. Thus we can exploit the L2-

decay of T and use these estimates and the Sobolev inequality to conclude C0 decay

of |∇2T |. The resulting bound on rm is not good enough without the hypothesis of

very small ||T ||L2 initially (depending on F ).

So, to get around this problem for the main proof we prove a better short-time

existence theorem for the volume-normalized Ricci Yang-Mills flow. Essentially we

show bounds on rm on an interval of the form
[
0, 1

|F |2−δ

)
for some small but universal

(independent of P ) δ > 0. The basic reason that this is possible is because the bundle

curvature |F |2 actually has a lower-order nonlinearity than one expects from Ricci

flow alone. In particular, the highest order term in the evolution

(∣∣∣◦η∣∣∣2) appears with

the negative sign, so that as far as growth is concerned, the nonlinearity is of a lower

order. Once one has this a-priori bound on |F |2 getting bounds on everything else

is straightforward. So, using this short-time existence theorem and the exponential

C0 decay of T , the L2 norm at the time 1

|F |2−δ is arbitrarily small, even with respect
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to powers of P . At this point one can cite the weaker convergence result to conclude

convergence, but we carry out the estimates anyways.

Theorem: 7.7. Let E → (M4, g) be a principal bundle. For fixed µ > 0, Ω > 0

and B > 0 there exists a large N = N(µ, Ω, B, g) > 0 depending on µ, Ω, B and the

base metric g with the following property: if A is a µ-stable connection on E which

satisfies ∣∣∣◦η∣∣∣
C0

+
∣∣∣ g∇◦

η
∣∣∣
C0

+
∣∣∣ g∇2 ◦η

∣∣∣
C0
≤ Ω (7.22)

and

1

B
max

M
|F |2 < |F |2 (x) < B min

M
|F |2 for all x ∈ M (7.23)

and

min
M
|F |2 > N2 (7.24)

and furthermore ∣∣ A∇F
∣∣
C0 < B |F |C0(M0) (7.25)

and finally

||T ||L2(M0) < |F |−7
C0(M0) (7.26)

then the volume normalized Ricci Yang-Mills flow with initial condition G(g, A) exists

for all time and converges to an Einstein-Yang-Mills metric.

Proof. Let

P := min
M
|F | > N

First we describe a set of conditions on the metric which guarantee decay of T .

Our ultimate goal is to show that for certain choices of the constants above, these
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conditions hold for all time. In particular we say that a volume normalized Ricci

Yang-Mills flow satisfies condition α(µ, B, C,N) on [0, τ) if for every t ∈ [0, τ) we

have

1. The connection A(t) is µ-stable

2. The bounds of (7.23) and (7.24) hold for our given B and N .

3. |rm|C0(Mt)
< C, |∇ rm|C0(Mt)

< C |F |C0(Mt)

4.
∣∣ A∇F

∣∣
C0(Mt)

< C |F |C0(Mt)

5. |∇T |C0(Mt)
< CP 3/2 |T |C0(Mt)

6. 1
2
g(t) ≤ g(0) ≤ 2g(t)

The hypotheses of the theorem amount to assuming condition α(µ, B, C,N) for cer-

tain choices of the constants. We will show that for a constant C chosen with respect

to the initial data and N large enough condition α := α
(
µ/2, 2B, C, N

2

)
holds for all

time.

We now institute a very important notational convention. In the calculations

below, there will be many implicit constants. In most cases, these constants will be

universal (depending only on the dimension), although in some cases the constants

will depend on the initial metric, or possibly the constants µ and B. What is most

important though is that these constants will be independent of N . Note that the

hypotheses of the theorem state that µ and B are both independent of N as well.

This will allow us to freely choose N large with respect to given constants at various

points of the theorem. Notationally, we will refer to any such constant with the letter
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C. Thus C, and sometimes lowercase c, will denote different constants on different

lines, but must be independent of N . Alternatively, one could think that C is the

supremum of all universal constants encountered in the proof thus far.

Lemma: 7.8. There exists a constant c so that if N is sufficiently large then the

solution to volume normalized RYM flow exists and moreover condition α holds on[
0, c

P 2

)
.

Proof. First we want to choose N so large that the derivatives of the curvature are

dominated by the bundle curvature connection terms. In particular, first choose N

so large that

|Rm|C0(M0) ≤ CP 2

|∇Rm|C0(M0) ≤ CP 3

∣∣∇2 Rm
∣∣
C0(M0)

≤ CP 4

(7.27)

for a constant C. This is possible because of hypothesis (7.25). We first show that

for a larger choice of C the bounds of (7.27) are preserved on an interval of the form[
0, c1

P 2

)
, with a different choice of C. An immediate corollary of proposition 5.8 is

d

dt
|Rm|2 = ∆ |Rm|2 − 2 |∇Rm|2 + F ∗ ∇Rm ∗Rm + Rm∗3

≤ ∆ |Rm|2 − |∇Rm|2 + Rm∗3

≤ ∆ |Rm|2 + C |Rm|3

(7.28)

using the Cauchy-Schwarz inequality. Applying the maximum principle, we see that

|Rm|C0(Mt)
is bounded above by the solution to the ODE

d

dt
φ = Cφ2 (7.29)
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which has solution

φ(t) =
1

1
φ(0)

− Ct
(7.30)

so that as long as t ≤ 1
2C|Rm|C0(M0)

we have

|Rm|C0(Mt)
≤ 2 |Rm|C0(M0) ≤ 2CP 2 (7.31)

Recall that this bound on curvature is sufficient to conclude existence of the flow up

to this point. We want to use this bound to show a bound on |∇Rm|C0(Mt)
on this

time interval. A consequence of proposition 5.9 is

d

dt
|∇Rm|2 = ∆ |∇Rm|2 − 2

∣∣∇2 Rm
∣∣2 + F ∗ ∇2 Rm ∗∇Rm + Rm ∗∇Rm∗2

= ∆ |∇Rm|2 −
∣∣∇2 Rm

∣∣2 + C |Rm| |∇Rm|2

≤ ∆ |∇Rm|2 + CBP 2 |∇Rm|2

(7.32)

Again applying the maximum principle it is straightforward to conclude

|∇Rm|C0(Mt)
≤ |∇Rm|C0(M0) eCBP 2t

and so by restricting to the time interval ln 2
CBP 2 we clearly conclude

|∇Rm|C0(Mt)
≤ 2CP 3 (7.33)

A completely analogous argument shows that∣∣∇2 Rm
∣∣
C0(Mt)

≤ CP 4 (7.34)

and so indeed the bounds of (7.27) hold on this interval.

So, we need to use these bounds to show condition α on a possibly shorter time

interval
[
0, c

P 2

)
. Using the bound of (7.22) and arguing as in line (7.27), there exists
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a constant C so that if N is chosen large enough then

|V |C0(M0) ≤ C

|∇V |C0(M0) ≤ CP∣∣∇2V
∣∣
C0(M0)

≤ CP 2

∣∣∇3V
∣∣
C0(M0)

≤ CP 3

(7.35)

We would like to show that there exists c and C independent of N so that the bounds

of (7.35) hold on
[
0, c

P 2

)
for a different choice of C. From proposition 5.67 we see

that

d

dt
|V |2 ≤ ∆ |V |2 + C |Rm| |V |2 (7.36)

so that by applying the curvature bound above on the given time interval we conclude

by the maximum principle that |V |C0(Mt)
is bounded above by the solution to the

ODE

d

dt
φ = CP 2φ (7.37)

which has the solution φ(t) = φ(0)eCP 2t. Clearly for t ∈
[
0, ln 2

CP 2

)
the required bound

will hold. Similarly using proposition 5.66 we see that

d

dt
|∇V |2 ≤ ∆ |∇V |2 + C |Rm| |∇V |2 + C |∇Rm| |V | |∇V |

≤ ∆ |∇V |2 + CP 2 |∇V |2 + CP 4 |V |2
(7.38)

where we have used the bounds on curvature and its derivatives from (7.27) and the

Cauchy-Schwarz inequality. Using the bound above for V we can conclude using the

maximum principle that |∇V |2C0(Mt)
is bounded above by the solution to the ODE

d

dt
φ = CP 2φ + CP 4 (7.39)
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which is bounded above by

P 2eCP 2t
(
1− e−CP 2t + C

)
(7.40)

so that |∇V |2C0(Mt)
≤ CP 2 on

[
0, c

P 2

)
for c small. The bounds on ∇2V and ∇3V are

identical.

Finally we are in a position to show that condition α holds on a time interval of

the form
[
0, c

P 2

)
. Note that using the variation formula for curvature, we can write

d

dt
rm = L0(

g∇2V ) (7.41)

where here L0(
g∇2V ) refers to a universal linear polynomial in g∇2V . Using our

bounds above we get that

d

dt
|rm| ≤ C

∣∣∇2V
∣∣+ C |V | |rm|

≤ CP 2 + C |rm|
(7.42)

It is clear that on the interval
[
0, c

P 2

)
we can conclude

|rm|C0(Mt)
≤ eCt

(
|rm|C0(M0) + P 2

(
1− eCt

))
≤ 2

(
1 +

C

P 2

)
≤ 4

(7.43)

for c chosen small with respect to C and N chosen large. Also we have the following
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variation formula:

d

dt
A∇F =

d

dt
(∂F + gΓ ∗ F )

= A∇
(

d

dt
F

)
+ F ∗

(
d

dt
gΓ

)

= L1

(
∇2

(
d

dt
A

))
+ L2

(
F ∗ ∇

(
d

dt
g

))
= L1

(
∇2V

)
+ L2 (F ∗ ∇V )

where again the Li refer to universal linear polynomials. Thus we can conclude

d

dt

∣∣ A∇F
∣∣ ≤ C

(∣∣∇2V
∣∣+ P |∇V |+ |V |

∣∣ A∇F
∣∣) (7.44)

so that again on the interval
[
0, c3

P 2

)
we can conclude∣∣ A∇F

∣∣
C0(Mt)

≤
∣∣ A∇F

∣∣
C0(M0)

+ cC (7.45)

One can bound the time derivative of F in an entirely similar way. This will give

upper and lower bounds, and thus in particular give conditions α.1 and α.2. Thus we

have shown conditions α.1 − α.4. We note that concluding condition α.5 is exactly

the same as the estimate of |∇V |C0(Mt)
proved above. For the C0 base metric bound

α.6, we first note that for a fixed tangent vector v we have

d

dt
|v|2 = ġ(v, v) = −2V (v, v) (7.46)

thus ∣∣∣∣ ddt
|v|2
∣∣∣∣ ≤ 2 |V | ≤ C (7.47)
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We can then use the estimate∣∣∣∣log

(
gt(v, v)

g0(v, v)

)∣∣∣∣ =

∣∣∣∣∫ t

0

∂

∂s
log gs(v, v)ds

∣∣∣∣
=

∣∣∣∣∣
∫ t

0

∂
∂s

gs(v, v)

gs(v, v)
ds

∣∣∣∣∣
≤
∫ t

0

∣∣∣∣ ∂

∂s
gs

(
v

|v|
,

v

|v|

)∣∣∣∣ ds

≤
∫ t

0

∣∣∣∣ ∂

∂s
gs

∣∣∣∣
gs

ds

≤ C

and exponentiate to give the bounds

e−C/P 2

gt ≤ g0 ≤ eC/P 2

gt (7.48)

from which condition α.6 immediately follows.

Now we turn to the second part of the proof, which is concluding existence and

convergence on the infinite time interval
[

c
P 2 ,∞

)
. Our condition α is open, so we

assume that it holds on an open time interval [0, τ) where τ ≥ c
P 2 and prove that in

fact it holds at τ . This will show that the interval is both open and closed which will

give long time existence and convergence. To do this we must use the exponential

decay of T , the Sobolev inequality and integral interpolation estimates.

First let us describe the decay estimate for |T |C0(Mt)
. We will assume c = 0 in the

definition of µ-stability for notational convenience. Our main problem is the term

δr ∗ rm ∗T . At a given time t, fix a point p ∈ M such that δr = 0. Using the formula

div T = 1
4
∇r we can write

δr(q) =

∫ q

p

∇r = 4

∫ q

p

div T
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which gives the estimate

|δr|C0(Mt)
≤ C

∫ q

p

|∇T | ≤ C diam(Mt) |∇T |C0(Mt) (7.49)

Using condition α it is clear now that

δr ∗ rm ∗T ≤ C |δr|C0(Mt)
|rm|C0(Mt)

|T |C0(Mt)

≤ C diam(Mt) |∇T |C0(Mt)
|rm|C0(Mt)

|T |C0(Mt)

≤ CP 3/2 |T |2C0(Mt)

(7.50)

Using this estimate, it is clear that for N chosen very large we will have

d

dt
|T |2 ≤ ∆ |T |2 − µ

8B
P 2 |T |2 + C |T |2 + CP 3/2 |T |2C0(Mt)

≤ ∆ |T |2 − µ

16B
P 2 |T |2 + CP 3/2 |T |2C0(Mt)

(7.51)

as long as condition α holds. By the maximum principle we conclude

|T |C0(Mt)
≤ e−

µ
32B

P 2t |T |C0(M0) (7.52)

Now we point out how to conclude condition α.5 at time τ . It is a Bernstein-Shi

type estimate, and we will prove it in exactly that manner. First of all we have the

evolution equations

d

dt
|∇T |2 = ∆ |∇T |2 − 2

∣∣∇2T
∣∣2 +∇Rm ∗T ∗ ∇T

+ Rm ∗∇T ∗2 + δr ∗ ∇ rm ∗∇T

(7.53)

and

d

dt
|T |2 = ∆ |T |2 − 2 |∇T |2 + Rm ∗T ∗2 + δr ∗ rm ∗T (7.54)

Define s = t−
(
τ − c

P 2

)
. Let

H(x, s) = s |∇T |2 + β |T |2 (7.55)
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where β is a universal constant to be determined. Note then that s ≤ c
P 2 on the time

interval of interest. We can then compute

∂

∂s
H ≤ ∆H + (1− 2β) |∇T |2 + s∇Rm ∗T ∗ ∇T

+ s Rm ∗∇T ∗2 + sδr ∗ ∇ rm ∗∇T + Rm ∗T ∗2 + δr ∗ rm ∗T

We note that at any time after c
P 2 we can assume uniform bounds on the covari-

ant derivatives of curvature using our Bernstein-Shi estimates (corollary 6.3). In

particular we may assume ∣∣∇k Rm
∣∣
C0(Mt)

≤ CkP
2+k (7.56)

Using these bounds, choosing β large and applying condition α we can estimate the

equation further. We will use the bound of (7.50), which uses condition α.5 up to

time τ . This is an extra subtlety, so in the calculations below C will denote the

constant of condition α.5. Thus we have

∂

∂s
H ≤ ∆H + (1− 2β + C) |∇T |2 + CP |T | |∇T |

+
C

P
|δr| |∇T |+ CP 2 |T |2 + C |δr| |T |

≤ ∆H + (1− 2β + C) |∇T |2 + CC
2
P 2 |T |2C0(Ms)

+ CCP 3/2 |T |2C0(Ms)

≤ ∆H + CC
2
P 2 |T |2C0(Ms)

(7.57)
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Applying the maximum principle and using the decay of T we can conclude

H
(
s
( c

P 2

)
, x
)
≤ H(0, x) + CC

2
P 2

∫ c
P2

0

|T |2C0(Ms(t))
dt

≤ β |T |2C0(Ms(0))
+ CC

2 |T |2C0(Ms(0))
P 2

∫ c
P2

0

e−
µ

32B
P 2tdt

≤ C
(
1 + C

2
)
|T |2C0(Ms(0))

≤ C
(
1 + C

2
)
|T |2

C0

 
M

s( c
P2 )

!

This allows us to conclude

|∇T |2C0(Mτ ) ≤ C
(
1 + C

2
)

P 2 |T |2C0(Mτ ) ≤ CP 3 |T |2C0(Mτ ) (7.58)

for N chosen large.

We now describe how to use the decay estimate to conclude the rest of condition α

at time τ . First of all, condition α.6 gives a uniform bound on the Sobolev constant.

Since we are on a four-manifold we can thus conclude in particular that

|f |C0(Mt)
≤ CS(Mt)||f ||H2

3 (Mt) ≤ C||f ||H2
3 (Mt) (7.59)

We can get bounds on these integrals using interpolation inequalities. Specifically

we have ∫
Mt

∣∣∇kT
∣∣2 =

∫
Mt

〈
T,∇2kT

〉

≤
(∫

Mt

|T |2
) 1

2
(∫

Mt

∣∣∇2kT
∣∣2) 1

2

≤ CP 2k+2||T ||L2(M0)e
− µ

32B
P 2t

(7.60)

Thus using the Sobolev inequality we see that

|∇T |C0(Mt)
≤ CP 5||T ||L2(M0)e

− µ
64B

P 2t

∣∣∇2T
∣∣
C0(Mt)

≤ CP 6||T ||L2(M0)e
− µ

64B
P 2t

(7.61)
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for a universal constant C. Note also that the argument of (7.49) now gives the

bound

|V |C0(Mt)
≤ CP 5||T ||L2(M0)e

− µ
64B

P 2t (7.62)

These bounds are sufficient to conclude the rest of condition α by repeating the

arguments of (7.44) - (7.48). In particular we can conclude

d

dt
|rm| ≤ C

∣∣∇2T
∣∣
C0(Mt)

+ C |V |C0(Mt)
|rm|

≤ C

P
e−

µ
64B

P 2t +
C

P 2
e−

µ
64B

P 2t |rm|

(7.63)

where in the last line we used our assumption on ||T ||L2(M0). We can integrate this

bound to any time τ to conclude

|rm|C0(Mτ ) ≤ |rm|C0(M0) +
C

P
≤ C (7.64)

for N chosen large. Indeed, the proofs of all of the bounds for condition α are

identical to those performed in lines (7.44) - (7.48). Thus we can conclude condition

α at time τ and the result follows.

Theorem: 7.9. Let E → (M4, g) be a principal bundle. For fixed µ > 0, B > 0, Ω >

0 there exists a large N > 0 depending on µ, B, Ω and the base metric g with the

following property: if A is a µ-stable connection on E which satisfies∣∣∣◦η∣∣∣
C0

+
∣∣∣ g∇◦

η
∣∣∣
C0

+
∣∣∣ g∇2 ◦η

∣∣∣
C0
≤ Ω (7.65)

and

1

B
max

M
|F |2 ≤ |F |2 (x) ≤ B min

M
|F |2 for all x ∈ M (7.66)

and

min
M
|F |2 > N2 (7.67)
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and furthermore ∣∣ A∇F
∣∣
C0 < B |F |C0(M0) (7.68)

then the volume normalized Ricci Yang-Mills flow with initial condition G(g, A) exists

for all time and converges to an Einstein-Yang-Mills metric.

Proof. Let us define a new condition α. We say that a solution to volume-renormalized

Ricci Yang-Mills flow satisfies condition α(ε) = α(ε, µ, B, C,N) on [0, τ) if for every

t ∈ [0, τ) we have

1. The connection A(t) is µ-stable

2. The bounds of (7.66) and (7.67) hold for our given B.

3. |rm|C0(Mt)
< P ε, |∇ rm| < P 1+ε

4.
∣∣ A∇F

∣∣
C0(Mt)

< C |F |C0(Mt)

5. |∇T |C0(Mt)
< CP 3/2 |T |C0(Mt)

6. 1
2
g(t) ≤ g(0) ≤ 2g(t)

We would now like to show condition α(ε) on a time interval of the form
[
0, 1

P 2−δ

)
for

some small δ > 0. To see why this is a reasonable thing to try to do, we first point

out that bundle curvature is a-priori bounded on this interval. This is because the

evolution of |F |2 has a nonlinearity which is of a lower-order than what is expected

by Ricci flow. In particular, from proposition 4.5 we have

d

dt
|F |2 ≤ ∆ |F |2 + C |rm| |F |2 + C |F |3 (7.69)
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Thus, assuming condition α(ε) on the time interval [0, T ), we have by the maximum

principle that |F |C0(Mt)
is bounded above by the solution to the ODE

d

dt
φ = CP εφ + Cφ2

φ(0) = BP

(7.70)

which in turn is bounded above by the solution to the ODE

d

dt
φ = Cφ2

φ(0) = BP

(7.71)

which has solution

φ(t) =
1

1
BP

− Ct
(7.72)

So that if t ≤ 1
2CBP

then |F |C0(Mt)
≤ 2 |F |C0(M0). This is noteworthy because as

mentioned above the “doubling time” for curvature under Ricci flow normally is

1
|Rm|C0(M0)

, which in this case would be 1
P 2 . We will now show how to use this a-priori

bound on curvature to show condition α(ε) on the time interval
[
0, 1

P 2−δ

)
. Our main

goal is an a-priori bound on |V |C0(Mt)
.

First we point out that condition α(ε) is sufficient to show decay of |T |C0(Mt)
. In

particular, for N chosen large enough we can conclude line (7.52). Next we need an

a-priori bound on δr. Fix γ << ε. Let

H(x, t) = (δr)2 + P γ |T |2
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We note using propositions 5.20 and 7.3 and the bound on |T |C0(Mt)
that

d

dt
H ≤ ∆H + 4 〈V, rc〉 δr + 2δr

∣∣TC
∣∣2 + 4

〈
A∇TC , F

〉
δr

− 4

(∫
−〈V, rc〉

)
δr + 2

(∫
−rδr

)
δr

− 2P γ |∇T |2 + P γ Rm ∗T ∗2 + P γδr ∗ rm ∗T

(7.73)

Now we have the bound

〈V, rc〉 δr =

〈
T +

1

4
δrGH , rc

〉
δr

≤ |rm|2C0(Mt)
|T |C0(Mt)

+
1

4
r (δr)2

≤ CP 2ε + P ε (δr)2

≤ CP 3ε

(7.74)

and similarly

−4

(∫
−〈V, rc〉

)
δr + 2

(∫
−rδr

)
δr ≤ |T | |rm|2 + |rm|3

≤ CP 3ε

(7.75)

And we also bound

4
〈

A∇TC , F
〉
δr ≤ P γ |∇T |2 + CP 2−γ (δr)2 (7.76)

We also have the simple bounds

P γδr ∗ rm ∗T ≤ CP γ+2ε ≤ CP 3ε (7.77)

and

P γ Rm ∗T ∗2 ≤ CP 2+γ (7.78)
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Plugging these bounds into 7.73 gives

d

dt
H ≤ ∆H + CP 2+γ + CP 2−γH (7.79)

Applying the maximum principle, H is bounded above by the solution to the ODE

d

dt
φ = CP 2+γ + CP 2−γφ (7.80)

with φ(0) bounded independent of P . On the interval
[
0, 1

P 2−δ

)
for δ < γ this is

bounded above by

H ≤ P γ < P ε/4 (7.81)

Thus we may conclude

|V |C0(Mt)
< P ε/4 (7.82)

On
[
0, 1

P 2−δ

)
. We would like to show the estimates

|∇V |C0(Mt)
≤ P 1+ε/4

∣∣∇2V
∣∣
C0(Mt)

≤ P 2+ε/4

∣∣∇3V
∣∣
C0(Mt)

≤ P 3+ε/4

(7.83)

on this time interval as well. We have already shown this estimate on the interval[
0, c

P 2

)
in the proof of lemma 7.8. After this time interval we have the Bernstein-Shi

estimates available to us. In particular, using our total bound on curvature, corollary

(6.3) gives ∣∣∇k Rm
∣∣ ≤ CkP

2+k (7.84)

Given a time t0 > c
P 2 , let t := t−

(
t0 − c

P 2

)
. Now let

H(x, t) = t |∇V |2 + β |V |2 (7.85)
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where β is a universal constant to be determined in the calculation below. We would

like to get an estimate for H(x, t0), corresponding to t = c
P 2 . In particular on the

interval of interest we have t ≤ c
P 2 . Using proposition 5.67 we compute

d

dt
H ≤ ∆H +

(
1 + tCBP 2 − 2β

)
|∇V |2 + tC |∇Rm| |V | |∇V |

+ C |Rm| |V |2

≤ ∆H + (1 + CB − 2β) |∇V |2 + CP |V | |∇V |+ CP 2 |V |2

≤ ∆H + (1 + C − 2β) |∇V |2 + CP 2 |V |2

≤ ∆H + CP 2 |V |2

≤ ∆H + CP 2+ε/2

(7.86)

Applying the maximum principle as usual and integrating over the interval
(
t0 − c

P 2 , t0
]

gives the bound

|∇V |C0(Mt0 ) ≤ CP 1+ε/4 (7.87)

for t0 ∈
[
0, 1

P 2−δ

)
Again, the Bernstein-Shi type estimates for the second and third

derivatives are entirely similar, giving the bounds∣∣∇2V
∣∣
C0(Mt)

≤ CP 2+ε/4 (7.88)

∣∣∇3V
∣∣
C0(Mt)

≤ CP 3+ε/4 (7.89)

for t ∈
[
0, 1

P 2−δ

)
. As we have demonstrated in lines (7.43) - (7.48) this bound is

sufficient to conclude for instance

|rm|C0(Mt)
≤ |rm|C0(M0) + CP δ+ε/4

< P ε/2

(7.90)
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for δ < ε
4

and P chosen large. Concluding the rest of condition α(ε) is is the same

as in the proof of theorem 7.7 using the bound on |∇2V |C0(Mt)
.

Now that we have shown condition α(ε) on the time interval
[
0, 1

P 2−δ

]
, the rest of

the proof is simple. We note that as a consequence of the decay of T we can conclude

that at time t0 = 1
P 2−δ we have

||T ||L2(Mt0 ) ≤ ||T ||L2(M0)e
− µ

16B
P δ

(7.91)

Thus for N chosen large we have ||T ||L2(Mt0 ) arbitrarily small, even smaller than any

polynomial in positive powers of P . That is, in particular we can conclude for N

large

||T ||L2(Mt0 ) ≤ P−7 (7.92)

so that for instance we could apply theorem 7.7 to conclude convergence after this

point. Proving convergence directly at this point is easy enough though. In particular

using the Sobolev inequality as in lines (7.60) - (7.61) we can conclude for any time

t ∣∣∇2V
∣∣
C0(Mt)

≤ P 6||T ||L2(M0)e
− µ

16B
P 2t (7.93)

Thus for t > 1
P 2−δ we have

|rm|C0(Mt)
= |rm|

C0

„
M 1

P2−δ

« + CP 6

∫ t

1

P2−δ

e−
µ

32BP2t

≤ P ε/2 + CP 4e−
µ

32B
P δ

< P ε

(7.94)

for N chosen large. Concluding the rest of condition α(ε) is the same as in lines

(7.44) - (7.48), and the result follows.
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Chapter 8

Summary

Let us briefly recap the results. We have justified the definition of a new geometric

evolution equation. We have shown many analytic properties which would would

expect from the study of Ricci flow, namely short-time existence, Bernstein-Shi

derivative estimates, and compactness of solutions under certain natural hypotheses.

Furthermore using the ideas of Perelman we showed that Ricci Yang-Mills flow is the

gradient flow for the minimum eigenvalue of a particular Schrödinger operator, and

found an entropy-like quantity which is monotonic near a type I singularity. One

clear area for improvement of the results is to prove noncollapsing of general finite-

time singularities, not just type I singularities. This may be possible by adding a

correction term which accounts for the change in volume form as discussed in chapter

3. Finally, we succeeded in showing the existence of a canonical metric on a four-

manifold in the presence of a particular kind of connection on a principal bundle.

The next obvious step in light of theorem 7.9 is to attempt to construct stable

connections on four-manifolds. The theorem of Taubes [28] constructs anti-self-dual
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SU(2) connections by gluing together S4 instantons (which have stable curvature)

over different points in the manifold. Thus if one could make the curvature arbi-

trarily large everywhere and also control g∇F and max |F |2 / min |F |2 the resulting

connection satisfy the hypotheses of theorem 7.9. This is a clear direction for future

research.

Another direction would be to understand the circle-bundle case better. Here the

most natural assumption is that F is symplectic initially. As pointed out in chapter

4, if F is large compared to the base curvature then one gets a pinching estimate

for
◦
η, meaning that F is becoming closer to self-dual or anti-self-dual. The following

conjecture seems reasonable.

Conjecture: 8.1. Let L → M be a line bundle over a Riemannian four-manifold

(M, g) with connection A. Suppose FA is symplectic. Then there exists N large

depending on g so that the volume-normalized Ricci Yang-Mills flow on L⊗p → M

with connection Ap exists for all time and converges to an Einstein Yang-Mills metric.

We hasten to point out that the techniques used in theorem 7.9 have no chance

of proving this conjecture since the curvature of a line bundle is never stable. One

possibility is to first look at the unnormalized Ricci Yang-Mills flow equation and

prove an a-priori C0 lower bound on the metric. See example (2.10) for the intuition

behind this. One would then have to bootstrap this into higher-order regularity of

the metric, and it is not a-priori clear how to do this. Another possibility is to do a

blowup analysis at a potential singularity of the flow and attempt to classify ancient

solutions of Ricci Yang-Mills flow. Our noncollapsing result for type I solutions would

be a useful tool in such an analysis. We note that for both of these ideas it doesn’t
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even seem as though a large bundle curvature is necessary. Thus we close with the

following further conjecture.

Conjecture: 8.2. Let L → M be a line bundle over a Riemannian four-manifold

(M, g) with connection A. Suppose FA is symplectic. Then the solution to volume-

normalized Ricci Yang-Mills flow on L with connection A exists for all time and

converges to an Einstein Yang-Mills metric.

Also, a more general singularity analysis is called for. There may be quantities

analogous to Perelman’s reduced length and volume which are monotonic along a

solution to RYM flow. If so these would undoubtedly be useful in classifying singu-

larities. Guided by example 2.10, we make the following specific conjecture.

Conjecture: 8.3. Every solution to RYM flow has low energy.

If this conjecture is true, using theorem 3.14 we get as a corollary is that every

solution to RYM flow is noncollapsed.

Finally, we point out that the general idea behind the main question could be ap-

plied to many different geometric situations. First of all one could change the extra

“field” that one is introducing into the Einstein equation. Specifically one could in-

troduce a three-form on a six manifold, or even coupling the Einstein equation to the

Seiberg-Witten equations. Both of these situations arise naturally in physics. Also,

one could consider coupling an external field to other elliptic equations which arise

naturally in Riemannian geometry, say the harmonic map equation. It is possible

that one could introduce terms which make the resulting parabolic equation easy to

control, and thus produce a map satisfying a coupled elliptic system.
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Appendix A

Riemannian Geometry Results

Lemma: A.1. Let u : Mn × [0, T ) → R be a C2 subsolution to

∂u

∂t
= ∆g(t)u + 〈X,∇u〉+ F (u)

on a closed manifold. Suppose there exists C ∈ R such that u(x, 0) ≤ C for all

x ∈ Mn. Let φ(t) be the solution to the initial value problem

dφ

dt
= F (φ)

φ(0) = C

Then

u(x, t) ≤ φ(t)

for all x ∈ Mn and t ∈ [0, T ) such that φ(t) exists.

Proposition: A.2. If α is a 2-form on a Riemannian manifold (M, g) then

∆dα = (∆αij + gkpglqRijklαpq − gklRikαlj − gklRjkαil)dxi ∧ dxj (A.1)

Proposition: A.3. Let E → M a principal K-bundle with connection A. Let

∆D := DAD∗
A + D∗

ADA (A.2)
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acting on k-valued differential forms. Then for ω a given k-valued differential form

the following general formula holds:

∆Dω = ∆ω + FA ∗ ω + rm ∗ω (A.3)

Proof. This can be found in [8].

Lemma: A.4. Let ω be a two-form on a Riemannian four-manifold (M, g). Then

ω is self-dual or anti-self-dual if and only if
◦
η = 0.

Proof. Recall that ηij = gklωikωjl. Fix a given point x ∈ M and choose coordinates

such that g(x) = Id and also ω has been skew-diagonalized. Specifically this means

g =


1

1
1

1

 , ω =


0 λ
−λ 0

0 µ
−µ 0

 (A.4)

where λ, µ ∈ R. Thus we may easily compute

◦
η =


1
2
(λ2 − µ2)

1
2
(λ2 − µ2)

1
2
(µ2 − λ2)

1
2
(µ2 − λ2)

 (A.5)

It is then clear that
◦
η = 0 at x if and only if λ = ±µ, i.e. if ω is self-dual or

anti-self-dual.

Lemma: A.5. Let ω be a two-form on a Riemannian four-manifold (M, g). Then

|η|2 ≤ 1

2
|ω|4 (A.6)

with equality if and only if ω has a non-trivial kernel.
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Proof. Recall ηij = gklωikωjl. Fix a given point x ∈ M and choose coordinates such

that g(x) = Id and also ω has been skew-diagonalized as in the above lemma. Then

an easy computation using (A.4) gives

|η|2 = 2λ4 + 2µ4

≤ 2
(
λ2 + µ2

)2
=

1

2
|ω|4

and moreover it is clear that equality holds in the second line if and only if one of λ

or µ is zero, which corresponds exactly to when ω has a non-trivial kernel.

Lemma: A.6. Let ω an n-form on a 2n-manifold. Then∫
M

|ω|2 ≥
∣∣[ω∧2]

∣∣ (A.7)

Proof. Using that the operator ∗ is an isometry, we see∫
ω ∧ ω = (−1)n

∫
〈ω, ∗ω〉

≤
∫
|ω| |∗ω|

=

∫
M

|ω|2

One can bound −
∫

ω ∧ ω similarly, so the result follows.

Proposition: A.7. In a general frame the curvature tensor of a Riemannian metric

is given by

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γm

jkΓ
l
im − Γm

ikΓ
l
jm − Cm

ij Γl
mk (A.8)
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Proposition: A.8. In any coordinate system, if ġ = h, then:

Γ̇k
ij =

1

2
gkl (∇ihjl +∇jhil −∇lhij) (A.9)

Ṙjk = −1

2
[∆Lhjk +∇j∇k(tr h)−∇j∇ihik −∇k∇ihij] (A.10)

Ṙ = −∆(tr h) + div div h− 〈h,Rc〉 (A.11)

where ∆L is the Lichnerowicz laplacian, given by:

∆LAij = ∆Aij + 2gkpglqRikjlApq − gklRikAlj − gklRjkAil (A.12)

For our convenience we will write

∆LA = ∆A +R(A) (A.13)

where R is defined by the equality.

Lemma: A.9. Let L =
(

d
dt
−∆

)
. Then:

L(fg) = (Lf)g + f(Lg)− 2∇f · ∇g

Lemma: A.10. If f a non-negative function and g a positive function then:(
d

dt
−∆

)(
fα

gβ

)
= α

fα−1

gβ

(
d

dt
−∆

)
f − β

fα

gβ+1

(
d

dt
−∆

)
g

− α(α− 1)
fα−2

gβ
|∇f |2 − β(β + 1)

fα

gβ+2
|∇g|2

+ 2αβ
fα−1

gβ+1
〈∇f,∇g〉
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Appendix B

Decomposition of the Laplacian

In the lemma below the letters α, β and γ refer to general indices, the letters i, j and

k refer to base indices and µ, ν refer to bundle indices.

Lemma: B.1. Given a bundle metric we have

G∇απ∗(s)βγ =



g∇isjk α = i, β = j, γ = k
1
2

(
Fµ · s− s · Fµ

)
jk

α = µ
1
2

(
Fµ · s

)
ik

β = µ
1
2

(
Fµ · s

)
ij

γ = µ

0 otherwise

G∇απ∗(ω)βγ =



−1
2
( θFijωkθ + ρFikωjρ) α = i, β = j, γ = k

0 α = µ
A∇iωµk β = µ
A∇iωjµ γ = µ
1
2

(
Fµ · ων + Fν · ωµ

)
i

β = µ, γ = ν
1
2

(
Fµ · ων

)
k

α = µ, β = ν
1
2

(
Fµ · ων

)
j

α = µ, γ = ν

0 otherwise
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G∇απ∗(f)βγ =



0 α = i, β = j, γ = k

0 α = µ

−1
2

Fν
ik fνµ β = µ

−1
2

Fν
ij fνµ γ = µ

0 α = µ, β = ν
g∇ifµν β = µ, γ = ν

0 otherwise

Proof. In general for W ∈ S2T ∗E we have

∇αWβγ = ∂αWβγ − Γν
αβWνγ − Γν

αγWνβ

The equations above now all follow from lemma 2.2.

Lemma: B.2. Given W a symmetric two-tensor on a Riemmanian manifold,

∇k∇mWij = Wij,km −WljΓ
l
mi,k −WilΓ

l
mj,k

−Wlj,kΓ
l
mi −Wil,kΓ

l
mj −Wnj,mΓn

ki

−Win,mΓn
kj −Wij,nΓn

km

+ WljΓ
l
mnΓn

ki + WlnΓl
miΓ

n
kj + WljΓ

l
niΓ

n
km

+ WnlΓ
l
mjΓ

n
ki + WilΓ

l
mnΓn

kj + WilΓ
l
njΓ

n
km

Theorem: B.3. Given a metric of type 2.2 with g∇g ≡ 0 we have

G∆π∗(h)ij = g∆hij +
1

2

(
θF · θF · h + h · θF · θF

)
ij
− 1

2

(
θF · h · θF

)
ij

G∆π∗(h)iθ =
1

2
(h · d∗F )iθ − g∇lhin θF

nl

G∆π∗(h)θρ = − 1

2

〈
Fθ · Fρ , h

〉
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Proof. Set W = π∗(h). We recall the result of lemma B.2:

G∆Wαβ = Gδε(Wαβ,δε −WνβΓν
δα,ε −WανΓ

ν
δβ,ε

−Wνβ,εΓ
ν
δα −Wαν,εΓ

ν
δβ −Wµβ,δΓ

µ
εα

−Wαµ,δΓ
µ
εβ −Wαβ,µΓµ

εδ

+ WνβΓν
δµΓµ

εα + WνµΓν
δαΓµ

εβ + WνβΓν
µαΓµ

εδ

+ WµνΓ
ν
δβΓµ

εα + WανΓ
ν
δµΓµ

εβ + WανΓ
ν
µβΓµ

εδ)

Thus we have:

G∆Wij = Gδε(Wij,δε −WνjΓ
ν
δi,ε −WiνΓ

ν
δj,ε

−Wνj,εΓ
ν
δi −Wiν,εΓ

ν
δj −Wγj,δΓ

γ
εi

−Wiγ,δΓ
γ
εj −Wij,γΓ

γ
εδ

+ WνjΓ
ν
δγΓ

γ
εi + WνγΓ

ν
δiΓ

γ
εj + WνjΓ

ν
γiΓ

γ
εδ

+ WγνΓ
ν
δjΓ

γ
εi + WiνΓ

ν
δγΓ

γ
εj + WiνΓ

ν
γjΓ

γ
εδ)

(B.1)

Now at this point we simply note that the Christoffel symbol terms that don’t involve

any µ components simply comprise g∆k. Now we will go term by term and compute

what the rest of the operator is, only considering things which have not already

appeared in g∆k. So, in particular we see using lemma 2.2 that the terms of the

form W ∗ ∂Γ and ∂W ∗ Γ all vanish. Next we compute

GδεWηjΓ
η
δγΓ

γ
εi =

1

4
Gδε

(
hlj θF

l
δ Fθ εi

)
+

1

4
hlj θF

l
γ

θF γ
i

=
1

2

(
θF · θF · h

)
ij
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and similarly

GδεWηµΓη
δiΓ

µ
εj =

1

4
hnm µF

n
i

µFm
j

= − 1

4
( θF · h ·θ F )ij

Next we have

GδεWνjΓ
ν
µiΓ

µ
εδ =

1

4
Gδεhkj θF

k
i Fθ δε

= 0

and

GδεWµηΓ
η
δjΓ

µ
εi =

1

4
hmn θF

n
j

θFm
i

= − 1

4
( θF · h ·θ F )ij

Next

GδεWiηΓ
η
δµΓµ

εj =
1

4
Gδεhin θF

n
δ

θFεj +
1

4
hin θF

n
m

θFm
j

=
1

2

(
h ·θ F ·θ F

)
ij

And finally

GδεWiηΓ
η
µjΓ

µ
εδ =

1

4
Gδεhin θF

n
j

θFεδ

= 0

Collecting the above calculations gives

G∆Wij = g∆hij +
1

2
( θF ·θ F · h + h ·θ F ·θ F )ij
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Now we must compute G∆Wiθ. Again specializing lemma B.2 gives

G∆Wiθ = Gδε(Wiθ,δε −WνθΓ
ν
δi,ε −WiνΓ

ν
δθ,ε

−Wνθ,εΓ
ν
δi −Wiν,εΓ

ν
δθ −Wµθ,δΓ

µ
εi

−Wiµ,δΓ
µ
εθ −Wiθ,µΓµ

εδ

+ WνθΓ
ν
δµΓµ

εi + WνµΓν
δiΓ

µ
εθ + WνθΓ

ν
µiΓ

µ
εδ

+ WµνΓ
ν
δθΓ

µ
εi + WiνΓ

ν
δµΓµ

εθ + WiνΓ
ν
µθΓ

µ
εδ)

(B.2)

First of all we note that any term involving Wiθ or its derivatives vanishes. Next we

compute

−GδεWiηΓ
η
δθ,ε = − 1

2
Gδεhin θF

n
δ,ε

=
1

2
hn

i d
∗ Fθ n

and

−Gδε (Wiη,εΓ
η
δθ + Wiµ,δΓ

µ
εθ) = −Gδεhin,ε θF

n
ε

= − g∇lhin θF
nl

Next we note that

Gδε(WηµΓη
δiΓ

µ
εθ + WµηΓ

η
δθ + WiηΓ

η
δµΓµ

εθ) = 0

Thus we have

G∆Wiθ =
1

2
(h · d∗ Fθ )i − g∇lhin θF

nl
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To compute the vertical component, we again specialize lemma B.2 to get

G∆Wθρ = Gδε(Wθρ,δε −WνρΓ
ν
δθ,ε −WθνΓ

ν
δρ,ε

−Wνρ,εΓ
ν
δθ −Wθν,εΓ

ν
δρ −Wµρ,δΓ

µ
εθ

−Wθµ,δΓ
µ
ερ −Wθρ,µΓµ

εδ

+ WνρΓ
ν
δµΓµ

εθ + WνµΓν
δθΓ

µ
ερ + WνρΓ

ν
µθΓ

µ
εδ

+ WµνΓ
ν
δρΓ

µ
εθ + WθνΓ

ν
δµΓµ

ερ + WθνΓ
ν
µρΓ

µ
εδ)

(B.3)

Again any term involving Wiθ, Wθθ or any of their coordinate derivatives vanishes.

Indeed the only nonzero terms are the following:

2GδεWνµΓν
δθΓ

µ
ερ =

1

2
Gδεhmn θF

n
δ ρF

m
ε

= − 1

2
〈 θF · ρF, h〉
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