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CHAPTER 0. CONTENTS

Declaration

The contents of Chapters 1 to 10 are expository and the remaining chapters of
the thesis from Chapter 11 onwards are my original contributions. Chapter 14 is a
collaboration with Michael Murray.

Letter

But, at night, under the full moon, they (mathematicians) dream,
they float among the stars and wonder at the miracle of the heav-
ens. They are inspired. Without dreams there is no art, no math-
ematics, no life. - Sir Michael Atiyah.

One begins the undertaking that is doctoral study with the illusion that one will
produce a Great Work. One finishes stripped of those illusions. So it was with me.
Completing this thesis was but a first step. Though I leave this chapter of my life,
the gauge theory of magnetic monopoles will forever remain my first step.

My goals at the outset were rather more lofty. I wished to examine some ideas
on the Kapustin-Witten theory. As is common with ambitious expeditions, the
pathfinding party gets lost. I was shaken by the vastness, the sheer depth of the
theory that I would need to feel at ease at before even beginning on the actual
conquest.

Paul, my thesis supervisor, encouraged me to keep my ambitions but I felt panic
at my lack of progress. I shelved several months of study to divert my attention
to a humble component of Kapustin-Witten theory: magnetic monopoles. I sought
some concrete calculations and saw the equivariant Atiyah-Singer index calculations
which occur in magnetic monopole gauge theory as my chance.

The going was tough and the theory behind my new direction was no less deep.
The literature surrounding magnetic monopole gauge theory goes back to the 1980s,
at the height of the Golden Age of the Oxford School, work for which Atiyah and
Donaldson received Fields Medals.

Over and over, I was advised to study Atiyah. But I found his writing impen-
etrable. I turned to other sources who would explain the material better to mere
mortals, surely. In the end, I returned to Atiyah and everything was so elegant, so
clear. Volume 5 of Atiyah′s Collected Works became the book that I carried around
with me, ate and slept next to. It was the breadcrumb trail out of the maze that I
had finally found.

With the above experiences in mind, I wrote this thesis to be a roadmap to
the reader, to leave an opening in the hedge behind me for those that come after.
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CHAPTER 1

Introduction

This thesis, On Hyperbolic Monopoles, completes the following circle of ideas:

Nahm equations oo continuum limit

OO

Nahm 1981

jj
discrete Nahm equations

OO

SU(2) Braam–Austin 1990;

SU(N) Chan 2015

44

ADHM data
Atiyah-Hitchin,Drinfeld-Manin 1978

��

instantons on R4
jj

R4−R2=S1×H3

**
R4=R×R3

tt
euclidean monopoles hyperbolic monopoles

lim{metric curvature}→0

oo

The algebro-geometric techniques of hyperbolic monopoles are intimately tied
to the techniques developed in the study of its gauge-theoretical predecessors - in-
stantons and euclidean monopoles. Hence, this thesis consists of three parts which
may be read independently of each other. The trinity of euclidean monopoles, in-
stantons and hyperbolic monopoles are unified by the use of twistorial, homological
and inverse scattering methods in their study.

Instantons, euclidean monopoles and hyperbolic monopoles are solutions to the
following systems of partial differential equations:

FA = ?R4FA

FA = ?R3DAΦ

FA = ?H3DAΦ.

Since FA = DAA and in three dimensions, the fourth component of A is Φ, these
three equations are really the same system of non-linear PDEs written for euclidean
4-space R4, euclidean 3-space R3 and hyperbolic 3-space H3. In all three cases, they
arise as a minimal action condition.

1



CHAPTER 1. INTRODUCTION

Our story begins with the mathematical treatment of instantons. Yang-Mills(-
Higgs) theory gained popularity in the field of particle physics in the 1960s but
a mathematical treatment of Yang-Mills instantons only occured in 1978 when
Atiyah and Hitchin, and working independently of the former two, Drinfeld and
Manin, wrote the landmark paper Construction of Instantons [Ati+78]. The Atiyah-
Drinfeld-Hitchin-Manin (ADHM) paper showed how matrices with some constraints,
the so-called ADHM matrix data, could be used to explicitly construct instantons.
In the following year, Atiyah spoke at a series of lectures at the Scuola Normale
Superiore in Pisa. The notes from his “Italian lectures” [Ati79] have become an
indispensable exposition and reference for the geometry of instantons.

In the prior year, Atiyah and Ward [AW77] had already considered the relevance
of algebraic geometry to the construction of instantons. The Atiyah-Ward ansatz
from this paper was applied by Ward [War81], Prasad and Rossi [PR81], and Corri-
gan and Goddard [CG81] to treat euclidean monopoles. They considered monopoles
in R3 as “time-translation invariant” instantons (but with infinitie action).

In 1981, Nahm [Nah83] found that replacing the ADHM matrices with differ-
ential operators in the ADHM construction of instantons yielded a matrix-valued,
non-linear system of ordinary differential equations on an interval called Nahm equa-
tions. The Nahm equations are in correspondence with and can be used to construct
monopoles in R3.

The following year, in Monopoles and Geodesics [Hit82], Hitchin studied eu-
clidean monopoles via its mini-twistor space T - the space of geodesics in R3. Hitchin
showed that the data of a monopole could be used to construct a holomorphic vector
bundle Ẽ on the twistor space. The boundary conditions for a euclidean monopole
imply that there exists special line sub-bundles L+, L−. The line bundles determine
an algebraic curve S ⊂ T , the spectral curve of the monopole.

In 1984, following the work of Nahm, Donaldson [Don84b] classified the euclidean
monopoles. He showed that the solutions of the Nahm equations are in bijection with
the based rational maps P1 → P1. In the same year, Donaldson wrote Instantons
and Geometric Invariant Theory [Don84a] where it was shown that the ADHM
construction could be essentially carried out on P2 by entirely complex methods.

Also in 1984, Atiyah [Ati84a; Ati84b] began the mathematical study of hyper-
bolic monopoles by considering them as circle-invariant instantons and showing that
they too were in bijection with rational maps.

Murray published Non-abelian Magnetic Monopoles [Mur83; Mur84], a generali-
sation of Hitchin’s Monopoles and Geodesics to monopoles with classical Lie groups
SU(N), SO(N) and Sp(N), as their structure group. This was followed up by
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algebro-geometric papers Hurtubise-Murray [HM89] and Hurtubise [Hur89], study-
ing the extension of all the previous results of Hitchin and Donaldson to the classical
Lie groups.

The next breakthrough came in 1990 when Braam–Austin [BA90] showed that
hyperbolic monopoles gave rise to a discrete analogue of the Nahm equations and
the fundamental difference that, unlike their euclidean counterparts, hyperbolic
monopoles were entirely determined by their values on the asymptotic boundary
sphere of hyperbolic 3-space H3. The work only limits itself to hyperbolic monopoles
of mass Z + 1

2
. This boundary data consists of a holomorphic map P1 → Pk.

In 1996, Murray-Singer [MS96] study, from a twistorial point of view, the spectral
curves of SU(N) hyperbolic monopoles with no restriction on the mass. However,
because they did not treat hyperbolic monopoles as circle-invariant instantons, they
had to posit boundary conditions and it is not clear if they are equivalent to the
boundary conditions automatically imposed in the standard treatment.

In 2000, Murray-Singer [MS00] showed that the discrete Nahm equations were
completely integrable: that they come with spectral curves and the time evolution of
the discrete Nahm equations can be described as a walk in the Jacobian of the spec-
tral curve. The formula of the spectral curve here is in terms of the solutions of the
discrete Nahm equations. Three years later, Murray, Norbury and Singer [MNS03]
show that for charge k and any mass, there exists a “holomorphic sphere" P1 → Pk

which determines the monopole and defines a spectral curve for the monopole.
The study of hyperbolic monopoles then turned to amassing a collection of sym-

metric monopoles[MS14; NR07; BHS15]. There are attempts, starting with Braam–
Austin [BA90] to look for some model of low energy scattering of monopoles by
finding geodesics in the moduli space of monopoles. Unlike in the euclidean case as
studied by Atiyah and Hitchin [AH85; Ati+85; AH14], the L2 metric on the hyper-
bolic moduli space is not finite. Attempts with a different metric, such as the metric
on the U(1) connections on the boundary S2 which determine the monopole, have
not yielded notable success. There has been some progress in the charge k = 1, 2

cases [Hit93; BCS15].
My contribution to this long progression of ideas, as detailed in this thesis, is

a generalisation of the SU(2) results of Braam–Austin by different methods (closer
to those of Atiyah’s work on hyperbolic monopoles) to the SU(N) case [Cha15] and
then further to the other classical groups Sp(N) and SO(N) cases. With Murray,
I also write down the spectral curve in terms of solutions of the discrete Nahm
equations. These generalisations take the same form as the euclidean counterparts
of Murray, Hurtubise-Murray and Murray-Singer.
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CHAPTER 1. INTRODUCTION

Catalogue of Results

Let k1, . . . , kN ∈ Z satisfy
∑N

i=1 ki = 0. Let p1, . . . , pN ∈ Z be ordered p1 < . . . <

pN (maximal symmetry breaking) and satisfy
∑N

i=1 pi = 0. (p1, . . . , pN ∈ 1
2

+ Z is
allowed for the case of SU(2N).)

The main theorem of this thesis, found in chapter 12 is, Theorem 38 p. 88,

MAIN THEOREM. There is an equivalence between

(1) framed SU(N) monopoles (A, φ) on hyperbolic space H3 of mass (pi, . . . ,

pN−1) and charge (k1, . . . , kN−1), and
(2) solutions of the (N − 1)-interval discrete Nahm equations of type

(p1, . . . , pN−1; k1, . . . , kN−1).

The latter, a solution to the (N − 1)-interval discrete Nahm equations are block
matrices ({βi}, {γi}, {apj}, {bpj}) which satisfy,

(1.1)

βi+ 1
2
γi+1 − γi+1βi+ 3

2
+ bi+1ai+1 = 0 for i+ 1 = pj, 2 ≤ j ≤ N − 1

βi+ 1
2
γi+1 − γi+1βi+ 3

2
= 0 otherwise

(1.2)

[
βi+ 1

2
, β∗

i+ 1
2

]
+ γi+1γ

∗
i+1 − γ∗i γi − a∗i ai = 0 when i = −pj, 1 ≤ j ≤ N − 1[

βi+ 1
2
, β∗

i+ 1
2

]
+ γi+1γ

∗
i+1 − γ∗i γi + bi+1b

∗
i+1 = 0 when

i+ 1 = pj, 2 ≤ j ≤ N − 1

i = pN − 1[
βi+ 1

2
, β∗

i+ 1
2

]
+ γi+1γ

∗
i+1 − γ∗i γi = 0 otherwise.

The ADHM construction uses matrix data to construct holomorphic bundles over
CP3 as the cohomology of a monad. The Main Theorem hinges on a technical result
Proposition 36 p.83, proven in Chapter 11, regarding the C×-equivariant monad
associated to a monopole with mass numbers (p1, . . . , pN−1) and charge numbers
(k1, . . . , kN−1),

PROPOSITION. Let there be a C×-action on P3, with c ∈ C×,

[x : y : z : w] 7→ [c−1/2x : c1/2y : c−1/2z : c1/2w].

Let E be a C×-equivariant holomorphic vector bundle on P3 corresponding to a mono-
pole with mass (p1, . . . , pN), and charge (k1, . . . , kN).

Then the decomposition of the monad for E,

H
AX→ K

BX→ L
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CATALOGUE OF RESULTS

restricted to P1
+, into weight p components Cp with respect to the C×-action is

H = Ck1
p1
⊕ . . .⊕ Ck1

p2−1 ⊕ Ck1+k2
p2

⊕ Ck1+k2
p2+1 ⊕ . . .⊕ C−kNpN−1,

K = Ck1+1
p1
⊕C2k1

p1+1⊕. . .⊕C2k1
p2−1⊕C2(k1+k2)+1

p2
⊕C2(k1+k2)

p2+1 ⊕. . .⊕C2(k1+...+kN−1)
pN−1 ⊕C−kN+1

pN
,

L = Ck1
p1+1 ⊕ . . .⊕ Ck1

p2
⊕ Ck1+k2

p2+1 ⊕ Ck1+k2
p2+2 ⊕ . . .⊕ C−kNpN

.

The ADHM matrices (α1, α2, a, b) which preserve this weight space decomposi-
tion have zeros everywhere except for some block matrices ({βi}, {γi}, {apj}, {bpj})
which satisfy the discrete Nahm equations.

A corollary of the Main Theorem is a generalisation of the Braam–Austin bound-
ary values result found in Chapter 13. (Theorem 48, p. 93)

THEOREM. Let (A,Φ) be a framed SU(N) hyperbolic monopole of charge (k1, . . . , kN)

and mass (p1, . . . , pN). Then

(1) the (N−1) tuple of U(1) connections (A1, . . . , AN−1) on S2
∞ determines the

connection A (up to gauge transformations);
(2) there exists for i = 1, . . . , N − 1, holomorphic maps

Fi : P1 → Fl(k1 + . . .+ ki, k1 + . . .+ ki + 1, 2k1 + . . .+ 2ki−1 + ki + 1)

into the manifold of two term partial flags for which each Ai is the pullback
of the unitary invariant connection on the “hyperplane bundle” O(1,−1) of
the i-th flag manifold; and

(3) the map A 7→ (A1, . . . , AN−1) is an immersion of the moduli space of SU(N)

framed hyperbolic monopoles in the moduli of (N − 1) tuples of U(1) con-
nections on S2.

Another corollary is an explicit formula for the rational map of an SU(N) hy-
perbolic monopole, found in Chapter 13. (Proposition 44, p.92)

PROPOSITION. Let ({γi}, {βi}, {a−pj}, {b−pj+1
}) be a solution of the (N − 1)-

interval discrete Nahm equations of type (p1, . . . , pN−1; k1, . . . , kN−1). Then the so-
lution can be put into the form ({β[−pi]}, {γ[−pi]}, {a[−pi]}, {b[−pi+1]}) and the rational
map

f : P1 → Flfull(N)

x 7→ (V1, . . . , VN−1), dimVi = i,

5



CHAPTER 1. INTRODUCTION

into the manifold of full flags in CN can be written as the maps (r1(x), . . . , rN−1(x))

rN−1(x) = (−h)pN−1−pNa[pN−1]

(
x− β[pN−1]

)−1
b[pN ]rN(x)

...

rj(x) =
N∑

i=j+1

(−h)pj−pia[pj ]

(
x− β[pj ]

)−1
b
k1+...+kj
[pi]

ri(x)

...

r1(x) =
N∑
i=2

(−h)p1−pia[p1]

(
x− β[p1]

)−1
bk1[pi]

ri(x)

where for each x ∈ P1, rN−1(x) specifies an (N − 1)-dimensional linear subspace in
CN and each successive ri(x) specifies an i-dimensional linear subspace inside the
(i+ 1)-dimensional linear subspace specified by ri+1(x). The superscript k1 + . . .+kj

indicates that only the first k1 + . . .+ kj entries of the vector are involved.

The proof requires the following lemma.

Lemma. On P2 − P1
−, there exists unique holomorphic sub-bundles L+

1 ⊂ L+
2 ⊂

. . . ⊂ L+
N−1 of E which is preserved by the C×-action and each L+

i restricted to P1
+

coincides with the last i-th factors.

The spectral curve can be calculated quite simply when one is in possession of
discrete Nahm data of a hyperbolic monopole.

THEOREM. The spectral curve S is the variety of points (p, q) ∈ Q ' P1 × P1

satisfying detBq̂Ap = 0.

The natural generalisation is to ask for discrete Nahm equations of SO(N) and
Sp(N) hyperbolic monopoles. The Theorem 56 p.105 from Chapter 15 summarises
this result.

THEOREM. Let ({γi}, {βi}, {apj}, {bpj+1
}) be a solution of the (N − 1)-interval

discrete Nahm equations of type (p1, . . . , pN−1; k1, . . . , kN−1). If pi = pN+1−i and
ki = −k −N + 1− i then

(1) if N is even, βi = βT−i, γi = γT−i and for i > 0, bi = −aT−i and b−i = aTi then
this is a solution of the Sp(N/2) discrete Nahm equations;

(2) if κ is even, βi = βT−i, γi = γT−i except for i = 0 where γ0 = −γT0 and for
i > 0, bi = −aT−i and b−i = aTi then this is a solution of the SO(N) discrete
Nahm equations.
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HOW TO READ THIS THESIS

How to read this thesis

This thesis was written such that the three parts could be read independently.
There are references to the other parts since the three are very tightly related and
the context for some of the results arise from the other two parts.

All of my original contributions are in Part 3, on hyperbolic monopoles. How-
ever, I have laboured to make the other two parts accessible introductions to the
mathematical theories of euclidean monopoles and instantons.

The mathematical prerequisites are mostly the differential geometric theories
of connections and fibre bundles. There are good books which treat these and my
favourite is the excellent tome by Bott and Tu [BT82]. Other choices include Milnor-
Stasheff [MS74] (my PhD supervisor’s rite of passage book), Lee [Lee03], Chern-
Chen-Lam [LCC00], Kobayashi-Nomizu [KN63] (very complete) and (the verbose)
Spivak [Spi70]. Atiyah’s Italian Lectures [Ati79] or Donaldson-Kronheimer [DK90]
are also good places to start for the more mature reader. I have an appendix on
differential geometry and Lie groups where I remind the reader of some definitions
and discuss the subtle concept of connections.
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Part 1

Euclidean Monopoles





CHAPTER 2

SU(2) monopoles

The theory of the euclidean SU(2) magnetic monopole is the simplest and most
well-trod theory of non-abelian monopoles. The equivalences between the various
objects equivalent to monopoles can be seen in Figure 2.1.

(2.1)
{spectral curves S} oo // {solutions to the Nahm equations (T1, T2, T3)}

OO

��rr
{magnetic monopoles (A,Φ)} //

OO

{rational maps}

In this chapter, I show how a spectral curve and a rational map can be produced
from the data of an SU(2) magnetic monopole. In the following chapter, I discuss
the Nahm equations. Finally, the case of SU(N) will be dealt with in Monopoles
of the Classical Groups. The Sp(N) and SO(N) monopoles are special cases of the
SU(N) monopole arising from embedding Sp(N) and SO(N) into SU(2N).

Definition 1. Let P be the trivial principal SU(2) bundle on R3 with its euclidean
metric and the Hodge star dual ?R3 . A euclidean SU(2) monopole (A,Φ) of charge
k ∈ Z, is a gauge equivalence-class of

• a connection A on P with curvature FA, and
• a section Φ of the adjoint bundle ad P = P ×Ad su(2) (a Higgs field),

with asymptotic conditions equivalent to FA being finite with respect to the L2

norm,

‖Φ‖ =

(
−1

2
Tr(Φ2)

)
= 1− k

r
+O(r−2)(2.2)

∂‖Φ‖
∂Ω

=

(
(
∂‖Φ‖
∂θ

) + sin2 θ(
∂‖Φ‖
∂φ

)

)1/2

= O(r−2)(2.3)

‖∇Φ‖ = O(r−2)(2.4)

and satisfying the Bogolmonyi equations

(2.5) FA = ?R3DAΦ.

11



CHAPTER 2. SU(2) MONOPOLES

Given a gauge transformation g : R3 → SU(2) preserving the above asymptotic
conditions, there is an equivalence relation on (A,Φ)

A ∼ g−1Ag + g−1dg,

Φ ∼ g−1Φg.

Example 2 (Prasad-Sommerfield monopole). The Prasad-Sommerfield monopole
centred at the origin is a k = 1 monopole with Higgs field Φ : R3 → su(2),

Φ =

∑
i xiei
r

 coth(r)− 1

r
0

0 − coth(r) +
1

r


in spherical coordinates (r, φ, θ) and where the ei is an orthonormal basis of su(2).
From Φ, it is possible to solve for A with the Bogolmonyi equations (2.5).

Generally, ordinary differential equations (ODEs) are easier to study than partial
differential equations (PDEs). The strategy which was adopted by Hitchin in his
seminal paper Monopoles and Geodesics [Hit82] was to associate a vector bundle to
the geodesic and then to lift it to a holomorphic vector bundle on the “mini-twistor”
space. This kind of technique was used earlier as a line of attack on instantons. The
holomorphic vector bundle arises as the solutions to an ODE problem and it is in
this sense that the PDE has been reduced to an ODE. More details will follow after
I define the mini-twistor space.

Mini-twistor space

The mini-twistor space T (mini because it is the lower-dimensional analogue of
the twistor space in the study of instantons which predates the use of this technique
in the study of monopoles) models the space of (oriented) geodesics of R3 and the
correspondence looks like

{geodesics in R3}! {points of T },

S2 × R3

p

{{

p2

$$
T R3.

Geodesics in R3 are simply the straight lines,

γ = {x ∈ R3 | x = v + tu, v ∈ R3, u ∈ S2, t ∈ R, u · v = 0}.
12



MINI-TWISTOR SPACE

The reader is invited to view the geodesics of R3 as a choice of a vector v ∈ R3 and a
unit vector u ∈ S2 ⊂ R3 orthogonal to v (this requires a metric). The mini-twistor
space T is isomorphic to

T ' {(u, v) ∈ S2 × R3 | u · v = 0} ' TS2,

the tangent space of the two sphere S2 = P1.
The mini-twistor space T can be constructed as the quotient of S2 × R3 by the

“flow”
(u, v) ∼ (u, v − tu).

If the quantity (u · v) is a time parameter t for the flow then the representative at
time 0 is exactly the choice of v which satisfies u · v = 0.

There is a complex structure J on T which acts on (u̇, v̇) ∈ TT by

(u̇, v̇) 7→ J · (u̇, v̇) = (u̇× u, v̇ × u),

and a real structure τ which acts as the (negative) antipodal map on S2,

(u, v) 7→ (−u, v).

The real structure is the symmetry transformation arising from the reversal of the
orientations of the geodesics of R3.

Given an SU(2) monopole (A,Φ) for a principal bundle P → R3, we say that the
vector bundle E is associated to P if E = P ×ρ C2 where ρ : SU(2) → GL(C2) is a
representation of SU(2) (here, the defining representation) so for any [x, v] ∈ E,

(x, v) ∼ (xg−1, ρ(g)v).

Now, we will “reduce” the PDE to an ODE. For any geodesic γ ∈ T defined by
(u, v) ∈ S2×R3, we can write down an ODE (Hitchin’s equation, not to be confused
with Hitchin’s equation for Higgs pairs) for the sections s ∈ Γ(E|γ) of E restricted
to γ ⊂ R3,

(2.6) (∇A
t − iΦ)s = 0,

where t is a parameter on γ. The solutions of (2.6) define a vector bundle Ẽ → T
(the “lift” of E to the mini-twistor space) with fibre at (u, v) ∈ T ,

Ẽ(u,v) = {s ∈ Γ(γ,E|γ) | (∇A
t − iΦ)s = 0}.

The crucial property of Ẽ is that it is holomorphic so the tools of complex geometry
can be brought to bear on our problem - in particular, spectral curves can be asso-
ciated to monopoles. I will spend the rest of the section providing enough technical
detail to convince the reader of the non-trivial claim that Ẽ is holomorphic.

13



CHAPTER 2. SU(2) MONOPOLES

The first of the Bogolmonyi equations (2.5) can be written as an integrability
condition for (2.6),

[∂Az̄ ,∇A
t − iΦ] = 0.

This integrability condition implies that the ∂̄-operator which we will define on Ẽ,

∂̄ : Γ(Ẽ)→ Γ

(
Ẽ ⊗

0,1∧)
satisfying the Leibniz rule

∂̄(fs) = f∂̄s+ s⊗ ∂̄f for f ∈ Γ(T ),

also satisfies ∂̄2 = 0. The Newlander-Nirenberg theorem says that if the operator
satisfies ∂̄2 = 0 then Ẽ is holomorphic.

Theorem 3 (Hitchin [Hit82]). If (A,Φ) is a magnetic monopole in R3 then Ẽ

is naturally a holomorphic vector bundle on the mini-twistor space T such that

(1) Ẽ is trivial on real sections of T → P1,
(2) Ẽ has a symplectic structure, and
(3) Ẽ has a quaternionic structure, ie. an anti-holomorphic linear map

σ : Ẽz → Ẽτz

such that σ2 = −1.

Now, I will define the ∂̄-operator. Remember that T was considered as a quotient
of S2 × R3 by the “flow” relation,

(u, v) ∼ (u, x− tu).

We would like to define the ∂̄-operator on sections over S2×R instead of on sections
over T .

The bundle E → R3 and connection ∇A can be lifted to S2×R3 by pulling back
along the second projection map to get p∗2E → S2 × R3 and p∗2∇A. A section ŝ ∈
Γ(S2 × R3, p∗2E) which satisfies (p∗2∇A − iΦ)ŝ = 0 projects to a section s ∈ Γ(T , Ẽ).
Under the exponential map

exp : S2 × R→ R3

given by (u, t) 7→ ut, ŝ arises from a section ŝ ∈ Γ(S2 × R, p∗2E).
The operator ∂̄ is defined by

(2.7) (∂̄s)∧ = ∇0,1ŝ = (∇∂x + i∇∂y)ŝ dz̄,

where x+ iy = z ∈ S2.
14
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The first property on ∂̄ is satisfied due to the Bogolmonyi equations. The second
property arises because

(∂̄2ŝ)∧ = F 0,2ŝ,

is a holomorphic (0,2) 2-form. This means that given a basis (u1, u2) for the cotan-
gent bundle of T , F 0,2 only has non-zero coefficient in the ū1∧ ū2 term which is zero
since it is pulled back along p2 so is flat in the fibre direction. Thus, both conditions
on ∂̄ are satisfied and Ẽ is holomorphic.

The line sub-bundles of Ẽ

Let E = R3 × C→ R3, ∇ be a flat connection and Φ = i ∈ C. Then Ẽ = L, the
line bundle with fibre at z ∈ T given by

Lz = {s ∈ Γ(γz) |
ds

dt
+ s = 0}.

The solutions to the ODE on each geodesic γz can simply be written down,
s = Ae−t for some constant A. To glue these solutions together to get a global
solution on all of T , allow the “constant” Az to vary smoothly with respect to γz.

For coordinates (u, x0) ∈ T represented by some (u, x) ∈ S2 × R3,

Aze
−t = e−u·x0e−t = e−u·(x0+tu) = e−u·x =: l̂(u, x).

We have just written down a section l̂ ∈ Γ(S2×R3, p∗L) which descends to a global
section l ∈ Γ(T , L).

If we choose coordinates (a, b) ∈ C× R ' R3, and treat T as a fibration T → P1

then we have coordinates (η, ζ) for T where ζ is a complex coordinate for P1 and

η = a− 2bζ − āζ2.

Stereographic projection of u ∈ S2 into R3 allows us to write down u·x in coordinates.
Then the ∂̄-operator on a section l can be written explicitly as

∂̄l =
−lη dζ̄

(1 + ζζ̄)2
.

The line bundle L can now be explicitly constructed. There are two charts on
T in analogy with P1:

U0 = {(η, ζ) ∈ T | ζ 6= 0}

with L trivialisation
l exp

(
−η

ζ(1 + ζζ̄)

)
and

U1 = {(η, ζ) ∈ T | ζ 6=∞}
15



CHAPTER 2. SU(2) MONOPOLES

with L trivialisation
l exp

(
−η

ζ(1 + ζζ̄)
+
η

ζ

)
.

On the intersection U0 ∩ U1, the transition function is

exp(−η
ζ

).

For a monopole (A,Φ) on R3, the (Hitchin [Hit82]) boundary conditions on the
2-sphere S2

∞ with coordinates (θ, φ) as the radial coordinate r in R3 approaches
infinity, were shown by Jaffe and Taubes to be implied by the finite energy of the
monopole [JT80].

(1) ‖Φ‖ =
√
−1

2
TrΦ2 = 1− k

r
+O(r−2),

(2)
∂‖Φ‖
∂Ω

=

[(
∂‖Φ‖
∂θ

)2

+ sin2 θ

(
∂‖Φ‖
∂φ

)2
] 1

2

= O(r−2),

(3) ‖∇Φ‖ = O(r−2).

These conditions imply that at the asymptotic S2
∞, the vector bundle E splits into

a sum of line bundles M ⊕M∗ where M has first chern class c1(M) = ±k. We call
k the charge of the monopole.

Theorem 4 (Hitchin [Hit82]). Let (A,Φ) be an SU(2) monopole on R3 of charge
k satisfying the (Hitchin) boundary conditions 1-3.

Let Ẽ → T be defined by Ẽz = {s ∈ Γ(γz, E|γz) | (∇A − iΦ)s = 0}.
Let L+ be the line sub-bundle of Ẽ defined by

L+
z = {s ∈ Ẽz | s ∼ O(tke−t) as t→ +∞}.

Then L+ ' L(−k) ' L⊗OP1(−k) as holomorphic bundles and Ẽ is an extension

0→ L(−k)→ Ẽ → L∗(k)→ 0.

ie. an exact sequence.

Before discussing the proof idea, I would like to say what the theorem implies
more explicitly. Being able to express a holomorphic vector bundle Ẽ as an extension
implies that it has a transition function on U0 ∩ U1 of the form[

ζ−keη/ζ f(η, ζ)

ζke−η/ζ

]
where f(η, ζ) is a representative of a cohomology class in the sheaf cohomology
H1(T , L2(−2k)) which classifies all such extensions.

16
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As an aside, isomorphism classes of extensions B of C by A, exact sequences,

0→ A→ B → C → 0

are in correspondence with the elements of Ext1(C,A). This is defined as, for C =

L∗(k) and A = L(−k),

Ext1(L∗(k), L(−k)) = R1Hom(−, L(−k))(L∗(k))

=
H1(0→ Hom(P 0, L(−k))

∂0→ Hom(P 1, L(−k))

∂1→ Hom(P 2, L(−k))→ . . .)

= ker ∂1/im∂0

where
. . .→ P 1 → P 0 → L∗(k)

is a projective resolution of L∗(k). On the other hand, H1(T , L2(−2k)) is
R1Γ(T , L2(−2k)). Tensoring with L(−k) gives us the relationship between the two
sheaf cohomology groups.

The crucial idea behind the theorem is the existence of the holomorphic sub-line
bundle L+ consisting of the solutions which decay in the appropriate sense at (pos-
itive) infinity on oriented geodesics. For more detail, refer to Hitchin’s Monopoles
and Geodesics [Hit82].

Once a gauge that is covariantly constant in the radial direction has been chosen,
Hitchin’s equation for a geodesic γ can be written as,

dx

dt
−

[
−1 + k

t
0

0 1− k
t

]
x+ C(t)x = 0,

where ‖C(t)‖ = O(t−2). The boundary conditions (2.2) are needed to do this.
Then, ODE theory (see Coddington-Levinson [CL55]) tells us that there exists

solutions x0, x1 such that as t→ +∞,

x0(t)t−ket → e0, x1(t)tke−t → e1,

where e0, e1 are eigenvectors of lim
t→∞

Φ and give us a trivialisation of E in a neigh-

bourhood around γ. The solution x0 defines a 1-dimensional subspace L+
z ⊂ Ẽz of

solutions which decay as t→ +∞.
The line sub-bundle L+ is holomorphic. This follows from the vanishing of the

quantity < ∂̄s, s > where <,> is the symplectic form of Ẽ. The same arguments
show that there exists a holomorphic line sub-bundle L− of the solutions which
vanish as t→ −∞.

17



CHAPTER 2. SU(2) MONOPOLES

It is possible to figure out which holomorphic line bundle on T L+ is. Let the
holomorphic isomorphism α : L+⊗L∗ →

∼
π∗M where M is the positive factor of the

splitting of E on S2
∞, be defined on local sections s of L+ ⊗ L∗ in terms of sections

ŝ on the space S2 × R3,
α(s) = lim

t→+∞
t−kŝ(z, t).

On P1, any line bundle is isomorphic to O(±k) so L+⊗L∗ ' π∗O(±k). The sign is
negative since Ẽ is holomorphically trivial on any real section of T → P1. Thus,

L+ ' L(−k).

The spectral curve of a monopole

The spectral curve is an algebraic curve whose points parametrise the geodesics
of R3 on which there exist solutions to the Hitchin equation (∇A − iΦ)s = 0 which
decay at both limits of the geodesic (st−ket → const as t→ +∞ and stke−t → const
as t→ −∞).

The bundle Ẽ can be expressed as extensions [Hit82]

0→ L+ → Ẽ → (L+)∗ → 0

0→ L− → Ẽ → (L−)∗ → 0,

where L+ and L− are the line sub-bundles of solutions decaying at the +∞ and
−∞ of geodesics respectively. The real structure induces an antiholomorphic iso-
morphism σ : L+ ∼→ L−.

The upshot of the previous section was that L+ ' L(−k) where L is the line
sub-bundle of solutions to the trivial U(1) Hitchin equations constructed in the last
section. The same line of reasoning also gives L− ' L∗(−k). Then the short exact
sequences can be written,

0→ L(−k)→ Ẽ → L∗(k)→ 0

0→ L∗(−k)→ Ẽ → L(k)→ 0.

The projection of L− in Ẽ onto (L+)∗ defines a degree 2k section

ψ ∈ H0(T , (L+ ⊗ L−)∗) ' H0(T ,O(2k)).

The points z of T for which the line subspaces L+
z and L−z coincide in the fibre Ẽz are

the geodesics with decaying solutions at both ends. Put another way, the subspace
L−z should not intersect with the complement (L+

z )∗ of L+
z in Ez over points z of the

18



THE SPECTRAL CURVE OF A MONOPOLE

spectral curve. Thus, the spectral curve S of an SU(2) monopole on R3 of charge k
can be defined as kerψ.

The spectral curve has some notable properties as stated in the following propo-
sition of Hitchin.

Proposition 5 (Hitchin [Hit83]). Let S be the spectral curve of an SU(2) monopole
on R3 of charge k. Then

(1) S is compact;
(2) S is defined by an equation p(η, ζ) = ηk + a1(ζ)ηk−1 + . . .+ ak(ζ) = 0 where

deg ai = 2i.
(3) The line bundle L2 is holomorphically trivial on S.
(4) S is preserved by the real structure τ of TP1.
(5) S has no multiple components.
(6) L(k − 1) is real.
(7) H0(S, Lz(k − 2)) = 0 for z ∈ (−1, 1).

The final condition is the condition for the spectral curve to correspond to a
non-singular monopole.

An important example is the spectral curve of a charge k axially-symmetric
monopole when k = 2n+ 1,

ψ = η
n∏
l=1

(η2 + l2π2ζ2)

and when k = 2n+ 2,

ψ =
n∏
l=0

[η2 + (l +
1

2
)2π2ζ2].
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CHAPTER 3

The Nahm equations

The Euler top system of equations [Gol65]

dω1

dt
= ω2ω3(3.1)

dω2

dt
= ω3ω1(3.2)

dω3

dt
= ω1ω2(3.3)

for a spinning top with no external torque, where ω1, ω2, ω3 are the angular velocities
along the three axes is a historical example of an integrable system. It is said to
be integrable because the angular momentum and energy are conserved, allowing
the angular velocities to be written in terms of the conserved quantities and Jacobi
elliptic functions.

Another way to write the Euler top equations is

dTi
dt

=
1

2

∑
j,k

εijk[Tj, Tk]

where Ti = ωiτi and τi = iσi are the generators of SU(2) given by the Pauli matrices
σi. The Nahm equations can be viewed as a generalisation of the Euler top where
Ti are skew-Hermitian k × k matrices and t ∈ (−1, 1).

Hitchin’s theorem summarises the previous chapter and introduces Nahm’s equa-
tions in terms of the previously discussed objects.

(1) SU(2) magnetic monopoles on R3

Hitchin’s Theorem

(2) Spectral curves (3)Nahm equations

Theorem 6 (Hitchin [Hit83]). There is an equivalence between

(1) SU(2) magnetic monopoles (A,Φ) on R3 consisting of the su(2)-valued con-
nection A and conjugacy class of scalar field Φ satisfying the Bogolmonyi
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CHAPTER 3. THE NAHM EQUATIONS

equations ?FA = DAΦA and the boundary conditions as r →∞ (see previ-
ous chapter for details):

(a) ‖Φ‖ = 1− k

r
+O(r−2),

(b)
∂‖Φ‖
∂Ω

= O(r−2),
(c) ‖DAΦ‖ = O(r−2).

(2) Spectral curves S consisting of a compact algebraic curve in TP1 in the
linear system of divisors O(2k) with the conditions,
(a) S is connected;
(b) S is real with respect to a reality involution on TP1;
(c) L2 is trivial on S and L(k − 1) is real;
(d) H0(S, Lz(k − 2)) = 0 for z ∈ (−1, 1);
where L is the line bundle on TP1 defined by exp(sπ∗ω) where π : TP1 → P1

is the projection, s ∈ π∗TP1 and ω ∈ H1(P1, T∗P1).
(3) Solutions of the Nahm equations consisting of a gauge equivalence class of

matrix-valued functions T0, T1, T2, T3 : [−1, 1]→ Matk×k,(
dTi
dz

+ [T0, Ti]

)
+

1

2

∑
j,k

εijk[Tj, Tk] = 0,

satisfying for i, j, k = 1, 2, 3,
(a) T ∗i = −Ti;
(b) Ti(1− z) = Ti(z − 1)T ;
(c) Ti are meromorphic with simple poles only at ±1;
(d) the residues of the Ti at the poles define an irreducible representation

of SU(2).
where the gauge action is through u : (−1, 1)→ U(k),

u · Ti = uTiu
−1(3.4)

u · T0 = uT0u
−1 − du

dz
u−1.(3.5)

The T0 part of a solution of the Nahm equations can be gauged away and was
introduced by Donaldson [Don84b]. It is important to include the T0 to make the
Nahm equations more "physical". Let me explain what I mean by this.

The Higgs field Φ can be united with the gauge connection A if there is an extra
time dimension t ∈ R such that

A� = Φdt+ A
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is a gauge connection on R4 with anti-self-dual curvature 2-form (see the part on
instantons) and which is t-invariant. Analogous to the Fourier Transform is the
Nahm transform which exchanges time t with momenta pi (the conjugate variables
to space) and space coordinates xi with energy z (the conjugate variable to time).
The field is now a momentum-invariant gauge field

Â� = T0dz +
3∑
i=1

Tidpi,

depending on (z, p1, p2, p3) ∈ R4.
From the Nahm matrices, an infinite-dimensional version of the ADHM operator

seen in Part 2 can be constructed. The bounded linear operator ∆ : W → V between
Sobolev spaces defined in terms of a solution of the Nahm equations is

∆ =
d

dz
+

3∑
j=0

(Tj − Ikxj)σj,

where Ik is the k×k identity matrix and σ0, . . . , σ3 are the Pauli matrices as a basis
of the quaternions, making V a quaternioninc vector space. Then an orthonormal
basis of solutions v1, v2 of

∆v = 0

allows us to construct

Aµν =

ˆ 1

−1

(v∗µdvν) dz, Φµν = i

ˆ 1

−1

v∗µzvν dz.

There is another form of the Nahm equations which is more suited to their
analysis [Don84b]. Let

σ =
1

2
(T0 + iT1), τ =

1

2
(T2 + iT3).

The Nahm equations are,

1

2

dτ

dz
= [σ, τ ],

1

2

dτ ∗

dz
= [σ∗, τ ∗];

and
1

2

d(σ + σ∗)

dz
= [σ, σ∗] + [τ, τ ∗].

They can be interpreted as moment maps

µ :=
dτ

dz
− [σ, τ ];(3.6)

µR :=
d(σ + σ∗)

dz
− [σ, σ∗] + [τ, τ ∗].(3.7)
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CHAPTER 3. THE NAHM EQUATIONS

The moduli space of (gauge-equivalent) solutions of the Nahm equations can
then be seen as the quotient

MNahm = {[−1, 1]→ Matk(C)} ∩ {µ = 0 = µR}/U(k).

Let A = 2τ + 4σ∗ζ + 2τ ∗ζ2 and A+ = 2σ∗ + 2τζ =
dA

dζ
. As foreshadowed, the

Lax form of the Bogolmonyi equations [Hit83] are the Nahm equations for A,A+,

dA

dz
= [A,A+].

As in the case of other integrable systems, the equation for the spectral curve can
be written

det(η1 + A(ζ)) = 0.

If the residues of (σ, τ) are (a, b) at −1 then the complex Nahm equation implies
that

b = [a, b].

So if v is the eigenvector of a with the smallest eigenvalue λ, then

abv = (λ+ 1)bv

and {v, bv, . . . , bk−1v} is a basis for Ck. The moduli space of solutions to the Nahm
equations can be enlarged by a unit vector v "phase factor" to get the moduli space

M̃Nahm =MNahm × Sk−1

of Nahm complexes (σ, τ, v). This vector v acts as the framing or data of the
monopole and stabilises the moduli space.

The moduli space of monopoles is in bijection with the moduli space of something
far more familiar - the moduli space of rational maps, p(x)/q(x) where p, q ∈ C[x]

with a basing/framing condition that p(∞)/q(∞) for a point ∞ ∈ P1 be fixed. As
an example, all charge k = 1 monopoles in R3 correspond to, for f1, f2 ∈ C, rational
maps of the form,

f(z) =
f1

f2 − z
.

Proposition 7 (Donaldson [Don84b]). There is an equivalence between

(1) Nahm complexes [σ, τ, v] for a charge k monopole, and
(2) based rational maps f : P1 → P1 of degree k.

Let B = σ(0). Since {v, bv, . . . , bk−1v} is a basis for Ck, the residue of σ at −1, a
can be diagonalised. This means that we can solve for a Ck-valued function u such

24



that αu = d
dz
u. What we have done is parallel transported our frame vector v along

the interval (−1, 1). Then let w = u(0).
Now we have an equivalence class [B,w] consisting of a complex symmetric k×k

matrix and a column k-vector with the condition that {w,Bw, . . . , Bk−1w} be a
basis for Ck (w is a cyclic vector for B). The equivalence [B,w] is in bijection with
the data (σ, τ, v) and we can write the rational map f : P1 → P1 with ζ a coordinate
on the domain,

f(ζ) = wT (Iζ −B)−1w.

The physical interpretation of the rational map is in terms of a Rutherford type
scattering experiment where test particles are fired through the monopole field from
some point on the sphere,∞. If the monopole is surrounded by a spherical detector
then a graph of how many of the test particles are transmitted through the monopole
field, hence not scattered, is exactly a function on P1 whose value is "normalised"
with regards to the value at ∞.

The target P1 is actually the flag variety SU(2)/T . At each z ∈ P1, the choice
of an element of SU(2)/T ,(

α β

−β̄ ᾱ

) (
exp(iθ) 0

0 exp(−iθ)

)
fixes some line Lz in Ez ' C2 and the choice of all such flags Lz ⊂ Ez is P1.

The interpretation of the rational map as a map into a flag variety can be related
to the scattering experiment interpretation in the following way. The choice of a
point ∞ on P1 is equivalent to choosing some special direction in R3 hence a choice
R3 ' R × C. The rational map is then a section of the projectivised bundle P(Ẽ)

restricted to all the geodesics in the direction of {∞}, parametrised by C. A section
of P(Ẽ) defines a line sub-bundle L− of Ẽ. This is precisely the sub-bundle of
solutions to the equation (∇A

t − iΦ)s = 0 from the previous chapter which decay at
t → −∞. The poles of the rational map indicate where L+ and L− coincide. This
is a finite number of points.

One advantage of having access to the rational map isomorphism is in the count-
ing of the dimensions of the moduli space of framed monopoles. The conventional
count involves an Atiyah-Singer index theorem type argument. However, counting
the number of degrees of freedom arising from the coefficients of polynomials is
easier.

The rational map also provides intuition since higher charge monopoles corre-
pond to higher degree rational maps. The monopole field is concentrated at the
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poles of the factorised rational map

f(z) =
k∑
i=1

ai
bi − z

.

Charge 1 monopoles have a single pole at which the monopole field energy density
function has a global maximum. When the poles are sufficiently far apart, the charge
k monopole field can be approximated by a superposition of charge 1 monopoles with
a pole at each of the k poles.
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CHAPTER 4

Monopoles of the classical groups

The results of the previous two chapters extend to the classical groups SU(N), SO(N)

and Sp(N). At the time of writing, a paper posted on arχiv the pre-print server,
discussed an example of a G2 monopole [SZ15]. Much of the work on this exten-
sion to other classical groups is due to Murray [Mur84], Hurtubise [Hur89] and
Hurtubise-Murray [HM90].

Definition 8. Let P be the trivial principal SU(N) bundle on R3. A euclidean
SU(N) monopole (A,Φ) is a gauge equivalence class of

• a connection A on P with curvature FA, and
• a section Φ of the adjoint bundle adP = P ×Ad su(N)

with asymptotic conditions (due to Murray [Mur84], existence of monopoles satis-
fying them due to Taubes [Tau81])

Φ = idiag(p1, . . . , pN)− i

2r
diag(k1, . . . , kN) +O(r−2)

∂‖Φ‖
∂Ω

=

(
(
∂‖Φ‖
∂θ

) + sin2 θ(
∂‖Φ‖
∂φ

)

)1/2

= O(r−2)

‖∇Φ‖ =O(r−2)

where p1, . . . , pN ∈ R, p1 > . . . > pN and k1, . . . , kN ∈ Z; and satisfying the Bogol-
monyi equations

FA = ?R3DAΦ

where ?R3 is the Hodge dual with respect to the standard metric of R3.

Locally, the connection A is a 1-form

A = Axdx+ Aydy + Azdz

where Ax, . . . , Az are N ×N traceless anti-hermitian matrices of complex functions
and for any fixed (x, y, z) ∈ R3, Ax, . . . , Az ∈ su(N). The Higgs field Φ is locally an
su(N)-valued function. The constant terms p1, . . . , pN−1 of the asymptotic eigen-
values of Higgs bundle Φ are called the mass numbers of the monopole. The next
terms k1, . . . , kN−1 are called the charge numbers. Note that the condition that Φ
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be valued in su(N) imposes the conditions

p1 + . . .+ pN = 0, k1 + . . .+ kN = 0

which fixes the value of pN and kN .
I will only discuss the case when p1, . . . , pN−1 are distinct, the so-called maximal

symmetry breaking case. (Spectral curves and associated data still determine the
monopole in the non-maximal symmetry breaking case [Mur84] so one could hope
that the other results follow but not much else is known [HM90].) For the SU(2)

case, it is possible to scale the only mass number to unity and that is why p does
not appear in the asymptotic conditions in the previous chapters.

Since A and Φ are a SU(N) connection and a section of the adjoint bundle of P
respectively, the reader is reminded that they are invariant under the action of the
gauge group, the group of functions g : R3 → su(N) on (A,Φ),

A 7→ g−1Ag + g−1dg

Φ 7→ g−1Φg.

The Murray [Mur84] and Hurtubise-Murray [HM90] extension of Hitchin’s equa-
tions are:

Theorem 9 (Murray, Hurtubise-Murray). There is a natural correspondence
between:

(1) SU(N) magnetic monopoles (A,Φ) on R3 with mass numbers p1, . . . , pN−1 ∈
R, p1 > . . . > pN and charge numbers k1, . . . , kN−1 ∈ Z.

(2) U(k1)⊕ . . .⊕ U(k1 + . . .+ kN−1)-conjugacy classes of analytic functions

T ij =


T i1 : (p1, p2)→ u(k1) if j = 1
...

...

T i1 : (pN−1, pN)→ u(k1 + . . .+ kN−1) if j = N − 1

which are solutions to the Nahm equations

(4.1)
dT ij
dz

+
1

2

∑
m,n

εimn[Tmj , T
n
j ] = 0,

and satisfy boundary conditions at pj, with t = z− pj, and with the selector
function

ξ(j) =

j if kj > kj−1

j − 1 if kj < kj−1
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ξ∗(j) =

j − 1 if kj > kj−1

j if kj < kj−1

there exists finite nonzero limits

Ci
j = lim

t→0-sign(kj)
T iξ∗(j)(t),

T iξ∗(j)(t) is analytic at t = 0 and T iξ(j)(t) can be conjugated by a unitary
(k1 + . . .+ kj)× (k1 + . . .+ kj) matrix such that

(4.2) T iξ(j) '

 Ci
j +O(t) O

(
t
1
2

(|kj |−1)
)

O
(
t
1
2

(|kj |−1)
)

rij
t

+O(1)


where rij are kj×kj matrices defining an irreducible representation of su(2).
In the case when kj−1 = kj, the upper and lower limits C−i , C

+
i defined

earlier define matrices

(4.3) A±(ζ) = (C±2 + iC±3 ) + (2iC±1 )ζ + (C±2 − iC±3 )ζ2,

which need to satisfy rank (A+(ζ)− A−(ζ)) ≤ 1.
(3) Spectral curves S1, . . . , SN−1 ⊂ TP1 which are compact curves curves Sj ∈
|O(2k1 + . . .+ 2kj)| satisfying,
(a) invariant under τ : (η, ζ) 7→ (−ζ̄−2η̄,−ζ̄−1) (τ -real);
(b) intersect as a disjoint union Sj−1 ∩ Sj = Sj−1,j t Sj,j−1;
(c) over Sj,

O ' Lpj(kj+1 + kj + 2kj−1 + . . .+ 2k1)[−Sj,j+1 − Sj,j−1];

(d)

H0
(
Sj, L

(mj−z)(kj + 2kj−1 + . . .+ 2k1 − 2)[−Sj,j−1]
)

= 0

holds for z ∈ (pj, pj+1) and for z = mξ(j+1);
(e) τ(Sj,j+1) = Sj+1,j;
(f) (−1)kj+2kj−1+...+k1+1(ψpψ

∗
p)/(gj−1gj+1) > 0.

where the square brackets means restriction to the divisor.

The proof of this theorem is technical and beyond the scope of this chapter. I
will point out features which differ from the SU(2) case. The most notable difference
is the generalisation of the mass and charge data p1, . . . , pN−1, k1, . . . , kN−1.

The boundary condition applies to an asymptotically large sphere S2
∞. On this

sphere, the Higgs field Φ is map Φ∞ : S2 → su(N) with image lying in an orbit of
the adjoint action Φ 7→ g−1Φg of SU(N). The homotopy class [Φ∞] ∈ π2(SU(N)/T )
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CHAPTER 4. MONOPOLES OF THE CLASSICAL GROUPS

where T is a maximal torus, is a topological invariant given by N − 1 integers,

π2(SU(N)/T ) ' π1(T ) ' ZN−1

coming from the long exact sequence of T → SU(N)→ SU(N)/T .
As in the SU(2) case, the bundle E associated to the monopole splits into line

bundle factors over S2
∞ determined by pairs pj, kj, Lpj(−2kj). Outside of S2

∞, the
bundle E has two flags of sub-bundles

E±1 ⊂ . . . ⊂ E±N−1 ⊂ E

where E+
j /E

+
j−1 = Lpj(−kj) and E−j /E

−
j−1 = LpN−j+1(kN−j+1).

The spectral curves are defined as the points in TP1 for which the sub-bundles
in the opposite flags E+

∗ and E−∗ intersect with at most codimension N − 1. To
illustrate, here are some examples:

• SU(2)

L+
1 = L−1

• SU(3)

L+
1 ⊂ L−2

L+
1 = L−1

L+
2 = L−2

L−1 ⊂ L+
2

• SU(4)

L+
1 ⊂ L−3

L+
2 ⊂ L−3

L+
1 ⊂ L−2

L+
2

1
∩ L−2

L−1 ⊂ L+
2

L−2 ⊂ L+
3

L−1 ⊂ L+
3

The conditions at the vertices indicate the condition for a point to be in the curve Sj
and the conditions above and below the edges are conditions for points to be in either
the component Sj,j+1 or Sj+1,j. The number above the intersection indicates the
dimension of the intersection of the sub-bundles. For SU(6), there are components
of the intersections of spectral curves whose condition is of the form

L+
3

2
∩ L−4 .

Observe that the splitting of the intersection of “adjacent” spectral curves into two
disjoint components arises naturally from this definition of the spectral curve.

There is a second definition of the spectral curve defined from solutions of the
Nahm equations

det(η1− A(t, ζ)) = 0

where
A(t, ζ) = (T1(t) + iT2(t)) + 2iT3(t)ζ + (T1(t)− iT2(t))ζ2.
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Each interval defines a new spectral curve.
The condition (3c) tells us which line bundle is the sheaf of regular functions on

Sj. The condition (3d) is a vanishing cohomology condition which guarantees that
the monopole associated to the spectral curve is non-singular, in analogy with the
SU(N) case.

The Nahm equations for SU(N) are interesting because the matrix dimensions
jump by kj at the point pj. An example of the graph of matrix dimensions versus
size is

p1 p2 p3 p4

k1

k1 + k2

k1 + k2 + k3

The Nahm equations for Sp(N) and SO(N) can be found from the SU(N) Nahm
equations according to the table (reproduced from Hurtubise-Murray [HM89] but
with a different convention for charge numbers):

G G-charges in SU(N) mass numbers SU(N)-charges
Sp(n) l1, . . . , ln N = 2n pi = −p2n+1−i ki = li = −k2n−i+1,

i = 1, . . . , n i = 1, . . . , n.

SO(2n) l1, . . . , ln−2, N = 2n pi = −p2n−i+1 ki = li = −k2k−i,
l+, l− i = 1, . . . , n i = 1, . . . , n− 2;

±kn±1 = l+ + l−
+l1 + . . .+ ln−2,
kn = l+ − l−.

SO(2n+ 1) l1, . . . , ln N = 2n+ 1 pi = −p2n−i+2 ki = li = −k2n−i+2

i = 1, . . . , n+ 1 i = 1, . . . , n− 1;
−kn+2 = kn

= 2ln + ln−1 + . . .+ l1,
kn+1 = 0.

Table 1.

These identifications on the mass and charge numbers effectively cause the Nahm
solutions to be symmetrical about the origin of the line of z. The U(k1 + . . . + ki)
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CHAPTER 4. MONOPOLES OF THE CLASSICAL GROUPS

gauge action on the Nahm matrices need to respect this "folding" of the Nahm
equations. The gauge action matrices Cj need to obey

T Ti (−z) = CjTi(z)C−1
j ,

and

CN−j+1 =

−CT
j if G = SO

CT
j if G = Sp.

These identifications cause the unitary gauge action to become either a symplectic
or orthogonal gauge action. One interesting feature of this is that the gauge action
is symplectic when G = SO and orthogonal when G = Sp. The gauge action in the
Nahm equations is dual to the gauge action on the monopoles and this duality is
known as reciprocity. For a more detailed discussion, see chapters 6 and 15.

The folding of the Nahm equations is suggestive of the intervals of the Nahm
equations being in bijection with the vertices of the corresponding Dynkin diagram.
(Thanks to a reviewer who pointed out that this is a conjecture by Atiyah. See the
conclusion of [HM88].) Dynkin diagrams for Lie algebras of type C can be folded
from type A and type B can be folded from type D. We see that the analogy is
incomplete since Nahm equations with G whose Lie algebra is of type B,C and D
are being acquired from type A here.
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CHAPTER 5

Instantons

The word instanton comes from quantum mechanical tunneling. Before defining
gauge-theoretic instantons, I will provide motivation by sketching out the case of the
quantum mechanical instanton [Wei12].

For quantum mechanics on a line, a particle can be represented by a wave-
function ψ : Rx × Rt → R. Given a (time-independent) potential V : Rx → R

and constants m,E ∈ R representing the mass and energy of the system, the wave-
function obeys the Schrödinger equation,

∂2ψ

∂x2
=

2m(V (x)− E)

~2
ψ.

If V is the potential barrier

V (x) =

V x ∈ [a, b]

0 otherwise

with V � E, then a solution is the wave ψ = e−ikx transmitted through the potential
barrier with

k =
1

~

ˆ b

a

√
2m(E − V (x))dx.

When outside the well x /∈ [a, b], this is an imaginary quantity so the wave decays.
This setup is the stationary point of the action

S =

ˆ tf

t0

1

2
m

(
dx

dt

)2

− V (x) dt

with canonical quantisation
dx

dt
→ ∂

∂x
.

After reparametrisation (Wick rotation in physics parlance), the tunneling ex-
ponent k can be obtained as the minimum of the equivalent euclidean action,

SE =

ˆ τf

τi

1

2
m

(
dx

dτ

)2

+ V (x) dτ.

Thus, quantum mechanical instantons can be realised as a quantum mechanical
tunneling amplitude. The gauge field theory analogy is the minimisation of an
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CHAPTER 5. INSTANTONS

action involving a curvature 2-form which is equivalent to the condition that the
2-form be anti-self-dual.

On four-dimensional real euclidean space R4, let P → R4 be the trivial principal
SU(N)-bundle P ' SU(N) × R4. Let A be a connection on P , DA = d + A be its
covariant derivative and FA = dA+ A ∧ A be the curvature 2-form of A.

Instantons on R4 are connections A whose curvature 2-form FA minimise the
euclidean action defined with the Hodge star ? of the Euclidean metric,

S =

ˆ
TrFA ∧ ?FA.

By considering the self-dual F+ and anti-self-dual F− parts of an arbitrary cur-
vature form F , the action is

S =

ˆ
‖F+‖2 + ‖F−‖2,

which takes on its minimal value when either part vanishes.
Thus let us define an SU(N) instanton on R4 to be a connection A satisfying the

condition that its curvature is anti-self dual (with respect to the Hodge star dual ?),

?FA = −FA,

which extends to a connection on the (non-trivial) principal SU(N)-bundle P → S4

on the conformal compactification S4 of R4.
By Chern-Weil theory, the first Pontryagin class p1 (the only non-vanishing one

for a four-dimensional manifold) of the principal SU(N)-bundle P is

p1 =
1

8π2
TrFA ∧ FA.

The integral of this form on S4 is an integer κ which is variously known as the
Pontryagin index, topological charge or instanton number. Since the first chern
class c1 of an instanton vanishes, p1 = c2, the second Chern class.

Alternatively, consider a very large 3-sphere S3 in R4 “approaching infinity”. The
condition that A extends to a connection on S4 implies that on this 3-sphere S3

∞,
the connection is gauge equivalent to g−1(x) dg(x) for some gauge transformation g
(A is said to be pure gauge on this sphere). The gauge transformation

g : S3
∞ → SU(N),

taking values in the compact, simply-connected group SU(N) is a representative of
an element of the third homotopy group π3(SU(N)). Hence,

π3(SU(3)) ' π2(T ) ' Z.
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This integral topological invariant is called the instanton charge.
We can augment the data of an instanton with a framing condition. Fix a

distinguished point ∞ on S4 (the point at infinity for R4). An instanton is framed
if only the gauge transformations g which satisfy g(∞) = 1 are allowed to act. This
effectlively fixes the value of A at ∞, imparting an extra dimG degrees of freedom.

At this point it would be good to provide some examples of instantons. The
following is due to Belavin et. al. [Bel+75]. Let the (x1, x2, x3, x4) ∈ R4 be written
as a quaternion x1 + x2i+ x3j + x4k ∈ H. The charge κ = 1 SU(2) instanton can be
written with x ∈ H as

A =
1

2

x̄dx− dx̄ x
1 + |x|2

.

Its self-dual curvature form is

F =
dx̄ ∧ dx

(1 + |x|2)2 .

Note that this curvature 2-form resembles the Kähler form of the Fubini-Study
on P1 or the ball metric on S2 wherre x ∈ C. (However, the structure group for the
field would be U(1).)

It is known that a solution ρ of the Laplace equation

∇ · ∇ρ = 0,

yields the instanton

A =
i

2
σ∇ log ρ

with

σ =


0 σ1 σ2 σ3

−σ1 0 σ3 −σ2

−σ2 −σ3 0 σ1

−σ3 σ2 −σ1 0

 .
’t Hooft and Jackiw-Nohl-Rebbi [JNR77] provide a family of solutions (JNR

ansatz) of charge κ depending on parameters λj ∈ R>0 and yj ∈ R4:

ρ =
κ∑
j=0

λ2
j

|x− yj|2
.

When the j = 0 term is 1, this is known as the ’t Hooft ansatz.
The JNR ansatz can be explained as the approximation of an instanton as a

collection of greatly separated, weakly interacting point particles. The yj data is
the locations of these point particles and the λj is the phase data. Each point
particle contributes unit charge and one unit charge is consumed by the framing. In
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CHAPTER 5. INSTANTONS

this interpretation, the ’t Hooft ansatz posits that one of the point particles sits at
infinity.

The JNR ansatz has 5κ+4 real parameters (the expression ρ can be scaled). We
can ask if this is the total number of instantons. The counting of instantons can be
done by an Atiyah-Singer index theorem calculation [AHS78; AS68b; AS68a].

Let S+ ⊕ S− ' C2 ⊕ C2 be the oppositely-oriented components of the spin
representation of Spin(4) ' SU(2) × SU(2). Let γ : R4 → HomC(S−, S+) be the
map sending the standard basis to the Pauli matrices. Define the Dirac operator
DA : Γ(E ⊗ S+)→ Γ(E ⊗ S−) by

(5.1) DA = −
3∑
i=0

γ∗i

(
∂

∂xi
+ Ai

)
.

This map is equivalent to the complex

Ω0(su(N))→ Ω1(su(N))→ Ω2
−(su(N)),

of su(N)-valued forms (the negative means anti-self-dual). By the irreducibility of
the connection and positive curvature of S4, only the first cohomology H1 of this
complex does not vanish. This implies that the index

ind(DA) = dim ker(DA)− dim coker(DA)

is exactly dim ker(DA) = dimH1 =: h1.
The Atiyah-Singer index theorem says that

ind(DA) = ch(E)Â(S4)[S4]

= (dimE + p1(E)[1− 1

24
p1(S4)]

= p1(E) + dim(G)(ch(S−)Â(S4))

= p1(E) + dim(G)(indD : Γ(S+ × S− → S− ⊗ S−))

= p1(E)− 1

2
dim(G)(χ(S4)− signature(S4))

= p1(E)− dim(G).

This formula applies to any of the simple Lie algebras (for large κ since when κ
is small compared to N , there are some additional symmetries) [AHS78].
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G p1(g)− dim(G)

SU(N) 4Nκ−N2 + 1 κ ≥ N/2

Spin(N) 4(N − 2)κ− 1
2
N(N − 1) κ ≥ N/4

Sp(N) 4(N + 1)κ−N(2N + 1) κ ≥ N

G2 16κ− 14 κ ≥ 2

F4 36κ− 52 κ ≥ 3

E6 48κ− 78 κ ≥ 3

E7 72κ− 133 κ ≥ 3

E8 120κ− 248 κ ≥ 3

Note that these are the dimensions of the moduli spaces of unframed instantons.
The framing increases the dimension of the moduli space by dim(G).
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CHAPTER 6

The ADHM construction

The Atiyah-Drinfeld-Hitchin-Manin (ADHM) transform [Ati+78] turns the anti-
self-dual equations

FA = − ? FA,

written as non-linear partial differential equations for a connection A,

εijkl (∂iAj − ∂jAi + ∂kAl − ∂lAk + [Ai, Aj] + [Ak, Al]) = 0

where εijkl vanishes if i, j, k, l are not all distinct and is otherwise the sign of the
permutation (ijkl), into non-linear algebraic matrix equations, called the ADHM
equations,

[α1, α2] + ba =0(6.1)

[α1, α
∗
1] + [α2, α

∗
2] + bb∗ − a∗a =0.(6.2)

A solution (α1, α2, a, b) to the ADHM equations is an equivalence class of complex
valued

(1) κ× κ matrices α1, α2,
(2) an N × κ matrix a, and
(3) a κ×N matrix b,

which satisfy (6.1) and (6.2) and for each g ∈ U(N), the equivalence relations

αi 7→ gαig
−1

a 7→ λag−1

b 7→ gbλ−1.

Given a solution of the ADHM equations, one can construct a holomorphic vector
bundle E on P3 trivial over a P1. The holomorphic vector bundle E has fibres given
by the cohomology

EX = kerBX/imAX

of the sequence of vector spaces

H
AX→ K

BX→ L,

where K is 2κ+N -dimensional and H,L are κ-dimensional.
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CHAPTER 6. THE ADHM CONSTRUCTION

The linear maps AX and BX where X = [x : y : z : w] ∈ P3, assembled from a
solution (α1, α2, a, b) of the ADHM equations as follows,

AX =

 x+ zα1 − wα∗2
y + zα2 + wα∗1
za+ wb∗

 ;

BX =
[
−y − zα2 − wα∗1 x+ zα1 − wα∗2 zb− wa∗

]
.

Thus, a solution of the ADHM equations allows one to construct a holomorphic
vector bundle over P3 trivial over a P1 with unitary structure. The rest of this
chapter discusses how such a holomorphic vector bundle constructs an instanton
field by algebro-geometric methods [Ati79]. The first section of the following chapter
provides more detail on the construction of the vector bundle from (α1, α2, a, b).

We begin by treating S4 as the quaternionic projective line HP1. There exists a
fibration

P3 → S4 ' HP1,

(6.3) [x : y : z : w] 7→ [x+ yj : z + wj]

called the twistor fibration with fibres P1. The complex projective 3-space P3

parametrising geodesics is called the twistor space of R4.
The action of j ∈ H on H2 by left multiplication

(x+ yj, z + wj) 7→ (x̄j − ȳ, z̄j − w̄)

induces the reality map σ : P3 → P3 given by

[x : y : z : w] 7→ [ȳ : −x̄ : w̄ : −z̄].

Multiplication by j fixes HP1 but σ acts as the antipodal map on the fibres P1 of
the fibration. These fibres are called real lines.

The relevant theorem is then:

Theorem 10 (Ward [War77]; Atiyah-Ward [Ati79]). There is a correspondence
between

(1) irreducible anti-self-dual SU(N) connections over S4, and
(2) holomorphic vector bundles on P3 with fibre CN trivial on real lines with a

positive real form.

Let Ẽ be a holomorphic vector bundle on P3. An antilinear isomorphism σ̃ :

Ẽ → Ẽ∗ covering σ such that

(u, σ̃v) = (v, σ̃u), v ∈ ẼX , u ∈ ẼσX ,
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is said to be a real form. Since the bundle we are considering is trivial over any real
line, the holomorphic sections restricted to a real line is isomorphic to CN and the
real form induces a (non-degenerate) hermitian form on the restricted holomorphic
sections. In the pushforward E of Ẽ along the twistor fibration, the holomorphic
sections restricted to a real line integrate to the fibre of E over a point. Hence the
real form induces a hermitian form on the fibres of E.

I would like to discuss this theorem by seeing what happens to the data of a
SU(N)-invariant connection on S4 as it is encoded into the holomorphic structure
of a vector bundle on the twistor space S4.

Lemma 11. [Ati79]

(1) For a vector bundle E on S4 equipped with a unitary metric, a 2-form is
anti-self-dual if and only if it is a (1,1)-form with respect to all complex
structures compatible with the unitary metric (and orientation).

(2) A (1,1) 2-form on S4 lifts to a (1,1) 2-form on P3.

Choosing some coordinates on R4 ' C2, a 2-form F has the form

F = F12dz1 ∧ dz2 +
2∑
ρ=1
σ=1

Fρσdzρ ∧ dz̄σ + F1̄2̄dz̄1 ∧ dz̄2,

and we say that the three parts are type (2,0), (1,1) and (0,2) respectively with
respect to the complex structure. Under ?, three of the basis elements are self-dual
and three are anti-self-dual. It can be checked that all of the anti-self-dual 2-forms
are all type (1,1).

Furthermore, this anti-self-dual subspace is irreducible under the action of uni-
tary matrices (U(2) to be precise) so it is invariant under different choices of complex
structure which are compatible with the unitary metric. Thus the anti-self-duality
has been encoded in the type of the 2-form.

The second part of the lemma follows from noticing that lifting a (1,1) 2-form
along the twistor fibration produces a horizontal 2-form on the lifted bundle Ẽ (that
is, Fρσ = 0 if either ρ or σ is in a fibre-direction). This is due to the remarkable
existence of such a fibration. The two parts of the lemma combine to give us the
following proposition.

Proposition 12. [Ati79] A vector bundle E on S4 with unitary structure and con-
nection has anti-self-dual curvature if and only if the lifted bundle Ẽ and connection
on P3 has curvature form in the type (1, 1) 2-forms Ω1,1.
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If a vector bundle Ẽ → P3 is both holomorphic and unitary, there is a unique
connection which is also both holomorphic and unitary. To be precise, a unitary
gauge is a choice of basis for ẼX at each X ∈ R3 which is orthonormal with respect
to the metric and varies continuously with X. A holomorphic gauge is a choice of
basis which varies holomorphically with respect to X. Geometrically, these can be
thought of as a continuous section of a principal U(N)-bundle and a holomorphic
section of a principal GL(N,C)-bundle respectively (as frame bundles). Any gauge
which is both unitary and holomorphic is constant.

Proposition 13. [Ati79] Let E be a holomorphic vector bundle with a unitary struc-
ture. There exists a unique connection A such that

(1) in every unitary gauge, A∗ = −A,
(2) in every holomorphic gauge, A =

∑
Aµdzµ (it is of type (1,0)).

The curvature 2-form F of A is of type (1,1).
Conversely, a unitary vector bundle with a connection with a (1,1) curvature

form defines the unique holomorphic structure for which the above is true.

Let A =
∑
Aµdzµ in a holomorphic gauge. A gauge change to a unitary gauge

results in
Ã =

∑
g−1Aµgdzµ + g−1dg.

The term g−1dg has an antiholomorphic part dz̄ since it is not a holomorphic gauge.
This is the only source of the (0,1) part of the connection in the unitary gauge.
Since conjugation under the unitary structure exchanges the holomorphic and anti-
holomorphic parts, ∑

g−1Aµgdzµ = −
(
g−1dg

)∗
,

the (1,0) part is uniquely determined.
Hence, a holomorphic vector bundle Ẽ → P3 associated to an principal SU(N)-

bundle uniquely determines an instanton on R4. If the data includes a trivialisation
Ẽ|l∞ ' CN × l∞ over the line l∞ ⊂ P3 over ∞ ∈ S4 then the instanton is framed.

An explicit expression for the connection

The ADHM Horrocks formalism requires a skew form so it constructs Sp(n)

instantons [Ati79].
Let V,W be vector spaces with dimV = 2κ+ 2n and dimW = κ. Let there be a

non-degenerate skew form ω on V making it into a quaternionic vector space. Then
let

∆ : W ⊗ C4 → V
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be any linear map such that for nonzero X ∈ C4, ∆(X) : W → V is injective and
the image of ∆(X) is isotropic with respect to the skew form ω on V . This last
condition is

∆(X)(W ) ⊂ ∆(X)(W )⊥

where
v(X)(W )⊥ = {v ∈ V | if w ∈ ∆(X)(W ) then ω(v, w) = 0}

is the symplectic complement.
The fibres

EX = ∆(X)(W )⊥/∆(X)(W )

vary holomorphically with X and determine a holomorphic vector bundle E with
skew-form inherited from V . E pushes forwards along the twistor fibration P3 →
HP1 (6.3) to the bundle of an instanton.

Complex conjugation of scalars induces an anti-holomorphic involution on W

whose fixed point set is the real-valued bundle WR. Then A is equivalently a
quaternionic-linear map

(6.4) ∆ : WR ⊗R H2 → V.

In the physics literature, the ADHM construction is commonly carried out by
choosing bases for V and WR such that ∆(X) = ∆(x + yj, z + wj) : WR → V can
be written in terms of quaternionic matrices L and M [Ati+78; Wei12],

∆(x+ yj, z + wj) =

[
L

M

]
−
(
x+ yj

z + wj

)[
0n×κ

Iκ×κ

]
.

The dimensions of the quaternionic matrices L andM are n×κ and κ×κ respectively.
The first term on the right side of the equality is often written M̂ and is called the
ADHM matrix.

In this formalism, the above conditions take the form of a non-linear reality
condition,

M̂∗M̂ = R0,

for some real nonsingular κ× κ matrix R0, and an invertibility condition that

R(X) = ∆(X)∗∆(X)

be real-valued and detR(q) 6= 0 for all q ∈ H.
The connection A can be produced by solving the equation

Ψ∗∆ = 0
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where Ψ(X) is an (n+ κ)× n matrix obeying Ψ∗Ψ = 1. Then,

A = Ψ∗dΨ.

The insight here is that Ψ is an inclusion Ψ : Rn → Hn+κ from which we get a
projection operator P = ΨΨ∗ onto the fibres of the rank n bundle E in Hn+k. The
covariant derivative is the projection of the usual derivative

∇µf = P∂µf

and if we interpret Ψ as a choice of gauge then

∇(Ψf) = ΨΨ∗d(Ψf) = Ψ(df + Ψ∗dΨf).

Thus the connection A in the usual expression for the covariant derivative ∇ = d+A

is given by A = Ψ∗dΨ. Note that the different choices of Ψ give the same connection
A in different gauges.

Note that this gauge choice can be changed by the action of the automorphism
groups Sp(n + κ) for V and O(κ) for W . The action of Sp(n) induces an action
on the connection A but the O(κ) action does not. This is called reciprocity by
Corrigan and Goddard [CG84].
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Holomorphic bundles over P2

Donaldson applied Geometric Invariant Theory (GIT) to prove the following
theorem:

Theorem 14 (Donaldson [Don84a]).

M̃(G, κ) ' OM̃(GC, κ).

The left side M̃(G, κ) of the isomorphism is the moduli of space of framed G

instantons of charge κ. This means pairs (A,Θ) consisting of an anti-self-dual con-
nections A and an isomorphism Θ : P∞ → G of the fibre of P at some fixed point
of S4 which we label ∞.

Let P2 be the subvariety defined by {[x : y : z : w] ∈ P3 | w = 0}. OM̃(GC, κ) is
the moduli of pairs (E, θ) consisting of a holomorphic bundle E on P2 associated to
a principal G-bundle P , of second chern class κ, trivial on a line l∞ at infinity, and
a trivialisation θ there.

Hulek and Barth have a construction of the holomorphic bundles parametrised
by OM̃(GC, κ) [OSS80]. Donaldson has a particularly nice form for this construc-
tion which realises the holomorphic bundle E of the ADHM construction as the
cohomology of a monad on P2 with the complexified group GC.

With O(1) being the Hopf bundle over P2, let

(1) H,K,L be κ,2κ+N ,κ dimensional vector spaces over C respectively; and
(2) H = H ⊗O(−1), K = K ⊗O, L = L⊗O(1).

A monad over P2 is the following pair of families of linear maps AX ,BX for each
[x : y : z] = X ∈ P2 depending linearly on X,

H
AX→ K

BX→ L .

The map AX needs to be injective, the map BX needs to be surjective and BXAX ≡
0κ.

Since the maps AX ,BX vary holomorphically with X ∈ P2, the holomorphic
bundle E can be defined fibre-wise by the cohomology

EX = kerBX/im AX
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of the monad. This construction is unique up to an action of GLHKL = GL(H) ×
GL(K)×GL(L).

Following Donaldson, the conditions on AX and BX can be used to write them
in a more useful form. By the linearity of AX and BX , we can write them in terms
of constant matrices Ax, Ay, AZ and Bx, By, Bz,

AX = Axx+ Ayy + Azz, BX = Bxx+Byy +Bzz.

Triviality of the bundle on the line {z = 0}, and BXAX ≡ 0κ implies that BxAy is
an isomorphism, and

BxAy = −ByAx, ByAy = 0, BxAx = 0.

Wield GLHKL symmetry (ie. row reduce) to set ATx = (1κ, 0κ, 0N) = −By and
ATy = (0κ, 1κ, 0N) = Bx to satisfy these conditions.

Let α1, α2 be κ× κ matrices, a be an N × κ matrix, and b be a κ×N matrix.
Now AX and BX are of the form,

AX =

 x+ zα1

y + zα2

za

 ;

BX =
[
−y − zα2 x+ zα1 zb

]
;

and to satisfy BXAX ≡ 0κ, it has to satisfy the complex ADHM equation

(7.1) [α1, α2] + ba = 0.

The GC action on the monad is

αi 7→ gαig
−1

a 7→ λag−1

b 7→ gbλ−1.

For the fibre P1
∞ = {[x : y : 0]} over infinity, the trivialisation data θ is

AX =

 xIκ

yIκ

0N×κ

 ,
BX =

[
−yIκ xIκ 0κ×N

]
.
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An analogous monad over P3 (it is understood that over P3, O means OP3) can
be defined with maps AX and BX over P3,

AX =

 x+ zα1 − wα∗2
y + zα2 + wα∗1
za+ wb∗

 ;

BX =
[
−y − zα2 − wα∗1 x+ zα1 − wα∗2 zb− wa∗

]
.

If the monad maps satisfy the real ADHM equation

(7.2) [α1, α
∗
1] + [α2, α

∗
2] + bb∗ − a∗a = 0,

and the GC action is restricted to a G action to preserve it then this monad can be
shown to produce the corresponding real bundle on P3.

The real ADHM equation is the vanishing of a moment map µ : OM̃ → g∗ in
Donaldson’s application of Geometry Invariant Theory (GIT) [Don84a].

The quaternion action on C4 is generated by

I(x, y, z, w) = (ix, iy, iz, iw), J(x, y, z, w) = (ȳ,−x̄, w̄,−z̄),

and the action of J induces a map J∗ : E → E. The subspace of holomorphic
bundles E fixed under the action of the quaternions, that is, those for which there
exists an isomorphism J∗(E) ' E∗ is a GIT quotient equivalent to µ−1(0).

In the case of SU(N) instantons, GC = GL(N,C) and G = U(N).
To see why this version of the ADHM construction is equivalent to the one

presented in the previous chapter, note that the isomorphism on E on the level of
the monad induces a Hermitian metric on K and an isomorphism H̄∗ ≡ L. Thus
the monad can be rewritten as a map

L⊕ L→ K.

Compare this with equation (6.4).
Hence Donaldson’s theorem says that given ADHM data (α1, α2, a, b) (to be

precise, the GC equivalence class satisfying the complex ADHM equation), there is
a way of constructing instantons and holomorphic bundles on P2 trivial on a line
from the ADHM data.

The ADHM quiver and perverse instantons

In this section, I will divert off the main path to discuss a generalisation of ADHM
data. The following is a brief mention of work by Nakajima [Nak99] that ties in with
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current research on quiver varieties. The modern context for this work lies in the
theory of perverse coherent sheaves and the geometric Langlands conjecture.

Definition 15. Let V,W be vector spaces over C of dimension κ and N respectively.
ADHM data (α1, α2, a, b) are maps α1, α2 ∈ Hom(V, V ), a ∈ Hom(V,W ) and b ∈
Hom(W,V ) satisfying

[α1, α2] + ba = 0.

The previous usage of ADHM data is now referred to as regular ADHM data.

Definition 16. ADHM data (α1, α2, a, b) is

(1) Stable if there is no subspace S ( V such that α1S, α2S, aW ⊆ S;
(2) Costable if there is no non-trivial subspace S ⊆ V such that

α1S, α2S ⊆ S and S ⊆ ker b;
(3) Regular if it is stable and costable.

Let X be ADHM data. The stabilising subspace ΣX ⊆ V of X is defined as
⋂
S

for all S ⊆ V satisfying α1S, α2S, aS ⊆ S. ΣX is the smallest subspace of V for
which X is stable.

There are correspondences

{ADHM data}/GL(N) // {framed perverse coherent sheaves on P2}

{stable ADHM data}/GL(N)

⊆

// {framed torsion-free coherent sheaves on P2}

⊆

{regular ADHM data}/GL(N)

⊆

// {framed holomorphic vector bundles on P2}

⊆

Definition 17. A coherent sheaf E on P2 is torsion free if for X ∈ P2, the stalk
EX is a torsion free OP2,X-module, that is, if f ∈ OP2,X and a ∈ EX then fa = 0

implies that a = 0 or f = 0.

Remember that a holomorphic vector bundle is a locally free sheaf. Torsion
free (coherent) sheaves on P2 are locally free except on a set of dimension zero.
Equivalently, torsion free sheaves are rank r holomorphic vector bundles except at
a set of points where they fail to be rank r.

The usual definition of perverse coherent sheaves requires discussion of the t-
structures of Kashiwara [Kas04]. However, the exposition can be vastly simplified
if a theorem of Jardim-Martins [JM11] is taken as a definition.
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Definition 18. A perverse coherent sheaf E∗ on P2 trivial at infinity is a complex
E−i → E−i+1 → . . .→ Ej−1 → Ej of coherent sheaves on P2 in the bounded derived
category (ie. i, j ∈ Z are finite) satisfying

(1) H i(E∗)) = 0 for i 6= 0, 1;
(2) H0(E∗) is a torsion free sheaf, trivial at infinity (isomorphic to a free

sheaf/ trivial holomorphic vector bundle at l∞); and
(3) H1(E∗)) is a torsion sheaf with support outside of l∞.

Remember that our holomorphic bundle E is H0(E∗) of a monad

E−1 → E0 → E1

and the non-degeneracy or regularity conditions guarantee that H1(E−1) = 0. In
fact, we see that the monad in the ADHM construction is an example of a perverse
coherent sheaf on P2 trivial at infinity.

Definition 19. The ADHM quiver is the following directed graph

�v55
uu

��
�w

UU

The upshot which takes us into deeper waters, is the category of perverse in-
stanton sheaves equivalent to ADHM data is the category of representations of the
ADHM quiver [JM11].
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Part 3

Hyperbolic Monopoles



Into the hyperbolic

Hyperbolic 3-space can be realised as the upper half space

H3 =
{

(x, y, r) ∈ R3 | r > 0
}

with the negative curvature metric

ds2 =
dx2

1 + dx2
2 + dr2

r2
.

The treatment of hyperbolic monopoles differs from the treatment of euclidean
monopoles because hyperbolic monopoles can be studied as circle-invariant instan-
tons. This limits us to only examining monopoles with integral mass. The main
consequence is that hyperbolic monopoles are uniquely determined up to gauge
equivalence by their restriction to an asymptotically large sphere.

The challenge in the study of hyperbolic monopoles is that the L2 norm on the
monopole moduli space is not finite and no hyperKähler metric has been found for
the moduli space. This issue is outside the scope of this thesis but receives airtime
in the following references: [BA90; BCS15; Hit93].
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Circle-invariant instantons

Let P ′ be a principal SU(N) bundle on hyperbolic 3-space. A magnetic monopole
(A,Φ) on hyperbolic 3-space H3 consists of an SU(N) connection A on P ′ and a
section Φ of the adjoint bundle ad P ′ which satisfy the Bogolmonyi equations with
Hodge star dual ?H3 taken with respect to the hyperbolic metric,

FA = ?H3DAΦ

whose energy is finite.
However, the analysis for boundary conditions which are implied by finite energy

has not been thoroughly treated. An alternative definition of hyperbolic monopoles
as S1-invariant instantons was suggested by Atiyah [Ati84a; Ati84b]. This sidesteps
the analytical difficulties. From here onwards, this is the definition of hyperbolic
monopole which will be used. The limitation of this is that for the remainder of
the thesis, unless otherwise specified, hyperbolic monopoles will only have integral
mass.

For completeness, let me say what an instanton is and list some properties. For
more detail, refer to Chapter 5.

Definition 20. Let P be the (trivial) principal SU(N) bundle on R4. An instanton
A� is a gauge equivalence class of connection 1-forms on P whose curvature form
FA�

is anti-self dual,ie.
FA�

= − ? FA�

and extends to a connection 1-form on the extension of P to a bundle on S4, the
conformal compactification of R4.

The latter condition on A� is the clean way of saying that A� decays asymp-
totically. Another common statement of the decay condition is that there exists a
gauge transformation g on a sphere S3 of large radius such that A ∼ g−1dg there.

The bundle P extended to {∞} ∈ S4 is now no longer necessarily trivial. The
degree κ of A�|S3 : S3 → SU(N) (which can be considered as an element of the
third homotopy group π3(SU(N)) ) is a topological invariant of P which we call the
instanton charge.
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An instanton is framed at {∞} ∈ S4 if the gauge equivalence is given by the
subset of gauge transformations g where g(∞) = 1.

Let (x1, x2, x3, x4) be a coordinate basis for R4. The circle S1 action on R4 which
we will consider is a rotation in the x3x4-plane R2

34 = {(x1, x2, x3, x4) ∈ R4 | x1 =

0 = x2}. Let (r, θ), r > 0, θ ∈ [0, 2π) be polar coordinates for the x3x4-plane (sans
the origin). This S1 action is then

(x1, x2, r, θ) 7→ (x1, x2, r, θ + θ′)

for θ′ ∈ S1. The x1x2-plane R2
12 = {(x1, x2, x3, x4) ∈ R4 | x3 = 0 = x4} is the

fixed-point set of the S1-action, thought of as the axis of rotation.
The euclidean metric in these coordinates is

ds2 = r2

(
dx2

1 + dx2
2 + dr2

r2
+ dθ2

)
.

Without the axis of rotation, R4 is foliated by upper half spaces and the euclidean
metric restricted to each upper half space is conformally equivalent to the Poincaré
hyperbolic metric. Conformally,

R4 − R2 ' S1 ×H3.

An S1-invariant instanton A� on R4 is an instanton A on a principal SU(N)-
bundle P and a lifting of the S1-action to an action on P which preserves A. In
particular, for framed instantons, the homomorphism α : S1 → SU(N) determined
by the lifting at ∞ is invariant (Atiyah calls it the type). Hence, it makes sense to
define hyperbolic monopoles as S1-invariant instantons.

Definition 21. A magnetic monopole (A,Φ) on hyperbolic 3-space H3 is an S1-
invariant framed instanton on R4.

Over R2
12, the prescribed lifting ρ : S1 → AutP of the S1-action from R4 to P

induces a representation of S1 on the fibres of P |R2
12
. The gauge transformations g

compatible with the lifted action are the S1-equivariant gauge transformations

g(x1, x2, r, θ + θ′) = ρ(θ′)g(x1, x2, r, θ).

For framed instantons, the compatible gauge transformations are S1-invariant, ie.
g = g(x1, x2, r).

From here on, I will make use of the decay condition to work over S4 instead of
R4. Thus, the principal SU(N) bundle P and connection 1-form A� will be treated as
objects over S4. The 4-sphere S4 will be regarded as HP1, the projective quaternion
line (H2 − 0)/H×.
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Figure 1. The decomposition of P3 by the C×-action into fixed lines
and C× orbits.

Figure 2. The C× orbits of P2 and the fibres of horospheres inter-
secting {∞} ∈ ∂H3.

The data of an instanton is equivalent to the rank N complex vector bundle E
associated to P with anti-self-dual curvature. Applying the twistor technique, lift E
to a bundle E on P3 along the twistor fibration

P3 → HP1 ∼= S4

[x : y : z : w] 7→ [x+ yj : z + wj].

The bundle E is a rank N holomorphic vector bundle.
The S1-action on S4 lifts to an action of C× on P3

c 7→ [c−1/2x : c1/2y : c−1/2z : c1/2w].

This action has two fixed lines (see Figure 1)

P1
+ = {[x : 0 : z : 0]}, P1

− = {[0 : y : 0 : w]}
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with opposite orientations. The orbits of C× intersect both fixed lines. The real
structure on P3 is the anti-holomorphic linear map

σ : P3 → P3

[x : y : z : w] 7→ [−ȳ : x̄ : −w̄ : z̄]

which exchanges the two fixed lines. The real structure σ induces a positive real
form on E, an anti-linear isomorphism p : E → E∗ such that for v ∈ EX , u ∈ Eσ(X),

(u, pv) = (v, pu).

An important subspace of P3 is the projective plane P2 defined by w = 0 (see
Figure 2). This P2 contains the fixed line P1

+, the fixed point P− = [0 : 1 : 0] as well
as the line P1

∞, the twistor fibre over ∞ ∈ S4. The C×-action on P2 is, for c ∈ C×,

c 7→ [x : cy : z].

Proposition 22. A framed SU(N) instanton is S1-invariant and hence a hyperbolic
monopole (A,Φ) if and only if the associated holomorphic vector bundle E → P3 is
C×-equivariant.

There are two important families of lines in P2. For every point of P1
+, there is

a C×-orbit in P2 intersecting that point and P−. The lines which meet [1 : 0 : 0] =

P1
+ ∩ P1

∞ map to horospheres in H3 and so they will be called the horosphere lines.
This latter family of lines makes P2 akin to the “complex manifold version” of H3.

Over P1
+, the C×-action induced by the C×-action on P3, on E|P1

+
is a represen-

tation on each fibre. By Schur’s Lemma, this representation can be written, for
c ∈ C×, and for some p1, . . . , pN ∈ Z, and

∑N
i=1 pi = 0 as

c 7→ diag(cp1 , cp2 , . . . , cpN ).

Thus E|P1
+
splits into line bundles.

Let Lp ∼= C be the representation of C× of weight p, p ∈ 1
2
Z, ie. for c ∈ C×,

x ∈ Lp, c · x = cpx.
Since the action is algebraic, the line bundles are algebraic or equivalently, holo-

morphic. By Birkhoff–Grothendieck [OSS80], this splitting is unique up to permu-
tation of the summand thus for some k1, . . . , kN ∈ Z,

E|P1
+

= O(k1)⊗ Lp1 ⊕ . . .⊕O(kN−1)⊗ LpN−1
⊕O (kN)⊗ LpN

where
∑N

i=1 pi = 0 and
∑N

i=1 ki = 0. The numbers k1, . . . , kN are the 1st chern
numbers of the line bundles.
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Over P1
−, the same arguments imply that

E|P1
−
∼= O(k1)⊗ Lp1 ⊕ . . .⊕O(kN)⊗ LpN .

Definition 23. Let (A,Φ) be a SU(N) hyperbolic monopole with C×-equivariant
holomorphic vector bundle E → P3. Then the mass numbers p1, . . . , pN ∈ Z (or
1
2

+ Z for N even) and charge numbers k1, . . . , kN ∈ Z of (A,Φ) are the numbers
appearing in the C×-equivariant splitting of E restricted to P1

+ (or P1
−).

I work exclusively with the case of maximal symmetry breaking, the condition
that p1, . . . , pN are distinct. For convenience, I will order them p1 < . . . < pN .

The rational map

The simplest handle on the moduli space of monopoles is the rational map. In
parallel with euclidean monopoles, there is an isomorphism of moduli spaces.

Theorem 24 (Atiyah [Ati84a]). For any classical group G and any homomor-
phism α : S1 → G with centraliser G(α) in G, there is a natural isomorphism
between

(1) the parameter space of framed S1-invariant charge κ instantons of type α,
and

(2) the parameter space of based holomorphic maps f : P1 → G/G(α) of degree
κ.

Note that the degree of the rational map is κ which should be a polynomial in
the mass and charge numbers. Generically, α is integral and G(α) is a maximal
torus T of G so

G/G(α) ∼= G/T

is a flag manifold.
This theorem then says that for each hyperbolic monopole, we have a map P1 →

G/T . The data of α is the mass data in the form of winding numbers.
In the SU(2) case, κ = 2kp and the only generic homomorphisms α : U(1) →

T ⊂ SU(2) are classified by a positive integer. Thus the SU(2) rational map is
actually a degree κ rational function P1 → P1. Since the rational maps are based,
the numerator is of a lower degree than the denominator.

The physical interpretation for the rational map is the scattering of some test
particle by the monopole field. From the distinguished point {∞} where the mono-
pole is framed, the test particles travel along all the geodesics beginning at {∞}.
The rational map returns a fraction for each point on S2 representing the other
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end of the geodesic. This fraction can be interpreted as the ratio of test particles
transmitted through the monopole field to the test particles reflected by the field.

This interpretation is not so straightforward for higher rank G. One way to
generalise the interpretation is to replace transmitted and reflected in the SU(2)

case with whether or not the test particle has undergone a phase change. In the
case of a rank r group G, there are r charge types and the i-th number records the
relative number of test particles which have had i of their phases changed.

Atiyah has a procedure for a concrete realisation of the SU(2) rational map which
Braam–Austin make use of to write the rational map in terms of solutions of the
discrete Nahm equations. I will use this procedure for my treatment of rational
maps and so I will state two lemmas from Atiyah’s work here without proof:

Lemma 25 ([Ati84a]). Let E be a rank r holomorphic vector bundle over C2 with
a C×-action covering the C×-action on C2. Then E and C2 × E0 are isomorphic as
C×-representations (E0 is the fibre of E over 0).

Lemma 26 ([Ati84a]). The previous lemma holds for C1 instead of C2 and the
C×-automorphisms of E = C× E0, for a point z ∈ C are

 u1

...
ur

 7→

a11 a12z

p1−p2 · · · a1rz
pr−1−pr

a22
...

. . . ar−1,rz
pr−1−pr

arr


 u1

...
ur

 , a11, . . . , arr 6= 0.

Returning to theorem 24, the proof proceeds by making the links

{P1 → ΩG}

∼

��

{holomorphic Gc bundles on P1 × P1}

∼

��

{holomorphic Gc bundles on P2}.

Here Gc is the complexification of G. For example, SU(N) complexifies to SL(N,C).
In the P2 ADHM construction of Donaldson, the U(N)-action complexified to a
GL(N,C)-action.

Lemma 27 ([Ati84a]). Let (P2, x) be the complex projective plane with a choice of
basepoint. Then there is an equivalence between

(1) based holomorphic maps P1 → ΩG, and
(2) framed holomorphic Gc-bundles on P1 × P1 trivial on P1 ∨ P1.
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Lemma 28 ([Ati84a]). There is an identification between the parameters spaces of
framed holomorphic Gc bundles on P1 × P1 trivial over P1 ∨ P1 and P2 trivial over
P1.

Consider a holomorphic vector bundle over P1 × P1 as a holomorphic family
of holomorphic vector bundles over the second P1 parametrised by points of the
first P1. These vector bundles can be constructed using maps h : S1 → Gc as
transition functions to glue together trivial vector bundles on the northern and
southern hemispheres of P1. This is the data provided by the a holomorphic map
P1 → ΩG. The blow up and blow downs preserve the trivialisation of a trivial vector
bundle.

There is a birational equivalence between P1 × P1 and P2. Look at the union of
the axes P1 ∨ P1 in P1 × P1. Blow up at the intersection of the axes and then blow
down the two now disjoint P1 axes.

This birational equivalence can be written explicitly.

([x : y], [z : w]) 7→ [xw : zy : yw] , [X : Y : Z] 7→ ([X : Z], [Y : Z]).

Observe that the axes {y = 0} and {w = 0} of P1×P1 each map to a point [1 : 0 : 0]

and [0 : 1 : 0] respectively on the P1 ⊂ P2. Conversely, that {Z = 0} = P1 ⊂ P2

maps to the intersection of the axes. Thus the holomorphic map P1 → ΩG constructs
a holomorphic vector bundle on P2 trivial over P1

∞.

Proof of Theorem 24. The preceeding lemmas along with Donaldson’s GIT
arguments [Don84a] give a diffeomorphism between

(1) the moduli of charge κ, G framed instantons on R4 and
(2) the parameter space of based holomorphic maps P1 → ΩG of charge κ.

It remains to show that the instantons are S1-invariant of type α if and only if
the maps reduce to maps P1 → G/G(α) for α : S1 → G.

Let f ∈ ΩG be a based loop, f : S1 → G such that f(1) = 1. There is a natural
action of S1 on ΩG which rotates the loop. For c ∈ S1 and f ∈ ΩG,

(cf)(θ) = f(cθ)f(c)−1.

If f is invariant under the action of S1 then

(cf)(θ) = f(θ) = f(cθ)f(c)−1

so f(c)f(θ) = f(cθ) and f is a homomorphism.
The S1-action on the physical space S4 lifts to an action on the principal G-

bundle P . Over the point ∞ of the fixed S2 (or any point on the fixed S2), the
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S1-action lifts to a representation on the fibre P∞. Equivalently, we get a homomor-
phism α : S1 → G. This homomorphism determines the lifting since it is invariant
under automorphisms of P which preserve the connection.

Since the image of P1 in ΩG lies in a conjugacy class and ∞ ∈ P1 maps to α,
P1 → ΩG reduces to P1 → Γα, the moduli space of conjugacy classes of α. This is
isomorphic toG/G(α) (translated by α to be precise) whereG(α) = g ∈ G | gα = αg

is the centraliser of the image of α as a subgroup. �

Mini-twistor space and SU(2) spectral curves

Monopole solutions to the Yang-Mills-Higgs system of equations are integrable
systems. This implies that they have a Lax form and a spectral curve. The discrete
Nahm equations are the Lax form of hyperbolic monopoles. Here, I will say what
the spectral curve is and what its significance is in term of inverse scattering.

Definition 29. The mini-twistor space Q of H3 is the quotient

Q =
P3 − (P1

+ ∪ P1
−)

C×
.

Geometrically, Q is the moduli of oriented geodesics of H3, considered as the ball
model. The oriented geodesics of H3 are uniquely determined by a starting point
ẑ = −1/z̄ and an end point w on an asymptotic sphere S2

∞. Considering, S2
∞ as

P1, an oriented geodesic can be uniquely specified by a pair (z, w) ∈ P1 × P1. Of
course, the anti-diagonal pairs (ẑ, z) specify the same point for the start and the
end so they don’t specify geodesics. Thus I will make the identification

Q ∼= P1
+ × P1

− − ∆̄

where ∆̄ = {(ẑ, z) ∈ P1 × P1}.
The anti-holomorphic linear involution

σ : Q→ Q

(z, w) 7→ (ŵ, ẑ)

is the the real structure induced by the real structure of P3 and is a reversal of the
orientations of the geodesics in H3.

On each oriented geodesic γ ⊂ H3 with parameter t, a hyperbolic monopole
(A,Φ) defines a scattering equation

(∇A
t − iΦ)s = 0.

Since (A,Φ) satisfy the Bogolmonyi equations, [∇A
z̄ ,∇A

t − iΦ] = 0 making solutions
of the scattering holomorphic. Let s+, s− be the solutions which decay to the order
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∼ exp (const t) in the +∞,−∞ directions respectively. Then the spectral curve S
is defined as

S = {γ ∈ Q | s+|γ = s−|γ} .

The spectral curve is the image of a P1 in Q. It is uniquely determined by
the monopole and furthermore, is enough to reconstruct the vector bundle and
connection of the monopole. In Chapter 14, I will discuss spectral curves for SU(N)

hyperbolic monopoles.
From a geometric point of view, there are two line sub-bundles L+, L− of the

S1-invariant holomorphic vector bundle E → P3. The spectral curve S is the image
in Q of the lines P1 over which L+ coincides with L−. More precisely,

0→ L+ → E → (L−)∗ → 0

is exact. For more details, look at Section 2 as well as [Ati84b; Nor04; MNS03].

The S1-invariant ADHM construction

Summarising chapters 6 and 7, there is an equivalence:{
Framed charge κ instantons on R4

}
'

{
Holomorphic vector bundles on P3

trivial over P1
∞ with c1 = 0, c2 = κ

}
.

The holomorphic vector bundle is constructed as the cohomology at the middle
position of the sequence of holomorphic vector bundles

(8.1) H ⊗O(−1)
AX→ K ⊗O BX→ L⊗O(1)

where

• H,L ' Cκ are κ-dimensional vector spaces.
• K ' C2κ+n is a (2κ+ n)-dimensional vector space.

• AX =

 x+ α1z − α∗2w
y + α2z + α∗1w

az + b∗w


• BX =

[
−y − α2z − α∗1w x+ α1z − α∗2w bz − a∗w

]
and

• α1, α2 are κ× κ complex matrices, a is an n× κ complex matrix and b is a
κ× n complex matrix satisfying the ADHM equations

[α1, α2] + ba = 0

[α1, α
∗
1] + [α2, α

∗
2] + bb∗ − a∗a = 0.

For a more detailed exposition of the monad ADHM construction, refer to chap-
ters 6 and 7.
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CHAPTER 8. CIRCLE-INVARIANT INSTANTONS

A tuple (α1, α2, a, b) satisfying the ADHM equations is known as an ADHM
datum. The action of the automorphism groups of the vector spaces H,K,L of the
monad induces an action on the ADHM datum. For g ∈ U(κ) and λ ∈ SU(N),

α1 7→gα1g
−1

α2 7→gα2g
−1

a 7→λag−1

b 7→gbλ−1.

The goal is to find additional conditions for an ADHM datum (α1, α2, a, b) to
produce an S1-invariant instanton and thus be the datum of a hyperbolic magnetic
monopole. To that end, there is a Proposition in the PhD thesis of Norbury [Nor94]
which provides exactly this condition. By a theorem of Donaldson, holomorphic
bundles on P2 trivial on P1

∞ are in correpondence with our bundles on P3 and the
monad ADHM construction is the same except that w = 0, U(κ) is complexified to
GL(κ,C) and S1 is complexified to C×. Then the proposition takes the following
form:

Proposition 30 (Norbury). [Nor94] A holomorphic CN -vector bundle E on P2

trivial on a line is C×-invariant if and only if there exists a homomorphism P :

C× → GL(κ,C) with c 7→ Pc such that the ADHM data (α1, α2, a, b) of the monad
associated to E satisfies

(1) α1 = Pcα1P
−1
c

(2) α2 = cPcα2P
−1
c

(3) a = λaP−1
c

(4) b = cPcbλ
−1.

Proof. First note that a monad that is C×-equivariant will always have a C×-
invariant holomorphic vector bundle E for its cohomology. For the converse, consider
the C×-action on P2 given by c · (x, y, z) = (x, cy, z) as in our setting. The linear
dependence of the monad maps A,B, implies that an action is induced on the space
of monads. For example,

AX =

 x+ zα1

y + zα2

za

 7→
 x+ zα1

cy + zα2

za

 .
Since the holomorphic vector bundle E in question is C×-invariant, it is a fixed

point of the C×-action induced on vector bundles. Thus the C× orbit of a monad
associated to E must all have E as their cohomology. By the uniqueness (up to a
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THE S1-INVARIANT ADHM CONSTRUCTION

GLHKL-action) of the monad associated to a holomorphic vector bundle, the monad
must be a fixed point of the C×-action. The C×-action acts only through GLHKL.

There needs to be an element (σ, ρ, σ′) of GLHKL for which the maps AX and
BX satisfy ρ(c)A(x,y,z) = A(x,cy,z)σ(c) and σ′(c)B(x,y,z) = B(x,cy,z)ρ(c). We can ask
that the choice of basis made for K be preserved which means that ρ(c) should split
into blocks on the diagonal, diag (ρ1, ρ2, ρ3) ∈ GL(κ,C)×GL(κ,C)×GL(N,C).

The condition A(x,cy,z) = ρ(c)A(x,y,z)σ
−1(c) in this basis is x+ zα1

y + zα2

za

 7→
 x+ zα1

cy + zα2

za

 = diag (ρ1, ρ2, ρ3)

 x+ zα1

y + zα2

za

σ−1.

Note that x = ρ1xσ
−1 implies that ρ1 = σ and cy = ρ2yσ

−1 implies that ρ2 = cσ.
Likewise, B(x,cy,z) = σ′(c)B(x,y,z)ρ

−1(c) in the chosen basis reads as[
−cy − zα2 x+ zα1 zb

]
= σ′

[
−y − zα2 x+ zα1 zb

]
diag

(
ρ−1

1 , ρ−1
2 , ρ−1

3

)
.

From the first two blocks, −cy = −σ′yρ−1
1 implies that cρ1 = σ′ and x = σ′xρ−1

2

implies that ρ2 = σ′.
Together, this means σ = Pc = ρ1 and σ′ = cPc = ρ2 for some Pc ∈ GL(κ,C).

Recall that the last N basis elements of K provide the framing so ρ3 needs to be
the representation λc. Thus, the conditions (1)-(4) of the theorem are exactly the
conditions for the C×-equivariance of AX and BX . �

Thus we see that in the case of a circle invariant instanton, the C×-action on the
monad’s bundles is multiplication by

c 7→ diag (Pc, diag (Pc, cPc, λc) , cPc) ∈ GL(H)×GL(K)×GL(L).

The homomorphism Pc is a representation of C× so we can diagonalise it. This
means that H, K and L can be decomposed into weight spaces for the C×-action.
The ADHM data α1, α2, a, b must then preserve these weight spaces.

Although the original proposition is for the P2 case, the statement and proof for
P3 is the same but with S1 instead of C× and U(κ) instead of GL(κ,C).
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CHAPTER 9

Discrete Nahm equations and boundary values

Braam and Austin [BA90] were the first to study the hyperbolic analogue of the
Nahm equations. Their main theorem is:

Theorem 31 (Braam–Austin [BA90]). Let k and 2p be integers. There is a 1-1
correspendence between

(1) the moduli space of charge k, mass p framed monopoles (A,Φ, θ : E|∞
∼→

C2), and
(2) solutions of the discrete Nahm equations consisting of matrices

βj ∈ gl(k,C) j = −p+
1

2
, . . . , p− 1

2
;(9.1)

γj ∈ gl(k,C) j = −p+ 1, . . . , p− 1;(9.2)

v ∈ Ck;(9.3)

satisfying the discrete Nahm equations

βj− 1
2
γj − γjβj+ 1

2
= 0 − p+ 1 ≤ j ≤ p− 1;(9.4)

[βj, β
∗
j ] + γj+ 1

2
γ∗1

2
− γ∗

j− 1
2
γj− 1

2
= 0 − p+

3

2
≤ j ≤ p− 3

2
;(9.5)

[βp− 1
2
, β∗

p− 1
2
] + vT v̄ − γ∗p−1γp−1 = 0;(9.6)

γj = γT−j p+ 1 ≤ j ≤ p− 1;(9.7)

βj = βT−j − p+
1

2
≤ j ≤ p− 1

2
;(9.8)

and modulo the action of the map

g = (g−p+ 1
2
, . . . , gp− 1

2
) : (−p, p) ∩

(
Z +

1

2

)
→ U(k),

βj 7→gjβjg−1
j ;(9.9)

γj 7→gj− 1
2
γjg
−1
j+ 1

2

;(9.10)

v 7→vg−1
−p+ 1

2

.(9.11)

Note that I use a different labelling from Braam–Austin. Braam–Austin’s theo-
rem is actually for an Sp(1) hyperbolic monopole, not SU(2) which does not come
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with the final two discrete Nahm equations and has two vectors a, b instead of just
v. However, the isomorphism of the groups imply that they are the same equations.
Hence, Braam–Austin reveals a “hidden” symmetry of the SU(2) discrete Nahm
equations.

The discrete Nahm equations can be interpreted as a discrete evolution equation
along the interval-lattice. In analogy with the Nahm equations, this can be inter-
preted as gauge field theory on a lattice. Lattice field theories have gained attention
of late in the study of quantum chromodynamics (QCD/ strong sector).

Here is how Braam and Austin proved their theorem. Hitchin describes the vector
spaces K and L in the ADHM construction as the solutions of Dirac operators,

K = ker
{
D∗A : Γ(S4, E ⊗ S− ⊗ S−)→ Γ(S4, E ⊗ S+ ⊗ S−)

}
(9.12)

L = ker
{
D∗A : Γ(S4, E ⊗ S−)→ Γ(S4, E ⊗ S+)

}
.(9.13)

Here, S+ and S− are the spin bundles on S4. The fibres of S± are isomorphic
to C2 and are representations of Spin(3) ' SU(2). D∗A is the adjoint Dirac operator
S− → S+ with coefficients in E⊗S− for K and E for L. Since SU(2) ' Sp(1), both
E and S− carry quaternionic structures so K is quaternionic and L is real.

Braam–Austin assume that p ∈ Z + 1
2
and use the equivariant Atiyah-Singer

index theorem to compute the S1 characters of K and L as representations of S1.
Since S1 is abelian, this is a sequence of integers. The theorem actually computes
the difference between the kernel and cokernel of the Dirac operator but the cokernel
vanishes due to the positive scalar curvature of S4. They found that,

K = Ck+1
−p ⊕ C2k

−p+1 ⊕ . . .⊕ C2k
p−1 ⊕ Ck+1

p ,

and
L =

(
R2k
p− 1

2
⊕ R2k

p− 3
2
⊕ . . .⊕ Rk0

)
⊗R C.

The S1-characters tell us that there is a basis in which the ADHM matrices are
sparse with block entries on the diagonal and off-diagonal. The skew-form on K is
defined component-wise on K−j ⊕Kj,((

v

w

)
,

(
v′

w′

))
= −vTw′ + wTv′.

The isotropy condition of the ADHM construction with respect to this skew form
then becomes the discrete Nahm equations.

In my generalisation of the discrete Nahm equations to groups other than SU(2),
I use a different method to calculate the S1-characters of K and L. I will use many
of the same arguments used by Braam and Austin in the rest of their paper so I will
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only briefly outline them here and provide more detail when I discuss the generalised
case.

Analogous to work by Donaldson [Don84b], Braam–Austin then reduce the so-
lutions of the discrete Nahm equations to a symmetric matrix β and a vector v.
This is done by passing to the Donaldson form of the ADHM construction via GIT
[Don84a]. The real discrete Nahm (9.5) is now a moment map condition and the
gauge freedom is GL(k,C) instead of U(k). The extra freedom of GL(k,C) can be
used to row reduce the γ matrices into the identity matrices. I will use the lemmas
which are used for this purpose later in my work on the rational map.

Braam–Austin show that the rational map of an SU(2) hyperbolic monopole is
given by

r = −λ−pv(z − β)−1vT .

Braam and Austin also point out that the end-points of the discrete Nahm
equations on the interval-lattice define line bundles on Pk by defining a linear map
between complex spaces, for example,(

β−p+ 1
2
− z

v

)
: Ck
−p+ 1

2
→ Ck+1

−p

This is a (small) monad on S2 but it is also a map S2 → Pk where z ∈ S2. The
cohomology (which reduces to the quotient) of this map defines a line subspace of
Ck+1 for each z ∈ S2. Since this map varies holomorphically with z, we have a
sub-line bundle on Pk which we pullback to a line bundle on S2. The canonical
derivative of Ck+1 passes to a non-trivial connection A∞ in the quotient which can
be pulled back to S2.

Conversely, given a connection for a line bundle on S2
∞ induced by the monopole

connection A, there is a small monad unique up to gauge transforms defined by
A∞. The small monad can be used as boundary conditions for the discrete Nahm
equations. Thus SU(2) hyperbolic monopoles are holographic, that is, the boundary
connection induced by the monopole uniquely determines the monopole.

Theorem 32 (Braam–Austin [BA90]).

(1) The connection A∞ on the factor L∗ of E|S2 = L ⊕ L∗ determines the
monopole (A,Φ) up to gauge transformations.

(2) The connection A∞ is the pullback of the U(k+ 1)-invariant connection on
O(1) along a holomorphic map S2 → Pk.

(3) The map A 7→ A∞ is an immersion of the monopole moduli space in the
space of U(1) connections on S2.
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CHAPTER 10

Symmetric examples and ansätze

There has been a history of highly symmetric examples of hyperbolic monopole
solutions, notably Murray-Norbury-Singer[MNS03] and Norbury-Romao[NR07]. I
will discuss the case of Bolognesi-Cockburn-Sutcliffe’s [BCS15] clever embedding of
the JNR ansatz into the ADHM construction which leads to a family of solutions
suggestive of low energy scattering of hyperbolic monopoles.

Bolognesi et al. [BCS15] show how a subset of the JNR data (and as a special
case, ’t Hooft ansatz) can be embedded into the ADHM matrices as circle-invariant
solutions (see Part 2 for the full JNR ansatz).

Definition 33. Instanton charge κ circle-invariant JNR data {γi, λ2
i }i∈{0,...,κ} con-

sists of κ+ 1 complex constants γi ∈ C and real weights λ2
i ∈ R>0. Circle-invariant

’t Hooft data {γi, λ2
i }i∈{1,...,κ} is JNR data with γ0 =∞ and λ2

0 =∞.

The circle-invariant JNR ansatz defines a harmonic function

ψ(x1 + ix2, r) =
κ∑
i=0

λ2
i

|x1 + ix2 − γi|+ r2

with poles γ0, . . . , γκ on r = 0, the conformal boundary of H3. A formula for the
connection is

Aµ =
i

2
εµνρσρ∂µν logψ

with Φ = A0.
Note that the moduli space of hyperbolic monopoles arising from JNR data is

of dimension 3κ+ 2 (the scaling of ψ by a constant leaves the monopole unchanged,
reducing the number of parameters by one). The full hyperbolic monopole moduli
space is of dimension 4κ−1. Hence the JNR moduli space is only the full hyperbolic
monopole space for charge κ ≤ 3.

’t Hooft data {γ1, . . . , γκ, λ
2
1, . . . , λ

2
κ} can be written as an ADHM matrix

λ1 · · · λκ

γ1

. . .
γκ


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which satisfies the discrete Nahm equations of charge k, mass p such that 2kp = κ.
The general JNR data produces an ADHM matrix

SΓV

with

Γ =


λ1γ0 · · · λκγ0

λ0γ1

. . .
λ0γκ


and matrices S ∈ O(κ+ 1), V ∈ GL(κ,R) satisfying

S


λ1 · · · λκ

λ0

. . .
λ0

V =


0 · · · 0

1
. . .

1

 .
The matrices S and V can be found from iterating the rules:

(10.1) Vij =


0 if i > j

pi/(λ0pi−1) if i = j

−λiλjpjpj−1/λ0 if i < j

Si1 =λ0λi−1pi−1pi−2 for i = 1, . . . , κ+ 1(10.2)

S1j =− λj−1pN for j = 2, . . . , κ+ 1(10.3)

Sij =λ0Vj−1,i−1 for i, j = 2, . . . , κ+ 1(10.4)

Here, pi = (
∑i

j=0 λ
2
j)
−1/2 for i = 0, . . . , κ, p−1 = pκ and λ−1 = λ0.

For the sake of convenience, here are the matrices for κ = 1, 2, 3.
κ = 1 :

V = (λ2
0 + λ2

1)−1/2, S = V

(
λ0 −λ1

λ1 λ0

)
.

κ = 2 :

V =

(
p1 −λ1λ2p0p1p2

0 λ−1
0 p−1

1 p2

)
S =

 λ0p2 −λ1p2 −λ2p2

λ1p1 λ0p1 0

λ0λ2p1p2 −λ1λ2p1p2 p−1
1 p2

 .
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κ = 3 :

V =

p1 −λ−1
0 λ1λ2p1p2 −λ−1

0 λ1λ3p2p3

0 p2λ
−1
0 p−1

1 −λ−1
0 λ2λ3p2p3

0 0 p3λ
−1
0 p−1

2



S =


λ0p3 −λ1p3 −λ2p3 −λ3p3

λ1p1 λ0p1 0 0

λ0λ2p1p2 −λ1λ2p1p2 p2p
−1
1 0

λ0λ3p2p3 −λ1λ3p2p3 −λ2λ3p2p3 p3p
−1
2

 .

In terms of the JNR data, the spectral curve is given by

(10.5)
κ∑
j=0

λ2
j

κ∏
k=0,
k 6=j

(ζ − γk)(1 + ηγ̄k) = 0.

By evaluating the spectral curve at (η, ζ) = (0, z), we get the denominator of the
rational map. Using the additional requirement that the points be invariant under
the circle-symmetry, the full rational map is

R =

κ∑
i=0
j=i+1

λ2
iλ

2
j(γi − γj)2

κ∏
k=0
k 6=i,j

(z − γk)

κ∑
j=0

λ2
j

κ∏
k=0
k 6=j

(ζ − γk)
.

Choosing γj = ωj = exp(2πi/(κ+1))j gives the axially symmetric spectral curve
κ∑
i=0

(−1)iηiζκ−i = 0,

and rational map

R =
1

zκ
.

The position of the monopole can be moved to (0, 0, ξ) by shifting ω 7→ 1+ξ
1−ξω.

The discrete Nahm equations for axially-symmetric hyperbolic monopoles have an
interpretation as discrete Hitchin equations [War15].

Bolognesi-Cockburn-Sutcliffe [BCS15] discuss a host of symmetric examples. I
will mention the charge 2 monopole with D2 symmetry. For a ∈ (−1, 1), choose

γ0 = 1, γ1 =
a− 1

2
+

1

2

√
3 + 2a− a2, γ2 = γ−1

1 , λ2
1 = λ2

2 = 1, λ2
0 =

1 + a

1− a
.
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In terms of the harmonic function ψ, we can find an expression for the energy
density of the monopole,

∇2|Φ|2 = ∇2 r
2

4ψ2

[
(
∂ψ

∂x1

)2 + (
ψ

r
+
∂ψ

∂r
)2 + (

∂ψ

∂x1

)2

]
.

The energy density isosurfaces of the charge 2 D2-symmetric monopole resembles
two particles colliding in the x− y plane, combining into a torus in the x− y plane
and then separating along the z-axis. This is suggestive of a quantum mechanical
scattering.
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CHAPTER 11

A calculation by localisation

In this chapter, I will detail the calculations that I will need to prove proposi-
tion 34. The reader may wish to read the following chapter before returning to this
one.

Magnetic monopoles in hyperbolic space are defined to be circle-invariant instan-
tons [Ati84a; Ati84b]. Instantons are equivalent to instanton bundles, holomorphic
vector bundles on the twistor space of R4, P3 satisfying some conditions [Ati79].
In the ADHM construction (See Part II of this theses for details), these instanton
bundles are constructed as the homology of a sequence of three simpler holomorphic
vector bundles on P3, called a monad [Don84a]. If the monad is circle-equivariant
then the instanton bundle will be circle-equivariant. Thus the instanton produced
will be circle-invariant and hence a hyperbolic monopole.

Over the fixed-point set of the circle action on P3, the circle action acts trivially
on the point in the base of the fibration but it induces a representation of the circle
group on the fibres of both the instanton bundle and the vector bundles of the
monad. Since this fixed-point set is the disjoint union of two-spheres P1

+ t P1
−, all

bundles on the fixed-point set split into a sum of line bundles. The condition that
the monad be circle-equivariant will be shown to be the same as the condition that
over the fixed-point set, the vector bundles of the monad decompose into a sum of
weight spaces of the induced circle-action and that the maps between them preserve
this decomposition.

The requirement that the maps of the monad preserve the weight-decomposition
of the vector bundles of the monad over the fixed-point set, reduces the ADHM
equations into the (N − 1)-interval discrete Nahm equations. A solution of the
ADHM equations over the fixed-point set determines the solution over all of the
twistor space P3.

The proof of the weight decomposition of the monad vector bundles proceeds
by computing the equivariant chern characters of monad vector bundles and of the
instanton bundle localised to the fixed-point set P1

+. The circle action that is induced
on the monad by the action on the base constrain the equivariant chern characters of
the monad enough that they can be determined by comparison with the equivariant
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chern characters of the instanton bundle. The chern characters of the instanton
bundle is determined by the charge and mass data of the hyperbolic monopole.

The upshot is, the following calculations will be carried out:

(1) The equvariant chern character of the circle-equivariant instanton bundle
is equal to the alternating sum of the equivariant chern characters of the
monad.

(2) The calculation of the equivariant chern character of the circle-invariant
instanton bundle.

(3) The calculation of the equivariant chern characters of the monad vector
bundles.

(4) A comparison of the equivariant chern characters of the circle-invariant
instanton bundle and monad vector bundles.

Calculation 4 will prove the following proposition.

Proposition 34. Let there be a C×-action on P3,

[x : y : z : w] 7→ [c−1/2x : c1/2y : c−1/2z : c1/2w].

Let E be a C×-equivariant holomorphic vector bundle on P3 corresponding to a mono-
pole with mass numbers p1, . . . , pN ∈ Z (or 1

2
+Z if N is even) ordered p1 < . . . < pN ,

and charge numbers k1, . . . , kN ∈ Z, with
∑N

i=1 pi = 0 and
∑N

i=1 ki = 0.
Then the decomposition of the monad for E,

H
AX→ K

BX→ L

restricted to P1
+, into weight p components Cp with respect to the C×-action is

H = Ck1
p1
⊕ . . .⊕ Ck1

p2−1 ⊕ Ck1+k2
p2

⊕ Ck1+k2
p2+1 ⊕ . . .⊕ C−kNpN−1,

K = Ck1+1
p1
⊕C2k1

p1+1⊕. . .⊕C2k1
p2−1⊕C2(k1+k2)+1

p2
⊕C2(k1+k2)

p2+1 ⊕. . .⊕C2(k1+...+kN−1)
pN−1 ⊕C−kN+1

pN
,

L = Ck1
p1+1 ⊕ . . .⊕ Ck1

p2
⊕ Ck1+k2

p2+1 ⊕ Ck1+k2
p2+2 ⊕ . . .⊕ C−kNpN

.

At the end of the chapter, I will also prove that a formula for the instanton
charge in terms of the mass and charge data of the hyperbolic monopole arising
from the circle-equivariant instanton bundle and the newly-computed monad weight
decomposition are in agreement.

The equivariant chern character of instanton bundles and monads

The starting point of the calculation is the following display (which can be found
in Ch.2 §3 [OSS80]) for a monad
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THE EQUIVARIANT CHERN CHARACTER OF INSTANTON BUNDLES
AND MONADS

(11.1) 0

��

0

��
0 // H // kerBX

//

��

E //

��

0

0 // H
AX // K //

BX

��

cokerAX //

��

0

L

��

L

��
0 0

where the rows and columns are all exact.
The equivariant Chern character of P1, here denoted ch, is a map KC×(P1) →

H∗C×(P1), from the equivariant K-theory to the equivariant cohomology of a space P1.
By the additivity of the Chern character, the right vertical and bottom horizontal
exact sequences of the display gives us the following

ch(coker AX) = ch(E) + ch(L)

ch(K) = ch(H) + ch(coker AX).

Putting them together yields

(11.2) ch(E) = ch(K)− ch(H)− ch(L).

The upshot is that C×-invariance is a strong enough condition that, if we know the
equivariant Chern character of a C×-invariant holomorphic bundle E associated to a
hyperbolic monopole, we can compute the equivariant Chern character of the monad
vector spaces H, K and L over P1

+ of the C×-equivariant monad which produces E,
and hence their C× weight decomposition. Concretely, this data is encoded in the
exponents of the matrix Pc and will induce a decomposition of the ADHM matrices.

Since the bundle E is trivial over P1
+, we have a representation of C× on the fibres

which allows us to compute the equivariant Chern character of E|P1
+
. Over any P1,

all holomorphic vector bundles split into line bundles by the Birkoff-Grothendieck
splitting principle [OSS80]. The strategy is to localise to P1

+, split all the relevant
bundles and compute the exponents of Pc. Since the ADHM matrices are constant,
any conditions on them over any line hold globally.
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The equivariant chern character of circle-equivariant instanton bundles

For SU(2), Atiyah showed that over P1
+, E = O(k)⊗ L−p ⊕O(−k)⊗ Lp where

Lp is the trivial line bundle with the cp representation of C× [Ati84b]. This follows
from a result of equivariant K-theory that over a fixed point set M ,

KC×(M) = K(M)⊗R(C×)

where R(C×) = Z[u] is the ring of characters of the representations of C× [Seg68;
AS68a].

Over P1
+, the C×-action on E is a representation and can be diagonalised

c 7→ λ(c) = diag
(
cp1 . . . cpN

)
,

since the irreducible algebraic representations of C× are 1-dimensional with weights
p1, . . . , pN ∈ Z and this splits E into a sum of line bundles. Since the action is
algebraic, the line bundles are algebraic or equivalently, holomorphic. By Birkhoff–
Grothendieck [OSS80], this splitting is unique up to permutation of the summand
thus for some k1, . . . , kN ∈ Z,

E|P1
+

= O(k1)⊗ Lp1 ⊕ . . .⊕O(kN−1)⊗ LpN−1 ⊕O (kN)⊗ LpN

where
∑N

i=1 pi = 0 and
∑N

i=1 ki = 0.
Using results in [Ati84b; AB84], we calculate the equivariant first Chern class

and the total Chern class of E. The equivariant first Chern class of a line bundle of
the form O(k)⊗ Lp is

ceq1 = kx+ pu

where x is the second degree generator of the usual H2(P1) and u is the second
degree generator of R(C×).

This is enough to calculate the equivariant Chern character

ch(E) = ek1x+p1u + . . .+ ekNx+pNu

and since H∗(P1) = Z[x]/ 〈x2〉, the following series expansion with respect to x is
exact

ch(E) = ep1u + . . .+ epNu

+ x (k1e
p1u + . . .+ kNe

pNu) .
(11.3)

The equivariant total Chern class of E is given by
N∏
i=1

(1 + kix+ piu) mod x2.
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The localisation formula from Atiyah and Bott (p.5-9) [AB84] tells us that the
second Chern class c2 (remember that c1(E) = 0) can be found by looking at the
coefficient of x and dividing it by u. This is the positive integer

(11.4) c2(E) = −

[
2
N−1∑
i=1

kipi +
∑

1≤i<j≤N−1

(kipj + kjpi)

]
which reduces to 2kp as expected for the SU(2) case p1 = −p which is known.

The main calculation

Since the x-terms in the Chern character of E only have terms up to ep1u and
epNu, the lowest weight of Pc and highest weight of cPc are cp1 and cpN respectively.
This is required because for the x-terms, the lowest weight term of H and the highest
weight term of L do not cancel with any other terms on the right side of (11.2) and
therefore must exactly match x-terms of ch(E).

The homomorphism Pc has the form

diag
(
cp1 . . . cp1 cp1+1 . . . cp1+1 . . . cpN−1 . . . cpN−1

)
←− χp1 −→ ←− χp1+1 −→ . . . ←− χpN−1 −→

and the pN − p1 numbers χp1 , . . . , χpN−1 are what we need to calculate.
The vector bundles H,K and L decompose as follows:

H =

pN−1⊕
i=p1

(
O(−1)⊗ Li

)⊕χi

K =

pN−1⊕
i=p1

(
Li
)⊕χi ⊕

pN−1⊕
i=p1

(
Li+1

)⊕χi ⊕ (Lp1 ⊕ . . .⊕ LpN )

L =

pN−1⊕
i=p1

(
O(1)⊗ Li+1

)⊕χi .

Note that K has been arranged into the parts on which the C×-action is via Pc, cPc
and λ respectively.

The corresponding equivariant Chern characters are:

ch(H) =

pN−1∑
i=p1

χie
−x+iu

=

pN−1∑
i=p1

χie
iu − x

(
pN−1∑
i=p1

χie
iu

)
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ch(K) =

pN−1∑
i=p1

χie
iu +

pN−1∑
i=p1

χie
(i+1)u + (ep1u + . . .+ epNu)

= χp1e
p1u +

pN−1∑
i=p1+1

(χi−1 + χi)e
iu + χpN−1

epNu + (ep1u + . . .+ epNu)

(11.5)

ch(L) =

pN−1∑
i=p1

χie
x+(i+1)u

=

pN−1∑
i=p1

χie
(i+1)u + x

(
pN−1∑
i=p1

χie
(i+1)u

)
.

We proceed by comparing coefficients of xeju in ch(E) and chK − chH − chL.
The x-terms are enough to determine the unknowns χp1 , . . . , χpN−1.

xep1u : k1 = χp1

xepNu : kN = −χpN−1

xepiu, for 1 < i ≤ N − 1 : ki = χpi − χpi−1

and all the other x-terms require that χj = χj−1 when j 6= pi for any of the 1 ≤ i ≤
N .

The interesting 1-terms (constant terms, to be clear) are the ones of the form
epiu. The rightmost terms of (11.5) supply the 1-terms of ch(E). We expected to see
this because in the monad, K carries the trivialisation/framing data of E in its last
N basis elements. The rest of the 1-terms ch(K) cancel with the 1-terms of ch(H)

and ch(L) to show that they are consistent with the constraints set by the x-terms.
In the case of SU(3), the weights run from p1 to p2 with coefficients χi = k1 and

then from p2 to −p1 − p2 with multiplicities χi = k1 + k2 . At p2, the multiplicity
jumps from χp2−1 = k1 to χp2 = k1 +k2. This is illustrated by the following diagram
(which should be viewed as an interval - the domain of an evolution equation)

�
p1 k1

p2−p1
�
p2 k1+k2

−2p2−p1
�
p3

where the quantity above the line is the number of distinct weights with correspond-
ing coefficient being the quantity under the line. The dimensions of Pc (as a square
matrix) are given by

(p2 − p1) k1 − (2p2 + p1) (k1 + k2) = −(2p1k1 + 2p2k2 + p1k2 + p2k1)
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which is exactly the formula 11.4 for the second Chern class c2(E) from the previous
subsection.

In general, we have

�
p1 k1

p2−p1
�
p2

· · · �
pN−2 k1+...+kN−2

pN−1−pN−2

�
pN−1 k1+...+kN−1

pN−pN−1

�
pN

and this gives us the dimensions of Pc

(11.6) κ =
N−1∑
i=1

[
(pi+1 − pi)

i∑
j=1

kj

]
.

In [Nor94], Norbury proved the SU(2) case of the following proposition by a
different method.

Proposition 35. Let N ∈ N≥2. Then the formulae for κ in the dimensions κ × κ
of Pc and the second Chern number κ = c2(E) compute the same quantity.

Proof. We proceed by induction. In the case of N = n, denote κ by κn and
c2(E) by χn. When N = 2, κ2 = −2kp = χ2. The N = 3 case was dealt with in the
previous page.

In the case of N = n, the expression for κ in (11.6) can be rewritten using∑n
i=1 pi = 0 to eliminate pn. The result is

κn =
n−2∑
i=1

(pi+1 − pi)
i∑

j=1

kj −

(
pn−1 +

n−1∑
i=1

pi

)
n−1∑
j=1

kj.

For the inductive step, we assume that the proposition holds for the case of
N = n − 1, that is, κn−1 = χn−1. Then if the differences κn − κn−1 and χn − χn−1

are equal, the proof is done.

κn − κn−1

=
n−2∑
i=1

(pi+1 − pi)
i∑

j=1

kj −

(
pn−1 +

n−1∑
i=1

pi

)
n−1∑
j=1

kj −
n−1∑
i=1

(pi+1 − pi)
i∑

j=1

kj

= −pn−1

n−1∑
j=1

kj −

(
n−1∑
j=1

pj

)
kn−1

= −2kn−1pn−1 − kn−1

n−2∑
j=1

pj −

(
n−2∑
j=1

kj

)
pn−1

= χn − χn−1

which is exactly the extra terms of c2(E) in (11.6) in going from N − 1 to N . �
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The generalised discrete Nahm equations

The preceding section proves that,

Proposition 36. Let there be a C×-action on P3,

[x : y : z : w] 7→ [c−1/2x : c1/2y : c−1/2z : c1/2w].

Let E be a C×-equivariant holomorphic vector bundle on P3 corresponding to a mono-
pole with mass numbers p1, . . . , pN ∈ Z (or 1

2
+Z if N is even) ordered p1 < . . . < pN ,

and charge numbers k1, . . . , kN ∈ Z, with
∑N

i=1 pi = 0 and
∑N

i=1 ki = 0.
Then the decomposition of the monad for E,

H
AX→ K

BX→ L

restricted to P1
+, into weight p components Cp with respect to the C×-action is

H = Ck1
p1
⊕ . . .⊕ Ck1

p2−1 ⊕ Ck1+k2
p2

⊕ Ck1+k2
p2+1 ⊕ . . .⊕ C−kNpN−1,

K = Ck1+1
p1
⊕C2k1

p1+1⊕. . .⊕C2k1
p2−1⊕C2(k1+k2)+1

p2
⊕C2(k1+k2)

p2+1 ⊕. . .⊕C2(k1+...+kN−1)
pN−1 ⊕C−kN+1

pN
,

L = Ck1
p1+1 ⊕ . . .⊕ Ck1

p2
⊕ Ck1+k2

p2+1 ⊕ Ck1+k2
p2+2 ⊕ . . .⊕ C−kNpN

.

Note that anti-self-dual instantons have negative instanton charge −κ so κ > 0

which constrains the allowed mass and charge numbers of a hyperbolic monopole.
The Proposition 30 implies that the ADHM data (α1, α2, a, b) for a magnetic

monopole commutes with the C×-action. By Schur’s Lemma, the monad maps only
between components of the same weight. Now I will describe the form of the ADHM
data (α1, α2, a, b) which preserve the above weight decomposition.

I remind the reader that when linear transformations V → W are represented
as matrices and when they preserve some decompositions V =

⊕
Vi, W =

⊕
Wj of

V,W , the matrix is equivalent to a matrix with zeros everywhere except for block
matrices. These block matrices are the linear transformations between components
Vi and Wj. In this case, the components are labelled by weights of the C×-action.
I have found it convenient to label the block matrices with subscripts denoting the
weight i of the weight spaces Ci between which they map.

The matrix α1 is a sparse matrix with square blocks
{
βi+1/2

}
, p1 ≤ i ≤ pN − 1

running down the diagonal of the indicated size. The matrix dimensions increase
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Ck1
−3

Ck1
−2

Ck1+k2
−1

Ck1+k2
0

Ck1+k2
1

Ck1+k2
2

Ck1
−3 Ck1+k2

3 Ck1
−2

Ck1
−2 Ck1

−2 Ck1
−1

Ck1+k2
−1 Ck1

−1 Ck1+k2
0

Ck1+k2
0 Ck1+k2

0 Ck1+k2
1

Ck1+k2
1 Ck1+k2

1 Ck1+k2
2

Ck1+k2
2 Ck1+k2

2 Ck1+k2
3

Ck1+k2
3 Ck1+k2

3 Ck1+k2
4

Ck1+k2
4

C−3

C−1

C4

α 1

a
−

3

a
−

1

α2

α
2

b −
1

α1

b4

Figure 3. The weight decomposition of the monad of an SU(3) hy-
perbolic monopole with p1 = −3 and p2 = −1 (hence κ = 7k1 + 5k2).

from (k1 + . . .+ kj−1)× (k1 + . . .+ kj−1) to (k1 + . . .+ kj)× (k1 + . . .+ kj) at each
i = pj, 2 ≤ j ≤ N − 1. Notice the cheeky 1

2
in the subscript. This is because each

βi+ 1
2
block does double duty as maps Ck

i → Ck
i and as Ck

i+1 → Ck
i+1.

The sparse matrix α2 has (square except at transitions) blocks {γi}, p1 +1 ≤ i ≤
pN−1 along the super-diagonal. At i = pj, 2 ≤ j ≤ N−1 , the diagonal block of zeros
increases in dimensions from (k1 + . . .+ kj−1)×(k1 + . . .+ kj−1) to (k1 + . . .+ kj)×
(k1 + . . .+ kj). The matrix γpj sitting in the transition is a rectangular matrix of
dimensions (k1 + . . .+ kj−1) × (k1 + . . .+ kj). The next matrix γpj+1 returns to
being a square block, now of dimensions (k1 + . . .+ kj)× (k1 + . . .+ kj).

The N × κ matrix a is divided by Pc into columns labelled by weight space.
The non-zero entries are row vectors {a1, . . . , aN−1} in the columns with weight pi,
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βp1+ 1
2

βp1+ 3
2

. . .

βpi− 1
2

βpi+ 1
2

βpi+ 3
2

. . .

βpN− 3
2

βpN− 1
2

α1 =

k1

k1

k1 + . . .+ ki−1

k1 + . . .+ ki

k1 + . . .+ ki

−kN

−kN

0k1

0k1
. . .

0

0
k1+...+ki

0
k1+...+ki

. . .

α2 =

0−kN

0−kN

γp1+1

. . .

γpi−1

γpi

γpi+1

γpi+2

. . .

γpN

k1

k1 + . . .+ ki−1

k1 + . . .+ ki

k1 + . . .+ ki

−kN

−kN

1 ≤ i ≤ N − 1 and i-th rows of length k1 + . . . + ki. The last weight space of the
domain of a correponding to the last −kN columns has weight pN − 1.
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a =

. . .

. . .

ap1
ap2

api

apN−1

0pN

k1 k1 + k2 k1 + . . .+ ki −kN

b =

. . .

. . .

0k1

bp2

bpi

bpN−1

bpN

k1

k1 + . . .+ ki−1

k1 + . . .+ kN−2

−kN

The κ×N matrix b is divided into rows labelled by weight space. The non-zero
entries are column vectors {b2, . . . , bN} in the rows with weight pi, 2 ≤ i ≤ N − 1

and pN , and i-th columns of length k1 + . . .+ ki−1. Note that the first weight space
of the image of b corresponding to the first k1 rows has weight p1 + 1.

The complex equation (6.2) is now a series of equations in terms of the blocks{
βi+1/2

}
p1≤i≤pN−1

and {γj}p1+1≤j≤pN−1,

(12.1)

βi+ 1
2
γi+1 − γi+1βi+ 3

2
+ bi+1ai+1 = 0 for i+ 1 = pj, 2 ≤ j ≤ N − 1

βi+ 1
2
γi+1 − γi+1βi+ 3

2
= 0 otherwise

which we call the complex discrete Nahm equations.
The real ADHM equation becomes the real discrete Nahm equations
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(12.2)
[
βi+ 1

2
, β∗

i+ 1
2

]
+ γi+1γ

∗
i+1 − γ∗i γi − a∗i ai = 0 when i = pj, 1 ≤ j ≤ N − 1[

βi+ 1
2
, β∗

i+ 1
2

]
+ γi+1γ

∗
i+1 − γ∗i γi + bi+1b

∗
i+1 = 0 when i+ 1 = pj, 2 ≤ j ≤ N[

βi+ 1
2
, β∗

i+ 1
2

]
+ γi+1γ

∗
i+1 − γ∗i γi = 0 otherwise

where γp1 = 0 = γpN so the first real equation is[
βp1+ 1

2
, β∗

p1+ 1
2

]
+ γp1+1γ

∗
p1+1 − a∗p1ap1 = 0

and the last one is[
βpN− 1

2
, β∗

pN− 1
2

]
+ bpN+ 1

2
b∗
pN+ 1

2
− γ∗pN−1γpN−1 = 0.

Definition 37. Let N be a natural number. Let p1, . . . , pN ∈ Z be distinct and
satisfy

∑N
i=1 pi = 0. Let k1, . . . , kN ∈ Z satisfy

∑N
i=1 ki = 0. A solution of the

(N − 1)-interval discrete Nahm equations of type (p1, . . . , pN−1; k1, . . . , kN−1) is an
equivalence class of

(1) matrices (
{βj+ 1

2
}, {γj}, {api}, {bpi}

)
labeled by integral points on an interval j ∈ [p1, pN ] ∩ Z as shown

p1 p1+1 p1+2 p2−1 p2 p2+1 pN−1 pN

a β γ β γ γ β b, γ, a β γ γ β b

with dimensions (k1 + . . .+ ki)× (k1 + . . .+ ki) at half integer points on
an interval (pi, pi+1) and at a boundary point pi between intervals, the
matrices api , γpi and bpi have dimensions 1× (k1 + . . .+ ki),
(k1 + . . .+ ki−1)× (k1 + . . .+ ki) and (k1 + . . .+ ki−1)× 1 respectively;

(2) satisfying the (N − 1)-interval discrete Nahm equations; and
(3) with the equivalence relations (gauge transformations)

βj+ 1
2
∼ gj+ 1

2
βj+ 1

2
g−1
j+ 1

2

γj ∼ gj− 1
2
γjgj+ 1

2

api ∼ λpiapig
−1
pi+

1
2

bpi ∼ gpi− 1
2
bpiλ

−1
pi

where gj ∈ U(k1 + . . .+ ki) when j ∈ (pi, pi+1) ∩ Z.

Thus we have proven our main theorem:
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Theorem 38 (MAIN THEOREM). Let N be a natural number. Let p1, . . . , pN ∈ Z

be distinct with
∑N

i=1 pi = 0 . Let k1, . . . , kN ∈ Z with
∑N

i=1 ki = 0. There is an
equivalence between

(1) framed SU(N) monopoles (A, φ) on hyperbolic space H3 of mass (p1, . . . , pN)

and charge (k1, . . . , kN) (up to gauge equivalence), and
(2) solutions of the (N−1)-interval discrete Nahm equations of type (p1, . . . , pN ;

k1, . . . , kN).
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CHAPTER 13

The rational map and boundary values revisited

In this chapter, I will discuss two fruits of the labour of generalising the discrete
Nahm equations from SU(2) to SU(N). First, an explicit expression for the ratio-
nal map in terms of a solution of the discrete Nahm equations will be produced.
Motivation for having such an explicit expression is the work of Braverman et al.
[BDF16] who place a representation-theoretic coordinate system on the moduli space
of rational maps (there, they are called Zastava - Croatian for flag). It would be
interesting to study the coordinate system induced on the solutions of the discrete
Nahm equations by the coordinate system on the moduli space of rational maps.

The rational map

Atiyah [Ati84a] showed (where Atiyah′s ki is k1 + . . .+ ki in this work) that:

Theorem 39 (Atiyah). For a compact classical group G, the moduli space of
circle-invariant instantons or equivalently, hyperbolic monopoles of mass (p1, . . . , pN)

with the pi ∈ Z distinct and charge k = (k1, . . . , kN) is naturally isomorphic to the
space of degree k based rational maps

f : P1 → G/T

where T is a maximal torus.

(Atiyah proved a more general theorem for any homomorphism α : S1 → G

and based holomorphic maps f : P1 → G/G(α). For a monopole with maximal
symmetry breaking, α is integral and generic so G(α) is a maximal torus.)

When G = SU(N), G/T = Flfull(N) =
{

0 ⊂ C ⊂ C2 ⊂ . . . ⊂ CN
}
, the manifold

of full flags in N -dimensional space. For magnetic monopoles, we have the following
corollary.

Corollary 40. There is an isomorphism between the moduli space of framed SU(N)

magnetic monopoles on H3 and the moduli of degree (k1, k1 +k2, . . . , k1 + . . .+kN−1)

rational maps such that f(∞) = 0,

f : P1 → Flfull(N).
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CHAPTER 13. THE RATIONAL MAP AND BOUNDARY VALUES
REVISITED

Along the lines of Braam and Austin [BA90], I will derive an explicit formula for
the rational map of a hyperbolic monopole in terms of its discrete Nahm boundary
data. To do this, restrict the bundle to the projective plane P2 = {[x : y : z : 0] ∈
P3}. Over this P2, the solutions of the discrete Nahm equations have a GL(k,C)

freedom. We first require two lemmas of Braam and Austin whose conditions are
satisfied in our case.

Lemma 41 (Braam–Austin 4.2 [BA90]). If ({γi}, {βi}, {apj}, {bpj+1
}) lies in a stable

orbit then the γi are all injective.

By the injectivity of the γi and using the GL(k,C) action,

gi− 1
2
γig
−1
i+ 1

2

= I

we set each γi, except when i = pj, to the identity matrix. Let square brackets in
the subscript indicate that this is the matrix after the GL(k,C) action has been
applied. Then in each interval pi ≤ j < pi + 1, the β[j] are all equal to a constant
matrix β[pi].

Lemma 42 (Braam–Austin 4.3 [BA90]). The data ({β[pi]}, {γ[pi]}, {a[pi]}, {b[pi+1]})
defines a monad satisfying the ADHM equations if and only if {βl[pi]a[pi]} for l =

0, . . . , k1 + . . .+ ki span Ck1+...+ki.

The procedure is as follows. Choose a “horosphere line” P1
h in P2 with coordinates

say x 7→ [x : h : −1]. The trivialisation of E over P1
∞ is also a trivialisation of the

monad in the sense that in the vector space K of the monad, over P1
∞, (0,0, r) ∈ K,

r ∈ CN are representatives of the global sections of E|P1
∞ . Extended to P1

h, this
trivialisation (written as cosets) is − (h− α2)−1 b

0κ×N

IN

 r +

 (h− α2)−1 (x− α1)

Iκ

0N×κ

Y ∈ K
where Y ∈ Cκ. Note that the second term is the image of A.

Consider the splitting of E over P1
+,

E = O(k1)⊗ Lp1 ⊕ . . .⊕O(kr)⊗ Lpr ⊕ . . .⊕O (kN)⊗ LpN .

Atiyah showed that in the SU(2) case, the last factor extends by flowing along the
C×-action to a sub-line-bundle over P3−P1

−. The sum of the last two factors extends
to a sub-plane-bundle and the sum of the last three extends to a rank 3 sub-bundle
of E, etc.

Remember I denote the intersection of P2 = {w = 0} and P1
− by X−.
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Lemma 43. On P2−{P1
+∩X−}, there exists unique holomorphic sub-bundles L+

1 ⊂
L+

2 ⊂ . . . ⊂ L+
N−1 of E which are preserved by the C×-action, and each L+

i extended
to P1

+ coincides with the last i factors.

Proof. The bundle E restricted to a C×-orbit has the following C×-action:

c · (z;u1, . . . , uN) = (cz; cp1u1, . . . , c
pNuN) .

Near P1
+, the global holomorphic sections of the form (0, 0, . . . , 0, uN(z)) are pre-

served by the C×-action since multiplication by c ∈ C× cannot change zero into a
non-zero number. Since the space of such sections is one dimensional, they give us
a sub-line bundle L+

1 of E. The sections have weight pN and so must coincide with
the last factor in the splitting of E over P1

+ in the limit c→ 0.
Similarly for 1 < i < N , the global holomorphic sections

(0, . . . , 0, ui(z), ui+1(z), . . . , uN(z)),

are preserved by the C×-action and have weights (pi, . . . , pN). The set of them is
(N − i+ 1)-dimensional so they define a rank (N − i+ 1) sub-bundle L+

N−i+1 of E.
By induction, a section of the form (0, . . . , 0, ui(z), . . . , uN(z)) is also a section of

the sub-bundle given by sections of the form (0, . . . , ui−1(z), . . . , uN(z)) so L+
N−i+1 ⊂

L+
N−i and thus the sub-bundles are a chain ordered by subset.
These are the only sections preserved by the C×-action which extend to P1

+ since
the C×-action is transitive on the non-zero entries of sections. Hence the holomorphic
sub-bundles L+

1 ⊂ . . . ⊂ L+
N−1 preserved by the C×-action thus defined are unique.

From the discussion on the previous page, the trivialisation of E on the line P1
∞

extends to a trivialisation on a neighbourhood of P1
∞. The line bundles L+

i can be
seen in the explicit expression to extend to the whole P2 − {P1

+ ∩X−}. �

The rational map f is defined by sending each point x of P1
+ to the fibre of

the restriction of L+
1 ⊂ . . . ⊂ L+

N−1 ⊂ E to the orbit of C× whose limit is x. The
chain of sub-bundles over the C×-orbit is trivialised by taking the intersection of the
C×-orbit with the chosen horosphere line P1

h as the unit point and then the rest of
the isomorphism is constructed by flowing along the C×-orbit using the C×-action.
Canonically, (

L+
1 , . . . , L

+
N−1

)
|C× ∼= (C1, . . . ,CN−1)× C×

so that f(z) is an element of the manifold of full flags Flfull(N).
Since E has a canonical trivialisation over P1

h, we can find equations for the
rational map. On the level of the monad, the rank i sub-bundle is produced exactly
when the p1, . . . , pN−i weight spaces are in the kernel of AX . This happens when
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the expression for each pi weight space in the monad trivialisation is equal to the
negative of some element of the image of AX .

Using Lemma 41 to linearly transform {γ[j]}j 6=pi into identity matrices, we can
invert (h−α2). Writing r = (r1, . . . , rN), we define the algebraic equations of a flag
of subspaces by recursion. The condition that the p1 weight space be in the kernel
of AX is equivalent to solving the equations

(−h)pN−1−pN b[pN ]rN + (x− β[pN−1+ 1
2

])wpN−1
= 0

rN−1 + a[pN−1]wpN−1
= 0.

Solving for rN−1 in terms of rN , this is

rN−1 = (−h)pN−1−pNa[pN−1]

(
x− β[pN−1]

)−1
b[pN ]rN

which defines a line in a plane for any x ∈ P1.
Proceeding in the same way for the other weight spaces, we have:

Proposition 44. Let ({γi}, {βi}, {apj}, {bpj+1
}) be a solution of the (N−1)-interval

discrete Nahm equations of type (p1, . . . , pN−1; k1, . . . , kN−1). Then the solution can
be put into the form ({β[pi]}, {γ[pi]}, {a[pi]}, {b[pi+1]}) and the rational map,

f : P1 → Flfull(N)

x 7→ (V1, . . . , VN−1), dim Vi = i,

into the manifold of full flags in CN can be written as the maps
(r1(x), . . . , rN−1(x)),

rN−1(x) = (−h)pN−1−pNa[pN−1]

(
x− β[pN−1]

)−1
b[pN ]rN(x)

...

rj(x) =
N∑

i=j+1

(−h)pj−pia[pj ]

(
x− β[pj ]

)−1
b
k1+...+kj
[pi]

ri(x)

...

r1(x) =
N∑
i=2

(−h)p1−pia[p1]

(
x− β[p1]

)−1
bk1[pi]

ri(x)

where for each x ∈ P1, rN−1(x) specifies an (N − 1)-dimensional linear subspace in
CN and each successive ri(x) specifies an i-dimensional linear subspace inside the
(i+ 1)-dimensional linear subspace specified by ri+1(x). The superscript k1 + . . .+kj

indicates that only the first k1 + . . .+ kj entries of the vector are involved.
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Note that when N = 2, the equation of the rational map is of the form

r(x) =
r2(x)

r1(x)
= (−h)2pv(x− β)−1vt

which is the rational map found by Atiyah for SU(2) hyperbolic monopoles [Ati84a;
Ati84b].

The Boundary Value of a Monopole

On the conformal sphere at infinity, S2
∞, the holomorphic vector bundle E splits

into holomorphic line bundles O(k1)⊕. . .⊕O(kN) and the gauge field A restricted to
S2
∞, induces a a U(1) connection Ai on each factorO(ki). We define the (N−1)-tuple

(A1, . . . , AN−1) to be the boundary value or connections at infinity.
We shall prove the following generalisation of Braam–Austin’s theorem [BA90]

regarding the boundary values of SU(2) hyperbolic monopoles.

Theorem 45. Let (A,Φ) be a framed SU(2) hyperbolic monopole. Then

(1) the (N−1) tuple of U(1) connections (A1, . . . , AN−1) on S2
∞ determines the

connection A (up to gauge transformations);
(2) there exists for i = 1, . . . , N − 1, holomorphic maps

Fi : P1 → Fl(k1 + . . .+ ki, k1 + . . .+ ki + 1, 2k1 + . . .+ 2ki−1 + ki + 1)

into the manifold of two term partial flags for which each Ai is the pullback
of the unitary invariant connection on the “hyperplane bundle” O(1,−1) of
the i-th flag manifold; and

(3) the map A 7→ (A1, . . . , AN−1) is an immersion of the moduli space of SU(N)

framed hyperbolic monopoles in the space of (N − 1) tuples of U(1) connec-
tions on S2.

Proof. From Proposition 34, we have a decomposition of the monad H →
K → L restricted to P1

+ (which by abuse of notation, I conflate with S2
∞ since any

connections on P1
+ descend to connections on S2

∞ along the twistor transform) into
weight spaces. By considering the maps Ax and Bx restricted to a weight subspace,
we get what is called a small monad. By dimensional considerations, the cohomology
of a generic small monad (pi < j < pi+1)

Ck1+...+ki
j

γj
// Ck1+...+ki−1

j

Ck1+...+ki
j γj

//

β
j+1

2
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Ck1+...+ki−1

j

β
j− 1

2

88
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is trivial except for the weight spaces p1, . . . , pN which take the form

Ck1+...+ki
pi

γpi

&&

Ck1+...+ki
pi

β
pi+

1
2

88

γpi //

api
&&

Ck1+...+ki−1
pi

β
pi−

1
2 // Ck1+...+ki−1

pi

Cpi

bpi

88

The cohomology of these small monads are holomorphic line bundles defined
fibre-wise

Lpi(x) = ker(C2k1+...+2ki−1+ki+1 → Ck1+...+ki−1)/Ax(C
k1+...+ki)

which are exactly the line bundles in the splitting of E .
Furthermore, there is a natural interpretation of the maps Ax and Bx, restricted

to each weight space of weight pi as a pair of maps,

Bt
x : Ck1+...+ki−1 → C2k1+...+2ki−1+ki+1

Ax : Ck1+...+ki → Bt
x(C

k1+...+ki−1)⊥ ∼= Ck1+...+ki+1 ⊂ C2k1+...+2ki−1+ki+1

defining a map Fi = (Ax(Hpi), B
t
x(Lpi)

⊥) into the two term partial flag manifold
Fl(k1 + . . .+ki, k1 + . . .+ki+1, 2k1 + . . .+2ki−1 +ki+1). Then each line bundle Lpi
and its U(1) connection is the pullback of the invariant line bundle and (limiting)
connection over the two term partial flag manifold. This proves (2) of the theorem.

The map Fi thus defined is an embedding of P1 into the partial flag manifold,
for the ADHM equations guarantee that the monad is non-degenerate [Cal53], and
so im Fi has no self-intersections and its derivative is non-zero. Compose Fi with
the Plücker embedding and then the Segre embedding to get

F P
i : P1 ↪→ Pk(i)

where

k(i) =

(
2k1+...+2ki−1+ki+1

k1+...+ki

)(
2k1+...+2ki−1+ki+1

k1+...+ki+1

)
− 1.

The pullback of the U(k(i) + 1) invariant connection Ai by the embedding F P
i

induces a Kähler form FAi
(the curvature form of Ai) on P1. The work of Calabi
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[Cal53] tells us that any such embedding F P
i is locally rigid, that is, the embedding

is determined by the Kähler form up to the isometry group of the target space.
Hence the boundary values (A1, . . . , AN−1) descend by the twistor transform to

U(1) connections on S2 and determine the small monad for the weight spaces corre-
sponding to the weights p1,. . . ,pN−1. These small monads provide boundary values
for the (N − 1)-interval discrete Nahm equations and their propagation uniquely
specifies a complete solution up to gauge transformations. Thus the boundary val-
ues on S2

∞ or equivalently P1
+ uniquely determine the monopole.

On the moduli space of SU(N) framed hyperbolic monopoles, the boundary
values (A1, . . . , AN−1) are local coordinates. Thus A 7→ (A1, . . . , AN−1) is a local
immersion of the moduli of monopoles into the moduli of (N − 1)-tuples of U(1)

connections on S2. �
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CHAPTER 14

Spectral curves

This chapter deals with the analysis of the spectral curve of an SU(N) hyperbolic
monopole in relation to the discrete Nahm equations. Notably, the discrete Nahm
equations provide an explicit expression for the equation for the spectral curve. The
spectral curve condition was suggested to me by Michael Murray who first wrote it
down for the SU(2) case many years back. Paul Norbury′s thesis and calculations
of the C×-action on lines were instrumental in the analysis of this chapter.

The spectral curve for an SU(2) hyperbolic monopole was previously defined by
Atiyah [Ati84b]. For the higher rank case, Murray–Singer studied the spectral curve
for hyperbolic monopoles defined with different boundary conditions to the ones
used in this thesis [MS96]. To be precise, it would do well to have here a definition
of spectral curves for SU(N) hyperbolic monopoles of integral mass, defined as circle-
invariant instantons. The following definition is analogous to the definition used by
Atiyah and is in my opinion conceptually clearer than the more analytic definition
used in Murray–Singer.

Remember that the mini-twistor space Q parametrising oriented geodesics of H3

is isomorphic to P1 × P1 with the antidiagonal

∆̄ = {(ζ̂ , ζ) ∈ P1 × P1}

removed. Given an oriented geodesic in H3 with limits on the sphere at infinity
represented in P3 by ζ, η ∈ P1 respectively, the corresponding point in Q is (ζ̂ , η)

where ζ̂ is −1/ζ̄.

Definition 46. Define projection maps π± : P3 − P1
∓ → P1

±. Let E → P3 be
the holomorphic vector bundle of a framed SU(N) hyperbolic monopole with mass
p1 < . . . < pN and charge k1, . . . , kN . Define sub-bundles E±i of E by

E+
i = π∗+

(
N⊕

j=N−i+1

O(kj)⊗ Lpj

)
and E−i = π∗−

(
i⊕

j=1

O(kj)⊗ Lpj

)
.

The spectral curve of the hyperbolic monopole is the curve in Q defined by

S =
{
γ ∈ Q | codimE(E+

i |γ× ⊕ E−N−i|γ×) ≥ 1, for some i ∈ 1, . . . , N − 1
}
.
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The codimension 1 condition for each value of i defines a component Si of the
spectral curve.

I will take the liberty of referring to the closure of a C×-orbit in P3 as an equi-
variant line. Every equivariant line intersects the fixed point sets P1

± in two points,
p and q so that we can write P1

pq for an equivariant line. If an equivariant line P1
pq

corresponds to a point in the spectral curve then we call it a spectral line. The
spectral curve parametrises the spectral lines.

Remember that the holomorphic bundle E is the cohomology of a monad (Chap-
ter 6)

H
AX→ K

BX→ L.

The condition for an equivariant line P1
pq to be a spectral line is

detBq̂Ap = 0.

A way to make sense of this is to define a bilinear form < >: P1 × P1 → C by
< p, q >= detBq̂Ap. This bilinear form invokes the ideas in Norbury′s boundary
algebras work [Nor04] as well as the work of Murray–Norbury–Singer [MNS03]. The
spectral curve could have been defined by the vanishing of this bilinear form. We
will come back to this bilinear form at the end of the chapter.

One additional point is the existence of a holomorphic line bundle Li → Si on
the (components of the) spectral curve for SU(2) hyperbolic monopoles [MS00]. The
map B ◦A : H ⊗Q→ L is itself a monad whose cohomology (or kernel in this case)
defines a holomorphic line bundle over the spectral lines. I conjecture that this
holomorphic line bundle will push down along P3 → Q to a holomorphic line bundle
on the spectral curve S ⊂ Q analogous to the one described by Murray–Singer.
The benefit of this approach is that it ties the codimension 1 condition in with the
existence of the line bundle geometrically and naturally.

Before I prove that the above condition is the equation of the spectral curve, let
me show you the explicit form of the spectral curve equation in terms of discrete
Nahm data {βj, γj, api , bpi} implied by this condition.

Points p, q̂ on the fixed point sets P1
± can be represented in P3 by [1 : 0 : ζ : 0]

and [0 : λ : 0 : η] respectively for ζ, λ, η ∈ C. The component spectral curve Si is
given by the formula, where pi < j < pi+1,

det((λ+ ηβ∗
j+ 1

2
)(1 + ζβj+ 1

2
) + ηζγ∗j γj) = 0.
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What happens at the points p1, . . . , pN? Let us look at the illustrative example
of SU(3) for Nahm data with p1, p2, p3 and k1, k2, k3. The monad maps are

Ap =

 1 + ζα1

ζα2

ζa

 , Bq̂ =
[
−λ− ηα∗1 −ηα∗2 −ηa∗

]
,

where

α1 =



βp1+ 1
2

βp1+ 3
2

. . .
βpN− 3

2

βpN− 1
2


,

α2 =



0k1 γp1+1

. . . . . .
0k1 γp2

0k1+k2
. . .
. . . γpN−1

0k1+k2


,

a =

 ap1
ap2

0 0 0 0 0

 ,

b =


0

0

bp1
0

0 bp2

 .
Now we compute detBq̂Ap and find that the determinant reduces to a product

of the determinants of the independent non-zero blocks on the diagonal of the κ×κ
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matrix Bq̂Ap. The equivariant line P1
pq is spectral line if one of the following is true:

det((λ+ ηβ∗
p1+ 1

2

)(1 + ζβp1+ 1
2
) + ηζa∗p1ap1) = 0 ←

det((λ+ ηβ∗
p1+ 3

2

)(1 + ζβp1+ 3
2
) + ηζγ∗p1+1γp1+1) = 0

det((λ+ ηβ∗
p1+ 5

2

)(1 + ζβp1+ 5
2
) + ηζγ∗p1+2γp1+2) = 0

...
det((λ+ ηβ∗

p2− 1
2

)(1 + ηβp2−12) + ηζγ∗p2−1γp2−1) = 0

det((λ+ ηβ∗
p2+ 1

2

)(1 + ηβp2+12) + ηζ(γ∗p2γp2 + a∗p2ap2) = 0 ←
det((λ+ ηβ∗

p2+ 3
2

)(1 + ηβp2+32) + ηζγ∗p2+1γp2+1) = 0
...

det((λ+ ηβ∗
p3− 1

2

)(1 + ηβp3−12) + ηζγ∗p3−1γp3−1) = 0.

Notice the Nahm equation boundary cases as indicated by arrows. Notice also that
the b matrices play no role.

Reversing the orientation of the geodesics gives us the backward equations of the
form

det((1 + ζβj+ 1
2
)(λ+ ηβ∗

j+ 1
2
) + ζηγjγ

∗
j ) = 0

which involve only the b matrices and not the a matrices. For the reality condition
to be satisfied, every forward equation must be equivalent to a backward equation.

From Ward’s formalism [War99], the “discrete Lax pair” for the discrete Nahm
equations are

W+ = γ∗ + ηβ + ζ−1η

and
W− = −η2γ + ηβ∗ + 1.

Together,
[W+,W−] = η2([γ, γ∗] + [β, β∗]) + η([γ∗, β∗] + η3([γ, β])

which is recognised as the discrete Nahm equations.
Now I will bring rigour to the discussion.

Lemma 47. Let there be a C×-action on P1 with fixed points P+, P−. Let O(p)→ P1

be a holomorphic line bundle with a lifting of the C×-action. Then the weights
p+, p− of the fibres of O(p) as an equivariant bundle, over P+, P− respectively as
C×-representations satisfy p+ − p− = p.

Proof. Let {U+, U−} be charts covering P1. In the local coordinate (z, v) of E
over U+, the C×-action is

(z, v) 7→ (cz, cp+v).
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In the U− chart, the point (z, v) is (z, v′) = (z, z−pv). Then by compatibility of the
action and the transition function, the C×-action on E over U− must be

(z, v) 7→ (cz, cp+v) ' (cz, cp+(cz)−pv) = (cz, cp+−p(z−pv)) = (cz, cp−v′).

Thus the representation of C× over P− must satisfy p+ − p− = p. �

Proposition 48. Let l = P1
P+,P−

be an equivariant line. l is a spectral line if and
only if there exists an equivariant line subbundle of E|l isomorphic to O(p1 − p2)

where p1, p2 are mass numbers of the hyperbolic monopole.

Proof. Let F be a rank N−1 equivariant sub-bundle of the rank N equivariant
holomorphic vector bundle E → P1, defined by the union of E+

i and E−N−i for some
1 ≤ i ≤ N . The quotient bundle E/F is an equivariant holomorphic line bundle L
over P1. Thus L is O(p) for some p ∈ Z. Let p± be the weights of C× of (E/F )|P±
at P± respectively. By Lemma 47, p = p+ − p−. �

Proposition 49 (Norbury, [Nor94] p.54). If BqAp : Cκ → Cκ is invertible then E|pq
is trivial.

A jumping line is a line P1 for which E is non-trivial. The proposition then says
that when P1

pq is a jumping line for E, detBq̂Ap = 0. Conversely,

Proposition 50. dim kerBqAp = n if and only if for some partition n1, . . . , nk

of n by non-negative integers, and N − k negative integers nk+1, . . . , nN such that∑N
i=1 ni = 0,

E|pq ' O(n1)⊕ . . .⊕O(nN).

Proof. The line bundle O(m) of P1 contributes m+ 1 global holomorphic sec-
tions for m ≥ 0 and none for negative m. The bundle

∑N
i=1O(ni) as in the proposi-

tion has n+ k global holomorphic sections. Furthermore,
∑N

i=1O(ni) tensored with
O(−1) has n holomorphic global sections. Since all holomorphic vector bundles over
P1 split into a sum of O(m) line bundles, a holomorphic vector bundle over P1 with
n global holomorphic sections vanishing at a divisor p is of the form

∑N
i=1O(ni) for

some positive k.
It remains to show that when dim kerBqAp = n, the holomorphic vector bundle

E|P1 has n global holomorphic sections which vanish at p. The rest of the proof
follows the proof of Proposition 7 in the Norbury thesis [Nor94] p.55 and requires
the lemma that is to follow. �

Lemma 51 (Norbury [Nor94] p.55). A global holomorphic section of E|pq is given
by v ∈ K independent of the coordinate z ∈ pq.
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The holomorphic vector bundle E of the instanton trivial on a line will be gener-
ically trivial when restricted to lines P1 in P3.

Proposition 52. The spectral lines of the hyperbolic monopole are exactly the equi-
variant lines of the bundle E → P3 which are jumping lines.

Proof. Consider, without loss of generality, a spectral line where E+
i ⊂ E−N−i.

Over P1
+, the C×-action has at most weight pi on E+

i . Likewise, over P1
−, the C×-

action has at least weight pi+1 on E−i . The definition of a spectral line implies that
E+
i and E−N−i intersect in a subspace of at least dimension 1 over C×. Since E+

i

and E−N−i are both holomorphic vector bundles, when they intersect over a whole
C×, their intersection is a holomorphic line sub-bundle of E. Furthermore, when
restricted to P±, this line bundle has weights p+ ≤ pi and p− ≥ pi+1 respectively.
By Lemma 47, this line bundle is O(p+ − p−).

Suppose that an equivariant line l is a jumping line. Then there exists at least
one O(p) with p 6= 0 in its unique decomposition into holomorphic line bundles.
Since at the endpoints, P±, the holomorphic vector bundle E is a representation of
C×, the line bundle must coincide with weight spaces there. Therefore, p = p+− p−
and l is a spectral line.

Conversely, suppose that an equivariant line l is not a jumping line. That is, E|l
is a trivial equivariant vector bundle over l. Then E is determined by the fibre over
a single point and has no non-trivial holomorphic line sub-bundles. Therefore, l is
not a spectral line for E.

�

It follows that:

Theorem 53. The spectral curve S is the variety of points (p, q) ∈ Q satisfying
detBq̂Ap = 0.

I end the chapter with two conjectures.

Conjecture 54. The bilinear form < p, q >= detBq̂Ap coincides with the two point
function of Norbury [Nor04].

Conjecture 55. Let Φ be the polynomial equation defining the spectral curve S.
Then the irreducible factors of Φ restricted to the anti-diagonal ∆̄ are Hermitian
metrics whose associated 1-forms are the boundary U(1) fields which together deter-
mine the monopole.
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CHAPTER 15

The classical Lie groups

In this thesis, hyperbolic monopoles were mostly treated for SU(N). However,
any classical group G can play the role of SU(N). In this chapter, I will describe
the procedure for finding solutions of the discrete Nahm equations for the groups
G = Sp(N), SO(N) as an invariant subset of the solutions of the SO(N) (N − 1)-
interval discrete Nahm equations. I will then write down the resulting conditions. I
attempted to investigate the case of G2 for which Shnir and Zhilin recently produced
an example in the euclidean setting [SZ15], but I am not confident of my ansatz so
I have not included it here.

As far as I can find, Corrigan-Goddard [CG84] and Nekrasov-Shadchin [NS04]
treat ADHM for the classical groups via a the concept of “reciprocity” where to
produce an instanton for a group G, a hyper-Kähler quotient of the ADHM data by a
“reciprocal" group is taken. It is unclear to me what reciprocity means geometrically.

A more geometric take, in terms of monads, is suggested by both Atiyah [Ati79]
and Donaldson [Don84a] but neither treat it explicitly.

I will use the latter approach and use the more explicit former papers as a guide
for the correctness of the process. The original method cannot be applied verbatim
in the S1-equivariant setting. Instead, a modification needs to be done to preserve
the S1-equivariance.

Returning to the monad 8.1, with H,K,L vector spaces and O(k) the k-th tensor
product of the Hopf or hyperplane bundle over P3,

H ⊗O(−1)
AX→ K ⊗O BX→ L⊗O(1),

the main idea is to equip the vector bundles with the appropriate bilinear or sesquilin-
ear forms and then insist that the monad maps A,B respect the form.

A non-degenerate bilinear form on a vector space V

V × V → F

over the field F is equivalent to an F-linear isomorphism

V → V ∗.
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Hence, this is equivalent to requiring that the monad maps A,B be invariant under
the linear maps defined by the chosen forms on the monad vector bundles.

The point is which forms to put on which vector bundles for which G. Atiyah
[Ati79] discusses this for the symplectic ADHM construction but we are starting
with a unitary ADHM. Nekrasov-Shadchin [NS04] start with the unitary ADHM of
Donaldson as well so their prescription is the correct one to use.

Note that the solutions of the discrete Nahm equations for SO(N) are a subset
of the solutions of the SU(N) discrete Nahm equations with the condition that κ be
even. Sp(N) is produced from SU(2N) but with no additional condition on κ. The
former "folds" the κ and the latter "folds" the N .

The choice of basis for the monad in Donaldson’s ADHM construction for SU(N)

amounts to
K = V ⊕ V ⊕W, L = V = H

where V is a κ-dimensional vector space and W is an N -dimensional vector space.
We will now write explicit matrices for the forms on V,W in bases which respect both
the unitary structure and the weight decomposition with respect to the S1-action.

For orthogonal G, the forms on V and W are the sparse matrices

(15.1) J =



1

· ·
·

1

−1

· ·
·

−1


, K =


1

· ·
· ·
· ·
· ·

1


where the non-zero blocks in J corresponding to weight modules pi are identity
matrices 1 of rank k1 + . . .+ kj if it is of weight ∈ [pj, pj + 1).

For symplectic G, the forms on V and W are the sparse matrices

(15.2) J =



1

· ·
· ·
· ·
· ·
· ·
·

1


, K =



1

· ·
·

1

−1

· ·
·

−1


where the non-zero blocks in J corresponding to weight modules pi are identity
matrices 1 of rank k1 + . . .+ kj if it is of weight pi ∈ [pj, pj + 1).
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The condition that the monad maps respect the bilinear forms is equivalent to

α1 =(Jα1J
−1)T(15.3)

α2 =(Jα2J
−1)T(15.4)

b =(KaJ−1)T .(15.5)

ForG = SO(N) ⊂ SU(N), this implies that for i ∈ [p1, pN ] and j ∈ {p1, . . . , pN}∩
{> 0},

βi =βT−i(15.6)

γi =γT−i(15.7)

γ0 =− γT0(15.8)

b−j =aTj(15.9)

bj =− aT−j.(15.10)

ForG = Sp(N) ⊂ SU(2N), this implies that for i ∈ [p1, p2N ] and j ∈ {p1, . . . , p2N}∩
{> 0},

βi =βT−i(15.11)

γi =γT−i(15.12)

γ0 =γT0 or β0 = βT0(15.13)

b−j =aTj(15.14)

bj =− aT−j.(15.15)

To summarise,

Theorem 56. Let ({γi}, {βi}, {apj}, {bpj+1
}) be a solution of the (N−1)-interval

discrete Nahm equations of type (p1, . . . , pN−1; k1, . . . , kN−1). If pi = pN+1−i and
ki = −k −N + 1− i then

(1) if N is even, βi = βT−i, γi = γT−i and for i > 0, bi = −aT−i and b−i = aTi then
this is a solution of the Sp(N/2) discrete Nahm equations;

(2) if κ is even, βi = βT−i, γi = γT−i except for i = 0 where γ0 = −γT0 and for
i > 0, bi = −aT−i and b−i = aTi then this is a solution of the SO(N) discrete
Nahm equations.

Note that in the case of Sp(1) and p = 1
2

+ Z, the first two conditions provide us
with the extra two discrete Nahm equations seen in Braam–Austin [BA90] and the
final two reduce a, b to a single vector v. Since Sp(1) ' SU(2), all SU(2) monopoles

105



CHAPTER 15. THE CLASSICAL LIE GROUPS

are Sp(1) monopoles. This reveals a hidden symmetry in the SU(2) discrete Nahm
equations.

It remains to match up the mass and charge numbers of the new Sp(N) and
SO(N) discrete Nahm equations with the mass and charge numbers from the old
SU(N) discrete Nahm equations. The algebraic geometry and representation theory
for the hyperbolic setting is identical to that of the euclidean setting as treated by
Hurtubise-Murray [HM89]. Refer to Table 1 from Part 1.

In the euclidean case [HM89], the symmetry condition was arrived by a different
means and was of the form

Tj(z) = C(z)T Tj (z)C−1(z).

In the euclidean case, these were smooth functions whereas since they are discretely
indexed in the hyperbolic case, it is possible to row reduce them with the gauge
freedom. Hence the two cases are morally the same but with the hyperbolic case
being simpler.

It will be instructive to see the graph of matrix dimensions against interval
number, sometimes known as a skyline diagram. Here is the diagram for SO(7) as
a symmetrical SU(7) discrete Nahm equation.

p1 p2 p3 p4 p5 p6 p7

l1

l1 + l2

2(l1 + l2 + l3)
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CHAPTER 16

Conclusion

This thesis juxtaposes monopoles in euclidean space R3 with monopoles in hy-
perbolic space H3. The main achievement here is the development of the discrete
Nahm equations for all classical groups analogous to the Nahm equations for the
classical groups. The rational map and spectral curve of a hyperbolic monopole was
also discussed.

However, a significant difference between the euclidean and hyperbolic cases is
the result that the asymptotic field of a hyperbolic monopole uniquely determines
the monopole up to gauge freedom.

The moduli space of euclidean monopoles has a hyperKähler metric. No such hy-
perKähler metric has been found on the moduli space of hyperbolic monopoles. One
usage of such a hyperKähler metric has been to study the dynamics of monopoles
where the geodesics of the metric are assumed to be the scattering behaviour of
monopoles in the low energy regime.

It has been conjectured that a metric on the space of U(1) connections and
hence the asymptotic fields of hyperbolic monopoles could play the same role that
the hyperKähler metric does in the euclidean case. Some evidence in favour of this
can be found in the study of symmetric monopoles. This is a first possible avenue
of future research that the thesis opens up.

As is often the case with ventures such as a PhD research project, there are loose
ends which lie just outside the scope of the project which would have been achieved
if there were more time or funding.

One such loose end are the conjectures at the end of the chapter on spectral
curves in Part 3. Another example is the task of writing down an example of
symmetric SU(4) discrete Nahm data from JNR data [BCS15] and the spectral
curve equation that comes along with it.

Finally, I am confident that an example of G2 discrete Nahm data can be guessed
from studying the example of Shnir and Zhilin [SZ15].

107





Bibliography

[AB83] Michael F Atiyah and Raoul Bott. “The Yang-Mills equations over rie-
mann surfaces”. In: Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences 308.1505
(1983), pp. 523–615.

[AB84] Michael F Atiyah and Raoul Bott. “The moment map and equivariant
cohomology”. In: Topology 23.1 (1984), pp. 1–28.

[AH14] Michael F Atiyah and Nigel Hitchin. The geometry and dynamics of
magnetic monopoles. Princeton University Press, 2014.

[AH85] Michael F Atiyah and Nigel J Hitchin. “Low energy scattering of non-
abelian monopoles”. In: Physics Letters A 107.1 (1985), pp. 21–25.

[AHS78] Michael F Atiyah, Nigel J Hitchin, and Isadore M Singer. “Self-duality
in four-dimensional Riemannian geometry”. In: Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences.
Vol. 362. 1711. The Royal Society. 1978, pp. 425–461.

[AS68a] Michael F Atiyah and Graeme B Segal. “The index of elliptic operators:
II”. In: Annals of Mathematics (1968), pp. 531–545.

[AS68b] Michael F Atiyah and Isadore M Singer. “The index of elliptic operators:
I”. In: Annals of Mathematics 87 (1968), pp. 484–530.

[Ati+78] Michael F Atiyah et al. “Construction of instantons”. In: Physics Letters
A 65.3 (1978), pp. 185–187.

[Ati+85] Michael F Atiyah et al. “Low-Energy Scattering of Non-Abelian Mag-
netic Monopoles [and Discussion]”. In: Philosophical Transactions of the
Royal Society of London A: Mathematical, Physical and Engineering Sci-
ences 315.1533 (1985), pp. 459–469.

[Ati79] Michael F Atiyah. “Geometry of Yang-Mills Fields”. In: (1979).
[Ati84a] Michael F Atiyah. “Instantons in two and four dimensions”. In: Comm.

Math. Phys. 93.4 (1984), pp. 437–451.
[Ati84b] Michael F Atiyah. “Magnetic monopoles in hyperbolic spaces”. In: Vector

bundles on algebraic varieties (Bombay 1984). Vol. 11. Tata Institute.
1984, pp. 1–33.

109



BIBLIOGRAPHY

[AW77] Michael Francis Atiyah and Richard S Ward. “Instantons and algebraic
geometry”. In: Communications in Mathematical Physics 55.2 (1977),
pp. 117–124.

[BA90] Peter J Braam and David M Austin. “Boundary values of hyperbolic
monopoles”. In: Nonlinearity 3.3 (1990), p. 809.

[BCS15] Stefano Bolognesi, Alex Cockburn, and Paul Sutcliffe. “Hyperbolic monopoles,
JNR data and spectral curves”. In: Nonlinearity 28.1 (2015), p. 211. doi:
10.1088/0951-7715/28/1/211. arXiv: 1404.1846.

[BDF16] Alexander Braverman, Galyna Dobrovolska, and Michael Finkelberg.
“Gaiotto–Witten superpotential andWhittaker D-modules on monopoles”.
In: Advances in Mathematics (2016).

[Bel+75] A Ao Belavin et al. “Pseudoparticle solutions of the Yang-Mills equa-
tions”. In: Physics Letters B 59.1 (1975), pp. 85–87.

[BHS15] Stefano Bolognesi, Derek Harland, and Paul Sutcliffe. “Magnetic bags in
hyperbolic space”. In: arXiv preprint arXiv:1504.01477 (2015).

[Bra89] Peter J. Braam. “Magnetic monopoles on three-manifolds”. In: J. Differ-
ential Geom. 30.2 (1989), pp. 425–464.

[BT82] R Bott and LW Tu. “Differential forms in algebraic geometry”. In: Grad-
uate Texts in Mathematics 82 (1982).

[Cal53] Eugenio Calabi. “Isometric imbedding of complex manifolds”. In: Annals
of Mathematics (1953), pp. 1–23.

[CG81] E Corrigan and P Goddard. “Ann monopole solution with 4n—1 degrees
of freedom”. In: Communications in Mathematical Physics 80.4 (1981),
pp. 575–587.

[CG84] E Corrigan and P Goddard. “Construction of instanton and monopole
solutions and reciprocity”. In: Annals of Physics 154.1 (1984), pp. 253–
279.

[Cha15] Joseph YC Chan. “Discrete Nahm Equations for SU (N) Hyperbolic
Monopoles”. In: arXiv preprint (2015). arXiv: 1506.08736 [math-ph].

[CL55] Earl A Coddington and Norman Levinson. Theory of ordinary differen-
tial equations. Tata McGraw-Hill Education, 1955.

[Coc14] Alexander Cockburn. “Symmetric hyperbolic monopoles”. In: Journal of
Physics A: Mathematical and Theoretical 47.39 (2014), p. 395401. doi:
10.1088/1751-8113/47/39/395401. arXiv: 1406.4720.

[DK90] Simon K Donaldson and Peter B Kronheimer. The geometry of four-
manifolds. Oxford University Press, 1990.

110

http://dx.doi.org/10.1088/0951-7715/28/1/211
http://arxiv.org/abs/1404.1846
http://arxiv.org/abs/1506.08736
http://dx.doi.org/10.1088/1751-8113/47/39/395401
http://arxiv.org/abs/1406.4720


BIBLIOGRAPHY

[Don84a] Simon K Donaldson. “Instantons and geometric invariant theory”. In:
Comm. Math. Phys. 93.4 (1984), pp. 453–460.

[Don84b] Simon K Donaldson. “Nahm’s equations and the classification of monopoles”.
In: Comm. Math. Phys. 96.3 (1984), pp. 387–407.

[Gol65] Herbert Goldstein. Classical mechanics. Pearson Education India, 1965.
[Hit82] Nigel J Hitchin. “Monopoles and geodesics”. In: Comm. Math. Phys. 83.4

(1982), pp. 579–602.
[Hit83] Nigel J Hitchin. “On the construction of monopoles”. In: Comm. Math.

Phys. 89.2 (1983), pp. 145–190.
[Hit93] Nigel J Hitchin. “A new family of Einstein metrics”. In: Manifolds and

geometry 36 (1993), pp. 190–222.
[HJM15] Abdelmoubine Amar Henni, Marcos Jardim, and Renato Vidal Martins.

“ADHM construction of perverse instanton sheaves”. In: Glasgow Math-
ematical Journal 57.02 (2015), pp. 285–321.

[HM88] Nigel J Hitchin and MKMurray. “Spectral curves and the ADHMmethod”.
In: Communications in mathematical physics 114.3 (1988), pp. 463–474.

[HM89] Jacques Hurtubise and Michael K. Murray. “On the construction of
monopoles for the classical groups”. In: Comm. Math. Phys. 122.1 (1989),
pp. 35–89.

[HM90] Jacques Hurtubise and Michael K. Murray. “Monopoles and their spec-
tral data”. In: Comm. Math. Phys. 133.3 (1990), pp. 487–508.

[HMM95] Nigel J Hitchin, NS Manton, and MK Murray. “Symmetric monopoles”.
In: Nonlinearity 8.5 (1995), p. 661.

[HS97] Conor J. Houghton and Paul M. Sutcliffe. “SU(N) monopoles and pla-
tonic symmetry”. In: J. Math. Phys. 38 (1997), pp. 5576–5589. doi:
10.1063/1.532152. arXiv: hep-th/9708006 [hep-th].

[Hur85] Jacques Hurtubise. “Monopoles and rational maps: a note on a theorem
of Donaldson”. In: Comm. Math. Phys. 100.2 (1985), pp. 191–196.

[Hur89] Jacques Hurtubise. “The classification of monopoles for the classical
groups”. In: Comm. Math. Phys. 120.4 (1989), pp. 613–641.

[JM11] Marcos Jardim and Renato Vidal Martins. “The ADHM variety and
perverse coherent sheaves”. In: Journal of Geometry and Physics 61.11
(2011), pp. 2219–2232.

[JN97a] Stuart Jarvis and Paul Norbury. “Compactification of hyperbolic monopoles”.
In: Nonlinearity 10.5 (1997), p. 1073.

111

http://dx.doi.org/10.1063/1.532152
http://arxiv.org/abs/hep-th/9708006


BIBLIOGRAPHY

[JN97b] Stuart Jarvis and Paul Norbury. “Zero and infinite curvature limits of
hyperbolic monopoles”. In: Bulletin of the London Mathematical Society
29.6 (1997), pp. 737–744.

[JN98] Stuart Jarvis and Paul Norbury. “Degenerating metrics and instantons
on the four-sphere”. In: Journal of Geometry and Physics 27.1 (1998),
pp. 79–98.

[JNR77] R Jackiw, C Nohl, and C Rebbi. “Conformal properties of pseudoparticle
configurations”. In: Physical Review D 15.6 (1977), p. 1642. doi: 10.
1103/PhysRevD.15.1642.

[JT80] Arthur Jaffe and Clifford Taubes. Vortices and monopoles: structure of
static gauge theories. Vol. 2. Birkhäuser, 1980.

[Kas04] Masaki Kashiwara. “t-structures on the derived categories of holonomic
D-modules and coherent O-modules”. In: Mosc. Math. J 4.4 (2004),
pp. 847–868.

[KN63] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential
geometry. Vol. 1. 2. New York, 1963.

[LCC00] Wei Huan Lam, Shiing Shen Chern, and Kai Shue Chen. Lectures on
differential geometry. 2000.

[Lee03] John M Lee. Smooth manifolds. Springer, 2003.
[MNS03] Michael K Murray, Paul Norbury, and Michael A Singer. “Hyperbolic

monopoles and holomorphic spheres”. In: Annals of Global Analysis and
Geometry 23.2 (2003), pp. 101–128.

[MS00] Michael K. Murray and Michael A. Singer. “On the complete integrability
of the discrete Nahm equations”. In: Comm. Math. Phys. 210 (2000),
pp. 497–519. doi: 10.1007/s002200050789. arXiv: math-ph/9903017
[math-ph].

[MS03] Michael K Murray and Michael A Singer. “A note on monopole moduli
spaces”. In: Journal of Mathematical Physics 44.8 (2003), pp. 3517–3531.

[MS04] Nicholas Manton and Paul Sutcliffe. Topological solitons. Cambridge Uni-
versity Press, 2004.

[MS14] Nicholas S Manton and Paul M Sutcliffe. “Platonic hyperbolic monopoles”.
In: Communications in Mathematical Physics 325.3 (2014), pp. 821–845.
doi: 10.1007/s00220-013-1864-1. arXiv: 1207.2636 [hep-th].

[MS74] John Willard Milnor and James D Stasheff. Characteristic classes. 76.
Princeton university press, 1974.

[MS96] Michael Murray and Michael Singer. “Spectral curves of non-integral
hyperbolic monopoles”. In: Nonlinearity 9.4 (1996), p. 973.

112

http://dx.doi.org/10.1103/PhysRevD.15.1642
http://dx.doi.org/10.1103/PhysRevD.15.1642
http://dx.doi.org/10.1007/s002200050789
http://arxiv.org/abs/math-ph/9903017
http://arxiv.org/abs/math-ph/9903017
http://dx.doi.org/10.1007/s00220-013-1864-1
http://arxiv.org/abs/1207.2636


BIBLIOGRAPHY

[Mur83] Michael K. Murray. “Monopoles and spectral curves for arbitrary Lie
groups”. In: Comm. Math. Phys. 90.2 (1983), pp. 263–271.

[Mur84] Michael K. Murray. “Nonabelian magnetic monopoles”. In: Comm. Math.
Phys. 96.4 (1984), pp. 539–565.

[Nah83] Werner Nahm. “All self-dual multimonopoles for arbitrary gauge groups”.
In: Structural elements in particle physics and statistical mechanics. Springer,
1983, pp. 301–310.

[Nak93] Hiraku Nakajima. “Monopoles and Nahm’s equations”. In: Lecture Notes
in Pure and Applied Mathematics (1993), pp. 193–193.

[Nak99] Hiraku Nakajima. Lectures on Hilbert schemes of points on surfaces.
Vol. 18. American Mathematical Society Providence, 1999.

[Nor04] Paul Norbury. “Boundary algebras of hyperbolic monopoles”. In: Jour-
nal of Geometry and Physics 51.1 (2004), pp. 13–33. arXiv: math-ph/
0106013 [math-ph].

[Nor94] Paul Norbury. “Magnetic Monopoles and the Loop Group.” In: PhD
Thesis (1994).

[NR07] Paul Norbury and Nuno M Romão. “Spectral curves and the mass of
hyperbolic monopoles”. In: Comm. Math. Phys. 270.2 (2007), pp. 295–
333. doi: 10.1007/s00220- 006- 0148- 4. arXiv: math- ph/0512083
[math-ph].

[NS04] Nikita Nekrasov and Sergey Shadchin. “ABCD of instantons”. In: Com-
munications in mathematical physics 252.1-3 (2004), pp. 359–391.

[OSS80] Christian Okonek, Michael Schneider, and Heinz Spindler. Vector bun-
dles on complex projective spaces. Ed. by Coates and Helgason. Vol. 3.
Progress in Mathematics. Birkhäuser, 1980.

[PR81] MK Prasad and P Rossi. “Construction of exact multimonopole solu-
tions”. In: Physical Review D 24.8 (1981), p. 2182.

[Seg68] Graeme Segal. “Equivariant K-theory”. In: Publications Mathématiques
de l’IHÉS 34 (1968), pp. 129–151.

[Spi70] M Spivak. “Differential Geometry I, II, III, IV”. In: Publish or Perish,
Boston (1970).

[SZ15] Ya. Shnir and G. Zhilin. “G2 monopoles”. In: Phys. Rev. D92 (2015),
p. 045025. doi: 10.1103/PhysRevD.92.045025. arXiv: 1508.01871
[hep-th].

[Tau81] Clifford Henry Taubes. “The existence of multi-monopole solutions to
the non-Abelian, Yang-Mills-Higgs equations for arbitrary simple gauge

113

http://arxiv.org/abs/math-ph/0106013
http://arxiv.org/abs/math-ph/0106013
http://dx.doi.org/10.1007/s00220-006-0148-4
http://arxiv.org/abs/math-ph/0512083
http://arxiv.org/abs/math-ph/0512083
http://dx.doi.org/10.1103/PhysRevD.92.045025
http://arxiv.org/abs/1508.01871
http://arxiv.org/abs/1508.01871


BIBLIOGRAPHY

groups”. In: Communications in Mathematical Physics 80.3 (1981), pp. 343–
367.

[War15] R S Ward. “Symmetric Instantons and Discrete Hitchin Equations”. In:
arXiv preprint (2015). arXiv: 1509.09128.

[War77] Richard S Ward. “On self-dual gauge fields”. In: Physics Letters A 61.2
(1977), pp. 81–82.

[War81] RS Ward. “Ansätze for self-dual Yang-Mills fields”. In: Communications
in Mathematical Physics 80.4 (1981), pp. 563–574.

[War99] Richard SWard. “Two integrable systems related to hyperbolic monopoles”.
In: Asian Journal of Mathematics 3 (1999), pp. 325–332.

[Wei12] Erick J Weinberg. Classical solutions in quantum field theory: Solitons
and Instantons in High Energy Physics. Cambridge University Press,
2012.

114

http://arxiv.org/abs/1509.09128

	Chapter 1. Introduction
	Part 1.  Euclidean Monopoles
	Chapter 2. SU(2) monopoles
	Chapter 3. The Nahm equations
	Chapter 4. Monopoles of the classical groups

	Part 2.  Instantons
	Chapter 5. Instantons
	Chapter 6. The ADHM construction
	Chapter 7. Holomorphic bundles over P2

	Part 3.  Hyperbolic Monopoles
	Chapter 8. Circle-invariant instantons
	Chapter 9. Discrete Nahm equations and boundary values
	Chapter 10. Symmetric examples and ansätze
	Chapter 11. A calculation by localisation
	Chapter 12. The generalised discrete Nahm equations
	Chapter 13. The rational map and boundary values revisited
	Chapter 14. Spectral curves
	Chapter 15. The classical Lie groups
	Chapter 16. Conclusion
	Bibliography


