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1 Introduction

Higher gauge theory is a generalisation of ordinary gauge theory where gauge potentials

are forms of degree p ≥ 1 and, correspondingly, their gauge curvatures are forms of degree

p + 1 ≥ 2. It is thought to govern the dynamics of higher-dimensional extended objects.

See ref. [1] for a readable, up-to-date review of this subject and extensive referencing.

The origin of higher gauge theory can be traced back to the inception of supergravity.

Higher gauge theory has subsequently found application in string theory in the study of

D- and M -branes [2–4] as well as loop quantum gravity and, in particular, spin foam

models [5, 6]. Nowadays, the pursuit of higher gauge theory is motivated especially by
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its potential to provide a Lagrangian description of the N = (2, 0) superconformal 6-

dimensional field theory governing the effective dynamics of M5-branes [7, 8].

From a mathematical perspective, higher gauge theory is intimately related to higher

algebraic structures, such as 2-categories, 2-groups [9, 40] and strong homotopy Lie or L∞

algebras [10, 11] and higher geometrical structures such as gerbes [12, 13]. A state of the

art exposition of these matters highlighting their manifold relationships to various physical

issues can be found in [14, 15].

Higher gauge theory can be formulated as a categorification of ordinary gauge theory by

codifying higher gauge symmetry into algebraic structures arising from the categorification

of ordinary Lie groups, weak or coherent Lie 2-groups [16–19]. This approach has been

adopted in a large body of literature which would be impossible to summarise rendering

full justice to all contributions. We shall limit ourselves to note that until quite recently

most studies on the subject were limited to the case where the structure 2-group is strict.

Though every coherent 2-group is categorically equivalent to a strict 2-group, categorical

equivalence is not a sufficiently fine notion for gauge theory: it does not translate into

any viable form of field theoretic equivalence. The study of higher gauge theory with non

strict structure 2-group was first undertaken in the very broad context of ∞-Lie theory in

refs. [20, 21, 23]. An alternative approach to the topic was followed in refs. [24, 25].

1.1 The scope and the plan of this paper

The present paper is devoted to the study of a model of non strict 4-dimensional higher

Chern-Simons gauge theory which, in our hope, may have application in the study of 4-

dimensional topology just as the ordinary Chern-Simons theory does in 3 dimensions. This

paper employs a version of non strict higher gauge theory, called semistrict, first developed

by one of the authors in ref. [26], which we shall outline next.

Consider a gauge theory on a space time manifold M whose symmetry is codified by a

Lie algebra g. (We shall neglect global issues here.) A connection is then a g-valued 1-form

ω ∈ Ω1(M, g). A gauge transformation is map γ ∈ Map(M,G), where G is a Lie group

integrating g. The gauge transformed connection gω is then given by

gω = g(ω − σg) (1.1)

where g = Ad γ and σg = γ−1dγ. Note now that g ∈ Map(M,Aut(g)) and σg ∈ Ω1(M, g)

and that

dσg +
1

2
[σg, σg] = 0, (1.2a)

g−1dg(x)− [σg, x] = 0, x ∈ g, (1.2b)

In the above relations, any reference to the group G has disappeared: everything is ex-

pressed in terms of g-valued forms and Aut(g)-valued maps. In this way, we have dodged

the technical task of integrating g to G. In ordinary gauge theory, this problem is not par-

ticularly difficult, but its counterpart in semistrict higher gauge theory instead is. The basic

proposal of ref. [26] is extending this formulation to a higher gauge theory onM whose sym-

metry is codified by a semistrict Lie 2-algebra v. Semistrict higher connections and gauge
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transformations are defined in terms of v-valued forms and Aut(v)-valued maps. An expo-

sition of this framework with new results not originally given in [26] is provided in section 2.

The gauge theoretic framework outlined in the previous paragraph has limitations: it

can only work in perturbative Lagrangian field theory. Its adequacy for the analysis of

parallel transport, a basic problem in gauge theory, is not clear. Further, as it is well-

known, relevant non perturbative effects are related to the center Z(G) of G, information

about which is lost in Aut(g). It is nevertheless computationally efficient and directly

generalisable to semistrict higher gauge theory.

Chern-Simons theory is a 3-dimensional topological field theory of the Schwarz type.

(See. ref. [27] for a recent review of the model and exhaustive referencing). It was first

formulated in 1989 by E. Witten in ref. [28]. Witten succeeded to show that many topolog-

ical knot and link invariants discovered by topologists earlier, such as the HOMFLY and

Jones polynomials, could be obtained as correlation function of Wilson loop operators in

Chern-Simons theory. He also proved that the Chern-Simons partition function is a topo-

logical invariant of the underlying 3-manifold. Multiple connections with the 2-dimensional

WZW model were also found [29]. In 1992, Witten also showed that Chern-Simons theory

is intimately related to the topological sigma models of both A and B types [30]. This pa-

per is a modest attempt to extend Chern-Simons theory to 4 dimensions in the framework

of semistrict higher gauge theory with the hope of achieving a field theoretic expression

of 2-knot and link invariants of 4-manifolds and unveiling 3-dimensional higher analogs of

WZW theory. In section 3, we describe a higher 4-dimensional Chern-Simons model whose

symmetry is encoded in a balanced semistrict Lie 2-algebra equipped with a invariant non

singular bilinear form. We analyse in detail its gauge invariance and perform its canonical

quantization.

Finally in the appendices, we collect various results on 2-groups and Lie 2-algebras and

their automorphisms which are scattered in the literature in order to define our terminology

and notation and for reference throughout the text.

1.2 Outlook and open problems

Our study is divided roughly in two parts.

The first part of the paper is devoted to the analysis of the gauge invariance of higher

Chern-Simons theory. We find that, analogously to ordinary Chern-Simons theory, the

higher Chern-Simons action is invariant under a higher gauge transformation up to a higher

winding number only. Full gauge invariance of the quantum theory requires that the

winding number be quantized in appropriate units. In all the examples which we have

been able to work out in detail, the winding number actually vanishes, but we cannot

prove its quantization in general and we are forced to assume it as a working hypothesis.

This is a first aspect of the theory that requires further investigation.

The second part of the paper deals with quantization. Several approaches to the prob-

lem of quantization are possible in principle. Perturbative quantization based on a straight-

forward extension of Lorenz gauge fixing involves the choice of a background metric on the

base manifold as well as the introduction of Faddeev-Popov ghost and ghost for ghost

fields. In the presence of a metric we cannot maintain gauge covariance without resorting
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to gauge rectifiers whose existence and interpretation is still problematic [26]. We are left

with canonical quantization. We find that the theory admits two apparently inequivalent

canonical quantizations. We obtain correspondingly two sets of higher WZW Ward identi-

ties and we find the explicit expressions of two higher versions of the gauged WZW action.

The canonical quantization of the first kind is manifestly topological in that it does

not require a choice of any additional structure on the spacial 3-fold. That of the second

kind involves fixing a CR structure on the latter. This is more akin to ordinary Chern-

Simons theory’s canonical quantization. CR spaces are in fact in many ways the closest

3-dimensional analog of Riemann surfaces. The unitary equivalence of the quantization

associated with distinct CR structures is an open problem necessitating a non trivial ex-

tension of the analysis of ref. [31]. Furthermore, the relationship between the topological

and CR quantizations remains elusive.

It is necessary to clarify a point on the higher WZW actions emerging in the process of

canonically quantizing our higher Chern-Simons theory. They encode the gauge covariance

of the relevant wave functionals and, so, are determined by the Ward identities these obey

and by a cocycle conditions extending the familiar Polyakov-Wiegmann relation. Presently,

however, we have no evidence that they are related to some kind of 3-dimensional sigma

model as the ordinary gauged WZW action, although this remains a distinct possibility. In

this respect it may be more useful to consider the restriction of the higher Chern-Simons

action to flat connection configurations expressed as gauge transformation of the trivial

connection on the same lines as [29]. This is left to future work.

The solution of the questions raised in the preceding paragraphs requires a more fun-

damental theory of higher gauge transformation than that employed in the present paper.

Until recently, this was available only for the strict case [18, 19]. Promising new results in

this direction can be found in ref. [25] .

2 Semistrict higher gauge theory

In this section, we shall illustrate the local aspects of semistrict higher gauge theory. Since

we aim to the construction of higher Chern-Simons gauge theory as a higher counterpart

of ordinary one, we neglect bundle theoretic global issues altogether. Part of the material

presented here has been already expounded in [26], which the reader is referred to for

further details and motivation, but also new results are given.

Before proceeding further, it is useful to recall the general philosophy underlying our

approach, which was already alluded to in the introduction. In an ordinary gauge theory

with symmetry Lie algebra g, fields are g-valued forms and gauge transformations of fields

are expressed in terms of Aut(g)-valued maps and g-valued forms. The theory, at least in its

local aspects, can be formulated to a significant extent relying on the Lie algebra g only. In

the same way, in our formulation, in a semistrict higher gauge theory with symmetry Lie 2-

algebra v, the fields are v-valued forms and gauge transformations of fields are expressed in

terms of Aut(v)-valued maps and v-valued forms. The theory, then, is formulated in terms

of the Lie 2-algebra v only analogously to the ordinary case. We present the semistrict

theory characterising it as much as possible as a higher version of the ordinary one.
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Just as the gauge symmetry of ordinary gauge theory organizes in an infinite dimen-

sional group Gau(N, g), the gauge transformation group, that of semistrict higher gauge

theory organizes as an infinite dimensional strict 2-group Gau(N, v), the higher gauge

transformation 2-group. The 1- and 2-cells of Gau(N, v) correspond respectively to gauge

and gauge for gauge transformations. The notion of gauge for gauge transformation we

adopt is however more general than that customarily found in the literature encompassing

also transformations of gauge transformations which do not necessarily leave the action on

higher gauge connections invariant unless further restrictions are imposed.

The basic notions of Lie 2-group and 2-algebra theory are recalled in the appendices,

where our notation is also defined. All algebraic structures considered below are real and

all fields are smooth, unless otherwise stated.

2.1 Lie 2-algebra gauge theory, local aspects

In ordinary as well as higher gauge theory, fields propagate on a fixed d-fold M . To study

the local aspects of the theory, we assume that M is diffeomorphic to R
d. On such an M ,

a field of bidegree (m,n) is any element of the space Ωm(M,E[n]) of m-forms on M with

values in E[n], where E is some vector space.

Ordinary gauge theory. In an ordinary gauge theory with structure Lie algebra g (cf.

appendix A.3), fields are generally drawn from the spaces Ωm(M, g[n]). The main field of

the gauge theory is the connection ω, which is a bidegree (1, 0) field. ω is characterized by

its curvature f , the bidegree (2, 0) field given by

f = dω +
1

2
[ω, ω]. (2.1)

f satisfies the standard Bianchi identity

df + [ω, f ] = 0. (2.2)

The connection ω is flat if the curvature f = 0.

We note here for later reference that the flatness condition of a connection ω is formally

identical to the basic Chevalley-Eilenberg differential relation (A.6) of g.

The covariant derivative of a field φ is given by the well-known expression

Dφ = dφ+ [ω, φ] (2.3)

and satisfies the standard Ricci identity

DDφ = [f, φ]. (2.4)

The Bianchi identity (2.2) obeyed by f can be written compactly as

Df = 0. (2.5)
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Semistrict higher gauge theory. In semistrict higher gauge theory with structure Lie

2-algebra v (cf. appendix A.3), fields organize in field doublets (φ, Φφ) ∈ Ωm(M, v0[n]) ×

Ωm+1(M, v1[n]), where −1 ≤ m ≤ d. If m = −1, the first component of the doublet

vanishes. If m = d, the second component does. The doublets of this form are said to have

bidegree (m,n). Above, we attached a suffix φ to Φφ to indicate that Φφ is the partner of φ

in the doublet, not to mean that Φφ depends on φ in any way. This allows us to concisely

denote the doublet (φ, Φφ) simply as φ in many instances.

In higher gauge theory of this type, there is a distinguished field doublet, the connection

doublet (ω,Ωω) of bidegree (1, 0). Associated with it is the curvature doublet (f, Ff ) of

bidegree (2, 0) defined by the expressions

f = dω +
1

2
[ω, ω]− ∂Ωω, (2.6a)

Ff = dΩω + [ω,Ωω]−
1

6
[ω, ω, ω]. (2.6b)

From (2.6), it is readily verified that (f, F ) satisfies the Bianchi identities

df + [ω, f ] + ∂Ff = 0, (2.7a)

dFf + [ω, Ff ]− [f,Ωω] +
1

2
[ω, ω, f ] = 0 (2.7b)

analogous to the Bianchi identity (2.2) of ordinary gauge theory. The connection (ω,Ωω)

is flat if the curvature components f = 0 and Ff = 0.

The definition (2.6) of the curvature doublet given above is not arbitrary but its de-

signed in such a way that the flatness condition of a connection (ω,Ωω) is formally identical

to the basic Chevalley-Eilenberg differential relation (A.10) of v analogously to ordinary

gauge theory.

Let (φ, Φφ) be a field doublet of bidegree (p, q). The covariant derivative doublet of

(φ, Φφ) is the field doublet (Dφ,DΦφ) of bidegree (p+ 1, q) given by1

Dφ = dφ+ [ω, φ] + (−1)p+q∂Φφ, (2.8a)

DΦφ = dΦφ + [ω, Φφ]− (−1)p+q[φ,Ωω] +
(−1)p+q

2
[ω, ω, φ]. (2.8b)

The sign (−1)p+q is conventional, since the relative sign of φ, Φφ cannot be fixed in any

natural manner. From (2.8), we deduce easily the appropriate version of the Ricci identities,

DDφ = [f, φ], (2.9a)

DDΦφ = [f, Φφ]− [φ, F ]− [φ, ω, f ]. (2.9b)

The explicit appearance of the connection component ω in the right hand side of (2.9b) is

a consequence of the presence of a term quadratic in ω in (2.8b).

1The covariant derivative doublet of (φ, Φφ) should be properly written as (Dφ,DΦDφ). We shall write

it as (Dφ,DΦφ) for simplicity.
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The above definition of covariant differentiation is yielded by the request that the

Bianchi identities (2.7) be expressed as the vanishing of the covariant derivative doublet

(Df,DFf ) of the curvature doublet (f, Ff )

Df = 0, (2.10a)

DFf = 0 (2.10b)

as it is the case for the Bianchi identity of ordinary gauge theory, eq. (2.5).

2.2 The 2-group of higher gauge transformations

Just as gauge transformations play a basic role in ordinary gauge theory, higher gauge

transformations play a similar basic role in higher gauge theory. In this section, following

the approach of ref. [26] already outlined in the introduction, we shall review the main

properties of higher gauge transformations highlighting the way they generalize ordinary

ones. To this end, we shall slightly extend the notion of the latter.

Ordinary gauge transformations. In ordinary gauge theory, symmetry is codified in

a Lie algebra g. A gauge transformation is a pair of:

1. a map g ∈ Map(M,Aut(g)) (cf. appendix A.6),

2. a flat connection σg,

dσg +
1

2
[σg, σg] = 0, (2.11)

related to g through the condition

g−1dg(π)− [σg, π] = 0 (2.12)

(cf. appendix A.3). We shall denote the gauge transformation by (g, σg) or simply by

g, having in mind that now σg is not determined by g but participates with g in the

transformation. Further, we shall denote by Gau(M, g) the set of all such extended gauge

transformations.

The definition of gauge transformation given above is more general than the one com-

monly quoted in the literature. If G is a Lie group exponentiating g and γ ∈ Map(M,G),

then the pair (Ad γ, γ−1dγ) is a gauge transformation in the sense just defined. However,

not every gauge transformation (g, σg) is of this form.

Ordinary gauge transformation group. Gau(M, g) is an infinite dimensional Lie

group, the (extended) gauge transformation group of the theory. By this statement, we

mean simply that Gau(M, g) is a group such that there is a natural definition of cells in-

finitesimally close to the identity and of Lie algebra bracket thereof by formal linearization

of finite cells and their finite commutators in a neighborhood of the identity such that the

– 7 –
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resulting infinitesimal cell constitute an infinite dimensional Lie algebra, as it will be dis-

cussed below in subsection 2.3.2 The composition and inversion and the unit of Gau(M, g)

are defined by the relations

h ⋄ g = hg, (2.13a)

σh ⋄ g = σg + g−1(σh), (2.13b)

g−1⋄ = g−1, (2.13c)

σg−1⋄ = −g(σg), (2.13d)

i = idg, (2.13e)

σi = 0, (2.13f)

where g, h ∈ Gau(M, g) and, in (2.13a), (2.13c), (2.13e), the composition, inversion

and unit in the right hand side are those of Aut(g) thought of as holding pointwise

on M(cf. eqs. (A.18a), (A.18b), (A.18c)). By (2.13a), (2.13c), (2.13e), the component

Map(M,Aut(g)) of Gau(M, g) has a group structure that equals pointwise that of Aut(g) al-

lowing one to accomodate in Gau(M, g) the customary gauge transformations (Ad γ, γ−1dγ)

with γ ∈ Map(M,G) complying with the algebraic structure of the familiar gauge group

Gau(M,G) = Map(M,G). (2.13b), (2.13d), (2.13f) are coherence conditions ensuring the

compatibility of (2.13a), (2.13c), (2.13e) with (2.12) without breaking (2.11). We remark

also that the gauge transformation of connections defined later in subsection 3.1 extending

the familiar action is a left group action of Gau(M, g) if the latter has the group struc-

ture (2.13).

Higher gauge transformations. In semistrict higher gauge theory, symmetry is codi-

fied in a Lie 2-algebra v. A higher 1-gauge transformation consists of the following data.

1. a map g ∈ Map(M,Aut1(v)) (cf. appendix A.6);

2. a flat connection doublet (σg, Σg),

dσg +
1

2
[σg, σg]− ∂Σg = 0, (2.14a)

dΣg + [σg, Σg]−
1

6
[σg, σg, σg] = 0; (2.14b)

3. an element τg of Ω1(M, aut1(v)) satisfying

dτg(π) + [σg, τg(π)]− [π,Σg] +
1

2
[σg, σg, π]+ (2.15)

+τg([σg, π] + ∂τg(π)) = 0.

2To properly describe a group object G as an infinite dimensional Lie group, one would have to provide

it with a structure of infinite dimensional manifold, specifying in particular the kind of topological infinite

dimensional vector space (Hilbert, Banach, Fréchet, etc.) G is locally modelled on. Similar remarks apply

to higher Lie groups. The analysis of these matters lies beyond the limited scope of this paper.
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(cf. appendix A.3) g, σg, Σg, τg are required to satisfy a number of relations. If g =

(g0, g1, g2) (cf. appendix A.6), then one has

g0
−1dg0(π)− [σg, π]− ∂τg(π) = 0, (2.16a)

g1
−1dg1(Π)− [σg, Π]− τg(∂Π) = 0, (2.16b)

g1
−1(dg2(π, π)− 2g2(g0

−1dg0(π), π)) (2.16c)

−[σg, π, π]− τg([π, π])− 2[π, τg(π)] = 0.

hold. In the following, we are going to denote a 1-gauge transformation such as the above

as (g, σg, Σg, τg) or simply as g. Again, in so doing, we are not implying that σg, Σg, τg
are determined by g, but only that they are the partners of g in the gauge transformation.

We shall denote the set of all higher 1-gauge transformations by Gau1(M, v).

The above definition of higher gauge transformation is at first glance a bit mysterious

and needs to be justified. It is the minimal extension of the ordinary notion to the higher

setting. When the Lie algebra g is replaced by the Lie 2-algebra v, g turns from an Aut(g)-

valued map into Aut(v)-valued one and the flat connection σg gets promoted to a flat con-

nection doublet (σg, Σg), as is natural. This leads immediately to eqs. (2.14). The reason for

introducing the further datum τg satisfying (2.16) is not as evident and must be explained.

For an ordinary gauge transformation (g, σg) the Maurer-Cartan equation d(g−1dg) +

g−1dgg−1dg = 0 is satisfied. For this to be consistent with eq. (2.12), it is sufficient that σg is

flat. Showing this involves crucially the use of the Jacobi identity of the Lie algebra g. When

we pass to a Lie 2-algebra v, that identity is no longer available. For this reason, we must in-

troduce the new datum τg and modify the naive relations g−1
0 dg0(π) = [σg, π], g

−1
1 dg1(Π) =

[σg, Π], as indicated in (2.16a), (2.16b). In fact, if τg vanished, for the Maurer-Cartan equa-

tions d(g0
−1dg0) + g0

−1dg0g0
−1dg0 = 0, d(g1

−1dg1) + g1
−1dg1g1

−1dg1 = 0 to be verified,

the flatness relations (2.14) would not suffice by themselves: one would need to add an

extra purely algebraic condition on the flat connection doublet (σg, Σg), namely −[x,Σg]+
1
2 [σg, σg, x] = 0, which does not fit naturally into our higher gauge theoretic set-up. Once

we allow for τg, however, this condition becomes a differential consistency relation satisfied

by τg, viz (2.15). This latter deserves therefore to be called “2-Maurer-Cartan equation”.

In semistrict higher gauge theory, one has in addition gauge for gauge symmetry. For

any two 1-gauge transformations g, h ∈ Gau1(M, v), a higher 2-gauge transformation from

g to h consists of the following data.

1. a map F ∈ Map(M,Aut2(v))(g, h), where Map(M,Aut2(v))(g, h) is the space of

sections of the fiber bundle
⋃
m∈M Aut2(v)(g(m), h(m)) →M (cf. appendix A.6);

2. an element AF ∈ Ω1(M, v1).

F , AF are required to satisfy the relations,

σg − σh = ∂AF , (2.17a)

Σg −Σh = dAF + [σh, AF ] +
1

2
[∂AF , AF ], (2.17b)

– 9 –
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τg(π)− τh(π) = −[π,AF ] + g1
−1

(
dF (π)− F ([σh, π] + ∂τh(π))

)
. (2.17c)

In the following, we are going to denote a 2-gauge transformation like the above as (F,AF ),

meaning that AF is the partner of F in the transformation, or simply as F . We shall also

write F : g ⇒ h to indicate its source and target. We shall denote the set of all 2-gauge

transformations F : g ⇒ h by Gau2(M, v)(g, h) and that of all 2-gauge transformations F

by Gau2(M, v).

The above definition of 2-gauge transformation is again a bit puzzling and needs to

be justified. Suppose we ask what the most natural class of deformations of a 1-gauge

transformation (g, σg, Σg, τg) which preserve its being such and can be expressed in terms

of elementary fields is. As g, h ∈ Map(M,Aut1(v)), it is reasonable to demand that g, h

are the source and the target of some F ∈ Map(M,Aut2(v))(g, h). Granting this, the only

remaining deformational field datum is an element AF ∈ Ω1(M, v1) turning σg into σh =

σg−∂AF . We take AF v1- rather than v0-valued in order to be able to employ it to deform

Σg into Σh = Σg − dAF + 1
2 [∂AF , AF ] + · · · and τg(x) into τh(x) = τg(x)− [x,AF ] + · · · .

Demanding that (h, σh, Σh, τh) is a 1-gauge transformation fixes the form of the remaining

terms not explicitly shown.

Higher gauge transformation 2-group. Gau(M, v) is an infinite dimensional strict

Lie 2-group, the gauge transformation 2-group of the theory. Analogously to the ordinary

case, by this statement we mean simply that Gau(M, v) is a strict 2-group such that there

is a natural definition of 1- and 2-cells infinitesimally close to the 1- and 2-identity respec-

tively and of Lie 2-algebra brackets thereof by formal linearization of finite cells and their

properly defined finite higher commutators in a neighborhood of the identities such that

the resulting infinitesimal cells constitute an infinite dimensional strict Lie 2-algebra, as it

will be discussed in great detail in subsection 2.3 (cf. fn. 2). The composition and inversion

laws and the unit 1-gauge transformation and the horizontal and vertical composition and

inversion laws and the unit 2-gauge transformations of Gau(M, v) are defined by

h ⋄ g = h ◦ g, (2.18a)

σh ⋄ g = σg + g0
−1(σh), (2.18b)

Σh ⋄ g = Σg + g1
−1

(
Σh +

1

2
g2(g0

−1(σh), g0
−1(σh))

)
− τg(g0

−1(σh)), (2.18c)

τh ⋄ g(π) = τg(π) + g1
−1

(
τh(g0(π))− g2(g0

−1(σh), π)
)
, (2.18d)

g−1⋄ = g−1◦ , (2.18e)

σg−1⋄ = −g0(σg), (2.18f)

Σg−1⋄ = −g1(Σg + τg(σg))−
1

2
g2(σg, σg), (2.18g)

τg−1⋄ (π) = −g1(τg(g0
−1(π)))− g2(σg, g0

−1(π)), (2.18h)

i = id, (2.18i)
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σi = 0, (2.18j)

Σi = 0, (2.18k)

τi(π) = 0, (2.18l)

G ⋄ F = G ◦ F, (2.18m)

AG ⋄F = AF + h−1
1(AG)− g1

−1Fh0
−1(σk), (2.18n)

F−1⋄ = F−1◦ , (2.18o)

AF−1⋄ = −g1(AF )− F (σh), (2.18p)

K •H = K ·H, (2.18q)

AK •H = AH +AK , (2.18r)

H−1• = H−1
· , (2.18s)

AH−1• = −AH , (2.18t)

Ig = Idg, (2.18u)

AIg = 0, (2.18v)

where g, h, k, l ∈ Gau1(M, v) and F,G,H,K ∈ Gau2(M, v), with F : g ⇒ h,

G : k ⇒ l and H,K composable. In (2.18a), (2.18e), (2.18i), the composition,

inversion and unit in the right hand side are those of Aut1(v) thought of as hold-

ing pointwise on M (cf. eqs. (A.21a)–(A.21c), (A.21d)–(A.21f), (A.21g)–(A.21i)).

In (2.18m), (2.18o), (2.18q), (2.18s), (2.18u), the horizontal and vertical composition

and inversion and the units in the right hand side are those of Aut2(v) thought of

as holding pointwise on M (cf. eqs. (A.21j), (A.21k), (A.21l), (A.21m), (A.21n)).

By (2.18a), (2.18e), (2.18i), (2.18m), (2.18o), (2.18q), (2.18s), (2.18u), the component

Map(M,Aut(v)) of Gau(M, v) has a strict 2-group structure that equals pointwise

that of Aut(v) analogously to ordinary gauge theory. (2.18b)–(2.18d), (2.18f)–

(2.18h), (2.18j)–(2.18l) are coherence conditions ensuring the compatibility

of (2.18a), (2.18e), (2.18i) with the (2.16) without breaking the (2.14) and (2.15).

Finally, (2.18n), (2.18p), (2.18r), (2.18t), (2.18v) are coherence conditions render-

ing (2.18m), (2.18o), (2.18q), (2.18s), (2.18u) compatible with the (2.17). We remark also

that the gauge transformation of connection doublets defined later in subsection 3.1 is a

left group action of Gau1(M, v) with the group structure induced by that (2.18).

The strict 2-group Gau(M, v) can be described also as a crossed module, though we

shall not use such description in the following. The two groups underlying it are Gau1(M, v)

and Gau2
∗(M, v) =

⋃
g∈Gau1(M,v)Gau2 (M, v)(i, g). Gau2

∗(M, v) can be characterized as

the set of pairs (F,AF ) with:

1. F ∈ Map(M,Aut2
∗(v)) (cf. appendix A.6);

2. AF ∈ Ω1(M, v1).
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The crossed module multiplications, inversions, units, target map and action are given by

the expressions

h ⋄ g = h ◦ g, (2.19a)

σh ⋄ g = σg + g0
−1(σh), (2.19b)

Σh ⋄ g = Σg + g1
−1

(
Σh +

1

2
g2(g0

−1(σh), g0
−1(σh))

)
− τg(g0

−1(σh)), (2.19c)

τh ⋄ g(π) = τg(π) + g1
−1

(
τh(g0(π))− g2(g0

−1(σh), π)
)
, (2.19d)

g−1⋄ = g−1◦ , (2.19e)

σg−1⋄ = −g0(σg), (2.19f)

Σg−1⋄ = −g1(Σg + τg(σg))−
1

2
g2(σg, σg), (2.19g)

τg−1⋄ (π) = −g1(τg(g0
−1(π)))− g2(σg, g0

−1(π)), (2.19h)

i = id, (2.19i)

σi = 0, (2.19j)

Σi = 0, (2.19k)

τi(π) = 0, (2.19l)

G ⋄ F = G ◦ F, (2.19m)

AG ⋄F = AF + (1v1 − F∂)−1(AG), (2.19n)

F−1⋄ = F−1◦ , (2.19o)

AF−1⋄ = −(1v1 − F∂)(AF ), (2.19p)

I = Idi, (2.19q)

t(F ) = t(F ) (2.19r)

σ
t(F ) = −∂AF , (2.19s)

Σ
t(F ) = −dAF +

1

2
[∂AF , AF ], (2.19t)

τ
t(F )(π) = [π,AF ]− (1v1 − F∂)−1dF (π) (2.19u)

AIg = 0, (2.19v)

m(g)(F ) = m(g)(F ), (2.19w)

A
m(g)(F ) = g1(AF − F (1v0 − ∂F )−1(σg)), (2.19x)

where g, h ∈ Gau1(M, v) and F,G ∈ Gau2
∗(M, v). In (2.19a), (2.19e), (2.19i), the

composition, inversion and unit in the right hand side are those of Aut1(v) thought of
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as holding pointwise on M (cf. eqs. (A.22a)–(A.22c), (A.22d)–(A.22f), (A.22g)–(A.22i)).

In (2.19m), (2.19o), (2.19q), the composition, inversion and unit in the right hand side are

those of Aut2
∗(v) thought of as holding pointwise onM (cf. eqs. (A.22j), (A.22k), (A.22l)).

In (2.19r), the target map in the right hand side is that of Aut2
∗(v) thought of as holding

pointwise on M (cf. eqs. (A.22m)–(A.22o)). Finally, in (2.19w), the crossed module action

in the right hand side is that of Aut1(v) on Aut2
∗(v) thought of as holding pointwise on

M (cf. eq. (A.22p)).

2.3 The Lie 2-algebra of infinitesimal higher gauge transformations

In higher gauge theory, as in ordinary gauge theory, many aspects of gauge symmetry are

often conveniently studied by switching to the infinitesimal form of gauge transformation.

Ordinary infinitesimal gauge transformations. Consider again an ordinary gauge

theory with symmetry Lie algebra g. An infinitesimal gauge transformation is a gauge

transformation in linearized form. It consists of:

1. a map u ∈ Map(M, aut(g)) (cf. appendix A.7),

2. a linearized flat connection σ̇u,

dσ̇u = 0, (2.20)

obeying the relation

du(π)− [σ̇u, π] = 0, (2.21)

as follows from expanding (2.11), (2.12) to first order around the unit transformation i.

We shall denote the transformation as (u, σ̇u), understanding as usual only that σ̇u is the

partner of u in the gauge transformation, or simply as u. We shall denote the set of all

infinitesimal gauge transformations by gau(M, g).

Ordinary infinitesimal gauge transformation Lie algebra. gau(M, g) is an infinite

dimensional Lie algebra, in fact that of the gauge transformation Lie group Gau(M, g).

The brackets of gau(M, g) are defined by

[u, v]⋄ = [u, v]◦, (2.22a)

σ̇[u,v]⋄ = u(σ̇v)− v(σ̇u), (2.22b)

where u, v ∈ gau(M, g). In (2.22a), the brackets in the right hand side are those of aut(g)

thought of as holding pointwise on M (cf. eq. (A.24)).

Adjoint type infinitesimal gauge transformations. With any s ∈ Ω0(M, g), there

is associated an element adM s ∈ gau(M, g) by

adM s = ad s, (2.23a)

σ̇adM s = ds, (2.23b)

the adjoint of s. In (2.23a), the adjoint operator in the right hand side is that of g holding

pointwise on M (cf. eq. (A.25)).
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Ordinary gauge transformation exponential map. Infinitesimal gauge transforma-

tions can be exponentiated to finite ones. The exponential map exp⋄ : gau(M, g) →

Gau(M, g) is given by

exp⋄(u) = exp◦(u), (2.24a)

σexp
⋄
(u) =

1g − exp(−u)

u
(σ̇u), (2.24b)

where u ∈ gau(M, g). In (2.24a), the exponentiation in the right hand side is that of aut(g)

thought of as holding pointwise on M .

Higher infinitesimal gauge transformations. Consider next a higher gauge theory

with symmetry Lie 2-algebra v. A infinitesimal higher 1-gauge transformation is a 1-gauge

transformation in linearized form as in the ordinary case. Expanding (2.14), (2.15) around

the unit transformation i to first order reveals that it consists of a set of data of the

following form:

1. a map u ∈ Map(M, aut0(v)) (cf. appendix A.7);

2. a linearized flat connection doublet (σ̇u, Σ̇u),

dσ̇u − ∂Σ̇u = 0, (2.25a)

dΣ̇u = 0; (2.25b)

3. an element τ̇u of Ω1(M, aut1(v)) such that

dτ̇u(π)− [π, Σ̇u] = 0. (2.26)

u, σ̇u, Σ̇u, τ̇u are required to satisfy the relations stemming from (2.16) by linearization. If

u = (u0, u1, u2) (cf. appendix A.7), then these read

du0(π)− [σ̇u, π]− ∂τ̇u(π) = 0, (2.27a)

du1(Π)− [σ̇u, Π]− τ̇u(∂Π) = 0, (2.27b)

du2(π, π)− [σ̇u, π, π]− τ̇u([π, π])− 2[π, τ̇u(π)] = 0. (2.27c)

In the following, we shall denote the infinitesimal 1-gauge transformation as (u, σ̇u, Σ̇u, τ̇u),

indicating as usual σ̇u, Σ̇u, τ̇u as the partners of u in the gauge transformation data, or sim-

ply as u. We shall denote the set of all infinitesimal Lie 2-algebra 1-gauge transformations

by gau0(M, v).

The gauge for gauge symmetry of semistrict higher gauge theory also has an infinites-

imal version. An infinitesimal higher 2-gauge transformation is a linearized version of a

2-gauge transformation. Expansion around the unit transformation Ii to first order shows

that it consists of the data
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1. a map P ∈ Map(M, aut1(v));

2. an element ȦP ∈ Ω1(M, v1).

There are no further relations these objects must obey. We shall denote the infinitesi-

mal 2-gauge transformation as (P, ȦP ), indicating ȦP as the partner of P in the gauge

transformation, or simply as P . We shall denote the set of all infinitesimal higher 2-gauge

transformations by gau1(M, v).

Higher infinitesimal gauge transformation Lie 2-algebra. gau(M, v) is an infinite

dimensional strict Lie 2-algebra, in fact that of the gauge transformation Lie 2-group

Gau(M, v). The boundary map and the brackets of gau(M, v) are given by the expressions

∂⋄P = ∂◦P, (2.28a)

σ̇∂⋄P = −∂ȦP , (2.28b)

Σ̇∂⋄P = −dȦP , (2.28c)

τ̇∂⋄P (π) = [π, ȦP ]− dP (π), (2.28d)

[u, v]⋄ = [u, v]◦, (2.28e)

σ̇[u,v]⋄ = u0(σ̇v)− v0(σ̇u), (2.28f)

Σ̇[u,v]⋄ = u1(Σ̇v)− v1(Σ̇u) + τ̇u(σ̇v)− τ̇v(σ̇u), (2.28g)

τ̇[u,v]⋄(π) = u1τ̇v(π)− v1τ̇u(π) + τ̇uv0(π) (2.28h)

− τ̇vu0(π) + u2(σ̇v, π)− v2(σ̇u, π),

[u, P ]⋄ = [u, P ]◦, (2.28i)

Ȧ[u,P ]⋄ = u1(ȦP )− P (σ̇u), (2.28j)

[u, v, w]⋄ = [u, v, w]◦ = 0, (2.28k)

where u, v, w ∈ gau0(M, v) and P ∈ gau1(M, v). In (2.28a), (2.28e), (2.28i), (2.28k), the

boundary and the brackets in the right hand side are those of aut(v) thought of as holding

pointwise on M (cf. eqs. (A.29a)–(A.29c), (A.29d)–(A.29f), (A.29g), (A.29h)). The strict

Lie 2-algebra gau(M, v) can also be described as a differential Lie crossed module. The

two underlying Lie algebras are gau0(M, v) and gau1(M, v). The differential Lie crossed

module Lie brackets, target map and action are given by the expressions

[u, v]⋄ = [u, v]◦, (2.29a)

σ̇[u,v]⋄ = u0(σ̇v)− v0(σ̇u), (2.29b)

Σ̇[u,v]⋄ = u1(Σ̇v)− v1(Σ̇u) + τ̇u(σ̇v)− τ̇v(σ̇u), (2.29c)
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τ̇[u,v]⋄(π) = u1τ̇v(π)− v1τ̇u(π) + τ̇uv0(π) (2.29d)

− τ̇vu0(π) + u2(σ̇v, π)− v2(σ̇u, π),

[P,Q]⋄ = [P,Q]◦ (2.29e)

Ȧ[P,Q]⋄ = −P (∂ȦQ) +Q(∂ȦP ) (2.29f)

τ⋄P = τ◦P, (2.29g)

σ̇τ⋄P = −∂ȦP , (2.29h)

Σ̇τ⋄P = −dȦP , (2.29i)

τ̇τ⋄P (π) = [π, ȦP ]− dP (π), (2.29j)

µ⋄(u)(P ) = µ◦(u)(P ), (2.29k)

Ȧµ⋄(u)(P ) = u1(ȦP )− P (σ̇u), (2.29l)

where u, v ∈ gau0(M, v) and P,Q ∈ gau1(M, v). In (2.29a), (2.29e), (2.29g), (2.29k), the

brackets, the target map and the Lie algebra morphism in the right hand side are those of

aut(v) thought of as holding pointwise on M (cf. eqs. (A.30a)–(A.30c), (A.30d), (A.30e)–

(A.30g), (A.30h)).

Adjoint type higher infinitesimal gauge transformations. For any s ∈ Ω0(M, v0),

an element adM s ∈ gau0(M, v),

adM s = ad s, (2.30a)

σ̇adM s = ds, (2.30b)

Σ̇adM s = 0, (2.30c)

τ̇adM s(π) = 0 (2.30d)

is defined, the adjoint of s. In (2.30a), the adjoint operator in the right hand side is that of

v0 holding pointwise on M (cf. eqs. (A.31a)–(A.31c)). Similarly, with any s, t ∈ Ω0(M, v0)

and any S ∈ Ω0(M, v1), there are associated elements adM s ∧ t, adM S ∈ gau1(M, v) by

adM s ∧ t = ad s ∧ t, (2.31a)

ȦadM s∧t = 0, (2.31b)

adM S = adS, (2.31c)

ȦadM S = 0, (2.31d)

the adjoints of s, t and S, respectively. In (2.31a), (2.31c), the adjoint operators in the

right hand side are those of v1 holding pointwise on M (cf. eqs. (A.32a). (A.32b)).
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Higher gauge transformation exponential map. Infinitesimal Lie 2-algebra gauge

transformations can be exponentiated to finite ones. The exponential map exp⋄ :

gau(M, v) → Gau(M, v) can be described explicitly. We have

exp⋄(u) = exp◦(u), (2.32a)

σexp
⋄
(u) =

1v0 − exp(−u0)

u0
(σ̇u), (2.32b)

Σexp
⋄
(u) =

1v1 − exp(−u1)

u1
(Σ̇u) (2.32c)

−

∫ 1

0
ds exp(−su1)τ̇u

1v0 − exp(−(1− s)u0)

u0
(σ̇u)

+

∫ 1

0
ds

∫ s

0
dt exp(−(s− t)u1)

× u2

(
exp(−tu0)(σ̇u), exp(−tu0)

1v0 − exp(−(1− s)u0)

u0
(σ̇u)

)
,

τexp
⋄
(u)(π) =

∫ 1

0
ds exp(−su1)τ̇u exp(su0)(π) (2.32d)

+

∫ 1

0
ds exp(−su1)u2

(
exp(su0)(π),

1v0 − exp(−(1− s)u0)

u0
(σ̇u)

)
,

exp⋄(P ) = exp◦(P ), (2.32e)

Ȧexp
⋄
(P ) =

exp(P∂)− 1v1
P∂

(ȦP ) (2.32f)

where u ∈ gau0(M, v), P ∈ gau1(M, v). In (2.32a), the exponentiation in the right hand

side is that of aut0(v) thought of as holding pointwise on M (cf. eqs. (A.33a)–(A.33c)).

Similarly, in (2.32e), the exponentiation in the right hand side is that of aut1(v) pointwise

on M (cf. eq. (A.33d)).

2.4 Orthogonal gauge transformations

In the higher Chern-Simons theory that we are going to construct later, one of the basic

datum is an invariant form on the relevant algebra.

Ordinary orthogonal gauge transformations. We consider an ordinary gauge theory

with symmetry Lie algebra g equipped with an invariant bilinear symmetric form (·, ·) (cf.

appendix A.9). A gauge transformation (g, σg) of Gau(M, g) is said orthogonal if g is

pointwise orthogonal,

1. g ∈ Map(M,OAut(g)) (cf. eq. (A.40)).

We shall denote by OGau(M, g) the set of all orthogonal elements g ∈ Gau(M, g).

OGau(M, g) is an infinite dimensional Lie subgroup of the gauge Lie group Gau(M, g).

Ordinary infinitesimal orthogonal gauge transformations. An infinitesimal gauge

transformation (u, σ̇u) of gau(M, g) is accordingly orthogonal if u is pointwise orthogonal,

1. u ∈ Map(M, oaut(g)).
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We let ogau(M, g) be the set of all orthogonal elements u ∈ gau(M, g). ogau(M, g) is an

infinite dimensional Lie subalgebra of the gauge Lie algebra gau(M, g). ogau(M, g) is also

the Lie algebra of the orthogonal gauge Lie group OGau(M, g).

Adjoint type ordinary orthogonal infinitesimal gauge transformations. For

s ∈ Ω0(M, g), the adjoint type infinitesimal gauge transformation adM s ∈ gau(M, g) is

orthogonal, adM s ∈ ogau(M, g) (cf. eqs. (2.23)).

Ordinary gauge transformation exponential and orthogonality. The exponential

map exp⋄ : ogau(M, g) → OGau(M, g) of ogau(M, g) is simply the restriction of the expo-

nential map exp⋄ : gau(M, g) → Gau(M, g) of gau(M, g) to ogau(M, g). In particular, the

orthogonal exponential is still computed by the expressions (2.23).

Higher orthogonal gauge transformations. We consider now a semistrict higher

gauge theory having as symmetry algebra a balanced Lie 2-algebra v equipped with an in-

variant bilinear form (·, ·) (cf. appendices A.8, A.9). A 1-gauge transformation (g, σg, Σg, τg)

of Gau1(M, v) is said orthogonal if:

1. g ∈ Map(M,OAut1(v)) (cf. eqs. (A.43a), (A.43b));

2. For x, y ∈ v0, one has

(x, τg(y)) + (y, τg(x)) = 0. (2.33)

We shall denote by OGau1(M, v) the set of all orthogonal elements g ∈ Gau1(M, v).

An invariant form (·, ·) can be seen as a special invariant symmetric bilinear form on

the direct sum v0⊕v1 with non vanishing off-diagonal elements only. From this perspective,

the relationship to the ordinary case is more evident. Condition (2.33) is at first glance a

bit mysterious, but it emerges naturally in many contexts and is a necessary condition for

orthogonal symmetry invariance in higher Chern-Simons theory.

A 2-gauge transformation (F,AF ) of Gau2(M, v)(g, h), g, h ∈ Gau1(M, v) being

two 1-gauge transformations, is said orthogonal if both g, h are orthogonal. For

g, h ∈ OGau1(M, v), we shall set OGau2(M, v)(g, h) = Gau2(M, v)(g, h). We further set

OGau2(M, v) =
⋃
g,h∈OGau1(M,v)Gau2(M, v)(g, h).

Remarkably, OGau(M, v) = (OGau1(M, v),OGau2(M, v)) is a Lie 2-subgroup of the

strict Lie 2-group Gau(M, v) = (Gau1(M, v),Gau2(M, v)), meaning that OGau(M, v) is

closed under all 2-group operations of Gau(M, v) (cf. subsection 2.2).

OGau(M, v) can be described as a crossed module. The two groups underlying it are

OGau1(M, v) and OGau2
∗(M, v) =

⋃
g∈OGau1(M,v)Gau2(M, v)(i, g). OGau2

∗(M, v) can

be characterized as the set of pairs (F,AF ) with:

1. F ∈ Map(M,OAut2
∗(v)) (cf. appendix A.9, eqs. (A.44a), (A.44b)) and

(x, dF (y)) + (y, dF (x))− d(∂F (x), F (y)) = 0, (2.34)

for x, y ∈ v0.

2. AF ∈ Ω1(M, v1).

– 18 –



J
H
E
P
1
0
(
2
0
1
4
)
0
7
9

Condition (2.34) is required by compatibility with (2.33). In this description, as expected,

OGau(M, v) is a Lie crossed submodule of the Lie crossed module Gau(M, v) (cf.

subsection 2.2).

Higher infinitesimal orthogonal gauge transformations. An infinitesimal higher

1-gauge transformation (u, σ̇u, Σ̇u, τ̇u) of gau0(M, v) is othogonal if:

1. u ∈ Map(M, oaut0(v));

2. For x, y ∈ v0, one has

(x, τ̇u(y)) + (y, τ̇u(x)) = 0. (2.35)

(2.35) arises from (2.33) by linearization around i. We shall denote by ogau0 (M, v) the

set of all orthogonal elements u ∈ gau0(M, v).

An infinitesimal 2-gauge transformation (P, ȦP ) of gau1(M, v) is said orthogonal if;

1. P ∈ Map(M, oaut1(v)) and

(x, dP (y)) + (y, dP (x)) = 0, (2.36)

for x, y ∈ v0.

(2.36) stems from (2.34) through linearization around Ii. We shall denote by ogau1(M, v)

the set of all orthogonal elements P ∈ gau1(M, v).

ogau(M, v) = (ogau0(M, v), ogau1(M, v)) is an infinite dimensional strict Lie 2-

subalgebra of the gauge algebra gau(M, v) = (gau0(M, v), gau1(M, v)), meaning that

ogau(M, v) is closed under all 2-algebra operations of gau(M, v). Furthermore, ogau(M, v)

is the strict Lie 2-algebra of the orthogonal gauge Lie 2-group OGau(M, v).

Adjoint type higher orthogonal infinitesimal gauge transformations. For s ∈

Ω0(M, v0), the infinitesimal 1-gauge transformation adM s ∈ gau0(M, v) is orthogonal,

adM s ∈ ogau0(M, v) (cf. eqs. (2.30)). Likewise, for s, t ∈ Ω0(M, v0) and any S ∈ Ω0(M, v1),

the infinitesimal 2-gauge transformations adM s ∧ t, adM S ∈ gau1(M, v) are orthogonal,

adM s ∧ t, adM S ∈ oaut1(M, v) (cf. eqs. (2.31)).

Higher gauge transformation exponential and orthogonality. The exponential

map exp⋄ : ogau(M, v) → OGau(M, v) of ogau(M, v) is simply the restriction of the expo-

nential map exp⋄ : gau(M, v) → Gau(M, v) of gau(M, v) to ogau(M, v). In particular, the

orthogonal exponential is still computed by the expressions (2.32).

3 4-d higher gauge theoretic Chern-Simons theory

In this section, we shall construct and analyse a 4-dimensional semistrict analog of the

standard Chern-Simons theory [28]. Beside providing a potentially interesting example of

higher gauge theory, our construction, if it turns out successful, may furnish a basic field

theoretic framework for the study of 4-dimensional topology.
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Our model was already introduced in lesser generality in ref. [26], where it was analyzed

mainly employing the Batalin-Vilkovisky quantization algorithm [32, 33] in the geometric

AKSZ formulation [34]. Generalized Chern-Simons theory were studied in [20] and in [22,

23] in an AKSZ framework. See also [14].

Below, we assume tacitly that the manifold on which fields are defined is oriented and

that the fields satisfy asymptotic or boundary conditions allowing for the convergence of

the integration and integration by parts.

3.1 The gauge transformation action

In ordinary gauge theory the construction of gauge invariant action functionals requires

a prior definition of a gauge transformation action on gauge connections. In the same

way, in semistrict higher gauge theory the construction of higher gauge invariant action

functionals is possible upon defining a higher gauge transformation action on connection

doublets. This is the topic of this subsection. We follow here the formulation of ref. [26].

In the familiar geometrical formulation of ordinary gauge theory, the basic geometrical

datum is a principal G-bundle P on a manifold N . Connections are g-valued 1-forms on

P satisfying the so called Ehresmann conditions. Fields are horizontal and equivariant

g-valued forms on P . Gauge transformations are automorphisms of P projecting to the

identity idN on N . The gauge transformation action is then defined in terms of the pull-

back action of automorphisms on connections and fields. Because of the way we have

formulated the theory of gauge transformation in subsection 2.2, this type of approach is

not immediately extendable to higher gauge theory. We proceed therefore in an alternative

way closer in spirit to the physical approach to gauge symmetry.

Gauge transformation action in ordinary gauge theory. In ordinary gauge theory

with symmetry Lie algebra g, gauge transformation action is a left action of the gauge

transformation group Gau(N, g) on connections ω and fields φ compatible with covariant

differentiation (cf. eq. (2.3)), in the sense that for any gauge transformation g ∈ Gau(N, g)

gDgφ = g(Dφ). (3.1)

This requirement essentially determines the gauge transformation action. The gauge trans-

form gω of the connection ω is
gω = g(ω − σg). (3.2)

Further, the gauge transform gφ of the field φ reads as

gφ = g(φ). (3.3)

In virtue (3.2), (3.3), one has as required that

gDgφ = g(Dφ). (3.4)

For a gauge transformation of the familiar form (g, σg) = (Ad γ, γ−1dγ) with γ ∈

Map(M,G), (3.2)–(3.4) reduce to the usual expressions.
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The gauge transform gf of the curvature f of ω (cf. eq. (2.1)) is

gf = g(f). (3.5)

in compliance with (3.3).

Turning to the Lie algebra gau(M, g) of Gau(M, g), we can write (3.2) in infinitesimal

form (cf. subsection 2.3). For an infinitesimal gauge transformation u ∈ gau(M, g), the

gauge variation δuω of ω is

δuω = u(ω)− σ̇u. (3.6)

The gauge variation δuf of f reads similarly as

δuf = u(f). (3.7)

For the infinitesimal gauge transformation (u, σ̇u) = (ad s, ds), (3.6), (3.7) take the well-

known adjoint form.

BRST cohomology in ordinary gauge theory. In standard gauge theory, gauge sym-

metry is most efficiently analyzed concentrating on infinitesimal gauge transformation of

the adjoint type. This is codified by a bidegree (0, 1) ghost field c through the ghost degree

1 infinitesimal gauge transformation w ∈ gau(M, g)[1] given by w = − adM c and σ̇w = dc

(cf. eqs. (2.23)) and is implemented by the odd BRST operator s = δw. By (3.6), then,

sω = −Dc (3.8)

(cf. eq. (2.3)). We can make s nilpotent by suitably defining the variation sc of c. As

by (3.8) by a simple computation

s2ω = D

(
sc+

1

2
[c, c]

)
, (3.9)

we can enforce s2ω = 0 by setting

sc = −
1

2
[c, c]. (3.10)

s2c = 0, as is readily verified, and so s is nilpotent as required,

s2 = 0. (3.11)

For completeness, we report also the BRST variation of the curvature f of ω which,

by (3.7), reads as

sf = −[c, f ]. (3.12)

BRST cohomology plays an important role in gauge theory, ranging from the classifi-

cation of observables to that of anomalies.

The ordinary orthogonal case. The results of above analysis continue to hold with no

modifications in the case where the Lie algebra g is equipped with an invariant bilinear form,

the gauge group Gau(M, g) and the gauge Lie algebra gau(M, g) being replaced by their

orthogonal counterparts OGau(M, g) and ogau(M, g), respectively (cf. subsection 2.4). In

particular, no additional restriction on the ghost field c is required by orthogonality.
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Gauge transformation action in semistrict higher gauge theory. In semistrict

higher gauge theory with symmetry Lie 2-algebra v, we may define by analogy with the

ordinary case the gauge transformation action as a left action of the 1-gauge transformation

group Gau1(N, v) on connection doublets (ω,Ωω) and field doublets (φ, Φφ) compatible with

covariant differentiation (cf. eqs. (2.8)). The straightforward generalization of (3.1) to the

higher setting,

gDgφ = g(Dφ), (3.13a)

gDgΦφ = g(DΦφ) (3.13b)

however cannot be made to hold unless a natural restriction on the curvature of the connec-

tion doublet is imposed. Through selection by way of selfconsistency, a coherent definition

of the gauge transformation action can be worked out [26]. The gauge transform (gω, gΩω)

of (ω,Ωω) is found to be

gω = g0(ω − σg), (3.14a)

gΩω = g1(Ωω −Σg + τg(ω − σg))−
1

2
g2(ω − σg, ω − σg). (3.14b)

Further, the gauge transform (gφ, gΦφ) of (φ, Φφ) reads as

gφ = g0(φ), (3.15a)

gΦφ = g1(Φφ − (−1)p+qτg(φ)) + (−1)p+qg2(ω − σg, φ), (3.15b)

(p, q) being the bidegree of (φ, Φφ). We observe that the action (3.15) explicitly depends

on and cannot be defined without the prior assignment of a connection doublet. Under the

action (3.14), (3.15), one has now

gDgφ = g0(Dφ), (3.16a)

gDgΦφ = g1(DΦφ + (−1)p+qτg(Dφ)) (3.16b)

− (−1)p+qg2(ω − σg, Dφ) + (−1)p+qg2(f, φ),

from which it emerges that (3.14) holds provided the restriction f = 0 on the curvature of

the connection doublet, known as vanishing fake curvature condition in the literature, is

imposed.

The gauge transform of the curvature doublet f = (f, Ff ) of ω is

gf = g0(f), (3.17a)

gFf = g1(Ff − τg(f)) + g2(ω − σg, f), (3.17b)

in agreement with (3.15).
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Turning to the Lie 2-algebra gau(M, v) of Gau(M, v), we can write (3.14) in infinitesi-

mal form (cf. subsection 2.3). For an infinitesimal 1-gauge transformation u ∈ gau0(M, v),

the gauge variation (δuω, δuΩω) of (ω,Ωω) reads

δuω = u0(ω)− σ̇u, (3.18a)

δuΩω = u1(Ωω)− Σ̇u + τ̇u(ω)−
1

2
u2(ω, ω). (3.18b)

The gauge variation (δuf, δuFf ) of (f, Ff ) reads similarly as

δuf = u0(f), (3.19a)

δuFf = u1(Ff )− τ̇u(f) + u2(ω, f). (3.19b)

A 2-gauge transformation G ∈ Gau2
∗(M, v) acts on a 1-gauge transformation g ∈

Gau1(M, v) as

Gg = t(G)g, (3.20a)

σGg = σg − ∂g1
−1(AG), (3.20b)

ΣGg = Σg − d(g1
−1(AG))− [σg, g1

−1(AG)] +
1

2
[∂g1

−1(AG), g1
−1(AG)], (3.20c)

τGg(π) = τg(π) + [π, g1
−1(AG)]− g1

−1(1v1 −G∂)−1dGg0(π) (3.20d)

(cf. subsection 2.2). The action of an infinitesimal 2-gauge transformation P ∈ gau1(M, v)

on a 1-gauge transformation g ∈ Gau1(M, v) correspondingly is

g−1δP g = τ◦P, (3.21a)

δPσg = −∂g1
−1(ȦP ), (3.21b)

δPΣg = −d(g1
−1(ȦP ))− [σg, g1

−1(ȦP )], (3.21c)

δP τg(π) = [π, g1
−1(ȦP )]− g1

−1dPg0(π). (3.21d)

This in turn induces an action of P on an infinitesimal 1-gauge transformation u ∈

gau0(M, v) given by

δPu = τ◦P, (3.22a)

δP σ̇u = −∂ȦP , (3.22b)

δP Σ̇u = −dȦP , (3.22c)

δP τ̇u(π) = [π, ȦP ]− dP (π). (3.22d)

2-gauge symmetry represents gauge for gauge symmetry, that is gauge symmetry of

1-gauge transformation. Note that eqs. (3.22) can be concisely written as δPu = τ⋄u

by (2.29g)–(2.29j).
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BRST cohomology in semistrict higher gauge theory. In semistrict higher gauge

theory, analogously to ordinary gauge theory, higher gauge symmetry is most efficiently

analyzed concentrating on higher infinitesimal gauge transformation of the adjoint type. In-

finitesimal higher 1-gauge transformation is codified by a bidegree (0, 1) ghost field doublet

of (c, Cc) through the ghost degree 1 infinitesimal 1-gauge transformation w ∈ gau0(M, v)[1]

given by w = − adM c and σ̇w = dc− ∂Cc, Σ̇w = dCc and τ̇w(π) = −[π,Cc] (cf. eqs. (2.30)

for a special case) and is implemented by the odd BRST operator s1 = δw. Infinitesimal

2-gauge transformation turns out to be field dependent necessitating the specification of

a connection doublet (ω,Ωω) by the requirement of BRST nilpotence. It is codified by

a bidegree (−1, 2) ghost field doublet (0, Γ ) through the ghost degree 2 infinitesimal 2-

gauge transformation W ∈ gau1(M, v)[2] given by W = − adM Γ and ȦW = −[ω, Γ ] (cf.

eqs. (2.31a), (2.31b) for a special case) and is implemented by the odd BRST operator

s2 = δW . The total BRST operator is therefore given by

s = s1 + s2. (3.23)

By (3.18a), (3.18b), then,

s1ω = −Dc, (3.24a)

s1Ωω = −DCc (3.24b)

(cf. eqs. (2.8a), (2.8b)). As 2-gauge transformations are inert on ω, Ωω,

s2ω = 0, (3.25a)

s2Ωω = 0, (3.25b)

trivially. In conclusion, we have

sω = −Dc, (3.26a)

sΩω = −DCc. (3.26b)

We can try to make s nilpotent by suitably defining the variations sc, sCc of c, Cc.

From (3.24a), (3.24b), we find the relations

s1
2ω = D

(
s1c+

1

2
[c, c]

)
, (3.27a)

s1
2Ω = D

(
s1Cc + [c, Cc]−

1

2
[ω, c, c]

)
+

1

2
[f, c, c], (3.27b)

where above the covariant differentiation is applied to the field doublet defined by the

expressions within brackets acording to eqs. (2.8). This suggests to set

s1c = −
1

2
[c, c], (3.28a)

s1Cc = −[c, Cc] +
1

2
[ω, c, c]. (3.28b)
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Of course, this is not enough to eventually make s2Ω vanish unless f = 0, but it is the best

we can do. From (3.22a)–(3.22d), we find the relations

[s2c− ∂Γ, π] = 0, (3.29a)

d(s2c− ∂Γ ) + ∂(s2C +DΓ ) = 0, (3.29b)

d(s2C +DΓ ) = 0, (3.29c)

[π, s2C +DΓ ] = 0 (3.29d)

which reveal that

s2c = ∂Γ (3.30a)

s2Cc = −DΓ. (3.30b)

From (3.28), (3.30), we conclude that

sc = −
1

2
[c, c] + ∂Γ (3.31a)

sCc = −[c, Cc] +
1

2
[ω, c, c]−DΓ. (3.31b)

We can now check that, with above definition of sc, sCc, one has s2ω = 0 and s2Ω = 0 for

connection doublets (ω,Ωω) satisfying the condition f = 0, called vanishing fake curvature

condition in the literature. To make s nilpotent, we have to suitably define also the variation

sΓ of Γ . To this end, we note that

s2c = ∂

(
sΓ + [c, Γ ]−

1

6
[c, c, c]

)
, (3.32a)

s2Cc = D

(
sΓ + [c, Γ ]−

1

6
[c, c, c]

)
. (3.32b)

Thus, we succeed to enforce s2c = 0 and s2Cc = 0 by requiring that

sΓ = −[c, Γ ] +
1

6
[c, c, c]. (3.33)

It turns out that s2Γ = 0 as desired.

In conclusion s is nilpotent as desired

s2 = 0, (3.34)

provided we restrict to connection doublets (ω,Ωω) such that f = 0. We note here that

the ghost sector here is not pure, as the BRST variation sCc explicitly depends on the

connection component ω.

For completeness, we report the BRST variation of curvature doublet (f, Ff ) of (ω,Ωω),

which by (3.19), (3.19b) read

sf = −[c, f ], (3.35a)

sFf = −[c, Ff ] + [f, Cc]− [c, ω, f ]. (3.35b)

We expect BRST cohomology to play the same basic role in semistrict higher gauge

theory, which it does in ordinary gauge theory.
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The higher orthogonal case. The results of above analysis keep holding with no

modifications in the case where the Lie 2-algebra v is balanced and equipped with

an invariant bilinear form, the gauge 2-group Gau(M, v) and the gauge Lie 2-algebra

gau(M, v) being replaced by their orthogonal counterparts OGau(M, v) and ogau(M, v),

respectively (cf. subsection 2.4). In particular, no additional restriction on the ghost fields

c Cc and Γ is required.

3.2 Semistrict higher Chern-Simons theory

In this section, we shall describe in detail Lie 2-algebra Chern-Simons theory. To highlight

the way in which the model generalizes ordinary Chern-Simons theory [28], we first review

this latter using the gauge theoretic framework developed in the previous section.

Ordinary Chern-Simons theory. The basic algebraic datum of ordinary Chern-Simons

theory is a Lie algebra g equipped with an invariant symmetric form (·, ·) (cf. appendix A.9).

The topological background is a compact oriented 3-fold N . The field content consists in

a g-connection ω on N . The classical action functional reads

CS1(ω) = κ1

∫

N

[
(ω, f)−

1

6
(ω, [ω, ω])

]
, (3.36)

where the curvature f is given by (2.1). The classical field equations are

f = 0, (3.37)

(cf. eq. (2.1)) and entail that the connection ω is flat. We shall denote this classical field

theory by CS1(N, g) or simply CS1.

Let X be any manifold. In gauge theory, the de Rham complex Ω∗(X) contains the

special subcomplex Ωg
∗(X) formed by those forms that are polynomials in one or more con-

nections ωa and their differentials dωa. In turn, Ωg
∗(X) includes the subcomplex Ωginv

∗(X)

of the elements invariant under the action (3.2) of the orthogonal gauge transformation

group OGau(X, g). For any g-connection ω on X, a form L1 ∈ Ω3(X),

L1 = (ω, f)−
1

6
(ω, [ω, ω]), (3.38)

formally identical to the Lagrangian density of the CS1 action is defined. While L1 ∈

Ωg
3(X), one has L1 6∈ Ωginv

3(X), since, as is well-known,

gL1 = L1 −
1

3
(σg, dσg) + d(σg, ω) (3.39)

for g ∈ OGau(X, g). It is a standard result of gauge theory that

dL1 = C1, (3.40)

where C1 ∈ Ω4(X) is the curvature bilinear

C1 = (f, f). (3.41)
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Clearly, C1 ∈ Ωg
4(X). Unlike L1, however, C1 is invariant under OGau(X, g),

gC1 = C1. (3.42)

Thus, C1 ∈ Ωginv
4(X) as well. By (3.39) and (3.40), C1, while exact in the complex Ωg

∗(X),

is generally only closed in the OGau(X, g)-invariant complex Ωginv
∗(X). It thus defines a

class [C1]inv ∈ Hginv
4(X). More can be said. The variation δC1 of C1 under arbitrary

variations of δω of ω is given by

δC1 = 2d(δω, f). (3.43)

where the 3-form in the right hand side is OGau(X, g) invariant

(gδω, gf) = (δω, f). (3.44)

It follows that, albeit C1 is not necessarily exact in Ωginv
∗(X), its variation δC1 always is.

This property characterizes L1 as the Chern-Simons form of a characteristic class [C1]inv,

in fact the 2nd Chern class.

The CS1 action is not invariant under the OGau(N, g) action (3.2). In fact,

from (3.39), one has

CS1(
gω) = CS1(ω)− κ1Q1(g) (3.45)

for g ∈ OGau(N, g), where the anomaly Q1(g) is given by

Q1(g) =
1

3

∫

N
(σg, dσg). (3.46)

Q1(g) is in fact simply related to the CS1 functional itself,

Q1(g) = κ1
−1CS1(σg). (3.47)

The independence of Q1(g) from the connection ω implies so that the field equations (3.37)

are gauge invariant. Indeed this follows directly and independently from eq. (3.5).

From (3.46), the anomaly density is the form q1 ∈ Ω3(N)

q1 =
1

3
(σg, dσg). (3.48)

Note that, since σg is a connection, q1 ∈ Ωg
3(N). From (3.39), (3.40) and (3.42), it is

readily seen that q1 is closed. The variation of q1 under continuous deformations of the

gauge transformation g is instead exact

δq1 = d(δσg, σg). (3.49)

Q1(g) is so a topological invariant of g. Another way of showing this is by using rela-

tion (3.47): since flat connections ω are the ones solving the classical field equations (3.37),

and σg is a flat connection for any g (cf. eq. (2.11)), the variation of Q1(g) = κ1
−1CS1(σg)

under an infinitesimal variation of g necessarily vanishes. Q1(g) reduces in fact up to a
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factor to the customary winding number of the gauge transformation g when g = Ad γ,

σg = γ−1dγ for a map γ ∈ Map(N,G), G being a Lie group integrating g.

By (2.11), the anomaly density q1 can be cast as

q1 = −
1

6
(σg, [σg, σg]). (3.50)

This relation indicates that with q1 there is associated a special Chevalley-Eilenberg cochain

χ1 ∈ CE3(g),

χ1 = −
1

6
(π, [π, π]), (3.51)

which is in fact a cocycle (cf. appendix A.3). By (2.11) and (A.6), if χ1 is exact in CE(g),

then q1 is exact in Ωg
∗(N). In order the anomaly Q1(g) to be non vanishing, so, it is

necessary that HCE
3(g) 6= 0. This is the case if g is semisimple.

Since Q1(g) vanishes for any gauge transformation g continuously connected with the

identity i, CS1 is annihilated by the BRST operator s (cf. eq. (3.8)),

sCS1(ω) = 0, (3.52)

as can be directly verified from (3.36). This property opens the way to the gauge invariant

perturbative quantization of the model.

Due to the OGau(N, g) gauge non invariance of the CS1 action functional, the gauge

invariant path integral quantization of the CS1 field theory is possible only if the value of κ1
is such that κ1Q1(g) ∈ 2πZ for all g ∈ OGau(N, g). For g = u(n) and (·, ·) = − trfund( · · )

this is achieved if

κ1 = −
k

4π
, (3.53)

where k ∈ Z is an integer called level.

Semistrict higher Chern-Simons theory. After reviewing ordinary Chern-Simons

theory, we introduce the semistrict higher Chern-Simons theory, which is the main topic of

this paper. The basic algebraic datum of the model is a balanced Lie 2-algebra v equipped

with an invariant form (·, ·) (cf. appendices A.8, A.9). The topological background is a

compact oriented 4-fold N . The field content consists in a v-connection doublet (ω,Ωω)

on N . The classical action functional is

CS2(ω,Ωω) = κ2

∫

N

[
1

2
(2f + ∂Ωω, Ωω)−

1

24
(ω, [ω, ω, ω])

]
, (3.54)

where f is given by (2.6a). The classical field equations of CS2(N, v) are

f = 0, (3.55a)

Ff = 0 (3.55b)

(cf. eqs. (2.6a), (2.6b)). They imply that the connection doublet (ω,Ωω) is flat, analogously

to standard CS theory. We shall denote this classical field theory by CS2(N, v) or simply

CS2.
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LetX be any manifold. In semistrict gauge theory, in analogy to ordinary gauge theory,

the de Rham complex Ω∗(X) contains the special subcomplex Ωv
∗(X) formed by those

forms that are polynomials in the components of one or more connection doublets (ωa, Ωa)

and their differentials (dωa, dΩa). In turn, Ωv
∗(X) includes the subcomplex Ωvinv

∗(X) of

the elements invariant under the action (3.14) of the orthogonal 1-gauge transformation

group OGau1(X, v). For any v-connection doublet (ω,Ωω) on X, a form L2 ∈ Ω4(X)

L2 =
1

2
(2f + ∂Ωω, Ωω)−

1

24
(ω, [ω, ω, ω]). (3.56)

formally identical to the Lagrangian density of the CS2 action is defined. While L2 ∈

Ωv
4(X), one has L2 6∈ Ωvinv

4(X), since

gL2 = L2 −
1

4
(σg, dΣg)− d

[
1

2
(σg, Σg) (3.57)

+
1

6
(ω − σg, g1

−1g2(ω − σg, ω − σg) + 6Σg − 3τg(ω − σg))

]
.

for g ∈ OGau1(X, v). Similarly to standard gauge theory, one has

dL2 = C2, (3.58)

where C2 ∈ Ω5(X) is the curvature bilinear

C2 = (f, Ff ). (3.59)

Clearly, C2 ∈ Ωv
5(X). Unlike L2, however, C2 is invariant under OGau1(X, v),

gC2 = C2, (3.60)

implying that C2 ∈ Ωvinv
5(X). By (3.57) and (3.58), C2, while exact in the complex Ωv

∗(X),

is generally only closed in the OGau1(X, v)-invariant complex Ωvinv
∗(X). It thus defines

a class [C2]inv ∈ Hvinv
5(X). Further, the variation δC2 of C2 under arbitrary variations

variations δω, δΩω of ω, Ωω is given by

δC2 = d
[
(δω, Ff ) + (f, δΩω)

]
. (3.61)

where the 5-form in the right hand side is OGau1(X, v) invariant

(gδω, gFf ) + (gf, gδΩω) = (δω, Ff ) + (f, δΩω). (3.62)

It follows that, although C2 is not necessarily exact in Ωvinv
∗(X), its variation δC2 always

is. This property characterizes then L2 as the Chern-Simons form of a higher characteristic

class [C2]inv.

The CS2 action is not invariant under the OGau1(N, v) action (3.14). In fact,

from (3.57), analogously to ordinary Chern-Simons theory, one has

CS2(
gω, gΩω) = CS2(ω,Ωω)− κ2Q2(g) (3.63)
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for g ∈ OGau1(N, v), where the anomaly Q2(g) is given by

Q2(g) =
1

4

∫

N

[
2(dσg, Σg)− (σg, dΣg)

]
. (3.64)

Q2(g) is in fact simply related to the CS2 action itself,

Q2(g) = κ2
−1CS2(σg, Σg). (3.65)

Again, the independence of Q2(g) from the connection doublet (ω,Ωω) implies that the field

equations (3.55) are gauge invariant, a property that follows also directly and independently

from eqs. (3.17).

From (3.64), the anomaly density is the form q2 ∈ Ω4(N)

q2 =
1

4

[
2(dσg, Σg)− (σg, dΣg)

]
. (3.66)

Note that, since (σg, Σg) is a connection doublet, q2 ∈ Ωv
4(N). From (3.57), (3.58)

and (3.60), it is readily seen that q2 is closed. The variation of q2 under continuous

deformations of the gauge transformation g is instead exact

δq2 = d(δσg, Σg). (3.67)

In CS2 too, Q2(g) is so a topological invariant of g. Another way of showing this is by

using relation (3.65): since flat connections (ω,Ωω) are the ones solving the classical field

equations (3.55) and (σg, Σg) is a flat connection doublet for any g (cf. eqs. (2.14)), the

variation of Q2(g) = κ2
−1CS2(σg, Σg) under an infinitesimal variation of g necessarily

vanishes. In analogy to ordinary Chern-Simons theory, Q2(g) represents a higher winding

number of the higher gauge transformation g.

By using (2.14b), the anomaly density q2 can be cast as

q2 = −
1

24
(σg, [σg, σg, σg]) +

1

2
(∂Σg, Σg). (3.68)

With q2 there is therefore associated a special higher Chevalley-Eilenberg cochain χ2 ∈

CE4(v),

χ2 = −
1

24
(π, [π, π, π]) +

1

2
(∂Π,Π), (3.69)

which is in fact a cocycle (cf. appendix A.3). By (2.14) and (A.10), if χ2 is exact in CE(v),

then q2 is exact in Ωv
∗(N). In this way, in order the anomaly Q2(g) to be non trivial, it is

necessary that HCE
4(v) 6= 0. Since Q2(g) vanishes for any 1-gauge transformation g con-

tinuously connected with the identity i, CS2 is invariant under the BRST operator (3.26),

sCS2(ω,Ωω) = 0, (3.70)

a property that can be directly verified from (3.54). As shown in subsection 3.1, defining the

BRST variations of the ghost fields c, Cc, Γ according to (3.31a), (3.31b) (3.33), the BRST
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operator s turns out to be nilpotent provided the vanishing fake curvature condition f = 0 is

satisfied, since s2F = 0 for all fields and ghost fields F except for Ωω, in which case one has

s2Ωω = −[f, Γ ] +
1

2
[f, c, c]. (3.71)

Being f = 0 one of the field equations, s is nilpotent on shell. Perturbative quantization of

the model is still possible, but it requires the Batalin-Vilkovisky quantization algorithm [26].

As in ordinary Chern-Simons theory, the fact that the CS2 action is not OGau1(N, v)

invariant makes the gauge invariant path integral quantization of the CS field theory im-

possible unless certain conditions are met. The pair of the 4-fold N and the balanced Lie

2-algebra v with invariant form is said admissible if there exists a positive value of κ2 such

that κ2Q2(g) ∈ 2πZ for all g ∈ OGau1(N, v). Letting κ2Nv be the smallest value of κ2
with such property, the gauge invariant path integral quantization of the CS2(N, v) theory

is possible, at least in principle, provided that

κ2 = kκ2Nv, (3.72)

where k ∈ Z is an integer, which we shall call level as in the ordinary theory.

An important issue of the theory is the classification of the admissible pairs (N, v).

We cannot provide any solution of it presently. This is also related to the fact that the

integrability of a semistrict Lie 2-algebra v to a semistrict Lie 2-group V is not guaranteed

in general. In the canonical quantization of semistrict higher Chern-Simons theory carried

out in the next subsections, we assume as a working hypothesis that v is a balanced Lie

2-algebra with invariant form such that (N, v) is admissible for a sufficiently ample class

of closed 4-folds N .

3.3 Canonical quantization

In this section, we shall briefly review the canonical quantization of ordinary Chern-Simons

theory and then pass to that of the semistrict higher Chern-Simons theory.

To carry out the canonical quantization of a field theory, we restrict to the case where

the base manifold N is of the form N = R×M withM a compact oriented manifold. Let t

denote the standard coordinate of R. Then, the derivation operator dt is a globally defined

nowhere vanishing vector field on R × M . We denote by Ωh
p(R × M) the subspace of

Ωp(R×M) consisting of those p-forms α such that idtα = 0. Every p-form α ∈ Ωp(R×M)

decomposes uniquely as α = dtαt + αs, where αt ∈ Ωh
p−1(R ×M), αs ∈ Ωh

p(R ×M).

Analogously, the differential d of R×M decomposes as d = dtdt+ds, ds being the differential

along M in R×M .

Ordinary Chern-Simons theory. In the CS1(R × M, g) theory, the g-connection ω

decomposes as

ω = dtωt + ωs, (3.73)

where ωt ∈ Ωh
0(R×M, g), ωs ∈ Ωh

1(R×M, g). The curvature f of ω splits as

f = dtft + fs, (3.74)
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where ft ∈ Ωh
1(R×M, g), fs ∈ Ωh

2(R×M, g), in similar fashion (cf. eqs. (2.1)). ωs is itself

a g-connection and fs is the associated curvature. The CS1 action (3.36) reads then as

CS1(ω) = κ1

∫

R×M
dt

[
− (ωs, dtωs) + 2(ωt, fs)

]
. (3.75)

The field equations read then as

fs = 0, (3.76a)

dtωs −Dsωt = 0, (3.76b)

where Ds denotes the covariant differentiation operator associated with the connection ωs
defined according to (2.3) and ωt is treated as a bidegree (0, 0) field.

The momenta ξt, ξs canonically conjugate to ωt, ωs can easily be read off from (3.75).

In virtue of the linear isomorphisms g∨ ≃ g induced by the bilinear form (·, ·), we have

ξt ∈ Ωh
2(R×M, g), ξs ∈ Ωh

1(R×M, g),

ξt = 0, (3.77a)

ξs = −κ1ωs. (3.77b)

Ordinary Chern-Simons theory is therefore constrained. This requires the application of

Dirac’s quantization algorithm.

To this end, we set below

〈g, g′〉 =

∫

M
(g, g′) (3.78)

for g ∈ Ωp(M, g), g′ ∈ Ω2−p(M, g), for notational convenience. Further, for any Ωp(M, g)-

valued phase function ψ, we denote by gψ a Ω2−p(M, g)-valued phase constant.

In the Hamiltonian formulation of CS1(R ×M, g), the canonical field coordinates are

ωt ∈ Ω0(M, g), ωs ∈ Ω1(M, g) and their canonically conjugate momenta are respectively

ξt ∈ Ω2(M, g), ξs ∈ Ω1(M, g). The basic Poisson brackets are

{〈gωt , ωt〉, 〈ξt, gξt〉}P = 〈gωt , gξt〉, (3.79a)

{〈gωs , ωs〉, 〈ξs, gξs〉}P = 〈gωs , gξs〉, (3.79b)

The canonical Hamiltonian drawn from (3.75) is

H = −2κ1〈ωt, fs〉. (3.80)

The primary constraints corresponding to the relations (3.77a), (3.77b) are

ξt ≈ 0, (3.81a)

κ1ωs + ξs ≈ 0. (3.81b)

Implementation of the Dirac’s algorithm leads to the secondary constraints

fs ≈ 0, (3.82)
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and no higher order constraints. Further, the phase functions ξt and fs are identified as gen-

erators of gauge symmetries. Gauge fixing is thus required. A complete fixing of the symme-

try, however, leads to unwanted non locality in the resulting gauge fixed theory. To remain

in the framework of local field theory, we fix only the gauge symmetry associated with ξt
leaving that corresponding to fs unfixed. The gauge fixing condition we choose to impose is

ωt ≈ 0, (3.83)

The constraints (3.81a), (3.81b), (3.83) form a second class set and, so, they can be used

to construct the Dirac brackets on the associated constrained phase space. The only

independent phase variable remaining after the constraints are taken into account is ωs,

whose Dirac brackets are

{〈gωs , ωs〉, 〈ωs, gωs

′〉}D = −
1

2κ1
〈gωs , gωs

′〉. (3.84)

The constraint (3.82) remains pending. fs generates now the constrained phase space

BRST transformations. Introducing a ghost field cs ∈ Ω0(M, g[1]), we have

{〈fs, cs〉, 〈ωs, gωs〉}D =
1

2κ1
〈ssωs, gωs〉, (3.85)

where ssωs is given by

ssωs = −Dscs, (3.86)

in agreement with (3.8).

We quantize CS1(R × M, g) by replacing the classical field ωs satisfying the Dirac

brackets (3.84) with a corresponding quantum field ω̂s satisfying the commutation relations

[〈gωs , ω̂s〉, 〈ω̂s, gωs

′〉] = −
i

2κ1
〈gωs , gωs

′〉. (3.87)

The constraint (3.82), which we left pending in the classical theory, becomes a condition

obeyed by the state vectors Ψ of the theory,

〈f̂s, gfs〉Ψ = 0. (3.88)

Semistrict higher Chern-Simons theory. The canonical quantization of semistrict

higher Chern-Simons theory proceeds on the same lines as the ordinary case. The structural

similarities and differences of the two models should be evident to the reader.

In the CS2(R×M, v) theory, the v-connection doublet (ω,Ωω) splits as

ω = dtωt + ωs, (3.89a)

Ωω = dtΩωt +Ωωs, (3.89b)

where ωt ∈ Ωh
0(R ×M, v0), ωs ∈ Ωh

1(R ×M, v0), Ωωt ∈ Ωh
1(R ×M, v1), Ωωs ∈ Ωh

2(R ×

M, v1). Similarly, the curvature doublet (f, Ff ) of (ω,Ωω) splits as

f = dtft + fs, (3.90a)
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Ff = dtFft + Ffs (3.90b)

(cf. eqs. (2.6a), (2.6b)), where ft ∈ Ωh
1(R ×M, v0), fs ∈ Ωh

2(R ×M, v0), Fft ∈ Ωh
2(R ×

M, v1), Ffs ∈ Ωh
3(R×M, v1). Here, (ωs,Ωωs) is itself a v-connection doublet and (fs, Ffs)

is the associated curvature doublet. The CS2 action (3.54) reads then as

CS2(ω,Ωω) = κ2

∫

R×M
dt

[
1

2
(dtωs, Ωωs) (3.91)

−
1

2
(ωs, dtΩωs) + (ωt, Ffs) + (fs, Ωt)

]
.

The field equations read then as

fs = 0, (3.92a)

Ffs = 0, (3.92b)

dtωs −Dsωt = 0, (3.92c)

dtΩωs −DsΩωt = 0, (3.92d)

where Ds denotes the covariant differentiation operator associated with the connection

doublet (ωs,Ωωs) defined according to (2.8a), (2.8b) and (ωt,Ωωt) is treated as a bidegree

(0, 0) field doublet.

The expressions of momenta Ξξt, Ξξs, ξt, ξs canonically conjugate to ωt, ωs, Ωωt, Ωωs
can easily be read off from (3.91). In virtue of the linear isomorphisms v0

∨ ≃ v1, v1
∨ ≃ v0

induced by the non singular bilinear pairing (·, ·) of v0 and v1, we have Ξξt ∈ Ωh
3(R×M, v1),

Ξξs ∈ Ωh
2(R×M, v1), ξt ∈ Ωh

2(R×M, v0), ξs ∈ Ωh
1(R×M, v0) and

Ξξt = 0, (3.93a)

Ξξs =
κ2
2
Ωωs, (3.93b)

ξt = 0, (3.93c)

ξs = −
κ2
2
ωs. (3.93d)

Higher semistrict Chern-Simons theory, as ordinary one, is therefore constrained. This

requires once more the application of Dirac’s quantization algorithm. Its implementation

turns out to be straightforward. For notational convenience, below we set

〈g,G〉 =

∫

M
(g,G) (3.94)

for g ∈ Ωp(M, v0), G ∈ Ω3−p(M, v1). Further, for any Ωp(M, v0)-valued phase function

ψ, we denote by Gψ a Ω3−p(M, v1)-valued phase constant and, for any Ωp(M, v1)-valued

phase function Ψ , we denote by gΨ a Ω3−p(M, v0)-valued phase constant.

In the Hamiltonian formulation of CS2(R ×M, v), the canonical field coordinates are

ωt ∈ Ω0(M, v0), ωs ∈ Ω1(M, v0), Ωωt ∈ Ω1(M, v1), Ωωs ∈ Ω2(M, v1) and their canonically

– 34 –



J
H
E
P
1
0
(
2
0
1
4
)
0
7
9

conjugate momenta are respectively Ξξt ∈ Ω3(M, v1), Ξξs ∈ Ω2(M, v1), ξt ∈ Ω2(M, v0),

ξs ∈ Ω1(M, v0). The basic Poisson brackets are

{〈ωt, Gωt〉, 〈gΞξt
, Ξξt〉}P = 〈gΞξt

, Gωt〉, (3.95a)

{〈ωs, Gωs〉, 〈gΞξs
, Ξξs〉}P = 〈gΞξs

, Gωs〉, (3.95b)

{〈gΩωt , Ωωt〉, 〈ξt, Gξt〉}P = 〈gΩωt , Gξt〉, (3.95c)

{〈gΩωs , Ωωs〉, 〈ξs, Gξs〉}P = 〈gΩωs , Gξs〉. (3.95d)

The canonical Hamiltonian implied by (3.91) is

H = −κ2[〈ωt, Ffs〉+ 〈fs, Ωωt〉]. (3.96)

The primary constraints stemming from relations (3.93a)–(3.93d) are

Ξξt ≈ 0, (3.97a)

κ2
2
Ωωs − Ξξs ≈ 0, (3.97b)

ξt ≈ 0, (3.97c)

κ2
2
ωs + ξs ≈ 0. (3.97d)

Implementation of the Dirac’s algorithm leads to the secondary constraints

fs ≈ 0, (3.98a)

Ffs ≈ 0 (3.98b)

and no higher order constraints. Further, the phase functions ξt, Ξξt, fs and Ffs are

identified as generators of gauge symmetries. Gauge fixing is thus required. A complete

fixing of the symmetry, however, leads to a problematic non local gauge fixed theory as in

the ordinary case. To remain in the framework of local field theory, we fix only the gauge

symmetry associated with ξt, Ξξt leaving that corresponding to fs and Ffs unfixed. The

gauge fixing conditions we impose are

ωt ≈ 0, (3.99a)

Ωωt ≈ 0. (3.99b)

The constraints (3.97a)–(3.97d), (3.99a), (3.99b) form a second class set and, so they can

be used to construct the Dirac brackets on the associated constrained phase space. The

only independent phase variables remaining after the constraints are taken into account

are ωs, Ωωs and their Dirac brackets are

{〈ωs, Gωs〉, 〈gΩωs , Ωωs〉}D =
1

κ2
〈gΩωs , Gωs〉. (3.100)
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The constraints (3.98a), (3.98b) are left pending. As it is immediate to see, fs, Ffs generate

constrained phase space BRST transformations. Introducing ghost fields cs ∈ Ω0(M, v0[1])

and Ccs ∈ Ω1(M, v1[1]), we have

{〈fs, Ccs〉+ 〈cs, Ffs〉, 〈ωs, Gωs〉}D =
1

κ2
〈ssωs, Gωs〉, (3.101a)

{〈fs, Ccs〉+ 〈cs, Ffs〉, 〈gΩωs , Ωωs}D = −
1

κ2
〈gΩωs , ssΩωs〉. (3.101b)

where ssωs, ssΩωs are given by

ssωs = −Dscs, (3.102a)

ssΩωs = −DsCcs, (3.102b)

in agreement with (3.26a), (3.26b).

We quantize CS2(R×M, v) by replacing the classical fields ωs, Ωωs satisfying the Dirac

brackets (3.100) with corresponding quantum fields ω̂s, Ω̂ωs satisfying the commutation

relations

[〈ω̂s, Gωs〉, 〈gΩωs , Ω̂ωs〉] =
i

κ2
〈gΩωs , Gωs〉. (3.103)

The constraints (3.98a), (3.98b), which we left pending in the classical theory, translate

into conditions obeyed by the state vectors Ψ of the theory

〈f̂s, Gfs〉Ψ = 0, (3.104a)

〈gFfs
, F̂fs〉Ψ = 0. (3.104b)

3.4 Choice of polarization and Ward identities

To build a representation of the operator algebra yielded by canonical quantization, we

must choose a polarization, a maximal integrable distribution on the classical phase space,

the restriction of the Dirac symplectic form to which vanishes. The polarization must be

gauge invariant by consistency.

Henceforth, we shall make reference exclusively to the space manifold M . We shall

thus suppress the index s throughout as it is no longer necessary lightening in this way

the notation.

Ordinary Chern-Simons theory. In the canonically quantized CS1(R×M, g) theory

reviewed in subsection 3.3, the space manifold M is a 2-dimensional surface. The conven-

tionally normalized Dirac symplectic form is in this case

〈δω, δω〉 = −2κ1

∫

M
(δω, δω). (3.105)

This can be checked to be invariant under any gauge transformation g ∈ OGau (M, g)

acting by (3.2).

A generic phase space vector field is of the form

〈
g δ

δω
,
δ

δω

〉
F =

∫

M

(
g δ

δω
,
δF

δω

)
(3.106)
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where δ/δω is a Ω1(M, g)-valued vector field. A standard polarization of the phase space

ω is built as follows. One picks a complex structure on the surface M and uses the marks

10, 01 to denote the holomorphic and antiholomorphic components of a 1-form. Setting

δ/δω10 = −i(δ/δω)01, δ/δω01 = i(δ/δω)10, the polarization is defined by the integrable

distribution of the vector fields
〈
v δ

δω

10,
δ

δω10

〉
, (3.107)

where vδ/δω
10(ω) is a phase function. The distribution is gauge invariant, since one has

gδ/δω10 = g(δ/δω10) for g ∈ OGau(M, g).

With the above choice of polarization, the quantum Hilbert space H of the CS1 theory

consists of phase space functionals Ψ(ω) satisfying

〈
v δ

δω

10,
δΨ

δω10

〉
= 0, (3.108)

that is of holomorphic wave functionals Ψ(ω01). The Hilbert structure appropriate for H,

as realized in [31], is thus of the Bargmann type. The Ψ belonging to H must satisfy the

formal square integrability condition
∫

Dω01Dω10 exp
(
2iκ1〈ω

10, ω01〉
)
|Ψ(ω01)|2 <∞, (3.109)

where Dω01Dω10 is a formal functional measure. Note that a restriction on the sign of

κ1 is implied by the convergence of (3.109). The Hilbert inner product is correspondingly

given by Bargmann expression

〈Ψ1, Ψ2〉 =

∫
Dω01Dω10 exp

(
2iκ1〈ω

10, ω01〉
)
Ψ1(ω

01)∗ Ψ2(ω
01). (3.110)

The field operators ω̂01, ω̂10 satisfying (3.103) are represented by

〈gω
10, ω̂01〉 = 〈g10ω , ω

01 · 〉, (3.111a)

〈ω̂10, gω
01〉 =

〈
−

1

2κ1

δ

δω01
, gω

01
〉
. (3.111b)

In virtue of the exponential factor in the inner product, one has ω̂01+ = ω̂10 as required.

In the representation (3.111), the vanishing curvature constraint (3.88) takes the form

〈
d10ω01 −

1

2κ1

(
d01

δ

δω01
+

[
ω01,

δ

δω01

])
, gf

〉
Ψ(ω01) = 0, (3.112)

This is a WZW type Ward identity determining the variation of Ψ(ω01) under an infinites-

imal gauge transformation u ∈ oaut(M, g) with u = ad θ, σ̇u = dθ with θ being a bidegree

(0, 0) field. Noting that the resulting variation of ω is

δuω
01 = D01θ (3.113)

by (3.86), we have

δuΨ(ω
01) = 2iκ1〈d

10ω01, θ〉Ψ(ω01). (3.114)
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Therefore, the gauge variation of Ψ(ω01) under a finite gauge transformation g ∈

OGau(M, g) is given by a universal multiplicative factor

Ψ(gω01) = exp(iSWZW1(g, ω
01))Ψ(ω01), (3.115)

where SWZW1(g, ω
01) is the gauged WZW action. By consistency with the group ac-

tion property of gauge transformation on connections, SWZW1(g, ω
01) obeys the Polyakov-

Wiegmann identity

SWZW1(h ⋄ g, ω01) = SWZW1(h,
gω01) + SWZW1(g, ω

01) mod 2π. (3.116)

To reproduce the infinitesimal variation (3.128), SWZW1(g, ω) must satisfy the normaliza-

tion condition

δuSWZW1(g, ω̃
01)|g=i = 2κ1〈d

10ω01, θ〉, (3.117)

where the tilde notation indicates that δu is inert on ω01. (3.116), (3.117) essentially

determine the expression of SWZW1(g, ω). When M is the boundary of a 3-fold B and g

can be extended to an element of OGau(B, g), we have

SWZW1(g, ω
01) = κ1

∫

M

[
(σg

10, σg
01)− 2(σg

10, ω01)
]

(3.118)

+
κ1
3

∫

B
(σg, dσg) mod 2π,

a classic result [35]. The independence of exp(iSWZW1(g, ω
01)) from the choice ofB requires

that the CS1 anomaly density 3-form κ1q1 (cf. eq. (3.48)) integrates to an integer multiple

of 2π on any closed 3-fold of the form N = B ∪−B′ with ∂B = ∂B′ =M . This is how the

quantization condition of κ1 emerges in the canonical quantization of the CS1 theory.

Semistrict Chern-Simons theory. In the canonically quantized CS2(R ×M, v) the-

ory worked out in subsection 3.3, the space manifold M is a 3-dimensional space. The

associated normalized Dirac symplectic form is in this case

〈δω, δΩω〉 = κ2

∫

M
(δω, δΩω). (3.119)

The form is invariant under any 1-gauge transformation g ∈ OGau1(M, v) acting via (3.14).

In 3 dimensions, 1- and 2-forms have the same number of functional degrees of freedom.

The phase space has thus the usual Hamiltonian form.

The vector fields δ/δω, δ/δΩω are specified by the relation
[〈
g δ

δω
,
δ

δω

〉
+

〈 δ

δΩω
, G δ

δΩω

〉]
F (3.120)

=

∫

M

[(
g δ

δω
,
δF

δω

)
+

(
δF

δΩω
, G δ

δΩω

)]
,

for any phase function F (ω,Ωω). A canonical polarization in the phase space (ω,Ωω) is

defined as follows. It is spanned by the vector fields of the form

〈 δ

δΩω
, V δ

δΩω

〉
, (3.121)
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where Vδ/δΩω
(ω,Ωω) is a phase function and it is understood that δ/δΩω does not act on

Vδ/δΩω
. The distribution (3.121) is clearly integrable. It is also checked that it is gauge

invariant by noting that gδ/δω = g1(δ/δω)+ terms linear in δ/δΩω,
gδ/δΩω = g0(δ/δΩω)

under a gauge transformation g ∈ OGau1(M, v).

With the above choice of polarization, the quantum Hilbert space H consists of phase

space functionals Ψ(ω,Ωω) satisfying

〈 δΨ

δΩω
, V δ

δΩω

〉
= 0, (3.122)

that is of wave functionals Ψ(ω) depending on ω only. The Ψ belonging to H must satisfy

a square integrability condition of the form
∫

Dω |Ψ(ω)|2 <∞. (3.123)

where Dω is a suitable formal functional measure. The Hilbert inner product has then the

familiar form

〈Ψ1, Ψ2〉 =

∫
Dω Ψ1(ω)

∗ Ψ2(ω). (3.124)

The field operators ω̂, Ω̂ω satisfying (3.103) are represented by

〈ω̂, Gω〉 = 〈ω · , Gω〉, (3.125a)

〈gΩω , Ω̂ω〉 =
〈
gΩω ,−

i

κ2

δ

δω

〉
. (3.125b)

They are manifestly formally selfadjoint with respect to the Hilbert product (3.124): ω̂+ =

ω̂ and Ω̂ω
+ = Ω̂ω.

By (3.125), the constraints (3.104) take the form

〈
dω +

1

2
[ω, ω] +

i

κ2
∂
δ

δω
,Gf

〉
Ψ(ω) = 0, (3.126a)

〈
gF ,−

i

κ2

(
d
δ

δω
+

[
ω,

δ

δω

])
−

1

6
[ω, ω, ω]

〉
Ψ(ω) = 0. (3.126b)

These are the Ward identities obeyed by Ψ . They determine the variation of Ψ(ω) under

an infinitesimal gauge transformation u ∈ oaut0(M, v) with u = ad θ, σ̇u = dθ + ∂Θθ,

Σ̇u = dΘθ, τ̇u(π) = −[π,Θθ], (θ,Θθ) being a bidegree (0, 0) field doublet. Noting that the

resulting variation of ω is

δuω = Dθ (3.127)

(cf. eq. (3.102a)), we have

δuΨ(ω) = iκ2

[〈
dω +

1

2
[ω, ω], Θθ

〉
−

1

6
〈θ, [ω, ω, ω]〉

]
Ψ(ω). (3.128)

Therefore, the gauge variation of Ψ(ω) under a finite gauge transformation g ∈

OGau1(M, v) is given by a universal multiplicative factor

Ψ(gω) = exp(iSWZW2(g, ω))Ψ(ω), (3.129)

– 39 –



J
H
E
P
1
0
(
2
0
1
4
)
0
7
9

where SWZW2(g, ω) is a higher analog of the gauged WZW action. In analogy to its ordi-

nary counterpart, SWZW2(g, ω) obeys a higher version of the Polyakov-Wiegmann identity

SWZW2(h ⋄ g, ω) = SWZW2(h,
gω) + SWZW2(g, ω) mod 2π. (3.130)

To reproduce the infinitesimal variation (3.128), SWZW2(g, ω) must satisfy further the

normalization condition

δuSWZW2(g, ω̃)|g=i = κ2

[〈
dω +

1

2
[ω, ω], Θθ

〉
−

1

6
〈θ, [ω, ω, ω]〉

]
, (3.131)

where the tilde indicates that δu is inert on ω. An expression of SWZW2(g, ω) fulfilling

relations (3.130), (3.131) holding when M is the boundary of a 4-fold B and g can be

extended to and element of OGau1(B, v) is

SWZW2(g, ω) = −
κ2
2

∫

M

[
(σg − ω, τg(σg − ω))− 2(ω − σg, Σg) (3.132)

+
1

3
(σg − ω, g1

−1g2(σg − ω, σg − ω))

]

+
κ2
4

∫

B

[
2(dσg, Σg)− (σg, dΣg)

]
mod 2π.

As in the ordinary case, the independence of exp(iSWZW2(g, ω)) from the choice of B

requires that the CS2 anomaly density 4-form κ2q2 (cf. eq. (3.66)) integrates to an integer

multiple of 2π on any closed 4-fold of the form N = B ∪ −B′ with ∂B = ∂B′ = M . This

will be the case if the pair (N, v) is admissible for a sufficiently broad class of closed 4-folds

N , as we assumed earlier at the end of subsection 3.2

The polarization we have constructed above is fully topological in the sense that its

definition does not require the choice of any auxiliary structure on the threefold M . In

this respect, the associated semistrict Chern-Simons theory is manifestly topological in a

way ordinary Chern-Simons theory is not. There is however another choice of polarization

more similar in flavour to standard Chern-Simons’ in that it assumes the assignment of a

strictly pseudoconvex CR structure on M .

We review briefly a few basic facts about CR structures to the reader’s benefit. (See

refs. [36, 37]for background material.) In a CR 3-foldM , the complexified cotangent bundle

T ∗M ⊗ C has a direct sum decomposition T ∗100M ⊕ T ∗010M ⊕ T ∗001M , where T ∗100M ,

T ∗010M , T ∗001M are line subbundles of T ∗M ⊗ C, T ∗001M = T ∗100M and T ∗010M is

the complexification of a trivial line subbundle E of T ∗M , the one fiberwise generated by

the underlying contact form. Forms of M are graded accordingly. For instance, a 1-form

α ∈ Ω1(M) has three components, α = α100 + α010 + α001. A 2-form β ∈ Ω2(M) has also

three components, β = β110+β101+β011. Strictly pseudoconvex CR spaces are the closest

3-dimensional analog of Riemann surfaces. In particular, with the strictly pseudoconvex

CR structure of a space there is associated a class of metrics, called Webster metrics,

related to each other by a change of the normalization of the contact form, much as with

a conformal structure of a surface there is associated a conformal class of metrics.
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A second polarization of the phase space (ω,Ωω) is built as follows. One picks a strictly

pseudoconvex CR structure onM . Setting δ/δω100 = −i(δ/δω)011, δ/δω010 = −i(δ/δω)101,

δ/δω001 = −i(δ/δω)110 and δ/δΩω
011 = −i(δ/δΩω)

100, δ/δΩω
101 = −i(δ/δΩω)

010,

δ/δΩω
110 = −i(δ/δΩω)

001, the polarization is spanned by the vector fields of the form

〈 δ

δΩω110
, V δ

δΩω

110
〉
+
〈 δ

δΩω011
, V δ

δΩω

011
〉
+
〈
v δ

δω

010,
δ

δω010

〉
, (3.133)

where Vδ/δΩω
(ω,Ωω)

110, Vδ/δΩω
(ω,Ωω)

011, vδ/δω(ω,Ωω)
010 are phase functions and again it

is understood that δ/δΩω
110, δ/δΩω

011 does not act on Vδ/δΩω

110, Vδ/δΩω

110. It is easily

checked that the distribution (3.133) is integrable. It is also checked that it is gauge

invariant by noting that gδ/δω010 = g1(δ/δω
010)+ terms linear in δ/δΩω

110, δ/δΩω
011

and gδ/δΩω
110 = g0(δ/δΩω

110), gδ/δΩω
011 = g0(δ/δΩω

011) under a gauge transformation

g ∈ OGau1(M, v).

With the above choice of polarization, the quantum Hilbert space H consists of phase

space functionals Ψ(ω,Ωω) satisfying

〈 δΨ

δΩω110
, V δ

δΩω

110
〉
+
〈 δΨ

δΩω011
, V δ

δΩω

011
〉
+
〈
v δ

δω

010,
δΨ

δω010

〉
= 0 (3.134)

that is of wave functionals Ψ(ω100, ω001, Ωω
101). The Ψ must satisfy a square integrability

condition of the form
∫

Dω100Dω001DΩω
101 |Ψ(ω100, ω001, Ωω

101)|2 <∞. (3.135)

where Dω100Dω001DΩω
101 is a suitable functional measure. The Hilbert inner product is

then

〈Ψ1, Ψ2〉 =

∫
Dω100Dω001DΩω

101 (3.136)

× Ψ1(ω
100, ω001, Ωω

101)∗ Ψ2(ω
100, ω001, Ωω

101).

The field operators ω̂, Ω̂ω satisfying (3.103) are realized as

〈ω̂100, Gω
011〉 = 〈ω100 · , Gω

011〉, (3.137a)

〈ω̂010, Gω
101〉 =

〈
−

1

κ2

δ

δΩω101
, Gω

101
〉
,

〈ω̂001, Gω
110〉 = 〈ω001 · , Gω

110〉,

〈gΩω

100, Ω̂ω
011〉 =

〈
gΩω

100,
1

κ2

δ

δω100

〉
, (3.137b)

〈gΩω

010, Ω̂ω
101〉 = 〈gΩω

010, Ωω
101 · 〉,

〈gΩω

001, Ω̂ω
110〉 =

〈
gΩω

001,
1

κ2

δ

δω001

〉
.

They satisfy the natural adjunction relations ω̂100+ = ω̂001, ω̂010+ = ω̂010 and Ω̂ω
011+ =

Ω̂ω
110, Ω̂ω

101+ = Ω̂ω
101.
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By (3.137), the constraints (3.104) presently read

〈 1

κ2

(
d100

δ

δΩω101
+

[
ω100,

δ

δΩω101

]
(3.138a)

+∂
δ

δω001

)
− d010ω100, Gf

001
〉
Ψ(ω100, ω001, Ωω

101) = 0,

〈d100ω001 + d001ω100 + [ω100, ω001]− ∂Ωω
101, Gf

010〉Ψ(ω100, ω001, Ωω
101) = 0,

〈 1

κ2

(
d001

δ

δΩω101
+

[
ω001,

δ

δΩω101

]

+∂
δ

δω100

)
− d010ω001, Gf

100
〉
Ψ(ω100, ω001, Ωω

101) = 0,

〈
gF ,

1

κ2

(
d100

δ

δω100
+ d001

δ

δω001
+

[
ω100,

δ

δω100

]
+

[
ω001,

δ

δω001

]
(3.138b)

−

[
δ

δΩω101
, Ωω

101

]
+

[
ω100,

δ

δΩω101
, ω001

])
+ d010Ωω

101
〉
Ψ(ω100, ω001, Ωω

101) = 0.

In the fifth term of (3.138b), it is understood that δ/δΩω
101 is inert on Ωω

101. These are the

Ward identities obeyed by Ψ in this CR canonical quantization scheme. They determine

the variation of a Ψ(ω100, ω001, Ωω
101) under an infinitesimal gauge transformation u ∈

oaut0(M, v) of the form u = ad θ, σ̇u = dθ + ∂Θθ, Σ̇u = dΘθ, τ̇u(π) = −[π,Θθ], (θ,Θθ) as

earlier. The resulting variations of ω100, ω001, Ωω
101 are given by

δuω
100 = (Dθ)100 = d100θ + [ω100, θ] + ∂Θθ

100, (3.139a)

δuω
001 = (Dθ)001 = d001θ + [ω001, θ] + ∂Θθ

001,

δuΩω
101 = (DΘθ)

101 = d100Θθ
001 + [ω100, Θθ

001] (3.139b)

+ d001Θθ
100 + [ω001, Θθ

100]− [z,Ωω
101] + [ω100, ω001, z]

(cf. eq. (3.102a)). On account of (3.139), we have

δuΨ(ω
100, ω001, Ωω

101) = iκ2
[
〈θ, d010Ωω

101〉 (3.140)

+ 〈d010ω100, Θθ
001〉+ 〈d010ω001, Θθ

100〉
]
Ψ(ω100, ω001, Ωω

101).

Therefore, the gauge variation of Ψ(ω) under a finite gauge transformation g ∈

OGau1(M, v) is given by a universal multiplicative factor

Ψ(gω100, gω001, gΩω
101) (3.141)

= exp(iSWZW2(g, ω
100, ω001, Ωω

101))Ψ(ω100, ω001, Ωω
101),

where SWZW2(g, ω
100, ω001, Ωω

101) is another higher analog of the gauged WZW action.

Again, as its ordinary counterpart, it obeys a higher Polyakov-Wiegmann identity

SWZW2(h ⋄ g, ω100, ω001, Ωω
101) (3.142)

= SWZW2(h,
gω100, gω001, gΩω

101) + SWZW2(g, ω
100, ω001, Ωω

101) mod 2π
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To reproduce the infinitesimal variation (3.140), SWZW2(g, ω
100, ω001, Ωω

101) must satisfy

the normalization condition

δuSWZW2(g, ω̃
100, ω̃001, Ω̃ω

101)|g=i (3.143)

= κ2
[
〈θ, d010Ωω

101〉+ 〈d010ω100, Θθ
001〉+ 〈d010ω001, Θθ

100〉
]

where again the tilde notation indicates that δu is inert on ω100, ω001, Ωω
101. An expression

of SWZW2(g, ω
100, ω001, Ωω

101) fulfilling relation (3.142) holding when M is the boundary

of a 4-fold B and g can be extended to an element of Gau1(B, v) is

SWZW2(g, ω
100, ω001, Ωω

101) (3.144)

= −
κ2
2

∫

M

[
2(σg

100 − ω100, τg
010(σg

001 − ω001))

− 2(ω100 − σg
100, Σg

011)− 2(ω001 − σg
001, Σg

110) + 2(σg
010, Ωω

101)
]

+
κ2
4

∫

B

[
2(dσg, Σg)− (σg, dΣg)

]
mod 2π,

where for the last term the same considerations as before hold. This action does not

fulfill (3.143) however, but a weaker version of it,

δuSWZW2(g, ω̃
100, ω̃001, Ω̃ω

101)|g=i (3.145)

= κ2
[
〈θ, d010Ωω

101〉+ 〈d010ω100, Θθ
001〉+ 〈d010ω001, Θθ

100〉

+ 〈d100ω001 + d001ω100 + [ω100, ω001]− ∂Ωω
101, Θθ

010〉
]
.

This however poses no problem. By the second Ward identity (3.138a), the field functionals

Ψ(ω001, Ωω
101) are supported precisely on the functional hypersurface d100ω001+d001ω100+

[ω100, ω001]−∂Ωω
101 = 0. Thus the last offending term in (3.145) vanishes identically upon

insertion in (3.141).

To summarize, we have found that, when certain conditions are met, semistrict higher

Chern-Simons theory admits two distinct canonical quantizations and correspondingly two

sets of higher WZW Ward identities each characterized by a gauged WZW action.

The first canonical quantization is manifestly topological, as it does not necessitate a

choice of any additional structure on the spacial 3-fold. The second one requires instead

a choice of a CR structure on the latter. The unitary equivalence of the quantizations

associated with distinct CR structures is an open problem. A solution of it on the same lines

as that presented in ref. [31] for the ordinary case requires a full fledged deformation theory

of CR structure, which to the best of our knowledge is missing presently. Furthermore, the

relationship between the the topological and CR quantizations remains mysterious.

It would be interesting to investigate the properties of the solutions of the Ward identi-

ties for both canonical quantizations. Here, we limit ourselves to observe that the solutions

are generically functional distributions. For instance, the second Ward identity (3.138a)

entails that the wave functional is supported on connections with vanishing 101 curvature

component and thus exhibits a corresponding functional Dirac delta singularity.
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3.5 Examples

We present a few examples to illustrate the higher Chern-Simons theory developed in

subsection 3.2.

Balanced differential Lie crossed modules. A differential Lie crossed module (g, h)

is balanced if it is so when viewed as a strict Lie 2-algebra (cf. appendices A.4, A.8). Thus,

(g, h) is balanced if it is equipped with a non singular bilinear pairing (·, ·) : g × h → R

such that

(τ(X), Y )− (τ(Y ), X) = 0, (3.146a)

([π, x], X) + (x, µ(π)(X)) = 0 (3.146b)

(cf. eqs. (A.42a), (A.42b)). Below, we assume that (g, h) is the differential Lie crossed

module of a Lie crossed module (G,H) (cf. appendix A.2).

By (3.54), since the three argument bracket vanishes in the present case, the higher

Chern-Simons theory CS2(N, g, h) is formally a BF theory, with the 2 form connection com-

ponent playing the role of the B field. This conclusion is however unwarranted, because the

symmetry structure of CS2(N, g, h) is basically different from that of an ordinary BF model.

There exists a distinguished 2-subgroup Gau(N,G,H) of the gauge transformation

strict 2-group Gau(N, g, h) [26]. The 1-gauge transformations belonging to Gau(N,G,H)

are of the form

gγ = φγ , (3.147a)

σgγ = γ−1dγ +Ad γ−1(τ(χγ)), (3.147b)

Σgγ = ṁ(γ−1)

(
dχγ +

1

2
[χγ , χγ ]

)
, (3.147c)

τgγ (x) = µ(x)(ṁ(γ−1)(χγ)), (3.147d)

where γ ∈ Map(N,G), χγ ∈ Ω1(N, h). Here, for a ∈ G, φa ∈ Aut1(v) is defined by

φa0(π) = Ad a(π), φa1(Π) = ṁ(a)(Π) and φa2(π, π) = 0 and (3.147a) is understood to

hold pointwise on N . τ , µ, t and m are related by (A.15), (A.16) and ṁ is given by (A.35).

For two 1-gauge transformations gζ , gη associated with the data ζ, η ∈ Map(N,G) and

χζ , χη ∈ Ω1(N, h), the 2-gauge transformations of Gau(N,G,H) with source gζ and target

gη are those of the form

FΛ(x) = Φζ,Λ(x), (3.148a)

AFΛ
= ṁ(ζ−1)(−Λ−1dΛ+ χζ +AdΛ−1(BΛ − χζ)), (3.148b)

where Λ ∈ Map(N,H) and BΛ ∈ Ω1(N, h) with

η = t(Θ)ζ, (3.149a)

χζ − χη = BΛ. (3.149b)
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Here, for a ∈ G and A ∈ H, Φa,A is defined by Φa,A(π) = Q(Ad a(π), A) and (3.148a) is

understood to hold pointwise on N . Q is given by (A.36).

Let (ω,Ωω) be a connection doublet and (f, Ff ) be its curvature doublet. Inserting

eqs. (3.147b)–(3.147d) into the relations (3.14), we obtain

gγω = Ad γ(ω)− dγγ−1 − τ(χγ), (3.150a)

gγΩω = ṁ(γ)(Ωω)− dχγ −
1

2
[χγ , χγ ]. (3.150b)

− µ(Ad γ(ω)− dγγ−1 − τ(χγ))(χγ)

Inserting eqs. (3.147b)–(3.147d) into (3.17), we find further

gγf = Ad γ(f), (3.151a)

gγFf = ṁ(γ)(Ff )− µ(Ad γ(f))(χγ). (3.151b)

These expressions are identical to those obtained originally in refs. [18, 19].

The anomaly Q2(gγ) turns out to vanish for all 1-gauge transformations gγ of

Gau(N,G,H). Indeed, the anomaly density q2 is exact

q2 =
1

2
(τ(Σgγ ), Σgγ ) =

1

2
d

(
τ(χγ), dχγ +

1

3
[χγ , χγ ]

)
. (3.152)

Therefore the higher Chern-Simons theory CS2(N, g, h) is non anomalous, at least when

restricting to the 1-gauge transformations drawn from Gau(N,G,H), and there is no level

quantization.

Balanced Lie 2-algebra v with invertible ∂. Let v be a balanced Lie 2-algebra with

invariant form such that ∂ is invertible. Then, the gauge anomaly Q2(g) of the classical

action of the Chern-Simons theory CS2(N, v) vanishes identically. Indeed, the Chevalley-

Eilenberg cocycle χ2 ∈ CE4(v) of eq. (3.69) turns out to be exact in this case, being

χ2 = QCE(v)
1

2

(
π,Π −

1

6
∂−1[π, π]

)
(3.153)

and, as we have shown in sect 3.2, this implies that Q2(g) = 0. Consequently, in this

case too the higher Chern-Simons theory CS2(N, v) is non anomalous and there is no level

quantization.

Balanced Lie 2-algebra v with vanishing ∂. In the category of Lie 2-algebras, seen

as 2-term L∞ algebras, every Lie 2-algebra v is equivalent to one with vanishing boundary

map ∂. We are thus led to consider a balanced Lie 2-algebra v with invariant form such

that ∂ = 0. By (A.8c), v0 = g is a Lie algebra with brackets [·, ·]. Since the invariant

form (·, ·) is non singular, v1 = g∗ with duality pairing 〈·, ·〉 = (·, ·). By the invariance of

the pairing (·, ·), eq. (A.42b), v1 is just the coadjoint g-module. The property (A.8e) is
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equivalent to the three argument bracket [·, ·, ·] defining a g∗-valued Chevalley-Eilenberg

cocycle φ ∈ CE3(g, g∗).3 On account of the cyclicity property (A.42c), φ is cyclic and, so,

φ̂ =
1

4
〈π, [π, π, π]〉, (3.154)

is a Chevalley-Eilenberg cocycle φ ∈ CE4(g). φ̂ is in fact simply related to the Chevalley-

Eilenberg cocycle χ2 ∈ CE4(v) of eq. (3.69).

χ2 = −φ̂/6 (3.155)

Since CE∗(g) is a subcomplex of CE∗(v) when ∂ = 0 by (A.6) and (A.10a), χ2 is exact in

CE∗(v) if φ̂ is in CE∗(g). In that case, we have Q2(g) = 0 and there is no level quantization

in the associated CS2(N, v) Chern-Simons model. If the 4-cocycle φ̂ is not a coboundary,

then Q2(g) may be non trivial and level quantization may obtain. Now HCE
4(g) = 0 for

all simple Lie algebras g. HCE
4(g) 6= 0, e. g. g = u(n) with n ≥ 2.
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A Lie 2-group and 2-algebra theory

In the following appendices, we collect various results on 2-groups and Lie 2-algebras and

their automorphisms disseminated in the mathematical literature in order to define our

terminology and notation and for reference throughout in the text. A good introduction

to these matters tailored for higher gauge theoretic applications is provided in [1].

A.1 Strict 2-groups

The theory of strict 2-groups is formulated most elegantly in the language of higher category

theory [40]. Here, we shall limit ourselves to providing the basic definitions and properties.

3Recall that the Chevalley-Eilenberg complex CE∗(g, g∗) of g with values in g∗ is the graded vector space

Fun(g[1], g∗) equipped with the coboundary operator QCE(g,g∗) defined by

QCE(g,g∗)φ(π, . . . , π) = [π, φ(π, . . . , π)]−
p

2
φ([π, π], π, . . . , π),

for a p-cochain φ ∈ CEp(g, g∗) seen as as a linear map φ ∈ Hom(∧pg, g∗). The associated cohomology is

HCE
∗(g, g∗). A p-cochain φ ∈ CEp(g, g∗) is cyclic if

〈x, φ(y, π, . . . , π)〉+ 〈y, φ(x, π, . . . , π)〉 = 0,

where 〈·, ·〉 is the duality pairing of g. The cyclic cochain form a subcomplex CCE∗(g, g∗) of CE∗(g, g∗)

with cohomology HCCE
∗(g, g∗) isomorphic to HCE

∗(g)[−1], the −1 degree shifted real valued cohomology

of g [38]. The correspondence is defined by

φ̂(π, . . . , π) =
1

p+ 1
〈π, φ(π, . . . , π)〉

at the level of representatives. (See also [39] for reference.)
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Ordinary groups. We recall first the familiar definition of group.

A group (in delooped form) consists of the following set of data:

1. a set of 1-cells G;

2. a composition law of 1-cells ◦ : G×G→ G;

3. a inversion law of 1-cells −1◦ : G→ G;

4. a distinguished unit 1-cell 1 ∈ G

These are required to satisfy the following axioms.

(c ◦ b) ◦ a = c ◦ (b ◦ a), (A.1a)

a−1◦ ◦ a = a ◦ a−1◦ = 1, (A.1b)

a ◦ 1 = 1 ◦ a = a, (A.1c)

where a, b, c, · · · ∈ G.

Strict 2-groups. We provide now the definition of strict 2-group.

A strict 2-group (in delooped form) consists of the following set of data:

1. a set of 1-cells V1;

2. a composition law of 1-cells ◦ : V1 × V1 → V1;

3. a inversion law of 1-cells −1◦ : V1 → V1;

4. a distinguished unit 1-cell 1 ∈ V1;

5. for each pair of 1-cells a, b ∈ V1, a set of 2-cells V2(a, b);

6. for each quadruple of 1-cells a, b, c, d ∈ V1, a horizontal composition law of 2-cells

◦ : V2(a, c)× V2(b, d) → V2(b ◦ a, d ◦ c);

7. for each pair of 1-cells a, b ∈ V1, a horizontal inversion law of 2-cells −1◦ : V2(a, b) →

V2(a
−1◦ , b−1◦);

8. for each triple of 1-cells a, b, c ∈ V1, a vertical composition law of 2-cells · : V2(a, b)×

V2(b, c) → V2(a, c);

9. for each pair of 1-cells a, b ∈ V1, a vertical inversion law of 2-cells −1
· : V2(a, b) →

V2(b, a);

10. for each 1-cell a, a distinguished unit 2-cell 1a ∈ V2(a, a).
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These are required to satisfy the following axioms.

(c ◦ b) ◦ a = c ◦ (b ◦ a), (A.2a)

a−1◦ ◦ a = a ◦ a−1◦ = 1, (A.2b)

a ◦ 1 = 1 ◦ a = a, (A.2c)

(C ◦B) ◦A = C ◦ (B ◦A), (A.2d)

A−1◦ ◦A = A ◦A−1◦ = 11, (A.2e)

A ◦ 11 = 11 ◦A = A, (A.2f)

(C ·B) ·A = C · (B ·A), (A.2g)

A−1
·

·A = 1a, A ·A−1
· = 1b, (A.2h)

A · 1a = 1b ·A = A, (A.2i)

(D ·C) ◦ (B ·A) = (D ◦B) · (C ◦A). (A.2j)

Here and in the following, a, b, c, · · · ∈ V1, A,B,C, · · · ∈ V2, where V2 denotes the set of

all 2-cells. For clarity, we often denote A ∈ V2(a, b) as A : a ⇒ b. All identities involving

the vertical composition and inversion hold whenever defined. Relation (A.2j) is called

interchange law. In the following, we shall denote a 2-group such as the above as V or

(V1, V2) or (V1, V2, ◦,
−1◦ , · ,−1

· , 1−) to emphasize the underlying structure.

V is in fact a one-object strict 2-category in which all 1-morphisms are invertible and

all 2-morphisms are both horizontal and vertical invertible, a one-object strict 2-groupoid.

If (V1, V2, ◦,
−1◦ , · ,−1

· , 1−) is a strict 2-group, then (V1, ◦,
−1◦ , 1) is an ordinary group

and (V1, V2, · ,
−1

· , 1−) is a groupoid. Viewing this as a category V having V1, V2 as its

collection of objects and morphisms, ◦ : V × V → V and −1◦ : V → V are both functors

and V turns out to be a strict monoidal category in which every morphism is invertible

and every object has a strict inverse.

A.2 Strict 2-groups and crossed modules

Strict 2-groups are intimately related to crossed modules. A crossed module [41] consists

in the following elements.

1. a pair of groups G, H;

2. a group morphism t : H → G;

3. a group morphism m : G → Aut(H), where Aut(H) is the group of automorphisms

of H.

Further, the following conditions are met.

t(m(a)(A)) = at(A)a−1, (A.3a)

m(t(A))(B) = ABA−1, (A.3b)
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where a ∈ G, A,B ∈ H. We shall denote a crossed module such as this by (G,H) or

(G,H, t,m) to explicitly indicate its underlying structure.

Crossed modules are just another way of describing strict 2-groups. There is in fact

a one-to-one correspondence between the former and the latter [42]. With any crossed

module (G,H), there is associated a strict 2-group V as follows.

1. V1 = G;

2. b ◦ a = ba;

3. a−1◦ = a−1;

4. 1 = 1G;

5. V2(a, b) is the set of pairs (a,A) ∈ G×H such that b = t(A)a;

6. (b, B) ◦ (a,A) = (ba,Bm(b)(A));

7. (a,A)−1◦ = (a−1,m(a−1)(A−1));

8. for composable (a,A), (b, B), (b, B) · (a,A) = (a,BA);

9. (a,A)−1
· = (t(A)a,A−1);

10. 1a = (a, 1H).

Conversely, with any strict 2-group V there is associated a crossed module (G,H), as

follows.

1. G = V1;

2. ba = b ◦ a;

3. a−1 = a−1◦ ;

4. 1G = 1;

5. H is the set of all 2-cells of the form A : 1 ⇒ a for some a;

6. BA = B ◦A;

7. A−1 = A−1◦ ;

8. 1H = 11;

9. t(A) = a if A : 1 ⇒ a.

10. m(a)(A) = 1a ◦A ◦ 1a−1◦ .

A.3 Lie 2-algebras

In this appendix, we review the notion of Lie 2-algebra, which is basic in the present work.

Again, Lie 2-algebras have an elegant categorical formulation [9]. Here, we shall present

them as 2-term L∞ algebras, which is an equivalent computationally efficient description.
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Ordinary Lie algebras. A Lie 2-algebra consists of the following set of data:

1. a vector space g;

2. a linear map [·, ·] : g ∧ g → g;

This is required to satisfy the following axiom:

3[π, [π, π]] = 0, (A.4)

where π is given by

π = πa ⊗ ea, (A.5)

{ea} being a basis of g and {πa} being the basis of g∨[1] dual to {ea}. Here, g∨[1] is

the 1 step degree shifted dual of g, assumed to have degree 0. It is immediately verified

that (A.4) is equivalent to the familiar Jacobi identity.

Lie algebra Chevalley-Eilenberg cohomology. The Chevalley-Eilenberg algebra

CE(g) of g is the graded commutative algebra S(g∨[1]) ≃
∧

∗ g∨ generated by g∨[1], the 1

step degree shifted dual of g. The Chevalley-Eilenberg differential QCE(g) is the degree 1

differential defined by

QCE(g)π = −
1

2
[π, π]. (A.6)

It is immediately verified that QCE(g) is nilpotent,

QCE(g)
2 = 0, (A.7)

as a consequence of (A.4). (CE(g),QCE(g)) is so a cochain complex. Its cohomology

HCE
∗(g) is the Chevalley-Eilenberg cohomology, also known as Lie algebra cohomology, of g.

Lie 2-algebras. A Lie 2-algebra consists of the following set of data:

1. a pair of vector spaces on the same field v0, v1;

2. a linear map ∂ : v1 → v0;

3. a linear map [·, ·] : v0 ∧ v0 → v0;

4. a linear map [·, ·] : v0 ⊗ v1 → v1;

5. a linear map [·, ·, ·] : v0 ∧ v0 ∧ v0 → v1.
4

These are required to satisfy the following axioms:

[π, ∂Π]− ∂[π,Π] = 0, (A.8a)

[∂Π,Π] = 0, (A.8b)

3[π, [π, π]]− ∂[π, π, π] = 0, (A.8c)

4We denote by [·, ·] both 2-argument brackets. It will be clear from context which is which.
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2[π, [π,Π]]− [[π, π], Π]− [π, π, ∂Π] = 0, (A.8d)

4[π, [π, π, π]]− 6[π, π, [π, π]] = 0. (A.8e)

where π and Π are given by

π = πa ⊗ ea, (A.9a)

Π = Πα ⊗ Eα, (A.9b)

{ea}, {Eα} being bases of v0, v1 and {πa}, {Πα} being the bases of v0
∨[1], v1

∨[2] dual to

{ea}, {Eα}, respectively. Here, v0
∨[1] and v1

∨[2] are the 1 and 2 step degree shifted duals of

v0, v1 assumed to have degree 0. We shall denote a Lie 2-algebra such as the above by v or,

more explicitly, by (v0, v1) or (v0, v1, ∂, [·, ·], [·, ·, ·]) to emphasize its underlying structure.

Lie 2-algebra Chevalley-Eilenberg cohomology. Similarly to ordinary Lie algebras,

the Chevalley-Eilenberg algebra CE(v) of v is the graded commutative algebra S(v0
∨[1]⊕

v1
∨[2]) ≃

∧
∗ v0

∨⊗
∨

∗ v1
∨ generated by v0

∨[1]⊕v1
∨[2]. The Chevalley-Eilenberg differential

QCE(v) is the degree 1 differential defined by

QCE(v)π = −
1

2
[π, π] + ∂Π, (A.10a)

QCE(v)Π = −[π,Π] +
1

6
[π, π, π]. (A.10b)

QCE(v) turns out to be nilpotent,

QCE(v)
2 = 0, (A.11)

in virtue of the relations (A.8). (CE(v),QCE(v)) is a so cochain complex. The associated

Chevalley-Eilenberg cohomology HCE
∗(v) is the Lie 2-algebra cohomology of v generalizing

ordinary Lie algebra cohomology.

A.4 Strict Lie 2-algebras and differential Lie crossed modules

A Lie 2-algebra v is called strict if its three-argument bracket [·, ·, ·] vanishes identically.

From (A.8), it follows that then v0 is an ordinary Lie algebra, v1 is a v0 Lie module and ∂

is a Casimir for the latter.

Just as crossed modules provide an equivalent description of strict 2-groups, differential

Lie crossed modules furnish an alternative description of strict Lie 2-algebras.

A differential Lie crossed module [43] consists in the following elements.

1. A pair of Lie algebras g, h.

2. A Lie algebra morphism τ : h → g.

3. A Lie algebra morphism µ : g → der(h), where der(h) is the Lie algebra of derivations

of h.
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Further, the following conditions are verified,

τ(µ(x)(X)) = [x, τ(X)]g, (A.12a)

µ(τ(X))(Y ) = [X,Y ]h, (A.12b)

where x ∈ g, X,Y ∈ h. We shall denote the Lie crossed module by (g, h) or (g, h, τ, µ) to

explicitly indicate its underlying structure.

There exists a one-to-one correspondence between strict Lie 2-algebras and differential

Lie crossed modules. With any differential Lie crossed module (g, h), there is associated a

strict Lie 2-algebra v as follows.

1. v0 = g;

2. v1 = h;

3. ∂X = τ(X);

4. [x, y] = [x, y]g;

5. [x,X] = µ(x)(X);

6. [x, y, z] = 0.

Conversely, with any strict Lie 2-algebra v, there is associated a differential Lie crossed

module (g, h) as follows.

1. g = v0;

2. h = v1;

3. [x, y]g = [x, y];

4. [X,Y ]h = [∂X, Y ];

5. τ(X) = ∂X;

6. µ(x)(X) = [x,X].

A.5 Strict Lie 2-groups and their algebras

A group G is Lie if the set of 1-cells G is a smooth manifold and the multiplication and

inversion of G are smooth functions.

With any Lie group G, there is associated a Lie algebra g. g is the tangent space to G

at 1. The brackets of g are defined by the relations

[x, y] =
∂

∂s

(
∂

∂t
a(s)−1◦ ◦ b(t)−1◦ ◦ a(s) ◦ b(t)

∣∣∣
t=0

)∣∣∣
s=0

, (A.13)

where x, y ∈ g and a(t), b(t) are curves in G such that a(0) = 1, da(0)/dt = x, b(0) = 1,

db(0)/dt = y. There is a natural exponential map exp : g → G.
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Similarly, a strict 2-group V is Lie if the sets of 1- and 2-cells V1, V2 are smooth mani-

folds and the multiplication and inversion of V1 and the horizontal and vertical multiplica-

tion and inversion of V2 as well as the source and target maps of V2 are all smooth functions.

With any strict Lie 2-group V , there is associated a strict Lie 2-algebra v as follows.

v0 is the tangent space to V1 at 1; v1 is the tangent space to V2
∗ = ∪a∈V1V2(1, a) at 11.

The brackets and the boundary map of v are defined by the relations

[x, y] =
∂

∂s

(
∂

∂t
a(s)−1◦ ◦ b(t)−1◦ ◦ a(s) ◦ b(t)

∣∣∣
t=0

)∣∣∣
s=0

, (A.14a)

[x,X] =
∂

∂s

(
∂

∂t
1a(s) ◦A(t) ◦ 1a(s)−1◦

∣∣∣
t=0

)∣∣∣
s=0

, (A.14b)

∂X =
d

ds
t(A(s))

∣∣∣
s=0

, (A.14c)

[x, y, z] = 0. (A.14d)

where x, y ∈ v0 and X ∈ v1, a(t), b(t) are curves in V1 such that a(0) = 1, da(0)/dt = x,

b(0) = 1, db(0)/dt = y and A(t) is a curve in V2
∗ such that A(0) = 11, dA(0)/dt = X and

t is the target map of V2.

The relation between a strict Lie 2-group V and and its strict Lie 2-algebra v can

be phrased in more conventional Lie theoretic terms if we view V as a Lie crossed mod-

ule (G,H) (cf. appendix A.2). Then, v can correspondingly be viewed the differential

Lie crossed module (g, h) (cf. appendix A.4), where g, h are the Lie algebras of G, H,

respectively, and

τ(X) =
dt(C(v))

dv

∣∣∣
v=0

, (A.15)

µ(x)(X) =
∂

∂u

(
∂m(c(u))(C(v))

∂v

∣∣∣
v=0

)
|u=0, (A.16)

where x ∈ g, X ∈ h, c(u) is any curve in G such that c(u)
∣∣
u=0

= 1G and dc(u)/du
∣∣
u=0

= x

and C(v) is any curve in H such that C(v)
∣∣
v=0

= 1H and dC(v)/dv
∣∣
v=0

= X. A natural

exponential map exp : v → V is defined in terms of the customary exponential maps

exp : g → G, exp : h → H.

A.6 The Lie 2-algebra automorphism group

Automorphisms of a Lie algebra or a Lie 2-algebra provide structural information and play

a basic role in gauge and semistrict higher gauge theory as formulated in this paper.

Automorphisms of an ordinary Lie algebra. Let g be a Lie algebra. A Lie algebra

automorphism of g consists of the following datum:

1. a vector space automorphism φ : g → g;

which is required to satisfy the following relation:

φ([π, π])− [φ(π), φ(π)] = 0. (A.17)
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The set Aut(g) of all automorphisms of g is a group for the operations and unit

ψ ◦ φ(π) = ψφ(π), (A.18a)

φ−1◦(π) = φ−1(π), (A.18b)

id(π) = π. (A.18c)

Aut(g) is a Lie group.

Automorphisms of a Lie 2-algebra. Let v be a Lie 2-algebra. A Lie 2-algebra 1-

automorphism of v consists of the following data:

1. a vector space automorphism φ0 : v0 → v0;

2. a vector space automorphism φ1 : v1 → v1;

3. a vector space morphism φ2 : v0 ∧ v0 → v1.

These are required to satisfy the following relations:

φ0(∂Π)− ∂φ1(Π) = 0, (A.19a)

φ0([π, π])− [φ0(π), φ0(π)]− ∂φ2(π, π) = 0, (A.19b)

φ1([π,Π])− [φ0(π), φ1(Π)]− φ2(π, ∂Π) = 0, (A.19c)

3[φ0(π), φ2(π, π)] + 3φ2(π, [π, π]) (A.19d)

+[φ0(π), φ0(π), φ0(π)]− φ1([π, π, π]) = 0.

In the following, we shall denote a 1-morphism such as the above one by φ or, more

explicitly, by (φ0, φ1, φ2) to emphasize its constituent components. We shall denote the set

of all 1-automorphisms of v by Aut1(v).

For any two Lie 2-algebra 1-automorphisms φ, ψ, a Lie 2-algebra 2-automorphism from

φ to ψ consists of a single datum:

1. a linear map Φ : v0 → v1.

This must satisfy the following relations

φ0(π)− ψ0(π)− ∂Φ(π) = 0, (A.20a)

φ1(Π)− ψ1(Π)− Φ(∂Π) = 0, (A.20b)

φ2(π, π)− ψ2(π, π) + [φ0(π) + ψ0(π), Φ(π)]− Φ([π, π]) = 0. (A.20c)

We shall write a 2-automorphism such as this as Φ or as Φ : φ⇒ ψ to emphasize its source

and target. We shall denote the set of all 2-automorphisms Φ : φ ⇒ ψ by Aut2(v)(φ, ψ)

and the set of all 2-automorphisms Φ by Aut2(v).
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Aut1(v), Aut2(v) are the sets of 1- and 2-cells of a strict 2-group Aut(v) for the

operations and units

ψ ◦ φ0(π) = ψ0φ0(π), (A.21a)

ψ ◦ φ1(Π) = ψ1φ1(Π), (A.21b)

ψ ◦ φ2(π, π) = ψ1φ2(π, π) + ψ2(φ0(π), φ0(π)), (A.21c)

φ−1◦
0(π) = φ0

−1(π), (A.21d)

φ−1◦
1(Π) = φ1

−1(Π), (A.21e)

φ−1◦
2(π, π) = −φ1

−1φ2(φ0
−1(π), φ0

−1(π)). (A.21f)

id0(π) = π, (A.21g)

id1(Π) = Π, (A.21h)

id2(π, π) = 0, (A.21i)

Ψ ◦ Φ(π) = Ψλ0(π) + ψ1Φ(π) = Ψµ0(π) + φ1Φ(π), (A.21j)

Φ−1◦(π) = −λ1
−1Φµ0

−1(π) = −µ1
−1Φλ0

−1(π), (A.21k)

Λ ·Θ(π) = Θ(π) + Λ(π), (A.21l)

Θ−1
· (π) = −Θ(π), (A.21m)

Idφ(π) = 0. (A.21n)

where Φ : λ⇒ µ, Ψ : φ⇒ ψ, Θ : ρ⇒ σ, Λ : σ ⇒ τ .

The strict 2-group Aut(v) can be described as a crossed module. The two

groups underlying it are Aut1(v), Aut2
∗(v) = ∪φ∈Aut1(v)Aut2(v)(id, φ) = {Φ |Φ ∈

Hom(v0, v1), with 1v0 − ∂Φ ∈ GL(v0), 1v1 − Φ∂ ∈ GL(v1)}. The crossed module opera-

tions are as follows,

ψ ◦ φ0(π) = ψ0φ0(π), (A.22a)

ψ ◦ φ1(Π) = ψ1φ1(Π), (A.22b)

ψ ◦ φ2(π, π) = ψ1φ2(π, π) + ψ2(φ0(π), φ0(π)), (A.22c)

φ−1◦
0(π) = φ0

−1(π), (A.22d)

φ−1◦
1(Π) = φ1

−1(Π), (A.22e)

φ−1◦
2(π, π) = −φ1

−1φ2(φ0
−1(π), φ0

−1(π)). (A.22f)

id0(π) = π, (A.22g)

id1(Π) = Π, (A.22h)
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id2(π, π) = 0, (A.22i)

Ψ ◦ Φ(π) = Ψ(π) + Φ(π)− Ψ∂Φ(π), (A.22j)

Φ−1◦(π) = −Φ(1v0 − ∂Φ)−1(π) = −(1v1 − Φ∂)−1Φ(π), (A.22k)

Idφ(π) = 0. (A.22l)

t(Φ)0(π) = (1v0 − ∂Φ)(π) (A.22m)

t(Φ)1(Π) = (1v1 − Φ∂)(Π) (A.22n)

t(Φ)2(π, π) = 2[π, Φ(π)]− [∂Φ(π), Φ(π)]− Φ([π, π]), (A.22o)

m(φ)(Φ)(π) = φ1Φφ0
−1(π). (A.22p)

Aut(v) is a strict Lie 2-group.

A.7 The derivation Lie 2-algebra

Derivations of a Lie algebra or a Lie 2-algebra play an important role because of the

structural information they provide and the constructive applications they have.

The derivation Lie algebra. Let g be an ordinary Lie algebra. An element α of aut(g),

a derivation of g, is

1. a vector space morphism α : g → g

with the property that

α([π, π])− [α(π), π]− [π, α(π)] = 0, (A.23)

With the brackets

[α, β]◦(π) = αβ(π)− βα(π), (A.24)

aut(g) is the Lie algebra, in fact that associated with the Lie group Aut(g) of g-

automorphisms, as suggested by the notation (cf. subsection A.6).

Lie algebra adjoint action. For any x ∈ g, the mapping

adx(π) = [x, π] (A.25)

defines a derivation adx ∈ aut(g), the adjoint of x.

Lie algebra exponential map. The exponential map exp◦ : aut(g) → Aut(g) is defined

as expected. For α ∈ aut(g), exp◦(α) ∈ Aut(g) is given by

exp◦(α)(π) = exp(α)(π). (A.26)

If G is a Lie group with Lie algebra g, we have

exp◦(adx)(π) = Ad exp(x)(π) (A.27)

for x ∈ g, where in the right hand side exp : g → G is the usual Lie theoretic exponential

map.
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The derivation Lie 2-Lie algebra. Let v be a Lie 2-algebra. The derivation strict Lie

2-Lie algebra aut(v) of v is described as follows.

An element of α of aut0(v), a 1-derivation, consists of three mappings.

1. a vector space morphism α0 : v0 → v0;

2. a vector space morphism α1 : v1 → v1;

3. a vector space morphism α2 : v0 ∧ v0 → v1.

These must satisfy the following relations:

α0(∂Π)− ∂α1(Π) = 0, (A.28a)

α0([π, π])− [α0(π), π]− [π, α0(π)]− ∂α2(π, π) = 0, (A.28b)

α1([π,Π])− [α0(π), Π]− [π, α1(Π)]− α2(π, ∂Π) = 0, (A.28c)

3[π, α2(π, π)] + 3α2(π, [π, π]) (A.28d)

+3[π, π, α0(π)]− α1([π, π, π]) = 0.

An element of Γ of aut1(v), a 2-derivation, consists of a single mapping.

1. a vector space morphism Γ : v0 → v1.

No restrictions are imposed on it.

The boundary map and the brackets of aut(v) are given by the expressions

∂◦Γ0(π) = −∂Γ (π), (A.29a)

∂◦Γ1(Π) = −Γ (∂Π), (A.29b)

∂◦Γ2(π, π) = 2[π, Γ (π)]− Γ ([π, π]), (A.29c)

[α, β]◦0(π) = α0β0(π)− β0α0(π), (A.29d)

[α, β]◦1(Π) = α1β1(Π)− β1α1(Π), (A.29e)

[α, β]◦2(π, π) = α1β2(π, π) + 2α2(β0(π), π) (A.29f)

− β1α2(π, π)− 2β2(α0(π), π),

[α, Γ ]◦(π) = α1Γ (π)− Γα0(π), (A.29g)

[α, β, γ]◦(π) = 0. (A.29h)

Relations (A.28) ensure that the basic relations (A.8) are satisfied by the above boundary

and brackets.

The strict Lie 2-algebra aut(v) can be described as a differential Lie crossed module.

The two Lie algebras underlying it are aut0(v), aut1(v). The differential Lie crossed module

operations are as follows,

[α, β]◦0(π) = α0β0(π)− β0α0(π), (A.30a)
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[α, β]◦1(Π) = α1β1(Π)− β1α1(Π), (A.30b)

[α, β]◦2(π, π) = α1β2(π, π) + 2α2(β0(π), π) (A.30c)

− β1α2(π, π)− 2β2(α0(π), π),

[Γ,∆]◦(π) = −Γ∂∆(π) +∆∂Γ (π), (A.30d)

τ◦(Γ )0(π) = −∂Γ (π), (A.30e)

τ◦(Γ )1(Π) = −Γ (∂Π), (A.30f)

τ◦(Γ )2(π, π) = 2[π, Γ (π)]− Γ ([π, π]), (A.30g)

µ◦(α)(Γ )(π) = α1Γ (π)− Γα0(π), (A.30h)

aut(v) is the strict Lie 2-algebra associated with the strict Lie 2-group Aut(g) of v-

automorphisms, as indicated by the notation (cf. subsection A.6).

For any Lie 2-algebra, Aut(v) is a strict Lie 2-group. Its associated strict Lie 2-algebra

is aut(v) (cf. subsection A.5).

Lie 2-algebra adjoint action. For any x ∈ v0, the mappings

adx0(π) = [x, π], (A.31a)

adx1(Π) = [x,Π], (A.31b)

adx2(π, π) = [x, π, π] (A.31c)

define an element adx ∈ aut0(v), the adjoint of x. Furthermore, for any x, y ∈ v0 and any

X ∈ v1, the mappings

adx ∧ y(π) = [x, y, π], (A.32a)

adX(π) = [π,X] (A.32b)

define two elements adx ∧ y, adX ∈ aut1(v), the adjoints of x, y and X.

Lie 2-algebra exponential map. The exponential map exp◦ : aut(v) → Aut(v) can be

described rather explicitly. For α ∈ aut0(v), Γ ∈ aut1(v), exp◦(α) ∈ Aut1(v), exp◦(Γ ) ∈

Aut2
∗(v) are given by the expressions

exp◦(α)0(π) = exp(α0)(π), (A.33a)

exp◦(α)1(Π) = exp(α1)(Π), (A.33b)

exp◦(α)2(π, π) =

∫ 1

0
dt exp((1− t)α1)α2

(
exp(tα0)(π), exp(tα0)(π)

)
, (A.33c)

exp◦(Γ )(π) =
1v1 − exp(−Γ∂)

Γ∂
Γ (π) = Γ

1v0 − exp(−∂Γ )

∂Γ
(π) (A.33d)
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The above expressions can be made more explicit in the case where v is a strict Lie

2-algebra corresponding to the differential Lie crossed module (g, h) of a Lie crossed module

(G,H) (cf. appendix A.5),

exp◦(adx)0(π) = Ad exp(x)(π), (A.34a)

exp◦(adx)1(Π) = ṁ(exp(x))(Π), (A.34b)

exp◦(adx)2(π, π) = 0 (A.34c)

exp◦(adX)(π) = Q(π, exp(X)) (A.34d)

for x ∈ g, X ∈ h, where, for a ∈ G, A ∈ H, x ∈ g, X ∈ h, ṁ(a)(X) ∈ h and Q(x,A) ∈ h

are defined by

ṁ(a)(X) =
d

dv
m(a)(C(v))

∣∣∣
v=0

(A.35)

Q(x,A) =
d

du
m(c(u))(A)A−1

∣∣∣
u=0

, (A.36)

with c(u) being a curve in G such that c(u)
∣∣
u=0

= 1G and dc(u)/du
∣∣
u=0

= x and C(v)

being a curve in H such that C(v)
∣∣
v=0

= 1H and dC(v)/dv
∣∣
v=0

= X.

A.8 Balanced Lie 2-algebras

Balanced Lie 2-algebras play a major role in the construction higher Chern-Simons theory.

The notion of balancement has non counterpart in ordinary Lie algebra theory.

Balanced Lie 2-algebras. A Lie 2-algebra v is said balanced if dim v0 = dim v1.

For any non balanced Lie 2-algebra v, there exists a balanced Lie 2-algebra v∼ mini-

mally extending v. By this, we mean:

1. v is contained in v∼;

2. dim v∼ is minimal;

3. v∼ is as trivial as possible outside v.

In more precise terms, the following propositions hold.

Let v be a Lie 2-algebra such that dim v0 < dim v1. Then, there is a balanced Lie

2-algebra with the following properties.

1. v∼0 = v0 ⊕ w, wehere w is a vector space such that dimw = dim v1 − dim v0, and

v∼1 = v1.

2. For x, y, z ∈ v0, a, b, c ∈ w, X ∈ v1,

∂∼X = ∂X ⊕ 0, (A.37a)

[x⊕ a, y ⊕ b]∼ = [x, y]⊕ 0, (A.37b)
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[x⊕ a,X]∼ = [x,X], (A.37c)

[x⊕ a, y ⊕ b, z ⊕ c]∼ = [x, y, z]. (A.37d)

Further, v∼ is unique up to (non canonical) isomorphism.

Let v be a Lie 2-algebra such that dim v0 > dim v1. Then, there is a balanced Lie

2-algebra with the following properties.

1. v∼0 = v0 and v∼1 = v1⊕f, wehere f is a vector space such that dim f = dim v0−dim v1,

2. For x, y, z ∈ v0, X ∈ v1, A ∈ f,

∂∼(X ⊕A) = ∂X, (A.38a)

[x, y]∼ = [x, y], (A.38b)

[x,X ⊕A]∼ = [x,X]⊕ 0, (A.38c)

[x, y, z]∼ = [x, y, z]⊕ 0. (A.38d)

Further, v∼ is unique up to (non canonical) isomorphism.

Using the above results, we can always assume that the Lie 2-algebra v we are dealing

with is balanced.

A.9 Balanced Lie 2-algebras with invariant form

Balanced Lie 2-algebras are the basic data in higher Chern-Simons theory.

Invariant forms on Lie algebras. Let g be a Lie algebra. An invariant form on g is a

non singular symmetric bilinear mapping (·, ·) : g× g → R such that

(x, [π, y]) + (y, [π, x]) = 0 (A.39)

for any x, y ∈ g.

We assume below that g is a Lie algebra with invariant form (·, ·).

The orthogonal automorphisms of a Lie algebra with invariant form. A auto-

morphism φ ∈ Aut(g) is said orthogonal if

(φ(x), φ(y)) = (x, y), (A.40)

for any x, y ∈ g. We shall denote by OAut(g) the subset of all orthogonal elements φ ∈

Aut(g). OAut(g) is a Lie subgroup of the Lie group Aut(g).

The orthogonal derivations of a Lie algebra with invariant form. A derivation

α ∈ aut(g) is said orthogonal if

(α(x), y) + (x, α(y)) = 0, (A.41)

for any x, y ∈ g. We shall denote by oaut(g) the subset of all orthogonal elements α ∈ aut(g).

oaut(g) is a Lie subalgebra of the Lie algebra aut(g). oaut(g) is the Lie algebra of the Lie

group OAut(g).
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Adjoint action and orthogonality in Lie algebras with invariant form. For any

x ∈ g, the derivation adx ∈ aut(g) is orthogonal, adx ∈ oaut(g) (cf. eq. (A.25)). This is

an immediate consequence of (A.39).

Exponential map and orthogonality in Lie algebras with invariant form. The

exponential map exp◦ : oaut(g) → OAut(g) of oaut(g) is simply the restriction of the

exponential map exp◦ : aut(g) → Aut(g) of aut(g) to oaut(g). In particular, the orthogonal

exponential is still computed by the expression (A.26).

Invariant forms on balanced Lie 2-algebras. Let v be a balanced Lie 2-algebra. An

invariant form on v is a non singular bilinear mapping (·, ·) : v0 × v1 → R enjoying the

following properties.

(∂X, Y )− (∂Y,X) = 0, (A.42a)

([π, x], X) + (x, [π,X]) = 0, (A.42b)

(x, [π, π, y]) + (y, [π, π, x]) = 0, (A.42c)

for any x, y ∈ v0, X,Y ∈ v1.

We assume below that v is a balanced Lie 2-algebra equipped with an invariant form

(·, ·).

The orthogonal automorphisms of a balanced algebra with invariant form. A

1-automorphism φ ∈ Aut1(v) is said orthogonal if

(φ0(x), φ1(X)) = (x,X), (A.43a)

(φ0(x), φ2(y, z)) + (φ0(z), φ2(y, x)) = 0, (A.43b)

for any x, y, z ∈ v0, X ∈ v1. We shall denote by OAut1(v) the set of all orthogonal elements

φ ∈ Aut1(v).

A 2-automorphism Φ ∈ Aut2(v)(φ, ψ), φ, ψ ∈ Aut1(v) being two 1-automorphisms, is

said orthogonal if both φ, ψ are. For any φ, ψ ∈ OAut1(v), we shall set OAut2(v)(φ, ψ) =

Aut2(v)(φ, ψ). We further set OAut2(v) =
⋃
φ,ψ∈OAut1(v)

Aut2(v)(φ, ψ).

The following theorem holds true. OAut(v) = (OAut1(v),OAut2(v)) is a Lie 2-

subgroup of the strict Lie 2-group Aut(v) = (Aut1(v),Aut2(v)), by which we mean that

OAut(v) is closed under all operations of the strict 2-group Aut(v) (cf. appendix A.6).

OAut(v) can be described as a crossed module. The two groups underlying it are

OAut1(v) and OAut2
∗(v) =

⋃
φ∈OAut1(v)

Aut2(v)(id, φ). OAut2
∗(v) can be characterized

as the set of the elements Φ ∈ Aut2
∗(v) with the property that

(∂Φ(x), X) + (x, Φ(∂X))− (∂Φ(x), Φ(∂X)) = 0, (A.44a)

(y, [x, Φ(z)] + [z, Φ(x)]) + (x− ∂Φ(x), Φ([y, z])) (A.44b)

+(z − ∂Φ(z), Φ([y, x])) = 0,

for x, y, z ∈ v0, X ∈ v1. (cf. appendix A.6). In this description, as expected, OAut(v) is a

Lie crossed submodule of the Lie crossed module Aut(v) (cf. appendix A.6).
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The orthogonal derivations of a balanced algebra with invariant form. A 1-

derivation α ∈ aut0(v) is said orthogonal if

(α0(x), X) + (x, α1(X)) = 0, (A.45a)

(x, α2(y, z)) + (z, α2(y, x)) = 0, (A.45b)

for any x, y, z ∈ v0, X ∈ v1. We shall denote by oaut0(v) the subset of all orthogonal

elements α ∈ aut0(v).

A 2-derivation Γ ∈ aut1(v) is said orthogonal if, for x, y, z ∈ v0, X ∈ v1,

(∂Γ (x), X) + (x, Γ (∂X)) = 0, (A.46a)

(y, [x, Γ (z)] + [z, Γ (x)]) + (x, Γ ([y, z])) + (z, Γ ([y, x])) = 0. (A.46b)

We shall denote by oaut1(v) the subset of all orthogonal elements Γ ∈ aut1(v).

The following theorem holds true. oaut(v) = (oaut0(v), oaut1(v)) is a strict Lie 2-

subalgebra of aut(v) = (aut0(v), aut1(v)), by which we mean that oaut(v) is closed under

all operations of the strict Lie 2-algebra aut(v).

For any Lie 2-algebra v with invariant form, OAut(v) is a strict Lie 2-group having

precisely oaut(v) as its associated strict Lie 2-algebra (cf. subsection A.5).

Adjoint action and orthogonality in balanced algebras with invariant form. For

any x ∈ v0, the 1-derivation adx ∈ aut0(v) is orthogonal, adx ∈ oaut0(v) (cf. eqs. (A.31a)–

(A.31c)). Likewise, for and x, y ∈ v0 and any X ∈ v1, the 2-derivations adx ∧ y, adX ∈

aut1(v) are orthogonal, adx ∧ y, adX ∈ oaut1(v) (cf. eqs. (A.32a), (A.32b)). This is an

immediate consequence of (A.42).

Exponential map and orthogonality in balanced algebras with invariant form.

The exponential map exp◦ : oaut(v) → OAut(v) of oaut(v) is simply the restriction of the

exponential map exp◦ : aut(v) → Aut(v) of aut(v) to oaut(v). In particular, the orthogonal

exponential is still computed by the expressions (A.33).
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