
HOW TO BUILD AND MAINTAIN A DEVELOPMENT ENVIRONMENT
FOR THE DEVELOPMENT OF CONTROLS SOFTWARE APPLICATIONS:

AN EXAMPLE OF “INFRASTRUCTURE AS CODE” WITHIN THE
PHYSICS ACCELERATOR COMMUNITY

L. Fernandez, R. Andersson, H. Hagenrud, T. Korhonen, R. Mudingay, European Spallation Source,
ERIC, Lund, Sweden

B. Zupanc, Cosylab, Ljubljana, Slovenia

Abstract
The Integrated Control System Division (ICS) at the

European Spallation Source [1] (ESS) has the mandate to
provide all the needed tools to ESS staff, in-kind
contributors and consultants spread all over Europe, in
order for them to build software for the commissioning
and operation of the ESS. This includes EPICS
applications, scripting environments, physics simulators
and commissioning tools among others. ICS needs to
provide support for new releases of the different software
components, guaranteeing that the development
environment of all the users can be properly updated. ICS
needs to guarantee as well that environments can be
reproducible and at the same time give the flexibility to
users to own and customize their environments. ICS used
a new virtualization technology (Vagrant [2]) and a new
configuration management system (Ansible [3]) to
provide a cutting edge development environment where
all the software infrastructure can be described as code
and properly stored in a version control system, tagged,
tested, versioned and rollbacked if needed.

INTRODUCTION
The construction of the ESS brings an enormous

challenge. ESS will be built with the collaboration of
many different countries in Europe. And that is not only
true for material and hardware, but also for software.
Each of these countries, also known as in-kind
contributors, will participate in the development of
particular components of the accelerator. Regarding
software, in-kind contributors will design, develop and
test software in their home countries. Later on, that
software will be integrated at the ESS. This brings an
extraordinary complexity to the software integration of
those elements. Software components, frameworks,
versions, dependencies, toolkits must be agreed upon by
all parties in order to guarantee that all the different
pieces will be properly integrated.

After a careful study, the Software Group of the ICS
decided to provide all the tools that are needed to develop
software for the control systems. ICS guarantees that the
tools provided to in-kind contributors would be the ones
supported and used in commissioning and operation of
the ESS machine. ICS provides such environment in
different formats: a physical machine installation and a
virtual machine. In both cases the system contains all the

libraries, software components and frameworks that are
needed to develop software for the ESS Controls Systems.

In order to configure the physical machine or the virtual
machine, ICS uses the same source of information: a set
of Ansible playbooks describing the configuration of the
ICS development environment. The virtualization
platform that was chosen was VirtualBox [4] but with
Vagrant running on top of it. Vagrant extremely eases the
installation, configuration and distribution of the virtual
machines (Fig. 1).

Figure 1: Ansible is used for the configuration of virtual
and physical machines.

ANSIBLE
Ansible is an open source configuration management

system used to automate the configuration of IT systems,
deploy applications and provision software in new and
existing systems. Ansible can also be used for software
orchestration, where not only the configuration of the
systems is important but also the order in which they have
to be configured.

The basic unit of Ansible is the playbook. We can see
the Ansible playbook as a script where we can describe
the configuration of our system.

The main goal of having Ansible is to be able to
describe all the infrastructure software of the ICS as code.
All the configuration of ICS servers, ICS development
machines, all ICS machines in general are described in
Ansible playbooks.

There are some other configuration management
systems used successfully by the IT, such as: Salt, Puppet
or Chef. But, Ansible was chosen among all of them for
the following reasons:

Proceedings of IPAC2016, Busan, Korea WEPOR050

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T32 Online Modelling and Software Tools

ISBN 978-3-95450-147-2

2781 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

 Extremely low learning curve. It is very easy to write
Ansible playbooks. They are written in almost
natural language what it is makes very easy the
development and the maintenance by non experts. In
some cases ICS needs its in-kind contributors to
manage and perform small modifications in the
Ansible playbooks. The fact that those playbooks are
easy to read, write and modify was an important
reason to choose Ansible

 Ansible is agent-less. This means that Ansible does
not need agents running in the target machines as
daemons. Ansible is known for being a push system,
where the configuration is pushed from a centralized
place into the target machines or nodes. This
simplifies the installation and configuration of
systems as the only pre-requisites to be fulfilled in
the target machines are: ssh and python (2.4 or later).
This characteristic was very important in the process
of choosing Ansible. In cases when target machines
are provided and hosted by in-kind contributors, ICS
cannot control them. Being agent-less ICS will not
be worried for configuring properly any agent or
deamon in those target machines. It simplifies the
maintenance and installation of the target machines
or nodes.

Having a configuration management system as Ansible
allows ICS to describe all the software infrastructure as
code (IaC) [5] and to keep such configuration in a version
control system such as Git [6]. Also this lets us version
the current configuration of ICS systems and therefore
keep control of the updates, and even perform rollbacks.
ICS uses the Atlassian cloud implementation of Git called
Bitbucket [7] (Fig. 2).

Figure 2: Ansible playbooks used to configure ICS
systems are stored and versioned in Git.

VAGRANT
Vagrant provides an easy way to create virtual

environments. Vagrant lays on top of virtualization
providers such as VirtualBox, VMWare, AWS and others.
At ICS Vagrant is used on top of the VirtualBox provider.
Using Vagrant, it is possible to configure a virtual
environment describing such configuration in a file that is
called Vagrantfile. This Vagrantfile configuration file
provides all the setup needed to configure the virtual
machine properly, including the reference to Ansible
playbooks, which install the appropriate versioned

software. This way of configuring the virtualization
environment spares the end-user of doing the
configuration by himself. That also brings a huge benefit
when automating the creation and management of virtual
machines. On top of all that, being able to describe the
virtual machine configuration in a file allows us to keep
such configuration in version control. This means that the
configuration of the virtual environment can be properly
versioned, and previous versions can be restored easily.

In Vagrant the user normally manages the virtual
environment with a very simple command line interface.
Typical commands are: “vagrant up” to start the virtual
machine, “vagrant halt” to stop the virtual machine or
“vagrant reload” to reload the configuration from the
Vagrantfile (Fig. 3).

Figure 3: Vagrant uses the playbooks stored in Git to
populate the virtual machines.

A key benefit of using virtual machines for the
development environment is that they can be treated as
disposable environments. If for any reason the
environment gets corrupted the virtual machine can be
destroyed and a new one created within seconds. That
gives the user freedom to work with the environment
without being worried to break it. For this to work, it is
very important that user’s data and code are kept outside
the virtual machine. Vagrant and VirtualBox provide the
concept of shared folders. Using shared folders the users
can maintain source code and important data in their host
environment whereas the code can be also accessible
from the virtual machine. Data can also be shared among
virtual machines using shared folders.

The user is always able to install new packages in the
virtual machine, although we encourage keeping it as
neater as possible. In most of the cases, the users just
want to modify the virtual machine in order to install their
preferred IDE. In that case we encourage users to install
the IDE in their host (laptops or desktop computers) and
to use share folders to work on the code that later on can
be run in the virtual machine. This implies that the users
can use their original development environment, with no
modifications, and still use any editor or tool.

WEPOR050 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

2782C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T32 Online Modelling and Software Tools

CONITINUOUS INTEGRATION AND
CONTINUOUS TESTING

One big benefit of keeping the entire software
infrastructure described as code and stored in a version
control system such as Git, is that many activities can be
easily automated avoiding manual error prone processes.
One of these activities is the testing of new changes. At
the ICS an automated system for verification of software
configurations has been put in place using Jenkins as the
main framework.

Each time there is a change in any of the Ansible
playbooks and once that change is committed to the
central Git repository, Jenkins [8] triggers a job that
verifies that the new playbook runs successfully. Jenkins
also verifies that the rest of playbooks that were not
modified were not affected by the new changes.

When running tests it is important to setup an
environment that is not polluted by previous tests or
previous environments or setups. The best practice in
these cases is to start a new environment from scratch
where Jenkins could test the Ansible playbooks. In order
to do that, ICS uses Docker [9] containers. Jenkins spins
up a Docker container on demand. Once the Docker
container is created Jenkins provisions a fresh
environment in the container and verifies that the Ansible
playbooks run successfully, provisioning the new
container (Fig. 4).

Figure 4: Continuous Integration infrastructure for
Ansible playbooks.

Thanks to this current setup, ICS has been able to
identify and fix numerous problems before the Ansible
playbooks were deployed into production. The use of
Jenkins and Docker containers has been a breakthrough in
the quality assurance of the ICS software infrastructure.

SOFTWARE COMPONENTS PROVIDED
BY THE ICS DEVELOPMENT

ENVIRONMENT
The ICS Development Environment needs to provide

all the tools needed to develop software for the ESS
Control Systems. The following components have been
already identified and they are part of the software suite
provided by the ICS Development Environment:

 EPICS development environment. This involves
EPICS base and modules needed for the
development of EPICS low level software.

 CS-Studio [10]. Eclipse-based collection of tools to
monitor and operate accelerators. One of the key
components of this suite is BOY. BOY is a GUI
builder for EPICS applications.

 OpenXAL [11]. It is an open source environment for
creating accelerator physics applications. OpenXAL
contains a physics model of the ESS machine that
lets the developer simulate the ESS accelerator and
to communicate at the same time with the physical
devices of the machine.

 Jupyter Notebook [12]. Open source interactive data
and scientific environment. Jupyter Notebook is
currently used by ESS to provide a scripting
environment for physics applications. Currently ICS
provides support for Python, Julia and R. It is
possible to run simulations in OpenXAL and
Mantid [13].

CONCLUSION
ICS has successfully built a stable development

environment that can be used by in-house personnel, as
well as off-site in-kind contributors and consultants. The
use of a single development environment will assure that
everybody independently of the location will be able to
work in the same environment, using the same
components, the same versions and the same
dependencies. This will facilitate the later integration of
all the software developed in different places, once they
are installed at the ESS.

REFERENCES
[1] European Spallation Source,

[2] Vagrant,
[3] Ansible,
[4] Virtual box,
[5] C. Riley, “Version your infrastructure”, 12 Nov. 2015,

[6] Git:
[7] Bitbucket,
[8] Jenkins,
[9] Docker,

[10] CS-Studio,
[11] OpenXAL,
[12] Jupyter Notebook,
[13] Mantid, simulator for neutron scattering,

Proceedings of IPAC2016, Busan, Korea WEPOR050

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T32 Online Modelling and Software Tools

ISBN 978-3-95450-147-2

2783 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

