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The last decade has seen an explosive revival of interest in extra spacetime dimensions. Inspired by developments in string

theory, ingenious phenomenological models have been constructed in which gravity becomes strong at the scale of a few TeV,

thereby solving the long-standing hierarchy problem of particle physics. Perhaps the most interesting aspect of these theories

is the possibility of ‘seeing’ quantum gravity effects – including microscopic black holes – in experiments carried out at the

TeV scale, of which the Large Hadron Collider (LHC) at CERN is the imminent one. Some of these ideas are reviewed in this

article and the possibility of seeing signals for extra dimensions at the LHC are briefly discussed.

1. More Dimensions

From the earliest days one just has to look at a solid
object – like the box depicted on the right – to get an
idea of the three spatial dimensions normally described
as length, breadth and height. Today this is usually the
starting point of elementary mathematics textbooks,
which then go on to say that every point in space can
be described by three real numbers x, y and z, as Réne
Descartés taught us three centuries ago. The over-
whelming majority of humans are quite content with
this simple description, but some of the more subtle
minds have, over the ages, been attracted by the idea
that there might be extra spatial dimensions beyond
these canonical three. In fact, long before Descartés,
the Hindu Védas enumerated ten dishā or directions,
the Jewish Kabbālah talked of divine attributes being
channelised to the earth through ten-dimensions called
sefirôt and Mayan cosmogony visualised thirteen direc-
tions emanating like plumes from the cosmic serpent
Kukulcán (Fig. 1).

There is a dreamlike quality, however to these early
speculations, and it may be contended that we are in-
terpreting the ancient texts with the benefit of hind-
sight, whereas the original authors really meant some-
thing quite different. Since the precise meanings of the
ancients have been lost with the extinction of the lan-
guages which they used, no one can really tell for sure.
Be that as it may, even during the relatively recent
times of Descartés, one had only to look across the En-
glish Channel to find the Cambridge philosopher Henry
More (1614–1687) – whose language we do understand
– speculating about the existence of a fourth space di-
mension. In a curious mixture of geometry and mysti-
cism, harking back the days of Pythagoras and Plato,
More claimed that the spissitude or fourth dimension
of space represents the realm of spiritual things [1].

Figure 1. Mayan sculpture of the ‘plumed serpent’
Kukulcán, spouting eleven feathers, purported to rep-
resent eleven directions. The remaining two directions
are presumably pointed into and out of the plane of the
picture

In a more modern context, and shorn of all mys-
tic and spiritualistic trappings, extra space dimensions
were first popularised, more or less as a mathemati-
cal curiosity, by the English polymath Charles Hin-
ton in 1884. Hinton, who coined the word tesser-
act for a four-dimensional cube, tried to explain the
three-dimensional section of a four-dimensional object
by using the analogy of the time evolution of a three-
dimensional object [2]. This inspired the novelist H.G.
Wells to write that ‘Everybody knows that time is only
a kind of space’ (The Time Machine, 1895). Wells was
to prove a true prophet, for exactly ten years later, the
true scientific foundation for the fourth dimension was
laid by Albert Einstein’s 1905 theory of Special Rela-
tivity, where space and time variables were, for the first
time, allowed to mix non-trivially in moving frames of
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reference. Nowadays, it is usual to denote the space and
time variables by x0 = ct, x1 = x, x2 = y and x3 = z,
where c is the speed of light in vacuum. In this nota-
tion, when one considers the transformed coordinates
in a frame of reference moving with a relative velocity
v with respect to the previous one, they are related to
the older coordinates by the set of linear equations

x′0 = Λ00x
0 + Λ01x

1 + Λ02x
2 + Λ03x

3

x′1 = Λ10x
0 + Λ11x

1 + Λ12x
2 + Λ13x

3

x′2 = Λ20x
0 + Λ21x

1 + Λ22x
2 + Λ23x

3

x′3 = Λ30x
0 + Λ31x

1 + Λ32x
2 + Λ33x

3 , (1)

where the coefficients Λμν(μ, ν = 0, 1, 2, 3) are con-
stants depending only on the ratio v/c. The new coor-
dinates, therefore, are an admixture of all the previous
ones – the new spatial coordinates x′1, x′2, x′3 depend
on the old time x0, and the new time x′0 depends on the
old space coordinates x1, x2, x3. In relativity, therefore
time is indeed a sort of space, as Hinton and Wells had
speculated.1

x1

x2

x0

Figure 2. Three-dimensional projection of Minkowski
space, with the x3 (= z) coordinate suppressed. Spher-
ical (here circular) light wavefronts spreading out from
the origin generate the so-called light cone (actually a
hyper-cone). Events falling outside the light cone can-
not be causally connected with an event at the origin

1Though time is still distinct because (pace Wells) we cannot go
back in time.

It is, in fact, convenient to describe physics in
terms of the geometric formulation (1911) of Her-
mann Minkowski, who invented the four-dimensional
spacetime continuum (Fig. 2) which bears his name,
and which is fundamental to all modern descrip-
tions of relativity theory. In Minkowski space, the
‘distance’ δs between two neighbouring points at(
x0, �x

)
and

(
x0 + δx0, �x + �δx

)
is given by the pseudo2-

Pythagorean formula

δs2 =
(
δx0
)2 − (δ�x)

2
(2)

which means that light wavefronts emitted from the
point

(
x0, �x

)
are just the spheres corresponding to

δs = 0. One crucial demand of relativity is that the
coefficients Λμν should be such that δs′2 = δs2, which
makes the transformation (1) between moving frames of
reference rather like a rotation in the four-dimensional
space. An obvious consequence of δs = 0 for light is
that the path of a light ray satisfies(

δ�x

δx0

)2

= 1 (3)

which is the equation of a straight line in the three
euclidean dimensions. This incorporates the ancient
result that light travels in straight lines.

In 1914, a young Finnish relativist, Gunnar Nord-
strom, tried adding a fifth (invisible) dimension to
Minkowski space in a brilliant attempt [3] to unify New-
tonian gravity with electromagnetic theory as formu-
lated by Maxwell. Nordstrom formulated the New-
tonian scalar potential Φ as the fifth component of
the electromagnetic potential Aμ, and started with
Maxwell’s equations in five dimensions, hoping that its
four-dimensional projection would yield both the usual
Maxwell equations as well as Newton’s law of gravi-
tation. This theory failed to work, but one can only
admire the courage and prescience of the young Finn
who sought to thus unite two completely different forces
in so ingenious a manner.

The correct four-dimensional theory of gravity, viz.
Einstein’s theory of General Relativity (GR), Fig. 3,
appeared a year later, in 1915 – and though the ba-
sic idea are quite simple, it turned out to be far more
mathematically complicated than Newton’s simple the-
ory, replacing the simple scalar gravitational potential
Φ by a bunch of ten potential functions grouped into a

2‘Pseudo’ because of the negative sign.
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Figure 3. Albert Einstein’s theory of Special Relativ-
ity extended the three-dimensional world in a scientific
sense to four dimensions. His follow-up theory of Gen-
eral Relativity is still the best description we have of
gravity in the classical sense

structure called a tensor, generally written as a matrix

G =

⎛⎜⎜⎝
g00 g01 g02 g03

g01 g11 g12 g13

g02 g12 g22 g23

g03 g13 g23 g33

⎞⎟⎟⎠ . (4)

These ten functions gμν(μ ≤ ν = 0, 1, 2, 3) determine
the shape and curvature of the spacetime continuum,
in which all material things are embedded. The path
of light still follows the extremal property δs = 0, but
now we have to re-define

δs2 = g00

(
δx0
)2

+ g11

(
δx1
)2

+ g22

(
δx2
)2

+ g33

(
δx3
)2

+ 2g01δx
0δx1 + 2g02δx

0δx2

+ 2g03δx
0δx3 + 2g12δx

1δx2 + 2g13δx
1δx3

+ 2g23δx
2δx3 (5)

which reduces to the Minkowski form when g00 = 1,
g11 = g22 = g33 = −1 and the rest vanish, i.e.

G = diag. (1,−1,−1,−1, ) . (6)

It is the presence of matter which makes these func-
tions gμν deviate from their Minkowski values, which
correspond to the case of Special Relativity, i.e. ref-
erence frames moving with uniform velocities relative
to each other. A deviation from Minkowski space may,
therefore, be identified with the presence of acceleration
or equivalently, gravitational fields3. Einstein’s field

3That gravity manifests as an acceleration rather than a force,
was discovered by Galileo long ago, and demonstrated in his fa-
mous experiment: dropping cannonballs from the Leaning Tower
of Pisa.

Figure 4. The ‘rubber sheet analogy’. In the vicinity of
the Sun, spacetime curves like a rubber sheet on which
a weight has been placed, leading to the bending of
light from distant stars, which follows the lines marked
on the sheet. The curvature in this two-dimensional
cartoon is greatly exaggerated

equations of GR, from which one relates the gμν to the
matter-energy density in the universe are, therefore, the
field equations of the gravitational field. Unlike the field
equation ∇2ϕ = −4πGρ of Newtonian gravity, however
Einstein’s equations are non-linear, though they do re-
duce to the linear law of Newton in the limit when
the gravitational field becomes very weak. This limit-
ing behaviour explains why Newton’s law has proved so
successful in explaining all terrestrial and astrophysical
phenomena for 300 years. The only anomaly in Ein-
stein’s day happened to be a tiny discrepancy between
the calculated and observed orbits of the planet Mer-
cury, which being nearest to the Sun, feels the strongest
gravitational attraction. This tiny discrepancy – at the
level of one part in a hundred million – disappeared
when GR was used instead of Newtonian gravity. In
1916, the German mathematician Karl Schwarzschild,
while soldiering on the Russian front in World War
I, discovered that the solution of Einstein’s equations
in the neighbourhood of an isolated massive spherical
body such as the Sun leads to

δs2 =

(
1 − 2GNM

c2r

)(
dx0
)2

− δr2

1 − 2GN M

c2r

− r2
(
δθ2 + sin2 θ δϕ2

)
, (7)

where M is the solar mass and (r, θ, ϕ) are spherical
polar coordinates chosen with the centre of the Sun as
origin. Clearly δs = 0 no longer leads to a straight
line in the Euclidean coordinates, and this means that
light must bend away from a straight line in the neigh-
bourhood of the Sun. This is equivalent to a curva-
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ture effect in space, illustrated (as far as is possible) in
Fig. 4. Three years later, Einstein and GR was proved
correct when a British team led by Sir Arthur Edding-
ton travelled to Principé Island in the South Atlantic
where a total solar eclipse made it possible to measure
the bending of light from distant stars in the vicinity of
the Sun and its strong gravitational field. This result
not only made Einstein world-famous, but also made
the scientific community sit up and take notice of rel-
ativity, which had been considered arcane and akin to
metaphysics by the more hard-headed specimens in the
scientific community.

This success story of GR probably inspired the
work of Theodore Kaluza, (Fig. 5) a young Polish
teacher of mathematics, who, late in 1919, sent a pa-
per [4] to Einstein in which he had shown that five-
dimensional GR, with a circular fifth dimension of
the kind introduced by Nordstrom, does indeed sep-
arate into four-dimensional GR plus Maxwell’s equa-
tions in the limit when the circle shrinks to a point.
This was, in effect, inverting the idea of Nordstrom:
instead of a higher-dimensional Maxwell theory pro-
ducing gravity in the four-dimensional theory, we now
have a higher-dimensional theory of gravity which pro-
duces the Maxwell theory in the four-dimensional limit.
Schematically we can write this as

lim
R→0

S
(5)

gravity
= S

(4)

gravity
+ S

(4)

Maxwell
, (8)

where S denotes an action integral4, the subscript
‘Maxwell’ refers to electromagnetic theory and R is the
radius of the extra dimension. In order to obtain this
results, we require to identify some of the components
of the 5× 5 metric tensor with the electromagnetic po-
tential, i.e. g05 = A0, g15 = A1, g25 = A2 and g35 = A3,
while the remaining 4×4 block is the usual metric ten-
sor, defining the gravitational fields. Given that fact
that gravity and electromagnetism are different-looking
phenomena, this is a simply amazing – and unexpected
– result, often known as the Kaluza ‘miracle’, and it is
hard to believe that so beautiful a theory can be any-
thing but the real description of Nature.

The marriage of two such disparate theories is not,
however, free from its own internal dissonances. We
have to account for the fact that the strength of the
gravitational interaction is terribly weak, compared to

4Experts will readily recognise these as the Einstein-Hilbert ac-

tion S
(4)

gravity
∼

R
d4x

√
− det G R(4) and the Einstein-Maxwell

action S
(4)

Maxwell
∼ − 1

4

R
d4x

√
− det G FμνF μν .

Theodore Kaluza Oskar Klein

Figure 5. Kaluza and Klein showed that electromag-
netism can be unified with gravity if there is a fifth
dimension

the strength of the electromagnetic interaction. Math-
ematically, this is expressed by the oft-quoted ratio
Fgrav/Fem ∼ 10−40, but one can get a better physical
feeling for this disparity by the realisation that when
one stands on the ground, the electrostatic repulsion
between two layers of atoms, viz. the upper surface of
the floor, and the other the lower surface of one’s shoes
– is enough to balance the gravitational attraction of
the entire earth on one’s body. To obtain this enor-
mous ratio in the Kaluza theory where both interac-
tions have a common origin, then, we require to set the
only available free parameter R to an extreme value,
viz. R ∼ 10−33 cm.5 It follows (Section 3) that the
masses of elementary particles in this theory are either
zero or are proportional to 1/R, which is equivalent to
the enormous Planck energy scale of 1019 GeV. This
is obviously contrary to experience, since we have sev-
eral elementary particles with masses ranging between
1 eV to 100 GeV. Even otherwise, however, Kaluza’s
formulations was not without its internal flaws, and
the great Einstein himself blew alternately hot and cold
about it until a better version of the theory was devel-
oped (1926) by Oskar Klein [5](Fig. 5). The improved
Kaluza-Klein theory had Einstein’s full stamp of ap-
proval. Writing to the aged Hendrik Lorentz (1927),
he wrote “It appears that the union of gravitation and
Maxwell’s theory is achieved in a completely satisfac-
tory way by the five-dimensional theory”. Despite Ein-
stein’s enthusiasm, however the mass problem was not
solved, and nobody had the slightest inkling that a so-
lution would be seventy years in coming. By 1930, Ein-
stein himself had moved away from Kaluza-Klein theory
and had started to develop the torsion-gravity version
of unification which was to occupy him till the end of

5This is usually known as the Planck length 	P .
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his days.

The next quarter of a century kept physicists busy
with the birth of quantum mechanics, World War II
and the horrific discovery of nuclear weapons, and none
of the stalwarts had much time for extra dimensions. In
1953, Wolfgang Pauli, one of the earliest GR aficiona-
dos, again turned to the Kaluza-Klein model, which he
extended to six dimensions in an abortive attempt to
explain the strong nuclear force. In doing so, he discov-
ered an early version of what we would today call non-
Abelian gauge theory, about a year and a half before
the pioneering work of Yang and Mills and Shaw in this
regard. However this theory required all the particles
to be massless, and the interactions to be long-range,
i.e. Φ ∝ 1/r like gravitation and electromagnetism,
whereas the strong interaction is definitely short-range,
i.e. Φ ∝ e−r/λ/r, where λ ∼ 10−13 cm. Pauli clearly
believed this obstacle to be insuperable, as is clear from
letters he wrote to Abraham Pais and to Yang him-
self [3].

During the middle years of the twentieth century,
quantum field theory gradually established itself as the
appropriate tool to describe fundamental interactions.
Most of the physics ideas were firmly rooted in the
four dimensions of Minkowski space. It was not un-
til the (eventually Nobel-winning) invention of dimen-
sional regularisation by Gerardus ’t Hooft in 1971 that
the scientific world woke up to the realisation that a
quantum field theory which does not work in four di-
mensions may make perfect sense in other dimensions
— and even have the amazing phenomenological suc-
cess which the Standard Model (SM) of particle physics
seems to have achieved. Kaluza-Klein theories then had
a revival of sorts in the 1970s, with the advent of string
theories, which live in higher dimensions, and neces-
sarily carry many features of the Kaluza-Klein type,
including the huge mass gap from zero mass to the
Planck scale. In a string theory, the fundamental ob-
jects are tiny (around Planck length) one-dimensional
objects called strings, whose different oscillation modes
appear at low energies as particle-like fields like the
photon, electron, quarks and so on. A string whose ex-
citations are all boson fields6 can be consistently defined
only in 26 dimensions, fermions are found in the ‘spec-
trum’ of strings living in 10 dimensions and one can

6Boson fields have particle-like excitations which are bosons, i.e.
there is no restriction on the number of such particles which can
have the same quantum state. By contrast, fermion fields are
equivalent to swarms of fermions, which obey the restriction that
no two particles can occupy the same quantum state.

concoct string models which live in all sorts of dimen-
sions between 4 and 11. Since the main focus in string
theories has always been to study physics at the Planck
scale, the problem of masses could be pushed under
the carpet, claiming it to be a matter of detail — to
be understood when we have the final theory. For this
reason, there was little interest in Kaluza-Klein theory
from the point of view of the particle physicist, and
there was even less interest – even a certain amount of
disbelief – in strings among particle physicists. In this
adverse intellectual climate, pioneering – in fact, semi-
nal – work [6] in a low-scale version of quantum gravity
by Ignatios Antoniadis, alone (1990) and in collabora-
tion with Karim Benakli and M. Quiros (1994), though
published in reputed journals, made very little impact
on the high-energy physics community at the time.

Figure 6. Pioneers of brane-world models. From L to R:
Nima Arkani-Hamed, Savas Dimopoulos and Gia Dvali

It was Antoniadis, however, who got Savas Dimopou-
los and Gia Dvali thinking about the possibility of extra
dimensions with a phenomenological twist [7]. But it
was not until March 1998, when Nima Arkani-Hamed
joined up with Dimopoulos and Dvali to form the col-
laboration now known as ADD (Fig. 6), that extra
dimensions of space were invoked in an elegant solu-
tion to the notorious hierarchy problem plaguing the
SM of particle physics. It was only after their work [8]
that the idea captured the imagination of the particle
physics community. Within a month, the authors ADD
had teamed up again with Antoniadis to embed their
own ideas in a string theoretic framework [9], thereby
setting off an explosion of interest in the area. A bril-
liant variation of the ADD ideas, introduced [10] by
Lisa Randall and Raman Sundrum in 1999, has also
gone a long way in promoting the concept as a whole.
The origin of all these scientists is a triumph of the in-
ternationalisation of science: Arkani-Hamed hails from
Iran, Antoniadis and Dimopoulos are from Greece and
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Dvali is from Georgia, though all of them are now work-
ing in the United States. Sundrum originates from
the Australian component of the Indian diaspora, while
Randall is American-bred with a typical Anglo-Saxon
surname. In fact, original research in this area has
come from every continent on the globe, except Antarc-
tica. The author of this article, together with K. Srid-
har (TIFR) and Prakash M. Mathews (Saha Institute),
wrote some of the earliest papers [11] on this subject
and was among the first to introduce it to the Indian
scientific community.

A decade later, with close to 3,000 papers having
been written on the subject, extra dimensions have
achieved complete respectability as the most popular
way – after supersymmetry – to go beyond the SM
and conceive of new physics at higher energies. During
the inauguration of the LHC on September 10, 2008,
this theory even achieved widespread notoriety, with
the media trumpeting a (proven false) doomsday the-
ory that proton-on-proton collisions at the LHC would
produce deadly black holes capable of swallowing up
the earth and all its inhabitants with it.

The rest of this article is mostly devoted to explaining
the basic ideas of the ADD and Randall-Sundrum (RS)
models, in as non-technical a manner as clarity permits.

2. Compact Dimensions

The uninitiated reader is generally puzzled as to how
there could ever be extra space dimensions. This ar-
ticle started with the statement that one has only to
look at a solid object to conclude that space has just
the three dimensions denoted traditionally by x, y and
z, and no more. This is certainly true of dimensions
of the non-compact type, i.e. those which stretch from
−∞ to +∞. However as discovered by Nordstrom and
Kaluza, there exists the possibility of invisible compact
dimensions. To understand this idea, imagine a sheet
of paper laid out flat on a table – clearly this is a two
dimensional object, and both the dimensions have the
same nature. Now imagine that the sheet is rolled up
into a cylinder. This is still two-dimensional, but now
one of the two dimensions has the topology7 of a cir-
cle of radius, say R, i.e. it has become compact. R
is known as the compactification radius. If now, the
sheet is rolled up very tightly, so that R → 0, then it

7The word ‘topology’ is used quite deliberately, as meaning ev-
ery shape which can be mapped continuously to a circle by a
re-definition of coordinates using well-behaved functions. For ex-
ample, a square or an ellipse has the topology of a circle, but an
annulus does not.

will appear like a one-dimensional object to an observer
whose optical resolving power is much larger than R.
This is illustrated in Fig. 7, where the radius of the
depicted cylinder decreases successively upwards, until
the topmost cylinder looks like a line. We see, then
that it is possible for a compact dimension to become
invisible if it becomes very small. Obviously, if we can
increase the magnifying power of our observation it will
eventually be revealed. Moreover, if there can be one
invisible compact dimension, there can be others too
– in fact any number of them. Only experimental ev-
idence can really establish or rule out the existence of
such compact dimensions. The problem is that exper-
iments rarely make such definitive statements. Typi-
cally a null experiment simply tells us that if there are
compact dimensions, they must have size R less than
such-and-such a value. Thus, there is always the non-
falsifiable possibility of having tinier extra dimensions,
which evade the experimental constraint.

R 
   

  0 R

Figure 7. Compactifying two dimensions to one dimen-
sion

Stated baldly as we have done in the last para-
graph, the idea of compact dimensions still appears
quite bizarre. However compact dimensions may be
found in any elementary textbook of quantum mechan-
ics, and have actually been a mainstay of the quantum
theory of solids for the last eight decades. The reader
may recall that the wave-function of a particle in a box
is described under two kinds of boundary conditions –
vanishing boundary conditions, which generate stand-
ing waves, and periodic boundary conditions, which gen-
erate travelling waves. For an electron passing through
a solid, obviously one requires a periodic boundary con-
dition. Now, what is this periodic boundary condition?
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It is the requirement that, come what may, the wave-
function at a point x = L will be identical with the
wave-function at a point x = 0. There is no á pri-
ori reason to have this boundary condition8 unless the
points x = 0 and x = L are one and the same. This
makes the dimension compact, or rather the solid would
be curved into a circular topology S1 with 2πR = L, as
in Fig. 8. In fact, as the periodic boundary condition is
applied to all three dimensions, the typical solid studied
in textbooks may be thought of as having the topology
of a 3-torus [S1]

3
. Conversely, a compact dimension

may be thought of as just a periodic boundary condi-
tion in an extra degree of freedom (a.k.a. cöordinate!)
of all the fields of the theory, with the compactification
limit corresponding to a very small period after which
the same values are repeated.

S(2) [      ]S(1) 2

Figure 8. Compact manifolds in two dimensions: the

sphere S
(2) and the two-torus

[
S

(1)
]2

Of course, very little imagination is required to ap-
preciate that the actual topology may not be that of
a torus, but could well be that of any manifold such
as a sphere or a sphere with handles, or something
altogether more exotic, such as a folded or crumpled
topology, or one with spikes. These would naturally
correspond to mixed boundary conditions, with the pe-
riod of each one being a function (or distribution) of
the others. It is conceivable that one day we might
learn a dynamical reason why these periodic boundary
conditions develop or in other words, why some of the
dimensions remain ‘straight’ while the others ‘curl up’
into tiny circles, or more complicated geometries. Till
then, however we must be content with accepting com-
pact dimensions as a phenomenological hypothesis, but
not by any means an outlandish one.

8Most textbooks give a somewhat misleading argument that since
only bulk properties matter, the wave-function over the surface
does not matter, and can be taken as we wish. As early as 1912,
Weyl had shown [12] that this statement is actually applicable
only to the density-of-states function and specifically when the
compactification takes place on a manifold.

The wave-function of a free particle propagating in
five dimensions (x, y), where y is the fifth dimension
in the form of a circle, will have the standard box-
normalised form

ψ(x, y) =
1√
Ω5

ei(Et−�p.�x−p5y), (9)

where Ω5 is the volume of the five-dimensional box and
p5 is the component of momentum in the fifth (com-
pact) direction. We choose units such that � = 1 = c.
This wave-function must satisfy the periodic boundary
condition ψ(x, y+2πR) = ψ(x, y) in the fifth direction,
which means that

p5 =
n

R
, (10)

where n is an integer. The five-dimensional relativistic
energy-momentum relation is then given by

E2 = M2

0 + �p2 + p2

5

=

(
M2

0
+

n2

R2

)
+ �p2. (11)

For every value of n, therefore, we can conceive of a
Kaluza-Klein mass

M2

n
= M2

0 +
n2

R2
(12)

and a ‘four-dimensional’ energy-momentum relation
E2 = �p2 +M2

n
. We observe that the fifth component of

momentum looks like a discrete set of four-dimensional
masses, which are proportional to 1/R. The smaller is
R, the higher is the first such mass M1 = M2

0 + 1

R2

and the others are, naturally, even higher. Thus, if 1

R

is as high as the Planck mass, we shall not be able to
observe any of these modes in the laboratory, which is
equivalent to saying that in all experiments performed
by us, we will have p5 = 0, i.e. no momentum exchange
with the fifth dimension.

What do the Kaluza-Klein masses Mn correspond to?
To see this, let us imagine a multi-dimensional world, in
which four of the dimensions are described by the usual
Minkowski variables xμ and the remaining D compact
dimensions, y1, y2, . . . , yD by a D-torus, i.e. a set of pe-
riodic boundary conditions under yi → yi+2πR. In the
compactification limit, as R → 0, we shall have yi → 0
for all i = 1, D. Now, we imagine a scalar ‘bulk’ field,
Φ(xμ, yi) spread over all five dimensions, and satisfying
a five-dimensional Klein-Gordon equation(
∂2

t
−∇2 − ∂2

y1
− . . . − ∂2

yD
+ M2

0

)
Φ(xμ, yi) = 0 . (13)
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Because of the periodic boundary condition
Φ(xμ, yi) = Φ(xμ, yi + 2πR), we can expand the bulk
scalar in a Fourier series

Φ(xμ, yi) =

∞∑
�n=0

Φ(�n)(xμ)ei
�n.�y

R , (14)

where �n = {n1, n2, . . . , nD} and �y = {y1, y2, . . . , yD}.
Substituting this series into the bulk Klein-Gordon
equation, we immediately obtain, for each four-
dimensional Fourier coefficient Φ(�n)(xμ), the equation(

∂2

t
−∇2 +

�n2

R2
+ M2

0

)
Φ(n)(xμ) = 0 , (15)

which is simply the Klein-Gordon equation in four di-
mensions, with a mass

M�n =

√
M2

0
+

�n2

R2
. (16)

n=0 n=0n=1
n=2

R    0R

Figure 9. Illustrating a Kaluza-Klein tower of states
with increasing mass. On the left, an intermediate value
of R is assumed, while the right shows the case for
a very small R. Note how the states become closely-
spaced as R → 0, forming a quasi-continuum. For this
figure it is assumed that M0 = 0

In the compactification limit �y → �0, the bulk field
Φ(xμ, yi) reduces to

Φ(xμ, yi) =
∞∑

�n=0

Φ(�n)(xμ), (17)

i.e. a sum of scalar fields with every increasing masses
M�n. This set of scalar fields, which will everywhere re-
place the bulk scalar field in the interaction Lagrangian
when we take the compactification limit, is referred to
as a KK tower of states (Fig. 9). The individual fields
Φ(�n)(xμ) are called KK modes. Thus, for example, if
we have a Yukawa interaction of this bulk scalar with a
fermion field ψ(x) which lives in four dimensions only,
the interaction term in the action will look like

Sint =

∫
d4xdDy g

(5)

Y
ψ̄(x)ψ(x)Φ(x, �y) (2πR)

d
δD(�y)

(18)

where the delta function serves to confine the interac-
tion term to the four dimensions. Clearly, integrating
over the delta functions and using Eq. (17) reduces this
to

Sint =

∫
d4x g

(4)

Y
ψ̄(x)ψ(x)

∞∑
�n=0

Φ(�n)(x)

=

∞∑
�n=0

∫
d4x g

(4)

Y
ψ̄(x)ψ(x)Φ(�n)(x) , (19)

which means that every KK excitation leads to a sep-
arate four-dimensional Yukawa term, with a coupling
constant

g
(4)

Y
= (2πR)

d
g
(5)

Y
. (20)

While all these are technically possible, the trouble
arises because of Eqs. 16 and 20. In Kaluza’s original
theory, where one extra dimension gives rise to the elec-
tromagnetic interaction, an analogue of Eq. 20 is appli-
cable, i.e. the electronic charge is given by the relation
1/e = 2πR 1

√
16πGN

, where e ≈ 0.3 is the well-known

electronic charge (in natural units) and GN is the New-
ton constant. Recalling that

√
16πGN = 2/MP , we im-

mediately obtain 1/e = πRMP , i.e. 1/R = πeMP ≈
MP . Invoking Eq. 16, this means that all the KK exci-
tations – apart from the massless �n = �0 mode – will be
tremendously heavy.

One can get around this argument, but at a heavy
cost. If we are to have reasonable Kaluza-Klein masses,
then we require 1/R � MP , i.e. MP R � 1, which
means that e � 1. In this case, the spin-1 exchange
interaction obtained by Kaluza and Klein cannot be
electromagnetism, but must be some fantastically weak
force impossible to detect in the laboratory. This is not
ruled out experimentally, nor can it ever be ruled out.
However, given that Kaluza’s original idea was to ob-
tain electromagnetic theory out of a higher dimensional
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GR theory, this appears, at first sight, to be a case of
throwing away the baby with the bath water. This, in
fact, was precisely Einstein’s argument, which led to
the original abandonment of Kaluza-Klein theory as a
model of unification.

However, we now have to take into account the
changes which have occurred in classical and quantum
field theory since the early days of Kaluza. Not only
have we discovered new forces (the strong and weak
interactions) which cannot be derived from a higher di-
mensional GR theory without ascribing some absurdly
artificial properties to the extended spacetime, but the
weak interaction seems to be unified with electromag-
netism. Today we believe that the electroweak and
strong interactions are gauge theories, which are es-
sentially a by-product of quantum mechanics. Thus,
the requirement to generate electromagnetism out of a
higher dimensional GR is no longer imperative, as it
used to be in Kaluza’s time. Ergo, we are no longer
constrained to maintain small values of R and hence
there is no longer a problem in having Kaluza-Klein
states of intermediate mass.

Though the above fact was well-known from the
1970s, there was, quite naturally, resistance to give up
as beautiful a construction as that of Kaluza and Klein,
especially as that would mean removing the original
motivation for higher-dimensional theories. The 1970s,
however brought a new motive for more dimensions, be-
cause a relativistic string theory can be consistently de-
veloped only in 26 or 10 dimensions, depending on the
boundary conditions. While string theory did borrow
the idea of compactification from Kaluza-Klein theory,
there was never any need to generate spin-1 gauge in-
teractions from GR á lá Kaluza, since a vibrating string
has enough spin-1 modes to be directly identified with
the gauge interactions. Thus, though the ground for a
Kaluza-Klein theory with accessible masses was already
prepared by the time of the ADD revolution, there was
no real reason to expect such masses. Thus, it was quite
in accordance with one of the cardinal principles of sci-
ence, viz. Occam’s razor: entities are not to be multi-
plied without necessity, that no one thought it worth-
while to consider Kaluza-Klein masses of intermediate
range.

3. Experimental Straightjackets

What had been largely abandoned by particle physi-
cists and quantum field theorists continued to play a
significant role in a then somewhat obscure branch of

fundamental science – the so-called ‘fifth force’ experi-
ments. These were the experiments devised to look for
tiny deviations from Newtonian gravity which would
signal corresponding deviations from Einstein gravity
as well. Such deviations would be expected if there are
extra compact dimensions, as well as in rival theories
of gravitation, such as dilatonic gravity and the Brans-
Dicke theory.

Why should one look for alternative theories of grav-
itation when the Einstein theory – and its Newtonian
limit – work so well? The most striking reason to be
dissatisfied with the Einstein theory lies in the so-called
cosmological constant problem [13]. This is because
Einstein’s field equations of gravitation, which relate
the gravitational potentials G to the energy-momentum
tensor T can always be modified by replacing T by
T − ΛG (the negative sign is a convention). Here Λ is
an unknown constant, called (by Einstein) the ‘cosmo-
logical constant’. Noting that a uniform matter density
ρ pervading all space would lead to T = −ρG, it is easy
to identify the cosmological constant with the vacuum
energy density demanded in a quantum field theory, or
to use a more fancy contemporary expression ‘dark en-
ergy’. The vacuum energy is a purely quantum me-
chanical phenomenon, which can be traced ultimately
to the uncertainty principle, one of the pivots on which
the entire framework of quantum mechanics has been
constructed. Since we have a superabundant wealth of
evidence that the world is indeed quantum mechanical,
it is hard to wish away the vacuum energy. In fact,
adding this term is perfectly consistent with all of Ein-
stein’s initial assumptions, and hence, a good scientific
procedure would be to keep this term and try to deter-
mine it from the observational data. If we do this, we
obtain the result that, in units where � = 1 = c

Λ ∼< 1.3 × 10−85 GeV2 , (21)

which means that the energy scale corresponding to
the vacuum energy is around 1.1 × 10−33 GeV. This is
amazingly small compared to the lightest known mass
scale, that of the lightest neutrino, which is around
1 eV. Moreover, given that the vacuum energy will re-
ceive contributions from physics at all scales, includ-
ing the Planck scale, there is no theoretical reason not
to expect the vacuum energy to be of the order of the
Planck scale, i.e. 1019 GeV. If we accept this argument,
we must conclude that the observed vacuum energy is
roughly 10−52 times smaller than the theoretical predic-
tion. The cosmological constant problem lies in asking
why the value of Λ is so tiny. The mind boggles at
the smallness of the number 10−52 – better realised if
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we consider the fact that 10+52 is roughly the number
of atoms contained in 10 million galaxies. One simple
way out would be to postulate that there is some sym-
metry which forbids the writing of the ΛG term, but
this cannot be invoked because that would mean that
we cannot write T = ρG either, and that means that
we would forbid the universe to have a uniform density.
It would have to be a very strange symmetry indeed,
which forbids this most symmetric of matter distribu-
tions! It is more practical to set Λ 
 0 by hand – for
the moment, at least.

Once we accept that there are good reasons to look
beyond the minimal theory of Einstein, the road to
understanding gravity by doing experiments is clearly
indicated. ‘Fifth force’ experiments perform precisely
this task – they look for deviations from the inverse
square law in highly sensitive (mostly terrestrial) ex-
periments. Now it is easy to see that such deviations
are directly predicted [14] if there are extra dimensions
of the Kaluza-Klein type. To see this, let us consider,
for simplicity, one extra dimension with the topology
of a circle of radius R. We have seen that this leads
to a scalar field having a four-dimensional projection
Φ(x, 0) =

∑
∞

n=0
Φ(n)(x), where each mode Φ(n)(x) has

mass Mn = n/R. Considering the Newtonian approx-
imation, the gravitational potential will be just such a
scalar field, which in the static limit with a point source
m at the origin will satisfy the equations(
∇2 + M2

n

)
Φ(n)(�x) = −4πGN m δ3(�x) (22)

for each mode. This is the well-known Helmholtz equa-
tion with the solution Φ(n)(x) = GNm e−Mnr/r. Thus,
the effective gravitational potential will be

Φ(x, 0) =

∞∑
n=0

GNm
e−nr/R

r

=
GNm

r

[
1 +

e−r/R

1 − e−r/R

]
, (23)

summing the geometric series. In the limit r � R, the
exponential term in the denominator can be neglected,
so that we get the simple form

Φ(x, 0) = GNm

(
1

r
+

e−r/R

r

)
, (24)

where clearly the deviation from the Newtonian 1/r
form becomes significant only when r begins to be com-
parable to R.

The most sensitive verifications of the inverse square
law are achieved through torsion balance experiments

(Fig. 10). Starting from the pioneering work of Henry
Cavendish in 1797 to the sensitive experiments of Baron
Loránd von Eötvös during 1906–1909, to the state-of-
the-art measurements of the Eöt-Wash group, currently
in progress at the University of Washington, the basic
idea is always the same. A pair of heavy objects are
fixed to the two ends of a horizontal rod suspended
from a fine wire9. The objects are then brought into
the proximity of two other heavy objects, as shown in
Fig. 10, so that the feeble gravitational force between
them rotates the rod by a tiny angle. This is mea-
sured and the force of gravity is calculated from the
angle of deviation. The Eöt-Wash experiment, led by
Eric Adelberger, where the apparatus is mounted on a
small hill which acts as the attracting mass, the sim-
ple rod is replaced by an ingenious arrangement of a
cut-away cylinder and a disc with holes, so that the ef-
fect of pure 1/r2 forces cancels to zero. Thus, in the
Eöt-Wash experiment, any twist in the wire becomes
a fifth-force effect. Similar experiments have been per-
formed or suggested – in an Australian mine shaft, in
a bore hole in the Arctic icecap in Greenland and in a
torsion balance to be mounted on a satellite and sent
into outer space. Some of these experiments were also
performed in the 1990s, in India, at the author’s home
institute [15].

What are the conclusions of all these experiments? In
a nutshell, all the results are completely consistent with
Newton’s inverse square law of gravity and with the ex-
act principle of equivalence, i.e. that gravity manifests
as an acceleration rather than a force.10 This means
that, once the dust of several incorrect results reported
in the 1990s has settled, all searches for the fifth force
have yielded negative results. One can therefore use
these null results to constrain fifth force theories, and
in particular, to put bounds on the size of Kaluza-Klein
dimensions. The best state-of-art results come from the
Eöt-Wash experiment [16], where the fifth force is pa-
rameterised as

Φ(V )(r) = αGNm
e−r/λ

r
, (25)

where α and λ are strength and range parameters re-
spectively. Obviously, a null result will rule out large
values of both, and hence the Eöt-Wash results are pre-
sented as a forbidden region in the α-λ plane, as shown
in Fig. 11. Comparing with Eq. 24, one immediately
sees that Kaluza-Klein theories may be identified with
α ≈ 1 and λ = R. The current data, then, require
R ∼< 160 μm, while the experiment will eventually probe

9Quartz fibres are the best for this purpose.
10Elevated to a definition of gravity by Einstein.
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A
B

C

D

torsion fibre

Figure 10. The basic torsion balance experiment. The
masses A and B, affixed to the balance bar are attracted
by the fixed masses C and D, as indicated by the ar-
rows. The torque due to these forces is balanced by the
elastic reaction of the fibre as shown. The bounding
box indicates that the apparatus must be isolated from
air currents and all kinds of noise, as the torsion effect
is very weak

as far as R ≈ 45 μm.
Once can say, therefore, that studies of gravity are

consistent with the presence of extra compact dimen-
sions so long as they are not larger than a hundred
microns or so. However, we do have a wealth of mi-
croscopic probes which are smaller than this – notably
atoms and molecules, which are at least a million times
smaller. To such a minute particle, a 100-micron com-
pact dimension would hardly be different from a non-
compact one, and hence, we should observe their be-
haviour as if they live in 4 + d dimensions. For exam-
ple, an electron moving in the electric field of a nucleus
would feel an electrostatic force proportional to r−(2+d),
instead of just r−2. Now this certainly does not hap-
pen, since it is well known that anything other than
an inverse square law of force would lead to splitting
of the Bohr energy levels of a hydrogen atom, giving
different energies11 to different values of the azimuthal
quantum number �. This would change the spectrum
emitted considerably from what is observed in a classic
Geissler tube experiment. Even high-school learning

11In reality, all the 	 values have the same energy, except for some
small effects associated with the electron spin, a fact referred to
as accidental degeneracy – this is intimately connected with an
SO(4) symmetry of the Hamiltonian in the specific case of an
inverse square law.

Figure 11. Results of various fifth force experiments
ruling out parts of the α-λ plane. The solid boundary of
the yellow-shaded region is the current result of the Eöt-
Wash group, and the parallel dashed line represents the
limit of sensitivity expected to be reached eventually at
this experiment

is enough, therefore, to conclude that the atomic elec-
trons, at least, do not ‘see’ compact dimensions, which
pushes R down to about a nanometre.

High energy experiments probe much smaller lengths
than atomic spectra. This is because quantum mechan-
ics tells us that each particle may be associated with a
wave whose wavelength λ is inversely proportional to
the particle momentum, i.e.

λ =
h

p
, (26)

where p is the momentum and h = 6.678 × 10−27 erg-
s is Planck’s constant. It is fairly straightforward to
show that the wavelength corresponding to an electron
of energy 100 GeV — which is what was achieved at
the now-defunct LEP machine (1991–2001) at CERN
— is around 10−18 m, i.e. a billion times smaller than
a nanometre. Even so, there were no indications that
these electrons interacted in anything but the canonical
four dimensions of Minkowski and Einstein. Precision
results to the level of one in 100,000 were obtained from
this machine, and these would certainly have changed
if there were compact dimensions of any size compa-
rable to the wavelength λ ∼ 10−18 m. It is more or
less experimentally certain, therefore, that there are no
compact dimensions of size > 10−18 m, and hence, no



224 S. Raychaudhuri

Kaluza-Klein masses less than a few hundred GeV/c2.
This is a matter for little concern for string theories,
since they are compatible with compact dimensions as
small as 10−35 m, but it is disappointing for extra di-
mension enthusiasts who would like to see their ideas
verified in the present generation of experiments.

The only way to rescue compact dimensions from the
tight corner into which LEP and similar experiments
have driven them is to somehow ensure that electrons
and such probes remain confined to four dimensions
only. The extra dimensions would then be seen only by
gravity, which cannot be confined to any lower number
of dimensions, since it is a manifestation of the space-
time itself. But why should such a confinement occur?
The motivation for this was provided by ADD, in their
classic 1998 paper, and it is to this that we now turn.

4. The Hierarchy Problem

In order to appreciate the motivation for the new class
of extra dimensional models, it is necessary to intro-
duce the reader to the hierarchy problem in the SM of
elementary particle physics. In the SM, it is believed
that all the elementary particles were initially massless
as they separated out from pure radiation in the first
moments after the Big Bang. As the nascent universe
cooled below a certain critical temperature, these par-
ticles now acquired masses through their interactions
with a coeval elementary scalar field H(x), whose exci-
tations are called Higgs bosons. This nice mechanism
was discovered in the 1960s, but till date has not passed
the test of experimental verification, which demands
that we find the Higgs boson. Other articles in this
volume discuss this issue, but, we may note, in passing,
that the introduction of this elementary scalar is the
simplest and neatest solution to the mass problem, and
possibly the only one which is not seriously threatened
by experimental data available at the moment. The
search for the Higgs boson is, therefore the most ur-
gent purpose for which the LHC has been constructed.

This Higgs field, which plays so crucial a role in this
game, happens to be the only elementary scalar field in
the SM. However, as early as 1976, it was known [17]
that there is a technical problem with quantum theories
containing elementary scalar fields. This arises from the
self-interaction term λH4 of the scalar field, which plays
a crucial role in mass generation and, therefore, cannot
be wished away. The problem arises as soon as we go
beyond the classical level (in a perturbation theoretic
approach) and try to compute quantum corrections to

the mass of the Higgs boson. In the very first order, we
immediately encounter ‘infinities’ proportional to the
inverse size of the smallest length scale to which the
theory is valid. For example, if this length scale is �,
then ΔM2

H
∝ λ2/�2. Now this is a well-known phe-

nomenon12 in quantum field theory, and is generally
handled by arranging for a cancellation of this ‘infinity’
with an equally large negative term ∝ −λ2/�2 in the
‘bare’ mass parameter in the Lagrangian. What is left,
after the cancellation, is the physical mass of the Higgs
boson, which is a measurable quantity, unlike the ‘bare’
mass parameter. Once the cancellation has taken place,
we allow the ‘smallest’ length scale to go to zero, recov-
ering, in the limit � → 0, the original spacetime contin-
uum. For elementary fermions and gauge bosons, this
neat trick is enough to ensure that no further ‘infinities’
are encountered. For elementary scalars, on the other
hand, it turns out that fresh ‘infinities’ arise when we
compute the quantum corrections at the next order, i.e.
at two loops. We can, of course, arrange another can-
cellation at the two-loop level, but this does not really
help. For one thing, new ‘infinities’ would arise again
at three-loops (and so on), and moreover, once the bare
mass is tuned to give a cancellation at two loops, it can-
not give a cancellation at one-loop. The one-loop mass
would then become ‘infinite’, making nonsense of the
perturbative approximation.

One can argue, of course, that the SM is not really
valid upto zero length scales, since it ignores gravi-
tational effects altogether. Especially, at the Planck

length �P = �cG
−1/2

N
∼ 10−35 m, it is known that grav-

ity becomes strong and will begin to dominate inter-
particle interactions. Taking this scale as the minimum
cutoff length for the SM, then, we avoid the actual
infinities, but this argument does not save the situa-
tion, since we end-up with a Higgs boson as heavy as
�c�−1

P
∼ 1019 GeV. As the self-coupling λ is propor-

tional to the mass of the Higgs boson, such a heavy
Higgs boson would mean an effective value of λ ∼ 1038,
which is quite absurd in a perturbative framework. All
of this goes to show that there is an internal inconsis-
tency in the SM, considered as a quantum field theory,
with a hierarchy of scales between the electroweak scale
at 10−18 m and a smaller scale such as the Planck scale
at 10−35 m. This inconsistency is called the hierarchy
problem, or equivalently, the fine-tuning problem (Fig.
12) . Such irreducible inconsistencies are known to be
typical of an incomplete or effective theory — indicat-
ing that there is a more fundamental underlying theory,

12The technical name for these is ultraviolet divergences and the
cancellation trick is called mass renormalisation.
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of which the SM is either a part, or a low-energy limit.
This conjecture is, in fact, the strongest argument for
searching for new physics beyond the SM.

There are, in fact, two possible solutions to the hi-
erarchy problem, once we accept that the SM requires
to be augmented by the addition of new fields and/or
interactions. One way to bypass the hierarchy prob-
lem is to introduce extra fields and couplings which
generate new ‘infinities’ cancelling the existing ones (at
every order) – so that there is no need to tune the
‘bare’ mass parameter. To ensure exact cancellation,
we require a higher symmetry in the theory. Among
the popular symmetries which do this job are super-
symmetry i.e. symmetry between bosons and fermions,
and the rather complicated gauge symmetries seen in
the so-called little Higgs models. Once we have ensured
such cancellations, one can make the cutoff length as
small as we please, even as small as the Planck length,
without endangering the perturbative framework. In a
sense, this postpones the inevitable breakdown of the
SM to an energy scale inaccessible except in the early
universe just after the Big Bang.

The other alternative is to take the bull by the horns
and place the cutoff length of the theory just below the
currently-accessible scale of 10−18 m. In this latter case,
a low mass (∼ 100–200 GeV/c2) Higgs boson arises out
of weak cancellations, which are neither unnatural nor
unstable against quantum fluctuations. However, this
approach immediately calls for a new theory at the TeV
level (i.e. at 10−19 m), since that scale will certainly be
probed by the LHC. Extra dimensional theories, as in-
troduced by ADD, belong to this class of solutions, the
new theory being one in which gravity becomes strong
at the TeV scale, thereby invalidating the SM.

At the present jucture, on the eve of the LHC run,
there is no scientific reason to prefer any one solution of
the hierarchy problem over another solution. Of course,
physicists have their preferences – prejudices, if you
like – but here one person’s philosophy is as good as
another’s. Almost all these models are elegant in con-
ception but ugly in execution. This means that each
starts with a simple and attractive idea, but in try-
ing to explain the wealth of experimental data, one has
to introduce extra assumptions, which are neither so
simple, nor attractive. It is, of course, possible, that all
this is happening because we are reasoning with insuffi-
cient information – like a newspaper speculating about
a crime. The truth may turn out to be vastly more
complex, with all or many of these ideas forming a part
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Figure 12. Illustrating the hierarchy problem and its
solutions. If there is no new physics between the SM at
a few hundred GeV and the Planck scale at 1019 GeV,
quantum corrections drive the mass of the Higgs bo-
son to the Planck scale. In cancellation-type solutions,
new fields entering around a TeV cancel these quantum
corrections. In low-cutoff solutions, new physics enters
at the TeV scale and any cancellations which may still
occur are small

of it, just as the six blind men in the story had each
grasped a piece of the elephant without realising what
the whole beast looked like. Even this statement is a
speculation, however and only the LHC data will show
us, at least dimly, where we really stand.

5. The ADD Construction

In March 1998, the first paper [8] of ADD came out.
The basic idea – like all great ideas – was startlingly
simple. In a Kaluza-Klein theory, one starts by de-
scribing higher-dimensional gravity through an action
integral of the form

S(4+d) =
1

16πG
(4+d)

N

∫
d4x ddy L(4+d) , (27)

where G
(4+d)

N
is the actual gravitational coupling con-

stant and L(4+d) represents the Lagrangian density of
the gravitational field. The coordinates yi(i = 1, d)
represent the compact dimensions. As these shrink to
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a point, the action reduces to the form

S(4) =
Ωd

16πG
(4+d)

N

∫
d4x

[
L(4) + . . .

]
, (28)

where Ωd is the volume of the compact space formed
by these d cooordinates and the dots represent very
weak interactions which will not concern us any further
in this article. The appearance of the ordinary four
dimensional Lagrangian density L(4) is what we have
earlier referred to as the Kaluza miracle. Comparing
Eq. 28 with the standard form

S(4) =
1

16πGN

∫
d4x L(4) , (29)

where GN is the usual Newton constant of gravitation,
leads to the identification

GN =
G

(4+d)

N

Ωd

. (30)

In terms of the Planck length �P = �cG
−1/2

N
, de-

fined earlier, and its higher dimensional equivalent

�̃P ≡ �
(4+d)

P
, this leads to the relation

�̃2+d

P
= A�2

P
Rd , (31)

where A is a constant not dramatically different from
unity. If we choose R ∼ �P , as Kaluza did, then we
have �̃P ∼ �P , as Kaluza found. However, if we choose
R larger, we will immediately increase the length �̃P .
For example, if we choose d = 6 and R ∼ 10−18 m,
as allowed by LEP experiments, we get �̃P ∼ 10−22 m,
which is much much larger than �P . At the length scale
of 10−22 m, therefore, the SM will certainly break down,
since we would be well inside the compact dimensions
and gravity is as strong as the electroweak and other
interactions at the effective Planck scale �̃P . Taking this
length scale as the level of granularity for the SM does
help in reducing the acuteness of the hierarchy problem,
but it still implies Higgs boson masses of around 106

GeV, and a self-coupling λ ∼ 107, showing that the
problem is still there.

The observation that the hierarchy problem is ame-
liorated, but not solved, by a Kaluza-Klein formulation
of the SM was the key observation of ADD. However,
in order to actually solve the hierarchy problem, one
has to make R larger still. To bring �̃P ∼ 10−19 m –
at which stage the Higgs boson mass remains close to
the expected range and λ remains perturbative – once
has to choose R ∼ 10−14 m, which is about the size of
a large nucleus. As we have seen there are good argu-
ments to rule out extra dimensions of this size, unless

there is a mechanism by which they are inaccessible to
matter, such as electrons, nuclei, etc. There is, in fact,
nothing crucial in this argument that was not known to
Kaluza, or for that matter, the physicists of the 1970s,
but they did not have the motivation to solve the hier-
archy problem by expanding the Planck length to the
limits of observation. Having such a strong motivation,
however, ADD proceeded to create just such a mech-
anism, constructing a (somewhat contrived) quantum
field theory in 4+d dimensions with a 4-dimensional do-
main wall13 on which all the SM fields can be trapped.
In this trapped condition, none of the SM particles can
access the extra d dimensions, thus validating all the
spectroscopic observations from Ångstrom to Bohr to
LEP. However, gravity which is a measure of the to-
pography of spacetime itself, cannot be thus confined,
and hence, one can easily apply the arguments following
Eq. 31 to this model.

Unbeknownst to themselves, ADD at that point had,
in essence, rediscovered a suggestion made way back in
1983 by Misha Shaposhnikov and Valery Rubakov. In
their paper [18], entitled “Do we live inside a domain
wall?” the two Russian scientists had speculated that
the SM fields live inside just such a narrow and deep
potential well as constructed by ADD. However, they
were looking for a solution to the cosmological constant
problem and not to the hierarchy problem, and for rea-
sons best known to themselves, they did not pursue
the idea any further. Neither did their idea gain much
currency. In fact, the idea that the universe might be
a four-dimensional kink in a higher dimensional world
had been suggested even earlier – in 1982 – by Kei-
ichi Akama [19], but this did not attract any attention
at all until much later, when ADD had made the con-
cept famous. Even the original paper of ADD, which
is wordy and imprecise, may have shared the fate of its
precursors, had it not been for a new addition to the
team. This was Ignatios Antoniadis, (Fig. 13) then at
Paris, whom we have mentioned before as having pur-
sued ideas about low-scale effects in string theory al-
most a decade before the ADD collaboration. In April
1998, a month after the first ADD paper, Antoniadis
and ADD got together to write a paper [9] which has
shaped the field of brane world physics since. This re-
places the domain wall constructed so artificially by
ADD with a D-brane – a kind of spacetime kink oc-
curring naturally in most string theories, which had
been discovered by Joseph Polchinski (Fig.13) only a

13A domain wall is the boundary between two different phases,
such as the surface of a bubble inside a liquid or a liquid droplet
suspended in air.
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few years earlier. Thus, we have a very good reason
for expecting the SM fields – including electrons, pho-
tons, nuclei and all the known things – to be trapped
in four dimensions. If so, then the only constraints on
the size of the extra dimensions come from pure grav-
ity measurments, and these, as we have seen are pretty
loose, permitting sizes as large as R ∼< 0.16 mm. Even
with d = 2, this means that �̃P can be large enough to
remove the hierarchy problem.

What is a D-brane? To understand this, we should
first note that in a string theory, the fundamental ob-
jects are tiny one-dimensional objects, which move in
a space of 10 (or 26) dimensions. These ‘strings’ may
be open or closed, depending on whether they have free
end-points, or whether they form closed loops. These
strings interact among themselves, joining together and
breaking up, or even forming large conglomerates. At
large length scales, the strings appear like point par-
ticles, and the interactions of the strings look like the
scattering of point particles among themselves. The
advantage of such a theory is, of course, that one never
has to take the pointlike limit of zero size, so that 1/�-
type singularities never appear. It can be shown that
the different oscillation modes of a single string appear
like different particles, so that a single string can, de-
pending on which mode is being excited, appear as a
scalar, a vector boson, or a fermion, at low resolution.
Even more exciting is the fact that one of the oscillation
modes of a closed string appears like a spin-2 particle,
which can be identified with a graviton, the quantum
of the gravitational field. A string theory is, therefore
a theory of gravity as well as a theory which lives in
higher dimensions, and it is natural to embed the ADD
construction in such a theory.

J. PolchinskiI. Antoniadis

Figure 13. Brane world pioneers: Ignatios Antoniadis
of CERN, Geneva and Joseph Polchinski of the Kavli
Institute, University of California at Santa Barbara

One of the interesting possibilities in an interacting

string theory is that under certain circumstances, mas-
sive condensates of strings may form in a lower dimen-
sion, just as a bunch of atoms (which normally move in
three dimensions) can bond together to form a flat two-
dimensional plate. Such a lower dimensional object in
string theory is called a D-brane, and it can be treated
as a dynamical object in itself, just as a plate can be
treated as an object in itself [20]. However the most
important property of a D-brane is that it acts like
a sticky membrane for open strings, whose open ends
get stuck to the D-brane14. Thus, all the interactions
of open strings will be confined to the neighbourhood
of the D-brane, within a thickness comparable to the
(tiny) length of the strings, and will appear, at low res-
olution, to be confined to the lower-dimensional space
marked by the D-brane. As we have seen that the SM
fields can be identified with different oscilation modes
of open strings, this offers a natural and elegant mech-
anism for confining SM interactions to a lower dimen-
sion. This mechanism will not work for closed strings,
since there are no ends to stick to the D-brane, and
hence closed strings will be free to propagate in all the
10 (or 26) dimensions. As gravitons appear among the
excitations of closed strings, this means that gravity
propagates in the entire spacetime.

The exact construction of the ADD-Antoniadis
model is, therefore, as follows. We assume that the fun-
damental underlying theory is a fermionic string theory,
valid in 10 (or it can be 11) dimensions, of which 6 (or
7) are compact ones, henceforth referred to as the bulk.
For d (we shall see presently that d ≥ 2) of these com-
pact dimensions, the radius of compactification R is
large, maybe as large as 100 μm. Hence it is possible
to have a large Planck length �̃P in the bulk. In addition
to this, we assume that there is a D3 brane, extending
to infinity along all its three spatial directions, which
we identify with the observed universe. All the SM
fields correspond to oscillation modes of open strings
which have one or both ends confined on the D3 brane.
This means that they are confined within a thickness δ
which is indicative of the length of the strings. Closed
strings are free to propagate in the brane or the bulk
at will. This model is sketched in Fig. 14. The black
region indicates the D3 brane which is our universe, or
rather a cutaway portion of it, since the actual brane
extends to infinity in all directions. The perpendicular
line penetrating the brane represents the d compact di-
rections with large radius R, the black and white dots

14The name D-brane originates from this property: ‘brane’ is
short for membrane and D refers to the fact that the ends of the
string will be forced to satisfy a Dirichlet boundary condition.
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being identified. This is a schematic way of indicat-
ing a d-torus, which is sketched in Fig. 8 for d = 2.
The red squiggly lines represent strings, with the open
ones stuck to the brane, while the closed ones are de-
picted in the bulk, away from the brane. The SM fields
are, therefore confined to the box of thickness δ drawn
around the brane.

One of the most elegant things about the ADD con-
struction is that it gives us an explanation of why the
gravitational interaction is so weak compared to the
electroweak and other interactions. This is because
electroweak interactions correspond to the interactions
of open strings which are bound to the D3 brane, and
hence are closely packed together – or in the language of
quantum mechanics, have overlapping wave functions.
On the contrary gravity corresponds to interactions of
closed strings which are free to roam around in the
bulk and only occasionally cross the brane. It is only
when these rare crossings occur that gravitational in-
teractions of matter are seen. Again in the language
of quantum mechanics, this means that the wavefunc-
tion of the graviton is spread over the entire bulk and
has a very tiny overlap with the wavefunctions of SM
particles on the brane. The gravitational interaction is,
therefore suppressed by a factor governed by the brane-
to-bulk size ratio, i.e. δ/R. If we take δ ∼ 10−19 m and
R ∼ 10−4 m, we will get a suppression factor of 10−15

which is about the ratio of the gravitational force to
electroweak forces. Loosely, therefore, we may say that
most of the gravitational influence of a given source
is spread out through the bulk, and we on the brane,
measure only a minuscule fraction of it.

d �̃P (m) M̃P R(m) M1

2 10−20 10 TeV 10−4 10−3 eV
3 10−19 1 TeV 10−8 10 eV
4 10−19 1 TeV 10−11 10 keV
5 10−19 1 TeV 10−13 MeV
6 10−19 1 TeV 10−14 10 MeV
7 10−19 1 TeV 10−15 100 MeV

As we have seen, setting δ ∼ 10−18 m ensures that
this model is consistent with all precision tests showing
that the SM fields interact in three spatial dimensions
only. Setting R ∼< 0.1 mm makes everything consistent
with gravity experiments of the Eöt-Wash type. This
means that the effective Planck length can be made
as large as �̃P ∼ δ ∼ 10−19 m, by choosing R suitably,
according to the formula given in Eq. 31. Taking A ∼ 1,
we obtain R ∼ 10−19+32/d m, which is exhibited in the

D  brane3

R

Bulk

δ

Figure 14. Sketch explaining the ADD model with a
D3-brane, shown as a dark surface

table below for d = 2–7. The choice d = 1 is omitted,
as it leads to R ∼ 1014 m, which is patently absurd
since it is as large as the solar system.

The second and third column in the above table refer
to the effective Planck length and Planck mass in the
bulk, i.e. the level at which the SM begins to fail. This
has been kept at a TeV (= 1000 GeV), for d ≥ 3, so
that there is no chance of a hierarchy problem appear-
ing. For d = 2, the same value of �̃P would lead to
R around a millimetre, which is ruled out by the Eöt-
Wash data. However, taking �̃P an order of magnitude
smaller, which means cutting of the SM at 10 TeV in-
stead of 1 TeV, leads to an acceptable value of R, as
shown. The fourth column represents the required ra-
dius of compactification, and it is easy to see that such
small dimensions are not likely to be probed soon in
gravity experiments of the Eöt-Wash nature. In fact,
as d increases, the required R rapidly shrinks to the nu-
clear size, i.e. a femtometre. The fifth and final column
respresents the spacing between the masses of Kaluza-
Klein excitations, which is proportional to 1/R, and it
can be seen that it is always very small compared to the
energies (around a 100–1000 GeV) at modern colliders
such as the LHC. This is an important result and it
leads to the most exciting feature of the ADD model,
viz. the possibility that it would lead to observable sig-
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natures at existing and upcoming collider experiments.

How do these signatures come about? We must
note that all experiments take place on the brane, be-
ing part of the observable universe. Considered from
the point of view of an observer located on the brane,
the ADD model is mostly the SM (with a cutoff at

�̃P ∼ 10−19 m) in addition to very weak gravitational
interactions which occur whenever the bulk graviton
crosses the brane. If we could do the experiment in all
the 4 + d dimensions, we would observe the bulk gravi-
ton having an interaction strength G̃N = 2�̃2

P
, which is

almost of electroweak strength, since �̃P � �P . How-
ever, we ourselves are bound to the brane and hence
must look at the interaction from a four-dimensional
perspective. On the brane, Eq. 17 shows that the mass-
less bulk graviton field will reduce to a tower of four-
dimensional graviton fields or KK modes, each having
mass M�n given by Eq. 16 with M0 = 0. This means
that we have a dense quasi-continuum of masses all the
way up to the cutoff scale M̃P . We may recall that each
massive mode corresponds to having a certain amount
of momentum in the bulk, as shown by Eqs. 10–12.
Now each mode will interact like a single graviton in
four-dimensional Einstein gravity, analogous to the in-
teraction shown in Eq. 19, and with the usual coupling
GN = 2/�P as indicated by Eq. 20. This is so weak an
interaction that the probability for a single KK mode
to be produced is too small to see even a single such
event in the entire decade-long run of the LHC. Should
such an event occur, however the single graviton mode
is likely to fly off undetected since it will hardly interact
at all with the matter in the detectors. Thus, one would
detect the other partners in the reaction, and conclude
that some energy and momentum has gone missing.15

The real point of departure for the ADD model is that
this should happen in the same way for every KK mode.
This means that the total probability for such an event
to happen will get multiplied by the total number of
KK modes available, which must be given by the ma-
chine energy E divided by the KK mass spacing, which
is around 1/R. The table of mass spacings shown above
immediately tells us that for E ∼ 103 GeV – typical at
the LHC – this factor varies between 1015 and 104 as
d goes from 2–7. This huge number of KK modes is
enough to offset the low probability of producing a sin-
gle KK mode, and we end up with a decent probability
of seeing events with a substantial missing energy and

15Such missing energy and momentum signals have been tra-
ditionally used to infer the presence of the weakly-interacting
neutrinos, and are suggested as signals of other theories with
weakly-interacting particles, such as supersymmetry.

momentum at the LHC, especially for missing energy
goes to create the mass of the KK modes, i.e. a mo-
mentum component in the bulk. This corresponds to
gravitons interacting on the brane and flying off into
the bulk, which is the behaviour expected of the closed
strings whose excitations the gravitons correspond to.

If the above discussion seems too abstract, let us fix
our ideas by considering a particular process at the
LHC. This was first studied (among many other pro-
cesses) by Gian Giudice and his collaborators at CERN,
and almost immediately followed by similar studies by
Michael Peskin and collaborators at Stanford, and by
Tao Han, Joe Lykken and Ren-zie Zhang at Fermilab.
All these papers [21] were made public about six months
after the ADD-Antoniadis paper, within a single event-
ful week in November 1998, and they provided the im-
mediate trigger for the explosion of interest that fol-
lowed. The process we concentrate on here is that by
which the protons in the LHC beams collide to create
a photon and a KK mode of the graviton. A typical
Feynman graph for this process is shown on the left of
Fig. 15.
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Figure 15. Single photon production in association with
an invisible KK mode of the graviton in proton-proton
(pp) collisions at the LHC. A typical Feynman diagram
is shown on the left, with q denoting a quark or anti-
quark in the proton, and Gn indicating a KK mode.
The three little lines indicate the rest of the proton,
which continues down the beam pipe and is lost. The
actual event topology is shown on the right. With a
dotted line showing the hypothetical path taken by the
unobserved graviton

In this graph, at the moment of collision of the two
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protons, a quark from one proton and an anti-quark
from the other get annihilated, producing a virtual pho-
ton, which immediately decays into a real photon and
a KK mode of the graviton. Any of the modes can be
produced in this way, so long as there is enough en-
ergy in the initial states to be converted into the mass
of the KK mode, viz. M�n. Now the KK mode will,
as explained above, go undetected, so that the event
topology will appear as sketched on the right of Fig. 15
– a single photon in the final state, with nothing visi-
bly balancing its momentum in the transverse direction.
Thus, if the cross-section (a measure of the probability
of the reaction to occur) for creation of the �n-th mode
is given by σ�n, the total cross-section for seeing a sin-
gle photon of this kind will be a sum over all accessible
modes, i.e. σγ =

∑
�n

σ�n, where the sum commences

from �n = �0 and gets cut off when M�n becomes greater
than the machine energy.

In Fig. 16 we reproduce a graph from the work of
Giudice et al [21], in which the cross-section for single
photon production at the LHC is predicted. For a gen-
eral idea, one needs to focus only on the curves marked
a, where the solid line denotes d = 2 and the dashed
line denotes d = 4. The dot-dashed horizontal line is
an estimate of the SM background. This goes to show
that this signal will be clearly observable only if d = 2
and just barely if d = 3. However, that should not be
taken very seriously, since this is just one out of many
processes, and there are others which are more viable
from a phenomenological point of view.

The period immediately after November 1998 was
a busy period for the high energy community. Once
it had been established that one could not only solve
the hierarchy problem, but that there was a possibility
of observing quantum gravity effects in the laboratory,
the ADD model really caught the fancy of scientists
around the world. The first paper by Mathews, Srid-
har and the author [11] appeared towards the end of
November 1998 – within two weeks of the Giudice et al
paper. Over the next few years, each person or group
tried their hand at applying the ideas of ADD in their
own area of expertise, from cosmology to supernovae
to practically every conceivable process at real, upcom-
ing and even proposed scattering experiments. As one
wit remarked, large extra dimensions were being used
to explain everything except the extinction of the di-
nosaurs.

After the initial euphoria, however, saner reflection
prevailed. It turned out that a direct string-theoretic

Figure 16. Single photon production at the LHC as
predicted by Giudice et al [21]. To connect with the

text, read d for δ and M̃P for MD. The symbol � ET

denotes undetected energy/momentum

realisation of a spacetime with a D3 brane, some large
compact dimensions, and some small compact dimen-
sions, was not so easy to construct. String theorists,
confident about the physics of strings of length around
10−35 m, were wary of the much larger strings of length
around 10−19 m proposed in the ADD model. There
were technical problems associated with the cutting off
of KK modes in virtual processes and in the calculation
of quantum corrections involving graviton loops, but
one could say that such technical problems plague most
new theories. However the biggest blow to the ADD
idea came from the realisation that it does not really
solve the hierarchy problem – it simple re-formulates it!
Let us see how this happens.

The easiest way to see this is to recall the origin of
the hierarchy problem in the SM – it comes from the
self-interactions of the Higgs scalar field. But gravi-
tons have self-interactions too! Thus the mass of every
KK mode gets a quantum correction which would be as
large as the cutoff of the theory, i.e. M̃P . Since these
masses are inversely related to the size R of the large
compact dimensions, this means that the increase in
mass corresponds to a shrinkage in the bulk. However,
a shrunken bulk implies a corresponding shrinkage in
�̃P , which leads to an even higher value of the cutoff
M̃P . Re-evaluating the quantum corrections with this
higher cutoff drives the masses of the light KK modes
still higher and causes further shrinkage of the bulk.
The process continues to bootstrap in this fashion, un-
til stability is reached when R ∼ �̃P ∼ �P and all the
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graviton masses are of order MP . This is going back to
Kaluza and the original reason for abandonment of the
idea of extra dimensions. Moreover the cutoff for the
SM is now MP and hence the hierarchy problem is re-
stored in full glory. The only way to prevent this dismal
scenario is to find a mechanism which allows some of the
compact dimensions to remain large, while the others
remain small. This can be achieved in a supersymmet-
ric theory — but in supersymmetry, one can solve the
hierarchy problem for the Higgs boson directly.

All that the ADD model has achieved, therefore, is
to replace the hierarchy problem in the scalar mass by
a hierarchy problem in the graviton masses, i.e. a hi-
erarchy problem in the size of the compact dimensions.
The initial u.s.p. for the model is, therefore lost. Nev-
ertheless, it is not difficult to invoke supersymmetry,
or some such idea, to save the situation, since the un-
derlying theory is a string theory and hence necessarily
supersymmetric. Nowadays, most scientists are con-
tented with a pragmatic approach – to take the ADD
model as a phenomenological possibility, assuming that
the stability of the compact dimensions is achieved in
some unknown way. This is similar to the way in which
the SM has found universal acceptance, in spite of hav-
ing the hierarchy problem in scalar masses.

6. Black Holes and Doomsday Predictions

Even though it is flawed as a solution to the hierarchy
problem, the ADD model still gives rise to one of the
most exciting – and bizarre – predictions ever seen in
high energy physics. This is the suggestion that if this
is a true picture of the world, then proton-proton col-
lisions at the LHC would give rise to tiny black holes.
Thus, just as the realm of string theory and quantum
gravity is brought into laboratory experiments, so does
the black hole – that bizarre solution of Einstein’s gravi-
tational equations, hitherto thought to be a by-product
of dying stars – enter into the laboratory.

What is a black hole? If we glance at Eq. 7 it will
become apparent that something bizarre must happen
if the size of a massive spherical object r is decreased
below the Schwarzschild radius rS = 2GNM/c2, for at
this value the radial and temporal coordinates exchange
sign. This leadsto exactly the expected behaviour – mo-
tion along the radial coordinate can be unidirectional
only, i.e. towards the singularity at the centre r = 0.
Hence, once inside the distance r = rS , known as the
horizon, it is impossible for anything material – even
light – to escape from this object, which is accordingly
called a black hole.

If we set the mass M to the mass of a proton, then
the corresponding Schwarzschild radius becomes the
Planck length �P ∼ 10−35 m. This, in fact, is one way
to define the Planck scale. This means that so long as
the proton does not come into contact with any mat-
ter at distances of this order, no black holes will form.
To bring protons so close to matter, they must be ac-
celerated to Planck energy, i.e. 1019 GeV, which was
achievable only in the early universe, moments after
the Big Bang. This could have resulted in the forma-
tion of primordial black holes, some of which may have
‘evaporated’ and some of which may have accreted mat-
ter to become giant black holes sitting at the centre of
galaxies and quasars. Since laboratory energies, even
at the vaunted LHC, are no larger than 104 GeV, there
is no question, in four-dimensional Einstein gravity, of
producing such black holes.

Large extra dimensions change the scenario com-
pletely. For now the effective Planck scale is brought
down to �̃P , which means that the Schwarzschild radius
of the proton is as large as 10−19 m. Protons will ap-
proach this close if their energies are of order 103 GeV,
which will certainly be the case at the LHC. Accord-
ingly, we expect two such protons to coalesce [22], form-
ing a micro black hole of mass 2Mp. If such a micro
black hole is stable, it could then draw in nearby pro-
tons and grow in mass as well as horizon size, enabling
it to eventually swallow up the LHC machine, the LHC
tunnel, France, Switzerland, Europe and eventually the
whole earth with all its inhabitants. Even the Moon
would be shivered into bits and gradually sucked into
the maw of this rapacious monster.

This apocalyptic vision is not correct, however, and
that is because we live in a quantum world, rather than
a classical one. In quantum theory, the vacuum sur-
rounding any black hole is not an emptiness, but a bub-
bling ocean of virtual particle-antiparticle pairs, such as
pairs of electron and positron. Such pairs are perenni-
ally being created out of the vacuum, using some of the
enormous vacuum energy, and then annihilate again,
returning their energy to the vacuum. Stephen Hawk-
ing, the world-famous Cambridge physicist, showed in
the 1970s, that in the neighbourhood of a black hole,
however, strange things begin to [23]. It can be shown
that in free space an antiparticle travels backwards in
time, as it were, and near a black hole, the role of time is
played by the radial coordinate r. Thus, when a virtual
electron-positron pair is created near a black hole hori-
zon, the electron is drawn in, falling towards the origin
with ever-increasing speed, while the positron shoots
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Figure 17. Micro black hole at the LHC. A: Two pro-
tons approach each other with impact parameter within
the Schwarzschild radius. B: The protons coalesce into
a black hole. C: The black hole decays by Hawking
radiation, spraying particles in all directions

out, with ever-increasing speed outwards. This accel-
erated motion of a charged particle like the positron
causes radiation, known as Hawking radiation. Where
does the energy of this radiation come from? Eventu-
ally from the black hole itself – at the cost of its mass.
Thus, if a black hole is small enough, it can eventually
lose all its mass through Hawking radiation, or ‘evapo-
rate’. This is the reason why it is thought that most of
the primordial black holes have disappeared.

Micro black holes at the LHC will also lose energy by
Hawking radiation. The time scale is easy to calculate.
It is given by the time taken by interactions to cross
the black hole, i.e. rS/c ∼ 10−29 s. Such a black hole
will, for all effective purposes, be stillborn, since it will
decay long before even the nearest protons in the beam
(typically separated by about 10−6 m) can reach it.
There is absolutely no danger, therefore, of such a black
hole accreting any mass and growing. The world as we
know it is still a safe place.

There is still a catch in the above argument, and that
is the fact that it is assumed that the micro black holes
at the LHC would be produced at rest. However, there
is always a velocity spread in the beam so that some
protons have more momentum than others. Collisions
of such protons would lead to fast-moving black holes,
which live much longer due to a relativistic effect called
time dilation, discovered long ago by Einstein. One re-
quires, therefore, to carry out a careful study and see

if there is any chance that even a single micro black
hole may be produced with a long enough lifetime to
start accreting mass in the LHC experiment. After all
even one accreting black hole is enough to destroy the
earth. A detailed and careful analysis of this has been
performed recently by Steve Giddings and Michelan-
gelo Mangano at CERN [24], and their conclusion is
that this probability is small enough to be virtually
zero16. Moreover, any black hole with a long enough
time-dilated lifetime would be a high-speed one which
would pass through the earth without interacting with
any matter and eventually decay harmlessly outside the
earth.

No only do black holes pose no danger to us, but
they also provide a unique signature of any ADD-type
model [22]. For when a micro black hole decays, it will
result in a spray of all sorts of particles without preju-
dice, which would form a near isotropic distribution of
hits in the detector, as indicated in Fig. 17. At its peak,
the LHC could be producing ten million black holes per
year, each with this kind of spectacular signal. There
is really no way in which this can be missed, so it may
well be black holes which provide the first evidence that
the world has more than four dimensions.

Black hole signatures are interesting and the argu-
ments of Professors Giddings and Mangano are reas-
suring, but it is even more reassuring to think that the
ADD model is just an idea, and not even the best one
in its own genre. A much better solution of the hierar-
chy problem using extra dimensions was suggested by
Randall and Sundrum, and it is now to their ideas that
we turn.

7. The Randall-Sundrum Model

The key concept in the model of Randall and Sundrum
(Fig. 18) is that of naturalness. This was introduced
by Paul Dirac in the 1930s and is an important issue
in any quantum theory. In classical mechanics, we do
not bother if one parameter is very small and another
is very big. Thus, the fact that a grain of dust is very
much smaller than a mountain and that an elephant is
much bigger than a flea does not cause any eyebrows to
be raised. In the strange world of quantum mechanics,
however, this happy situation is no longer true. This is

16We are happy to live with many such dangerous but low prob-
abilities. For example there is a tiny probability that all the
molecules of air in the room will, through random motions, col-
lect in a corner and leave us asphyxiated; there is a tiny — well
not so tiny really — probability that a piece of cosmic debris will
strike the earth and cause it to break up; and so on.
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because of the completeness property of quantum states
– every state is equivalent to a linear combination of
other states17. Thus, bizarre as it may sound, a grain
of quantum dust has a component of quantum moun-
tain in it and a quantum flea has a component of quan-
tum elephant in it. In some experiments, therefore,
which happen to probe just that component, the grain
of dust will appear as big as a mountain, and similarly
the flea would appear as an elephant. In more techni-
cal language, any number which is very small or very
large (depending on what it is being compared with)
is unstable under quantum corrections, and will tend
to stabilise only when the two numbers in question are
equal or nearly equal. We have already seen two ex-
amples of this happening: the small mass of the Higgs
boson is driven to the Planck mass scale by quantum
corrections, and the large compact dimensions of ADD
are driven to the tiny Planck length, again by quan-
tum corrections. It was Dirac who declared [25] that
this kind of equality which leads to quantum stability is
natural, and that large or small numbers in a quantum
theory are unnatural.

We have just argued that both the SM and the ADD
model share the same feature of unnaturalness, which
is what the hieracrhy problem is all about. However,
quantum mechanics notwithstanding, the enormous dif-
ference in strength between gravity and electroweak in-
teractions is a fact, and cannot be wished away. In
the summer of 1999, about a year after the original pa-
pers of ADD, Lisa Randall of Princeton University and
Raman Sundrum, then at Boston University, proposed
a model [10] with just one extra dimension which was
able to create this huge difference without using any
large fundamental numbers. Their ingenious construc-
tion now goes by the name RS model.

The RS model assumes that there is a single extra di-
mension which has the topology of a circle folded along
a diameter – S

(1)/Z2 for the experts. For obvious rea-
sons, such a space is called an orbifold – this one being
the simplest of a whole class of objects which go by
this name. This is pictured in Fig. 19, where we also
note that at the two extreme points lie two D3 branes,
denoted as the visible (black) and the invisible (blue)
branes respectively. No explanation is given or sought
why this spatial dimension should be contorted in this
fashion, the reason presumably lying in the underlying
string theory18. The coordinate along the extra dimen-

17Provided those states are linearly independent.
18The RS construction has proved to be very difficult to embed
in any of the standard string theories, and nowadays is visualised

L. Randall R. Sundrum

Figure 18. Lisa Randall and Raman Sundrum, whose
proposal of warped extra dimensions provides the best
solution of the hierarchy problem within extra dimen-
sional models

sion is parametrised by an angle φ which is clearly lim-
ited to the range 0 ≤ φ ≤ π. RS then proceed to solve
the five-dimensional field equations of Einstein gravity
in this configuration. The solution can be done if and
only if one imposes boundary conditions on the branes,
which are equivalent to choosing four-dimensional cos-
mological constants – one positive and one negative – on
the two branes, as well as a carefully-matched negative
cosmological constant in the five-dimensional bulk19,
satisfying the relations

Λi = −Λv = −Λ5 . (32)

Here Λi,v,5 denote the cosmological constants on the
invisible brane, the visible brane and the bulk, in that
order. There is a good deal of fine-tuning in these
choices of cosmological constants, since even a small
deviation cannot lead to a solution of the Einstein equa-
tions. However, this may be turned to our advantage
by claiming that this is these are the equilibrium values
reached after the Big Bang, assuming that the universe
has always satisfied some solution of Einstein’s equa-
tions. Once, however, the choices are made, RS obtain
a solution for the line element

δs2 = e−KRφ

[(
δx0
)2 − (�x)

2
]
− R2 δφ2 , (33)

where K is a constant which may be interpreted as
the curvature of the fifth dimension, and is related

more as a phenomenological construct. Whatever be the under-
lying theory, however, it must have compact dimensions and D
branes, which indicates that it must be some kind of string-like
theory.
19This makes it a five-dimensional anti-de Sitter space, generally
denoted AdS5.
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to the five-dimensional Planck scale M̃P and the five-
dimensional cosmological constant Λ5 by

K 
 M̃3

P
/M2

P
= −Λ5/(24M2

P
) . (34)

On the ‘invisible’ brane, where φ = 0, this reduces
to a purely Minkwoski form, noting that the length
around the fifth direction is just y = Rφ. However,
as we proceed towards the ‘visible’ brane at π = 0, the
usual spacetime part undergoes an exponential contrac-
tion, though the fifth dimension is unchanged. Such
an asymmetric contraction is normally understood as
a warping and hence the exponential e−KRφ is referred
to as a warp factor. A sketch of this warping effect is
shown in Fig. 20. Clearly the warping will be maximum
on the ‘visible’ brane, at φ = π, which is identified with
the observed universe.

R

φ

Bulk

visible brane invisible brane

Figure 19. Sketch of the RS construction. The double
red line indicates the S

(1)/Z2 extra dimension. The
black region marked ‘visible brane’ corresponds to the
known universe, while the blue region marked ‘invisible
brane’ corresponds to a ‘shadow world’ of strong gravity

What does all this have to do with the hierarchy
problem? The answer is that we start by assuming all
interactions to have the same strength, gravity as well
as the electroweak interaction, and this is characterised
by 1/�̃2, where �̃ ∼ 10−19 m. However, gravity at this
strength is an effect native to the invisible brane, where
it has this strength. On the visible brane, we only see
that amount of gravitational interaction which reaches
us across the bulk, and this arrives after a drastic re-
duction of the length scale

�̃ → e−πKR�̃ . (35)

The very reasonable choice KR 
 11.73 takes the
right side of the above equation to �P ∼ 10−35 m. On
the other hand, electroweak interactions are native to

the visible brane – where they are confined, as in the
ADD case – and are of the typical strength 1/�̃2

P
. This

means is that we have been able to generate the enor-
mous difference in strength between the gravitational
and electroweak strengths without having recourse to
any unnaturally large or small numbers. In more pic-
turesque language, gravity is weak not because of any
inherent weakness, but because we see it shining on us
very dimly across a highly opaque higher dimension,
which allows only a tiny fraction of the force to get
through.

φ = 0
φ = π

invisible brane
visible brane

Bulk

Figure 20. Warping effect in the RS model. All length
scales get damped as we proceed from the invisible to
the visible brane, and the graviton wavefunction damps
out proportionately. Of course, the sketch is only illus-
trative, since the actual damping is exponential and the
separation between the branes is miniscule

What is the size R of the extra dimension? A glance
at Eq. 34 shows that it would be natural to choose M̃P

as well as K in the ballpark of MP , which would auto-
matically make R ∼ �P , since KR ∼ 10. All these sizes
are, of course, approximate within an order of mag-
nitude, but the important points to note are that (a)
there is no unnatural hierarchy of sizes and (b) the extra
dimension is really small – practically as small as orig-
inally envisaged by Kaluza and Klein. Thus, like the
original KK model and the ADD Model, the RS Model
also starts with two basic length scales, one much larger
than the other, viz. the effective electroweak length
�̃P ∼ 10−19 m, and the Planck length �P ∼ 10−35 m.
What this model really achieves, therefore, is to keep
these two length scales apart in such a way that they
cannot influence each other through quantum correc-
tions, while generating their large ratio by exponentiat-
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ing a relatively small number. This is no mean achieve-
ment, given the difficulty of the original problem.

There are many it ad hoc things in the RS model.
There is the question of what happened to the other
5 compact dimensions, if the whole is embedded in a
string theory of 10 dimensions. Why do they not de-
velop similar warping? Secondly, why does the com-
pact dimension get orbifolded into S

(1)/Z2 — this must
have a dynamical origin. Perhaps it was a simple circle
or a non-compact dimension just after the Big Bang,
and then it developed this peculiar topology as time
evolved. In the absence of any model for this, we can
only speculate. The other major question has to do
with how the cosmological constant on the branes and
on the bulk got aligned in the way they have to be for a
RS solution to exist. Moreover, if the visible brane has
a negative cosmological constant, why do we not see its
effects in cosmology? Since, as we have seen, we have
little or no understanding of the whole business of the
cosmological constant, one can only hope that when we
do begin to understand this, some of the mysteries of
the RS model will be unravelled as well.20

One of the consequences of the warping effect is that
the KK tower of gravitons acquires masses around a few
hundred GeV – unlike the ADD case, where the masses
range from very small values to the cutoff scale. This is
because, the extra dimension being small (comparable
to �P ) the KK tower would normally have a mass gap of
the order of the Planck mass, as in the original Kaluza-
Klein theory. However, this large mass, when seen on
the visible brane, appears with the warp factor e−πKR,
and is reduced to the level of the electroweak scale, i.e.
a few hundred GeV. When the details are worked out,
the actual mass parameter turns out to be [26]

m0 = Ke−πKR (36)

and the masses of the heavy KK modes of the graviton
are given by

Mn = m0 ξn (n = 1, 2, . . .). (37)

The ξn are the successive zeroes of the Bessel func-
tion J1(x) of order unity, which appears in diffraction
theory, and start from ξ1 = 1.22π, ξ2 = 2.33π, and so
on.

20In this context one may make the somewhat cynical comment
that the RS model succeeds in pushing the hierarchy problem —
which we have just begun to start comprehending — on to the
cosmological constant problem, which is still as big a mystery as
it ever was.

Not only does the warp factor render the KK gravi-
ton modes massive, but it also makes the interactions
of each KK mode much stronger. This is because the
usual interaction, proportional to �2

P
gets ‘warped up’

according to Eq. 35, and becomes �̃2

P
. This can even-

tually be parametrised in terms of a coupling constant

c0 =
K

MP

, (38)

which is a fraction ∼ 0.1 and hence comparable with
the electroweak coupling g 
 0.6. The KK modes of the
graviton, therefore, will behave very much like weakly-
interacting massive particles, being produced at the
LHC if there is enough energy and having very short
lifetimes, so that they appear to decay practically im-
mediately, i.e. at the interaction vertex itself [27].

Gn

e+ e−

p p

qq

Figure 21. Di-electron signal for an RS graviton reso-
nance. One of the Feynman diagrams is shown on the
left. One the right is shown the results of a simulation
using the CMS detector [28], for c0 = 0.01 and with
m0 = 400 GeV

At the LHC, therefore, massive graviton KK modes
are likely to appear as resonances in basic processes,
such as the production of electron-positron pairs, or
μ+μ− pairs, or a pair of hadronic jets. This is illus-
trated in Fig. 21. On the left, a typical Feynman dia-
gram for the production of an electron-positron (e+e−)
pair is shown. On the right is shown the results of a
simulation of this process by the CMS collaboration at
the LHC [28]. On the horizontal axis, marked “Mass”
is plotted the ‘invariant mass’ of the e+e− pair, i.e. the
quantity

Me+e− = (E+ + E−)2 − (�p+ + �p−)2 , (39)

where E∓ and �p∓ refer to the energy and momentum of
the electron and the positron respectively. The shaded
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histogram represents the expectations from the SM,
while the peaks represent the expectations in the RS
model.

As expected in a quantum resonance phenomenon,
the probability of interaction shoots up when this in-
variant mass Me+e− matches with the mass of a real
graviton mode. Three distinct peaks are predicted (for
this choice of parameters), and a clinching proof that
these are indeed RS graviton modes would be if the
corresponding masses were found to be in the ratio
ξ1 : ξ2 : ξ3. Of course, this graph does not tell us the
whole story, and there are many possible variations.
For example, it is entirely possible that the coupling c0

will be larger, in which case the resonant peaks will be
shorter and fatter, and as c0 → 0.1 will simply repre-
sent small excesses over the SM histogram. It is also
possible that the value of m0 may be so large that all
the graviton resonances lie beyond the kinematic reach
of the LHC. In such cases we would have to look for
other effects, such as those involving virtual graviton
modes, to look for signals of warped gravity. Studies
of this nature abound in the literature, but it would
be beyond the aim of this article to take up a detailed
discussion of this very interesting topic.

8. Modulus Stabilisation and the Radion

In the previous section we have discussed the RS model
and shown how it provides an elegant solution of the hi-
erarchy problem by never bringing a large and a small
number together in such a way that they can be in-
fluenced by each other. In doing so, we have glossed
over a major element of fine tuning in this model. Like
the ADD model, this lies in the size R of the extra
dimension, but here it is not the quantum stability of
this size that is in question, as it is close to the Planck
length anyway. What is in question is why the prod-
uct KR = 11.73 precisely, and what would happen if
it varied a little. Since the warp factor e−πKR is re-
sponsible for creating the factor of 1016 between the
TeV scale and the Planck scale, clearly that ratio will
be sensitive to small changes in KR. In fact, even the
choice KR = 11.0 would make the warp factor a whole
order of magnitude too small, and, conversely, choosing
KR = 12.5 would make it an order of magnitude too
large. In a string theory – or any underlying theory –
the size of the extra dimension R should be a dynamical
variable – in string theoretic parlance, a modulus. Such
a modulus should show time variation, and this would
appear as a time variation in MP , i.e. in the gravita-
tional constant GN . Given the fact that all astrophys-

ical evidence indicates that GN has shown no measur-
able variation since the Big Bang, it is clear that the
modulus R must be remarkably stable, i.e. the distance
between the observed universe of the visible brane, and
the shadow world of the invisible brane must be remark-
ably constant, and have the just-so value KR = 11.73.
This is indubitably a case of fine-tuning.

The original work of Randall and Sundrum did not
address the question of stabilisation of the R modulus
at all. In fact, RS went on to construct a model vari-
ant where R → ∞, where there is no question of fine-
tuning. However, it was soon realised that the original
model, fine-tuning and all, was much more relevant for
high energy physics than its successor. The issue of
modulus stabilisation had, therefore to be addressed
seriously.

Two solutions to the modulus stabilisation problem
were proposed within a few months of the original Ran-
dall and Sundrum suggestion. The first one – which has
proved more popular – was by Walter Goldberger and
Mark Wise (GW) from CalTech [29], and it used the
high energy theorist’s favourite tool, viz. a scalar field,
to provide the stability effect. We shall discuss this
presently. In the next spring, a supersymmetric solu-
tion was proposed by Jonathan Bagger and his collabo-
rators, from Johns Hopkins University [30]. Though el-
egant, this solution never became popular, probably be-
cause the high energy community, from the beginning,
has viewed extra dimensions as a alternative to super-
symmetry as a solution to the hierarchy problem.21

What was the simple and attractive solution pro-
posed by Goldberger and Wise? Like Yukawa and Higgs
and Lindé before them, they had recourse to postulat-
ing the existence of a scalar field B(x, φ) – in this case,
one which lives in the full five dimensional spacetime
(x, φ). By dint of choosing B4-type self interactions of
this field in the bulk, and extra self-interactions of the
form λ(B2 − v2)2 on the two branes, they were able to
show that the modulus KR is trapped in a deep poten-
tial with a minimum which can be set to 11.73 without
much fine tuning at any stage. A sketch of this poten-
tial is shown in Fig. 22. The steep walls flanking the
minimum show that it would take a major disturbance
of the entire universe to pull the modulus out of the

21This is not really a logical stand, because string theories, on
which brane world models are predicated, contain both super-
symmetry and extra dimensions. However, like many collective
prejudices similarly divorced from logic, it seems to have stood
the test of time.
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Figure 22. Illustrating the steep minimum in the
Goldberger-Wise potential at the minimum KR =
11.73. Note that the vertical axis is plotted on a loga-
rithmic scale

minimum and set it rolling. In the absence of any such
disturbance, the modulus is stable.

One important consequence of having a bulk field of
this form is that fact that the warp factor e−πKR on
the visible brane, i.e. our universe, is no longer just a
constant, but may be parametrised as e−π[11.73+T (x)],
where T (x) is a dynamical field. The values assumed
by T (x) must be very small, as indicated by the steep
walls of the potential well in Fig. 22, but since they
are exponentiated, they appear as a normal scalar field
Φ(x) on the visible brane. For obvious reasons, this
field is called a radion. It turns out that there are
no serious theoretical constraints on the mass of this
radion, and hence it can be chosen light or heavy as
we wish – within reason, that is to say. Thus, it is
theoretically equally possible to have a 1 GeV radion, or
a 10,000 GeV radion. If the radion is light, i.e. within
the kinematic access of the LHC, then it may prove
to be a very distinct signal for an RS kind of model,
stabilised by a GW-type mechanism.

Technically, however, there is a problem in identify-
ing a radion signal at the LHC or any other machine.
This is because a real radion couples to matter in a
manner identical with the Higgs boson. The signals for
both are, therefore, identical, and it will be difficult to
tell whether such signals are due to a Higgs boson or a
radion being produced. Of course, if both are produced,

and detected, then some of the detailed behaviour in
decays of these different scalars can be exploited to
distinguish them. This is particularly true when the
signal involves virtual quantum states, or in the lan-
guage of quantum field theory, loop-level effects [31].
However all this is upset by that fact that both ra-
dion and Higgs boson are quantum mechanical states
with identical quantum numbers, which permits them
to form mixed states which correspond exactly to nei-
ther. Detection of such mixed states may be easy, but
identification of the components of Higgs boson and ra-
dion in them is a non-trivial matter, and would require
the collection of a lot of data at the LHC or any other
machine before it can even be attempted [32].

9. Different Strokes

In the decade or so since extra dimensions became fash-
ionable again, there have been many attempts to de-
vise alternative models, using some of the basic ideas of
ADD and RS, but innovating more. It would be tedious
and long-winded to attempt a comrehensive listing of
all the new ideas that have been suggested. However
mentioning a few of the ideas may give a flavour of the
kind of thinking that has been going on in this context.

There have not been all that many modifications of
the ADD model, which is very simple. There have been
attempts to change the compactification scheme, the
simplest idea being to assume different radii of com-
pactification for different dimensions [33]. The fact that
the LHC may operate at the actual scale where gravity
is strong has inspired an attempt to write down a toy
string theory and work out possible signals for it. The
use of supersymmetry to stabilise the large size/Flora
of the bulk has been suggested [30], but has not found
very many takers till date.

One of the most ingenious ideas suggested in this
context is that of dimensional deconstruction [34]. This
takes note of the fact that the observable feature of the
ADD and similar models is the tower of KK modes.
The proposers of this theory point out that if the world
is purely four-dimensional and at a very small length
scale, there is a somewhat complicated gauge theory
involving replication of a particular gauge symmetry
many times, then, at larger length scales this may well
appear as a uniformly-spaces set of spin-2 states, which
could be confused with a KK tower of gravitons. In that
case, if one sees such repeated states at the HC, for ex-
ample, one would jump to the conclusion that there
are extra dimensions, even though the world is purely
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four-dimensional. This is an ingenious idea, but it does
require one to postulate a very complicated gauge sym-
metry at small length scales. Such complicated sym-
metries do arise in string theories – but if we are to
believe string theories, we might as well believe in ex-
tra dimensions too!

The RS model has inspired more variants, start-
ing with the second paper of Randall and Sundrum
themselves. Apart from obvious extensions like in-
cresing the number of warped dimensins, there have
been attempts to explain the observable universe as
a D3-brane which is an intersection of higher dimen-
sional branes – this complicated construction solves
some long-standing problems in the physics of flavour.
This is a bit like the traditional parable of using a
sledgehammer to crack a nut, but that is a criticism
that may be applied, in some ways, to the RS model
itself.

Perhaps the most interesting alternative idea to come
out of the RS model was the idea of having an extra
dimension in the form of an S

(1)/Z2 orbifold and dis-
pensing with the two D3 branes altogether [35]. In this
case, of course, all the SM fields live in the bulk, and, at
large lenth scales, we would see each of them as a KK
tower. This scenario is called a universal extra dimen-
sion or UED. More details may be found in the article
by Dobrescu in this volume.

The other idea which has generated a lot of recent
activity is that of quantum holography. In 1997, about
six months before the first ADD paper, Juan Malda-
cena at Harvard had conjectured that in a model with
D-branes, a theory of gravity in the bulk may appear on
the brane as a theory involving gauge interactions [36].
By changing from one set of variables to another, us-
ing what is called a duality transformation, one theory
transforms into the other22. Thus, a perfect fluid on the
brane may appear as a particular type of black hole in
the bulk theory, and similarly, there are black hole so-
lutions of quantum gravity in the bulk which look like a
theory of strong interactions on the brane. In RS-type
models, the nature of quantum gravity in the bulk hap-
pens to be exactly of the type (AdS) required for the
Maldacena conjecture to work, so there have been sug-
gestions that at the LHC (i.e. on the visible brane) we
may find an effective theory of composite quarks and

22This is technically called the AdS-CFT correspondence, where
AdS stands for Anti-de Sitter (cosmology) and CFT stands for
Conformal Field Theory.

leptons23, which is actuallly the Maldacena dual of fun-
damental theory of quantum gravity in the bulk [37].
Ingenious and exciting as these ideas are, they gener-
ally lack falsifiability, since practially any theory on the
brane can have an exotic gravitational counterpart in
the bulk, which our brane-bound experimental equip-
ment will not be able to test.

Most of these ideas beyond the basic ADD and RS
models have to do with gaining a deeper understand-
ing of theories with extra dimensions, or of the SM
itself. Hard-headed particle physicists, especially ex-
perimental physicists, have not, therefore, shown much
enthusiasm for these. Thus, apart from a few efforts,
the bulk of phenomenological and experimental studies
of extra dimensions have to do with just four kinds of
new physics:

• Towers of invisible ADD gravitons.

• Heavy RS graviton resonances.

• A relatively light scalar radion.

• KK modes in UED models.

It remains to be seen if there are hints of more exotic
new physics of the kind described above at the LHC.
For this we may have to wait a few years till enough
data are collected to infer backwards and pin down the
nature of the new physics.

10. Valediction

At the LHC, the effort of nations and the toil of thou-
sands is being poured into the most important quest of
all – the quest for understanding the innermost work-
ing of nature. The first step would be to understand
the origin of mass in the visible universe, for which it
is essential to discover the Higgs boson. The next step
would be to discover why the Higgs boson mass is sta-
ble, i.e. to find the correct solution to the hierarchy
problem. Next after that we would seek to discover the
nature of the dark matter component of the universe.
It may be mentioned in passing that 95% of the uni-
verse consists of dark matter and vacuum energy – all
invisible. This is a humbling thought, but, to the de-
termined thinker, it provides an extra impetus to seek
out the real nature of the universe. Extra dimensions
are a part of this quest, a small, but essential piece of
the jigsaw puzzle which, when solved, would unite the
whole universe and all its workings into a single theory.
Of this end, one cannot describe it better than in the

23This goes by the name technicolour.



Extra Spacetime Dimensions and the LHC 239

words of Jalal-ud-din Rumi, the thirteenth century Sufi
poet [38]:

My place is placeless, my trace is traceless,
no body, no soul, I am from the soul of souls.
I have chased out duality, lived the two worlds as one.
One I seek, one I know, one I see, one I call –
The First and the Last, the Outer and the Inner.

On this note we conclude our story.
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