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I. INTRODUCTION 

For different exclusive quantum chromodynamic (QCD) processes it has been proven that the scattering amplitude 

at large momentum transfer Q2 factors as a convolution of process-independent distribution amplitudes, with a process- 

dependent perturbatively computable hard scattering amplitude [l-4]. Furthermore, the leading order perturbative 

QCD analysis has been performed for a large number of such processes including mesons and baryons. For processes 

including only pseudoscalar flavor-nonsinglet mesons, such as the electromagnetic form factor and the transition form 

factor, the next-to-leading order was performed both partially [5] and seminumerically [6]. The critical point of these 

analyses is the determination of the distribution amplitude in next-to-leading order. 

The Q2 evolution of the flavor-nonsinglet distribution function $(z, Q2) of a pseudoscalar meson is controlled by [7] 

Q2&+> Q2) = 1’ &/V(x, Y; 4Q2))4(~, Q2). 
0 

Here x is the fraction of the longitudinal meson momentum which is carried by the valence quark, and as = g2/(47r) 

is the QCD fine structure constant. The evolution kernel V(x, y; a,) = ((~~/27r)V(~)(x, y) + (c~,/27r)~V(~)(x, y) + . . . 

has been computed perturbatively in one- and two-loop approximation by using the dimensional regularization in 
%  

the modified minimal subtracted (MS) SC h eme. The complicated two-loop computation was performed by different 

authors in light-cone gauge [8] and in covariant gauge [9]. The results agree with each other, however, they are in 

conflict with conformal symmetry prediction for the eigenfunctions of V(x, y; as) [lo]. 

The symmetry prediction was obtained by postulating conformal symmetry for the operator product expansion 

at short distances. The prediction should be valid for a non-trivial fixpoint g* so that /?(g*) = 0. The predicted 

eigenfunctions 

Pk(X) 0: -&x(l - x))k+1--Yk(as)‘2 (2) 

are generalizations of the polynomials (1 - x)xC~‘~(~X - l), where Ci” denotes the Gegenbauer polynomials of order 

312. The eigenvalues of the evolution kernel are yk/2 where yk coincides with the forward nonsinglet anomalous 

dimensions for deep inelastic scattering. In scalar [$3]s theory in six dimensions for MS or MS schemes, the eigen- 
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functions of the explicit computed two-loop evolution kernel possess the predicted form+; but this is not the case in 

&CD. The conclusion of the analysis in Ref. [lo] was that the conformal symmetry in gauge field theories is broken 

by an unknown source. 

In this paper the conformal symmetry breaking in massless gauge theory will be analyzed with the help of conformal 

Ward identities. Thus, it is more convenient to treat with so-called conformal operators instead of directly with the 

amplitude 4(x, Q2). The relation between 4(x, Q2) and the expectation values of the conformal operators, and the 

construction of 4(x, Q2) in leading approximation will be reviewed in Sec. II. 

In Sec. III the special conformal Ward identities for Green functions of conformal operators will be derived in a 

dimensional regularization and MS scheme. For technical simplification the analysis is restricted to the abelian case. 

However, since for ,13 = 0 the symmetry breaking part of V(l)(x, y) does not contain the Casimir operator CA of the 

adjoint representation of SU,(3), this treatment is sufficient’ to explain the two-loop results in &CD. All sources of 

the conformal symmetry breaking will be identified, including violation by renormalization of the coupling constant. 

Furthermore, we will obtain, from a conformal consistency relation, the influence of special conformal anomaly on the 

off-diagonal anomalous dimension matrix of the conformal operators. 

In Sec. IV the special conformal anomaly matrix is computed in one-loop order. *he two-loop approximation of 
- 

the off-diagonal anomalous dimension matrix follows from the mentioned consistency relation. 

In Sec. V the evolution of d(x,Q2) will be constructed in dependence of the forward anomalous dimensions Tk 

and the special conformal anomaly matrix. With the help of the results in Sec. IV, the simplicity of the developed 

formalism is demonstrated for the next-teleading order approximation. This new analytical result could not be 

obtained directly from the evolution equation (1). Furthermore, correction to the eigenfunctions of V(x, y; a,) for 

,0 = 0 the O(~X~) will be given in a “closed form.” 

+The analysis showed also that the prediction is not valid in any renormalization scheme. 
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II. DISTRIBUTION AMPLITUDE IN LEADING ORDER 

The leading order solution of the evolution equation (1) can be directly constructed with the help of the moments 

PA: 

J 

1 

0 
dxC; (2x - 1)4(x; Q2) =< oIo,&2)IP >;;&z . 

Here < O]Qkk(~2)]P >red=< O]Qkl(fi,~2)]P > /(tip) l+l denotes reduced expectation values of local gauge invariant 

operators 

3 &l(h) =: $(o)xrc; 
where d” -’ + -8 + $ and L?“=$ - $ +2igA”, which are sandwiched between vacuum and one meson state with 

momentum P. The flavor matrix X and the spin matrix I = y56y correspond to a specific flavor-nonsinglet pseu- 

doscalar meson. The arbitrary light-cone vector ii, picks out the leading twist two contributions, which are given by 

spin (I + 1) tensors. Therefore, because of Lorentz-invariance, there is no mixing under renormalization with respect 

to the index 1. Furthermore, the renormalization of the operators induces the renormalization point II, which is set 

equal to the factorization scale Q. %  

In one-loop order the operators are multiplicatively renormalizable [2,11] so that the evolution of the moments can 

be easily determined. This property was investigated in Refs. [11,13] and it comes from the fact that the operators 

form an infinite irreducible representation of the collinear conformal algebra in the free field theory, which is the 

subalgebra O(2,l) of the full conformal algebra 0(4,2) [12]. Th ere ore, f each “tower” of operators is labelled by the 

conformal spin k. However, it can be seen in Sec. III that conformal symmetry is violated on the one-loop level. A 

further renormalization property, which holds true in each order of perturbation theory, comes from the PoincarB 

invariance of the theory. The operator ok1 mixes with only the operators Qk’l, for which k’ 5 k is valid (see, e.g., 

Ref. [lo]). Thus, the general form of the renormalization group equation is 

p$ok1(p2) = 2 Ykk’(cY,(~2))0k’l(CL2), 

k’=O 

where the aIlOmalOus dimension matrix Ykk/ = (os/2r)Tf)6kk, + (~k!,/27r)~y$ + . . . is diagonal in onf+loop or&r. 

Note that Ykk’ is directly related to the evolution kernel, 
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11 

“fkk’ (as) = ‘2 JJ P-Y)Y 2 
0 0 

dxdyC,tf (2x - l)V(x, y; c~.J~c;, (2y - I), 63) 

where Nk = (k + l)(k + 2)/(8k + 12) is a normalization factor and (1 - z)xC~‘“(2x - 1) are just the eigenfunctions 

of V(‘)(x, y). Because of the triangularity of 9 := {Tkk’}, the eigenvalues of V(x, y; o,) are also beyond the one-loop 

order given by ‘&k/2. 

Let us now construct the Q2 dependence of 4(x:, Q2). Using the completeness relation of Gegenbauer polynomials 

(=, e-g., [141) 

E(l-x)x 4 Nk ck (2X - 1)&2y - 1) = 6(X - y), Nk = 
(k + l)(k + 2) 

k=O 
8k+ 12 ’ 

one finds from Eq. (3) the following conformal spin expansion of the distribution amplitude [10,15]: 

4(x, Q2) = 2 (’ -,;)x&2X - 1) < oIok&2)IP >$=y 
k=O 

The Q2 dependence of the reduced matrix elements are given by the simple leading order solution of Eq. (5), 

OkdQ;), 4Q2) = po l;;is, . 

Here Qs is an appropriate reference momentum, A - 0.3 GeV is the QCD scale parameter, 
%  

-fk 
co) = cp 3 + .’ 

(k+i;(k+2) 

(7) 

(8) 

(9) 

(10) 

where CF = 4/3 and ,& = (11/3)C~ - (2/3) nf with nf is the number of quark flavors and CA = 3. Inserting the 

solution (9) in the representation (8) one gets the leading order solution of the evolution equation (1): 

q5(x,Q2) = 2 (’ ;;)xCj(2x - 1) (a) ’ < oIokk(Q;)IP >red . 
k=O 3 

(11) 

Because of Eq. (10) the partial waves for k > 0 will be suppressed with increasing Q2 so that @s(x) = 6(1 - x)x 

< O~OOI-lP >red is the asymptotic distribution amplitude. 

Let us remark that the nonperturbative input < OIOkk(Q$)IP >red can be computed from Eq. (3), i.e., 

J 
1 

< oIokk(Q;)IP >red= dxCj (2x - 1)4(x; Q;). (12) 
0 

A theoretical estimation of the first two moments for a reference momentum square of Qi - 1 GeV is more or less 

possible from sum rules [16], instanton vacuum model [17], and lattice QCD [18]. 
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III. CONFORMAL CONSTRAINTS 

The simple form of the leading order approximation of 4(x, Q”) will be changed in the next-toleading order by 

the mixing of the operators Qkl. In this section it will be shown that this mixing is completely induced by special 

conformal symmetry breaking. In the first step the Ward identities of special conformal transformation (CWI) will be 

derived in abelian gauge theory in the MS scheme (see introduction). In the second step a consistency relation will be 

written down from which the off-diagonal part of the anomalous dimension matrix 9 can be computed. An analogous 

treatment for scalar [q5”]s theory in six dimensions was given in detail in Ref. [19]; therefore only a few steps will be 

pointed out. 

As mentioned, it is sufficient to treat with the colinear conformal algebra. The corresponding transformation laws 

for the fields follow from the special conformal transformation laws by contraction with the dual light-cone vector FL*, 

which satisfies the normalization condition 6’6 = 1 [20]: 

6:$(x) = p 2ii x d+ +xCda: ( * ( 

EA,(x) = p 2- ( n*x(da+r&) +2~‘~c,,x”-x2iL’~~)A~x). 

(13) 

(14) 

Here p is a small parameter, C,, is the spin operator, - 

%v?l, = ; [%A, rv]$~, &A, = g,mA, - gvaAp, (15) 

and di, i = {+, A}, are the scaling dimensions of the fields. To include the conformal symmetry breaking by renor- 

malization of the fields in the representation of the conformal algebra, one has to choose d+ and dA as the sum of 

canonical and anomalous dimension. Taking the canonical dimension for space-time dimension n = 4 - 26, then 

dtik,g) = 3/2 - 6 +7+(g), dA(% 9) = 1 - 6 + ?‘A(g)> (16) 

where yi = p& In dm, i = {+), A}, are the anomalous dimensions and z~(E) = 1 + $]/t + ~1”~ /c2 + . . . are the 

renormalization factors of the fields computed in MS scheme [21]. In this scheme the relations yi = -g&$‘(g)/2 are 

valid [22]. 
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A simple treatment for the derivation of CWI for Green functions of the operator okl is allowed in the functional in- 

tegral approach. Using dimensional regularization, the regulator of the uv divergencies is manifest in the renormalized 

action by the choice of the non-integer space-time dimension n = 4 - 2.5, c > 0 [19,23]: 

PI = J - 
d”xL(x), L = iz&yvD,$ - 1 

-.zAF,,F 
4 

CL” - -+IA)2, 
25 

where D, = 8, + igp’ A, and F,, = d A, - &,A,$. Here JZ = ~[exp{rE}/(kr)]‘/“, II where YE is the Euler constant, is 

chosen to satisfy the MS convention. Using the invariance of the generating functional for renormalized disconnected 

Green functions of the operators Okl, 

zkl (ii, 7], J) = J V&VvA [OklIe 
i[s]+i j- d”z(~(s)~(~)+~(~)o(~)+~~(~)A”(~)) 

7 (17) 

with respect to the special conformal transformations (13) and (14), and differentiating the resulting identity with 

respect to the sources 7, ?j, and Jp, one gets the following result: 

< [Okl](6:X) >= - < (6” [Okl])X > - < [Okl](6:[S])X > . (18) 

Here < A > denotes the vacuum expectation value of the time-ordered product TAexQi[S], [Okr] is the renormalized 

operator insertion, and X symbolizes the product..of elementary fields at different space-time points. The left-hand 

side of the identity (18) . 1s simply given by a differential operator [see Eqs. (13) and (14)] acting on the renormalized 

Green functions < [Okl]X >, and therefore both sides of Eq. (18) are finite. 

Next let us compute the right-hand side of the CWI (18) beginning with the variation F[Okl]. The renormalized 

operator insertion can be expressed as 

[Okl] = 5 Zkk’(%g)Ok’lr (19) 

k’=O 

where Ok’l is defined in (4) with G=@ - & +2igp’A”. Using Eq. (19), the calculation of 6”[Okl] is straightforward 

and provides a conformal non-covariant and divergent expression 

$Without explicit notation it will be treated with different flavor fields to allow the definition of flavor-nonsinglet operators. 
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k’=O 

+ fk. 9) 9 J dn,2(n'z)A,&[ok& u (20) 

where the matrices k(l) and 6(Z) are defined by the elements [19]: 

t&k,(z) = 2(k - z)(k + 1 +3)&k’, 

bkk’(l) = 
2(Z + k’ +3)&k’ - 2(2/c’ + 3) if k - k’ > 0 and even 

0 otherwise. (21) 

The first term on the right-hand side in Eq. (20) has the same, form as in scalar [~$~]s theory. In addition, a further 

term appears, which is caused by the gauge field and is proportional to5 p/g. Note that P(E, g) = p&g(p) is divided 

in P(E, g) = -6g + P(g), where P(g) is explicitly independent of E. 

The second term on the right-hand side of Eq. (18) contains the operator product [&]i(6C[S]). At first let us 

consider the variation is: [S] , which provides a combination of renormalized operators, 

is” [S] = /J(f> 9) - [A!] + pa(g) [A”] + p[A?], 9  (22) 

where (T = p-& in<(p). Each of the first two terms on the right-hand side of this%quation is proportional to a 

renormalization group coefficient. The third term is caused by the gauge-fixing term [23,24] and has no influence on 

physical quantities. The renormalized operator insertions are defined by 

[A!] = i J dnx2(ti*x)g$c(x) - i2zA J ~~(ti*~)d~, (23) 

[A?] = i J dn,2(i~*~)&(z) + i J ~~(ti*~)d~, (24 

[A!!] = i; J P+*A~A. (25) 

In the gauge-dependent sector of the theory this decomposit ion of i& [S] disagrees with that in Ref. [19]. However, 

with the standard BRS treatment it was proved in [25] that each operator defined in Eqs. (23)-(25) is renormalized. 

§Here the wel l-known relation 7.4 -E = p/g was used.  This interpretation follows from the analogous derivation of the dilation 
Ward  identities and the comparison with the renormalization group equation. 
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Generally, products of renormalized operators can provide uv divergencies. Because of the product [&]i(6c[S]) 

the second term on the right-hand side of Eq. (18) is not finite. However, the renormalization of [okl]i(6c[s]) is 

simplified in Landau gauge, i.e., < + 0. In this gauge only the product [A!][Okl] appearing in [Okl]i(@[S]) provides 

uv divergencies [25]. 

As mentioned above, the right-hand side of the CWI (18) is finite so that the uv divergencies in the first and second 

term must cancel each other. However, since /? = -Eg + /?, a finite part remains. To extract this part we introduce 

the (minimal) subtractive renormalization 

B K J A- + dnx2(fi*x)ApsA, ’ ) 0 kl] = ([A!!] + /fl~2(fi*++&-) Pd 

-i -& .@k’(%d)[Ok’l-I], 

k’=O 

(26) 

where i* (c, g, 1) = g[l]* (g, Z)/E + i121* (g, Z)/E~ + . . . is dependent on 1. 

Inserting Eqs. (20) and (22) into Eq. (18) and using Eq. (26), one gets in the limit E -+ 0 and for E + 0 

< [Ok&X/p > = i 5 (h(z) f y’(g, l)}kk’ < [Ok+11X > 

k’=O 

P< p 6 -- A- + 0 kl x> 9 K J d”x2(ii*x)ApK 
> I 

-fl <@“%]x > - < [@&]x > . (27) 

We denote ?“(g, I) = lim,,o (i(E,g) (h(Z) + 2(” -~+(e,g))&(Z)) i-l(E,g) - yA*(E,g,Z) -a(l)) as thespecial con- 

formal anomaly matrix. Since 9” must be finite and 8 = i + S[‘l/e + O(E-~), 2-l = i - S[‘]/E + O(cP2), and i* = 

S*[‘]/E + O(E-~) it follows in the limit E -+ 0 

TC(g, 1) = -2i(Z)y&) + 2[i[‘l(g), 6(Z)] + 2*yg, 1). (28) 

Note that ,@I is induced by the E term of the canonical dimension of the field II, and in the MS scheme it can be 

completely expressed by T + 27~1 [22]. Thus, the new information contained in Tc comes from i*[ll, which is induced 

by the E term of t,he p function and must be computed from Eq. (26). 

A consistency relation for the anomalies can be derived from the commutator rule between the special conformal 

variation 6” and dilation @, i.e., [sd, S”] = p&, and the conformal Ward identities. Thereby, Sd_/p acts on < [&IX > 

as ~8~ + N+Y$ + NAYA (NQ and NA denote the number of II, and A fields in X). The result 

9 



[ 2(Z) P(g) L + yyg, 1) + ‘2- g W,%g) I = 0 (29) 

has the same form as in $3 theory and can be used to determine the off-diagonal part 9ND of T. Since &(I) is a 

diagonal matrix and independent of g [see Eq. (21)] the diagonality of ? to) follows immediately. For the same reason, 

Y .. ND in m-loop order is determined by the (m - 1)-loop approximation of y, ,0, and + = ?D + jND, where TD is the 

diagonal part of 7. This recurrence relation and the diagonality of T(O) provide 

“lND(d = -&YD(s) 

= -O+yD(g) + G2YD(g) - . . . , (30) 

where the operator s is defined by** 

~a := “;,f~$$‘,$$ if k - k’ > 0 
0 otherwise. 

(31) 

From these equations we learn that the off-diagonal matrix ?ND in m-loop order is completely determined by the 

(m - 1)-loop approximation of the special conformal anomaly matrix 9”, the p function and the diagonal matrix To. 

For instance, in two-loop order one finds with ,9/g = -(o/47r)po + O(02), where cy = g2/(4r), 
B 

ND(l) = 
Ykk’ 

$.. - yp 

2(k - k’)(k + k’ + 3) ‘d? - pobkk’) . (32) 

IV. COMPUTATION OF Tcco) AND THE OFF-DIAGONAL PART OF =y(‘) 

First we will compute the one-loop approximation of the special conformal anomaly matrix q in Landau gauge. 

Since in MS scheme 9(g) + 27$(g) = -g&@(g) holds true and r+ (‘) = 0 for < = 0 it follows from the definition (28) 

y(o)(z) = qp’, b(Z)] + ~*[w)(q~ (33) 

Corresponding to Eq. (26) 2*[1l(0) can be computed from the uv divergence of the two-point l-PI Green function 

**The spin 1+ 1 and the gauge parameter < dependence of 7 must cancel out since the left-hand side on Eq. (30), i.e., TND, 
is independent of both. 

10 



r (P~,P~I (p!r +I dn22(~*+L-&--) lo,,]) = r (pl,p2l&kl) 

+r 231,pzl ( J dnx~(iL-x)A,-&~~~ > + O(a2). v 
In Landau gauge A! is simply given by A! = -gF’s dnx2(ii*x)?j;y”A,+, and so it generates a derivative on each 

external vertex with respect to the incoming momentum (see Fig. 1). In the second term on the right-hand side of 

Eq. (34), J- dnx2(fi*x)A,& g enerates a derivative in momentum space acting on the operator vertex (Gegenbauer 

polynomials). This derivative can be expressed by a derivative with respect to one external momentum and a modified 

operator insertion (see Fig. 2). 

The sum of Figs. 1 and 2a represents the one-loop contributions with respect to p+ = pr + p2 differentiated 

unrenormalized l-PI Green function I’(pl,p2lOkl). Thus, it contains the following uv divergence [19]: 

a 
= 25EYk k,=O 

(‘I 5 bkk’(z)cj (2) (fip+)L-ixr~ (35) 

where I’ andJ are spin and flavor matrices, respectively. Corresponding to definition (26) this uv divergence provides 

the following contribution to i*[ll: -5 

. - 

2*[11a(z,g) = up& + O(a2). 

The remaining graphs in Fig. 2b are given by the Feynman integral 

X(PI - k)P”y,fi”~v 
(PI - k)2k2 

+ 3'%(~2 +kY‘y,y, 

(~2 + k)2k2 1 
x [p - y] (6k);2Cj (“;,:‘““) (iip+)hr, 

where CF =l in abelian gauge theories. Here the following “+” definition was introduced 

xT2F(x) = F(x) - F(O) - F’(0) 
x2 . 

(36) 

(37) 

(38) 

This Feynman integral can be simply computed if one replaces the Gegenbauer polynomials by 

6(2x - 1 - (Tip- + 2iik)/iip+). The integration provides the uv divergence 
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k-2 

1;~ = i& c t”kkd$ 

k’=O 

(3% 

where 

11 

w,&' =  JJ dxdyCj(2x - l)[w(x,y)]+~&231- l), 

~w(x,~~~+=w~x.~~-~~~-~~~1~~~~~,~~+~~~~-~~Jldi(ly)w(~~~~~ 
0 0 

w(x,Y) = -cF@(Y -“,;& +{;::I;}- 

(40) 

(41) 

Thus, the corresponding part of .S?*[ll is 

~*~llb(g) = g?ir + O(a2), where 2i, := {u&k,}. (42) 

W ith (36) and (42) one gets i*[ll = ,S?*L1la + S?*fllb = (~/27r)(+(‘)i) + &) + O(a2), and so from Eq. (33) it follows 

y(o)(z) = qzyp + 23. (43) 

The term proportional to 6 has just the same form as in scalar theory. Additionally, in gauge field theory, the 

conformal invariance is broken by the matrix iii. This breaking comes from the graph% in Fig. 2b and is produced by 

the renormalized gauge field of the covariant derivativein Ckl and is induced by the -eg term of fi. 

W ith the help of Eq. (32) the off-diagonal part of the anomalous dimension matrix TND can be computed in 

two-loop order from the one-loop approximation (43) of the conformal anomaly matrix ?“, 

ND(l) = -$) - -,k’ (0) 
Tkk’ 2(k - k’)(k + k’ + 3) 

bkk”Y/$) + Wkkl - PObkkl 
> 

, (44 

where yp’ and bkp are defined in Eqs. (10) and (al), respectively. Furthermore, wkkl is defined by the integral (40). 

Performing the integration provides, after some algebra 

with 

-4(2k’ + 3)(k - k’)(k + k’ + 3) if k - k’ > 0 
Akkr-ti(k+l)+G(0) 

(k'+l)(k'+2) + (k-ky)$$kr+3) 1 and even (45) 
0 otherwise 

&p=$(k+;+2) -G(“-;-“) +2$(k-k’-I)-~(k+l)+(O), $+)=$In(f’(z+l)). 
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Although the result (44) was derived in abelian gauge field theory, in this loop approximation it should also be valid 

for QCD (if one takes the correct values of CF and PO). In fact, with the help of the representation (40) it can be 

analytically proven that Eq. (44) is in agreement with the explicit computed two-loop approximation of the evolution 

kernel [8,9]. 

V. SOLUTION OF THE EVOLUTION EQUATION 

A. General formalism 

It was pointed out in Sec. II that the Q2 dependence of the distribution amplitude can be obtained in leading order 

by solving the renormalization group equation (5) of local operators Qkl. In principal the same treatment is also 

possible beyond the leading order; however, the renormalization group equation (5) must be diagonalized. 

As mentioned above, -i, posseses the eigenvalues Tk = Ykk. Therefore, the renormalization group analysis provides 

for KNIltipliCatiVe renormalized Operators & 

&(p2) = eXP { f lr F?k(dt,,) okl(d)q (46) 

Furthermore, the operators Qkl can be completely expressed by 

ok1(p2) = e Bkk’(d~2))~k’l(~2). 

k’=O 

(47) 

Consequently, one finds from the renormalization group equation (5) that the matrix B satisfies the differential 

equation 

l&d7 ?“(dl + B(s&w = ?ND(S)&). (48) 

To fix the solution of this equation one has to choose an initial condition. It will be seen below that it is very 

convenient to introduce g(g(pi)) = 1 f or a reference point ~0 so that Qkl(&) = bkl(&). 

Assuming that +ND is small, Eq. (48) can then be solved perturbatively. The ansatz & = cz”=, bci), where 

h(O) = i, provides an inhomogeneous differential equation for the matrix fici) with the source jNDg(i-‘). Summing 

up the solutions of these recurrence relations provides 
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B(g) = ^ 
i 

1 - CYND(g) 

= i + @ND(g) + c (?NDc?ND) (g) + . . . , 

where the integral operator C acts on a triangular and off-diagonal matrix as 

em = J g dg’ 
-%F (9’) exp 

go P(d) IS ,; $j (‘-% (d’) - ?‘k’ (d’)) } > (50) 

(49) 

with go = g(&. Furthermore, with the help of Eq. (30), the off-diagonal matrix +ND can be expressed by y+2(p/g)i 

and TD, consequently, 

(24 := 

[y(z)+2pl),a] , 
k ifk-k’>O Z(k-k’)(k+k’+3) 

0 otherwise. 
(51) 

Taking into account the obtained renormalization group equation solution, it is now possible to determine the 

evolution of the distribution amplitude. Inserting Eq. (47) in Eq. (8) provides the following expansion: 

4 (TO”) = 2 &(x, as(Q2))e 
3 J$ +YvtM~)) 

0 < Ol%(Q;)P= >red, (52) 

where 

M (1-21x 4 
4n(X,%) = c Nk c, (22 - l)Bkn(%). (53) 

k=n 

Here Bkn is given in Eq. (51). Ob viously, beyond the leading order the Gegenbauer polynomials are generalized to Q2 

dependent (non-polynomial) functions &(x, (Y, (Q2)). A s mentioned the matrix B, and therefore also &(~,cr,), are 

completely determined by conformal symmetry breaking, i.e., by 7 + 2(p/g)6, and by the eigenvalues Y,, and by an 

initial condition for l?. This condition was chosen so that &(x,(Y,(&~)) = (1 - z)xC~‘~(~X - l)/Nn for a reference 

momentum square Qg holds true. Thus, as in leading order, the non-perturbative input < OlO,,(Qi)IP >red can be 

simply computed from Eq. (12). 

B. Next-to-leading approximation 

The formalism developed in the previous section provides some simplification for the computation of the Q2 de- 

pendence of $(x, Q2). F or instance, the inputs for the next-to-leading approximation are “ln and /3 in twuloop order, 
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which are both well known, and 3” in oneloop order. The crucial point of the direct construction from the evolution 

equation (1) is that yNDtl), and therefore also B(l), could not be analytically determined from the kernel V(‘)(x, y); 

only a numerical calculation of the first few matrix elements of B(‘) was possible. Now, the corresponding approx- 

imation of 2 can be obtained from Eq. (51), Bkn = &n - {CGrD}k, + ..., and inserting in Eq. (53) provides the 

following correction for the functions 

4n(wx4Q2)) = 
Cl- +,nj c2x _ 1) + dQ2) (1) 

N 
n 

27i4n (x,Q2) +--- 

c+h;‘)(x, Q”) = - 2 (’ ;;)xC$(2x - 1) 
k=n+2 

1 - (#) 

hn(‘yfi”) - PO) + wkn 

- ri”’ + p. 2(k - n)(k + n + 3) ’ (54) 

where yL”) is given in Eq. (10) and the matrix elements bkn and wkn. are defined in Eqs. (21) and (45), respectively. 

Substituting this expression for the partial waves in Eq. (52), one gets the next-to-leading order approximation of 

4(x, Q2), where the two-loop approximation of ^fn can be found in Ref. [26]. 

C. The p = 0 case 

From the theoretical point of view, it is interesting to discuss the ,!? = 0 case. In this case oy, is independent of Q2 

and the evolution of the distribution amplitude is simplified to 

Q2 -d2 

4(x:,Q”) = -&;f(4 (G) < OlOnn(Q;)I~ >red, 
n=O 

(55) 

where pnf(x, (Y,) are the eigenfunctions of the kernel V(x, y; a!,). At first it will be given a general treatment to obtain 

these eigenfunctions in a “closed form,” analogous to the representation of the predicted functions (2). After this the 

O((Y,) corrections will be computed. 

From Eqs. (1) and (52) it is easy to see that for ,D = 0 the eigenfunctions are formally given in Eq. (53), where 

B is defined in Eq. (51). However, the operators L and G are now simplified to LAk, = --Akn/(Tk - m) and 

G&n = [%‘&/(2(k - n)(k + n + 3)) respectively. Thus, with some algebra it can be shown that & is now 

independent of qD and simply expressed by the special conformal anomaly matrix: 
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. i 
B(g) = i + J-iyqg) = i - J-?=(g) + Jyy(g)%7?“(9)) + . . . I 

where the operator 3 is defined by 

&7a := 

Ab 
2(k--n)(k+n+3) 

ifk-n>O 
0 otherwise. 

Therefore, the eigenfunctions can be written as 

O” 8zffx~a~) = c Nk (l - x)x4 (zx - l)Bk 
n’ 

k=n 

(56) 

(57) 

(58) 

From the representation (58) we will now derive a differential equation, which can be used for determination of the 

functions &f. Using the eigenvalue equation [14] 

((1 -x)x&2x - 1))” = -(k + l)(k + 2)4(2x - 1), (59) 

and the property (k - n)(k + n + 3)B 
^ 

kn = -{+B}k,/2, which follows from Eq. (56), it is straightforward to derive 

the following equation: 

(1 -~)y$$%~(x,a,) + (n + l)(n+ 2)&?(x,~,) = i ~‘dyYC(x,y,a~~~,,(y,a,), (f-30) 

where 

Y(x, Y, as) = 2 (l ;;)xct (2x - l)y~k,(cyS)c~ (2y - 1). (61) 
k,k’=O 

k>k’ 

The representation (58) suggests that the second-order differential equation (60) must be supplemented by the con- 

straints 

J 
1 

4:qo, (-ys) = 4$.'(1, cc?) = 0, dxCj (2x - 1)&(x, CY,) = 1. (62) 
0 

Now let us compute the O(oS) correction to the eigenfunctions. From Eq. (60) we see that in this approximation 

&f(x, a,) are completely determined by the leading order of 9” = (cy,/27r)(~(‘) + 6) +. . . . It is also known that the 

term @(‘) provides the predicted eigenfunctions (2) [10,27]. To treat the “additional” conformal symmetry breaking 

term ?ir we make the ansatz 
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gqx, &) = 0 N5)xc; (2x - 1) + $#&r)(x) + . . . , 
n 

d(l)(x)=-~~(0)d((l-x)x)l+p 
n 2 n dp N, 

c;/~+P(~x - &o + W;‘(x), (63) 

where A&‘(x) is completely determined by 6. Inserting this ansatz in Eq. (60) an using Eq. (40) provides for the d 

following inhomogeneous equation A$p’(x): 

(I- x)x$A&)(x) + (n + l)(n + 2)A&)(x) = a ~‘dy[w(x,y)]+k$k5’,f(2y - l), (64 

where b-4x, Y)I+ is defined in Eq. (41). It is simple to prove that the wanted solution can be written as 

J 
1 

Am:’ = dy[g(x,y)]+q&(2y - 1) + n,(’ ~x)xC~(2x - l), 

b(x,dl+ =g;w, -4x-d ji+. y). 

n 

In l-” 
dxcl Y) = cF% - x) ( “)+{-:I-}, (x _ y) (65) 

where the constraint A&)(O) = A&‘(l) = 0 was used. Furthermore, the normalization term n, is determined by 

the requirement that the nth moment of &r’(x) vanishes. The computation of the integral (65) provides the following 

representation for the eigenfunctions 

d@(X,%) = C-1)” (1 + $FF,(x) +b(,:)) (66) 

where 

F,(x) = g (-Jjln(x(l - x)) + $(l + n) - +(3 + 2n)) 

(67) 

The term in F,(x) that is proportional to ri”’ agrees with the predicted eigenfunction (2). The remaining part of 

&(x) is therefore induced by the “additional” conformal symmetry breaking in gauge field theory. Note that F,(x) 

is only logarithmically divergent at the endpoints (x = 0, x = 1) so that the eigenfunctions vanish at this points. 

17 



VI. CONCLUSIONS 

Based on the conformal spin expansion and a conformal consistency relation I have determine the evolution of 

the flavor-nonsinglet meson distribution amplitude, which is controlled by conformal anomalies, i.e., dilatation and 

special conformal anomalies. The evolution of the coefficients of this expansion is completely controlled by the forward 

anomalous dimensions yk, and the Q2 dependence of the “conformal partial waves” is induced by the special conformal 

-symmetry breaking. 

An important feature of the conformal consistency relation is that information which usually comes from an n-loop 

order calculation can also be obtained from the (n - 1)-loop order approximation of the special conformal anomaly 

matrix. For instance, the oneloop calculation of this anomaly matrix allowed us to show that the explicit computed 

twoloop evolution kernel is in agreement with conformal symmetry breaking (an analytically consistent check for the 

two-loop eigenvalues of this kernel with the computed Lipatov-Altarelli-Parisi kernel was given in [28]). Moreover, in 

this formalism it is also much easier to compute the evolution of the distribution amplitude than to directly solve the 

evolution equation. Thus, in this paper the O(o,) correction of the “conformal partial waves” and of the eigenfunctions 

of the evolution kernel for the /? = 0 case could be analytically determined. ^P 

Some open questions about the conformal symmetry breaking in gauge field theories remain. Does the special 

conformal anomaly matrix contain more information than the anomalous dimension matrix at the same loop level? In 

other words, is the special conformal anomaly completely induced by the violation of dilatation? That means that the 

eigenfunctions and the evolution of the distribution amplitude would be determined only by the forward anomalous 

dimensions [see, e.g., the predicted eigenfunctions (2)]. It was not possible to decide this question from the definition 

of the special conformal anomaly matrix. However, an answer for the /3 = 0 case could be found from the treatment 

given in [lo], which is based on conformal symmetry arguments and the conformal operator product expansion in 

light-cone gauge++. But, as mentioned, the prediction obtained for the eigenfunctions does not hold true. It can be 

seen in this paper that the reason for this conflict is an additional symmetry breaking term which arrives from the 

++This choice is necessary to define the distribution amplitude in terms of a bi-local operator, which can be expanded with 
respect to local operators. 
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gauge invariance of the theory (covariant derivative of the conformal operators). Thus, we guess that the conformal 

symmetry arguments used in [lo] do not hold true in light-cone gauge. This point could be clarified by the conformal 

Ward identities derived in light-cone gauge. 

Finally, let us give a short outlook. The analytical results obtained for the evolution of the distribution amplitude 

allow a detailed analysis of the O(a,) correction for both the flavor-nonsinglet meson electromagnetic form factor and 

the transition form factor. In this case it would be helpful to know the closed expression for the eigenfunctions, which 

is just the /3u --+ 0 limit of the partial waves. 

With the formalism developed in this paper it also seems possible to determine the distribution amplitude in 

next-next-t&leading order. Assuming that the tree-loop order of the forward anomalous dimensions yk are known, 

the additional information for the construction in this order can be obtained from a two-loop calculation of the 

special conformal anomaly matrix, which is a little bit more complicated than the two-loop calculation in Ref. [8,9]. 

Furthermore, it should be possible to attack the flavor-singlet case in next-to-leading order. It is expected that the 

corresponding analysis of conformal symmetry breaking provides a straightforward generalization of the conformal 

consistency relation (29). Then, as in the flavor-nonsinglet case, the twoloop contribution of the forward anomalous 

dimensions are known so that the one-loop calculation of the conformal anomaly m&rices provides the necessary 

information to construct the next-to-leading approximation of the quark and gluon distribution functions. 
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IX. CAPTIONS 

Figure 1: 

In oneloop order the operator insertion [A!] generates a derivative on each vertex with respect to the corresponding 

external momentum. 

Figure 2: 

The oneloop graphs of the operator insertion s d”z2(6*z)A$[O kl can be divided in graphs which are differentiated ] 

with respect to the external momenta (Figure 2a) and in two other graphs which are defined by the Feynman-integral 

in Eq. (37) (Figure 2b). 
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