
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Effect of short-range correlations on the single
proton 3s1/2 wave function in 206Pb

To cite this article: S. Shlomo et al 2018 J. Phys.: Conf. Ser. 966 012013

 

View the article online for updates and enhancements.

Related content
Nucleus probing for short-range
correlations using neutrino-nucleon
interactions
Kajetan Niewczas

-

Effects of short-range correlations and
three-body force on proton-3He scattering
at high energy
M A Hassan and S S A Hassan

-

Study on the formation of the composite
system of 238U+238U
Wu Xi-Zhen, Tian Jun-Long, Zhao Kai et
al.

-

This content was downloaded from IP address 188.184.3.52 on 28/02/2018 at 08:23

https://doi.org/10.1088/1742-6596/966/1/012013
http://iopscience.iop.org/article/10.1088/1742-6596/668/1/012119
http://iopscience.iop.org/article/10.1088/1742-6596/668/1/012119
http://iopscience.iop.org/article/10.1088/1742-6596/668/1/012119
http://iopscience.iop.org/article/10.1088/0954-3899/17/8/007
http://iopscience.iop.org/article/10.1088/0954-3899/17/8/007
http://iopscience.iop.org/article/10.1088/0954-3899/17/8/007
http://iopscience.iop.org/article/10.1088/0954-3899/17/8/007
http://iopscience.iop.org/article/10.1088/1674-1137/33/S1/010
http://iopscience.iop.org/article/10.1088/1674-1137/33/S1/010
http://iopscience.iop.org/article/10.1088/1674-1137/33/S1/010
http://iopscience.iop.org/article/10.1088/1674-1137/33/S1/010
http://iopscience.iop.org/article/10.1088/1674-1137/33/S1/010


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

12th International Spring Seminar on Nuclear Physics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 966 (2018) 012013  doi :10.1088/1742-6596/966/1/012013

 
 
 

  
 
 

Effect of short-range correlations on the single proton 3s1/2 wave 
function in 206Pb  

  
S. Shlomo1,2

, I. Talmi2, M. R. Anders1 and G. Bonasera1  
1Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA 
2Department of Particle Physics and Astrophysics, The Weizmann Institute of 
Science, Rehovot, Israel 
 
E-mail: s-shlomo@tamu.edu; igal.talmi@weizmann.ac.il; manders14@tamu.edu; 
gbonasera@comp.tamu.edu  
 
Abstract. We consider the experimental data for difference, 𝛥𝜌#(𝑟), between the charge density 
distributions of the isotones 206Pb – 205Tl, deduced by analysis of elastic electron scattering 
measurements and corresponds to the shell model 3s1/2 proton orbit. We investigate the effects 
of two-body short-range correlations. This is done by: (a) Determining the corresponding single 
particle potential (mean-field), employing a novel method, directly from the single particle 
proton density and its first and second derivatives. We also carried out least-square fits to 
parametrized single particle potentials; (b) Determining the short-range correlations effect by 
employing the Jastrow correlated many-body wave function to derive a correlation factor for the 
single particle density distribution. The 3s1/2 wave functions of the determined potentials 
reproduce fairly well the experimental data within the quoted errors. The calculated charge 
density difference, 𝛥𝜌#(𝑟), obtained with the inclusion of the short-range correlation effect does 
not reproduce the experimental data.  

1. Introduction 
The shell model has been very successful in explaining many features of nuclei [1,2]. The relation 
between the shell model wave functions and the real nuclear ones is rather complicated. Important 
information about it may be deduced from the measured charge density difference, 𝛥𝜌#(𝑟), between 
charge density distributions of the isotones 206Pb – 205Tl [3]. The experimental data of  𝛥𝜌#(𝑟) show a 
clear maximum at the center of 206Pb with two additional maxima.  This seems to be the shape obtained 
from a 3s1/2 single proton wave-function, in agreement with the simple shell model. It was pointed out 
in the literature that commonly used central potentials, such as the Woods-Saxon potential, lead to a 
3s1/2 charge density in disagreement with experimental data. In particular, the central density obtained 
from the Woods-Saxon potential is too large by about 30%. This difference between data and the 
Woods-Saxon results was considered earlier in the literature resulting with the statement that it is 
accounted for by the effect of two-body short range correlations (SRC) on the shell model wave 
functions [3,4]. However, it was also stated in Ref, [5] that “there is no significant discrepancy between 
the experimental data and the Hartree-Fock calculations using reasonable effective interactions.” In this 
work we take a closer look at this problem and ask: (i) Is there a single particle potential V(r) whose 
3s1/2 wave function reproduces the experimental data? To answer this question we have developed a 
novel method, using the single particle Schrodinger equation for a wave function 𝜓(𝑟) with eigenenergy 
E, to determine the central potential 𝑉(𝑟)  directly from the measured single particle proton density of 
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3s1/2 wave function and its first and second derivatives, assuming known for all 𝑟. We apply the method 
to the experimental data of the charge distribution of the proton 3s1/2 orbit given by the charge density 
difference, 𝛥𝜌#(𝑟) [3]. We have also carried out fits to parametrized single particle potentials. (ii) Is the 
effect of short-range correlations (SRC) on the nuclear density explains the experimental data? To assess 
the effect of SRC we have used the Jastrow many-body correlated wave function, with a two-body 
correlation factor, and derived a simple and a good approximate method for calculating the effect of 
SRC on the single particle density distribution.  
    We point out that the resulting single particle potential, if found, will provide a stringent limit on the 
effects of short correlation on the expected values of long-range operators, an important test for the shell 
model. The potential can also be used as an additional experimental constraint in determining a modern 
energy density functional (EDF) for providing more reliable predictions of properties of nuclei and 
nuclear matter [6,7]. In the next section we provide a short presentation of the novel methods used in 
the calculations and in section 3 we present some results with the conclusion given in section 4. Some 
results were presented in Refs. [8,9,10]. 
 
2. Formalism 
2.1 Deducing the potential from the single-particle density 
From the single particle Schrodinger equation, 
 − ћ,

-.
𝛥𝜓 + 𝑉𝜓 = 𝐸𝜓 ,                                                                                                  (1) 

where 𝑉(𝑟) is a real local and non-singular potential, follows that for a given single particle wave 
function 𝜓(𝑟), known for all	𝑟, and given eigenvalue E, the corresponding single particle potential V is 
uniquely determined by 
 𝑉(𝑟) = 𝐸 + ћ,

-.
𝑆(𝑟),      𝑆(𝑟) = 45(6⃗)

5(6⃗)
.                                                                                   (2) 

For a non-singular V, 𝛥𝜓(𝑟) = 0, when 𝜓(𝑟) = 0. The general relation for	[𝜓(𝑟)]:, where b is a 
positive integer, is given in Refs. [9,10]. Here we limit our consideration to the spherically symmetric 
case where, 
 𝜓;<=(𝑟) =

>?@A(6)			
6

𝑌<= .                                                                                                  (3) 
Here, 𝑅;<=(𝑟) is the radial wave function for the orbit with principal number n, orbital angular 
momentum l and total angular momentum j and  𝑌<=  is the eigenfunction of the angular momenta l and 
j. In the following we limit the discussion to the proton 3s1/2

 orbit, in which the angular momentum l = 
0 and therefore no centrifugal and spin-orbit potentials appear in 𝑉(𝑟). Substituting (3) in (1) we obtain 
the Schrodinger equation for the radial wave function 𝑅;<=(𝑟). Using the Schrodinger Equation for 
𝑅;<=(𝑟) we find that,  

 𝑉#D;(𝑟) = 𝐸 + ћ,

-.
𝑆(𝑟) − E

-
(1 − 𝜏H)𝑉#IJ<(𝑟),      𝑆(𝑟) =

E
>?@A(6)

	K
,>?@A	
K6,

	 .                     (4) 

where 𝑉#D;(𝑟) and  E
-
(1 − 𝜏H)𝑉#IJ<(𝑟), are the central and coulomb potentials, respectively. Here, 𝜏H=1 

for a neutron and -1 for a proton.  
    Using the relation 
 𝑅;<=- (𝑟) = 𝑟-𝜌;<=(𝑟) ,                                                                                                             (5) 
where 𝜌;<=(𝑟) is obtained by integrating the single particle density distribution over the angles and spin 
variables, it is possible to extract the wave function 𝑅;<=(𝑟) from the experimental data for the charge 
density of the 3s1/2 proton orbit and deduce the corresponding single particle potential using Eq. (4). This 
leads to having some numerical complications. Therefore, we develop below a method to determine the 
potential directly from	𝜌;<=(𝑟) and its first and second derivatives. Using Eq. (4) for the relation between 
	𝑆(𝑟) and  𝑅;<=(𝑟), we obtain the simple relation between 	𝑆(𝑟) and 𝑅;<=- ,  

 𝑆(𝑟) = E
->?@A

, L
K,(>?@A

, )	

K6,
− E

-
E

>?@A
, M

K(>?@A
, )

K6
N
-
O.                                                                                  (6) 
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When 𝑅;<=- = 0, 𝑑𝑅;<=- 𝑑𝑟⁄ = 0. From Eq. (4), for non-singular potential, the term on the right hand side 
(r.h.s) of Eq. (6) in the large square brackets also vanishes. From Eqs. (5) and (6) we obtain the relation, 

 𝑆(𝑟) = E
-R?@A

MK
,R?@A
K6,

+ -
6
KR?@A
K6

− E
-R?@A

SKR?@A
K6

T
-
N.                                                                   (7) 

When 𝜌;<= = 0, 𝑑𝜌;<= 𝑑𝑟⁄ = 0. From Eq. (4), for non-singular potential, the term in the square brackets 

of (7) vanishes and 	K
,R?@A
K6,

	also vanish.  
    We add that a commonly used central nuclear potential is the Woods Saxon (WS) potential,      
 𝑉(𝑟) = 𝑉U [1 + 𝑒𝑥𝑝((𝑟 − 𝑅E) aU⁄ )]⁄  ,                                                                                   (8) 
where, 𝑉U, 𝑅E and aU  are the depth, half radius and diffuseness parameters, respectively.  For the 
Coulomb potential we adopt the form obtained from a uniform charge distribution of radius 𝑅#Z ,                                                       

 𝑉#IJ<(𝑟) = 𝑍𝑒- \(3 − 	𝑟
-/𝑅#Z- ) 2𝑅#Z								𝑟 ≤ 𝑅#Z⁄

																			1/𝑟																	𝑟 > 𝑅#Z
  ,                                                    (9) 

where 𝑅#Z  is deduced from the experimental value of the charge root mean square radius.We emphasize 
that in elastic electron-nucleus scattering measurements the charge density distribution, 𝜌#Z(𝑟) is 
deduced but in theoretical models the point proton density distribution,	𝜌b(𝑟) is calculated. They are 
related by      
 𝜌#Z(𝑟) = ∫ 𝜌b(𝑟′ee⃗ ) 𝜌bfg(𝑟 − 𝑟′ee⃗ )𝑑h𝑟′ee⃗  ,                                                                                       (10) 
where 𝜌bfg(𝑟) is the charge density distribution of the proton. The experimental elastic electron 
scattering data on a free proton can be well reproduced by the expression 
 𝜌bfg(𝑟) =

E
ijkl

𝑒m6 k⁄  ,                                                                                                (11) 

where 𝑎- = E
E-
𝑟bfg-   with 	𝑟bfg = 0.85	fm being the corresponding charge root mean square (rms) radius 

[11]. The Fourier transform of the charge density 𝜌#Z(𝑟), determined by the convolution relation of Eq. 
(10) is given by   
 𝐹#Z(𝑞) = 𝐹bfg(𝑞)𝐹b(𝑞) ,                                                                                                          (12) 
where 𝐹#Z(𝑞), 𝐹bfg(𝑞) and 𝐹b(𝑞), are the Fourier transfoms of 𝜌#Z(𝑟), 𝜌bfg(𝑟) and 𝜌b(𝑟), respectively. 
Eq. (12) can be used to determine the form factor 𝐹b(𝑞). Then 𝜌b(𝑟) can be obtained from 𝐹b(𝑞) by the 
inverse Fourier transform and compared with theoretical predictions.  
 
2.2 Effect of short-range correlations on the single particle density 
Recently [12], we have derived and employed a simple and a good approximate method for determining 
the effect of short-range correlations (SRC) on the single particle densities of nucleons in nuclei. The 
method is obtained assuming: (i) the Jastrow ground state many body wave-function in the independent 
pair approximation [13,14], and (ii) the relation between the exchange terms and the direct terms of the 
two-body matrix element of the correlation function is similar to that of the contact interaction 
𝑉U𝛿u𝑟v − 𝑟=w. The Jastrow ground state wave-function has the form, 

                                                Ψ(𝑟E,⋯ 𝑟|) = 𝑁~I66 ∏ 𝑓u�𝑟v − 𝑟=�w|
E�v�= Φ(𝑟E,⋯ 𝑟|),                       (13)                                  

where A is the number of nucleons, 𝑁~I66  is the normalization constant, Φ(𝑟E,⋯ 𝑟|) is the independent 
particle model (IPM) wave-function for the ground state, given by the Slater determinant, 

                                                                   Φ(𝑟E,⋯ 𝑟|) =
E
√|!

𝑑𝑒𝑡�𝜙vu𝑟=w�	,	                                                                                                          (14) 
of the single particle wave-functions 𝜙v with 𝑟= stands for the set of 𝑟	, 𝜎 and 𝜏, of space, spin and isospin 
coordinates, respectively. Note that for open shell nucleus, Φ(𝑟E,⋯𝑟|) in (13) is a linear combination 
of slater determinants. The function   𝑓v= = 𝑓u�𝑟v − 𝑟=�w in (13) is the SRC function taken in the form 

𝑓v= = 𝑓u�𝑟v − 𝑟=�w = 1 − 𝑒m��6⃗�m6⃗A�
,
= 1 − ℎv=, (15) 
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where the parameter 𝛼 is deduced from the experimental data on the charge form factor. The effect of 
SRC on the proton single particle density distribution is determined by evaluating the matrix element of 
the density operator using the expansion 
 
                     ∏ 𝑓v=-|

E�v�= = ∏ u1 − 𝑔v=w|
E�v�= = 1 − ∑ 𝑔v= +

E
-
∑ 𝑔v=𝑔�< − ⋯ ,|
v�=,��<
(v=)�(�<)

|
E�v�= 	               (16) 

where, g = 2h – h2. We adopt in our calculations the approximation of Ref. [14] with the ratio 𝑑 𝑟U� ~	0.5, 
where d being the “healing distance” and 𝑟Uh is the average volume per particle. In the calculations we 
use the shell model harmonic oscillator wave functions.   

 

 

 
Fig.1. (a) Experimental data for the charge 
density difference 206Pb – 205Tl. The solid, 
dashed and dotted lines show the data, data with 
effect of rearrangement effect and the 
experimental errors, respectively. (b) Same as 
(a) for the 𝑅b-(𝑟) obtained from the 
experimental data. 

      Fig.2. (a) The solid and dashed lines are the 
potentials deduced from Eq. (6) using Figure 1b. 
(b) The solid and dashed lines are the fitted 
broken potentials using Figure 1b. The dashed-
dotted line is a fit to Woods-Saxon potential. The 
dashed-dotted-dotted line is the standard Woods 
Saxon. 

3. Results 
We present in Figure 1a (solid line) the experimental data [3] for the charge density difference,  
 𝛥𝜌#(𝑟) = 𝜌#(𝑟;  206Pb) −𝜌#(𝑟;  205Tl), (17) 
between the isotones 206Pb – 205Tl.  The dotted lines indicate the experimental uncertainty. The two nodes 
associated with the proton 3s1/2 orbit are clearly seen in the figure. To assess the possible rearrangement 
effect (from 205Tl to 206Pb) on the charge rms radius of the 81 protons core in 206Pb, we adopt the scaling 
approximation,   
                                                        𝛥𝜌>#(𝑟) = 𝜌#(𝑟;  206Pb) −𝛼h𝜌#(𝛼𝑟;  205Tl),                    (18) 
assuming an increase by 0.005 fm, similar to the change between nuclei in this region [15]. We obtain 
the scaling parameter α = 5.4792/(5.4792 + 0.005) = 0.9990, the ratio between the charge rms radius of 
205Tl to that of the 81 core protons in 206Pb. The results for 𝛥𝜌>#(𝑟) is shown in Figure1a (dashed line). 



5

1234567890 ‘’“”

12th International Spring Seminar on Nuclear Physics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 966 (2018) 012013  doi :10.1088/1742-6596/966/1/012013

 
 
 

We determined the values of  𝑅b-(𝑟) = 4𝜋𝑟-𝛥𝜌b(𝑟) and 	𝑅>b- (𝑟) = 4𝜋𝑟-𝛥𝜌>b(𝑟), deduced from the 
results of Figure 1a using Eqs. (10) and (12), shown as solid and dashed lines in Figure 1b, respectively 
The magnitude of the difference between  𝑅b-(𝑟) and 𝑅>b- (𝑟)  is similar to that of the experimental 
uncertainty. The corresponding potentials, for 𝑅b-(𝑟) and 𝑅>b- (𝑟) of Figure 1b, obtained by employing 
Eqs. (4) - (6), are shown in Figure 2a by the solid and dashed lines, respectively. The dotted lines 
(constant potentials) are extracted from fits of the corresponding wave-function to 𝛹= Csin(kr+ϕ), in 
the vicinity of the minima. The Coulomb potential of Eq. (9), with  𝑅#Z = 7.1 fm, was adopted in the 
calculations. Note the large uncertainties in the extracted potential in the vicinity of the nodes (at 2.6 
and 4.9 fm). We have therefore considered several nuclear central potentials with parameters obtained 
by fits to the corresponding experimental data. In Figure 2b we show the resulting potentials fitted to 
𝑅b-(𝑟) of Figure 1b. The solid line is a fit to broken lines potential to the solid line of Figure 1b, resulting 
with a good agreement with data and χ2

 /N = 1.15. A similar fit to the dashed line of Figure 1b leads to 
the dashed line of Figure 2b with χ2

 /N = 1.81. The dashed-double dotted line is a fit of the solid line of 
Figure 1b to a parametrized Woods-Saxon potential (9), resulting with χ2

 /N = 3.28. The dashed-dotted 
line is the conventional Woods-Saxon potential (9), resulting with χ2

 /N = 8.85 when comparing to the 
experimental data.  

 
Fig. 3. Comparison between experiment and theory for       Fig. 4. Same as Figure 3 for 𝑅#-(𝑟). 
           the charge density of the proton  3s1/2 orbit using  
           the Jastrow correlated wave function. 
                                                                                   
 
    Using the Jastrow wave function, Eq. (13), we determined the effect of SRC on the charge density 
distributions of 206Pb and 205Tl. In the calculations we adopted the shell model harmonic oscillator wave 
function with the size parameter   𝜈 = 1/5.9  fm-2 and the parameter 𝛼 = 1.96 fm-2. In Figs. 3 and 4 we 
show the results for the 3s1/2 proton charge density and the square of the radial wave-function, 
respectively, and compare with experimental data. The dotted lines show the experimental results for 
the difference between 206Pb and 205Tl charge distributions and the solid line is the corresponding 
calculated results. The dashed and dashed dotted lines are for the harmonic oscillator 3s1/2 proton orbit 
in 206Pb with and without the effect of correlations, respectively. It is seen from Figures 3 and 4 that 
although the effect of SRC is to reduce the 3s1/2 single proton charge density at r = 0 by about 30%, the 
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calculated density disagrees with the experimental data by more than a factor of 2, particularly in the 
region of r = 2 – 4 fm. 

4. Conclusions 
We have considered the experimental data for the charge density difference between the isotones 206Pb 
– 205Tl, deduced by the analysis of elastic electron scattering measurements and corresponds to the shell 
model 3s1/2 proton orbit. We have investigated the effects of two-body short-range correlations. This 
was done by: (a) Determining the corresponding single particle potential (mean-field), employing a 
novel method, directly from the single particle proton density distribution and its first and second 
derivatives. We also carried out least-square fits to parametrized single particle potentials. The 3s1/2 

wave functions of the determined potentials reproduce fairly well the experimental data within the 
quoted errors.; (b) Determining the effect of short-range effect correlations by employing the Jastrow 
correlated many-body wave function to derive a correlation factor for the density distributions of single 
particle orbits. The calculated 3s1/2 density obtained with the inclusion of the effect of short-range 
correlations does not reproduce the experimental data. Our conclusion does not contradict the existence 
of SRC effects in the real nuclear wave function, as demonstrated by the high momentum tail in the 
experimental data for the charge form factor. Our results indicate that the shell-model wave function 
may yield charge density distributions which are in agreement with experimental data. More accurate 
experimental data, with uncertainty smaller by a factor of two or more, may answer the question how 
well can the data be reproduced by a 3s1/2 single particle wave function obtain from mean-field 
calculations. It will also help to determine more exactly the deviation between data and our SRC 
calculations. Of course, more accurate calculations of the effect of SRC are needed.  
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