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I FINAL FOCUS SYSTEMS FOR LINEAR COLLIDERS 

ROGER A. ERICKSON 
St&ford Linear Accelerator Center 

Stanford, California 94305 

1. INTRODUCTION 

The final focus system of a linear. collider must perform two primary functions: it must focus 

the two opposing beams so that their transverse dimensions at the interaction point are small 

enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. 

In addition, the final focus system must transport the outgoing disrupted beams to a location 

where they can be recycled or safely dumped. As of this writing, the only full-scale collider final 

focusing system actually constructed is that of the SLAC Linear Collider, better known simply 

as the SLC. 

The SLC is designed to collide 50 GeV beams of electrons and positrons at an initial luminosity 

of about 102’ cms2 set-l and ultimately to reach a luminosity of 6 x 103’ cmm2 set-l when several 

pla.nned improvements are completed. 1 While this luminosity is appropriate for the SLC energy 

range, a linear collider built for a much higher energy will need much greater luminosity. This is 

because the cross sections for interesting physics, described by point-like fundamental processes, 

drop with-increasing center-of-mass energy as l/E&. The cross section for producing new quark- 

antiquark.states, for example, is expected to be roughly 

asyJ M 10m3’ E&& [TeV2] cm2 . 

.-Thus, the luminosity appropriate for a machine with energy E,,, is about 

& = 1O33 E&s [TeV’] crnm2 set-’ . 

(1) 

At this luminosity, roughly 10 QQ states would be produced per day if they exist at all at that 

energy. The event rate for interesting physics processes is expected to be about the same for all 

machines satisfying this relationship.2 

Luminosity is given by the expression 

where N+ and N- are the numbers of positrons and electrons per bunch, and f is the frequency of 

collisions. oZ and ay are the RMS radii of the bunches in the horizontal and vertical dimensions, 
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respectively, and are given in lowest order by 

where c~ is the normalized emittance, @* is the value of the betatron function at the collision 

point and 7 = E/m,c 2. Thus, for identical round beamz, 

Luminosity increases linearly with energy if all other machine characteristics can be held constant, 

because the effective emittance shrinks as the longitudinal momentum increases. 

To reach collision energies much higher than the SLC while maintaining the luminosity implied 

by Eq. (2) requires some fundamental improvement in the design. This may be an increase in 

bunch population N or the repetition rate f, either of which increases the average beam power 

and the electric bill, or a decrease in cN or p*. The prospects for reducing EN below 3 x 10B5 rad 

m (the SLC design value) are discussed elsewhere.3 

There are no fundamental limitations to producing very small values of /3*. There are, how- 

ever, practical limits imposed by the strength, field quality and alignment tolerances of focusing 

magnets, the space requirements of the experimental detector, and the overall size of the focusing 

;system as limited by the site boundaries. In this paper, the functions of final focus systems in. 

general will be described, along with a discussion of performance limitations arising from some-of 

these practical design considerations. To illustrate the main ideas, the final focus system of the 

SLC will be presented, and the basis for the key parameter choices will be discussed. 

The SLC is not a true linear collider in the sense of having two linacs pointed at each other. 

Instead, a single 1ina.c is used to accelerate bunches of positrons and electrons simultaneously to 

the desired energy. The bunches are then separated and guided around two arcs of alternating- 

gradient bending magnets to opposite ends of the final focus system. At the time of this writing, 

the construction of the SLC has been essentially completed, and initial commissioning tests are 

in progress. While most of the examples in thii paper are drawn from the SLC, the principles 

and conclusions are generally applicable to other linear collider designs as well. 

2. ELEMENTARY OPTICAL CONSIDERATIONS 

An arbitrarily small value of p*, and hence an arbitrarily small focused spot, can be ob- 

tained by using sufficiently strong quadrupole magnets close to the interaction point. There are, 

however, both first-order and higher-order considerations that define limits on /3*, below which 
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further reductions are useless. Among these limit& con&derations are the bunch lengths, the 

synchronization precision and the momentum lrpread of the beams. Because of these and other 

ctihGderations discussed below, the SLC will be operated with a /3’ of 4 to 10 mm, depending on 

how the final focus is set up and tuned. 

2.1 Bunch Length 
- 

-The RMS radius a(z) of a beam near the interaction point is given by: 

u(z) = u* \I 
62 

1+ 7 
P (6) 

where z is the distance along the beam direction from the point where the minimum radius o* 

occurs. The depth-of-focus scale is set by @ ‘. If the RMS bunch length ut is much greater than 

P’, only part of the bunch is in focus at any instant during the collision. The resulting loss 

irr luminosity has been computed for Gaussian bunches (Gaussian in all three dimensions) by 

integrating over the lengths of both bunches as they pass through each other. Figure 1 shows the 

relative luminosity as a function of u,/@*. 

0 2 4 6 

,1-o, 5 /o* 6OO.M 

Fig. 1. Luminosity falls with increasing bunch length a,. Curve is normalized to p*. 

The RMS bunch length in the SLC is about 1 mm, while the design values of /3* are in the 

range of 4 to 10 mm. Thus, the bunch-length limit is not yet an issue for the SLC. In a future 

linear collider, however, this may become a very important consideration. For example, a set of 

parameters for a 1 TeV center-of-mass linear collider recently suggested by R. Palmer4 includes 

P; = 50 pm, which would require a very short uz. Palmer suggested a ur of 43 pm for this design. 

It should be noted that Eqs. (3) through (6) are strictly accurate only when the densities of 

the opposing bunches are low enough that they do not disrupt each other. When the bunches 

are very dense, they experience a mutual focusing force due to the electromagnetic attraction 

between them.5 This focusing force, which is sensitive to the bunch lengths, reduces the effective 

beam size near the interaction point and enhances the luminosity. 
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2.2 Arrival-Time Synchronization 

. In order to achieve the full potential luminosity with a small /3*, the opposing bunches must 

arrive at the focal point simultaneously. If the second bunch is late by an amount At when the 

first bunch arrives at the minimum-waist point,- the actual collision will occur at a point offset 

from the desired minimum-waist point by an amount cAt/2. Figure 2 shows luminosity loss as a 

function of this timing error. Controlling the arrival time difference to the necessary precision is 

easier in the SLC, in which both the e+ and c- bunches are accelerated in the same linac, than 

it might be in a collider built with two separate lmacs. In the SLC lmac, the c- bunch trails the 

c+ bunch by 168i S-band buckets, a separation which can be controlled by adjusting the relative 

r.f. phase of the c+ and c- damping rings, which are physically close together and synchronized to 

the same oscillator. The position of each bunch within its bucket is then determined by monitoring 

the final energy of each beam. In this way, a reproducible separation can be maintained with 

a-precision of about 1 mm (corresponding to about 3 psec). In the Palmer machine mentioned 

above, (8; = 50 pm), two independent linacs would have to be synchronized to a precision of 

about 150 femtoseconds. Maintaining thii level of synchronization over a distance of several 

kilometers would pose an interesting problem. 

.-. I 0 2 4 
9 1-87 SSOlALs COLLISION POINT OFFSET z/p* 

Fig. 2. Luminosity loss as a function of the distance from the collision point to the 
minimum p point for two bunch lengths. Curves are normalized to J3’. 

2.3 Demagnification 

A focusing system with a minimum number of components is illustrated schematically in 

Fig. 3. E&e a single thin lens of focal length f is used to form an image at the Interaction Point 

(IP). The source is a round spot of radius 21. It can be seen from elementary geometric optics 

that the condition for bringing an image into focus at the IP is 



The image size, z2 is then 

22 = - (2) =1 

= - -M 21 

and 

492 = - $ 81 

where Lr and L2 are the source and image distances from the 

magnification M. For a given total system length, the smallest 

short as possible and the lens is strong (short f). 

(8) 

(9) 

lens, and their ratio defines the 

image is obtained when I4 is as 

Fig. 3. A thin lens focuser (a). Particles of higher momentum come to a focus i 1 
downstream of the nominal focal point (b). 

The source spot at the input to the SLC final focus (after correction for linear dispersion) 

has a radius of approximately zr = 50 pm at a point about 145 m from the IP, with an angular 

divergence 81 of about 6 prad. Approximating the final set of quadrupole magnets by a thin 

lens at their common midpoint 5 m from the IP leads to M = l/28, 22 = 1.8 pm and 

$2 = 168 prad. These results are surprisingly close to the design values for the final spot size of 

the SLC (cf. Table 1). 

The shortcomings of such a simple design become apparent when the finite momentum spread 

of the beam is considered. A particle near the outer envelope of the beam with momentum higher 

than the mean beam momentum by a fraction Ap/p will be deflected AO/6 less by the lens, as 

shown in....Fig. 3b.. Such particles will come to a focus at a point downstream of the nominal IP, 

resulting in a larger, defocused spot at the point where they collide with the opposing beam. 

A22 w L2 A4 
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The actual spot size at the collision point will be the quadratic sum of the “geometric spot 

size” and this “chromatic spot size.” 

2 
2 02 = M%; + &(1+ &) e1 $ 1 , (11) 

where zr and 81 are now considered the RMS width and angular spread of the input beam. A 

momentum spread of 0.5% increases the final spot to cr, = 4.7 pm in the previous example. This 

is substantially larger than the pure geometric size and reduces the luminosity by a factor of seven 

compared to the “monochromatic” calculation. 

For fixed L2 there is an optimum value of M, below which there is no improvement in actual 

final spot size. Differentiating Eq. (11) with respect to M gives a minimum spot size when 

m-T-i 1 q 
M2 -- = Lo+ el l 

In the example above, this occurs when M B l/18, and results in 0, = 4.0 pm. 

., Substituting 

‘_ 13* = M2 2 1 
i 1 _ 

in Eq. (12) g ives the optimum /3* for the thin-lens system: 

p*‘= GmL29f. 
P 

Since M is small but always positive, and L2 is greater than or equal to f, it follows that 

(12) 

(13) 

(15) 

for any final focus system without chromatic correction features. Unless some exotic6 new focus- 

ing technique is employed, the focal length f is limited by magnet technology and mechanical 

interference near the experimental detector. The minimum possible spot size is then determined 

by the momentum spread of the accelerator. 

For more complicated examples, it is convenient to use TRANSPORT’ notation, in which op- 

tical elements and drifts are represented by matrices, and a particle trajectory can be represented 

by a six-element vector* q = (z, 8, y, Q,e, 6). In this notation, 8 = z’, 4 = y’, e is the deviation 

in pathlength from the central trajectory, and 6 = %. The one-dimensional, monoenergetic thin 
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lens example can then be represented by: 

which simplifies to 

(E) = R (5:) 
where R is the first-order matrix 

R= 
(1 - Lz f-1) (L1+ L2(1 - Ll f-l)) 

-j--l (1 - Ll f-1) > * 

(16) 

(17) 

(18) 

Focusing implies Rl2 = 0, i.e., the position of a particle at the end is independent of its angle 

at the beginning. Setting this element to zero gives Eq. (7). Then 

-M 0 
R= 

-t&+&J -lb 
(19) 

where again M = 2. 

. . To’see the effect of a finite momentum spread, replace f by (f + Af) = f(1 + S) in Eq. (18) 
i 1 . 

above. A j/ f is a small fractional change in focal length due to a small fractional change 6 in- 

momentum. To simplify the algebra, define d = b/(1 + 6). Then f-’ is replaced by f-’ (1 --d), 

- and the resulting matrix is designated R’. Note that d = 6 in the limit of Ap < p. With this 

substitution, Eq. (18) becomes: 

R’ = 
-M+(M+l)d L2(1+ &)d 

> . -f-1(1 - d) (1- LJ-1) + Llf-‘d 
(20) 

With this substitution, Ri, becomes -M + (M + l)d, the original part plus a term proportional 

to momentum spread. In the language of TRANSPORT, the monoenergetic part, -M, is R11, 

and the second part is identified as the second-order term Trre times d. Similarly, Ri2 picks up a 

non-zero part &(l + &) which multiplies d and is identified as the Tr2e term [cf. Eq. (lo)]. Thus, 

22 = al21 + Tll6 21 d + Tl26 01 d . (21) 

In this example, the identification of these second-order coefficients as the Trrc and Tr2fj 

TRANSPORT terms is an approximation that is strictly correct only in the limit of small Ap as 

d approaches 6. 
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A more complicated system will have additional terms in this series. The general form of the 

series expansion for the ith element of the x-vector is: 

xi = c J&j Xj + C C Zjk Xj Xk 

i i k - 
+ c sx c Uijkm xj xkxm (22) 

j k m 

+ higher order terms . 

The goal in designing any final focus system is to make the magnification terms, R11 in the z 

dimension and R33 in the y dimension, small enough to give the desired spot size, while keeping 

all other terms negligibly small. In this example, the first-order magnification is R11 = -M, and 

RrZ.is identically zero at the focal point. The second-order term Tll&i is negligible, but T&?6 

is large and dominates the final spot size. In realistic examples with thick quadrupole lenses, 

this is still generally true; the Tr26 term dominates the final spot size unless specific features are 

included to cancel it. It is assumed throughout this paper that any final focus system will be 

built with mid-plane symmetry, i.e., that all zy coupling terms will be zero. 

. 2.4 Telescopes 

The properties of a simple optical telescope can be shown to have direct application to a 

charged partide transport system. Consider two lenses of focal lengths fr and f2 as shown in 

Fig. 4. If the spacings are chosen to be L1 = fr, L2 = f2 and Ls = L1 + L2, then for a 

monoenergetic beam, 

Comparing to the single lens case, Eq. (lQ), it can be seen that the R2l term has dropped out, 

i.e., the angle of a particle leaving the system depends only on its angle at the entrance and not 

on its position. 

Fig. 4. A telescope constructed with two thin lenses, showing the characteristic 
sine-like and cosine-like trajectories. 



A useful property of telescopes of thii kind is that they can uslide” to vary the relative 

lengths of the leading and trailing drift distances. If the drift length L1 upstream of the first lens . . 
is shortened by an amount AL1, the focal point will move downstream by an amount AL2 = 

-M2ALr. The first-order R matrix remains unchanged. This property was used to advantage 

in the design of the final telescope of the SLC, as discussed in Section 4.6 below. 

The chromatic properties of a simple telescope can be seen by replacing fc’ by fi-‘(1 - d) 

and fi-’ by fi-’ (l- d) in the matrix for each lens, as in the single lens example. The R-matrix 

for the complete telescope then becomes: 

R’ = -2 + (&) tf2 Ls(d+@) 
&(d-8) -k+fy” > - (24 

Comparing to Eq. (20), it can be seen that third-order chromatic terms proportional to 61 (Urrw 

and Uzz~) have appeared on the diagonal, but the second-order terms, Trre and Tz26, have 

vanished. Other third-order contributions (Urzm and L&m) have appeared on the off-diagonal 

terms. Trze is unchanged and still the dominant aberration, and the p* limit in Eq. (15) still 

applies. 

‘/ A final focus design based on this simple telescope arrangement was considered briefly for the 

SLC at an early stage in the design process. g A final spot radius of 2pm could be obtained, even 

with Apfp = O.S%, by positioning the nearest face of the innermost quadrupole 26 cm from . . 
i the IP. In this design, the innermost triplet of quadrupoles required magnetic field gradients of- 

150 kG/cm.. It is conceivable that this gradient could be achieved with a quadrupole constructed 

-from &Co5 permanent magnets (7.5 kG pole tip fields) at a radius of 0.5 mm. The field quality 

requirements, and thus the dimensional and magnetic tolerances on the individual pole pieces, 

woufd be severe. While it may be practical in a few years, such a magnet is still beyond present 

technology. Another practical problem is that such a magnet in the SLC would be destroyed by 

just a few errant beam pulses. This scheme was rejected in favor of an approach based on active 

cancellation of chromatic aberrations. 

3. CHROMATIC ABERRATIONS 

3.1 Mathematical Preliminaries 

It is useful at this point to define three functions which in combination can describe any tra- 

jectory through a given system. These functions, designated C(s), S(s) and p(g), are sometimes 

called the “cosine-like trajectory,” the “sine-like trajectory,” and the dispersion function. C(s) is 

simply the transverse offset of a particle from the central trajectory as it traverses a given system, 

when it starts with an offset of 1 unit and zero slope at the input (C(0) = 1, C’(0) = 0). The 
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value of CZ(s) at any point s along a beam transport system is equal to R11 at that point and 

is simply the magnification. Similarly, a function CV(s) can be defined for the y-dimension and 

equals R33. S( ) s is the function that starts with zero offset, but a slope of 1, and is equal to 

R12 (in the s-dimension) at each point in the system. At any image point along the way, and in 

particular at the II’, R12 = 0. This is a first-order property of any telescopic eystem. 

The dispersion function D(s) relates the position offset to fractional momentum change and 

is equal at each point to Rls. Its value at the focal point can be calculated as an integral over 

the system: 

RI6 = D(s2) = M (25) 

where p is the radius of curvature of the central trajectory as it passes through any dipole field. 

Rl6 will be zero at the IP if the dipoles in the system (if there are any) are arranged in such a 

way that the integral over the whole system is zero. This will be the case, for example, if dipoles 

are incorporated into the design only in equal-strength pairs 180’ apart in betatron phase, i.e., 

at points where S(s) has equal amplitude but opposite sign. 

Each of the T-matrix terms and higher terms can be expressed as integrals over various 

combinations of these three functions and their derivatives. These integral expressions are derived 

and tabulated in Reference 10. The three second-order chromatic aberrations in a point&c+ 

. . point imaging System are Trr(j, TIM and Trze. Tll~ for a quadrupole focusing array is given 
i 1 

approximately by 

T116 = M / 
C’S’ ds . 

This integral vanishes for a pure telescopic system. For the example in Fig. 4, this is obvious 

fr%minspection; one or the other of C’(s) and S’(s) is zero everywhere. 

In a real design using sets of thick quadrupoles rather than thin lenses, Trrc will generally not 

be identically zero. In the design of the SLC, the pure telescopic conditions were relaxed further 

to-reduce the total length of the final focus system, keeping R11 = 0, but allowing R21 to become 

significant.” With this compromise, Tll~ was still small (k: 6) but not completely negligible. 

The Tl66 term is given by 

Tl66 = - fM 
/ 

D’2 s ds -M 
P / 

klSDds+M 
/ 

k2SD2ds , (27) 

where the three integrals represent the contributions from dipoles, quadrupoles and sextupoles, 

respectively. kl and Cc2 are the strengths of the quadrupoles and sextupoles. Since each term 

contains a first power of S(s), each integral can be made zero by designing the system with ap- 

propriate symmetries. The contribution from any section of the system with non-zero D or D’ can 
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be cancelled by adding another identical section 180’ downstream. This is shown schematically in 

Fig. 5 for a system of two half-wave telescopes separated by dipoles. In the SLC final focus design 

T166 is approximately -1. X lo-’ m, which when multiplied by (hp/~)~ makes an insignificant 

contribution to the final spot size. 

Fig. 5. The Tl66 aberration vanishes in a system of two modules with identical 
dispersion functions and opposite sine-like trajectories. 

.The Tr26 term for a point-topoint imaging system is given approximately by 

Tl26 = -M 
/ 

ds S’D’S - - M S12 ds -I- 2M k2 S2 D ds 
P / / 

where again the three terms correspond to contributions from dipoles, quadrupoles, and sex- 

tupoles, respectively. The dipole term can, in principle, be cancelled exactly by appropriate 

design, but it is typically small in any case. The quadrupole term being quadratic in S’ is always 

. positive and increases in value the more focusing elements are in the system. Note that in a 

typical design, this term comes mostly from the last quadrupoles, which give the particles large 

angles (S’) as-they impinge on the IP. In the final telescope of the SLC, Trz$j is approximately 

.. 41. m, considerably larger than the size expected from the thin-lens approximation [Eq. (24)]. 

This aberration would enlarge the final spot by an order of magnitude if left uncorrected. The 

key to minimizing the Tr2c contribution is to add sextupoles to the system with strengths k2 

chosen to cancel the first two terms. 

3.2 Chromatic Corrections with Sextupoles 

To see intuitively how this works, think of a sextupole as a quadrupole with a strength that 

depends on the radial position of the beam passing through its aperture. The y-component of 

the field seen by the particles of a beam displaced transversely is given by 

B, = Bo z2 = Bo (zo + Az)~ (29) 

where z is given by the sum of the position zo of the beam centroid and an offset AZ of a particular 

particle from the .centroid. Hence, 

BY = (2 B. zo)Az + B. z; + B. (0~)~ . (30) 

The first term in parentheses corresponds to the position-dependent quadrupole strength. The 

Bo zi term represents the net dipole deflection felt by the beam as a whole, and BO (Az)~ is a 

12 



higher-order term that comes from the fact that the slope of the field is not constant across the 

geometric width of the beam (as it would be in a true quadrupole field) but increases slightly 

with increasing AZ. 

Figure 6 shows how the chromatic-aberration of a quadrupole can be corrected with a sex- 

tupole. A dipole is first used to create linear dispersion. Particles with momentum p + Ap are 

deflected less than those of momentum p, and thus pass through a different part of the sextupole 

aperture, where they see a stronger focusing field than those on the central trajectory. Of course, 

the linear dispersion must be removed with one or more dipoles downstream of this point. Sex- 

tupoles can be used in this way not only to cancel the chromatic effects of an adjacent quadrupole, 

but any other quadrupole in the system, either upstream or downstream. 

Sextupole: 
On Off 

Beam 
11.87 5904All 

Fig. 6. -A dipole and sextupole can be added to a quadrupole focuser to bring off- 
. . i 1 momentum particles to a focus at the same longitudinal position as the reference 

beam. 

In a quadrupole focusing system without sextupoles, particles with below-nominal momentum 

cometo a focus at a point upstream of the nominal IP; those with higher momentum come to a 

focus downstream. In a system with sextupoles, the strengths can be chosen to bring a range of 

momenta to a focus at a single position or even to overcorrect and bring the higher momentum 

particles to a focus upstream of the nominal image point. This overcorrection can be done in a 

special Chromatic Correction Section (CCS) upstream of the Final Telescope (FT), compensating 

in advance for the chromatic aberrations of the final quadrupoles. Specifically, if 

M Tl26(ccs) = %26(FT) (31) 

then the Tr26 term for the combined system will vanish. In the final telescope of the SLC, M = l/5 

and Tr26 (CCS) F= 41 m. The chromatic correction section alone, with the sextupoles turned off, 

has ?&(CCS) = -83 m. With the sextupoles turned on, Tr2c(cCs) = 205 m. The net value Of 

Tr2fj for the combined system has been calculated to be less than lo-’ m. 
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While Tr2(j could be cancelled using only a single sextupole, this would introduce two new 

problems. These are caused by the second and third terms in Eq. (30): the “even order” terms, 

so called because they multiply even powers of AZ. The B& term, which is simply the dipole 

component of the field seen by the off-axis beam in the sextupole, would steer the beam sideways 

and introduce linear dispersion. The third term, which varies quadratically across the geometric 

width of the beam, introduces a geometric aberration, i.e., particles with the same momenta 

would be focused more or less strongly depending on their transverse positions in the beam. 

Both problems can be solved by using two sextupoles positioned 180’ apart, in two identical 

half-wave telescopes, as shown in Fig. 7. With this arrangement, the effects produced by the 

even-order terms of the two sextupoles cancel, while the odd terms (needed to cancel the Tr26 

aberration) add. 

i 1 Fig. 7, Two telescopic modules with sextupoles can compensate for the chromatic 
aberrations of a strong final telescope. 

The discussion up to this point has been limited to the z-dimension. The corresponding 

aberration in the y-dimension, ?&j, must be cancelled as well. In general, this would require at 

least one additional pair of sextupoles. One way to do this would be to use two complete chromatic 

correction sections on each side of the final focus; one pair of half-wave telescopes with sextupoles 

adjusted to cancel the Tl26 aberration of the complete system, and another pair to take out the 

T346- aberration. In designing the SLC, it was found that both tasks could be done by a single 

pair of telescopes on each side, but laced with four sextupoles in each telescope, one adjacent to 

each quadrupole. The odd-numbered sextupoles (counting in the beam direction) are located at 

points where pz is larger than & and, thus, couple more strongly to the Z’r2e term, while the 

even-numbered sextupoles are located where they couple more strongly to T&s. Note that the 

number of sextupoles in the SLC is twice the minimum number suggested by the discussion above. 

This came about because the interlacing of the two famihes of sextupoles introduces higher-order 

aberrations which would otherwise drop out. By using the additional pairs, it was possible to 

minimize these other detrimental effects while still cancelling both Tr26 and Tar16 in the space Of 

a single pair‘ of half-wave telescopes. 
14 



3.3 Third-Order Aberrations 

. .- If a system is chromatically corrected to second order, then the third-order aberrations intro- 

duced by the sextupoles become the principal source of the residual optical distortions limiting 

the system’s performance. The ratios-of the thiid-order chromatic aberrations to the third-order 

geometric aberrations are functions of the strengths of the dipoles used for the second-order chrc+ 

matic corrections. By adjusting the dipole and eextupole strengths in inverse proportions, the 

total third-order optical distortion can, in general, be minimized without disrupting the second- 

order chromatic correction. This minimum value occurs when the angular dispersion introduced 

by the dipoles is approximately equal to the geometric (monoenergetic) angular spread in the 

beam. This is expressed by the equation: 

0’ Ap =P = /- il (32) 

where 0: is the angular dispersion introduced by the dipole, and @D is the value of /3% at the 

dipole. The final adjustment of the strengths of the dipoles is done empirically with computer 

simulations, observing the final spot for various combinations of magnet’strengths and spacings. 

Another factor that must be considered when designing a chromatic correction system is the 

emittance growth that will occur in the dipoles due to fluctuations in the synchrotron radiation. 

This emittance growth is related to the energy E, the magnet length L, and the bending radius 

i p as follows- 

AC A E5 
-a -TL4 

f c P (33) 
_ 
where A is a factor that depends on the properties of the beam. The strong dependence on the 

digok parameters drives the design to small deflection angles and thus to a long system with 

strong sextupoles. 

As a practical matter, any linear collider must fit within the boundaries of the laboratory. 

In the case of the SLC, the final focus system was constrained to fit in a section of tunnel 

approximately 300 m long. This led to a design in which the sextupoles were chosen to be as strong 

as could be achieved with a conservatively large aperture and conventional iron construction. The 

total length of each chromatic correction section is about 60 m. While these constraints did not 

significantly affect the luminosity in the overall system, they did lead to inconvenient mechanical 

designs in a few -places where beamline components were packed closely together. The total loss 

of luminosity due to emittance growth in these dipoles is about 15%” 

In addition to the third-order effects due to the sextupoles, there are third-order effects 

inherent in the telescopic modules. It was shown above that the effective /3* cannot be less than 

f $’ Ph. WI unless some mechanism for cancelling the second order chromatic aberrations 
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is included in the design. Thii analysis can be taken a step further to get a rough estimate of 

the limiting third-order aberration. In the case of the simple telescope (Section 2.4), the largest 

third-order contribution to the final spot size is Ur2~ [Eq. (24)]. From this it follows that 

-B’ 1 j($,1 . (34 

This sets the lower limit on p’ for telescopic systems with perfect second-order corrections. It 

is instructive to consider, as an example, the final telescope of the SIX. With % = 0.5% and 

f w 4 m, this particular third-order effect would become dominant for p* w 100 pm. It is 

interesting to note that this particular example sets a limit on p* that is far below the chosen @* 

for the SLC but is twice the p* suggested in recent design studies for a 1 TeV machine.’ 

In any high-energy final focus design, as elements are added to cancel aberrations of any 

given order, they will generally introduce other aberrations of higher orders. In the SLC design, 

the dominant second-order aberrations, Tile, TIM and Tlze (and their counterparts in the y 

dimension) can be reduced to very small levels, leaving third-order aberrations that ultimately 

limit the performance of the system. In the case of the SLC, the dominant chromatic aberrations 

are ur266 and u34sfj which cause about a 20% loss in the ultimate luminosity. The dominant 

geometric aberrations are Ur222 and U3442 which cause about a 10% loss in luminosity.” In 

principle, aberrations of any order can be cancelled by introducing appropriate nonlinear elements 

in the system; however, no practical scheme has been invented for cancelling aberrations above 

i second order without introducing larger higher-order effects. Ideas that have been considered for. 

cancelling third-order effects typically require excessive magnet strengths or unfeasible alignment 

-tolerances. 

3.4 -The Optimum Design 

There is no unique final focus design that is well-suited for all possible linear colliders. The 

optimum architecture, as well as the detailed parameters of the design, will depend on the energy, 

energy spread, emittance and bunch lengths of the beams. A design that is optimized for one 

set of beam parameters cannot generally be scaled to a much higher energy, even if the other 

parameters are the same, because of technical limitations. Magnetic field strengths in particular 

are limited by the maximum attainable current densities in electrical conductors and the magnetic 

properties of materials and cannot be scaled up to arbitrarily high values. 

The use of flat, rather than round, beams is an interesting option for large TeV-class linear 

colliders. Flat beams are usually mentioned in the context of beamstrahlung radiation, as a way of 

reducing the spread of collision energies for a given luminosity by reducing the amount of energy 

lost as electromagnetic radiation. l2 Flat beams also have interesting implications for the optical 

design of a final focus system. If the system is designed to cancel only the aberrations that enlarge 
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the vertical beam size, while ignoring horizontal effects, a simpler system with fewer elements is 

possible, and some aberrations that would otherwise arise from the interplay of these various 

elements will never appear. Furthermore, quadrupole fields, which are intrinsically asymmetric 

in the z and v dimensions, can be used to best advantage in arrays that do not require round 

beams. For fixed field strengths, a smaller, sharper focus can be achieved in one dimension than 

is possible for a round beam, but at the expense of the other dimension. Whether or not this is 

a sensible approach for a particular collider depends on the emittance and energy spread of the 

beams and the details of the’final focus system. An interesting example of a 1 TeV flat beam 

design is given in Reference 13. 

4. DESIGN OF THE SLC FINAL FOCUS 

43 The Design Process 

The optical design of the SLC final focus system started with an overall architecture suggested 

by Karl Brown. The magnet strengths and positions were initially chosen based on a combination 

of analytic calculations and reasonable guesses. The final design evolved over a period of many 

months as the implications of various parameter choices were studied and impractical options were 

discarded. Most of this work was done with the aid of the computer programs TRANSPORT7 

and TURTLE.” 

TR,ANSPORT is a second-order matrix multiplication program for designing the first and 

second-order optics of a proposed system. It has a fitting feature which is used to determine the 

magnet strengths required to achieve the desired optical and geometric properties of the system. 

TURTLE is a ray-tracing program that uses the second-order matrices from TRANSPORT- to 

represent each element of the system. Individual rays are traced through each element separately 

so that .higher-order cross coupling effects between elements are included. This program was 

especially useful for evaluating the severity of the third and fourth-order cross coupling effects 

introduced by the interleaved sextupole families in the SLC. The results are displayed in the form 

of histograms which show the density distribution of rays as a function of any of the phase space 

coordinates. 

At an early stage in the SLC project, it was recognized that the final focus system should be 

designed to accommodate variations in the last telescope. It was anticipated that shorter-focal- 

length quadrupole lenses would eventually become available, and that the final focus system should 

be able-to exploit any such developments with minimal changes to existing hardware. Ideally, 

such changes in the final telescope should not require any changes to the other optical modules. 

Two designs for the final telescope have been developed. Conventional iron quadrupoles have 

been built for the commissioning and initial operation because of their simplicity and relatively 

low cost. In parallel with this effort, a design based on superconducting quadrupoles has been 

developed.15 
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There are two reasons for upgrading the SLC final focus with superconducting quadrupoles. 

The first is that with higher gradient quadrupoles, a luminosity improvement of roughly a factor of 

twois possible over the initial machine configuration. The second reason is that superconducting 

quadrupoles can be operated inside the experimental detector, immersed in a 6 kG solenoid field. 

This becomes especially important when the SLD; l6 a large second-generation detector, is brought 

into the SLC. 

-The final optical design is illustrate+ in Fig. 8. The p and q functions are plotted in Fig. 9. 

Each side consists of five half-wave modules: an azimuthal bending section that immediately 

follows the arc and cancels the off-energy function, q, a telescopic &matching section that ac- 

commodates the extraction system for the outgoing beam, two modules which together correct 

q- Matching Section 

Beam 
_____) Arc J 3 () 

B6 25 ?4 23 85 22 21 20 84 

I’ 
i First Telescope 

Septum 18 17 Kicker 16 15 

Chromatic Correction Section 

.- 1-f; .Y ~~{-i -Y 1-j 

n/T c-y n, c-i7u,m, 47 
- B3 14 13 12 11 B2 IO 9 8 

Final Telescope 

6 5B 5A 4 28 2A 
3 1 i‘ 59:iLL 

Fig. 8. The optical design of the SLC final focus system. 
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- Fig. 9. /3 and 17 functions of the SLC final focus. The Q function in the y-dimension 
(not shown) is zero everywhere. 

the second-order chromatic distortion of the system, and finally a telescope which demagnifies 

the beam to the final spot size and provides for fast precise steering. 

4.2 -The V-Matching Section 

Beginning at the end of the arc, the first half-wave module consists of three dipoles separated 

by quadrupole triplets. The quadrupoles were made strong (0.50 inch full aperture, 8.22 kG pole 

tip fields) to minimize the total length of this section. The strength of the middle dipole, B5, was 

chosen so that its momentum dispersion cancels the residual q from the arcs (about 47 mm) by 

zeroing the 7’ at the quarter-wave point. The first and third dipoles, B6 and B4, are identical 

and separated by a half wavelength. Thus, the additional dispersion introduced by B6 is exactly 

cancelled by B4. Because of the terrain-following feature of the arcs, the beam enters the final 

focus system pitched up about O.lO”, and with the beam ellipse rolled “inward” a few degrees, 
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i.e., with the y-axis rolled toward the center of the arcs. The net bend of this module, which is 

oriented in the plane of the last arc magnet, has a vertical component that brings the beam into . . 
the horizontal plane of the IP and a horizontal component that aligns the dispersion-free beam 

with the first telescopic transformer. - 

4.3 The First Telescope and Extraction System 

Following the q-matching section’ is a telescopic module, consisting of quadrupoles 815 

through 819, with demagnifications l/M of 8.51 and 3.09 in the z and y planes, respectively. 

These values were chosen to transform the elliptical beam at the end of the arc to a round beam 

with a, = cry = 6.0 pm at the beginning of the chromatic correction section. Because the envelope 

of. the incoming beam is a rotated ellipse in the zy plane, the magnets in this section must be 

mounted with a slight roll (approximately 4.1’ on the north side, 5.9’ on the south). Since the 

beam leaving this section is circular, all downstream elements are oriented with a vertical y axis. 

This module was designed with drift spaces long enough to accommodate the extraction 

magnets for the outgoing beam. The space between quadrupoles Ql6 and 017 (= 7.3 m) ac- 

commodates the pulsed kicker. Located 107 m from the IP, the kicker must turn on after the 

; incoming beam has passed and reach full field before the outgoing beam arrives 700 nsec later. 

The kickersdeflect the outgoing beams approximately 1.2 mrad, sending them off toward water- 

cooled aluminum dumps. The space between quadrupoles Ql8 and 019 (= 11 m) accommodates 
. . 

2 the dc septum magnet. Quadrupoles Q17 and Ql8, through which the outgoing beam must pass. 

off-axis, are-both horizontally defocusing and thus assist in extracting the beam rapidly. 

4.4 The Chromatic Correction Section 

The next two half-wave modules, used for the chromatic correction system, each have unity 

magnifications in the z and y planes. These modules each consist of an array of four identical 

quadrupoles with alternating polarities interspersed with sextupoles in a sequential symmetry 

arrangement. Dipoles were introduced at the junctions between the modules to produce a sym- 

metric momentum dispersion about the center of this section. The first and third dipoles are of 

the same strength; the second dipole, located at the center, has twice the strength of the others. 

The sextupoles are connected in pairs at corresponding locations in the two modules, such that 

the momentum dispersion is the same at each member of the pair. Similarly, the Rrz and the 

R34 matrix elements, the sine-like functions, have the same magnitude but opposite sign at each 

member of a given sextupole pair. This arrangement results in a natural cancellation of certain 

second-order aberrations, as discussed in Section 3.2 above. The strengths of the sextupole pairs 

were adjusted to minimize the dominant second-order chromatic aberrations, Tr2fj and T346 of the 

combined CCS and final telescope system. 
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4.5 The Final Bend 

. .- The last dipole of the chromatic correction section, which provides the final bend before the 

IP, was actually built as two separate magnets, designated the @hard bend” and “soft bend” 

magnets, mounted end-to-end and powered in series. The hard bend, with a field of 12.5 kG, 

bends the beam through an angle of 17.3 mrad. The soft bend, 4.0 m long but with a field of 

only 417 Gauss, bends the beam through the last 1.00 mrad. This arrangement was included 

to reduce the critical energy of the synchrotron radiation that reaches the detector. The critical 

energy is given by 

k, 3 = - - 9 - rc m,c2 
2aP 

2 

fi: 0.666 (MeV) [ lwEGev 1 B w (35) 

where p is the radius of the bend and E is the beam energy in GeV. The hard-bend synchrotron 

radiation, with a critical energy of 2.08 MeV for a 50 GeV beam, is 29 mm from the beam at the 

entrance to the final triplet and can thus-be masked off with a simple collimator. The soft-bend 

radiation which unavoidably passes into the detector, has a critical energy of about 69 keV. 

A novel feature of the SLC final focus not found in conventional storage rings is the 

S-bend.-geometry formed by the antisymmetric bends of the north and south chromatic correc- 
. . i tion sections. Specifically, the final dipoles on the north side bend the electron beam to the west,- 

while the final dipoles on the south side bend the positron beam to the east. This is illustrated 

in Fig. 10. This feature has been incorporated in the hope of further reducing the synchrotron 

radiation background in the experimental detector. 

~-- In a conventional storage ring, most of the dipole synchrotron radiation from both directions 

can be blocked by a pair of circular masks, symmetrically arranged on each side of the detector. 

Unavoidably, however, some of the radiation passing through the center hole of the first mask will 

strike the inside (detector side) surface of the second mask and back-scatter into the detector. 

With the beam energies and intensities planned for the SLC, these hot spots on the inside surfaces 

of the masks could be troublesome sources of hard x-ray background. 

This problem can, in principle, be curtailed by introducing the S-bend. With this arrange- 

ment, the synchrotron radiation from the electron beam (approaching from the north) is all in 

a thin horizontal sheet to the east of the beam itself. The radiation from the positron beam is 

all in a horizontal sheet to the west, Masks with open slots on one side can then be arranged 

anti-symmetrically to block the incoming radiation but pass the outgoing radiation from the other 

beam. Whether or not this feature of the S-bend geometry will make a significant improvement 

in the overall background problem has yet to be verified. 
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Fig. 10.' The final bend configuration in the SLC. All bend angles are exaggerated 
in this figure. 

4.6 The Final Telescope 

The function of the final telescopic module is to focus the beam to the smallest possible spot 

size at the interaction point with equal demagnification factors in the z and y planes. In general, 

the higher the field gradient in the final quadrupole triplet, Ql, Q2, Q3, and the shorter the 

distance, e*, from the IP to the face of the first quadrupole, the smaller is the achievable beam 

spot and the higher the luminosity. As discussed in Section 4.1, two designs for the final telescope 

have been developed: one based on conventional iron quadrupoles, the other on high-gradient 

superconducting quadrupoles. 

During the design of the final telescope, the first parameter to be frozen was its overall length, 

the distance between the interaction point and the waist in the beam envelope one-half betatron 

wavelength upstream. This distance was chosen somewhat arbitrarily to be approximately 38 m, 

based on general optical considerations and site boundary constraints. Studies demonstrated 

that a wide variety of telescope designs were possible using conventional, superconducting or 

permanent magnet” quadrupoles, all constrained to this total length. 
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Choosing the drift distance P from the face of the innermost quadrupole to the interaction 

point required a compromise between the ultimate luminosity and the space requirements of the . . 
detector. For the design using conventional quadrupoles, this distance was chosen to be 2.82 m, 

the minimum consistent with avoiding any adverse saturation effects of the Mark II solenoid field 

on the field quality of the nearest quadrupole. At this distance, the stray solenoid field decreases 

to about 10 Gauss. The -use of the conventional triplet at this L’ is not compatible with the SLD 

detector, however, because of mechanical interference and because of the strong solenoid field 

extending out to about 4 m. The design using superconducting final triplets is based on an e* of 

2.21 m. This was deemed to be the shortest e* that still allows room for beam position monitors, 

synchrotron radiation masks, and a precision vertex detector. The superconducting quadrupoles, 

cryostat, and SLD detector are outlined in Fig. 11. The conventional quadrupoles and the Mark II 

detector are indicated by dashed lines. 
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Fig. 11. Elevation view of the SLC interaction region showing the conven- 
tional quadrupoles and Mark II detector (dashed lines) with the superconducting 
quadrupoles and SLD detector superimposed. 

The next step was to select th,e highest practical magnetic field gradient for the final 

quadrupole triplet. For the conventional iron quadrupoles, the pole-tip field was conservatively 

chosen to be 10 kG (at 50 GeV) to ensure against any magnetic saturation effects detrimental 

to the quality of the pure quadrupole field. For a given pole-tip field, the maximum gradient 
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that can be achieved in a quadrupole depends on its aperture. In thii triplet, the minimum 

aperture required is determined primarily by background considerations. Off-axis electrons origi- 

nating from beam-gas interactions and slit scattering upstream follow trajectories that reach their 

maximum excursions in the final triplet. Computer simulations indicated that a clear aperture 

of about 40 mm is necessary in this section to avoid an intolerable flux of secondary particles 

scattering into the experimental detector. Studies also showed that when the SLC reaches its full 

performance specifications, beam-beam disruption effects will generate an intense beacon of elec- 

tromagnetic radiation out to an angle of about 2 mrad. (See Section 5.4 below.) An unobstructed 

path for this radiation requires a minimum aperture of about 35 mm. Subject to this constraint, 

a pole-tip gap of 1.625 inches and a gradient of 4.85 kG/cm were chosen for the conventional 

quadrupoles at 50 GeV. This gradient can be increased for beam energies up to at least 55 GeV 

before saturation effects become significant. 

A gradient of 12 kG/ cm has been chosen for the superconducting quadrupoles at 50 GeV. 

The aperture, measured to the innermost surface of the conductor, was chosen to be 2 inches, a 

practical lower limit imposed by the geometry of the keystone-shaped superconducting cable.18 

Allowing space for an inner helium passage and for the beam pipe, the’ clear aperture is about 

40 mm, a value consistent with the other requirements discussed above. 

Prototype magnets with these characteristics have been tested at Fermilab to gradients of 

over 18-kG/cm at 4.2’ K. When installed in the SLC, the maximum attainable gradient will be 
. . 

2 lower than the test value, due to the external 6 kG detector solenoid field and to a higher and- 

more economical operating temperature of 4.6” K ( each causing about a 6% reduction in the 

-maximum current). When tuned for 55 GeV, these quadrupoles will be running at about 80% of 

the quench limit. 

Each quadrupole triplet is powered as a series string by a single power supply. Thus, the 

field gradient is the same in each member of each triplet. The quadrupoles of the conventional 

final triplet have separate trim windings with individual power supplies. These trims correct 

for-fabrication errors and allow separate adjustment of the focal lengths in the horizontal and 

vertical planes. The superconducting quadrupoles do not have separate trim windings. Instead, 

the trim functions will be performed by bucking or boosting the triplet current with small supplies 

connected across each individual quadrupole. 

The-desired quarter-wave focusing properties of each triplet were obtained by adjusting the 

length and spacing of the magnets and the length of the middle magnet relative to the first 

and third (which were constrained to be identical to preserve the symmetric triplet properties). 

With L*, the total length, and the gradients of the final triplet quadrupoles fixed, and with the 

additional constraint that the system as a whole must preserve half-wave telescopic properties in 

both dimensions, the lengths and spacings of the final triplet quadrupoles and the overall strength 
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and spacings of the upstream triplet were varied to obtain the desired demagnification. Note that 

in the conventional configuration, 42 is actually two magnets mounted closely together, as evident 

in Figs. 8 and 11, rather than a single long magnet. Splitting Q2 in this way was done to simplify 

fabrication and improve mechanical stability. _ 

The “sliding telescope” property discussed in Section 2.4 was used to advantage in this part 

of the design to increase C* and at the same time to shorten the overall length of the telescope. 

In the superconducting design, for example, C’ at 2.21 m is about 20 cm longer than the effective 

focal length of the final triplet alone, while the distance between the soft-bend dipole and Q6, 

and thus the total length of the telescope, is about 5 m shorter than it would have been with the 

simplified configuration of Fig. 4. 

For a fixed total demagnification, the magnitudes of the sextupole fields in the chromatic 

correction section and, by implication, the severity of the uncorrected aberrations, grow as the 

final triplet strength is reduced. Demagnification factors (l/M) of 4 and 5 were chosen for the 

conventional and superconducting configurations, respectively. These magnifications are “dimin- 

ishing returns” points in each case. Attempts to reduce the spot sizes by choosing stronger 

demagnifications were offset by increasing third-order aberrations. 

The optimum configurations using conventional and superconducting final triplets do not have 

identical upstream triplets. However, a pair of solutions was found in which the same ,upstream 

. . magnets, Q4, 5, 6 can be used by adjusting their locations and field strengths. 

An unusual feature of the SLC is the use of an anti-symmetric optical arrangement across the 

_ IP.lg This was adopted to improve the masking of synchrotron radiation background originating 

in the final triplet quadrupoles. This is the quadrupole analog of the S-bend scheme described 

above for masking dipole radiation. The synchrotron radiation from the quadrupoles is generated 

in an elliptical pattern. By choosing the polarities to give the triplet on the electron side a focus- 

defocus-focus configuration while the positron triplet has a defocus-focus-defocus configuration, 

the major axes of the synchrotron light beams will be oriented horizontally on one side and 

vertically on the other. Elliptical masks with the same aspect ratio but rotated 90’ with respect 

to the incoming radiation pattern will block much of the incoming radiation, while allowing 

outgoing radiation (that which passed the mask on the incoming side) to pass out of the detector 

without back-scattering. 

4.7 Expected Performance 

Figure 12 shows horizontal and vertical betatron functions (& and &) for the final telescope. 

The solid lines show these functions for the superconducting quadrupoles. The dashed lines show 

these functions for the conventional triplet configuration. 

25 



. . 

8000 
36000 

x4ooo 

=2000 

0 

6000 

8-07 

- 100 -75 -50 -25 0 
DISTANCE FROM IP (ft) 67llA2 

Fig. 12. Horizontal and vertical beta functions in the final telescope. The solid lines 
indicate the superconducting configuration; the dashed lines indicate the conven- 
tional configuration. The positions of the quadrupoles are shown along the bottom 
of the figure. 

The main differences between the conventional and superconducting configurations are sum- 

marized in Table 1. The spot size listed is the rms radius (a) of the beam at the interaction point, 

Table 1. Parameters for the two final focus configurations at 50 GeV. 
i 

Initial Upgraded 

Quadrupoles Convent ional Superconducting 

Clear Aperture 3.95 4.13 cm 

~- -Gradient 4.85 12.0 kG/cm 

Drift Length (e*) 9.25 7.25 ft. 

Demagnification x4 x5 

- P* 0.75 0.50 cm 

First Order Focus 1.5 1.2 Pm 

Spot Size (o*) 2.07 1.65 Pm 

Repetition Rate 120 180 set-l 

Particles/Bunch 5 x 10'0 7.2 x 1O’O N* /bunch 

Emittance at IP 4.2 x lo-lo 4.2 x lo--lo G,~ (rad m) 

Disruption Parameter 

Pinch Factor 

Luminosity 

0.34 

1.14 

6.4 x 10zg 

0.76 

2.2 

6.0 x 1030 

D 

H 

cmv2 set-l 
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including residual aberrations. For low beam currents, the luminosity is inversely proportional to 

-4”; thus, the superconducting configuration is expected to yield at least 1.6 times greater luminos- 

ity than the conventional. Note that the ‘Upgraded” column also shows planned improvements 

in the repetition rate and in the number of particles per bunch, which contribute factors of 1.5 - 
and 2, respectively. In addition, as the number of particles per beam pulse is increased, thii 

relative luminosity gain is expected to increase further, multiplied by a %inch factor” due to the 

beam-beam disruption effect. This would enhance the luminosity by an additional factor of 2 for 

the full design current.’ 

5. TUNING AND DIAGNOSTICS 

The tolerable errors in the positions and strengths of the magnetic elements of a final focus 

system may be very small, depending on the amount of demagnification, the absolute size of the 

abeam, and other factors. The alignment tolerance on the last focusing element, for example, must 

be less than Q*, and the tolerance on the strength must be small enough that Af Q= /3*, if the 

resulting loss of luminosity is to be negligible. 

In the SLC, the position of the final quadrupole triplet must be held stable to about 1 pm, 

and the field strengths must be controlled to the level of 1 part in 10’. Calibrating the absolute 

strength of-an iron-core quadrupole to an accuracy of 1 part in 10’ is a formidable task requiring 

careful’-attention to end-field effects, hysteresis, core temperature and the measurement of the 
. . 

i excitation current. Achieving the necessary accuracy for all components of a large system directly- 

by careful construction is impractical for any plausible collider design. 

In practice, a final focus system ‘must be instrumented to monitor the position and size 

of the beams at critical points, and procedures must be available to use this information to 

diagnose the problems that arise from any deviations from design specifications. Controls must 

then be provided to correct for steering and optical errors. These may be implemented with 

trim windings on the main magnets, special “corrector” dipoles and quadrupoles, or remotely 

controlled mechanisms for moving critical focusing elements. 

5.1 Tuning the SLC 

Tuning the final focus of the SLC is done in several steps.20 The first step is simply to 

steer the beams .through the system to their respective dumps. This is done with pairs of small 

vertical and horizontal dipoles distributed throughout the final focus system, at least one pair 

per quarter-wavelength of betatron phase. This steering is guided by strip-line Beam Position 

Monitors (BPMs), one adjacent to each sextupole in the chromatic correction section, and one 

or two per triplet in the other sections. In the SLC, this steering can be done to an accuracy of 

about 100 pm at each BPM. 

27 



In a simple optical telescope like the one in Fig. 4, there is a one-to-one correlation between 

the location of the last lens and the image point. This is also true for the final telescope of the . . 
SIC. Moving the final triplet 1 pm transversely moves the focused beam spot 1 pm. At this level, 

temperature variations in support structures and floor movements due to ground settling become - 
important. 

Movements of a few microns can be compensated with small steering dipoles immediately 

upstream of Q3. Larger dipole corrections are undesirable at this point, however, because the 

resulting large betatron oscillations that result from an off-axis trajectory through the triplet 

generate linear dispersion, increased synchrotron radiation, and possible geometric aberrations 

from imperfections in the quadrupole fields. In the SLC, these problems are avoided with a 

remotely-controlled motorized support system that allows the final triplet to be moved over a 

range of about f2 mm with a step size of about 10 pm. 

- After the beam trajectories have been centered in all the quadrupole apertures, the residual 

dispersion is corrected. This dispersion is measured by observing beam centroid shifts in each of 

the BPMs as the incoming beam energy is varied and comparing to the nominal design values. 

Corrections are made using four small quadrupoles near B5 and B6 in’ the q-matching section 

(Fig. 8), two upright quads which couple mainly to qZ (near B5) and r& (near B6), and two skew 

’ quads which couple mainly to qr, and ‘1,. An automated procedure has been developed to measure -. 
and correct the residual dispersion in a few seconds. 

. . i The amplitude and phase of the betatron oscillations in the chromatic correction section and. 

final telescope can be adjusted with the quadrupoles in the upper transformer, each of which has 

a separate power supply to facilitate these adjustments. When the betatron phase is properly 

adjusted to center the waist in B3, quadrupoles Ql6 and Q17 can be used as a zoom lens to 

adjust the magnification. 

Because of the roll variations introduced by the terrain-following feature of the SLC, small 

alignment and magnet setting errors tend to introduce coupling between the z and y components 

of -the beam parameters. This coupling typically enlarges the beam size along the diagonal 

direction. Skew quadrupoles were introduced near Q3 and Q17 to untangle this coupling. They 

are symbolized by diamonds in Fig. 8. The effect of the skew quad near Q17 can be seen on a 

profile monitor in the high-p region near Q4. This skew quad is adjusted to rotate the elliptical 

beam spot upright. The skew quad near Q3 is used to remove any remaining zy coupling, including 

the coupling introduced by the solenoid field of the experimental detector. This skew quad can 

only be adjusted by observing the final spot size at the IP, or some direct manifestation of the 

small spot size, as discussed below. 

The final focusing of the beam at the IP is done with small adjustments to the strengths 

of Q2B and Q3. These two magnets, adjusted in combination, move the z-waist and y-waist 
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along the z-dimension to bring them together at the collision point. Like the last skew quad 

adjustment, this can only be done by observing the properties of the beam at the II’. Ultimately, . . 
some observable quantity related to luminosity, a figure of merit for the performance of the 

machine, must be available to guide in tuning the machine. - 

6.2 Luminosity Monitoring 

The e+e- elastic scattering (“Bhabha” scattering) rate has been a useful figure of merit for 

conventional storage rings. The Bhabha rate can be calculated from fundamental principles with 

high accuracy and thus gives an absolute measure of luminosity. The scattering rate into an 

angular region bounded by Bmin and &,, is R = ZAa, where 

4& 
Aa=- I (36) 

is the Bhabha cross section, E is the energy of each beam, and a is the fine structure constant. 

It is interesting to note that the Bhabha scattering rate will be the same for any e+e- collider 

having the luminosity and energy relationship of Eq. (2). 

The small-angle-monitor (‘SAM”) built for the Mark II detector at the SLC is an array of 

detector elements designed to identify back-tc+ba.ck e+e- pairs scattered into an angular range 

from 50 to 1-50 mrad of the beam direction. At a luminosity of 103’ cmW2 ~ec-~ and 50 GeV 
. . i ~per beam, a detectable Bhabha rate of 0.014 events/set is expected. Mini-SAM, a device that- 

covers the region from 15 to 25 mrad to supplement the SAM measurements, will raise the total 

detected Bhabha rate to 0.32 events/set. The usefulness of the mini-SAM will depend on its 

ability to distinguish Bhabha scatters from off-axis background particles. Assuming this can be 

done-successfully, a 10% measurement of luminosity will require 100 counts and will take about 

five minutes at this rate with the combined data of SAM plus mini-SAM. With the SAM alone, 

this measurement will take about two hours. Starting in an untuned condition with a luminosity 

of, say, 1O27 cme2 set-r, a single 10% measurement with the combined SAM/mini-SAM system 

will take 3.6 days. 

The conclusion to be drawn from this is that Bhabha scattering may be useful for charting 

the integrated luminosity and normalizing large blocks of experimental data but is far too slow 

to be of any value in guiding any beam-tuning procedures. 

5.3 Profile Monitoring Devices 

Profile monitors based on a fluorescent screen in the path of the beam, viewed by a TV camera, 

have proven to be immensely valuable at many places in the SLC including the interaction point. 

They have been used for diagnosing hardware problems, verifying the proper operation of magnets, 
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measuring emittance, and tuning out cross-plane coupling. Resolutions of 50 pm are routinely 

achieved, and the prospect of reaching 10 pm resolution with this technique seems likely. Beyond 

this-point, the diffraction limits of camera lenses and the graininess of fluorescent screens become 

important. 

Another approach to monitoring small spot sizes is based on detecting the secondary emission 

signal generated when the beam is scanned across a thin carbon fiber. A device using fibers as 

small as 4 pm in diameter has been in use at the interaction point during the commissioning tests 

of the SLC. Figure 13 shows a 5.2 pm beam profile measured with a carbon fiber. This particular 

measurement was significant because it marked an official milestone in the SLC commissioning: 

it was the first beam spot smaller than 6 pm. 
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Fig. 13. Electron beam profile measured at the SLC interaction point using a 7pm 
diameter carbon fiber. 

An important limitation on the usefulness of the wire scanning technique is the survivability-of _ 
the fiber when blasted by the charged particle beam. Fibers of various sizes up to 25 pm diameter 

have.been used successfully for many hours in the SLC with no evidence of beam-induced failure, 

but only at a low bunch population (5 5 x 10' particles/bunch) and low repetition rate (5 pps). 

The fibers are not expected to survive with SLC design-spec beams.21 It will be necessary to 

focus the machine at reduced beam current and then increase the current only after the fibers 

are ‘moved safely to the side, clear of the beam. In future colliders with smaller spot sizes and 

.higher bunch densities, wire scanners may prove useful in performing the functions now performed 

by fluorescent screens in the SLC, but for final adjustments at the interaction point a different 

technique will be needed. 

5.4 Beamstrahlung Radiation 

Beamstrahlung is the name given to the radiation emitted by each bunch-as it passes through 

the electromagnetic field of an opposing bunch. The radiation emitted by a particular particle 

depends on ‘the net force it feels in this passage. The maximum radiation is emitted by particles 
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offset about 1.5 Q from the center. In contrast, the maximum contribution to the luminosity comes 

from particles at the center of the bunch, where they are most likely to collide with particles of . ._ 
the opposing bunch. 

When two Gaussian bunches collide, the fraction of one bunch’s energy radiated away is given 

approximately by the classical synchrotron radiation formulation: 

where a, and or are the longitudinal and radial sizes of the bunches, N is the number of particles 

in the “target” bunch, rc is the classical radius of the electron, and 7 = E/m,c2. For equal size 

opposing beams, the number of photons emitted is proportional to l/or, and the critical energy 

of the radiation spectrum is also proportional to l/a,. The radiation is peaked strongly forward 

in-the direction of the beam motion. 

Beamstrahlung radiation is a macroscopic manifestation of beam-beam interactions that can, 

in principle, be detected and quantified for each collision. While it is not strictly proportional 

to luminosity, the beamstrahlung flux above a given threshold is an observable quantity that 

. i generally increases with luminosity as the beams are brought into focus. In the SLC design, 
I 

this radiation is intercepted by special detectors 22 located along a line-of-sight from the II’, just -. 
upstream of the last large dipole bending magnet on each side as shown in Fig. 10. The expected 

.. performance of the SLC beamstrahlung system is shown in Fig. 14. 

The small spot. and high luminosity parameters of the TeV class collider studies lead to beam- 

sirahlung fluxes that carry off a substantial fraction of the total beam energy. These machines 

enter the quantum beamstrahlung regime, where the classical synchrotron radiation formula is 

no longer’ adequate. Himel and Siegrist have shown 23 that in this regime, the fraction of the 

beam energy radiated is proportional to 01~‘~. As in the classical regime, tuning for maximum 

beamstrahIung wil1 generahy maximize the luminosity. 

0. STEERING TO COLLISION 

In an e+e- storage ring with a purely magnetic guide field, the counter-rotating beams follow 

exactly the same central trajectory and thus head-on collisions are unavoidable. There is no u 

priori reason why this should be true in linear colliders, however. In any linear collider, including 

the SLC, the opposing beams must be actively steered into collision, guided by some observable 

that is sensitive to the impact parameter. Using state-of-the-art strip-line- BPMs, it may be 

possible to direct the two beams independently to the intended interaction point with an accuracy 

of perhaps 100 pm. In order to achieve useful luminosity, the beams must be steered to within 

about one beam radius of each other. This corresponds to about 2 pm in the SLC and is likely to 
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Fig. 14. Predicted signal strength in the SLC beamstrahlung monitor increases 
monotonically with luminosity for identical round beams. 

be much smaller in a TeV-class linear collider. It is in this regime, far below the resolution limits 

of single-beam diagnostic devices, that the beam-beam deflection is strongest. 

’ 6.1 Beam-Beam Deflections 

-The electromagnetic force acting between two intense colliding beams of oppositely charged 

particles will cause them to be deflected in passing by an angle that depends on the offset between 

the bunches and the distribution of charge within the bunches. This is illustrated in Fig. 15. 

This deflection, measurable with nondestructive techniques, is expected to be the key to the 

final steering of the e+e- beams in the SLC.24 Furthermore, this deflection is expected to be a 

measurable manifestation of the interactions between even the extremely small beams envisioned 

for a large future linear collider. 

The deflection of a single particle of charge e, passing at an offset A from the centroid of an 

oppositely charged Gaussian distribution, is given by: 

e(A) = -~;NT l-exp[AA2/2 CT2 1 , (38) 
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Fig. 15. The trajectory of each beam is deflected by the opposing beam passing at 
an offset A. The- dashed line shows the trajectory followed by the e- beam when 

_ the e+ beam is suppressed. 

where rc is the classical radius of the electron, NT the number of particles in the target bunch 

and o the RMS transverse size of the Gaussian distribution. 

When two beams pass with offsets large compared to their transverse sizes, they see each 

other as point charges and Eq. (38) is a good approximation for their mutual deflection. When 

colliding with a small offset, the finite sizes of the beam distributions must be taken into account. 

.This can be done by convoluting Eq. (38) with the distribution of the opposing beam. The result 

of such a calculation, carried out in the limit of small A, is expressed in terms of a form factor25 

which reduces the average deflection: 

Here R i,s the ratio of the transverse sizes of the two beams. 
. . i 

0.2 Application to the SLC 

_ Deflection versus offset is plotted inFig. 16 for 50 GeV beams consisting of 5 x 10" particles 1 
with transverse spot sizes Q of 2,5 and 10 pm. 10 pm is the typical size of the beams at the SLC 

interaction point after beam steering and dispersion corrections have been made but before optical 

corrections are completed. Magnet setting errors and misalignments contribute to this estimate. 

By adjusting the final focus corrector magnets and quadrupole trims, o can be reduced to about 

2 pm. The form factor described above has been incorporated in the curves as a multiplying 

reduction factor, assuming in each case R = 1. 

Several methods have been studied for detecting and measuring the beam-beam deflections. 

The most obvious is to use a pair of BPMs straddling the interaction point. If the drift length 

Yever arm” is long enough, a deflection at the IP will result in a measurable position shift at the 

BPM. The power of this method can be greatly enhanced by suppressing the opposing beam on 

some pulses and watching the measured beam jump back to its undeflected position. To make 

this possible, a pair of pulsed magnets, the “single-beam dumpers,” have been provided to kick 

either beam out of the transport system on command. These are shown in Fig. 17. 
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Fig. 16. The deflection angle 6 as a function of offset A, plotted for three spot sizes. 

Another approach is based on detecting beamstrahlung radiation. The angular distribution 

of the beamstrahlung photons, strongly peaked forward in the direction of the outgoing beam 

and undeflected by intervening magnets, can be measured with a segmented detector with the 

arrangement described in Section 5.4 above. 

Yet another approach is to observe the sizes and positions of the outgoing beams after they 

have been extracted from the main transport system but before they reach the dumps. The long 

lever arm from the IP to the dump on each side of the SLC makes the beam position at this point . . 
Tknsitive to the angle at the IP. Furthermore, destructive monitoring devices, such as fluorescent 

screens, can be left in place at the dumps without interfering with the incoming beams. 

Air-Core J i Steerlm- 
Dl? her Coils Dipoles ‘-BPMs 

9 
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Fig. 17. Schematic of beamline components relevant to the deflection technique. 



The procedures described here are based on relative measurements of the outgoing beam 

position at locations where the angular deflection produced in the collision leads to a transverse 

position shift. There are several BPMs in the outgoing transport system of the SLC that are 

suitable for this purpose. The best Jocations, however, are in the final telescope quadrupoles 

where the p-functions reach their largest values, thereby magnifying the deflections the most, 

and where dispersion is negligible, (which minimizes confusion with energy variations). These 

locations are indicated in Fig. 17. 

A three-step tuning procedure is envisioned: 

1, Initial beam finding: One beam - designated the “target” in this case - is momentarily 

suppressed with a single-beam dumper while position measurements are made on the “probe” 

beam. In this way, the shift induced by the target beam can be determined. When the offset 

between the beams is large, the magnitude of the shift is inversely proportional to the offset, and 

its sign tells in which direction to steer. This can be seen by taking the limit of Eq. (38) for large 

A: 
12t, NT 1 

6’(A) N r n . 

The useful range of this technique, i.e., the maximum offset that still gives a measurable 

deflection, is-limited only by the ability of the BPMs to resolve beam centroid movements. For 
. . 

i example, a&ume the BPM near the innermost quadrupole in the SLC can resolve the centroid- 

position of a single bunch of 5 x 10’ particles to a level of 20 pm. It will then be possible to 

_ detect relative beam-beam offsets up to a maximum of: 

NT 
Ab) = 4o 5 x 109 l 

If the initial offset between the beams is too large to give a measurable deflection, the wire- 

scanning technique described in Section 5.3 can be used to bring both beams within a fiber-width 

of each other. Notice, however, that this “capture range” drops as l/E. For a larger collider with 

ten times the energy but the same NT and BPM arrangement, the beams will have to be steered 

to within 4 pm of each other before the deflection can be detected. If this can not be done with a 

wire scanner or other direct means, an automated “raster scan” could be used to search a small 

area, scanning one beam while looking for deflections of the other. For larger beam currents, it 

may be possible to do better than the limit indicated in Eq. (41), because the BPM resolution 

also improves with increasing current. By chopping one beam off and on and averaging over many 

pulses, the resolution can be improved further. 
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2. Beam centering: Scanning the target across the probe and recording a plot similar to 

.FJg. 15 for the probe will facilitate optimal steering of the two beams. The seredeflection sym- 

metry point is reached when the beams are perfectly centered. 

3. Spot size tuning: Taking the limit of AEq. (38) f or small A and multiplying by the form 

factor (39) gives: 

W). = -‘;“’ $ F(R) . (42) 

The slope of the deflection of the probe beam near the zeredeflection symmetry point is inversely 

proportional to the cross-sectional area of the target. By differentiating Eq. (38), it can be 

seen that the deflection is maximum for offsets of about 1.6 standard deviations of the target 

distribution, and that the maximum deflection scales as the inverse of the transverse spot size: 

e . max = o 451 2re NT 1 
7 a' 

A relative measure of spot size can thus be obtained by scanning one beam across the other as 

in Step 2 above. Guided by these measurements, an operator can adjust optical elements of the 

transport system to minimize this final size. 

6.3 Maintaining Collisions 

. . It is expected that even when the static crossing errors have been corrected as described above, 
- 

the two beams will not remain centered on each other without an active feedback system. Many 

sources of drift and jitter that could cause the beams to wander at the IP have been identified at 

the SLC. In most cases, these effects can be minimized with careful attention to hardware designs. 

Magnet .power supplies, for example, must be well-regulated, and support structures must be rigid. 

Natural ambient ground vibrations at frequencies above 1 Hz have been shown20 to be negligible 

at the level important for the SLC, although some local man-made vibration sources, such as 

reciprocating pumps, require special isolation. On a slower time scale, thermal effects will cause 

mechanical support structures to expand and power supplies to drift enough to adversely affect 

the luminosity unless steering corrections are made. Studies of feedback schemes for the SLC have 

focused on simple and relatively slow algorithms, although the BPM electronics, control system 

and other key components have been built to allow pulse-by-pulse feedback to accommodate faster 

or more complex schemes. , 

A simple feedback algorithm for correcting relatively slow drifts is based on automatically 

suppressing one beam periodically using a single-beam dumper, while observing the motion of the 

other beam. Of course, luminosity would be sacrificed on these occasional pulses, but they would 

enable a steering correction to be computed from the measured position shifts of the outgoing 

beam. Because each measured deflection can correspond to two possible offsets, the operation 
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has to be carried out frequently enough to ensure that the actual offset does not drift outside 

the domain of the IP, bounded by the deflection maxima, in the time between updates. This 
. . 
technique is adequate to track the thermal expansion of support structures and other mechanical 

effects in the SLC. 
- 

An approach that does not require sacrificing any beam pulses would be to excite small ‘dither 

coil” dipoles (Fig. 17) -in a preprogrammed way to induce small periodic offsets at the IP with an 

amplitude of a fraction of a standard deviation. In this way, one beam can be made to trace out 

a pattern such as a small circle at the II’. The deflections of the opposing beam will then project 

the same pattern at the BPM. When the offset between the beams corresponds to a point on 

a steeply rising positive slope in Fig. 16 (beyond the 1.6 CI peak on either side), the projection 

is a magnified image of the dither pattern. When the offset is less than 1.6 u, the projection is 

an inverted image of the dither pattern. Synchronous position measurement would then allow a 

determination of whether the beams were colliding within or beyond 1.6 standard deviations of 

each other. If necessary, a correction could be applied to bring them back to within 1 u. The 

sign of the deflection would indicate the direction in which to steer. In both these algorithms, 

corrections are applied using steering correctors immediately upstream of the final triplet. 
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