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1. Introduction

Just as a magnetic dipole moving through in

an electric field which has the appropriate geom-

etry may acquire a topological quantum phase,

the Aharonov-Casher (AC) phase [1], a electric

dipole in a magnetic field which has the appro-

priate geometry may also acquire a topological

quantum phase. This electromagnetic dual phe-

nomenon was pointed out by He and McKel-

lar [2], and independently by Wilkens [3] and is

now know as the He-McKellar-Wilkens (HMW)

phase [4]. This duality concept is illustrated in

Fig. 1.

The proofs of both the AC and HMW phases

require a two dimensional geometry — they are

intrinsically planar effects. This raises the ques-

tion do the deviations from the idealised two di-

mensional situation in the experimental demon-

stration of these phases have any influence on

the interpretation of the experiment? In partic-

ular it is important to ask if the phase demon-

strated experimentally is a topological phase. To

be able to answer this question one needs to de-

fine the concept of topological phase or geomet-

ric phase1. My definition is in three parts:

(1) the phase is constructed from a posi-

tion dependent phase φ(x) modifying the

wavefunction ψ(x) such that ψ′(x) =

exp {iφ(x)}ψ(x) satisfies the free wave

equation.

(2) the phase for a closed path is indepen-

dent of the path, except for the number

of times it circles some interior excluded

region, and

∗Email: bhjmckellar@mac.com
1I regard these terms as having the same meaning and
use them interchangeably

(3) the phase of the closed path is determined

by properties of the fields in the excluded

region

The experimental realisation of the HMW ef-

fect requires an electric field to induce the elec-

tric dipole. As shown by Wei, Han and Wei

[5] this electric field changes the topology of

the configuration and allows a topological phase

where, had the dipole had the same orientation

without the electric field, the phase would not

have been topological2. There is thus an impor-

tant distinction between intrinsic and induced

dipoles.

In the first two sections of this review I re-

view the proofs of the HMW effect for intrinsic

and then induced dipoles. I then review the ex-

perimental observations of the effect.

2. An Intrinsic Electric Dipole

The original derivation of the quantum topo-

logical phase acquired by an electric dipole [2]

was repeated in a way which unified the AC and

the HMW effects [7, 8], and shows that the ef-

fects occur for arbitrary spin. He and McKellar,

in their later papers, used the Dirac equation

(or the Bargmann-Wigner equation for spins

greater than 1/2) to obtain an elegant deriva-

tion of the effect. For simplicity in this paper I

concentrate on the spin-1/2 case. For a neutral

spin half particle with an electric dipole moment

µe the Dirac equation is(
iγµ∂µ +

1

2
µeσ

µνγ5F
µν −m

)
ψ = 0. (1)

2See the discussion in [6]
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Fig. 1. The electromagnetic dual of the Aharonov Casher phase is the He McKellar Wilkens phase.

Modified from Ref.[4].

Using the relationship that

−iFµνσµνγ5 = F̃µνσ
µν ,

where F̃µν ≡
1

2
εµναβF

αβ (2)

is the 3 + 1 dimensional dual of the electromag-

netic field tensor, in which the electric and mag-

netic fields are interchanged, the Dirac equation

(1) may be written as(
iγµ∂µ + i

1

2
µeσ

µνF̃µν −m
)
ψ = 0. (3)

In a situation where we have translational

symmetry in the z direction the problem is re-

duced to motion in a plane, and the Dirac equa-

tion is reduced to 2 + 1 dimensions.

I use the following conventions for the 2+1

dimensional metric gµν and the anti-symmetric

tensor εµνα:

gµν = diag(1,−1,−1) and ε012 = +1. (4)

In 2 + 1 dimensions we need only 3 Dirac ma-

trices, which are a suitably chosen set of Pauli

matrices, and we will work with 2-spinors in-

stead of 4-spinors.

There are two inequivalent representations of

the Dirac matrices in 2 + 1 dimensions which

generate different Clifford algebras. The Clif-

ford Algebra in 2 + 1 dimensions has just 4 ba-

sis operators, the unit operator and the 3 two

dimensional Dirac matrices, with the defining

equation

γµγν = gµν + isεµνλγλ where s = ±1. (5)

The two representations are distinguished by

the value of the parameter s. The s values

±1 correspond to spin up and spin down in the

“hidden” third spatial dimension. Possible rep-

resentations of the two inequivalent sets of basis

operators are

γ0 = σ3, γ1 = siσ2, and γ2 = iσ1. (6)
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Note that the final results are independent of

the representation3.

The interaction term in the Dirac equation

is proportional to

F̃µνσ
µνψ = −F̃µνsεµνλγλψ,

with F̃µν =


0 −B1 −B2

B1 0 E3

B2 −E3 0

 . (7)

Here Ei and Bi are the electric and magnetic

fields, respectively. The indices “1” and “2” in-

dicate the coordinates on the x− y plane along

the x and y directions. The index “3” indicates

that the electric field in this configuration is nor-

mal to the x− y plane, in the notional z direc-

tion, so that the electric dipole is parallel to the

electric field.

The Dirac equation can now be rewritten as

(iγµ [∂µ + iµeTµ]−m)ψ = 0, (8)

with the “effective vector potential” Tµ as the

2 + 1 dimensional dual of the 3 + 1 dimensional

dual F̃αβ of the electromagnetic field strength

tensor Fµν

Tµ = (1/2)εµαβF̃
αβ. (9)

In the HMW configuration, the electric field

vanishes and B1, B2 are constant in time. Then

Tµ = (0,T) = (0, T1, T2) = (0, B2,−B1) =

(0,B × k), where k is a unit vector in the z

direction, i.e. the direction of the electric mo-

ment.

Making a transformation

ψ′ = exp

[
−isµe

∫∫∫ r

T (r′) · ds′
]
ψ (10)

in Eq. (8), one finds that ψ′ satisfies the free

Dirac equation

(iγµ∂µ −m)ψ′ = 0. (11)

3If one feels uncomfortable with handling the two in-
equivalent representations one can use 4-spinors and
4 × 4 Dirac matrices as was done by He and McKel-
lar [7]. The 4 × 4 representation equivalent to Eq. (6)
has the s = +1 representation in the (1, 1) place and the
s = −1 representation in the (2, 2) place in the 2 × 2
block form of the Dirac matrices.

You see that the reduction of the problem to

2 + 1 dimensions was a critical step towrads of

this result, because the electric moment – elec-

tromagnetic field term in the Dirac equation can

be converted into a γµ interaction with the vec-

tor dual of the tensor electromagnetic field. In

3 + 1 dimensions the dual of the tensor electro-

magnetic field is a tensor and the dual of the σµν
tensor is also a tensor. We don’t have the ability

to transform the Dirac equation for an electric

moment interacting with the the dual electro-

magnetic field into the vector current interac-

tion with an a effective vector potential field,

but we need to do that to be able to make the

phase transformation to convert the wavefunc-

tion to one satisfying the free field equation.

However in 2+1 dimensions we can make the

phase transformation of Eq. (10) to recover the

free Dirac equation and we now have a topolog-

ical phase as long as

(1) curl T = 0 in the interference region

(2) curl T 6= 0 in the excluded region

As curl T = curlB×k = k(divB)−(k ·∇)B,

the simplest way for the excluded region to gen-

erate a non-vanishing contribution to the phase

is for it to contain some magnetic charges, giving

rise to divB 6= 0. To preserve the 2 + 1 dimen-

sional geometry, the magnetic charges should be

extended uniformly and infinitely in the z direc-

tion. The simplest such charge configuration,

that chosen by He and McKellar, is a line of

magnetic monopoles on the z axis, with a linear

magnetic monopole charge density λm. In this

configuration, ∂zB = 0, so (k · ∇)B = 0.

Then the phase developed in the wave func-

tion when the particle travels along a closed

path P which encircles the line of magnetic

charge with a linear monopole density λm once

is

χ
HMW

= sµe

∮
P
T · dr

= −sµe
∫
S
(∇ ·B)k · dS

= −sµeλm, (12)
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as found by He and McKellar.

It is clear that, since no magnetic monopoles

have yet been found4 this manifestation of the

HMW phase is not capable of experimental

observation. Nevertheless it is important to

emphasise that the model is mathematically

consistent. The HMW system with magnetic

monopoles as the source of the magnetic field,

no electric field, electric dipoles and no electric

charges is the precise electromagnetic dual of

the Aharonov-Casher system, which has elec-

tric charges as the source of the electric field,

no magnetic field, magnetic dipoles and no mag-

netic monopoles.

The concept of electromagnetic duality is

described by Jackson [9]. Consider Maxwell’s

equations and the Lorentz force equation, ex-

tended to include magnetic monopoles:

∇ ·D = ρe ∇×H =
∂D

dt
+ Je

∇ ·B = ρm ∇×E =
∂B

dt
+ Jm

F = qe(E + v ×B) + qm(H− v ×D)

(13)

The source particles moving with velocity v

carry both an electric and a magnetic charge.

Normal Maxwellian electrrodynamics is the case

that qm = 0, ρm = 0 and Jm = 0. The duality

transformation

E = E′ cos ξ + Z0H
′ sin ξ

Z0D = Z0D
′ cos ξ + B′ sin ξ

Z0H = −E′ sin ξ + B′ cos ξ

B = −Z0D
′ sin ξ + B′ cos ξ

Z0qe = Z0q
′
e cos ξ + q′m sin ξ

qm = −Z0q
′
e sin ξ + q′m cos ξ (14)

4The recent observation of a synthetic magnetic
monopole in a Bose condensate [10] raises the question
“is it possible to observe a synthetic HMW effect,” That
question has not yet been explored in detail.

retains the form of the equations, transforming

them to

∇ ·D′ = ρ′e ∇×H′ =
∂D′

dt
+ J′e

∇ ·B′ = ρ′m ∇×E′ =
∂B′

dt
+ J′m

F = q′e(E
′ + v ×B′) + q′m(H′ − v ×D′)

(15)

The choice ξ = π/2 transforms electric charges

into magnetic monopoles, magnetic dipole mo-

ments into electric dipole moments, magnetic

fields into electric fields and electric fields into

magnetic fields. This is just the transforma-

tion we need to transform the AC effect into

the HMW effect. The equations of normal

Maxwellian electrrodynamics are transformed

to

∇ ·D′ = 0 ∇×H′ =
∂D′

dt

∇ ·B′ = ρ′m ∇×E′ =
∂B′

dt
+ J′m

F = q′m(H′ − v ×D′). (16)

The equations (16) lead to the HWM phase and

show that the calculations are mathematically

consistent.

As an amusing aside note that, if all particles

have the same ratio of electric charge to mag-

netic charge, then the general equations (13) can

be converted by duality transformations to ei-

ther the usual Maxwell Equations or the mag-

netic monopole form of (16). In this sense our

decision to describe the world in terms of elec-

tric charges and currents is purely an historical

happenstance.

The alternative, independent, derivation by

Wilkens [3] relied on the effective electric field5

ER = v × B felt by the moving dipole in the

magnetic field, but Wilkens also suggested a line

of magnetic dipoles as the source of the mag-

netic field, and proposed possible approximate

realisations of this concept.

5This effective electric field felt by a charge moving in a
magnetic field was introduced by Röntgen, and is called
the Röntgen field. I therefore use the subscript R for
it.
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3. An Induced Electric Dipole

Wei, Han and Wei [5] pointed out that a

practical realisation of the HWM effect would

require an electric field to induce an electric

dipole in a neutral atom. That is indeed how

the HMW phase was measured. One may think

it would be possible to avoid the electric field

by using a molecule with an intrinsic dipole mo-

ment. However a beam of polarised molecules

would rapidly depolarise in the absence of an

electric field to maintain the alignment of the

dipole. In either case a strong electric field is

necessary for the realisation of the HMW phase.

It is an important result of Wei, Han and Wei

that the electric field changes the geometry, and

allows a realisation of the HMW effect without

a region in which divB 6= 0.

Now the electric field felt by the moving

atom is the sum of the applied field E and the

Röntgen field v ×B, and so the induced dipole

is d = α(E + v ×B), where α is the electric

polarisability of the atom.

The Lagrangian is

L =
1

2
mv2 +

1

2
α(E + v ×B)2. (17)

Working non-relativistically the Schrödinger

equation becomes

1

2m
(−i∇− α(B×E))2 ψ = 0, (18)

after neglecting terms αE2, αB2, and for

v ·B = 0.

Now it is clear that a phase factor

exp

(
−iα

∫ r

P
B×E · ds

)
(19)

will convert the solution of the Schrödinger

equation with in the presence of the fields to

the free Schrödinger equation, in the same ap-

proximation.

The phase

χ
HMW

= α

∫
C
B×E · ds (20)

is topological if

curl (B×E)

= B divE−E divB + (B · ∇)E− (E · ∇)B

(21)

vanishes in the interference region and is non-

zero in the excluded region. Now electric

charges can generate the topological phase.

Working with an induced dipole not only

changes the topology, it also removes the need to

have magnetic monopoles as sources of B×E.

It is not immediately clear from this deriva-

tion whether or not it is necessary to have v ⊥ E

as well as v ⊥ B. However if one begins with the

relativistic equivalent of the Lagrangian of an

electrically polarisable particle moving in elec-

tric and magnetic fields, one finds that a term

−α(v ·E)2 is missing from the Lagrangian of

Eq. (17). With this term in place the demon-

stration of the phase factor of Eq. (19) reduces

the wavefunction in the presence of fields to that

without fields requires

v ·E = 0 (22)

The relativistic discussion of polarisable ma-

terials has it origin in the famous 1908 paper of

Minkowski [11]. There are accessible accounts in

Pauli [12] and Møller [13] and Becker and Sauter

[14]. This subject is nowadays not often treated

in courses on electromagnetism. For example,

there is no relativistic discussion of polarisable

materials in Jackson [9], and so I go into a little

of the detail here.

Minkowski’s proposal is that the relativis-

tic version of D and H is the tensor Gµν ob-

tained by replacing E and B in Fµν by D and

H. The Lagrangian density is then proportional

to −GµνFµν . As

D = E + P

and

H = B−M

the relativistic description of the electric and

magnetic moments is a tensor (which Becker

and Sauter [14] call the moments tensor) Kµν

constructed from Fµν by replacing E with P and

B with -M. Then Gµν = Fµν +Kµν and the in-

teraction Lagrangian involving the moments is

then

Lint = −1

4
KµνF

µν . (23)

10
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For now I will ignore intrinsic moments

which are proportional to the spin of the parti-

cle, and only consider induced moments, which

are proportional to the applied fields. We need

the generalisation of

P = αE, and M = χB, (24)

which hold in the rest frame of the material. α is

the electric polarisability and χ is the magnetic

susceptibility. Following Minkowski I write

uµKµν = αuµFµν and uµK̃µν = χuµF̃µν .

(25)

which is identical to Eq. (24) in the rest frame,

and is a tensor equation, so it is the correct gen-

eralisation.

Equation (VI 58) in Møller:

Kµν

= uµKνλu
λ − uνKµλu

λ + εµνκλK̃
κσuσuλ

(26)

shows how to construct Kµµ from uµKµν and

uµK̃µν . The result is

Kµν

= α
{
uµFνλu

λ − uνFµλuλ
}

+ χεµνκλF̃
κσuσu

λ

(27)

Consider only the induced electric dipole mo-

ment, and set χ = 0. Then with the auxiliary

field 4-vector

Fµ = Fµνuν = γ (E · v,E + v ×B))(28)

Kµν = α {uµFν − uνFµ} , (29)

the interaction Lagrangian is

Lint = −1

4
KµνFµν = −1

2
αFµF

µ (30)

=
1

2
αγ2

{
(E + v ×B)2 − (E · v)2

}
(31)

To O(v2) the first term of this is the interac-

tion Lagrangian of Wei, Han and Wei, but the

(E · v)2 term is missing from their Lagrangian.

For their argument to lead to the HMW phase

not only must B · v = 0, as they require, but

also E · v = 0. This second geometrical con-

straint is missing in their analysis, but it is sat-

isfied in in their example and in the Toulouse

experiment. We may have escaped the restric-

tion to 2+1 dimensions in the non-relativistic

limit, but there are still geometric constraints.

My attempts to give the relativistic deriva-

tion of the HMW effect with an induced electric

dipole have not been successful, so I have to

be satisfied with this improved non-relativistic

derivation.

In the Aharonov Bohm effect there is no field

and a fortiori no force on the charge in the in-

terference region. In the HWM effect, as re-

alised with an induced electric dipole, there are

clearly both electric field, and magnetic fields

but is there a force? A possible force comes from

the interaction of the induced electric dipole

d = α(E + v ×B) with the sum of the applied

and the Róntgen electric fields, E + v ×B, so

the force on the dipole is

F = −∇{d · (E + v ×B)} = α∇(E + v ×B)2.

(32)

When |E + v ×B| is constant there is no force

on the electric dipole. That is a severe con-

straint on the experimental realisation of the

HMW effect, requiring uniformity of both fields.

However there are no additional restrictions on

the geometry of the fields.

One should also consider whether or not the

dipole will experience a torque. The torque will

be

T
= d× (E + v×B)

= α(E + v×B)× (E + v×B) = 0 (33)

which vanishes for the induced dipole. The in-

duced dipole is always parallel to the effective

electric field, and thus experiences no torque.

To summarise: the HMW phase for an in-

duced electric dipole, as given in Eq. (20) is a

topological phase when

• v ⊥ B and v ⊥ E.

• curl (B×E) vanishes in the interference

region.

11
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(a)

(b)

M1 M3M2

Fig. 2. The Toulouse experiment: (a) The atom interferometer, with two entrances A and B and two exits

C and D (C is detected). An atomic beam (dotted lines) entering by A is diffracted by three quasiresonant

laser standing waves produced by the mirrors Mi. The interaction region is placed where the distance

between interferometer arms is largest, close to 100 µm. (b) The interaction region producing the electric

and magnetic fields (not to scale — note the 100µm vertical scale and the 48mm horizontal scale). The

interferometer arms (dotted lines) are separated by a septum, which is the common electrode of two plane

capacitors producing opposite electric fields (high voltage electrodes labeled ±V; grounded electrodes

labeled 0V). Two rectangular coils (represented by a rectangle labeled ±I) produce the magnetic field.

After [15].

• curl (B×E) is non zero in the excluded

region.

Moreover although the the induced electric

dipole is in electric and magnetic fields it ex-

periences no torque, and, if the effective electric

field (E + v ×B) is constant in magnitude, it

experiences no force.

4. Experimental Observations of the

HMW Phase

In 2012, the Toulouse group led by Jacques

Vigué succeeded in measuring the HMW phase

[15–17] using an induced electric dipole moment

in 7Li ions, in a geometry which is a develop-

ment of that proposed by Wei, Han and Wei.

The experimental apparatus is summarised in

Fig. 2.

The Toulouse group have taken great care

to create uniform electric and magnetic fields,

thus ensuring that there is no force on the atom.

They analysed very carefully the uniformity of

their fields and the forces that may be felt by the

induced dipole to confirm that they do not con-

tribute to the observed HWM effect [18]. They

have also verified that the measured phase is

independent of the velocity of the atoms.

The electric dipole moment is induced by ap-

plying an electric field to 7Li ions, and is in the

12
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Table I. Measured values of the HMW phase for

different ion velocities, after Ref. [16]. VI is given

in VA.

velocity in units ms−1 phase in units 10−6 rad V I

744± 18 1.41± 0.24

1062± 20 1.315± 0.071

1520± 38 1.270± 0.072

plane of the path, not normal to it, and the

magnetic field is normal to the plane of the path.

However the dipole moment changes sign on the

two sections of the path, and is not constant in

direction. Were the central plate of the capaci-

tor to shrink to a wire, the geometry would be

just that of Wei, Han and Wei. The use of the

double capacitor does not change the topology

of the system but it both increases the magni-

tude of the possible the electric field, and in-

creases the path over which the phase integral

is performed. Both of these effects improve the

observability of the phase.

The final results of this impressive experi-

ment [16] is the observed phase for different ion

velocities given in Table I.

The phase is clearly independent of the

velocity as it should be, and the weighted

mean value is φHMW, obs = (1.29 ± 0.10) ×
10−6rad V I , to be compared to the calcu-

lated value φHMW, cal = (1.28 ± 0.03) ×
10−6rad V I . The agreement of the measured

and calculated values is well within the errors,

and there is no doubt the the HMW phase has

been successfully observed.

It is amusing to note that, if the ion has

a magnetic moment, the same apparatus al-

lows the measurement of the Aharonov Casher

phase. The experiment has been performed by

the Toulouse group, giving the first measure-

ment of the topological Aharonov Casher effect

with an atomic beam [19]. In this AC experi-

ment it is necessary to disentangle the AC and

HMW phases, which they successfully do.

5. Conclusion

The original suggestion, by He and McKel-

lar, that the motion of an electric dipole around

a line of magnetic monopoles would produce

a topological phase which was the dual of the

Aharonov Casher phase was made without any

suggestion of how this esoteric phase could be

measured. The realisation by Wei, Han and Wei

that the need to induce the electric dipole with

an electric field also eliminated the need for a

monopole like magnetic field was an important

step forward. This led to the measurement of

the HMW phase, 20 years after the original the-

oretical model, by the Toulouse group.

To those of us who have been involved in this

work, it is a satisfying story.
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[11] H Minkowski ,Gött. Nachr., 53 (1908).

[12] W Pauli, Theory of Relativity, Dover reprint

(1981) see §33.

[13] C Møller, The Theory of Relativity Oxford

(1957).

[14] Becker and Sauter, Electromagnetic Fields and

Interactions, Vol 1 Chapter E III. Blackie

(1964).

[15] S. Lepoutre, A. Gauguet, G. Trénec, M.
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