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1 Introduction

The compactification of higher dimensional Quantum Field Theories has led to a deeper

understanding of the physical properties of the lower dimensional theories, especially their

dualities and symmetries. One well-studied example is the compactification of the 6d

N = (2, 0) SCFT with ADE Lie algebra g on a three-manifold M3, with a topological twist

along M3. The choice of topological twist determines the amount of preserved supersym-

metry in 3d, and we find either a 3d N = 2 [1–4] or a 3d N = 1 theory [5]. These theories

are often referred to as T [M3]; more explicitly, we can write TN=1,2[M3, g], when we need

to specify the additional data. These theories depend on the topological manifold M3, and

many of their detailed properties can be understood in terms of the topology of M3.

For each of these theories, there exists a 3d-3d correspondence with a ‘dual’ 3d topo-

logical theory, which is obtained by considering the 6d theory on the space

M3 ×W3 . (1.1)

The partition function of this topological theory on M3 is conjectured to compute the

partition function of the supersymmetric theory, T [M3], on W3. The most prominent

choices for W3 for which such 3d-3d duals have been discussed are the squashed three-sphere

S3
b [1, 2, 6], the superconformal index on S2×S1 [3], and the twisted index on Σg ×S1 [7].

The special case W3 = T 3 was considered in [5, 7] and computes the (regularized) Witten

index [8] I = Tr(−1)F.1

However, an important characteristic of the theories has so far been largely ignored:

their higher-form symmetries [12]. Namely, the theory T [M3] has a higher-form symmetry,

which, as with other properties of T [M3], is determined by the topology of M3. In fact, the

1More recently, the partition function on general Seifert manifolds have been considered [9, 10] — for a

recent review see [11] — although a 3d-3d dual for these has not yet been proposed.
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theory T [M3] is not fully specified by the manifold, M3, but requires additional topological

data. This is related to the fact that the 6d N = (2, 0) theory itself is a relative QFT,

i.e., it is only well-defined as the boundary of a 7d TQFT [13, 14]. Equivalently, its

observables depend on a choice of polarization, i.e., a choice of maximal isotropic subgroup

of H3(M3, ZG̃), where Z
G̃

is the center of the simply connected group, G̃, with Lie algebra

g. Naturally, we expect that T [M3] also depends on the polarization, as is the case for 4d

theories [15, 16]. In fact, we will see that this additional information translates into the

residual 0- and 1-form symmetry of the 3d theory. We propose therefore a refined definition

of the theories, which specifies this data

T [M3, g, H] , H ≤ Υ̂ ≡ H2(M3, ZG̃) . (1.2)

This theory has a discrete 0-form (ordinary) symmetry group H. Its residual 1-form sym-

metry is given by the complementary subgroup, ΥH ,2 inside H1(M3, ZG̃). We show that

the choice of H can indeed be detected by the Witten index or, more generally, by the par-

tition function on any W3 with non-trivial homology. Thus, the different theories in (1.2)

are indeed physically distinct.

The main interest of this paper is to develop a sound definition of the theories

T [M3, g, H] in (1.2) for M3 a graph manifold [17, 18], a class of three-manifolds we review in

section 2.1. These manifolds, which also occur as the boundary of plumbed four-manifolds,

are sometimes called plumbed three-manifolds, a special case of which are Seifert mani-

folds. Similar Lagrangians for the 3d theories associated to these manifolds were studied

in [6, 19–24].

In the following we point out new features related to the global structure of the gauge

groups and higher-form symmetries of these theories, as well as the explicit computation

of the Witten index and related observables. The approach we take is as follows:

1. Graph manifolds can be cut along disjoint embedded tori into degree k circle fiber

bundles, Mg,k, over genus g Riemann surfaces with boundary. This allows us to assign

to each graph manifold, M3, a graph, Ω, as follows. Each copy of Mg,k is represented

by a vertex, dressed by the degree k and the genus g. These are connected by edges

representing gluing along boundary tori by S-transformations, which have the effect

of exchanging the cycles of the boundary tori.3 From the graph we define theories

T̂ [Ω, G] with the building blocks

vertexg,k : N = 2 Gk CS theory + N = 4 g adjoint hypermultiplets

edge : T (G) S-wall theory ,
(1.3)

where T (G) was defined in [25]. In addition to (1.3) we need to couple the theory to

N = 2 adjoint scalar multiplets via holomorphic moment maps for the G symmetries.

Note that T (G) has flavor symmetry group G×G∨, but here we take all gauge fields

in G.
2This is defined as the set of elements, γ, in Υ ≡ H1(M3, ZG̃) with γ ∪ ω = 0 for all ω ∈ H.
3Gluing by more general large diffeomorphisms can be achieved by decomposing these into products of

S and T generators, as we discuss in section 2.1.
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Theory Definition

T̂ [Ω, G] Quiver theory for Graph manifold M3 associated to a graph Ω.

If G = G∨, then T̂ [Ω, G] = T [M3, G].

T [M3, g] Theory obtained by decoupling topological sectors from T̂ [Ω, G]

Independent of four-manifold.

T [M3, g, H] T [M3, g] with a gauged 1-form symmetry,

H is resulting 0-form symmetry

T [M3, g] = T [M3, g, 1]

Table 1. Summary of the theories defined in this paper. The theories can be defined for both

N = 2 and N = 1 preserving compactifications of the 6d (2, 0) theory.

2. The graph Ω representing M3 is not unique. Instead, it represents a four-manifold

M4 with boundary M3. There are various operations that leave M3 topologically

invariant but change Ω. We can check that T̂ [Ω, G] is only invariant under these

operations up to decoupled topological sectors [26].

The physical theory T [M3, g] should only depend on M3 itself. Inspired by [27], we

propose that we can decouple the additional topological factors on which the phys-

ical 1-form symmetry acts trivially. Then, different choices of Ω correspond to dual

descriptions of T [M3, g], confirming various dualities [28, 29].

3. We denote the theory obtained in this way by T [M3, g, 1]. It has no discrete 0-form

symmetry and a global anomaly-free 1-form symmetry with group H1(M3, ZG̃). Any

subgroup of this can be gauged and we can always find a subgroup such that the new

0-form symmetry is H, giving a theory we denote T [M3, g, H]. We summarize the

theories defined in this paper in table 1.

Having established a Lagrangian description for T [M3, g, H], we can exploit the

Bethe/gauge correspondence [30, 31] to compute the Witten index. The twisted super-

potential of T̂ [Ω, G] is obtained from its quiver description, where the building blocks,

corresponding to (1.3), have been determined in [7, 9, 31–33]. From this we can determine

the Bethe equations, whose solutions determine the “Bethe vacua,” forming a special sub-

sector in the Hilbert space of T̂ [Ω, G] on T 2. With this method we can in principle compute

them for any choice of Ω and G. We will do this explicitly for M3 a Seifert manifold with

b1 = 0 and G = SU(2).

As mentioned above, this Hilbert space is unphysical as it depends explicitly on the

choice of graph, Ω. However, we outline a procedure to decouple the topological sector by

projecting out certain vacua. To do this, we must understand how the 1-form symmetry of

the theory acts on the space of Bethe vacua. We characterize this action in detail, and in

particular derive the factorization of the Hilbert space into two decoupled sectors, one phys-

ical and one purely topological, such that the Hilbert space of the T [M3, g] ≡ T [M3, g, 1] is

given by the former. This yields the Witten index of T [M3, g]. We may then further refine
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3d SUSY W3 = T 3 W3 = L(p, 1)

N = 2 complex BF-model Complex Chern-Simons (CS) theory at level p

N = 1 BFH-model Real Chern-Simons-Dirac theory at level p

Table 2. The N = 2, 1 3d-3d Correspondences, with different observables W3 = T 3 corresponding

to the Witten index, and W3 = L(p, 1) to the Lens space partition function.

the Hilbert space into eigenspaces under the action of the 1-form symmetry of T [M3, g],

and we refer to the trace in the various sectors as the refined Witten index. We can then

compute the Witten index for all choices of H in T [M3, g, H] in terms of this refined Witten

index. Already for these simple examples we can confirm that the Witten index detects

the choice of H and so the theories in (1.2) are physically distinct.

The 3d-3d correspondence is one of the original motivations for this work. Taking the

setup in (1.1), we can either reduce along M3 to obtain T [M3], or along W3, which yields

a 3d topological field theory on M3. This TFT depends on the choice of W3 as well as

the choice of topological twist [1, 2, 5]. This is summarized in table 2. Similar conjectures

have also appeared for M5-branes on Σ×W4 [34] and M4 ×W2 [19, 35, 36]. In our setup,

we expect that the Witten index of TN=2[M3, g, H] counts complex flat connections on

M3, as discussed also in [37]. However, we find the choice of H, and more generally the

action of the higher-form symmetries, has an important impact on the precise 3d-3d dual

observable. As described in section 6, we find that the refined Witten index of T [M3, g] in

a sector of fixed 1-form symmetry charges maps to the number of flat G̃C connections on

M3 with prescribed values for their second Stiefel-Whitney class and behavior under large

gauge transformations. This can be understood by reversing the order of compactification

and studying the 4d N = 4 Super Yang-Mills theory with gauge group G̃. Then S-duality

of this theory maps to modular invariance of the 1-form symmetry charges, and leads to

an interesting constraint on the flat connections of M3.

Let us mention a simple class of examples which illustrates some of these features, and

which will be one of the main examples in the following. Consider a Seifert manifold, M3,

with base S2 and three special fibers of type (ki, 1), i = 1, 2, 3 (see section 2.1 for more

details). This class of three-manifolds includes the lens spaces, L(p, q), quotients S3/ΓADE ,

where ΓADE is a finite subgroup of SU(2), and other Brieskorn rational homology spheres.

Then we find a description for T [M3, su(2)] in terms of a gauged trinion: starting with

the T2 trinion theory, given by a trifundamental chiral multiplet of SU(2)3, we gauge the

three SU(2) symmetries with CS levels ki, i = 1, 2, 3; the quiver is shown in figure 1.4

More precisely, depending on the ki, this theory may contain decoupled topological sectors

which must be projected out. This simple description passes many non-trivial consistency

checks. For example, it possesses the expected 0-form and 1-form symmetries. Moreover,

we compute the refined Witten index of this theory and find that it matches the detailed

properties of flat PSL(2,C) and SL(2,C) connections on M3.

4This same description holds also for more general AN−1 types, but there one must use the star-shaped

quiver [38] dual description of the trinion in order to write down a Lagrangian for these theories.
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Figure 1. Gauged Trinion: this is the quiver for T [M3, su(2)], where M3 is a Seifert manifold over

S2 with special fibers (ki, 1), i = 1, . . . , 3. Here the circles denote SU(2) gauge nodes, and the labels

are the Chern-Simons levels.

The remainder of this paper is structured as follows. In section 2 we review the

description of graph manifolds in terms of a graph, Ω. We prescribe how to translate Ω

into the theory T̂ [Ω, G], and mention the possible operations on the graph, which also serves

to set our notation. In section 3 we briefly review some relevant aspects of higher-form

symmetries. In section 4, we first discuss the procedure to decouple the topological sectors

to obtain theories T [M3, g]. Then, by carefully studying their higher-form symmetries, we

define the theories T [M3, g, H]. We recall the 6d interpretation of these theories and give an

interpretation of the 1-form symmetry in terms of the geometry of M3. This is illustrated in

various examples. In section 5 we explicitly compute the Witten index of TN=2[M3, g, H] for

M3 a Seifert manifold and g = su(2) and u(2) by solving the corresponding Bethe equations.

In section 6 we discuss the interpretation of these results in the 3d-3d correspondence,

where the Witten index computations can be interpreted as counting flat GC connections

on M3, refined according to their topological type, which we verify in several examples. We

discuss the N = 1 twist in section 7. In particular, we use an N = 2 enhancement point

to propose a Lagrangian description of TN=1[L(p, q), g, H] and compute the Witten index.

The appendices contain details on counting solutions to Bethe equations, a discussion of

1-form symmetries in the context of Bethe vacua, and an analysis of the flat connections

on S3/ΓADE . Appendix A contains a table summarizing our notations.

2 T [M3] from graphs

In this section we begin our study of the theories T [M3] obtained by compactification of the

6d (2, 0) theory on a Seifert, or more generally, a graph manifold, M3.5 We introduce some

of the basic concepts, such as the topological twist, the quiver description of the resulting

3d theories, and dualities. In particular, as we describe below, we may associate a graph

to a decomposition of a three dimensional graph manifold along disjoint embedded tori,

and this graph directly determines a quiver gauge theory description.

5The 3d-3d correspondence is understood for more general class of three-manifolds, see e.g., [1–4]. An

important class of manifolds that will not be discussed in this paper is hyperbolic three-manifolds. It would

be interesting to generalize the discussion in this paper to more general class of three-manifolds.
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In this section, we will treat the global structure of the gauge group in a naive way by

taking the gauge group to be G for every node in the quiver gauge theories below. As we

will see, this prescription means that the quiver theories we associate to a graph, Ω, are

not, in general, the theories T [M3] obtained by compactification, but rather some closely

related theories we define as

T̂ [Ω, G] . (2.1)

When G is equal to its Langlands dual G∨ (i.e., the lattice of weights of G is self-dual),

then we may define

T [M3, G] = T̂ [Ω, G] , (2.2)

where Ω is any graph decomposition of M3. However, in general, two graphs, Ω and

Ω′, which give rise to the same three-manifold do not always give the same 3d theory.

In section 4, we will describe how to pass from the theory T̂ [Ω, G] to the more physical

T [M3, G] theories, which involves a more careful treatment of the global structure of the

gauge groups.

The 6d N = (2, 0) SCFT has 16 supercharges and exists for any ADE Lie algebra.

Here, we will focus on g = AN−1, as this is related to the SCFT that is conjectured to be the

effective theory on a stack of N M5-branes, which has gauge algebra u(N). Now consider

a three-manifold M3, and compactify the 6d theory on M3 down to 3d. Supersymmetry is

preserved for a non-flat M3 only if a suitable R-symmetry background field is turned on,

i.e., the theory is partially topologically twisted. There are essentially two choices, which

result in 3d N = 2 and 3d N = 1 theories, respectively. The latter will be discussed in

section 7. These theories arise by wrapping M5-branes on supersymmetric cycles: either

special Lagrangian three-cycles inside Calabi-Yau three-folds or associative three-cycles

inside seven-manifolds with holonomy G2, respectively.

Let us briefly recall how the N = 2 twisted version is obtained. The local Lorentz

group SO(3)M of M3 gets twisted with an SU(2) subgroup of the Sp(4)R R-symmetry,

Sp(4)R → SU(2)R × U(1)R. Geometrically, this corresponds to the action of SU(2)R on

the normal bundle, NM3
∼= T ∗M3, of the Lagrangian cycle inside the local Calabi-Yau

three-fold. Defining SU(2)twist = diag(SO(3)M , SU(2)R), the supersymmetry parameters

decompose as

SO(1, 5)L × Sp(4)R → SO(1, 2)L × SU(2)twist ×U(1)R ,

(4,4) 7→ (2,1)± 1
2
⊕ (2,3)± 1

2
,

(2.3)

preserving four supercharges. We refer to this twist as the N = 2 twist and the 3d theory

is T [M3, G] or TN=2[M3, G], where here we take G = U(N), or more generally, any self-

dual ADE Lie group. The conjectured 3d-3d correspondence relates this theory to a ‘dual’

3d topological theory, which depends on the transverse three-dimensional spacetime. In

particular if the 6d geometry is M3 × T 3, the partition function of the topological theory

that is obtained by reducing first along the T 3 is conjectured to compute the Witten index

of the theory T [M3] [39]. For theN = 2 twist the topological theory is a complex BF-model,

and the Witten index of T [M3, G] is conjectured to be computed by flat GC-connections.

We will return to this interpretation in section 6.

– 6 –
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A useful point of view that was already observed in [1] is to consider the theory on M3

as arising from a 4d N = 2 class S theory T [Σg,n] with boundary conditions. Geometrically

this means that locally we embed the curve Σg,n of genus g and n punctures, into T ∗Σg,n,

which is a local K3. The BPS equations for the class S theory are the Hitchin equations [40]

Fzz̄ − [Φ,Φ†] = 0 , (2.4)

where Fzz̄ is a (1, 1)-form on Σ and Φ is a section of KΣ ⊗ Adj(GC). The connection

between these equations and the complex flat connections is well-known, by considering

M3 = Σ× R.

In this paper the main focus will be on a class of three-manifolds, M3, that are naturally

associated to graphs, a special case of which are Seifert manifolds. In this section, we define

these graph manifolds, and associate quiver gauge theories to them. Geometric identities

become dualities in the quivers. We illustrate these in the case of the simplest non-abelian

groups, U(2) and SU(2).

2.1 Seifert and graph manifolds

The class of geometries M3 that we will consider here include Seifert manifolds (see

e.g., [41]), which are circle bundles over a Riemann surface Σg,r of genus g with r marked

points

π : S1 ↪→M3 → Σg,r . (2.5)

The fibration is specified by the Seifert data

M3
∼= [d; g; (pi, qi)] , i = 1, . . . , r , (2.6)

where (d, qi) ∈ Z and pi ∈ Z+. Furthermore, pi and qi are coprime. Away from the punc-

tures, M3 is a smooth degree d circle fibration over Σg. The exceptional fibers are located

above the marked points. Around each puncture, excise a tubular neighborhood which

together with the fiber forms a solid torus, S1×D2. On each of these boundaries we attach

a mapping class torus, i.e., a T 2 fibered over an interval x3 ∈ [0, L]. We view the torus as

a complex manifold with complex structure τ and SL(2,Z) action τ → (rτ + p)/(sτ + q),

where6

ϕp,q =

(
r p

s q

)
= T k1ST k2 . . . ST kn ∈ SL(2,Z) , (2.7)

and r, s encode the framing, i.e., the choice of trivialization of the tangent bundle. The

integers kj are given by the continued fraction

p

q
= k1 −

1

k2 − 1
···− 1

kn

≡ [k1, . . . , kn] . (2.8)

6Here S and T are the generators of SL(2,Z), for which we take the explicit representations S =

(
0 −1

1 0

)

and T =

(
1 1

0 1

)
.
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Figure 2. Plumbing graph for Seifert manifolds with r special fibers. For r = 3 this graph

corresponds to the Seifert quivers in the text. We consider here g = 0 for the central node. This

also gives the quiver for the theory T̂ [Ω[d;0,[ki1,··· ,kini
]], G].

This representation ensures that the (0, 1)-cycle at x3 = 0 is identified with the (p, q)-cycle

at x3 = L. Here and in the following we denote the A- and B-cycle of the boundary of a

solid torus as the S1 and the ∂D2 respectively and denote general cycles in the (A,B)-basis.

To close the boundary we then glue back in a solid torus.

We will also consider a generalization of Seifert manifolds to so-called graph manifolds,

which are glued together from Seifert manifolds building blocks. More formally, they can be

defined as three-manifolds, which can be cut along tori, where the resulting building blocks

are circle-bundles over Riemann surfaces. There are various equivalent ways to characterize

graph manifolds, however here we will make use of the formulation in terms of a plumbing

graph. This construction will first of all produce a four-manifold, whose boundary is the

graph manifold. The graph will have vertices vi corresponding to disc-bundles over a

Riemann surface,

vi : Di ↪→Mi → Σi ↔ (e(Mi), g(Σi)) , (2.9)

where e(Mi) is the Euler number of the disc-bundle and g is the genus of the base curve.

We include edges between vi − vj if there is a gluing between two disc bundles as follows:

consider Di × Bi, where Bi ⊂ Σi is a disc. Then gluing the discs across (i.e., gluing the

fibral disc with the disc within the base, and vice versa) Di×Bi with Bj ×Dj corresponds

to an edge along which the two vertices vi and vj are glued. The boundary of such a

four-manifold is automatically a graph manifold.

There are redundancies in the definition of the plumbing data which leave the boundary

— i.e., the graph manifold — invariant. For example, there are operations which change the

4-manifold by taking the connected sum with P2 and with P2, but change the 3-manifold by

a connected sum with S3, which is a trivial operation [19]. We will discuss these identities

and their implications on the graph shortly. For a general discussion of graph manifolds

see [42].

The case of Seifert manifolds is a specialization, where the plumbing graph is given by

figure 2, and the Seifert data is encoded in the continued fractions pi/qi given by (2.8). In

general there is a choice of genus for the central node, which we generally take to be g = 0

in the following.
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The simplest class of examples are the Lens spaces, M3 = L(p, q), which are obtained

by gluing two solid tori, (S1×D2)±, identifying the (0, 1)+ cycle with the (p, q)− cycle. This

is known as the Heegaard splitting of the Lens space, see e.g., [43, 44]. We can easily see

that this definition corresponds to Seifert manifolds with g = 0 and r ≤ 2. First consider

r = 0, i.e., M3 is a degree d circle fibration over S2. This is a definition of L(d, 1) in terms

of a generalization of the Hopf fibration. We thus assign to L(d, 1) the element ϕd,1 = T d.

Now add a puncture with exceptional fiber (p1, q1). Excising the tubular neighborhood of

the puncture leaves us with a circle-fibration over the disk. We now glue this to the solid

torus as explained above. After the gluing we obtain

ϕ[d;0;(p1,q1)] = T dSϕp1,q1 = ϕdp1−q1,p1 ⇒ [d; 0; (p1, q1)] ∼= L(dp1 − q1, p1) . (2.10)

The generalization to two exceptional fibers is obvious. By exchanging the two fibers one

can see that L(p, q) ∼= L(p, q−1 mod p).

Introducing a third marked point fundamentally changes the geometry and the result-

ing Seifert manifold is no longer a Lens space (for generic (pi, qi)). The description in

terms of a linear chain of S and T in SL(2,Z) breaks down but we will present a natu-

ral way to couple the central node to three fibers when discussing the quiver description

in section 2.2.3. In a similar fashion we can translate the plumbing graph of a general

graph manifold into a web of vertices Mg,k, degree k circle bundles over Σg, connected by

S-transformations. In what follows, we will primarily be concerned with M0,k, with g = 0,

and will label the vertices only by k.

The continued fraction presentation of p/q in (2.8) is not unique, which implies a non-

uniqueness of the Seifert data or, equivalently, the ambient four-manifold. These relations

are summarized in figure 3, and extend straightforwardly to more general graph manifolds:

(i) [k1, . . . , kn] ∼= [k1, . . . , kn + 1, 1]:

This corresponds to adding a factor of TST on the right hand side of ϕp,q. This

leaves (pi, qi) invariant but affects the framing of the manifold and corresponds to

taking the connected sum of M3 with an S3. We can also attach this to the central

node, adding a new fiber with pr+1, qr+1 = (1, 1), while increasing the degree by one.

Thus,

[d; g; (pi, qi)] ∼= [d+ 1; g; (pi, qi), (1, 1)] . (2.11)

(ii) [k1, . . . , kj , . . . , kn] ∼= [k1, . . . , kj − k, 0, k, . . . , kn] for any k:

This corresponds to including a factor of S2 = C. This sends (p, q) → (−p,−q)
leaving p/q invariant.

(iii) [k1, . . . , kj , kj+1, . . . , kn] ∼= [k1, . . . , kj − 1,−1, kj+1 − 1, . . . , kn]:

This follows from including a factor of (TS)−3 = C. Inserting this element between

the central node and a fiber decreases the degree by one and acts on the fiber element

as ϕp,q → ϕp,q−p. This generalizes to

[d; g; (pi, qi)] ∼=

[
d+

r∑
i=1

mi; g; (pi, qi +mipi)

]
, (2.12)

for any choice of mi ∈ Z.
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...k1 kj ... kn  S2=C: =

(TS)-3=C:    ...k1 kj ... knkj+1

k1 k2 ... knTST: = k1 k2 ... kn+1 1

k1 ... kj-k ... kn0 k

k1 ... kj-1 ... kn-1 kj+1-1=

Figure 3. The relations TST , S2 and (TS)−3 acting on the plumbing data associated to the

three-manifold.

Some examples of interesting Seifert manifolds are given in appendix B.

Before moving on, we note that an efficient way to characterize the graph, Ω, associated

to a graph manifold is by its linking matrix, which we denote by Q. Its entries are defined as

Qij =


ki if i = j

−1 if i connected to j by S

0 else

. (2.13)

Here the choice of taking off-diagonal terms to be −1 is a convention, but will be useful in

the definition of T [M3] below.

2.2 T̂ [Ω, G]

We now define the theories T̂ [Ω, G], which will be the building blocks for all the physical

theories that we consider in later sections. It is useful to define this theory in terms of

boundary conditions on N = 2∗ gauge theory with gauge group G that preserve a U(1)t
flavor symmetry. For the N = 2 twist, the construction in terms of boundary conditions

has been extensively studied in e.g., [1, 6, 7, 20, 22, 25, 45, 46], which we briefly summarize

below. For example, the Lens spaces can be constructed from the Heegaard splitting

with one-punctured torus boundaries, which corresponds to the 4d N = 2∗ theories on an

interval with half-BPS boundary conditions. In this picture, the puncture on the boundary

torus induces a network of line defects in M3, which correspond to the circle actions in the

Seifert fibration (2.5).

2.2.1 Boundary conditions for 4d N = 4 SYM

The basic building blocks can be constructed from the 1
2 -BPS equations of the mass de-

formed 4d N = 2∗ G gauge theory, as studied in [6]. The bosonic degrees of freedom of the

4d theory can be decomposed into that of an N = 2 vector multiplet and a hypermultiplet

in the adjoint representation, (Aµ, φ) and (X, Y ). In the N = 2 language, the theory has

a U(1)t global symmetry, under which the complex scalars (φ,X, Y ) have charges (0, 1,−1)

respectively.
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The basic boundary conditions that can be used to build a T̂ [Ω, G] theory are

|N+〉 : D3X = 0 , Y = 0 , N , |N−〉 : D3Y = 0 , X = 0 , N ,

|V+〉 : D3Y = 0 , X = 0 , D(V) , |V−〉 : D3X = 0 , Y = 0 , D(V) ,
(2.14)

where N and D(V) denote the Neumann and Dirichlet boundary conditions for the vector

multiplet respectively

N : F 3µ = 0 , D3 Reφ = 0 , Imφ = 0

D(V) : Fµν = 0 , D3 Imφ = 0 , Reφ = a ,
(2.15)

where the Dirichlet boundary condition depends on the choice of background 3d N = 2

vector multiplet V whose lowest component is a. For the Neumann boundary condition,

the vector multiplet V remains dynamical.

The overlaps between these boundary conditions can be obtained by studying the low

energy limit of the 4d N = 2∗ theory on an interval with two boundary conditions. First

of all, one can check

〈N±|N±〉 =

∫
V
dV adj±(V) , (2.16)

where we integrate over the dynamical 3d N = 2 vector multiplet V. In addition to this,

we have the N = 2 chiral multiplet valued in the adjoint representation with U(1)t charge

±1, which we denote by adj±(V). If both types of adjoints are present in the theory, the

pair can be integrated out in the low-energy effective theory, which leads to the relation

adj+(V)adj−(V) = 1. We also need the following relations

〈V±|V±〉 = adj∓(V) , 〈V±|N±〉 = 1 , 〈V±|N∓〉 = adj∓(V) , (2.17)

which are straightforward to check by studying the propagating degrees of freedom between

the overlaps.

For each T 2 boundary with a puncture, we specify a choice of polarization, which cor-

responds to the A- and B-cycle of the torus. The gauge symmetry G of the 4d theory is

associated to the A-cycles of the tori and the holonomy around the A- and B- cycle corre-

spond to the Wilson and ’t Hooft loop expectation values of the gauge theory, respectively.

A class of boundary conditions for the N = 4 theory are provided by the compact-

ification of the 6d (2, 0) theory on a three-manifold with a torus boundary, where the

polarization data is specified. The simplest example is the solid torus, M3 = D2 × S1,

where the S1 is the A-cycle. In this case, we claim that the theory corresponds to the 4d

theory with the Neumann boundary condition |N+〉 assigned [6].

Seifert manifolds with exceptional fibers can be obtained from the surgery procedure

discussed in section 2.1. The surgery around each marked point corresponds to an opera-

tion inserting a mapping torus between two boundary tori, which implements an SL(2,Z)

transformation (2.7). The puncture associated to the U(1)t symmetry defines a line de-

fect connecting two torus boundaries. When we glue them with another building block of

the three-manifold, the polarization data should be identified. Each mapping torus corre-

sponds to an SL(2,Z) interface in the 4d gauge theory, which defines an operator acting
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on the space of boundary conditions (2.14). We now list the operators and the associated

boundary conditions for the building blocks:

1. The simplest example is the mapping cylinder for the identity element ϕ0,1 = I. This

corresponds to inserting the identity operator in the space of boundary conditions

I =

∫
V
|V+〉〈V+| adj+(V) . (2.18)

This can be equivalently expressed in terms of the multiplet V−. Note that the

measure includes the contribution from the adjoint multiplet that is compatible with

the inner product (2.17).

2. The mapping cylinder implementing the T operation corresponds to adding a back-

ground N = 2 Chern-Simons level to the theory

T k =

∫
V
|V+〉〈V+| adj+(V) e−kCS(V) , (2.19)

where the last factor denotes an N = 2 CS theory at level k.

3. The S operation corresponds to the T (G) theory defined in [46], which has G ×G∨

flavor symmetry

S =

∫
V,V ′

|V−〉 T (G)(V−,V ′+) 〈V ′+| . (2.20)

Using the relation 〈V ′+| = adj(V ′)−〈V ′−|, we can write the expression more symmet-

rically in the two background gauge fields as

S =

∫
V,V ′

|V−〉 T (G)(V−,V ′+) adj−(V ′) 〈V ′−|

=

∫
V,V ′

|V−〉 FT (G)(V−,V ′+) 〈V ′−| ,
(2.21)

where FT (G) is the so-called “flipped” T (G) theory defined by adding an adjoint field

in one of the flavor symmetries to the original description of the T (G) theory [47].

Finally, let us consider the building blocks with more than two torus boundaries.

Similarly to the identity operator (2.18), we claim that Σ0,r × S1 with the A-cycle along

the S1 identifies all the global symmetries associated to the r punctures. For the three-

punctured sphere, we have ∫
V
|V+〉|V+〉〈V+| adj+(V) , (2.22)

which can be equivalently expressed in terms of the multiplet V−.

2.2.2 Definition of T̂ [Ω, G]

A description of T̂ [Ω, G] can be obtained by a combination of the above building blocks

according to the surgery procedure discussed in section 2.1.
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We start with the plumbing graph Ω of a graph manifold M3, which corresponds to a

web of vertices Mg,k connected by S-transformations. From this we construct T̂ [Ω, G] in

the following way:7

1. To each vertex Mg,k we assign an N = 2 gauge multiplet at Chern-Simons level k

together with an N = 2 adjoint chiral multiplet, which we assign U(1)t charge +1.

We also couple this to a set of g N = 4 adjoint hypermultiplets [22, 38], although in

this paper we will mostly consider the case g = 0. This Mg,k vertex has r boundaries

along which it is glued to neighboring vertices. To each of these boundaries we assign

a 〈V+|.

2. To each edge we assign the S-transformation (2.21), i.e., the T (G) theory. More

precisely, it is convenient to use the second line of (2.21) to write this more symmet-

rically using the FT (G) theory, which is the T (G) theory with one flavor symmetry

coupled to an adjoint chiral multiplet of negative U(1)t charge. To the two flavor

groups we assign |V−〉 and |V ′−〉 respectively.

3. We glue these building blocks together using the overlap 〈V+|V ′−〉 = δ (V,V ′).

For Ω the graph associated to a Seifert manifold, we will show that the theories defined

in the above way are closely related — and in the case of self-dual G, identical — to the

theories T [M3, G].

In this paper we use the following depiction of the quivers for the T̂ [Ω, G], where we

henceforth assume g = 0 for all vertices:

gauge field V at CS level k ←→ round node dressed with k

flavor group ←→ square node

adj±(V) ←→ node dressed with upward/downward arc

T (G)(V−,V ′+) ←→ line with a downward and upward arc adjacent to

the Higgs and Coulomb symmetries, respectively

FT (G) ←→ line with two downward arcs .

(2.23)

2.2.3 Examples: Seifert quivers

We now consider some examples of Seifert quivers, i.e., where the graph Ω describes a

Seifert manifold. The simplest non-trivial example is the graph Ω[k1,k2] of the Lens space

L(p, q) with p
q = k1 − 1

k2
. It consists of two copies of M0,kj connected by an edge and

therefore

T̂ [Ω[k1,k2], G] =∫
V1,2,3,4

e−k1CS(V1) adj+(V1) 〈V1
+|V2
−〉︸ ︷︷ ︸

δ(V1,V2)

T (G)(V2
−,V3

+) adj−(V3) 〈V3
−|V4

+〉︸ ︷︷ ︸
δ(V3,V4)

adj+(V4) e−k2CS(V4) .

(2.24)

7Here we specify the action of the U(1)t symmetry, which is related to the geometrical U(1) isometry in

the case where M3 is a Seifert manifold. This definition can also be applied formally to graph manifolds,

but in that case the existence of a U(1)t symmetry from 6d is not guaranteed.
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k1 k2 k1 k2

Figure 4. Quiver description of Lens space quiver T̂ [Ω[k1,k2], G], where p/q = k1 − 1/k2 and the

dictionary in (2.23) is used. On the left we use the T (G) theory, and on the right the FT (G) theory,

which is related by flipping an adjoint field. This flipping operation can be represented pictorially

by contracting an upward arc on a node and an adjacent downward arc on an edge to leave an

upward arc on the edge. Further equivalent descriptions of this theory are shown in figure 5 below.

Using the delta functions we can integrate out V2 and V3 after which two adjoints with

opposite charge cancel. After these simplifications

T̂ [Ω[k1,k2], G] =

∫
V1,4

e−k1CS(V1) adj+(V1) T (G)(V1
−,V4

+) e−k2CS(V4) . (2.25)

This theory is depicted in figure 4, illustrating the conventions of (2.23). More generally,

we can write the corresponding quiver for Ω[k1,··· ,kn] as n N = 2 CS-theories at levels ki
coupled by T (G) theories, with a single adjoint scalar coupled to the left-most node.

For Seifert manifolds with three or more exceptional fibers, i.e., M3
∼= [d; 0; (pi, qi)],

we label the graph by Ω[d;0,[ki1,··· ,kini ]]
, depicted in figure 2. We identify the degree d with

a central T d coupled to r linear quivers. More generally we understand a node labeled

by pi
qi

= [ki1, . . . , k
i
ni ] as being the same as the linear quiver representing the Lens space

L(pi, qi) [19], where we take the left-most node as a G flavor symmetry. Then, applying

the rules above, one finds T̂ [Ω[d;0,[ki1,··· ,kini ]]
, G] is obtained by gauging these common flavor

symmetries with level d CS term and a single adjoint chiral multiplet of U(1)t charge +1.

2.3 Symmetries and dualities of T̂ [Ω, G]

2.3.1 General gauge group

The non-uniqueness of the Seifert data discussed in section 2.1, should map to dualities

of the theories T̂ [Ω, G]. However, we will see below that for non-self-dual G, the SL(2,Z)

actions and equivalence relations of three-manifolds discussed in section 2.1 holds only up

to a decoupled topological sector at the level of the T̂ [Ω, G] theory, indicating an undesired

dependence on the decomposition graph Ω. We will discuss how to cure this problem in

the following sections. We now summarize the dualities:

(i) [k1, . . . , kn] ∼= [k1, . . . , kn + 1, 1]:

The equivalence of the quiver under this operation was discussed in [7, 19, 21]. In

the case of the G = U(N) theory, this is related to the following duality of [48]

U(N)k=1 + adjoint chiral ↔ N free chirals . (2.26)

We discuss this relation and the role of this duality in more detail in the N = 2 case

below. For G = SU(N), we use instead the following duality, a special case of which
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is the duality appetizer of [28]

SU(N)k=1 + adjoint chiral ↔ (N − 1 free chirals)⊗ (topological U(1)N CS theory) .

(2.27)

The duality implies the relation:8

[k1, . . . , kn + 1, 1] quiver ↔ ([k1, . . . , kn] quiver)⊗ (topological U(1)N CS theory) .

(2.28)

Note the presence of the decoupled topological sector, which is directly related to

the fact that SU(N) is not self-dual. This sector will play an important role in what

follows.

(ii) [k1, . . . , ki, . . . , kn] ∼= [k1, . . . , ki − k, 0, k, . . . , kn]:

This corresponds to two factors of T (G) coupled at a common node and gauged at

level zero. However, since we take the gauge field in G (rather than G∨) this operation

adds a topological factor, which for G = SU(N) is (U(1)N )2.

(iii) [k1, . . . , ki, ki+1, . . . , kn] ∼= [k1, . . . , ki − 1,−1, ki+1 − 1, . . . , kn]:

For G = SU(N), we claim that the SL(2,Z) relation (TS)3 = C holds only up to the

decoupled topological U(1)N CS theory, as in the relation (i) discussed above. Let us

consider the case n = 2 and i = 1 without loss of generality. This implies the duality

[k1, k2] quiver ↔ ([k1 − 1,−1, k2 − 1] quiver)⊗ (topological U(1)N CS theory) .

(2.29)

Using the relation (2.28) for the theory on the right hand side, we find that this

theory precisely corresponds to the trinion theory with the three flavor symmetries

gauged at levels (k1 − 1, k2 − 1, 1) respectively.

In fact, we may make a stronger statement. Rather than taking these nodes with level

k1 and k2 CS terms as gauge symmetries, we may retain them as flavor symmetries.

Then, in the former case, we obtain the TN theory with one of its G flavor symmetries

gauged with a level 1 CS term, while in the latter case we obtain the T (G) theory, or

more precisely, the flipped theory, FT (G). Both have G×G flavor symmetry. We also

notice that the levels of the CS terms are shifted by one in the latter description, which

we may attribute to relative contact terms appearing in the duality. In summary,

this yields the following duality

TG trinion theory with one flavor symmetry gauged at level 1

↔ FT (G) with level −1 contact terms for G×G flavor symmetry . (2.30)

This is illustrated in figure 5. This observation was also made in [29] for G = SU(N).

We will discuss this in more detail in the case G = SU(2) below.

8Up to a relative gravitational CS term which does not affect our discussion.
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Figure 5. Sequence of moves leading to the duality between the FT (G) theory and a trinion theory

with one G symmetry gauged with level 1 CS term. In the last step with use the star-shaped quiver

description of the trinion of [38].

2.3.2 T̂ [Ω, SU(2)] and T̂ [Ω,U(2)]

Let us illustrate some of the properties discussed in the previous subsection in more detail

in the special cases G = SU(2) and G = U(2), and also point out some additional subtleties

that arise.

To start, let us briefly recall some relevant features of the T (SU(2)) theory. The usual

description of the T (SU(2)) theory is as a 3d N = 4 U(1) gauge theory with Nf = 2

hypermultiplets. This theory has SU(2)F × SU(2)J flavor symmetry, the former acting

manifestly on the hypermultiplets, and the latter being an infrared enhancement of the

U(1)J symmetry visible in the UV gauge theory Lagrangian. This is the theory living on

a domain wall interpolating between S-dual instances of the 4d N = 4 SU(2) SYM theory,

with each bulk theory coupling to one of the SU(2) flavor symmetries of the domain wall,

as discussed in [25].

Now let us consider the relation (i) above in the case of G = SU(2). Consider a linear

quiver associated to the r.h.s. of this relation: this ends with an S-wall, followed by a

SU(2) gauge node with a CS level 1. Let us take the latter SU(2) symmetry to couple to

the SU(2)F symmetry of the T (SU(2)) theory, and let us denote the gauge symmetry of

T (SU(2)) as U(1)g. Thus the SU(2)F node has a single fundamental flavor, also charged

under U(1)g, and CS level 1. Then this theory has a dual description [49, 50] as a single

chiral multiplet, and importantly, a level 2 contact term for the U(1)g symmetry. Thus

this part of the quiver is replaced by singlet chiral multiplet along with a U(1)g level 2

topological CS theory, leading to

G= SU(2) : [k1, . . . ,kn+1,1] quiver ↔ ([k1, . . . ,kn] quiver)⊗(topological U(1)2 CS theory) ,

(2.31)

and so the relation only holds up to a decoupled topological sector, as noted above. A

special case of this, noted in [21], is the case n = 0, where this relation formally gives the

“appetizer duality” of [28], which indeed contains such a decoupled U(1)2 topological sector.
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Next consider G = U(2). The T (U(2)) theory is closely related to the T (SU(2))

theory. As described in [51], this is simply the T (SU(2)) theory, whose symmetry we

denote by SU(2)F− × SU(2)J− , along with a background level 2 FI parameter coupling to

an U(1)F+ ×U(1)J+ symmetry. This exhibits the flavor symmetry as SU(2)F− ×U(1)F+ ×
SU(2)J−×U(1)J+ , but one can check that the true symmetry acting on the matter content is

(SU(2)F− ×U(1)F+)/Z2 × (SU(2)J− ×U(1)J+)/Z2
∼= U(2)F ×U(2)J . (2.32)

As above, this interpolates between S-dual instances of the 4d N = 4 U(2) SYM theory.

Now let us consider the relation (i) in this case. The analysis for the T (SU(2)) factor

goes through as above, but now the final node also contains a U(1) gauge group with level

2 CS term. Now when we take the Z2 quotient, these two U(1)2 topological sectors are

eliminated,9 and so there is no residual topological sector, and we find

G = U(2) : [k1, . . . , kn + 1, 1] quiver ↔ ([k1, . . . , kn] quiver) . (2.33)

As above, the n = 0 case formally leads to the U(2) case of the duality of [48]

U(2)1 + adjoint chiral ↔ 2 free chirals , (2.34)

which also holds without any extra decoupled sectors.

Next consider the relation (iii). Recall this follows from the duality of the TG theory

with one G flavor symmetry gauged at level 1 and the T (G) theory. In general, the TG
theory is non-Lagrangian, and so this duality is not of immediate practical use. However,

for the case of G = SU(2) (the U(2) case is a straightforward extension) the T2 theory is

simply a free bifundamental hypermultiplet. Thus, we arrive at the duality10

3d N = 4 U(1) with Nf = 2 hypermultiplets

↔ SU(2)k=1 with Nf = 2 hypermultiplets with level −1 contact terms

for SU(2)× SU(2) ∼= SO(4) symmetry .

(2.35)

This duality was noticed earlier in [52], and also discussed in [29]. Importantly, note that

in this dual description, the SU(2)×SU(2) symmetry is manifest in the Lagrangian, unlike

in the usual description of T (SU(2)). This observation makes this description of T (SU(2))

more convenient for constructing Lagrangians for general Seifert manifold theories, and it

will play an important role in what follows.

3 Higher-form symmetry in QFT

In this section we briefly review higher-form, or q-form symmetries of QFTs [12]. These turn

out to play an important role in understanding the precise definition of the theories, T [M3],

obtained by compactification of the 6d N = (2, 0) theory on a general three-manifold, M3,

which we will discuss in the next section.
9Namely, the theory obtained after this quotient can be written as a U(1)1 × U(1)−1 CS theory, which

is a trivial theory.
10More precisely, the relation between the two theories involves a “flipping” of one of the SU(2) flavor

symmetries, and so the theory appearing on the l.h.s. should be thought of as the FT (SU(2)) theory of [47].
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3.1 Higher-form symmetries

A q-form symmetry with group Γ in a d-dimensional QFT can be described by a set of

topological charge operators, Uγ [σ], which are labeled by an element γ ∈ Γ and a (d−q−1)-

dimensional submanifold σ in spacetime, on which the operator is supported. The fusion of

two charge operators obeys the group law, i.e., Uγ [σ]Uγ′ [σ] ∼= Uγγ′ [σ]. In addition, the op-

erator may have non-trivial commutation relations with a physical q-dimensional extended

operator, O, in the theory, which we then say is charged under the q-form symmetry. For

example, if we work in the Hilbert space picture on a spacetime Md−1 × R, we have the

commutation relations [
Uγ [σ] , O[ρ]

]
= RO(γ)ρ∩σ · O[ρ] , (3.1)

where RO is the representation of Γ in which O transforms, and ρ ∩ σ is the intersection

number of ρ and σ in Md−1. Higher-form symmetries are a generalization of ordinary

global symmetries, which correspond to the case q = 0, where the charged operators are

local operators. For q > 0, it can be shown that Γ must be abelian.

When q = d−1
2 , the charge operators have the same dimension as the charged operators,

and so they may themselves be charged under the symmetry. When this happens we say

the symmetry has an ’t Hooft anomaly, and this is an obstruction to gauging it.11 When

the symmetry is non-anomalous, the expectation value of a set of charge operators depends

only on the cycle ω̃ ∈ Hd−q−1(Md,Γ) determined by the choice of σ and γ of the operators.

By Poincaré duality, this is the same as a choice of cocycle, ω ∈ Hq+1(Md,Γ), and we

may equivalently interpret this as computing the partition function in the presence of a

background (q + 1)-form gauge field, labeled by ω, and define

ZMd
[ω] = 〈U [ω̃]〉Md

. (3.2)

This gives a refinement of the ordinary partition function, which keeps track of the response

of the system to sources for the higher-form symmetry.

When a higher-form symmetry is non-anomalous, we may gauge it to obtain a new

theory. This means we promote the background (q + 1)-form gauge field to be dynamical,

and so the partition function of the gauged theory is given by summing over all such

background gauge fields. It is natural to also introduce a coupling to a new background

gauge field, and define

ẐMd
[ω̂] =

1

|Hq+1(Md,Γ)|1/2
∑

ω∈Hq+1(Md,Γ)

e
i
∫
Md

ω∪ω̂Z[ω] , (3.3)

where ω̂ ∈ Hd−q−1(Md, Γ̂), Γ̂ is the Pontryagin dual group,

Γ̂ = Hom(Γ,U(1)) , (3.4)

and e
i
∫
Md

ω∪ω̂ ∈ U(1) is the natural pairing. This may be interpreted as the partition

function of a theory with a (d − q − 2)-form symmetry with group Γ̂, which we call the

11This follows because the charge operators should be trivial in the gauged theory, but this is not com-

patible with the non-trivial commutation relations in the presence of an anomaly.
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dual symmetry. Repeating this gauging operation brings us back to the original theory.

More generally, we may gauge a subgroup of Γ or include an additional local action for the

background gauge fields, which lead to more general versions of the theory.

An important set of examples that will arise below are the electric and magnetic

symmetries of a gauge theory. Given a theory with gauge group G with center ZG, if a

subgroup Γ of ZG does not act on the charged matter of the theory, the theory admits a

1-form Γ symmetry, called the electric symmetry. The charged operators are Wilson loop

operators, which transform according to the action of Γ on the representation of the Wilson

loop. The partition function in the background of a 2-form gauge field is given by

ZG[ω] =
∑

P |w2(P )=ω

ZP , ω ∈ H2(Md,Γ) , (3.5)

where ZP is the contribution to the partition function from a principal G/Γ-bundle, P ,

over spacetime, and we sum over all principal bundles with a specified value for their second

Stiefel-Whitney class, w2(P ) ∈ H2(Md,Γ), which measures the obstruction to lifting a G/Γ

bundle to a G bundle. Then the G/Γ theory is simply given by gauging this symmetry,

i.e., summing over all G/Γ bundles

ZG/Γ[ω̂] =
1

|H2(Md,Γ)|1/2
∑

ω∈H2(Md,Γ)

e
i
∫
Md

ω∪ω̂ZG[ω] , ω̂ ∈ Hd−2(Md, Γ̂) . (3.6)

The G/Γ theory naturally comes with a d−3 form Γ̂ symmetry which we call the magnetic

symmetry, and whose charged operators are ’t Hooft operators, which have dimension d−3.

We may also gauge a subgroup of Γ, or include additional local actions for the background

gauge fields, to obtain other versions of the gauge theory.

3.2 1-form symmetries in 3d gauge theories

Let us now review some general features of 1-form electric symmetries in 3d gauge theories,

which will arise in the study of T [M3] below.

Recall that d = 3 is the case where a 1-form symmetry may have an ’t Hooft anomaly,

and such anomalies turn out to arise from CS terms for the gauge groups. To describe

these anomalies more carefully, we follow [53]. Consider a 3d gauge theory with gauge and

flavor groups, G̃g and G̃f , which we take to be the simply connected. However, there may

in general be some subgroup, Γ, of the center of these groups which does not act on the

matter content. Then in principle, we might try to couple the system to a (G̃g × G̃f )/Γ

bundle. However, anomalies may cause this observable to be ill-defined.

To see this, let us exhibit the 3d spacetime as the boundary of a 4d manifold, and

extend the gauge fields into the bulk. Then the 3d theory may include CS terms for

the gauge and flavor symmetries, which we assume are properly quantized for G̃g × G̃f
connections. However, they may not be well-defined for (G̃g × G̃f )/Γ connections. To

cure this, we include appropriate 4d topological terms, which are also not well-defined on

a four-manifold with boundary, but such that the combined 3d-4d system is well-defined.

Thus we obtain an action

Sanom =

∫
M4

c(A) , (3.7)
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where c is some characteristic class of a 4d (G̃g × G̃f )/Γ gauge bundle. We refer to this

as the anomaly polynomial. If we consider two different ways of extending the 3d system

into a 4d bulk, the difference is given by the integral of the anomaly polynomial over a

closed four-manifold. This characterizes the extent to which the 3d partition function is

not uniquely defined. While this is not necessarily a problem for the flavor symmetries,

the theory must be well-defined with respect to the gauge connection, and so we demand

that the anomaly polynomial vanishes for any allowed choice of gauge bundles.

Below we will be mostly interested in theories with SU(2)n gauge and SU(2)m flavor

symmetry. The center is Z2
n ⊕Z2

m, and let us suppose there is a subgroup, Γ, which acts

trivially on the matter. Let us further include Chern-Simons levels ki, i = 1, . . . , n, and

Kj , j = 1, . . . ,m, for the gauge fields. Then for these to be well-defined, we extend the

gauge fields into a bulk four-manifold, M4, and include the term

Sanom = π

∫
M4

 n∑
i=1

ki
P(w

(i)
2 )

2
+

m∑
j=1

Kj
P(w

(j)
2 )

2

 . (3.8)

Here w2 is the second Stiefel-Whitney class, valued in H2(M4,Z2), and

P : H2(M4,Z2)→ H4(M4,Z4) (3.9)

is the Pontryagin square operation, which satisfies P(w) = w2 (mod 2). On a spin manifold,

where the intersection form is even, P/2 is well-defined as an element of H4(M4,Z2).

For example, consider the trinion theory, given by a N = 2 chiral multiplet transform-

ing in the trifundamental representation of an SU(2)3 flavor symmetry. Then the subgroup

acting trivially on the matter is generated by (1, 1, 0) and (1, 0, 1) in Z2
3. This means the

Stiefel-Whitney class of the three groups must satisfy

w
(1)
2 + w

(2)
2 + w

(3)
2 = 0 . (3.10)

Now we gauge one of the SU(2) symmetries, say the third, with a level k CS term, and

we also include level K1,2 CS terms for the flavor symmetries. Note we cannot sum over

arbitrary choices of w
(3)
2 , but it is fixed by the classes of the flavor gauge fields by (3.10).

The anomaly polynomial in this case is

Sanom = π

∫
M4

(
K1
P(w

(1)
2 )

2
+K2

P(w
(2)
2 )

2
+ k
P(w

(3)
2 )

2

)
. (3.11)

Using (3.10), we may rewrite this independently of the dynamical gauge field as

Sanom = π

∫
M4

(
(k +K1)

P(w
(1)
2 )

2
+ (k +K2)

P(w
(2)
2 )

2
− kw(1)

2 ∪ w
(2)
2

)
. (3.12)

In particular, for k = −K1 = −K2 = 1, which gives the SU(2)1 dual description of the

T (SU(2)) theory, as in (2.35), we have

Sanom = −π
∫
M4

w
(1)
2 ∪ w

(2)
2 . (3.13)
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This result was also found in [54] using the usual description of T (SU(2)) as U(1) with two

hypermultiplets, and this gives another check of the duality between these two descriptions.

More generally, using the fact that the TN theory has a ZN × ZN symmetry, which

acts on any two of the three SU(N) flavor nodes, as above, we may use the description

of the T (SU(N)) theory in section 2 to argue analogously that it has the same anomaly

polynomial as (3.13), where we now interpret the second Stiefel-Whitney classes as elements

of H2(M4,ZN ). Note that this means that we may not gauge both flavor symmetries as

G∨ = G/Γ gauge groups, but instead, if we take one as G∨, the other must be G. This

reflects the fact that T (G) exchanges these two versions of the theories.

In general, given a theory with ZNn 1-form symmetry, we may encode the anomalies in

a symmetric n×n matrix, Aij , with entries valued in ZN , such that the anomaly polynomial

is given by

Sanom =
2π

N

∫
M4

 n∑
i=1

Aii
P(wi2)

2
+
∑
i<j

Aijwi2 ∪ w
j
2

 . (3.14)

Then one finds that non-anomalous symmetries are ones labeled by a vector

γ = (γ1, . . . , γn) ∈ ZNn such that

γAγ = 0 (mod N) . (3.15)

More generally, for a subgroup Λ of the set of 1-form symmetries to be non-anomalous, we

impose also that all mixed anomalies vanish, i.e.,

γAγ′ = 0 (mod N), γ, γ′ ∈ Λ . (3.16)

Note that when A is trivial, every subgroup is non-anomalous. In this case we refer to the

group Γ as being “anomaly-free.”

3.3 Representation of 1-form symmetries on HT 2

One important property of 1-form symmetries we will exploit below is that they act on the

Hilbert space of the theory on a non-trivial manifold. Below we will consider 3d theories

with 1-form symmetries on the spatial manifold T 2. Then we may define linear operators

on the Hilbert space associated to 1-form generators wrapping the two cycles of the torus

UA,Bγ : HT 2 → HT 2 . (3.17)

Then the Hilbert space must fall into representations of the group of these 1-form genera-

tors. Although the 1-form symmetry group itself is abelian, in the presence of anomalies

this group need not be abelian since we have in general

[UAγ1
, UBγ2

] = e2πiA(γ1,γ2) , (3.18)

where A : Γ×Γ→ U(1) ∼= R/Z is the anomaly form. Then the group acting on HT 2 is the

central extension, E, of Γ×Γ associated to the anomaly form, A. It fits into a short exact

sequence

1→ U(1)→ E → Γ× Γ→ 1 . (3.19)
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We define the “center”12 of the 1-form symmetry, Z ⊂ Γ, to be the set of elements

z such that A(z, γ) = 0 for all γ ∈ Γ. Then we may simultaneously diagonalize UAz
and UBz′ for z, z′ ∈ Z, and so refine the Hilbert space into characters χ̃A, χ̃B ∈ Ẑ, where

Ẑ ≡ Hom(Z,U(1)) is the group of characters of Z. In fact, one can show [55] that the

irreducible representations, Rχ̃A,χ̃B , of E are labeled by such a pair of characters, and have

dimension

dim Rχ̃A,χ̃B = |Γ|/|Z| . (3.20)

More explicitly, let us suppose that the exact sequence

1→ Z → Γ→ Γ/Z → 1 (3.21)

splits, so that we may identify

Γ ∼= Z ⊕ (Γ/Z) . (3.22)

Then the representations Rχ̃A,χ̃B can be written as

Rχ̃A,χ̃B = Pχ̃A,χ̃B ⊗RΓ/Z , (3.23)

where Pχ̃A,χ̃B is a 1d space only the U zA,B, z ∈ Z act on, and RΓ/Z is the unique irreducible

representation of the quotient 1-form symmetry Γ/Z, of dimension |Γ/Z| = |Γ|/|Z|. Thus,

in this case, the Hilbert space on T 2 can be factorized as

HT 2 =
⊕
χ̃A,χ̃B

H′χ̃A,χ̃B ⊗Rχ̃A,χ̃B = RΓ/Z ⊗

 ⊕
χ̃A,χ̃B

H′χ̃A,χ̃B ⊗ Pχ̃A,χ̃B


≡ RΓ/Z ⊗

⊕
χ̃A,χ̃B

Hχ̃A,χ̃B ,
(3.24)

where H′χ̃A,χ̃B is not acted on by the 1-form symmetry and where all information about the

anomaly is encoded in the RΓ/Z factor, and the center, Z, only acts on the second factor.13

This factorization property will be important below.

In the case where the 1-form symmetry, Γ, is anomaly-free, we may also consider

“twisted sectors” in the Hilbert space. These are sectors where we let a 1-form charge

operator, Uγ , lie along the time direction, and may be labeled by the element γ ∈ Γ

Hγ
T 2 =

⊕
χA,χB

HγχA,χB , γ ∈ Γ , (3.25)

where the untwisted sector corresponds to γ = 1, and we may also simultaneously grade

these sectors into characters of the UA,B operators, as above. These twisted sectors are

important when gauging the 1-form symmetry. Namely, the Hilbert space of the gauged

theory is given by

H̃gauged
T 2 =

⊕
γ∈Γ

HγχA=χB=1 . (3.26)

12Of course, as a group Γ is abelian and so equal to its own center, but the terminology should be clear

from context.
13In the more general case where (3.21) does not split, there is still a weaker factorization, where Z still

does not act on the first factor, but the full group Γ may act on the second factor.
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4 T [M3, g] and higher-form symmetries

In this section we define the theories obtained by compactification of the 6d N = (2, 0)

theory of type g on a three-manifold M3. Most of what we discuss in this section is

applicable to both N = 1 and N = 2 versions, so we will drop the subscript in the following.

What will emerge from this section is that to fully define the theory, we must specify, in

addition to the gauge algebra and three-manifold, a subgroup H of the cohomology group

H2(M3, ZG̃), and so we will actually define theories

T [M3, g, H] , H ≤ H2(M3, ZG̃) . (4.1)

Here Z
G̃

is the center of the simply connected Lie group G̃ with Lie algebra g. For ease of

notation, we will often refer to T [M3, g, H = 1] simply as T [M3, g].

For M3 a graph manifold, the theories T [M3, g, H] can be naturally defined in terms

of the theories, T̂ [Ω, G̃], defined in the previous section, where Ω is a graph associated to

M3. To describe the procedure of obtaining the former theory from the latter, it turns

out to be natural to use the language of higher-form symmetries, reviewed in the previous

section. In particular, the theories T [M3, g, H] in general have several interesting higher-

form symmetries, and the theories corresponding to different subgroups, H, can be obtained

from each other by gauging these symmetries in a suitable way. This structure can be traced

to a higher-form symmetry present already in the 6d theory, and in particular, to its nature

as a relative QFT.

4.1 6d theory as a relative QFT

Let us first review some properties of the 6d theory relevant to the compactification to 3d,

which we consider in the next subsection. The role of discrete topological data in compact-

ifications of the 6d N = (2, 0) theory has been discussed extensively in the literature; see,

for example, [13, 14, 16, 36, 54, 56] for related discussions.

First we recall that the 6d N = (2, 0) theory is a relative QFT, meaning it is not well-

defined by itself, but naturally lives on the boundary of a 7d topological theory [13, 14, 56].

Then the notion of a partition function is replaced by a partition vector, which is an element

in the Hilbert space of this TQFT. This is analogous to the case of a chiral CFT in 2d,

which lives on the boundary of a 3d Chern-Simons theory. In the 6d case, this 7d TQFT

can be described as a Wu-Chern-Simons (WCS) theory [13, 57].

In more detail, let us first consider the AN−1 type 6d N = (2, 0) SCFT. Then, roughly

speaking, the WCS theory can be thought of as a level N 3-form Chern-Simons theory, and

has 3d Wilson surface operators, Oω, supported on 3-cycles, ω ∈ H3(M7,ZN ). These may

be thought of as charge operators for a 3-form symmetry of the Chern-Simons theory, with

group ZN . This symmetry has an ’t Hooft anomaly, which means the charge operators do

not commute. Rather, when we consider the theory on a spacetime M6×R, they obey the

appropriate version of (3.1), specifically14

OωOω′ = e
2πi
N
ω∩ω′Oω′Oω, ω, ω′ ∈ H3(M6,ZN ) . (4.2)

14As described in [13], to define the full algebra, and not just the commutation relations, when N is odd,

one needs to choose a spin structure on M6. In explicit examples below we will mostly take N = 2, so will

not encounter this issue.
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This can also be described by saying the operators generate a Heisenberg group, W , which

is a central extension of H3(M6,ZN ), and fits into the short exact sequence

1→ ZN →W → H3(M6,ZN )→ 1 . (4.3)

The Hilbert space of the TQFT on M6 is given by an irreducible representation of W ,

which can be described as follows. First we must choose a polarization of H3(M6,ZN ),

which is a maximal isotropic subgroup, Λ, i.e., with λ ∩ λ′ = 0 for all λ, λ′ ∈ Λ. Let us

assume that we can write

H3(M6,ZN ) ∼= Λ⊕ Λ̃ , (4.4)

where it follows that Λ̃ is also maximal isotropic. Then we pick a basis in which the

operators, O
λ̃
, λ̃ ∈ Λ̃, are diagonal. Namely, one can find a unique vector |0〉, which is

fixed by all O
λ̃
, and for λ ∈ Λ we define states

|λ〉 ≡ Oλ|0〉, λ ∈ Λ . (4.5)

Then one can check that

Oλ|λ′〉 = |λ+ λ′〉, O
λ̃
|λ〉 = e

2πi
N
λ∩λ̃|λ〉 , λ, λ′ ∈ Λ, λ̃ ∈ Λ̃ , (4.6)

and so these states form a basis for the irreducible representation of W , and so for the

Hilbert space of the 7d theory. The choice of polarization picks out a corresponding basis

of the Hilbert space as above. E.g., if we had chosen Λ̃ rather than Λ, the basis states

would be related by a discrete Fourier transform. Note that a choice of polarization will

typically break some of the diffeomorphism symmetry of M6.

For other ADE Lie algebras g, we expect a similar description, where in general the

polarization is determined by a decomposition

H3(M6, ZG̃) ∼= Λ⊕ Λ̃ , (4.7)

where Z
G̃

is the center of G̃, the simply connected Lie group with Lie algebra g.

After picking the polarization, we may write the partition vector of the 6d N = (2, 0)

theory on M6 in the corresponding basis as∣∣ZM6
〉

=
∑
λ∈Λ

ZM6
λ |λ〉 . (4.8)

We refer to ZM6
λ , λ ∈ Λ, as the components of the partition vector. We emphasize that

they depend not only on λ, but also on the choice of polarization, Λ.

4.1.1 5d reduction

As an example, let us consider M6 of the form M5×S1. Then we may write, by Künneth,

H3(M6, ZG̃) = H3(M5, ZG̃)⊕H2(M5, ZG̃) ≡ A⊕B . (4.9)
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Here there are two natural choices of polarization which preserve diffeomorphism invariance

on M5, which are to take Λ = A or Λ = B. In the first case, the components of the partition

vector can be written as

ZM5×S1

ω , ω ∈ A = H3(M5, ZG̃) ∼= H2(M5, ZG̃) . (4.10)

The 6d N = (2, 0) theory on M5 × S1 is believed to be described by 5d N = 2 SYM

with Lie algebra g on M5. Then ZM5×S1

ω is the contribution to the path-integral of this

theory from principle g bundles with second Stiefel-Whitney class equal to ω. In particular,

ZM5×S1

0 is the partition function of the theory with simply connected gauge group, G̃, and

more generally, ZM5×S1

ω is the refinement by the electric 1-form symmetry of this theory,

as in (3.5).

On the other hand, in the B-polarization the states are labeled by H2(M5, ZG̃) ∼=
H3(M5, ZG̃), and this corresponds to the G̃/Z

G̃
theory, refined by its 2-form magnetic

symmetry. Indeed, this change in polarization is implemented on the representation by a

discrete Fourier transform, and we obtain

Z̃M5×S1

ω̃ =
1

|H2(M5, ZG̃)|1/2
∑
ω∈B

eiω∪ω̃ZM5×S1

ω , ω̃ ∈ H2(M5, ZG̃) ∼= H3(M5, ZG̃) , (4.11)

which agrees with (3.6). Note these two choices preserve diffeomorphism invariance on M5,

which is natural in the context of describing a 5d QFT. Other such choices of polarization

give rise to the different global forms of the group with Lie algebra g. Thus we see the

different choices of polarization gives rise to different 5d theories.

4.1.2 Abelian case

In addition to the simple Lie algebras considered above, we may define the 6d N = (2, 0)

theory in the case g = u(1), where it corresponds to a free N = (2, 0) tensor multiplet.

Although this theory is free, there are still several subtleties that arise, as discussed, e.g.,

in [56, 58].

A useful analogy to this theory is the chiral periodic scalar theory in 2d. This theory

depends on the period R, of the scalar, where the self-dual radius R = 1 corresponds to

a free chiral fermion. For all other choices of R, the theory is not modular invariant by

itself, but instead, the partition function is mapped by modular transformations among a

space of conformal blocks. If we focus on R = N ∈ Z>0 and spacetime Σ, these blocks are

labeled by elements of an isotropic subgroup Λ ⊂ H1(Σ,ZN ). For example, for Σ = T 2,

|Λ| = N , and there are N conformal blocks on the torus. As modular transformations act

on H1 and so on the choice of Λ, they also act on the space of conformal blocks. The space

of conformal blocks may also be naturally interpreted as the Hilbert space of 3d U(1) level

N Chern-Simons theory on Σ. Indeed, the chiral CFTs are not defined on their own, but

must live on the boundary of this 3d TQFT, and so their partition functions on Σ are

naturally elements in the Hilbert space of these TQFTs.

The self-dual 2-form in 6d is completely analogous. Here we also must specify a

periodicity, N ∈ Z>0, and rather than a partition function, the observables on a spacetime
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M6 are given by conformal blocks or a partition vector, as we saw in the ADE case above,

namely

Zλ , λ ∈ Λ ⊂ H3(M6,ZN ) . (4.12)

These may also be understood as vectors in the Hilbert space of a 7d TQFT on M6, a

3-form version of the Chern-Simons theory. In particular, for N > 1, the theory is not an

ordinary QFT, but a relative QFT, as we saw in the ADE case above.

We note for later reference that the self-dual 2-form with periodicity N has a U(1)

2-form symmetry [12], whose charge operators are

Uα[Σ3] = e
2πiα

∫
Σ3

H
, (4.13)

where H = dB is the self-dual 3-form field strength. This symmetry has an ’t Hooft

anomaly, which implies that when we place the Uα operator on a manifold with boundary,

∂Σ3 = Σ2, this configuration has a non-trivial 2-form charge supported on Σ2. We will

return to the consequences of this statement below.

4.1.3 Self-dual G

Let g be a semi-simple, simply-laced Lie algebra, and suppose we can find a subgroup,

L, of Z
G̃

, such that L ∼= Z
G̃
/L. In this case, the group G ≡ G̃/L, is isomorphic

to its Langlands dual group, and we call such groups “self-dual.” Some examples are

SO(2N) = Spin(2N)/Z2, (SU(N)× SU(N))/ZN , and SU(N2)/ZN . For such G, there is a

corresponding choice of polarization of the 6d theory, which is15

ΛG ≡ H3(M6, L) ⊂ H3(M6, ZG̃) . (4.14)

One can check that this is a maximal isotropic subgroup. Note that this choice does

not break any diffeomorphism symmetry of M6, and so we may naturally interpret these

observables as partition functions of an ordinary QFT. Specifically, since the partition

function is labeled by an element in H3(M6, L), we see this theory has a 2-form symmetry

with group L. We may naturally refer to the 6d theory of type g with the polarization ΛG

as the “6d N = (2, 0) theory of type G,” which is an ordinary rather than relative QFT.

We emphasize this terminology only makes sense for G self-dual.

Similar considerations apply in the non-semi-simple case. For example, G = U(1) is

self-dual, and we saw above that the N = 1 case of this theory is indeed an ordinary QFT.

More generally, we may define the “6d N = (2, 0) theory of type U(N)” as follows. We

start with the tensor product of the theory of type g = su(N), along with the u(1) theory

with periodicity N . These are separately relative QFTs, and so we must choose a maximal

isotropic subgroup of

H3(M6,ZN )⊕H3(M6,ZN ) ∼= H3(M6,ZN ⊕ ZN ) . (4.15)

15For convenience, we sometimes specify the polarization in terms of the cohomology, rather than homol-

ogy, which is equivalent by Poincaré duality.
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However, as above, a natural choice of polarization that preserves diffeomorphism symmetry

is given by

Λ ∼= H3(M6,Zdiag
N ) ⊂ H3(M6,ZN ⊕ ZN ) . (4.16)

This gives rise to an ordinary 6d QFT, which is acted on by a ZN 2-form symmetry. In fact,

this ZN sits inside a larger U(1) 2-form symmetry coming from the u(1) factor, as in (4.13).

This theory corresponds to the low energy theory of N M5-branes, without decoupling the

center of mass motion.

In the above cases, the reduction to 5d gives rise to the 5d N = 2 SYM theory with

gauge group G, which has both 1-form and 2-form symmetries with group ZG.

4.2 Compactification on M3

In this subsection we describe some general features of the compactification of the 6d theory

on M3, which follow from properties of the 6d theory described above.16 In this context,

we are interested in the case where M6 is a product manifold of the form

M6 = M3 ×W3 , (4.17)

which describes a 3d theory, T [M3, g], on the spacetime W3. As we will see in a moment,

additional data is necessary to fully specify the theory.

For M6 = M3 ×W3, the universal coefficient version of the Künneth theorem states

that for Z
G̃

-valued cohomology

H3(M3 ×W3, ZG̃) ∼= H3(M3, ZG̃)⊕H3(W3, ZG̃)

⊕H2(M3, ZG̃)⊗Z
G̃
H1(W3, ZG̃)⊕H1(M3ZG̃)⊗Z

G̃
H2(W3, ZG̃)

⊕ TorZ
G̃

(H3(M3, ZG̃), H1(W3, ZG̃))

⊕ TorZ
G̃

(H2(M3, ZG̃), H2(W3, ZG̃))

⊕ TorZ
G̃

(H1(M3, ZG̃), H3(W3, ZG̃)) . (4.18)

Here the TorZ
G̃

(X,Y ) are the torsion groups over the rings Z
G̃

.

Below we will mostly be interested in the case W3 = T 3, and assume from now on that

W3 has no torsion.17 This implies that all the Tor groups vanish. Under this assumption,

we may decompose the third cohomology group as

H3(M3 ×W3, ZG̃) ∼= Z
G̃
⊕A⊕B ⊕ Z

G̃
, (4.19)

with the notation

A =
(
H1(M3, ZG̃)⊗Z

G̃
H2(W3, ZG̃)

)
∼= H2(W3,Υ)

B =
(
H2(M3, ZG̃)⊗Z

G̃
H1(W3, ZG̃)

)
∼= H1(W3, Υ̂) ,

(4.20)

16Similar global considerations in the 3d-3d correspondence were discussed in [54]. See also [36] for related

discussions in the 4d-2d correspondence.
17However, examples of W3 with torsion, such as the Lens spaces, naturally arise in the 3d-3d correspon-

dence, and it would be interesting to explore the new features that arise here.
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where we have used the universal coefficient theorem to rewrite these groups (using the

assumption that W3 is torsionless), and have also defined

Υ ≡ H1(M3, ZG̃), Υ̂ ≡ H2(M3, ZG̃) , (4.21)

which are naturally Pontryagin dual.

We now have to make a choice of polarization.18 One possibility is to pick the A-

polarization. In this case, the observables of the theory will be labeled by a choice of

element in H2(W3,Υ). This naturally suggests that this 3d theory has a 1-form symmetry

with group Υ. Another choice is the B-polarization, in which case the observables are

labeled by an element in H1(W3, Υ̂), which gives a theory with 0-form Υ̂ symmetry. These

choices are analogous to the choices which led to the 5d G̃ and G̃/Z
G̃

theories, and we

should interpret these as leading to different versions of the T [M3, g] theories.

More generally, we may choose a subgroup

H ≤ Υ̂ , (4.22)

and correspondingly define

ΥH = {x ∈ Υ | χ(x) = 1, ∀χ ∈ H} ⊂ Υ . (4.23)

Then we may take our polarization, Λ, to correspond to a subgroup

Λ = H1(W3, H)⊕H2(W3,ΥH) . (4.24)

Here the A and B polarizations above correspond to H = 1 and H = Υ̂, respectively.

These give rise to a general class of polarizations preserving the diffeomorphism symmetry

of W3, which is natural in the context of defining a 3d QFT.

Thus we find there is not a unique theory T [M3, g], but rather, different choices corre-

sponding to the choice of H above. We define the theory

T [M3, g, H] (4.25)

to be the 3d theory corresponding to the compactification of the type g 6dN = (2, 0) theory

with the polarization labeled by H above. We see that the observables are labeled by

H1(W3, H)⊕H2(W3,ΥH) , (4.26)

which we may interpret as corresponding to symmetries

0-form symmetry: Γ0 = H

1-form symmetry: Γ1 = ΥH .

18We may always choose the polarization to include one of the ZG̃ factors in (4.19), and ignore these

factors from now on, as they do not depend on the topology in an interesting way.
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4.3 T [M3, g,H] for M3 a graph manifold

Let us turn to an explicit description of the T [M3, g, H] in the case of M3 a graph manifold.

Here we will use the theories T̂ [Ω, G] defined in the previous section, but we will see that,

in general, some additional operations are necessary to produce the T [M3, g, H] theory.

In this section we will mostly consider the N = 2 twist, and return to the N = 1 twist

in section 7.

4.3.1 U(1) case

Let us start in the abelian case, and consider the reduction of the 6d theory of type u(1).

Recall we must also choose the periodicity, N , and we first consider the case N = 1 which

gives rise to an ordinary QFT in 6d, which we refer to as the U(1) theory. Then we denote

the 3d theory obtained by compactification of this theory on M3, with the appropriate

twist, as

T [M3,U(1)] . (4.27)

We focus on the case of M3 a graph manifold, for which we take a particular graph

decomposition, Ω. This graph gives a prescription for forming M3 by gluing simple pieces

along boundary tori by S and T transformations. Then, as discussed in [19], the theory may

be built by iteratively applying the S and T operations of Witten [26], or more precisely,

their supersymmetric completions. Namely, we assign a U(1) gauge multiplet to each node

in the graph associated to M3, a level ki CS term for the gauge group in the ith node,

where ki is the label of the node, and an off-diagonal CS term to two nodes connected by

an S-gluing. In summary, this results in

S =
1

4π

∫
QijAi ∧ dAj + · · · , (4.28)

where Qij is the linking matrix, defined in (2.13), and the dots denote additional fields in

the (N = 1 or N = 2) vector multiplet, which we suppress. This is precisely the description

of T̂ [Ω,U(1)] given in the previous section, where we recall the duality wall theory, T (U(1)),

is simply a mixed BF-term for a U(1) ×U(1) flavor symmetry. Thus we have, in this case

T [M3,U(1)] ≡ T̂ [Ω,U(1)] . (4.29)

As a consistency check, we must verify that this theory is independent of the choice of graph

decomposition Ω of M3. This is almost true, but there is a slight subtlety, which is that the

SL(2,Z) operations used above do not quite close onto a representation of SL(2,Z), but

rather form a projective representation, as noted in [6, 26]. For example, applying the (ST )3

operation does not completely leave the theory invariant, but introduces a tensor factor

with an invertible TQFT, the U(1) level 1 CS theory, and correspondingly the partition

function is not invariant, but incurs a phase. This can be attributed to a gravitational

anomaly of the 6d theory. We will work modulo such invertible TQFTs in what follows.

More generally, we may consider the theory,

T [M3, u(1)N ] , (4.30)
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obtained by the compactification of the free tensor multiplet with periodicity N . The

case above corresponds to N = 1, and more generally, we claim we should now consider

the action

S
T̂ [Ω,U(1)N ]

=
1

4π

∫
N QijAi ∧ dAj + · · · (4.31)

Let us denote this theory by T̂ [Ω,U(1)N ], as we have not yet checked independence on Ω.

Indeed, once again we find that the SL(2,Z) relations are not satisfied on the nose, but now

the discrepancy is more severe. For example, the (ST )3 relation now introduces a tensor

factor of the U(1) level N CS theory, which is not invertible. This means the partition

function is multiplied by a more complicated factor than the phase above, and even the

Hilbert space of the theory will in general be modified. Thus the theory T̂ [Ω,U(1)N ] is

not independent of the graph decomposition of M3, and so is not yet equal to the theory

T [M3, u(1)N ]. We will see below that a similar issue arise in the ADE case, and will describe

the resolution in that context.

1-form symmetries. Let us restrict our attention to the case with periodicity N = 1.

As mentioned above, the 6d self-dual tensor theory has a 2-form U(1) symmetry, and

upon compactification, this descends to a higher-form symmetry of the T [M3,U(1)] theory.

Namely, we find

1-form symmetry: Γ1 = H1(M3,U(1)) ∼= H2(M3,Z) . (4.32)

This holds for general M3, but in the case of M3 a graph manifold, we may see this 1-form

symmetry explicitly in the Lagrangian, as follows. To each U(1) factor in the gauge group,

there is naively a U(1) ∼= R/Z 1-form symmetry. However, the Chern-Simons terms break

this symmetry to the subgroup

Γ1 = ker(Q : Rn/Zn → Rn/Zn) , (4.33)

where Q is the n× n linking matrix. Then one may check that the above group is indeed

isomorphic to H2(M3,Z).

Moreover, as a result of the anomaly of the 6d 2-form symmetry, one finds that this

1-form symmetry can have an anomaly. Similarly to the discussion in [12, 59], suppose

we wrap a charge operator of the 6d theory on a Zk torsion cycle in M3. Topologically,

this cycle may have a non-trivial boundary, but one which is a multiple of k, so that it

vanishes with Zk coefficients. However, due to the anomaly, this boundary may render

the charge operator itself to be charged under the higher-form symmetry. As a result,

the 1-form symmetry in T [M3,U(1)] has an anomaly associated to the torsion subgroup,

TH2(M3), of H2(M3), and the anomaly form gives a topological invariant of M3, which is

the “linking form”

` : TH2(M3)× TH2(M3)→ Q/Z . (4.34)

We may see this explicitly in the Lagrangian for T [M3,U(1)] above, as one computes that

the anomaly form of the Chern-Simons theory is

A(γ1, γ2) = e2πiγT1 Qγ2 , (4.35)

which indeed reproduces the linking form on M3.

– 30 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
1

4.3.2 Self-dual G

The case G = U(1) above is a special case of the more general situation where G is self dual.

Then, as discussed in section 4.1.3, there is a natural choice of polarization which preserves

all diffeomorphism symmetry of the spacetime, M6, and may naturally be interpreted as

an ordinary QFT, which we call the 6d theory with group G. Then we claim that, in this

case, compactification on M3 gives a theory

T [M3, G] ≡ T̂ [Ω, G] . (4.36)

In particular, this is independent of the choice of graph decomposition of M3. Indeed, one

can check that, in the self-dual case, the SL(2,Z) relations discussed in section 2.3 are

satisfied on the nose (or at least up to invertible TQFTs). We saw this in section 2.3.2 for

the case G = U(2).

The higher-form symmetry of this 3d theory may be inferred by dimensional reduction

of the 2-form ZG-symmetry of the 6d theory, and the theory has

0-form symmetry: Γ0 = H2(M3, ZG)

1-form symmetry: Γ1 = H1(M3, ZG) .
(4.37)

In the case of G = U(N), the 1-form symmetry has a contribution from the U(1)

sector, and is given as above by Γ1 = H2(M3,Z). However, due to the periodicity of the

U(1) theory being N , the anomaly form is now N times the linking form. Then one can

check that the non-anomalous subgroup is given as in (4.37), but with ZG → ZN .

In the language of section 4.2, this theory corresponds to

T [M3, g, H] with H = H2(M3, L) ≤ H2(M3, ZG̃) , (4.38)

where we recall L is defined by G = G̃/L. We describe the construction of general

T [M3, g, H] next.

4.3.3 General g

Let us now consider the general case. As described in section 4.2, on general grounds, we

expect the theories, T [M3, g, H], obtained by compactification to be labeled by a subgroup

H ≤ Υ̂ ≡ H2(M3, ZG̃) (4.39)

and to have 0-form symmetry H and 1-form symmetry ΥH .

Let us first describe the case T [M3, g, 1], which we denote by T [M3, g] for short. Here

our naive guess might be

T [M3, g, 1]
?
= T̂ [Ω, G̃] , (4.40)

where we recall G̃ is the simply connected group with Lie algebra g, and Ω is some graph

decomposition of M3. However, one basic problem we run into is that this theory is not

independent of the graph. Indeed, as observed in section 2.3.2, for g = su(2), the theory

can pick up decoupled tensor factors of topological theories upon operations on Ω which
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preserve the topology of M3. In order to find a definition of T [M3, g] which depends only

on M3, we must somehow eliminate these decoupled topological sectors.

First, let us review the result of [27], which states that, for a 3d TQFT T with anoma-

lous 1-form symmetry, Γ, one finds that the theory factorizes

T = T ′ ⊗ TΓ,A , (4.41)

where

TΓ,A ≡ minimal TQFT with Γ symmetry with anomaly A . (4.42)

One way to isolate the sector T ′ is by coupling to another topological theory, TΓ,−A, which

has the opposite anomaly, and gauging the non-anomalous diagonal subgroup

(T ⊗ TΓ,−A)/Γ = T ′ ⊗ (TΓ,A ⊗ TΓ,−A)/Γ ∼= T ′ . (4.43)

We conjecture that a similar decoupling takes place in the theories T̂ [Ω, G̃]. Namely, we

conjecture that we may write

T̂ [Ω, G̃] ∼= T [M3, g]⊗ TΓ/Z,A . (4.44)

Here Γ is the 1-form symmetry of T̂ [Ω, G̃], with center Z, so that Γ/Z is the anomalous

part. We conjecture that this anomalous symmetry acts only on a decoupled topological

sector, and the physical theory, T [M3, g], appears as a subsector. Then one way to isolate

the latter is as in (4.43), namely

T [M3, g] ∼= (T̂ [Ω, G̃]⊗ TΓ/Z,−A)/(Γ/Z) . (4.45)

However, any procedure which eliminates this decoupled sector will lead to an equivalent

result. For example, this can sometimes be achieved by gauging a suitable subgroup of the

symmetry Γ in the T̂ theory, as we will see in examples below.

It would of course be desirable to find a first principles derivation of the conjec-

ture (4.44). However, let us mention several pieces of evidence in favor of it. First note that

with this assumption, the dependence on the graph, Ω, due to the appearance of decoupled

sectors, as discussed in section 2.3, is cured. Namely, as we will describe in more detail

below, such sectors contribute only to TΓ/Z,A, and so will be removed in (4.45).

One tempting interpretation of this decoupling is as follows. Recall from section 2.1

that the graph, Ω, can naturally be interpreted as describing a plumbed four-manifold,

M4, bounded by M3. Then there are operations which preserve M3, but modify M4 by

taking a connected sum with P2. Now, as we saw above, the 6d theory naturally lives

on the boundary of a 7d TQFT, and so the compactification of the 6d theory on M3

can be interpreted as being accompanied by a compactification of the 7d theory on M4.

Then the compactification on the 7d theory on these connected P2 summands will lead

to tensor factors with decoupled topological sectors, precisely as we observed above. The

decoupling procedure can then be understood as removing the dependence on the auxiliary

four-manifold, and obtaining a theory, T [M3], which depends intrinsically on M3.
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Next, from (3.24) we see that the anomalous part of the 1-form symmetry can be taken

to act only on a decoupled tensor factor of the Hilbert space of the theory on T 2. Then we

claim that the Hilbert space of the theory T [M3, g] is given by the second tensor factor,

which has an anomaly-free 1-form symmetry, and the procedure above is defined so as to

isolate this factor. We will see this explicitly when we study the T 2 vacua of these theories

in the next section.

Finally, we will see in section 6 that this decoupling arises naturally when we study the

topological side of the 3d-3d correspondence, and is necessary to achieve a precise matching

to the counting of flat connections.

An important feature of this procedure is that it removes the anomalous 1-form sym-

metry, but does not modify the central subgroup, Z. In particular, we claim

1-form symmetry of T [M3, g] = center of 1-form symmetry of T̂ [Ω, G̃]

∼= Υ = H1(M3, ZG̃) ,
(4.46)

which is the expected 1-form symmetry for this theory from the discussion in section 4.2.

We will see this explicitly in examples below.

Finally, to define the more general theories T [M3, g, H], we must gauge a subgroup of

the Υ 1-form symmetry isomorphic to H

T [M3, g, H] ≡ T [M3, g, 1]/H . (4.47)

This will leave a theory with 1-form symmetry ΥH and a new 0-form symmetry H, as

expected. As in the 5d example above, this gauging of 1-form symmetry is precisely the

same as changing the polarization of the 6d theory.

4.4 Examples

Let us consider some examples of how this 1-form symmetry structure arises in

T [M3, su(N)]. While this is applicable to general M3, here and below we focus on the

case of M3 a Seifert manifold, and moreover a rational homology sphere, and we use the

Lagrangians discussed in section 2.2.

4.4.1 Lens space quiver

We start with the case of the Lens space, M3 = L(p, q). Then,

H1(L(p, q),ZN ) ∼= H2(L(p, q),ZN ) ∼= Z(N,p) , (4.48)

where (N, p) denotes the greatest common divisor. Thus, we expect that if (N, p) 6= 1 there

are multiple versions of the theory, e.g., one with 1-form Z(N,p) symmetry and no 0-form

symmetry, and one with 0-form Z(N,p) symmetry and no 1-form symmetry, and that we

may pass between these two theories by gauging these symmetries. On the other hand,

when (N, p) = 1, there is no such symmetry, and correspondingly only one choice of theory.
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T [L(p, 1)], su(N)]. Let us first consider the case of L(p, 1). Then we may take the

decomposition graph, Ω[p], to have a single node with label p, and so T̂ [Ω[p], SU(N)] is

given by

T̂ [Ω[p], SU(N)] = SU(N) with level p CS term and an adjoint scalar . (4.49)

This theory has a ZN 1-form symmetry, however, due to the Chern-Simons term, it has an

’t Hooft anomaly with coefficient p, and so only a Z = Z(N,p) subgroup is non-anomalous.

Comparing to (4.48), we see we may identify this with

Z = H1(L(p, 1),ZN ) ∼= Z(N,p) , (4.50)

as expected from (4.46).

In the case where p is a multiple of N , there is no remaining anomalous symmetry,

and we have simply

N |p : T [L(p, 1), su(N)] = SU(N) with level p CS term and an adjoint scalar . (4.51)

More generally, we must also decouple the anomalous part of the symmetry, which is

contained in the quotient, Γ/Z = ZN/Z(p,N)
∼= Zd, where d ≡ N/(N, p). For example,

consider the case where (N, p) = 1, so that d = N . Then, to accomplish this, we must

couple to the theory TZN with a ZN 1-form symmetry of maximal anomaly, which in the

present case may be taken as

TZN = U(1)N Chern-Simons theory . (4.52)

Thus, the prescription in (4.45) tells us we should define

T [L(p, 1), su(N)] ≡
(

(SU(N) with level p CS term and an adjoint scalar)

⊗ (U(1)−N Chern-Simons theory)

)
/ZN .

(4.53)

This defines the theory corresponding to the subgroup H = 1. When (N, p) = 1, this

is the only choice, but more generally, let us choose some integer k that divides (N, p).

Then the theory has an anomaly-free 1-form Zk symmetry which we may gauge. This then

defines the theory

T [L(p, 1), su(N),Zk] ∼= T [L(p, 1), su(N)]/Zk , (4.54)

and this theory has a 0-form Zk symmetry. We may gauge any of the non-anomalous Zk
symmetries so there might be various choices of global structure. The simplest example

is N = 2. Then, if p is even we may gauge a 1-form Z2 symmetry passing over to gauge

group SO(3). If p is odd this is not possible and only the SU(2) version exists.

An important special case is the theory T [S3, su(N)]. Recall that S3 = L(1, 1) so in

this case, we have

T̂ [Ω[1], SU(N)] = SU(N) with level 1 CS term and an adjoint scalar . (4.55)
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From (2.27), this theory is dual to N − 1 free chiral multiplets tensored with a U(1)N
topological sector. This is precisely the decoupling behavior conjectured in (4.44), providing

an explicit example where this conjecture holds. Then applying the decoupling procedure

above, we see that, simply

T [S3, su(N)] ∼= N − 1 free chiral multiplets . (4.56)

It is important that this theory has only a single BPS state in order for the number of such

states to be a topological invariant of general M3. Namely, for any such M3 we can take

a connected sum with S3, which tensors T [M3] with a copy of T [S3], and for this to leave

the number of BPS states invariant, the latter should have only one BPS state. Note this

is only true after performing the decoupling procedure above.

T [L(p, q)], su(N)]. For more general L(p, q), we use the linear graph, Ω[k1,··· ,kn], associ-

ated to the continued fraction expansion, [k1, . . . , kn], of p
q , as described in section 2. Then

T̂ [Ω[k1,··· ,kn], SU(N)] is given by a sequence of SU(N) gauge groups with level ki Chern-

Simons terms, and connected by copies of the T (SU(N)) theory. However, as noted above,

this linear quiver theory is not quite the theory T [L(p, q), su(N)] itself, as it contains an

additional decoupled topological sector that must be removed.

From the general considerations above, we expect that the T [L(p, q), su(N)] theory has

a 1-form symmetry group isomorphic to

Υ = H1(L(p, q),ZN ) = Z(N,p) . (4.57)

To identify this symmetry, first, using (3.13), we find that the anomaly matrix agrees with

the linking matrix (2.13), i.e.,

A =



k1 −1 0 · · · 0

−1 k2 −1

0 −1 k3

...
. . .

...

kn−1 −1

0 · · · −1 kn


mod N . (4.58)

Thus this theory has a Γ = ZNn 1-form symmetry. However, many of these symmetries

are anomalous, and we are interested in the non-anomalous subgroup, Z. This can be

identified as the kernel of A acting on Γ. One may compute that

detA = p mod N . (4.59)

This implies the anomaly matrix has a (unique, up to scalar multiplication) null-vector

δ precisely when the r.h.s. of (4.57) is non-trivial. We call δ the central element, and in

general it generates the central subgroup Z ∼= Z(N,p). Thus we have identified the expected

1-form symmetry in (4.57).
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Next let us discuss the remaining, anomalous 1-form symmetry. For simplicity, we

consider the case of N prime. Then, since Γ ∼= ZNn is freely generated, we find that it

splits into a direct sum of the center, Z, and the remaining, anomalous part, Γ/Z

Γ = ZNn ∼= Z ⊕ (Γ/Z) , (4.60)

where

Z =

{
ZN N |p
1 else

, Γ/Z =

{
ZNn−1 N |p
ZNn else

. (4.61)

Then to decouple the anomalous (Γ/Z) 1-form symmetry and obtain the T [L(p, q), su(N)]

theory, following (4.45) we define

T [L(p, q), su(N)] ≡ (T̂ [Ω, SU(N)]⊗ TΓ/Z,−A)/(Γ/Z) . (4.62)

For example, if A can be diagonalized over ZN , then we may take TΓ/Z,−A to equal

rank(Γ/Z) copies of the U(1)−N CS theory.

The theory obtained after this procedure retains the expected anomaly-free Z ∼= Υ =

H1(L(p, q),ZN ) 1-form symmetry, and we claim this is the theory obtained by compacti-

fication of the 6d theory on L(p, q). One may then obtain T [L(p, q), su(N), H] for H ≤ Υ

by gauging non-anomalous subgroups, as above.

Symmetries of the quiver. In section 2.3, we observed that the theories T̂ [Ω, G̃] are

not yet topological invariants, as they are not invariant under operations on the graph,

Ω, that preserved the underlying three-manifold, M3. Let us now verify that the theories

T [M3, g] do not suffer from this problem. We will focus on the case of M3 = L(p, q) and

g = su(N), but the arguments generalize straightforwardly.

First we consider the operation of appending a TST transformation at one end of the

linear quiver. As we saw in (2.27), the only effect of this operation for G = SU(N) is to

introduce a factor of the topological U(1)N theory in the quiver. But such a decoupled

topological sector is expected to contribute only to the second factor in (4.44), and not

to the physical theory, T [L(p, q), su(N)]. Indeed, this decoupled sector comes with an

anomalous ZN 1-form symmetry, which appears as a factor in Γ/Z, and correspondingly

there is a factor of U(1)−N in TΓ/Z,−A. When we perform the decoupling procedure, these

two factors of U(1)N are eliminated by the diagonal ZN gauging. Thus the theory is

precisely the same as the one before applying this TST transformation. Similar comments

apply to the insertions of (ST )3 and S2, which also add U(1)N topological sectors. Namely,

these are also removed by the decoupling procedure above, and so T [L(p, q), su(N)] is

independent of such operations on the quiver.

Finally, let us consider the operations leading to the dual description of T (G) as a

trinion with one flavor symmetry gauged at level 1, as in (2.30). As above we focus on the

case of G = SU(N), but expect this to hold for more general G. This involves applications

of both the (ST )3 relation, and the TST relation, and each of these introduce a decoupled

U(1)N factor. On the one hand, this may be removed by the decoupling procedure above.

An alternative and equivalent way to remove these sectors and isolate the physical theory
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is to simply gauge the diagonal ZN of these two U(1)N factors. But one can check that, in

the star-shaped quiver description, this ZN gauging maps precisely to gauging the 1-form

symmetry of the central SU(N) node, leaving the gauge group as SU(N)/ZN . This is

in fact the expected result, as the duality of the star-shaped quiver of the trinion holds

only when the central node is taken as SU(N)/ZN [60]. Similarly, S2 becomes trivial after

gauging the ZN at the middle node because T (G) squares to the identity [25], when the

global structure is taken into account.

4.4.2 Seifert quivers

Next we look at more general quivers associated to Seifert manifolds. For simplicity, we fo-

cus on the gauge algebra g = su(2), which already reveals much of the interesting structure.

We also restrict ourselves to graphs Ω(ki) with intersection matrix

Q =


0 1 1 1

1 k1 0 0

1 0 k2 0

1 0 0 k3

 , (4.63)

with the ki chosen to correspond to the manifolds S3/ΓADE in (B.8). If any ki = 1,

M3 is a Lens space, which were discussed in the previous section, so we will consider

ki = (2,−2, n− 2) for Dn and ki = (3,−2,m− 3) for Em. The theory T̂ [Ω(ki), SU(2)] has

a Γ = Z2
4 1-form symmetry, which in the notation of (4.60) splits as

Γ ∼= Z ⊕ (Γ/Z) , Z = H1(M3,Z2) , (4.64)

depending on the choice of M3. Concretely,

H1(S3/ΓDn ,Z2) =

{
Z2 × Z2 n even

Z2 n odd
, H1(S3/ΓEm ,Z2) =

{
1 m even

Z2 m odd
. (4.65)

We then define T [S3/ΓDE , g] in analogy to (4.62).

Let us now focus on theDn case. The kernel of the anomaly matrixAn,19 has dimension

two if n is even and dimension one if n is odd, in agreement with (4.65). For n odd the 1-

form symmetry of T [S3/ΓDn , su(2)] is generated by δ1 = (0, 0, 1, 1). Gauging this symmetry

gives us the theory T [S3/ΓDn , su(2),Z(1)
2 ]. For n even there is an additional Z2 1-form

symmetry generated by δ2 = (0, 1, 0, 1). Thus there are multiple choices for H, namely

T [S3/ΓDn , su(2),Z(i)
2 ] , i = 1, 2, 3

T [S3/ΓDn , su(2),Z2 × Z2] ,
(4.66)

where Z(3)
2 is the diagonal subgroup generated by δ3 = δ1 + δ2. The Em case does not

unveil any additional structure with E7 being equivalent to Dn with n odd and for Em, m

even, there is no 1-form symmetry.

19Recall that this is given by A = Q mod 2.
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x x

Figure 6. Heegaard decomposition of L(p, 1), where the two solid tori are glued with a T p trans-

formation. In red is shown the 2 cycle with ZN coefficients. For this to be consistently extend to

the right side, we must have p = 0 mod N , which reflects the fact that the homology group is

non-trivial only in this case.

4.5 Geometric interpretation of global structure

Here we comment on a geometric picture for the 1-form symmetry above in terms of

compactification of the 6d theory. Let us first focus on the case M3 = L(p, 1) for simplicity,

where we found a non-anomalous ZN 1-form symmetry generated by δ if p = 0 mod N .

Recall the possible 1-form symmetry group operators on W3 are constructed by first picking

a 1-cocycle on M3, or equivalently, a 2-cycle, with ZN coefficients. We may describe this

explicitly using the Heegaard decomposition of L(p, 1), as shown in figure 6. Here we show

the 2-cycle in red on the left solid torus, which we take to generate a ZN 2-chain on the

l.h.s. . At the boundary, we have labeled the two cycles of the torus by S1
A and S1

B. We see

the 1-cycle wrapped by the 2-cycle as it crosses the boundary is (0, 1) in the (A,B) basis.

Upon passing through the T p transformation, this will now wrap the cycle(
1 p

0 1

)(
0

1

)
=

(
p

1

)
. (4.67)

Then for this to be contractible on the right side, so that we can consistently close the

2-cycle, we see that we must impose p = 0 mod N (recalling we are working with ZN
coefficients). This is the geometric origin of the fact that the ZN homology is equal to ZN
only in this case. Then this maps precisely to the generator of the ZN 1-form symmetry

that is present in T [L(p, 1), su(N)] in this case.

Let us now consider a more general Lens space. Recall from the previous subsec-

tion that, in this case, the 1-form symmetry is ZN when p is a multiple of N , and is

generated by an element δ inside the ZNn 1-form symmetry of the linear quiver theory,

T̂ [Ω[k1,··· ,kn], SU(N)]. Explicitly, the components of δ are

δ = (p1, . . . , pn) , (4.68)
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Figure 7. Heegaard decomposition of L(p, q) for linear quiver, where the two solid tori are glued

with an SL(2,Z) transformation.

where we have defined

pj = det(Aj), j = 0, . . . , n, Aj = j × j upper left submatrix of A . (4.69)

We have

p0 = 1, p1 = k1, p2 = k1k2 − 1, · · · , pn−1 = q, pn = p . (4.70)

In figure 7 we have drawn the analogue of figure 6 for a more general Lens space corre-

sponding to gluing by an SL(2,Z) element

ϕp,q = T k1ST k2 . . . ST kn . (4.71)

As above, we start with the 2-cycle wrapping the disk inside the solid torus on the left. We

call this the generating 2-cycle. The intermediate segments in the diagram have the form

of an interval times a torus, which we label as S1
A × S1

B as above, and the 2-cycle will lie

along this interval, and wrap some cycle of the torus. In fact the cycle wrapped after the

ith wall is given in the (A,B) basis by(
pi
qi

)
≡

(
pi
pi−1

)
, (4.72)

where the pi are defined in (4.70) above. Here L(pi, qi) is the space we would obtain if we

were to cap off the space after the ith step.

Note that in each segment, we are compactifying the 6d theory on a torus times an

interval, which leads to the 4d su(N) N = 4 theory on an interval. Moreover, the cycles

of the torus Poincaré dual to the polarization, Λ, determine the global form of the su(N)

theory we obtain in 4d [15, 16]. Let us give a quick review. Given a Lie algebra su(N) we

can characterize the global structure of the gauge group in a phase of the 4d N = 4 by the

allowed line operators. They are characterized by two integers

(ze, zm) ∈ ZN × ZN , (4.73)
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where with (1, 0) and (0, 1) we label the minimal Wilson and ’t Hooft lines respectively.

Then, the charge lattice of a gauge group G is spanned by the allowed line operator charges.

For N prime the structure is particularly simple. For G = SU(N) only the Wilson lines

are allowed, i.e., the charge lattice is generated by (1, 0). On the other hand, there are N

different ways to define the ZN quotients. The charge lattice of G = PSU(N)n is generated

by the dyonic line (n, 1). Here, n = 0, . . . , N − 1 denotes the different choices of gauge

groups. An SL(2,Z) transformation acts on the line operators as

T : (ze, zm)→ (ze + zm, zm) , S : (ze, zm)→ (zm,−ze) . (4.74)

From this prescription we can determine how the T and S transformations change the

gauge group in the related phases. If N is prime they simply act as

T : SU(N)→ SU(N) PSU(N)n → PSU(N)n+1

S : SU(N)↔ PSU(N)0 PSU(N)n ↔ PSU(N)1/n .
(4.75)

For N not prime this is more involved as we have to also take into account the phases

where a subgroup of ZN is gauged. The precise prescription can be found in [15].

If we look at the transformation behavior of (4.74) we see that it agrees with the

geometric behavior of (pi, qi), i.e.,

T :
p

q
→ p+ q

q
, S :

p

q
→ q

−p
. (4.76)

It is thus intuitive to identify the values (pi, qi), labeling the generating 2-cycle at some

point in the Heegaard splitting, with the gauge group of the 4d N = 4 theory on the

respective interval. In order to make sense of this we have to assign the value (0, 1), i.e.,

gauge group PSU(N)0, to the generating 2-cycle on the left cap of the Heegaard splitting.

The condition p = 0 ensures that the gauge group on the right cap is also PSU(N)0, i.e.,

the cycle is contractible. Let us for example consider g = su(2). Then, the three choices of

gauge groups are

(pi, qi) =


(1, 0) → SU(2)

(0, 1) → SO(3)+

(1, 1) → SO(3)−

. (4.77)

In order to obtain the H = Z2 version of the theory we now have to gauge all the nodes

where the gauge group is SO(3). In order for this to be globally consistent, we have to end

up with an SO(3)+ gauge group on the right cap, i.e., p = 0. We can easily generalize this

to any prime N .

More generally, for N not prime, we can define any other H = Zk version, where k

divides N , provided k is a multiple of (N, p). To this end we assign the charge vector (0, Nk )

to (SU(N)/Zk)0, i.e., we let the generating 2-cycle wrap the disk N
k times. Then, we can

go through the Heegaard splitting as before, but at each step the charges are multiples of
N
k and thus non-anomalous.

– 40 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
1

5 Bethe vacua for T [M3, g]

In this section we study the set of supersymmetric vacua of the theory T [M3, g] for M3 a

Seifert manifold with g = 0. This provides a detailed test of several of the general features

described above. For example, we will see that the set of 1-form symmetries of T [M3, g]

act on the supersymmetric vacua, and constrain the states that can appear. Furthermore,

in the next section, we compare the number of vacua to the expectation from the 3d-3d

correspondence, which maps this observable to the counting of certain flat connections on

M3, and find agreement. Applications to the N = 1 twist are considered in section 7.

We will focus on the cases of g = u(N) and su(N). The first case that will be considered

is u(1), where the theory is free. In the other cases, and specializing to the N = 2 twist,

we will use the Bethe ansatz equation approach to studying supersymmetric vacua of 3d

N = 2 gauge theories of [31], which we briefly review in section 5.2.

5.1 Abelian case

The theory with G = U(1) is free and has featured in [19]. As discussed in section 4.3.1

the theory is independent of the specific choice of graph Ω for M3, so we can immediately

define T [M3,U(1)]. The bosonic Lagrangian is determined by the linking matrix of M3

LCS =
1

4π

n∑
i,j=1

Qij Ai ∧ dAj , (5.1)

as well as a set of adjoint scalars. Since the center of mass field is massless there is a flat

direction and the index is ill-defined. This can be remedied by removing this mode and

defining the index of T [M3,U(1)] as the number of vacua of (5.1). This modified index is

computed by consecutively integrating out the gauge fields and equals

I(T [M3,U(1)]) = | det(Qij)| . (5.2)

For example for the Lens spaces L(p, q) this is

I(T [L(p, q),U(1)]) = p . (5.3)

Note that this number agrees, as expected, with the number of flat abelian connections

on L(p, q) given by |H1(L(p, q),Z)| = |Zp|. For the general case of a Seifert manifold

M3 = [d; 0; (pi, qi)], the number of vacua is

I(T [M3,U(1)]) =

∣∣∣∣∣
(

r∑
i=1

qi
pi
− d

)
r∏
i=1

pi

∣∣∣∣∣ . (5.4)

Let us look more closely at the manifolds discussed in appendix B. For the Prism manifolds

MPrism
p3,q3 = [0; 0; (2,−1), (2, 1), (p3, q3)] we obtain

I(T [MPrism
p3,q3 ,U(1)]) = 4|q3| , (5.5)

with the special case

I(T [S3/ΓDn ,U(1)]) = 4 . (5.6)
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Similarly, we find

I(T [S3/ΓEm ,U(1)]) = (9−m) . (5.7)

All of these results match with the respective orders of the first holonomy groups. For a

general Brieskorn manifold MBrieskorn
p1,p2,p3

= [1; 0; (p1, 1), (p2, 1), (p3, 1)] the index is

I(T [MBrieskorn
p1,p2,p3

,U(1)]) = p1p2p3

∣∣∣∣ 1

p1
+

1

p2
+

1

p3
− 1

∣∣∣∣ . (5.8)

Recall from section 4.3.1 that the 1-form symmetry group, Γ, of this theory expected

from the 6d reduction is H1(M3,U(1)) ∼= H2(M3,Z), and can be identified in the CS theory

as the electric 1-form symmetry left unbroken by the CS terms. Explicitly, in the case that

M3 is a rational homology sphere we find

Γ = ker(Q : (R/Z)n → (R/Z)n) ∼= H2(M3,Z) . (5.9)

Moreover, the bilinear form A determining the anomaly is the linking form of M3. As

discussed in section 3.3, the space of vacua on T 2 must fall into representations of the

1-form symmetry generators, UA and UB, wrapping the two cycles of the torus. In the

present case, one can check that the center Z ⊂ Γ is trivial for M3 a rational homology

sphere, and so the size of the unique irreducible representation is

dim R = |Γ| = |H2(M3,Z)| . (5.10)

But this is precisely the dimension of the space of vacua, showing that the Hilbert space

itself is in an irreducible representation of the 1-form symmetry generators. This is a special

feature of U(1) Chern-Simons theory, and in general we will find the Hilbert space is given

by a direct sum of irreducible representations.

5.2 Twisted superpotentials and Coulomb branch vacua

To compute the vacua for non-abelian gauge groups, we will use the framework developed

in [31], i.e., we compute the vacua using the twisted superpotential and counting the

solutions to the resulting Bethe equations.

Let us consider a 3d N = 2 gauge theory of gauge group G on R2×S1. The dynamics

of the Coulomb branch is governed by the twisted superpotential, W(u,m), where u is the

Coulomb branch variable

u = iβ(σ + ia0) ∈ tC/Λco-char , (5.11)

where tC is the complexified Cartan subalgebra, and β is the radius of the S1. Here a0 is

the holonomy of the abelianized gauge field along the S1

1

2π

∮
S1

A = a0 , (5.12)

and σ is the abelianized constant real scalar field in the vector multiplet. Similarly, m =

iβ(σF + ia0,F ) is a flavor group variable. Let us define T as the maximal torus of G and t

– 42 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
1

the Cartan subalgebra. Then the lattice Λco-char is the co-character lattice of G defined as

the kernel of the exponential map

exp : t→ T . (5.13)

The large gauge transformation along S1 is defined by

u→ u+ λ , (5.14)

where λ is an element in the lattice Λco-char.

The twisted superpotential receives a contribution from the classical CS level as well

as the chiral multiplets of the theory. The N = 2 CS action contributes

WCS(u) =
1

2

rk(G)∑
a,b=1

kabuaub +
∑
a>b

abelian

Kabuaub , (5.15)

up to the gravitational CS level, which we ignore.20 For each simple factor Gs of the gauge

group, it is understood that kab = habks where hab is the Killing form for Gs. The second

term in (5.15) is the contribution from the mixed CS levels, Kab, between two abelian

factors of the gauge group. A chiral multiplet ΦR in the representation R of G contributes

WΦR(u) =
∑
ρ∈R

1

(2πi)2
Li2(xρ) , (5.16)

where x = e2πiu. We adopt the U(1)−1/2 quantization of the CS level as discussed in [9]. For

example, the chiral multiplet with charge ±1 under the Cartan U(1) contribute as follows

WΦ(u) =
1

(2πi)2
Li2(x)

W
Φ̃

(u) =
1

(2πi)2
Li2(x−1) +

1

2
u(u+ 1) .

(5.17)

We will use the notation

x = e2πiu, z = e2πiζ , y = e2πim , t = e2πiτ , (5.18)

where t is the fugacity for the distinguished flavor symmetry in N = 4 theories, which

corresponds to the N = 2∗ mass. If G contains a U(1) factor, we turn on the FI parameter

ζ for the associated topological symmetry.

For convenience, let us define the flux operators

Πa = exp

(
2πi

∂W(u,m)

∂ua

)
, Πα = exp

(
2πi

∂W(u,m)

∂mα

)
, (5.19)

for the gauge and flavor symmetry, respectively. The Coulomb branch vacua are described

by the solutions to the Bethe equations [31]

SBE = {ua | Πa = 1 , ∀a = 1, · · · rank(G), w(u) 6= u, ∀w ∈WG} /WG , (5.20)

where WG is the Weyl group. Note that we removed the solutions which are fixed under the

Weyl group action. We call such solutions degenerate vacua. We provide further details

on the twisted superpotential and Bethe equations in appendix C.

20In what follows we will ignore all the numerical constants in W, which are irrelevant for the vacuum

count.
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5.3 Bethe vacua for T̂ [Ω, SU(2)] and T [M3,U(2)]

Before constructing the theories T [M3, g, H] in general, we study the unphysical theory

T̂ [Ω, G], defined in section 2, focusing on Ω the graph of a Seifert manifold M3 and G =

SU(2). This theory is defined by taking the Seifert quiver of section 2.2.3, connecting SU(2)

gauge nodes with level ki CS-terms and T (SU(2)) S-walls and taking all gauge groups as

SU(2). A refinement including other choices of gauged 1-form symmetries will be the topic

of section 5.4.

The T̂ [Ω, SU(2)] theories are also used to construct the theories T [M3,U(2)]. As dis-

cussed in section 4.1.3, we can define T [M3,U(2)] as a tensor product of the two decoupled

theories

T̂ [Ω, SU(2)] and T̂ [Ω,U(1)2] . (5.21)

For each gauge node, we identify a non-anomalous Z2 subgroup of the 1-form symmetry,

and gauge it to replace the gauge group at this node by (U(1) × SU(2))/Z2
∼= U(2).21

5.3.1 The Ω[k] theory

As a simple example, let us first consider T̂ [Ω[k], SU(2)], which can be described as the

N = 2∗ Chern-Simons theory at level k. The twisted superpotential for the N = 2∗ CS

theory is given by

WN=2∗

Tk =WCS(u) +Wadj(u, τ) , (5.23)

where

WCS(u) = ku2 (5.24)

is the contribution from the N = 2 CS action and

Wadj(u, τ) =WΦ(−2τ ± 2u) +WΦ(−2τ) (5.25)

is the contribution from the N = 2 adjoint multiplet, where here and below we use the

convention that each choice of sign in ‘±’ is summed over. More explicitly, this is given by

Wadj(u, τ) =
1

(2πi)2

[
Li2(x2t−2) + Li2(x−2t−2) + Li2(t−2)

]
+ u(u+ 1) . (5.26)

The Coulomb branch vacua are then determined as solutions to the Bethe equations

Π ≡ exp

(
2πi

∂WN=2∗

Tk

∂u

)
= x2k

(
x2 − t−2

1− x2t−2

)2

= 1 . (5.27)

It is convenient to split this into two polynomial equations

Π1/2 = xk
x2 − t−2

x2t−2 − 1
= ±1 . (5.28)

21Note this is the same description one obtains from the quiver T̂ [Ω,U(2)], as follows from the more

general fact that

U(N)k =
SU(N)k ×U(1)Nk

ZN
. (5.22)

Then, T (U(N)) can essentially be regarded as a tensor product of T (SU(N)) and T (U(1)) with level N BF

coupling, with an additional operation to account for the ZN quotient.
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k1 k2 ... kn

Figure 8. Quiver corresponding to Ω[k1,··· ,kn] for the N = 2 twist.

Since the Weyl symmetry acts as

x→ x−1 , (5.29)

the solutions at x = ±1 are degenerate vacua. When k is even, we have k+2 solutions from

each sign of the equation (5.28). The degenerate vacua are contained in the solution for

the bottom sign. Therefore we have 2k+ 2 regular solutions paired by the Weyl symmetry.

The number of Coulomb branch vacua are k + 1. When k is odd, we have k + 1 regular

vacua from each sign, paired by the Weyl symmetry.22

5.3.2 The linear quivers Ω[k1,··· ,kn]

The graph for a general Lens space L(p, q) is linear and we denote it by Ω[k1,··· ,kn]. The

corresponding quiver is shown in figure 8. To simplify the computation, we recall the

duality (2.35) which relates the T (SU(2)) theory to the trinion T2.23 The effect of this

duality on the quiver is shown in figure 5. In principle this duality could be used for any

SU(N), however for N > 2 the TN theory is more complicated than T (SU(N)).

In appendix C.2 we compute the number of vacua for a single trinion, with the

three nodes gauged at CS-levels k̃i using the Bethe equations. The number of vacua for

k̃i = (k1 − 1, k2 − 1, 1) is

I(T̂ [Ω[k1,k2], SU(2)]) = 2 (|k1k2 − 1|+ 1) = 2(p+ 1) . (5.30)

One can similarly study longer linear quivers. This quickly leads to a large number

of coupled polynomial equations, which can be solved using Gröbner basis techniques. By

studying several examples up to length n = 4, we have found evidence for the following

conjectural number of vacua for a general linear quiver

I(T̂ [Ω[k1,··· ,kn], SU(2)]) = 2n−1(p+ 1) . (5.31)

It would be interesting to derive this formula analytically, but we leave this to future work.

Since T̂ [Ω,U(1)2] is the abelian Chern-Simons theory of section 5.1 with each Chern-

Simons level multiplied by 2, the number of vacua is | det (2Qij) | = 2np. Putting this

together, the tensor product in (5.21) has

I(T̂ [Ω, SU(2)] ⊗ T̂ [Ω,U(1)2]) = 22n−1p(p+ 1) . (5.32)

22A similar calculation was considered in [37]; see footnote 30 below for the relation between these

computations.
23We should note that this also allows us to write a standard Lagrangian for these theories, which is not

true using the usual T (SU(2)), as the SU(2) is not manifest.
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Figure 9. Duality to trinion theory: three copies of T (SU(N)) ∼= TN .

k1 k3

k2 k4

1

Figure 10. Quiver for two coupled trinions and an adjoint at the central node indicated by the

arc. We denote this quiver by Ω(k1,k2,k3,k4,1).

Finally, we must implement the 1-form gauging. As we argue in appendix D.3, each Z2

gauging reduces the number of vacua by a factor of 4, and so we find

I(T [L(p, q),U(2)]) =
1

2
p(p+ 1) . (5.33)

Note this result no longer depends on the choice of Ω, in agreement with the logic in

section 4.1.3.

5.3.3 Seifert quivers

For general Seifert manifolds the counting of vacua becomes computationally difficult.

However for a subclass we are able to perform the analysis explictly. These are Seifert

manifolds, which have base S2 and three special fibers, and are discussed in appendix B

and summarized in table 3. We can simplify the quiver using the trinion theory TN , using

the following duality: couple three copies of T (SU(N)) by identifying one of their flavor

groups each and gauging it at Chern-Simons level zero, together with an adjoint scalar.

This theory is dual to the trinion theory [38], see also (2.22). This means that if the degree

in the Seifert data vanishes, we can write the quiver using the trinion description, as in

figure 9. The vanishing of the degree can always be assumed using (2.11) and (2.12). Then,

the graph Ω(ki),
24 for the Seifert manifolds that we are interested in is given by figure 10.

In order to guarantee that this corresponds to a Seifert manifold we have to impose k5 = 1.

24For linear quivers we used the subscript [k1, · · · , kn]. For the nonlinear quivers we usually indicate the

CS-levels, depending on the associated graph.
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First, consider the Prism manifolds MPrism
p,q

∼= [0; 0; (2,−1), (2, 1), (p, q)], assuming that
p
q = k̃1 − 1

k̃2
and q > 0 for simplicity. The graphs for Prism manifolds are characterized by

(ki)
Prism = (−2, 2, k̃1 − 1, k̃2 − 1, 1) . (5.34)

We find that the number of vacua of the quiver is given by

I(T̂ [Ω(ki)Prism , SU(2)]) = 2(p+ 1 + 8q) . (5.35)

Now, in order to determine the Witten index we have to take the U(1) index and the Z2

gauging into account, leading to an extra factor of q
2 , see (5.5). Thus,

I(T [MPrism
p,q ,U(2)]) = q(p+ 1 + 8q) . (5.36)

Note that for q = 1 this reduces to

I(T [S3/ΓDn ,U(2)]) = n+ 7 . (5.37)

Similarly, we can compute that the number of vacua of T̂ for the E-series is 24, independent

of m, where we use the graph with two trinions in figure 10. Including an additional factor

of 9−m
8 from the U(1) sector and gauging, this yields

I(T [S3/ΓEm ,U(2)]) = 3(9−m) . (5.38)

Finally, let us look at the general Brieskorn manifolds MBrieskorn
p1,p2,p3

= [0; 0; (p1, 1), (p2, 1),

(p3, 1 − p3)]. We can always write them with two trinions using that p3

1−p3
= [−1, p3 − 1].

The levels are given by

(ki)
Brieskorn = (p1, p2,−2, p3 − 2, 1) , (5.39)

which is invariant under relabeling of the pi. We find that the number of vacua of T̂ is

I(T̂ [ΩBrieskorn, SU(2)]) = 6p1p2p3 − 6(p1p2 + p2p3 + p3p1) + 2(p1 + p2 + p3) + 2 , (5.40)

as long as the manifold has negative curvature, i.e.,
∑3

i=1 p
−1
i < 1. Together with the index

of the abelian theory and the Z2 gauging we find

I(T [MBrieskorn
p1,p2,p3

,U(2)]) =
1

4
(3p1p2p3 − 3(p1p2 + p2p3 + p3p1) + (p1 + p2 + p3) + 1)

× (p1p2p3 − (p1p2 + p2p3 + p3p1)) .
(5.41)

For convenience we summarize the results in table 3.

Let us briefly comment on the 1-form symmetry structure of these theories. After the

Z2
n gauging of the tensor product appearing in (5.21), one finds that the remaining 1-form

symmetry present in T [M3,U(2)] is the same as that in T [M3,U(1)]. However, due to

the different normalization of the Chern-Simons levels, the anomaly coefficient, A, is now

multiplied by 2. In general, for T [M3,U(N)], we find the 1-form symmetry and anomaly

Γ = H2(M3,Z), A(γ1, γ2) = e2πiN`(γ1,γ2) , (5.42)
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M3 ki I(T [M3,U(2)])

L(p, q) , p
q = [k̃1, k̃2, k̃3]

(
1, k̃1 − 1, k̃2 − 1, k̃3 − 1, 1

) (
p+1

2

)
MPrism
p,q , p

q = [k̃1, k̃2]
(
−2, 2, k̃1 − 1, k̃2 − 1, 1

)
q(p+ 1 + 8q)

S3/ΓEm (−2, 3,m− 3, 0, 1) 3(9−m)

MBrieskorn
p1,p2,p3

, R < 0 (p1, p2,−2, p3 − 2, 1) (5.41)

Table 3. Three-manifold, quiver data and vacuum count in terms of the Witten index I for various

Seifert manifolds M3 with G = U(2).

where ` : TH2(M3,Z)×TH2(M3,Z)→ Q/Z is the linking form. As a check, we may verify

the set of vacua found above falls into representations of the 1-form symmetry operators.

For example, for L(p, q), Γ = Zp. When p is odd, the center, Z, of the 1-form symmetry is

trivial, and so the irreducible representations have dimension p, while when p is even, the

center is Z2, and so they have dimension p/2. In both cases, we find the number of vacua,

given by p(p+1)
2 , is indeed divisible by the size of this irreducible representation, which is

compatible with this decomposition. For an example involving a non-linear quiver, in the

case M3 = S3/ΓDn , the symmetry is Z2 × Z2 for n even, and Z4 for n odd. In the former

case, this symmetry is anomaly-free, so the irreducible representations have size 1, while

in the latter, it has an anomaly with coefficient 2, and so the irreducible representations

have size 2. Thus the number of vacua must be even in the latter case, and one can verify

from (5.37) that this is always true.

5.3.4 T [M3,U(N)]

In principle, the considerations above carry over to the case of general U(N). That is, we

may build up quivers for T [M3,U(N)] by taking decoupled copies of the T̂ [Ω, SU(N)] and

T̂ [Ω,U(1)N ] theories together, and gauging appropriate ZN 1-form symmetries. However,

this typically leads to much more complicated theories than in the N = 2 case, for which

the Witten index calculations above are often intractable. Moreover, unlike for N = 2,

these theories will typically be non-Lagrangian. Specifically, although the T (U(N)) theory

is a Lagrangian theory, for N > 2 we do not have a Lagrangian description of it in which

the U(N)×U(N) symmetry is manifest in the UV description, and so when we gauge these

symmetries we are led to theories without Lagrangians.

One case where we can write a Lagrangian is for the L(k, 1) theory. Here the theory

T [L(k, 1),U(N)] is simply the 3d N = 2 U(N) theory with level k Chern-Simons term

and an adjoint chiral multiplet. As shown in appendix C.3, the number of solutions to the

Bethe equations for this theory is given by

I(T [L(k, 1),U(N)]) =

(
N + k − 1

N

)
. (5.43)

From the discussion above, the 1-form symmetry of this theory is Zk, with an anomaly

with coefficient N (mod k). The center of this symmetry therefore is Z(N,k), and so the ir-

reducible representations have size k/(N, k). One may check that the index (5.43) is indeed

divisible by this integer, giving another check that the 1-form symmetry acts as expected.
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5.4 Bethe vacua for T [M3, su(2),H]

In this section we construct the physical theories T [M3, su(2), H] from T̂ [Ω, SU(2)] and

count the number of vacua. Recall that the unphysical theory T̂ is obtained by gauging

all nodes of a graph Ω corresponding to the manifold M3 at gauge group SU(2). However,

as discussed in section 4.4 the theory has anomalous Z2 1-form symmetries associated to

decoupled topological sectors, which need to be eliminated to obtain the physical theories.

5.4.1 The Ω[k] theory

First, consider the case M3 = L(k, 1) using the minimal graph with a single node. The

Bethe equation is

Π = x2k

(
x2t2 − 1

x2 − t2

)2

, (5.44)

where x = e2πiu, which has k+1 solutions, after accounting for the Weyl symmetry u→ −u.

These form the Hilbert space of T̂ [Ω[k], SU(2)]. To obtain the physical Witten index we

need to decouple the topological sector. From the prescription in section 4.4.1 we can

deduce that

T [L(k, 1), su(2)] =

T̂ [Ω[k], SU(2)] k even(
T̂ [Ω[k], SU(2)]⊗U(1)−2

)
/Z2 k odd

. (5.45)

For k even, the counting of vacua is therefore the same as above, while for k odd, the

decoupling procedure removes a tensor factor of dimension 2, so that

I(T [L(k, 1), su(2)]) =

{
k + 1 k even
k+1

2 k odd
. (5.46)

The above correspond to the T [L(k, 1), su(2), H = 1] theories. When k is even, we

may also consider the case H = Z2, which is obtained by gauging the non-anomalous Z2

1-form symmetry of this theory. Thus, it will be important to understand how the 1-form

symmetries act on the Bethe vacua of these 3d N = 2 theories. As discussed in section 3.3,

the space of T 2 vacua is naturally acted on by two 1-form charge operators, UA,B, wrapping

the two cycles of the torus. The action of these charge operators on the Bethe vacua is

discussed in [55], and reviewed in appendix D.1. In the present case, we find these operators

act on the Bethe vacua as25

UA|û〉 = x̂k
x̂2t2 − 1

x̂2 − t2
|û〉 , UB|û〉 = |û+

1

2
〉 . (5.47)

Note that in general, UAUB = (−1)kUBUA, so for k even this symmetry is indeed non-

anomalous. The irreducible representations are then 1-dimensional, and the Hilbert space

decomposes into the eigenspaces, HεAεB , introduced in (3.24). We will be interested in the

25The overall sign of UA can be fixed by modular invariance.
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space of Bethe vacua V , which is a subspace of the full Hilbert space, that also decomposes

as VεA,εB under the 1-form charge operators wrapping the A and B cycles of the torus

V → V++ ⊕ V+− ⊕ V−+ ⊕ V−− . (5.48)

We define

vεAεB = TrHεAεB (−1)F = dimVεAεB , (5.49)

which we refer to as the refined Witten index. Gauging the Z2 symmetry then amounts

to projecting onto the V++ subspace, and including the twisted sectors, as in (3.26). To

analyze the decomposition (5.48) it is useful to split the common eigenbasis of the U into

|v̂±j 〉 =
1√
2

(
|ûj〉 ± |ûj +

1

2
〉
)
, j = 1, . . .

k

2
, |ûB-inv.〉 = |1

4
〉 , (5.50)

where |ûB-inv.〉 is invariant under UB after using the Weyl-symmetry. Clearly

UB|v̂±j 〉 = ±|v̂±j 〉 , UA|ûB-inv.〉 = (−1)
k
2 |ûB-inv.〉 . (5.51)

To determine v++ we still need to find the action of UA on the |v̂±j 〉. Alternatively, to

count the solutions we can directly solve the equation UA = ±1, and one finds the result

always satisfies

v+− = v−+ . (5.52)

Physically, this corresponds to modular invariance along the T 2, obtained by exchanging

A- and B-cycle.26 Combining (5.51) and (5.52) we can show that the contribution to the

Witten index from the untwisted sectors is

Iuntwisted(T [L(k, 1), su(2),Z2]) = v++ =

⌊
k

4

⌋
+ 1 . (5.53)

To account for the twisted sectors, we note, as reviewed in appendix D.1 that these are

associated to fixed points of the UB operators. In the present case, there is a single such

state,27 at û = 1
4 , and so we find

I(T [L(k, 1), su(2),Z2]) =

⌊
k

4

⌋
+ 2 . (5.54)

5.4.2 General linear quivers

Next, consider the general linear quiver Ω[k1,··· ,kn] of length n, corresponding toM3 =L(p, q).

The theory T̂ [Ω[k1,··· ,kn], SU(2)] has n 1-form symmetries, with anomaly matrix given

26In the following we will always assume that this is guaranteed to give analytic arguments. However, in

all examples modular invariance can also be checked explicitly by evaluating UA on the vacua.
27Note, that the sign of UA in the twisted sector is again determined by modular invariance, and may

differ from the one in the untwisted sector.
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by (4.58), which we reproduce here

A =



k1 1 0 · · · 0

1 k2 1

0 1 k3

...
. . .

...

kn−1 1

0 · · · 1 kn


mod 2 . (5.55)

This matrix has det(A) = p, and admits a single null vector if and only if p is even. As

described in appendix D.2, the set of Bethe vacua on T 2 for a theory acted on by such a

1-form symmetry has the form, see (D.13),

V̂ = V ⊗R⊗m , m =

{
n− 1 p even

n p odd
, (5.56)

where R is a two dimensional representation of an anomalous Z2 1-form symmetry. As

noted in (5.31), we find

I(T̂ [Ω[k1,··· ,kn], SU(2)]) = 2n−1(p+ 1) , (5.57)

and so we deduce that

I(T [L(p, q), su(2)]) = dim(V ) =

{
p+ 1 p even
p+1

2 p odd
, (5.58)

agreeing with the expected q-independent result (5.46).

When p is even we may gauge an additional Z(δ)
2 1-form symmetry generated by δ,

the central element in (4.68). This amounts to projecting onto the V++ eigenspace and by

studying a few low n cases explicitly we find

Iuntwisted(T [L(p, q), su(2),Z(δ)
2 ]) =

⌊p
4

⌋
+ 1 , (5.59)

generalizing (5.53). Additionally, we find that there is always a single twisted sector state,

and so the answer for the full Witten index is

I(T [L(p, q), su(2),Z(δ)
2 ]) =

⌊p
4

⌋
+ 2 . (5.60)

5.4.3 Gauged trinion

As a final example consider the manifolds S3/ΓADE also discussed in section 4.4.2 and

appendix B. Recall that the Seifert data can be written as

S3/ΓADE ∼= [0; 0; (k1, 1), (k2, 1), (k3, 1)] , (5.61)
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with the ki given by:

1. (k1, k2, 1) for the Lens space with p
q = [k1 + 1, k2 + 1]

2. (−2, 2, n− 2) for S3/ΓDn

3. (−2, 3,m− 3) for S3/ΓEm .

The T̂ [Ω(ki), SU(2)] theory is the gauged trinion theory: a trifundamental chiral multiplet

of SU(2) with the three SU(2) flavor symmetries gauged at levels k1, k2, and k3 and the

three Bethe equations are given by

Πi = x2ki
i

(xixjxk − t)(xixj − xkt)(xixk − xjt)(xi − xjxkt)
(xixjxkt− 1)(xixjt− xk)(xixkt− xj)(xit− xjxk)

, i = 1, 2, 3 . (5.62)

This set of equations is discussed in appendix C.2 and the number of solutions is given by28

I(T̂ [Ω(ki), SU(2)]) = (k1 + 1)(k2 + 1)(k3 + 1) if ki ≥ 0

I(T̂ [Ω(ki), SU(2)]) = (k1 + 1)(k2 + 1)(−k3 + 1)− 4k1k2 if k1,2 ≥ 0, k3 ≤ −2 ,
(5.63)

after accounting for the Weyl symmetry.

To find the Witten index of T [M3, su(2)] we need to decouple the topological sector.

If not all ki are even, we can specify k3 odd. Since only ki mod 2 is relevant for the

anomalies, the decoupling of the topological sector is analogous to the Lens space, using

the duality in figure 5. This case was discussed in detail in section 5.4.2. If all the ki are

even no decoupling is necessary. Putting this together we find

I(T [L(p, q), su(2)]) =

{
p+ 1 p even
p+1

2 p odd

I(T [S3/ΓDn , su(2)]) =

{
n+ 7 n even
n+7

2 n odd

I(T [S3/ΓEm , su(2)]) =

{
3 m even

6 m odd
.

(5.64)

The Hilbert space spanned by these vacua splits into the eigenspaces of the charge

operators UA,Bδj

V →
⊕

εA,Bj =±1

VεA1 εB1 ···εAr εBr
, r = rk

(
H1(M3,Z2)

)
, (5.65)

where the δj generate the Zr2 1-form symmetry. Let us now study this explicitly. If two of

the ki, say k1 and k2, are even then the theory has a physical non-anomalous Z2 1-form

28All other possibilities can be obtained by permutation of the ki and parity symmetry.
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symmetry, as argued for in section 4.4.2. Thus, the theory has a 1-form symmetry generated

by δ = (1, 1, 0). The charge operators act as, see (D.3),

UAδ |û1, û2, û3〉= (Π1Π2)1/2 |û1, û2, û3〉= x̂k1
1 x̂

k2
2

(x̂1x̂2x̂3−t)(x̂1x̂2−x̂3t)

(x̂3−x̂1x̂2t)(1−x̂1x̂2x̂3t)
|û1, û2, û3〉

UBδ |û1, û2, û3〉= |û1+
1

2
, û2+

1

2
, û3〉 .

(5.66)

We proceed as for the T k theory and determine the solutions fixed under UBδ , which are

given by

|ûB-inv.〉j = |1
4
,

1

4
, ûj3〉 . (5.67)

By plugging in these solutions into the Bethe equations (5.62) we find that they reduce to

Π1,2 = 1 , Π3 = x2k3
3

(
x2

3 − t2

x2
3t

2 − 1

)2

. (5.68)

This is nothing but the T k3 theory with an adjoint and thus has |k3| + 1 vacua.29 These

B-invariant vacua obey

UAδ |ûB-inv.〉j = (−1)
k1+k2

2 |ûB-inv.〉j , j = 1, . . .

{
|k3|+ 1 k3 even
|k3|+1

2 k3 odd
. (5.69)

As before, the remaining vacua |v̂±〉 split into pairs with eigenvalues ±1 under UB. Modular

invariance fixes the dimension of the subspaces with εA,B = ±1. We can repeat this for all

choices of δj , j = 1, · · · , r to determine the refined Witten index

vεA1 εB1 ···εAr εBr
= dimVεA1 εB1 ···εAr εBr

. (5.70)

The following discussion depends heavily on the rank of the maximal 1-form symmetry,

Υ = Zr2:

1. Lens spaces L(p, q), with p odd, and S3/ΓEm even have no 1-form symmetry, i.e., r = 0.

This means there is no further decomposition of V .

2. The manifolds L(p, q), with p even, S3/ΓDn odd
and S3/ΓE7 have r = 1. We can study

the dimension of the eigenspaces VεAεB which are summarized in table 4.30 Recall

that modular invariance implies v+− = v−+.

Gauging the 1-form symmetry projects onto the subspace V++ and thus

Iuntwisted(T [L(p even, q), su(2),Z(δ)
2 ]) =

⌊p
4

⌋
+ 1

Iuntwisted(T [S3/ΓDn odd
, su(2),Z(δ)

2 ]) =
n+ 1

2

Iuntwisted(T [S3/ΓE7 , su(2),Z(δ)
2 ]) = 2 .

(5.71)

29This is the number of vacua before the decoupling so only half of them are physical if k3 is odd.
30In [37], the number of Bethe vacua for the N = 2 SU(2) CSk theory with one adjoint chiral multiplet

was computed and compared to the number of SU(2) flat connections on the lens space. In our notation,

their counting corresponds to the number of Bethe vacua for the T [L(p, 1), su(2), 1] theory with εA = 1. We

will see in section 6 that this prescription indeed agrees with the refined 3d-3d correspondence we propose.
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S3/ΓADE , r = 1 dimV v++ v+− v−−

Ap−1, p = 0 mod 4 p+ 1 p
4 + 1 p

4
p
4

Ap−1, p = 2 mod 4 p+ 1 p+2
4

p+2
4

p−2
4

Dn, n odd n+7
2

n+1
2 1 1

E7 6 2 2 0

Table 4. Dimensions of the eigenspaces VεAεB for Υ = Z2.

S3/ΓADE , r = 2 dimV v++++ v+++− v+−+− v+−−+ v++−− v+−−− v−−−−

Dn, n = 0 mod 4 n+ 7 n
4 + 1 1 n

4 0 1 0 n
4

Dn, n = 2 mod 4 n+ 7 n+2
4 1 n+2

4 1 0 0 n−2
4

Table 5. Dimensions of the eigenspaces VεA1 εB1 εA2 εB2 for Υ = Z(1)
2 × Z(2)

2 .

In addition, one finds the following contribution from the twisted sectors, which we

recall are associated to the fixed points, (5.69)

Itwisted(T [L(p even, q), su(2),Z(δ)
2 ]) = 1

Itwisted(T [S3/ΓDn odd
, su(2),Z(δ)

2 ]) =
n− 1

2

Itwisted(T [S3/ΓE7 , su(2),Z(δ)
2 ]) = 2 .

(5.72)

so that the full Witten index is

I(T [L(p even, q), su(2),Z(δ)
2 ]) =

⌊p
4

⌋
+ 2

I(T [S3/ΓDn odd
, su(2),Z(δ)

2 ]) = n

I(T [S3/ΓE7 , su(2),Z(δ)
2 ]) = 4 .

(5.73)

3. The remaining case is S3/ΓDn even with r = 2. As discussed in section 4.4.2 there are

three choices of non-anomalous 1-form symmetries

δ1 = (0, 1, 1) , δ2 = (1, 0, 1) , δ3 = (1, 1, 0) , (5.74)

where we take the first cohomology to be generated by δ1 and δ2.31 We note the

quiver has a symmetry which means that we can exchange the two Z2s, i.e.,

vεA1 εB1 εA2 εB2
= vεA2 εB2 εA1 εB1

. (5.75)

Together with modular invariance we only need to specify the dimensions in table 5.

To gauge, say, Z(1)
2 we need to project onto the subspace with εA,B1 = +1, i.e.,

Iuntwisted(T [S3/ΓDn even , su(2),Z(1,2)
2 ]) =

{
n
4 + 4 n = 0 mod 4

n+2
4 + 2 n = 2 mod 4

. (5.76)

31Note that we need to specify this choice because the charge operators act in a distinct way.
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The twisted sectors can be counted similarly, and contribute 3 states in both cases,

leading to

I(T [S3/ΓDn even , su(2),Z(1,2)
2 ]) =

{
n
4 + 7 n = 0 mod 4

n+2
4 + 5 n = 2 mod 4

. (5.77)

On the other hand, to gauge Z(3)
2 , generated by δ3 = δ1 + δ2, we project onto εA1 ε

A
2 =

+1 = εB1 ε
B
2 which yields

Iuntwisted(T [S3/ΓDn even , su(2),Z(3)
2 ]) = n+ 1 . (5.78)

We also find n− 1 twisted sector states in this case, and so

I(T [S3/ΓDn even , su(2),Z(3)
2 ]) = 2n . (5.79)

Finally, we can gauge the full Z2 × Z2 1-form symmetry, projecting onto V++++,

giving

Iuntwisted(T [S3/ΓDn even , su(2),Z2 × Z2]) =

{
n
4 + 1 n = 0 (mod 4),
n+2

4 n = 2 (mod 4).
(5.80)

Including also the twisted sectors, we find in both cases

I(T [S3/ΓDn even , su(2),Z2 × Z2]) =
n

2
+ 3 . (5.81)

6 Flat connections on M3 and the 3d-3d correspondence

In this section we use the results for the refined Witten index of the previous section to

test the 3d-3d correspondence [1]. This correspondence predicts that the Witten index

of the theory TN=2[M3, g] counts the flat gC connections on the 3-manifold M3, which

has been extensively studied in the literature [20, 22, 24, 37, 61, 62]. However, a more

careful consideration of the global structure of the gauge group leads to a refinement of

this statement, which we derive below.

The Witten index, or T 3 partition function, counts the number of BPS ground states

in the Hilbert space of the T [M3, g] theory on T 2×R. This space is equivalently the Hilbert

space of the 6d theory of type g on M3× T 2×R. Compactifying in the opposite order, we

see it is also the Hilbert space of a 4d N = 4 SYM theory with Lie algebra g on M3 × R,

where we take the GL topological twist along M3 [19, 63]. Now, the vacua for the N = 4

theory with gauge group G on this space can be identified with flat GC connections on

M3 [63], and so one expects a relation between these flat connections and the T 2 vacua of

the T [M3, g] theory. However, as we have seen above, the global form of the gauge group

of the SYM theory depends on the choice of polarization of the 6d theory, and this will

determine the precise observable in T [M3, g] we must consider.

In the case of self-dual G, the Witten index of T [M3, G] simply counts the number of flat

GC connections on M3. However, in the general case, we find the following correspondence.
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Recall that the T 2 Hilbert space of the T [M3, g] theory is acted on by an anomaly-free 1-

form symmetry with group Υ = H1(M3, ZG̃). Then we may refine the Hilbert space into

eigenspaces of the two 1-form operators, UγA and UγB, wrapping the two cycles of the torus

V →
⊕

χA,B∈H2(M3,ZG̃)

VχA,χB , vχA,χB ≡ dim VχA,χB . (6.1)

On the other hand, we consider flat G̃C connections on M3. More precisely, in addi-

tion to ordinary G̃C connections, we may consider connections which are not strictly G̃C

connections, but rather connections for the quotient group, G̃C/Z
G̃

. These may be classi-

fied according to their second Stiefel-Whitney class, ω ∈ H2(M3, ZG̃), which measures the

obstruction to lifting these to well-defined G̃C connections. In addition, the connections

are acted on by large gauge transformations (LGTs), which are determined by elements of

H1(M3, ZG̃). We may refine the flat connections into eigenspaces of these LGTs,32 which

are labeled by χLGT ∈ H2(M3, ZG̃). Then we claim33

#{flat G̃C/Z
G̃

connections A with w2(A) = ω and χLGT} = vω,χLGT . (6.2)

We will derive this formula by reduction from the 6d N = (2, 0) theory, and verify it in

explicit examples below. One interesting feature of this formula is that modular invariance

of the torus exchanges the two arguments on the r.h.s. , and so we expect a symmetry

under exchange of these arguments. This implies the geometric quantity on the l.h.s. also

exhibits this symmetry under exchange of ω and χLGT, which is not obvious, but which we

will verify in examples. This can also be understood as a consequence of S-duality of the

4d N = 4 SYM theory.

6.1 Self-dual case

Let us first consider the choice of polarization of the 6d theory associated to a self-dual

group G. As described in section 4.3.2, this gives rise to an ordinary (rather than relative)

QFT in six dimensions. In this case, the compactification to 3d gives the T [M3, G] theory,

while the compactification on T 2 to 4d gives the N = 4 SYM theory with gauge group

G. Thus we expect that the Witten index of this theory counts the flat GC connections

on M3. This correspondence in the case of G self-dual has been observed and checked in

various examples, e.g., in [19, 37, 61].

First, we observe that the in case G = U(1) on a general rational homology sphere

M3, the number of vacua of T [M3,U(1)] is the order of H1(M3,Z). This is the same

as the number of U(1)C = C× flat connections on M3, as also mentioned in section 5.1,

demonstrating the formula in this simple example.

32More formally, we may consider the vector space with basis given by the flat connections, on which the

LGTs act linearly, and refine this space into eigenspaces of this action.
33More precisely, this formula holds as stated when the moduli space of flat connections is zero-

dimensional, which is the case for the homology spheres we consider in this section. In general, we expect

a generalization in terms of a suitably defined Euler characteristic on the moduli space of flat connections

on M3.
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Next consider the case of G=U(N), so that GC=GL(N,C). The theory T [L(k,1),U(N)]

is the 3d N = 2 U(N) theory with level k Chern-Simons term and an adjoint chiral

multiplet. We saw above in (5.43) that the number of vacua is

I(T [L(k, 1),U(N)]) =

(
N + k − 1

N

)
. (6.3)

On the other hand, as shown in appendix E.1, this is also the number of flat U(N)C =

GL(N,C) flat connections on L(k, 1).

For more general Seifert M3, we may use the quiver Lagrangians and computations of

the previous section in the case of G = U(2). In section 5.3.3, we found

I(T [S3/ΓDn ,U(2)]) = n+ 7

I(T [S3/ΓEm ,U(2)]) = 3(9−m) .
(6.4)

In appendix E.1 we find the same result for the number of flat GL(2,C) connections on

these spaces.

6.2 General case

Now let us consider the case where G is not necessarily self-dual. For concreteness, we will

focus on g = su(N), but similar arguments apply in general. Consider the 6d AN−1 theory

on M6 = M3 × T 2 × S1
t , where we have singled out one of the circles of T 3 as the “time”

circle. The partition vector of the 6d theory on this space depends first of all on a choice

of polarization,

Λ ⊂ H3(M6,ZN ) . (6.5)

Associated to the two compactification orders on this geometry, as discussed in the intro-

duction to this section, there are two natural polarizations, which we consider in turn.

4d SYM on M3 × S1
t . We first take a choice which is natural in the context of the

reduction to 4d SYM. We can write (suppressing the coefficients, which are all ZN )

H3(M6) ∼= H1(M3 × S1
t )AB ⊕H2(M3 × S1

t )A ⊕H2(M3 × S1
t )B ⊕H3(M3 × S1

t ) , (6.6)

where the superscripts denote that we take the cup product with the A and/or B cycles of

the T 2. Then we take the polarization

Λ4d = H1(M3 × S1
t )AB ⊕H2(M3 × S1

t )A . (6.7)

As discussed in [16], this choice corresponds to considering the N = 4 SU(N) SYM theory

on M3 × S1
t . The first factor corresponds to a refinement by a ZN 0-form symmetry of

this theory, which we will ignore in what follows, and the second by its 1-form ZN electric

symmetry. Specifically, we have, as in (3.5)

ZM6
λ =

{
contribution from SU(N)/ZN bundles P over M3×S1 with w2(P ) =λ∈H2(M3×S1

t )
}
.

(6.8)
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Here the contribution ZM6
0 is the undeformed partition function of the SU(N) SYM theory

on M3 × S1
t . Then since the moduli space of the SYM theory with this twist is given

by flat connections on M3, we expect that this partition function simply counts these flat

connections

ZM6
0 = # {flat SL(N,C) connections A on M3} , (6.9)

modulo SL(N,C) gauge transformations.

Now let us consider the effect of specifying non-zero λ ∈ H2(M3 × S1
t ). First, if

we take λ to be contained in M3, then we expect the flat connections on M3 to not

be genuine SL(N,C) connections, but rather to be a PSL(N,C) connection with second

Stiefel-Whitney class equal to λ. Thus we find

ZM6
λ = #

{
flat PSL′(N,C) connections A on M3 with w2(A) =λ

}
, λ∈H2(M3) . (6.10)

Here we must be careful with how we treat large gauge transformations. Namely, although

these connections are PSL(N,C) connections, we consider them only up to gauge trans-

formations in SL(N,C), since the 4d gauge group is SU(N). We denote this by writing

PSL′(N,C), with a prime, which indicates we do not divide by large gauge transformations.

Finally, suppose λ has both a component, ω in H2(M3), as well as a component

with one leg along H1(S1
t ) and one given by γ ∈ H1(M3). To create a connection with

such a Stiefel-Whitney class, we can proceed as follows: we consider the path-integral on

M3× [0, 1], and then, when gluing the boundaries to form M3×S1
t , we also perform a large

gauge transformation in SU(N)/ZN associated to the element γ. Note that this is a non-

trivial operation, since the gauge group is SU(N), and so such large gauge transformations

act non-trivially. When counting the flat connections, they are now weighted by their

transformation under this large gauge transformation. Thus we find

ZM6
ω,γ = #

{
flat PSL′(N,C) connections A on M3 with w2(A) = ω, weighted by action of γ

}
,

ω ∈ H2(M3) , γ ∈ H1(M3) . (6.11)

Suppose we had instead taken the B-polarization, corresponding to the SU(N)/ZN
theory. In that case we would be taking a sum over all PSL(N,C) connections weighted

according to their Stiefel-Whitney class. E.g., for λ̂ with a leg along S1 and one along

γ ∈ H1(M3), we have

ẐM6
γ =

∑
ω∈H2(M3)

e
2πi
N
γ∪ω # {flat PSL(N,C) connections A on M3 with w2(A) = ω} ,

γ ∈ H1(M3,ZN ) , (6.12)

where in this case we do divide by all PSL(N,C) large gauge transformations. Then S-

duality of theN = 4 SYM theory implies this should be equal to the corresponding quantity

computed in the A-polarization. We will implicitly verify this statement in examples anon,

when we compare to the 3d field theory, where it follows from modular invariance.
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T [M3] on T 2 × S1
t . Next we consider the polarization more natural for studying the

theory T [M3]. Let us first further decompose the cohomology of M6 as

H3(M6) ∼= H3(M3)⊕H2(M3)A ⊕H2(M3)B ⊕H2(M3)t

⊕ H1(M3)AB ⊕H1(M3)At ⊕H1(M3)Bt ⊕H0(M3)ABt . (6.13)

Then the polarization which gives the theory T [M3, su(N)] is

Λ3d = H0(M3)ABt ⊕H1(M3)Bt ⊕H1(M3)At ⊕H1(M3)AB . (6.14)

The partition function labeled by a choice of λ ∈ Λ3d is just the expectation value of the

1-form charge operators along the corresponding cycles, i.e., writing λ = (0, α, β, τ ) for

α, β, τ ∈ H1(M3)

ZM6
λ = ZT [M3]

T 3 [α, β, τ ] ≡ 〈UαA U
β
B U τt 〉T 3 . (6.15)

Here we recall that a charge operator lying along the time direction corresponds to taking

the trace in a twisted sector of the Hilbert space. Thus we may write this in terms of the

decomposition in (3.25) as

ZT [M3]
T 3 [α, β, τ ] =

∑
χA,χB∈H2(M3)

χA(α)χB(β) dim V τ
χA,χB

, α, β, τ ∈ H1(M3) . (6.16)

Comparison. Now to compare these, let us first rewrite the 4d polarization (6.7) as

Λ4d = H0(M3)ABt ⊕H1(M3)AB ⊕H1(M3)At ⊕H2(M3)A . (6.17)

Comparing to (6.14), we see they differ in the factor H2(M3)A, which appears here, and

the dual factor, H1(M3)Bt, which appears in (6.14). Thus to relate the 3d result to the

4d SYM partition function, and so to the flat connection counting, we should perform a

Fourier transform over the variable α in (6.16). For example, taking λ ∈ Λ4d to have

component ω ∈ H2(M3)A and β ∈ H1(M3)At, we find the 3d observable

1

|H1(M3)|
∑

α∈H1(M3)

e2πiωαZT [M3]
T 3 [α, β, 0] =

∑
χB∈H2(M3)

χB(β)vω,χB . (6.18)

On the other hand, from (6.2), we see this is equal to

ZM6
ω,β = #

{
flat PSL′(N,C) connections A on M3 with w2(A) =ω, weighted by action of β

}
.

(6.19)

Comparing these, we see we may identify the action of the large gauge transformations on

the flat connections with that of the UB operator on the vacua of T [M3]. In particular, we

may decompose both into their respective eigenspaces, which must agree, and arrive at the

relation (6.2). Let us now test this relation in some examples.

6.3 Example: T [L(p, 1), su(N)]

Let us consider the theory associated to the lens space, L(p, 1), which is a theory with

su(N) Lie algebra and level p CS term and an adjoint chiral multiplet. We focus on the

case of N prime for simplicity. Then there are two cases to consider.
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GCD(N, p) = 1. Let us first consider the theory T̂ [Ω[p], SU(N)], which is the SU(N)p
theory with an adjoint chiral multiplet. As argued in appendix C.3, this has

I(T̂ [Ω[p], SU(N)]) =

(
N + p− 1

N − 1

)
. (6.20)

Now, this theory has an anomalous ZN 1-form symmetry, and so, as discussed in sec-

tion 4.3.3, we conjecture that it contains a decoupled TQFT on which the 1-form symmetry

acts exclusively. This TQFT has N states, and after decoupling this theory as in (4.44),

we find

I(T [L(p, 1), su(N)]) =
1

N

(
N + p− 1

N − 1

)
. (6.21)

Note that in this case, since H2(L(p, 1),ZN ) = 1, the formula (6.2) predicts that the

Witten index of this theory should directly count the flat PSL(N,C) connections on L(p, 1),

and in this case, these are the same as SL(N,C) connections. The latter are given by

representations

φ : π1(L(p, 1)) ∼= Zp → SL(N,C) , (6.22)

modulo SL(N,C) transformation. Without loss of generality, we may take these represen-

tations to be diagonal, with generator given by

diag

(
e

2πim1
p , e

2πim2
p , · · · , e

2πimN
p

)
,

N∑
i=1

mi = 0 mod p , (6.23)

considered up to permutations. An arbitrary choice of {mi} may have a non-zero sum

modulo p, however shifting mi → mi+1 shifts this sum by N , and so precisely one element

in the orbit under this Zp action will have sum zero. Thus we have

#{flat SL(N,C) connections on L(p, 1)} =
1

p

(
N + p− 1

N

)
, (6.24)

which equals (6.21). Note that this agreement required the decoupling of the TQFT, giving

some further evidence for this conjecture.

GCD(N, p) = N . Now we find T [L(p, 1), su(N)] = T̂ [Ω[p], SU(N)] is the SU(N)p the-

ory. This has an anomaly-free 1-form symmetry, and so the Hilbert space decomposes as

V =
⊕

χA,χB∈ZN

VχAχB , (6.25)

where χA, χB run over the characters of ZN . This is a generalization of (5.48) with the

prescription that

εA,B = exp

(
2πiχA,B

N

)
. (6.26)
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Let us consider N = 2 for simplicity. Then the dimensions of the VχAχB are summarized

in table 4, which we reproduce here for convenience:

vχA,χB (T [L(p, 1), su(2)]) =



p
4 + 1 p = 0 (mod 4) and (χA, χB) = (0, 0)
p
4 p = 0 (mod 4) and (χA, χB) ∈ {(0, 1), (1, 0), (1, 1)}
p+2

4 p = 2 (mod 4) and (χA, χB) ∈ {(0, 0), (0, 1), (1, 0)}
p−2

4 p = 2 (mod 4) and (χA, χB) = (1, 1)

(6.27)

Now let us compare to the flat connections on L(p, 1), using the formula (6.2). Let us

check this by counting the flat PSL′(2,C) connections explicitly. These are given by ho-

momorphisms from π1(L(p, 1)) ∼= Zp into PSL(2,C), but considered only up to conjugation

by SL(2,C). Without loss we may write the image of the generator of Zp as diag(α, α−1),

(written as an SL(2,C) matrix), where

αp = ±1, α ∼ α−1 , (6.28)

where we identify by Weyl symmetry. As described in appendix E.2, we can classify the con-

nections according to their class in H2(L(p, 1),Z2) = Z2, which in this case is determined

by αp ∈ {±1}. These solutions are also acted on by LGTs, which act as multiplication by

the Z2 center of SL(2,C), and take

α→ −α . (6.29)

All the solutions therefor come in pairs, ±α, except for the solution with α = i, which is

Weyl-equivalent to −α.

Now if we project onto the LGT-invariant solutions, which is the same as considering

PSL(2,C) connections, we find

#{flat PSL(2,C) connections with w2 = ω} =



p
4 + 1 p = 0 mod 4 , ω = 0
p
4 p = 0 mod 4 , ω = 1
p+2

4 p = 2 mod 4 , ω = 0
p+2

4 p = 2 mod 4 , ω = 1 .

(6.30)

From (6.2), map to the sectors in (6.27) with χB = 0, along with χA = ω, and one verifies

that these precisely match. On the other hand, for each pair (α,−α) with α 6= i, we

can also construct an antisymmetric formal linear combination of solutions with χLGT = 1.

Thus in this sector find a similar counting, but now with the contribution of α = i removed,

namely

#{flat PSL′(2,C) connections with w2 =ω, χLGT = 1}=



p
4 p= 0 mod 4 , ω= 0
p
4 p= 0 mod 4 , ω= 1
p+2

4 p= 2 mod 4 , ω= 0
p−2

4 p= 2 mod 4 , ω= 1 .

(6.31)

One can check this matches the remaining entries in (6.27), with χB = 1.
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One interesting feature of this calculation is that modular invariance of the field the-

ory implies a relation between the Stiefel-Whitney class and LGT behavior of the flat

PSL′(2,C) connections. We do not know of a simple derivation of this fact.

6.4 Example: gauged trinion

As a final example, we consider the theory associated to the S3/ΓDE discussed in sec-

tion 5.4.3. Note that the analysis for L(p, q) is independent of q and is thus covered by

section 6.3. We again focus on N = 2, where the results for the vacuum counting, refined

by 1-form charges, are summarized in tables 4 and 5.

Let us compare this to the flat connection counting, which is reviewed in appendix E.2.

The Seifert data of a Seifert manifold with three exceptional fibers fixes its fundamental

group (E.9). In the general case the number of PSL(2,C) representations is given by (E.15)

and their Stiefel-Whitney classes can be computed explicitly, see appendix E.2. We find

for the flat PSL(2,C) connections with w2 = ω ∈ H2(M3,Z2)

Dn , n= 0 mod 4 :



n
4 +1 ω= (0,0)

1 ω= (1,0)

1 ω= (0,1)
n
4 ω= (1,1)

, Dn , n= 2 mod 4 :



n+2
4 ω= (0,0)

1 ω= (1,0)

1 ω= (0,1)
n+2

4 ω= (1,1)

Dn , n odd :

{
n+1

2 ω= 0

1 ω= 1
, E7 :

{
2 ω= 0

2 ω= 1
.

(6.32)

For E6 and E8 there is no distinction of the connections in terms of SW classes.

To compare this to the field theory, we recall that the PSL(2,C) connections correspond

to the PSL′(2,C) connections with χLGT = 0. Then we may compare the entries above to

the relevant entries in tables 4 and 5 with χB = 0. For example, for Dn with n = 0 (mod 4),

we see v++++ = n
4 , agreeing with the ω = (0, 0) entry above, and one may similarly compare

the remaining entries.

We can also check the flat connections with non-trivial χLGT . Let us analyze the

case of S3/ΓDn for n even. Then using the explicit form for the PSL(2,C) connections

in section E.2, one can classify them under Stiefely-Whitney class, ω, and χLGT . Let us

describe this explicitly in the case n = 4. Here there is one trivial connection, three other

irreducible connections, and one irreducible connection. The trivial connection is acted on

freely by large gauge transformations (LGTs), and so contributes states with ω = (0, 0)

and all four values of χLGT . Each of the other reducible connections is fixed by one LGT.

E.g., the connection with ω = (1, 0) is fixed by the LGT corresponding to (0, 1), and so this

contributes states with χLGT = (0, 0) and (1, 0), and similarly for the others. Finally, the

irreducible connection is fixed by all LGTs, and so only contributes a state with χLGT = 1.

We summarize the results for general even n in table 6. One can verify this precisely

matches with the refinement of the supersymmetric vacua of T [S3/ΓDn , su(2)] in table 5.

Moreover, one can see explicitly the symmetry under reflection in the diagonal, which is

implied by modular invariance on the field theory side.
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χLGT

ω
(0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) n
4 + 1 1 1 n−4

4 + 1

(1, 0) 1 1 0 0

(0, 1) 1 0 1 0

(1, 1) n−4
4 + 1 0 0 n−4

4 + 1

n = 0 (mod 4)

χLGT

ω
(0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) n−2
4 + 1 1 1 n−2

4 +1

(1, 0) 1 0 1 0

(0, 1) 1 1 0 0

(1, 1) n−2
4 + 1 0 0 n−6

4 + 1

n = 2 (mod 4)

Table 6. Counting of flat PSL′(2,C) connections on S3/ΓDn
refined by Stiefel-Whitney class, ω,

and χLGT , for n = 0 (mod 4) on the top and n = 2 (mod 4) below. Here we show the contribution

from the trivial connection in blue, the other reducible connections in green, and the irreducible

connections in red.

7 3d N = 1

In this final section we extend our discussion to 3d N = 1 theories. The analysis of higher-

form symmetries will generalize to this case naturally. We focus on a special class of N = 1

theories which have an N = 2 enhancement point in the space of mass parameters. We

study the action of higher-form symmetries in the space of Bethe vacua on these supersym-

metry enhancement loci. In particular, starting with a known N = 2 enhancement point of

the TN=1[L(p, 1)] theory [64], we propose a quiver description for the TN=1[L(p, q)] theory.

We show that this description reproduces the expected number of vacua for g = u(2) and

su(2) at the supersymmetry enhancement point.

7.1 TN=1[M3] and boundary conditions of N = 1 class S

A natural generalization of the 3d N = 2 theories associated to M3 is to consider instead

a topological twist that preserves N = 1 supersymmetry [5]. From a 6d (2, 0) point of

view, this is obtained by starting with the decomposition Sp(4)R → SU(2)` × SU(2)r and

twisting SU(2)twist = diag(SO(3)M , SU(2)r). The supercharges decompose as

SO(1, 5)L × Sp(4)R → SO(1, 2)L × SU(2)twist × SU(2)`

(4,4) 7→ (2,1,1)⊕ (2,3,1)⊕ (2,2,2) ,
(7.1)
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preserving 3d N = 1. This 3d N = 1 twist, and the associated 3d-3d correspondence, was

studied in [5] and the resulting theories were referred to as TN=1[M3]. It has a geometric

realization, where M3 is an associative three-cycle with normal bundle

NM3
∼= S⊗ V , (7.2)

where S is the spin bundle of M3 and V is a rank two SU(2)`-bundle. The 3d theory

depends on the choice of this bundle — in the local G2, the existence of sections of this

bundle will depend on the local metric that is induced from the ambient G2. The simplest

choice is when V is the trivial bundle, which will be referred to as the minimal twist.

The 3d-3d correspondence for this twist was discussed in [5], where the BPS equations

along M3 were determined to be the generalized Seiberg-Witten equations (gSW)

0 = εabcF
bc − i

2
[φαα̂, φ

βα̂](σa)
α
β

0 = ( /Dφ)αα̂ .
(7.3)

Here φαα̂ are sections of the normal bundle (7.2), where α, α̂ are indices labeling the spinor

representations. It was conjectured in [5], that the number of “abelian” flat (real) G-

connections reproduces the Witten index, whenever the three-manifold does not admit any

twisted harmonic spinors (in the above equations, this corresponds to trivial φαα̂). Here

the “abelian” flat connection34 is defined as a representation π1(M3) → G such that all

the irreducible representations contribute at most once. We will confirm this for U(2) by

counting the Bethe vacua for these theories anon.

The minimal twist can also be thought of as arising from 4d N = 1 class S theories

on an interval, i.e., TN=1[Σg], where Σg is a genus g curve, which now is embedded inside

a local Calabi-Yau three-fold [65]. This is given by the total space of the rank two bundle

NΣg = L1 ⊕ L2 , (7.4)

where the Li are line bundles with degL1 + degL2 = 2g − 2. The BPS equations of these

theories are given by a generalized Hitchin system [66]

0 = Fzz̄ + [Φ1, Φ̄1] + [Φ2, Φ̄2]

0 = [Φ1,Φ2]

0 = DzΦi ,

(7.5)

where the Φi are adjoint-valued sections of the Li.

In order to study 3d N = 1 theories we can put this 4d N = 1 class S theory on

an interval. The most general boundary conditions for TN=1[Σ] have not been studied,

however a nice observation is that the BPS equations of TN=1[M3] can be related to those

of the Hitchin system (7.5). Geometrically, we can view the setup as a consequence of the

Heegaard splitting of M3, see e.g. [43, 44]. Each three-manifold can be obtained by gluing

34These are referred to as “inequivalent” flat connections in [64]. They can be equivalently characterized

as the connections whose stabilizer group is abelian.
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two manifolds Hg
± along its boundaries ∂Hg

± = Σg. The gluing map is given by an element

of the mapping class group of Σg.

This also means that the Hitchin system (7.5) should be related to the generalized SW

equations (7.3). Indeed, locally, the geometry of M3 is given by Σg × R with coordinates

(z, z̄, x3) and the gSW equations become

0 = Fzz̄ + [Φ1, Φ̄1] + [Φ2, Φ̄2]

0 = Fz̄3 − [Φ1,Φ2]

0 = D3Φ̄1 −DzΦ2

0 = D3Φ̄2 +DzΦ1 ,

(7.6)

where we identify Φ1 = φ11 = (φ22)∗ and Φ2 = φ12 = −(φ21)∗. We see that this agrees

with the generalized Hitchin system in [66] after imposing Neumann boundary conditions.

Clearly this relation between generalized Hitchin and generalized Seiberg-Witten equations

deserves further study.

7.2 Higher-form symmetries for TN=1[M3]

The analysis of sections 4.1 and 4.2, i.e., the higher-form symmetries of 3d theories obtained

by dimensional reduction of the 6d (2, 0) theory, carries over directly to the N = 1 case,

as it does not explicitly depend on the choice of topological twist. In particular, we expect

that for any subgroup,

H ≤ Υ̂ = H2(M3, ZG̃) , (7.7)

we may define a theory

TN=1[M3, g, H] . (7.8)

These theories have 1-form symmetry given by ΥH and a 0-form symmetry H, as defined

in section 4.2. In particular, the versions of the theory with general H may be obtained

from the H = 1 theory by gauging a suitable subgroup of its 1-form symmetry.

In the case of M3 a graph manifold, to define these theories explicitly, we must first

define analogues of the theories T̂ [Ω, G] associated to a graph, which were defined in sec-

tion 2.2.2. These relied on a description of the theories as 3d N = 2∗ preserving boundary

conditions of 4d N = 4 SYM. A first principle derivation of the N = 1 versions should

exist as boundary conditions on N = 1 theories of class S, as discussed in the last sub-

section, or in terms of 1
4 BPS boundary conditions of the N = 4 theory. Unfortunately,

a full classification of such boundary conditions does not exist. However, we expect that

a qualitatively similar quiver gauge theory description can be assigned to a graph, Ω, of

M3 as in the N = 2 case, with suitable modifications. For example, we expect that these

will involve N = 1 rather than N = 2 Chern-Simons terms, and the coupling of the nodes

to the S-walls must also be suitably modified. However, one important point is that the

higher-form symmetry structure of this theory should be the same as their N = 2 cousins.

This is because these theories have the same gauge groups and Chern-Simons couplings,

and differ only in the couplings of additional adjoint-valued matter fields, which do not

affect the higher-form symmetry structure.
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k1 k2 ... kn

Figure 11. Quiver corresponding to the N = 2 enhancement point of T̂N=1[Ω[k1,··· ,kn], G].

It would be interesting to develop a detailed Lagrangian description of these theories

for general graph manifolds. For the remainder of this section, we consider this description

in the special case of M3 = L(p, q), where we will argue that a deformation of T [M3] leads

to a theory with N = 2 supersymmetry, which we can study more explicitly.

7.3 3d N = 1 lens space quivers

Let us consider the theories TN=1[M3, g] for M3 a lens space. We first consider the case

M3 = L(k, 1), which can be associated to the quiver Ω[k], corresponding to T k ∈ SL(2,Z).

Extending our notation in the natural way, we first define the T̂N=1[Ω[k], G] theory. Fol-

lowing [5, 64], we find that this consists of an N = 1 G vector multiplet at Chern-Simons

level k and a massless adjoint scalar multiplet.35 Then it is known that the associated 3d

N = 1 theory has an N = 2 enhancement point in the space of mass parameter. Tuning

on the scalar mass to

mN=2 = −kg
2

4π
, (7.9)

where g is the 3d gauge coupling, yields a pure N = 2 Gk CS-theory. The mass deformation

from m = 0 to mN=2 preserves the number of vacua [68]. At the enhancement point, we

can define and count Bethe vacua of T̂N=1[Ω[k], G], which can be described as an N = 2

quiver consisting of a single gauged node at Chern-Simons level k, but now without an

adjoint chiral multiplet. We will return to this computation below.

We conjecture that we can similarly define a more general N = 2 quiver which com-

putes the number of vacua of the N = 1 theory for general [k1, · · · , kn], which are the

Lens spaces L(p, q). This can be done by taking each T ki theory, enhancing it to N = 2

supersymmetry and coupling them together with the T (G) theory. This quiver description

can also be obtained from a procedure similar to section 2.2.1, with the adjoint multi-

plets adj(V±) removed from all the basic building blocks and gluing rules. The quiver for

T̂N=1[Ω[k1,··· ,kn], G] is then given in figure 11. It is obtained from the quiver in figure 8 by

removing the adjoint attached to the left-most node. It would be interesting to show that

this is indeed the same as the prescription that is obtained from the direct dimensional

reduction on L(p, q) with the N = 1 twist. This prescription is supported by the vacuum

count and the compatibility with the dualities of section 2.3, which will also apply for these

N = 2 quivers.

The physical theory TN=1[M3, g] is then obtained by decoupling various topological

sectors, precisely as in the earlier discussions for the N = 2 case.

35There are no fields associated to the zero-sections of the normal bundle as the Lens space has positive

scalar curvature [5, 67].
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7.4 Bethe vacua for 3d N = 1

To check this proposed description of the quivers we now compute the number of vacua.

Let us first consider the case M3 = L(k, 1) and G = U(N), where, since U(N) is self-dual,

we may identify TN=1[L(k, 1),U(N)] = T̂N=1[Ω[k],U(N)]. The Bethe equations for this

theory are given simply by

zxi
k = 1, i = 1, . . . , N , (7.10)

where z is the fugacity for the U(1)J symmetry. Accounting for Weyl symmetry, we find

this has

I(TN=1[L(k, 1),U(N)]) =

(
k

N

)
(7.11)

From section 4.3.2 we expect this to be acted on by a Zk 1-form symmetry with anomaly

coefficient (N, k), as in the N = 2 case, and this is indeed true of this CS theory. For

example, recall from section 5.3.4 that the representations of this 1-form symmetry have

size k
(N,k) , and one verifies that the number of vacua is indeed divisible by this integer.

Next, for M3 = L(p, q), we consider the gauge algebra g = (s)u(2). As in section 5.3

we first determine the number of vacua of T̂N=1[Ω[k1,··· ,kn], SU(2)]. The simplest case is the

single node T k, where the single Bethe equation is

Π(x) = x2k . (7.12)

The solutions are ûj = j
2k , with j = 0, . . . , 2k − 1, with the Z2 Weyl symmetry acting as

ûj → û−j . Except for the two degenerate solutions û0, ûk they appear in Weyl pairs, so

I(T̂N=1[Ω[k], SU(2)]) = k − 1 . (7.13)

The anomaly is exactly as for the N = 2 case in section 5.4, so

I(TN=1[L(k, 1), su(2)]) =

{
k − 1 k even
k−1

2 k odd
. (7.14)

If k is even we can gauge the Z2 1-form symmetry of this theory. Since the Bethe

vacua are known explicitly we can do this by hand. The Hilbert space is spanned by the

physical vacua |ûj〉, j = 1, . . . , k− 1 and the two generators of the 1-form symmetry (D.3)

act as36

UA|ûj〉 = (−1)j+1|ûj〉 , UB|ûj〉 = |ûk−j〉 . (7.15)

Thus, the common eigenvectors of the U are |ûk/2〉 and |v̂±j 〉 = 1√
2

(|ûj〉 ± |ûk−j〉),
j = 1, . . . , k/2− 1. The eigenvalues of the U are given by(

UA, UB
)
|ûk/2〉 =

(
(−1)

k
2

+1,+1
)
|ûk/2〉 ,

(
UA, UB

)
|v̂±j 〉 =

(
(−1)j+1,±1

)
|v̂±j 〉 . (7.16)

From this we easily see that the subspace with eigenvalues (+1,+1) has dimension
⌈
k
4

⌉
.

36The overall sign of UA is fixed by modular invariance.
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We can explicitly check this structure for general linear quivers. This is analogous to

the N = 2 theories discussed in section 5. We find

I(T̂N=1[Ω[k1,··· ,kn], SU(2)]) = 2n−1p− 1 , (7.17)

from which we can deduce that

I(TN=1[L(p, q), SU(2)]) =

{
p− 1 p even
p−1

2 p odd
,

I(TN=1[L(p, q),U(2)]) =

(
p

2

)
.

(7.18)

Furthermore, we can gauge the Z2 1-form symmetry if p is even. Doing this explicitly for

small values of n and p we find

Iuntwisted(TN=1[L(p, q), su(2),Z2]) =
⌈p

4

⌉
, (7.19)

as for the N = 2 twist, there is also a single twisted sector, leading to

I(TN=1[L(p, q), su(2),Z2]) =
⌈p

4

⌉
+ 1 . (7.20)

The interesting point to note here is that the Bethe vacua counting is — as expected,

although it is not manifest — independent of q. It would be interesting to extend this to

higher rank and more general, non-linear quivers and to test the N = 1 3d-3d correspon-

dence for these theories.
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A Notations and nomenclature

As there are several notational intricacies in this paper, we summarize these in the following

table.

Label Meaning

G, g Lie group (not necessarily simply connected) and associated Lie algebra

G̃ Simply-connected Lie group associated to g

Ω Graph

T (G) S-duality wall theory of [25]

FT (G) T(G) theory with one flavor symmetry flipped, as defined in [47]

T̂ [Ω, G] Unphysical theory associated to graph manifold Ω. Defined in section 2.2.2.

ZG Center of G

Υ H1(M3, ZG̃)

Υ̂ H2(M3, ZG̃)

H Subgroup of Υ̂

ΥH {x ∈ Υ | χ(x) = 1, ∀χ ∈ H} ⊂ Υ

T [M3, g, H] Theory with 0-form symmetry H, and 1-form symmetry ΥH .

Defined in section 4.3.

T [M3, g] T [M3, g, H = 1]

T [M3, G] The theory T [M3, g] with the natural polarization for self-dual G

I(T [· · · ]) Witten index of theory T [· · · ]

B Seifert manifolds

In this appendix we provide concrete specializations of the Seifert data to three-manifolds

that will be studied in the paper. For concreteness, let us specialize to Seifert manifolds

over a genus zero base, and with three special fibers

M3
∼= [d = 0; g = 0; (p1, q1), (p2, q2), (p3, q3) ] . (B.1)

We are interested in Seifert manifolds with positive scalar curvature which is equivalent to(
1

p1
+

1

p2
+

1

p3
− 1

)
> 0 . (B.2)

Such spaces can always be written as quotients

M3
∼= S3/(Γ1 × Γ2) , (B.3)

where Γ1 × Γ2 is a finite subgroups of SO(4) of which at least one is cyclic.37 We can

classify the possibilities, which come in three series:

37Additionally, the orders of the two groups have to be coprime.
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1. M3
∼= [0; 0; (1, 1), (p2, q2), (p3, q3)] are the Lens spaces L(p, q) introduces above. They

are given by Zp quotients of S3 where the group action is given by

(z1, z2)→ (e2πi/pz1, e
2πiq/pz2) , (B.4)

where (z1, z2) ∈ C2. The first homology group is

H1(L(p, q),Z) ∼= Zp , (B.5)

with p = |p2p3 + p2q3 + p3q2|.

2. M3
∼= [0; 0; (2,−1), (2, 1), (p3, q3)] are the prism manifolds MPrism

p3,q3 . The fundamental

group is a product of a cyclic and a binary dihedral group Dm. Taking (p3, q3) =

(n− 2, 1) the cyclic group becomes trivial. Then, the manifolds are S3/D4(n−2) with

fundamental group

H1(S3/D4(n−2),Z) ∼=

{
Z2 × Z2 n even

Z4 n odd
. (B.6)

In the more general case q3 6= 1 the Γi depend non-trivially on q3.

3. M3
∼= [0; 0; (2,−1), (3, q2), (p3, q3)], where p3 = 3, 4, 5. The fundamental group is

a product of a cyclic and one of the groups Tk,O, I,38 depending on p3. Choosing

(p3, q3, q2) = (m − 3, 1, 1) leaves the cyclic group trivial. Then, the manifolds are

S3/{T1,O, I} respectively with fundamental groups

H1(S3/T1) = Z3 , H1(S3/O) = Z2 , H1(S3/I) = 1 . (B.7)

The last manifold is also called the Poincaré homology sphere, and is a famous exam-

ple of an integer homology sphere, i.e., with the same homology as S3 but different

fundamental group. For simplicity we will not consider the general case with non-

trivial qi.

These three series are connected to the semi-simple Lie algebras by the McKay correspon-

dence. In particular, if all the qi = 1 they are known as the S3/ΓADE

S3/ΓAk
∼= [0; 0; (`, 1), (k − `+ 1, 1)] ∀`

S3/ΓDn
∼= [0; 0; (2,−1), (2, 1), (n− 2, 1)]

S3/ΓEm
∼= [0; 0; (2,−1), (3, 1), (m− 3, 1)] .

(B.8)

There is no simple classification of Seifert manifolds with negative curvature. However,

if all the qi = 1 the spaces are known as the Brieskorn manifolds [69]. They are given by

MBrieskorn
p1,p2,p3

= [1; 0; (pi, 1)] , (B.9)

and also include the positive curvature manifolds in (B.8). They are defined as the intersec-

tion of the complex three-sphere {zi ∈ C3 ,
∑

i |zi|2 = 1} and the hypersurface
∑

i z
pi
i = 0.

38These are the binary tetrahedral, octahedral and icosahedral groups of order (8 ·3k, 48, 120) respectively.
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C Twisted superpotentials and Bethe equations

In this appendix we review some aspects of the twisted superpotential and associated Bethe

equations for 3d N = 2 theories, focusing on applications to the theories T [M3]. We give

arguments for the number of Bethe vacua for several examples of these theories.

C.1 Twisted superpotential for T̂ [Ω, SU(2)]

Let M3 be a Seifert manifold, with associated graph Ω and linking matrix Qij . Consider

the theory T̂ [Ω, SU(2)]. To compute the twisted superpotential for this theory, we first

need to compute the contribution from the building blocks: ϕ = T k and ϕ = S.

Let us start with the T (SU(2)) theory, i.e., ϕ = S. It has a UV Lagrangian description

as a U(1) gauge theory with two hypermultiplets. This theory has a manifest SU(2)m flavor

symmetry acting on the hypers, and the U(1)J topological symmetry enhances in the IR to

another SU(2)ζ flavor symmetry. We consider the N = 2∗ version of the theory by turning

on a coupling to the diagonal combination of the R-symmetry

U(1)τ = 2[U(1)C −U(1)H ] , (C.1)

where U(1)C and U(1)H are a maximal torus of the SU(2)C and SU(2)H factors of the

R-symmetry. The global symmetry of the theory in the infrared is then

SU(2)ζ × SU(2)m ×U(1)τ . (C.2)

The twisted superpotential can be written as

WS(u, ζ,m; τ) =WFI(u, ζ) +Wmatter(u,m; τ) , (C.3)

where the first term is the contribution from the FI parameter

WFI(u, ζ) = 2uζ , (C.4)

and the contribution from the matter can be written as

Wmatter(u,m; τ) =WΦ(τ ± u±m) +WΦ(−2τ) , (C.5)

where WΦ is defined in (5.16). Here and below we use the convention that each choice of

sign in ‘±’ is summed over.

As mentioned in section 2.3.2 this theory has a dual description as an SU(2) theory

with a k = 1 CS term and Nf = 2 fundamental flavors, see figure 5. This dual theory has

twisted superpotential

W̃S(u, ζ,m; τ) =WΦ(τ ± u±m± ζ) + u2 −Wadj(ζ; τ)− ζ2 −m2 , (C.6)

where the first term comes from the trinion coupling. We have added an adjoint chiral

multiplet (the “flip” field) charged under the SU(2)ζ symmetry, as well as background CS

terms (“contact terms”) for the SU(2)m × SU(2)ζ symmetries. These are both necessary
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for a precise duality to the usual description of T (SU(2)) above. Here, and in general,

coupling an adjoint chiral multiplet of positive U(1)t charge corresponds to

Wadj(ζ; τ) =WΦ(−2τ ± 2ζ) +WΦ(−2τ) , (C.7)

whereas an adjoint of negative charge contributes with −Wadj (up to τ -dependent contact

terms, which we ignore). In addition, we have equipped the flavor groups in T (SU(2))

with a background Chern-Simons term. The corresponding contribution to the twisted

superpotential is

WTk(ζ) = kζ2 , (C.8)

where k is the background level.

We may use these ingredients to construct the twisted superpotential of a general

quiver theory, T̂ [Ω, SU(2)]. Including a copy of the twisted superpotential, WS , of the

T (SU(2)) theory for each edge, and an appropriate Chern-Simons term for each node, we

may write this conveniently in terms of the linking matrix Qij of (2.13), as

WΩ(ui; τ) =
n∑
i=1

(
Qiiu

2
i +Nadj

i Wadj(ui; τ)
)
−
∑
i<j

QijWS(ui, uj ; τ) , (C.9)

where Nadj
i is the number of adjoints attached to the ith node, which can be determined

following the prescription in section 2.2.3, and I runs over the connecting T (SU(2))s. Here

ui is the SU(2) fugacity for the ith node.

The number of vacua is given by the number of solutions to the vacuum equations

using the definition (5.19)

Πi = e2πi∂uiWΩ = 1 , i = 1, . . . , n , (C.10)

modulo the action of Z2 Weyl group

xi → x−1
i , (C.11)

where xi = e2πiui .

C.2 Vacuum count for T̂N=2[Ω[k1,k2], SU(2)]

As a concrete example we will go through the explicit computation of the index for the

Lens space with p
q = k1 − 1

k2
. The quiver for this theory is shown in figure 4.

We first compute the vacua for T̂ [Ω[k1,k2], SU(2)]. The linear quiver with ϕ = T k1ST k2

has twisted superpotential

W(ζ, u1, u2; τ) =WS(ζ, u1, u2; τ) +WTk1 (u1) +WTk2 (u2) +Wadj(u1; τ)

= 2ζu1 + log(−z)2 + log(−x2)2

+ Li2(zx2t) + Li2(zx−1
2 t) + Li2(z−1x2t) + Li2(z−1x−1

2 t)

+ k1u
2
1 + k2u

2
2 +

1

2
log(−x2

1)2 + Li2(x2
2t) + Li2(x−2

2 t) + . . . ,

(C.12)
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where the . . . only depend on τ . However, we can also use the dual trinion description,

discussed in section 2.3.2. Then, the theory is described by a T2 trinion with the three

flavor groups gauged at levels (k̃1, k̃2, k̃3) = (k1−1, k2−1, 1) respectively and no additional

adjoints. The superpotential for general k̃i is

W̃(u1,u2,u3;τ) =WΦ(τ±u1±u2±u3)+W
T k̃1

(u1)+W
T k̃2

(u2)+W
T k̃3

(u3)

= Li2(x1x2x3t)+Li2(x1x2x
−1
3 t)+Li2(x1x

−1
2 x3t)+Li2(x−1

1 x2x3t)

+Li2(x1x
−1
2 x−1

3 t)+Li2(x−1
1 x2x

−1
3 t)+Li2(x1x

−1
2 x−1

3 t)+Li2(x−1
1 x−1

2 x−1
3 t)

+2log(−x1)2+2log(−x2)2+2log(−x3)2+k̃1u
2
1+k̃2u

2
2+k̃3u

2
3+. . . .

(C.13)

Using the description in terms of the trinion with SU(2)3 gauge group, the Bethe equations

are given by

Πi = xi
2k̃i

(xi − txjxk)(xixj − txk)(xixk − txj)(xixjxk − t)
(1− txixjxk)(xj − txixk)(xk − txixj)(xjxk − txi)

= 1 , (C.14)

where (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. This gives a system of three couple polynomial

equations in the xi.

Next we must count the solutions to these equations, modulo Weyl invariance. We first

factor out the Weyl invariant solutions at xi = ±1, which are unphysical, and we may then

change to Weyl invariant variables, yi = xi + x−1
i . Note that an arbitrary Weyl-invariant

polynomial in xi can be written as a linear combination of the polynomials

pn(yi) ≡
xi
n+1 − xi−n−1

xi − xi−1
. (C.15)

For n non-negative, this is a degree n polynomial in yi, which has only even or odd degree

terms. This definition extends also to negative n, and satisfies

pn(yi) = −p−2−n(yi) . (C.16)

Then one finds the Bethe equations, (C.14), lead to the following equations for yi

P1(y1,y2,y3)

≡ p
k̃1+1

(y1)+t4p
k̃1−3

(y1)−ty2y3(p
k̃1

(y1)+t2p
k̃1−2

(y1))+t2(y2
2+y3

2−2)p
k̃1−1

(y1) = 0 ,

(C.17)

and similarly for P2 and P3.39 This represents a system of three coupled polynomial

equations, which is difficult to solve analytically. However, we may attempt to count the

solutions by using the fact that their number does not jump as we vary the parameter t

continuously. Thus, let us consider the behavior in the t → 0 limit. We first assume all

k̃i ≥ 0. Then this limit is well-behaved because the leading term of each Pi survives in the

limit. Then the equations simplify to

p
k̃1+1

(y1) ≈ 0, p
k̃2+1

(y2) ≈ 0, p
k̃3+1

(y3) ≈ 0 , (C.18)

39Note, that by rewriting the Bethe equations as polynomial equations can add spurious solutions, that

are not solutions to the original Bethe equations. These are removed in the counting.
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and we find that the number of vacua is

Nvac = (k̃1 + 1)(k̃2 + 1)(k̃3 + 1) , k̃i ≥ 0 . (C.19)

One can check that the equations are invariant under taking all k̃i → −k̃i and also t→ t−1,

so one finds a similar formula when all k̃i ≤ 0.

When two of the k̃i’s have different signs, we may not use this argument, as the leading

terms of some of the polynomials vanish as we take t → 0, so some solutions run off to

infinity in a way that is difficult to control analytically. In this case, the equation (C.17)

can be solved using Gröbner basis methods in Mathematica or Singular. These methods

are similar to solving systems of linear equations using Gaussian elimination: the system of

polynomial equations is mapped to the Gröbner basis, retaining the same set of solutions.

The system of equations can however now be successively solved. For small values of k̃i
this can be implemented, and the results are consistent with the following formula

Nvac = (k̃1 + 1)(k̃2 + 1)(−k̃3 + 1)− 4k̃1k̃2, k̃1, k̃2 ≥ 0, k̃3 ≤ −2 . (C.20)

If we now take the values

k̃1 = k1 − 1, k̃2 = k2 − 1, k̃3 = 1 , (C.21)

these reduce to the counting of vacua in terms of p to be

I(T̂ [Ω[k1,k2], SU(2)]) = 2 (|k1k2 − 1|+ 1) = 2(p+ 1) . (C.22)

For larger quivers, the procedure to obtain twisted superpotential and Bethe equations

is completely analogous, but the resulting systems of polynomial equations quickly become

difficult to solve, even using computer algebra programs like Mathematica and Singular.

We have studied some further quivers cases with up to seven gauge group factors (leading to

seven coupled equations), and some of the results are quoted and utilized in the main text.

C.3 Vacuum count for T [L(k, 1), (S)U(N)] from Bethe equations

Next we consider higher rank examples, with G = U(N) and SU(N).

First, for the N = 1 twist, after passing to the N = 2 enhancement point, the T k

theory with G = U(N) is the topological U(N)k CS theory and the number of vacua can

be computed by standard techniques, but let us illustrate the counting using the Bethe

equations, to exemplify the method. These are given here by

Πi = zxi
k = 1, i = 1, . . . , N . (C.23)

The solutions are then xi = e2πini/k, ni ∈ {0, . . . , k − 1}. In addition, we must impose the

Weyl-invariance condition, i.e., that no two ni are equal, and that we count the solutions

up to permutations. Thus we are led to

I(TN=1[L(k, 1),U(N)]) =

(
k

N

)
. (C.24)
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For the N = 2 twist, the Bethe equations are instead

zxi
k
∏
j 6=i

t2xi − xj
t2xj − xi

= 1, i = 1, . . . , N . (C.25)

This is now a set of coupled equations. To make progress, let us first consider a closely

related theory, where we have instead a CS level k2 and k anti-fundamental chiral multiplets,

which are acted on by a U(k) flavor symmetry which we assign fugacities wa, a = 1, . . . , k.

Then the Bethe equations become

z

k∏
a=1

(xi − wa)
∏
j 6=i

t2xi − xj
t2xj − xi

= 1 . (C.26)

Notice that if we take all wa → 0, we recover the equations in (C.25). This reflects the fact

that giving all the anti-fundamental chirals large real masses and integrating them out,

the CS level is shifted from k
2 to k. Thus we may instead do the vacuum counting in this

theory with anti-fundamentals.

The equations (C.26) are still coupled, so this is not obviously an improvement. How-

ever, let us now consider these equations in the limit z → ∞. Then we can see that the

remaining factor in the Bethe equations must be approximately zero, which implies

xi ≈ wa, or xi ≈ t−2xj , ∀i . (C.27)

Thus the approximate solutions can be organized into towers over each wa

xi ∈
{
w1, w1t

−2, . . . , w1t
−2(`1−1),

w2, w2t
−2, . . . , w2t

−2(`2−1)

. . .

wk, wkt
−2, . . . , wkt

−2(`k−1)
}
, (C.28)

where there are `a ≥ 0,40 solutions in the tower above wa, and
∑

a `a = N . The number of

such solutions, up to permutations, is just the number of ways of distributing N elements

among k boxes, which gives

I(TN=2[L(k, 1),U(N)]) =

(
k +N − 1

N

)
. (C.29)

Next we consider the counting for G = SU(N). For this, we recall that U(N) ∼=
(SU(N) × U(1))/ZN . Then each U(N) CS theory above is a 1-form gauging of a tensor

product of the corresponding SU(N) theory with a U(1) theory.41 This U(1) theory has a

level Nk Chern-Simons term, and so Nk vacua, and we must gauge the diagonal of its ZN
40If `a = 0, wa and its tower is absent from (C.28).
41Note this argument would not hold if there were fundamental matter.
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1-form symmetry with that of the SU(N) factor. Then we expect this gauging to simply

remove a factor of N2 from the number of vacua of the tensor product.42 Thus we find

I(TN=1,2[L(k, 1),U(N)]) =
k

N
I(TN=1,2[L(k, 1), su(N)]) . (C.30)

For the N = 1 twist, this gives

I(TN=1[L(k, 1), su(N)]) =

(
k − 1

N − 1

)
, (C.31)

which is the known result for the pure CS theory. For the N = 2 twist, we find

I(TN=2[L(k, 1), su(N)]) =

(
k +N − 1

N − 1

)
. (C.32)

We note that the results (C.29) and (C.32) agree with [19], which were computed by

different means.

D One-form symmetries and anomalies for Bethe vacua

In this appendix we discuss the action of 1-form symmetries on the supersymmetric Bethe

vacua of a 3d N = 2 theory. We mostly focus on Z2 1-form symmetries in the context of

SU(2)m gauge theories, but much of the discussion below can be easily generalized.

D.1 1-form symmetries and Bethe vacua

Let us first describe how 1-form symmetries act on the space of supersymmetric, or Bethe

vacua on T 2. We refer to [55] for a derivation of these statements, and more details.

First recall that the supersymmetric vacua are given by solutions to the Bethe equations

Πi = e2πi∂uiW = 1, i = 1, . . . , rG , (D.1)

where rG is the rank of the gauge group. These are rational functions of the gauge variables,

ui, i = 1, . . . , rG, as well as the other flavor symmetry parameters, which we suppress from

the notation. We may associate states in the Hilbert space of vacua to the solutions, û, to

these equations (modulo Weyl symmetry)

V̂ = span{ |ûi〉 | ûi ∈ SBE } . (D.2)

Recall that 1-form electric symmetries in a gauge theory are associated to a subgroup Γ

of the center of the gauge group which acts trivially on the matter content. To such a

1-form symmetry, we expect that we may define operators acting on the vacua on T 2,

UA,Bγ , for each element γ ∈ Γ, and associated to the two cycles of the torus, as described

in section 3.3.

42More precisely, if (N, k) = 1, these two tensor factors have a 1-form symmetry with a maximal anomaly

(in the sense that the center is trivial). In this situation, we have seen that gauging the ZN symmetry

removes a factor of N2 from the vacuum counting. We have checked for some low values of N and k that

this holds also when (N, k) > 1.
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To see how these operators act on the Bethe vacua of (D.2), note that we may identify

the center of the gauge group with a set of transformations acting on the gauge variables,

ui → ui+γi, which are defined up to large gauge transformations. Now suppose an element

γ = (γ1, . . . , γrG) in the center acts trivially on the matter. Then we may define the 1-form

operators acting on V̂ as above, which act on the basis of Bethe vacua as

UAγ : |ûi〉 → Πγ(ûi)|ûi〉, Πγ ≡
∏
i

Πi
γi = e2πiγi∂uiW

UBγ : |ûi〉 → |ûi + γi〉 .
(D.3)

We note both operators are well-defined when acting on the space of Bethe vacua (one can

show Πγ is a rational function, given the assumption that γ acts trivially), and satisfy the

appropriate group law. One also finds their commutation relations correctly encode the

anomalies of the theory

UAγ1
UBγ2

= e2πiγ1Aγ2 UBγ2
UAγ1

. (D.4)

Thus in addition to the space of vacua, we can consider the extra data of how the vacua are

acted on by these symmetries. This data will be important when gauging the symmetries.

To illustrate this with a simple example, consider the T̂ [Ω[k], SU(2)] theory, which is

an SU(2) gauge theory with level k CS term and an adjoint. The Bethe equation is

Π = x2k

(
t2x2 − 1

t2 − x2

)2

= 1 . (D.5)

Then the center acts as u→ u+ 1
2 , or x = e2πiu → −x, and so we may take γ = (1

2) above,

and find from (D.3)

UAγ : |û〉 → −xk
(
t2x2 − 1

t2 − x2

)
|û〉, UBγ : |û〉 → |û+

1

2
〉 . (D.6)

These satisfy UAγ U
B
γ = (−1)kUBγ U

A
γ , which is the expected anomaly coefficient. The sign

for UA is fixed by modular invariance.

Finally, we must describe the twisted sectors, as in (3.25). As shown in [55], for each

state that is fixed by the operator UBγ , this state also contributes to the twisted sector

Hγ . Conversely, if a solution, û, is fixed by UBγ for all γ in a subgroup, Γû, of Γ, then

this solution contributes |Γû| states, one untwisted sector and a twisted sector for each

non-trivial element in Γû.

These twisted sector states become physical states in the theory obtained by gauging

Γ. Then we can understood the counting above physically from the fact that, in this

situation, Γû corresponds to an unbroken subgroup of the gauge group acting at û, and so

there remains a low energy Γû-gauge theory at this solution, which is known to have |Γû|
states. In the example above, we see that the non-trivial twisted sector has a single state,

corresponding to the û = 1
4 fixed point.

D.2 Representations of Z2 1-form symmetries

Now let us specialize to a gauge theory with SU(2)n gauge group, as all the T̂ [Ω, SU(2)]

theories may be taken to have this form. The 1-form symmetry group, Γ ∼= Z2
n, can

– 77 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
1

be identified with the subgroup of the center of the gauge group, ZG = Z2
m, that acts

trivially on the matter. This 1-form symmetry may have ’t Hooft anomalies, which are

obstructions to gauging, as discussed in section 3. Namely, if we pick a basis for Γ as a Z2

vector space, then we may define the “anomaly matrix,” A, and the mutual anomaly of

two 1-form symmetries, γ, γ′ ∈ Γ, is given by γTAγ′. Then in order to gauge a subgroup,

Λ, of Γ, we require

γTAγ′ = 0, γ, γ′ ∈ Λ . (D.7)

The anomaly matrix defines a symmetric bilinear form on the Z2 vector space, Γ. Such

a bilinear form, B, is classified according to its dimension d its rank d− r and whether or

not it is “even”, meaning that every element has vanishing inner product with itself [70].

For a non-even bilinear form, we have

B ∼= Ed−r ⊕ Zr , (D.8)

where E is the unique non-degenerate bilinear form on Z2, and Z is the trivial bilinear

form on Z2. For an even bilinear form, the rank must be even, and we find

B ∼= H(d−r)/2 ⊕ Zr , (D.9)

where H is the bilinear form on Z2
2 associated to the matrix(

0 1

1 0

)
. (D.10)

The space of vacua forms a representation of the group of UAγ and UBγ , defined above,

which can give strong constraints on the structure of this space, especially in the presence

of anomalies. To illustrate this, let us consider a single Z2 symmetry with a non-vanishing

self-anomaly, i.e., corresponding to the space E above. Then the UA and UB operators

each form a Z2 group acting on the vacua, but the anomaly implies the full group acting

on the vacua is a central extension of Z2 × Z2, which is given by the dihedral group, D4.

Then the only non-trivial43 representation of this group is two dimensional, and we may

take UA and UB to act as

UA →

(
1 0

0 −1

)
, UB →

(
0 1

1 0

)
. (D.11)

We will denote this basic two dimensional representation as R. More generally, if the 1-

form group is isomorphic to Em, then the irreducible representations are tensor products

R⊗m, each of dimension 2m. Similarly, for H, the basic irrep is the tensor product of two

copies of R, associated to the pairs UA1 , U
B
2 and UA2 , U

B
1 . Explicitly, we may represent

43By non-trivial, we mean that the central element must be represented by −1, as this is how the algebra

acts on the vacua above.
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these as

UA1 →


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , UA2 →


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 ,

UB1 →


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , UB2 →


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 . (D.12)

Finally, the case of Z, with no anomaly, is the least constraining, as the group acting on

the vacua is Z2 ×Z2 and so the representations are one-dimensional, determined by a pair

of signs, (εA, εB) indicating the eigenvalues of UA and UB.

The above implies the space of vacua of a theory can be written as a tensor product

V̂ = V ⊗R⊗(d−r) , (D.13)

where we observe that each non-degenerate dimension of B contributes a tensor product of

an R representation, for a total of 2(d−r) in each irrep, and dim(V ) is the number of such

irreps. In particular, we see that the number of vacua must be a multiple of 2(d−r). Finally,

V itself may be decomposed into the eigenspaces associated to the various Z factors

V →
⊕

εA,Bj =±1

VεA1 εB1 ···εAr εBr
. (D.14)

Note that (D.13) and (D.14) are a special case of the more general factorization and de-

composition of the Hilbert space discussed around (3.24).

Gauging. To gauge a non-anomalous symmetry group, Λ ⊂ Γ, as noted above, we project

onto the subspace

V Λ gauged, untwisted = {|û〉 ∈ V | UAγ |û〉 = |û〉, UBγ |û〉 = |û〉, γ ∈ Λ} . (D.15)

Here the superscript “untwisted” indicates that in general this is only a subset of states of

the gauged theory, as there may also be “twisted sector” states, described above.

There are two basic examples of non-anomalous subgroups, from which we can con-

struct general examples.

• Λ ∼= Z: The Hilbert space before gauging decomposes into (εA, εB) representations as

V = V++ ⊕ V+− ⊕ V−+ ⊕ V−− . (D.16)

Then we simply have

V Z gauged, untwisted = V++ . (D.17)
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• Λ = 〈(1, 0)〉 ⊂ H: Now the Hilbert space has the structure

V̂ = V ⊗R⊗2 , (D.18)

where the 1-form operators act as in (D.12). We can see from this representation that

the simultaneous 1-eigenspace of UA1 and UB1 is generated by the state (1, 0, 1, 0), and

so gauging effectively cuts the dimension by a factor of 4. In particular, we find simply

V̂ 〈(1, 0)〉 gauged, untwisted = V . (D.19)

The case where Λ = 〈(1, 1)〉 ⊂ E2, which also has no self-anomaly, is similar.

Iterating the second example, we see that each time we gauge a non-anomalous subgroup

of the non-degenerate part of B, we simply remove two tensor powers of R from the

Hilbert space.

D.3 T [M3,U(2)]

As an example, let us consider the theory T [M3,U(2)]. As described in the main text,

this consists of two decoupled sectors, the T̂ [Ω, SU(2)] theory, and the T̂ [Ω,U(1)2] theory

One can check that both theories admit a Z2 1-form symmetry acting on each node, and

the anomaly matrices are identical, given in both cases by, e.g., (4.58) in the case of

M3 = L(p, q). Thus if we take the diagonal sum of these two Z2 symmetries at each node,

this combination is non-anomalous, and the Hilbert space takes the form of (D.18). We

may then gauge these symmetries to form the gauge group (U(1) × SU(2))/Z2
∼= U(2),

which simply removes a tensor factor of R⊗2 from the Hilbert space. Thus each such

gauging reduces the dimension of the Hilbert space by a factor of four, as claimed in the

main text.

E Flat connections on S3/ΓADE

According to the 3d-3d correspondence we expect that the index of the theory T [M3, g]

counts the number of flat connections on M3. The precise statement is discussed in

section 6. In this section we will investigate this correspondence by computing the GC-

connections on M3 = S3/ΓADE for GC = GL(N,C) and PSL(2,C), which are given by the

corresponding representations of the fundamental group

{A|FA = 0} /GC = Hom (π1(M3), GC) /GC

π1(S3/ΓADE) = ΓADE .
(E.1)

E.1 GL(N,C)

We start by computing the number of flat GL(N,C)-connections on S3/ΓADE in order to

compare them with the Witten index of the T [M3,U(2)] determined in section 5.3. In

principle we expect

I(M3,U(N)) = #(GL(N,C) reps of π1(M3)) (E.2)

– 80 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
1

In the case of M3 = S3/ΓADE , we can compute the number of GL(N,C)-representations

of π1(M3) = ΓADE by the McKay correspondence [71]. It states that the irreducible

representation of ΓADE are in one-to-one correspondence with the nodes of the ADE affine

Dynkin diagram. Each node of a Dynkin diagram is assigned a Dynkin number di, which

is the dimension of the i-th irreducible representation. The extended node represents the

trivial representation with d0 = 1.

The dimension GL(N,C)-representations of ΓADE can be constructed from the linear

combinations of these irreducible representations, which are labeled by a set of integers

(n0, · · · , nr)

#(GL(N,C) reps of ΓADE) =

{
(n0, · · · , nr)

∣∣∣ N =

r∑
i=0

dini

}
. (E.3)

For Ap−1 all the p Dynkin numbers are one, so Zp has p irreducible C-connections of

dimension one. The number of N -dimensional representations is thus given by the number

of ways to assign N indistinguishable objects to p distinct boxes

#(GL(N,C) reps of Zp) =

(
p+N − 1

N

)
, (E.4)

with the special case

#(GL(2,C) reps of Zp) =

(
p+ 1

2

)
. (E.5)

For ΓDn , the Dynkin numbers are d0 = d1 = d2 = d3 = 1 for the two left-most nodes

and the two right-most nodes, and di = 2 for the remaining (n−3) nodes. We can easily find

#(GL(2,C) reps of ΓDn) =

(
5

2

)
+ (n− 3) = n+ 7 , (E.6)

where the first and second term denote the reducible and irreducible solutions respectively.

Similarly, for ΓEm
#(GL(2,C) reps of ΓEm) = 3(9−m) . (E.7)

All these results match the number of vacua of the corresponding theories computed in

section 5.3.3, see table 3.

In the N = 1 twist we only count the flat connections with ni = 0 or 1, ∀i, which

behave like fermionic states. In this case we find

#(“abelian” GL(N,C) reps of L(k, 1)) =

(
k

N

)
. (E.8)

E.2 PSL(2,C)

Next we consider the PSL(2,C) connections for the Seifert manifolds M3 = [0; 0; (pi, qi)]

with three exceptional fibers. The fundamental group is given by

π1(M3) = 〈x, y, h|xp1 = hq1 , yp2 = hq2 , (xy)−p3 = hq3〉 , (E.9)

where h is a central element [72].44

44Note that this group reduces to a cyclic group if any of the pi = 1.
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The PSL(2,C) connections of the groups in (E.9) are discussed in [73]. The strategy

is to first consider the reducible representations which factor through the abelianization of

π1(M3)

πab
1 (M3) = Zc1 ⊕ Zc2 , c1 =

|H1(M3,Z)|
(p1, p2, p3)

, c2 = (p1, p2, p3) , (E.10)

generated by z1,2. The reducible PSL(2,C)-representations of the cyclic groups are given by

ρj1,j2(zi) =

(
eπiji/ci 0

0 e−πiji/ci

)
, ji ∈ {0, · · · , ci − 1} . (E.11)

After accounting for Weyl symmetry we find

#(reducible SL(2,C) reps of π1(M3)) =

⌊
|H1(M3,Z)|

2

⌋
+

{
1 (p, q, r) odd

2 (p, q, r) even
. (E.12)

To find the number of irreducible representations we use the related group

∆pi = 〈x, y|xp1 = yp2 = (xy)p3 = 1〉 , (E.13)

as ρ(h) needs to be trivial if ρ is irreducible. The irreducible representations of these groups

are counted by three integers

ρj(x) =

(
αj 0

0 α−1
j

)
, ρj,k,`(y) =

(
γj,k` 1

γj,k,` (βk − γj,k,`)− 1 βk − γj,k,`

)
,

αj = e
πij
p1 , βk = 2 cos

(
πk

p2

)
, γj,k,` =

2 cos
(
π`
p3

)
− α−1

j βk

2i Imλk
,

j = 1, · · ·
⌊p1

2

⌋
, k = 1, · · ·

⌊p2

2

⌋
, ` = 1, · · · p3 − 1 .

(E.14)

After accounting for the Weyl symmetry, and including the reducible connections in (E.12)

we obtain

#(PSL(2,C) reps of π1(M3)) =
⌊p1

2

⌋ ⌊p2

2

⌋ ⌊p3

2

⌋
+

⌊
p1 − 1

2

⌋⌊
p2 − 1

2

⌋⌊
p3 − 2

2

⌋
+

⌊
(p1, p2)

2

⌋
+

⌊
(p1, p3)

2

⌋
+

⌊
(p2, p3)

2

⌋
+ 1 +

⌊
|H1(M3,Z)|

2

⌋
−
⌊

(p1p2, p1p3, p2p3)

2

⌋
.

(E.15)

We can plug in the choices of pi for the S3/ΓADE to obtain

#(PSL(2,C) reps of Zp) =
⌊p

2

⌋
+ 1

#(PSL(2,C) reps of ΓDn) =

{
n
2 + 3 n even
n+3

2 n odd

#(PSL(2,C) reps of ΓEm) =

{
3 m even

4 m odd
.

(E.16)
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Next we need to compute the Stiefel-Whitney (SW) class of these connections. For this,

we note that a PSL(2,C) representations of a group Γ determines an SL(2,C) representation

of some Z2 central extension of Γ. Such extensions are classified by the group H2(Γ,Z2),

and this determines the Stiefel-Whitney class of the connection. To compute this we note

that for the ADE groups we are interested in

H2(Γ,Z2) ∼= Ext1(Γab,Z2) , (E.17)

where Γab is the abelianization of Γ. In other words, all central extensions of Γ are deter-

mined by an abelian extension of the group Γab.

For example, consider the Ap−1 case. Then Γ = Γab = Zp, and we have

Ext(Zp,Z2) = Z(2,p) . (E.18)

For p odd, all extensions are trivial, and all PSL(2,C) representations lift to SL(2,C)

representations. For p even, the two extensions are Zp ×Z2 (trivial) and Z2p (non-trivial).

Recall the representations are labeled by j ∈ {0, . . . , p2}, and map the generator, z, of Zp to

ρ(z) = ±

(
e

2πij
2p 0

0 e
− 2πij

2p

)
. (E.19)

Then we note

ρ(z)p = (−1)j , (E.20)

which implies this is an SL(2,C) representation of Zp × Z2 for j even, and Z2p for j odd.

Thus we find the counting of flat PSL(2,C) connections with w2 = ω is given by

p= 0 mod 4 :

{
n
4 +1 ω= (0,0)

1 ω= (1,0)
, p= 2 mod 4 :

{
n+2

4 ω= (0,0)

1 ω= (1,0)
. (E.21)

For an example involving irreducible connections, we consider Dn with even n. Here

ΓDn is the binary dihedral, or dicyclic group, Dicn−2, with presentation

Dicn−2 = 〈x, y, h | x2 = y2 = (xy)n−2 = h, h central〉 . (E.22)

The commutator subgroup is Zn−2, generated by (xy)2, and the quotient is

ΓDn
ab = Z2 ⊕ Z2 , (E.23)

generated by x and y. Thus

H2(ΓDn ,Z2) = Z2 ⊕ Z2 . (E.24)

There are four reducible representations for all n, and by a similar argument as above, one

finds these take values in the four elements of (E.24). The irreducible representations in

this case can be written as

ρ`(x) = ±

(
i 0

0 −i

)
, ρ`(y) = ±

(
−i cos `π

n−2 1

− sin2 `π
n−2 i cos `π

n−2

)
, ρ`(xy) = ±

(
cos `π

n−2 i

i sin2 `π
n−2 cos `π

n−2

)
,

(E.25)

– 83 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
1

where ` ∈ {1, . . . , n−2
2 }. From this one can compute

ρ`(x)2 = ρ`(y)2 = −1, ρ`(xy)n−2 = (−1)` . (E.26)

Thus ρ`(x)2 agrees with ρ`(xy)n−2 only when ` is odd, which means when ` is odd (respec-

tively, even) this is a representation of an extension with trivial (respectively, non-trivial)

component in the first factor in (E.24). The same holds for y, and so we find

ωρ` =

{
(0, 0) ` odd

(1, 1) ` even
. (E.27)

Thus we expect the following total distribution of flat connections over the four classes

in H2

n= 0 mod 4 :



n
4 +1 ω= (0,0)

1 ω= (1,0)

1 ω= (0,1)
n
4 ω= (1,1)

, n= 2 mod 4 :



n+2
4 ω= (0,0)

1 ω= (1,0)

1 ω= (0,1)
n+2

4 ω= (1,1)

. (E.28)

Similar computations can be performed in the remaining cases and the results are given in

the main text.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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