
AUTOMATIC FORMAL VERIFICATION FOR EPICS

Jonathan Jacky , Stefani Banerian, University of Washington Medical Center, USA∗

Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina Torlak,

Paul G. Allen School of Computer Science & Engineering, Seattle, WA 98195, USA

Abstract

We built an EPICS-based radiation therapy machine con-

trol program and are using it to treat patients at our hospital.

To help ensure safety, the control program uses a restricted

subset of EPICS constructs and programming techniques,

and we developed several new automated formal verification

tools for this subset.

To check our control program, we built a Symbolic Inter-

peter that finds errors in EPICS database programs, using

symbolic execution and satisfiability checking. It found

serious errors in our control program that were missed by

reviews and testing.

To check the EPICS runtime (EPICS Core) itself, we first

developed a Formal Semantics for EPICS database programs,

based on the EPICS Record Reference Manual (RRM) and

expressed in the specification language of an automated theo-

rem prover. We built a formally-verified Trace Validator and

used it to check the EPICS runtime against our semantics

by differential testing with millions of randomly generated

programs. The testing process generally corroborated that

the EPICS runtime conforms to its specification in the RRM,

but it did find several omissions and ambiguities in the RRM

that might mislead users. Our formal semantics for EPICS

enables valuable future developments: a full proof of correct-

ness for our EPICS program, verified analyses for arbitrary

EPICS programs, and a Verified Compiler that could compile

an EPICS database to a verified standalone program, while

dispensing with much of the unverified EPICS toolchain and

runtime.

INTRODUCTION

The Clinical Neutron Therapy System (CNTS) at the Uni-

versity of Washington Medical Center (UWMC) has been

treating cancer patients with radiation therapy and making

isotopes since 1984 [1]. The system includes a cyclotron

and a treatment room with an isocentric gantry and leaf col-

limator operated under computer control. The system was

built and installed by a vendor, but since then has been main-

tained and upgraded by UWMC staff. In 1999 we replaced

the therapy portion of the vendor’s original control system

(a PDP11 programmed in FORTRAN) with new hardware

and our own software (a 68040 in a VME crate running

VxWorks programmed in C) [2]. In 2015 we replaced the

therapy control hardware and software again, this time us-

ing the Experimental Physics and Industrial Control System

(EPICS) running under Linux on an x86 processor [3].

∗ jon@uw.edu. Thanks to the UWMC cyclotron engineering group: Dave

Argento, Eric Dorman, Robert Emery, and Gregg Moffett.

EPICS has been used for over twenty-five years in many

demanding applications [4–6]. Nevertheless, some experi-

enced EPICS developers caution against using it for safety-

critical controls:

(EPICS) code is not rigorously audited to the stan-

dards . . . that would be needed (for medical appli-

cations). [7]

EPICS should never be relied on for safety-critical

operations [8]

Despite these warnings, we use EPICS at CNTS on some

safety-critical signal paths essential for therapy. Our ther-

apy control system uses relays, PLCs, and other non-EPICS

components for safety-critical functions nearest the hard-

ware, but we do use EPICS to process some of the data that

is input to these components, and to process output that is

collected for record keeping. In particular, we use EPICS

to retrieve stored prescriptions from a database (comprising

about 50 parameters per treatment field), load them into

the control hardware, check conformance between the hard-

ware and the prescription, store treatment records, and to

restore and finish interrupted treatment sessions. Programs

written in high-level languages running on general-purpose

computers are best suited to handle these processing steps.

For this, EPICS is no worse than the alternatives and offers

some advantages. This judgment is based on many years

of experience at our installation with EPICS and several

alternatives.

We have always had a safe system design and a careful

development process [2,3,9]. However, in view of warnings

from experienced EPICS developers, the greater complexity

of EPICS compared to our previous platforms, and the lack

of any close precedents for our project, we felt an obliga-

tion to focus exceptional care and scrutiny on the EPICS

components in our system.

We chose two complementary approaches. First, we lim-

ited ourselves to a restricted subset of EPICS components

and programming styles that we expect to be feasible to

understand, review, and analyze. Second, we developed spe-

cialized software tools for analyzing both our own code (an

EPICS database, or program, written in our restricted style)

and the EPICS runtime (the EPICS implementation, also

known as EPICS Core). These remedies are complementary,

since our restricted programming style limits the amount

of EPICS our tools must model. For the latter, CNTS staff

are collaborating with faculty and graduate students from

the University of Washington School of Computer Science

and Engineering (UW CSE) who are experts in the formal

verification of software.
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We have developed and used two tools to help build re-

liable software using EPICS: a Symbolic Interpreter and a

Trace Validator. The Symbolic Interpreter detects errors in

EPICS programs (also known as EPICS databases). It has

already found serious errors in our control program code

that escaped detection by reviews and unit testing. The Trace

Validator checks that the EPICS runtime adheres to our ex-

pectations by differential testing. We found some omissions

and ambiguities in the documentation but no outright errors.

In the course of building and using this tool, we performed a

rigorous independent review of the documentation and code

for the portions of the EPICS runtime that we use. We have

thereby mitigated one of the objections made in [7]. In the

future, we plan to create a Verified Compiler for generating,

from an EPICS database, a standalone executable program

that would not depend on the large, unverified EPICS run-

time.

Some this work has already been reported in the computer

science literature [10, 11]. This present report concentrates

on the application of that work to our control program, in-

cluding validation and workflow.

RESTRICTED EPICS CODING STYLE

Even before we contacted UW CSE, the CNTS staff re-

solved to use as few EPICS features and mechanisms as pos-

sible in order to make our program easier to understand and

analyze. Specifically, we decided that the program should

express a data flow from inputs to outputs, as simply as pos-

sible. The tools only work on EPICS application programs

coded in this restricted style.

The entire therapy control program runs on a single soft

IOC1, the only application program on its computer. The

IOC is self-contained; it does not need to communicate with

any clients to achieve or maintain a safe state.

The entire IOC is expressed by EPICS database records

(that is, the EPICS program), StreamDevice protocol files,

and the IOC startup command file st.cmd. There is no cus-

tom device support nor any other custom code, not even

subroutine records. We do not use the EPICS State Nota-

tion Language or the sequencer. The IOC itself does not

use the EPICS Channel Access (CA) network protocol. A

client database program uses CA to load prescribed settings

into the IOC when a prescription is selected, and a client

operator’s console program uses CA to display PV values

and transmit operator’s commands, but the IOC itself does

not require either of these to execute control laws or main-

tain safety. The database itself uses no CA links, only local

database links (except in three instances, where we use a

CA link to break a lockset for performance). All control

flow in the database is “pushed” from input to output, using

SCAN PASSIVE, OUT PP, and FLNK fields. We forbid run-time

alteration of control or data flow within the EPICS database:

we prohibit reassigning of fields such as input and output

links or CALC expressions after IOC startup.

1 An IOC is an EPICS Input-Output Controller: an executable built from

an EPICS database program along with the EPICS runtime.

Our program uses only 19 record types: acalcout, ai,

ao, asyn, bi, bo, calc, calcout, dfanout, fanout, longin,

longout, mbbo, scalcout, seq, stringin, stringout, subArray,

and waveform.

EPICS SYMBOLIC INTERPRETER

The Symbolic Interpreter finds errors in EPICS programs [12].

To use it, the application programmer codes an assertion

that expresses what the program is intended to do, then runs

the symbolic interpreter to see if the assertion fails. The

symbolic interpreter checks the assertion for all possible

input values. If the symbolic interpreter reports no assertion

failure, then the assertion will be always be satisfied at run

time.

Unlike unit testing, the programmer does not need to

choose concrete values for the inputs. Another difference is

that test coverage is usually incomplete, and a passing test is

inconclusive—perhaps some other input values would have

caused it to fail.

We consider the symbolic interpreter complementary to

unit testing. We still do thorough unit testing, because it

tests the actual IOC with EPICS Core as it will run in pro-

duction, while the symbolic interpreter relies on a separate

reimplementation of EPICS record processing logic.

Using the Symbolic Interpreter

The programmer provides three items to the symbolic

interpreter: the program, an entry point into the program,

and a property that the program’s behavior should satisfy.

The program is specified by the st.cmd file that starts

the IOC. The symbolic interpreter infers from it the pro-

gram or database for the IOC, comprising all of its .db,

.substitutions, and .template files.

The entry point is a record in the database; processing

this record is the event whose consequences are analyzed.

Typically we examine records where processing begins, such

as those set to periodic scanning or those attached to physical

devices.

The property expresses the intended behavior of the IOC

in response to the given event. The property includes pre-

conditions, which describe the values of pertinent EPICS

process variables (PVs) before the event, and an assertion,

the relation that should hold between PV values before and

after the event, if the event occurs when the preconditions

are all true.

For example, we used the symbolic interpreter to verify

that when the measured gantry rotation angle (a therapy

machine setting) differs from the prescribed gantry angle,

subsequent processing will set an interlock that turns off

the neutron beam and prevents it from turning on with the

gantry in the wrong position. Figure 1 shows this property

expressed in Racket, as it would be input to the symbolic

interpreter.

A unit test could check this property for some (usually

small) sample of prescribed and measured angles; the sym-
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;; Read values from the hardware.

(define gantry-prescribed

(get-value "Iso:GantryCouch:Gantry:Prescribed"))

(define gantry-actual

(get-value "Iso:GantryCouch:Gantry:Actual"))

(define gantry-override

(get-value "Iso:GantryCouch:Gantry:Override"))

(define session-mode

(get-value "Iso:Session:Mode"))

;; Precondition:

;; The prescribed and actual (measured) angles differ.

(define precond

(and

(> (difference gantry-prescribed gantry-actual) 1)

(= gantry-override 0) ; Not in manual override

(= session-mode 0) ; Not in experiment mode

))

;; Run the record that reads the actual angle;

;; this also runs downstream records.

(process "Iso:GantryCouch:Gantry:Actual")

;; Assertion:

;; If precondition was true, then the beam is disabled.

(assert

;; In Racket, "=>" means implication

(=> precond

(= 0 (get-value "Iso:GantryCouch:Gantry:Calc"))))

Figure 1: Property (expressed in Racket) that expresses a

safety requirement. The precondition states that the pre-

scribed and actual (measured) angles differ. If so, then the

beam must be disabled.

bolic interpreter checks all possible combinations of pre-

scribed and measured values.

If the property is satisfied, the checker prints, “Every-

thing is OK”. If the property is violated, the checker prints a

counterexample that demonstrates the violation.2 The coun-

terexample contains the values of the pertinent PVs in the

initial state before the event begins and a log showing the

chain of record processing steps, with the PV values for each,

leading up to the violation. The counterexample is usually

sufficient to identify the error that caused the failure, so it

can be corrected.

The symbolic interpreter did find an error in the con-

trol program, and produced the counterexample shown in

Figure 2. The actual angle differs from the prescribed an-

gle, but the code erroneously indicates a match, setting the

Gantry:Calc.VAL PV to 2 rather than the expected 0.

How the Symbolic Interpreter Works

To a programmer, the symbolic interpreter works like an

exhaustive tester. Internally, it works symbolically: rather

than storing a concrete value for each PV, it stores a set of

constraints, such as “VAL is odd” or “B is positive if A is

negative”. It never runs the program explicitly, but analyzes

every possible execution. The symbolic interpreter works in

two stages, currently provided in two separate commands.

2 The symbolic interpreter may also time out. This has never happened to

us.

counterexample:

Iso:GantryCouch:Gantry:Actual.VAL = 48 [64-bit]

Iso:GantryCouch:Gantry:Prescribed.VAL = 312 [64-bit]

Iso:Session:Mode.VAL = 0 [16-bit]

Iso:GantryCouch:Gantry:Override.VAL = 0 [16-bit]

log:

start: Iso:GantryCouch:Gantry:Actual

start: Iso:GantryCouch:Gantry:Calc

Iso:GantryCouch:Gantry:Calc.A = 312

Iso:GantryCouch:Gantry:Calc.B = 48

Iso:GantryCouch:Gantry:Calc.C = 1

Iso:GantryCouch:Gantry:Calc.D = 0

Iso:GantryCouch:Gantry:Calc.VAL = 2

...

Figure 2: Counterexample generated by the symbolic inter-

preter that reveals an error in the gantry angle code. The

symbolic interpreter log also shows the execution of down-

stream records (elided here for brevity).

In the translation stage, the interpreter reads the program

(the database files) and generates a symbolic IOC: a simu-

lator for the IOC expressed in the Racket language, where

every PV is represented by the symbolic formula that cal-

culates that PV value from all of the other PVs that might

affect it. The formula is generated by accumulating all the

CALC fields along all possible data flow paths to that PV,

and might include logical and conditional operators as well

as arithmetic operators.

The checking phase uses the symbolic IOC and the prop-

erty. It combines the two into a single large formula such

that any solution to the formula represents a violation of the

property, and the absence of solutions indicates the property

is satisfied. It invokes Z3 [13,14], an SMT solver, to solve

the generated formula for PV values that violate the property.

The checker is coded in Rosette [15,16], a Racket package

that simplifies the interface to Z3 and the task of generating

formulas.

The symbolic interpreter only works for programs where

processing of every event terminates, there are no loops, and

there is no unbounded allocation of resources. These require-

ments are not ensured by programs in general. Termination

is a common property of event processing in EPICS pro-

grams, because EPICS uses the PACT record field to prevent

infinite loops while processing record chains. Our restricted

programming style ensures that there are no loops or un-

bounded allocation of resources.

Validating the Symbolic Interpreter

If the symbolic interpreter is buggy, then the checker

might print “Everything is OK” even though the EPICS

program is defective. In addition to standard practices such

as code review, we tested the symbolic interpreter to increase

our confidence in it.

We seeded errors into EPICS programs, then we con-

firmed that the checker finds the expected counterexamples.

We inspected the counterexample PVs and logs to confirm

they show the expected IOC state and activities. We con-
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Prescribed
ao

Calc
calc

D?2:ABS(A-B)<=C?2:ABS(A-(360-B))<=C?2:0

FLNK  

INPA  

CalcAlarm
calc

!E&&!F&&A?2:0

INPE  SEVR

FLNK  

INPA  

Actual
ao

FLNK  

INPB  

INPF  SEVR

Actual0
calc

FLOOR(A)

INPA  

Tolerance
ao FLNK  

INPC  

Iso:Session:Mode

INPD  

CalcFilter
calc

A?A:B;B:=A

FLNK  

INPA  

CalcOverride
calc

B?1:A

FLNK  

INPA  

Readiness
mbboFLNK  

DOL  

Override
bo

FLNK  
INPB  

FLNK  Settings:Readiness
FLNK  

Figure 3: A small portion of our EPICS program that checks gantry angle. Each box represents an EPICS record. The

entire program comprises over 1700 records. The “Calc” record in this portion incorrectly checks for similarity between

the prescribed gantry angle (“A”) and actual angle (“B”), causing the system to accept gantry angles that are opposite the

prescribed value.

firmed that the counterexamples correspond to errors in real

EPICS IOCs built from the same erroneous programs, and

the counterexample logs resemble traces generated in the

real IOC by EPICS after setting TPRO fields.

This provides confidence that the checker accurately mod-

els the real IOC, and we have detected a few errors in the

checker this way. Primarily we use the counterexamples to

develop and debug our properties.

Writing Properties for the Symbolic Interpreter

It can be challenging to write properties. Our first attempts

to write a property often resulted in spurious counterexam-

ples (i.e., normal behavior), due to missing preconditions.

Examining the spurious counterexamples enabled us to cor-

rect the property and re-run the symbolic interpreter.

Sometimes the assertion is only intended to hold in par-

ticular modes or states, and the missing preconditions must

precisely describe what mode or state of the IOC.

Another type of missing precondition restricts the val-

ues of a PV to those that can occur during real processing.

Without an explicit precondition, the checker considers all

possible values for the PV’s data type and often produces

counterexamples that rely on PVs taking on unrealistic or

out-of-range values. Given a range constraint for a PV, the

checker can ensure that it is preserved by certain events, but

cannot infer such properties on its own.

Expected counterexamples can fail to appear when the

preconditions are too strong so they exclude the triggering

condition for the seeded error, or when there is a data flow

path that satisfies the assertion while bypassing the seeded

error.

Errors Found by the Symbolic Interpreter

The symbolic interpreter has found subtle errors that es-

caped detection during reviews, unit tests, and system tests.

Here are two examples.

One error was quite serious: the property about the gantry

angle in the example above was violated! The erroneous pro-

gram (Figure 3) failed to interlock only when the measured

angle was a reflection of the prescribed angle around zero

degrees (for example, it would allow 270 degrees where 90

was prescribed), due to an error in the code to convert all

angles (including negative angles) to the range 0–359.

The checker also identified a potential version skew prob-

lem. The control program was originally written to use the

EPICS calc library version 2-8. In version 3-0, the calc

maintainers made an incompatible change in the array index-

ing convention for acalcout records [17]. Later, the symbolic

interpreter was upgraded (at UW CSE) to use version 3-2 of

the calc library, while the control program itself (at UWMC)

continued to use the old 2-8 version. The checker accurately

models version 3-2 of the library, so it was able to identify

a situation in which the new array indexing conventions in

the library, when called by the old, unrevised version of

the control program, would allow the beam to turn on even

when some machine settings differ from the prescribed val-

ues. Thus forewarned, the control program maintainers at

UWMC made the necessary changes in the control program

when they installed version 3-2 of the calc library.

The checker also identified a potential performance prob-

lem. A counterexample log revealed that a large number of

records were being processed unnecessarily, due to redun-

dant FLNK fields. The problem was confirmed in the actual

IOC after setting TPRO fields. The redundant FLNK were re-

moved, and the IOC functioned correctly while processing

many fewer records.

FORMAL SEMANTICS

We have created a formal semantics for our subset of

EPICS. The formal semantics precisely describes the set

of possible behaviors for any given IOC. Our formal se-

mantics is derived from the informal English specification

found in the EPICS Record Reference Manual (RRM) [18]

and has been validated through millions of differential tests

against the EPICS runtime. The creation and validation of

this formal semantics identified a number of omissions and

ambiguities in the EPICS specification, which might lead to

unexpected behavior for users.

To produce our formal semantics, we read the RRM en-

tries for the record types we use, focusing particular attention
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on the Record Processing sections. We then re-implemented

those definitions in Coq [19], a mechanized proof assistant.

Coding the Formal Semantics

We decomposed all the activities described in the RRM

into combinations of about thirty primitive operations that

each perform a small change to the state of the IOC (its

PV values), while possibly consuming inputs or producing

outputs as well. Each record’s process routine can be com-

piled into a sequence of these operations. Each primitive

operation is individually very simple, and many are needed

to process even a single record. For example, one primitive

operation is to copy the value of one PV into another PV.

Another is to load a constant into a PV.

The semantics are single-threaded. Operations are atomic:

only one operation can execute at a time, and must complete

before another operation can begin. This has the effect of

modeling EPICS lock sets.

There are some sequencing constraints; certain sequences

of operations can only execute in particular orders. We ex-

press these by writing preconditions, assertions that describe

the states where a given operation can occur.

In addition to the operations that an IOC may perform on

its own PVs, our semantics capture things that might happen

in the outside environment. For instance, a new value might

become available on a hardware device or a timed callback

might fire.

The semantics admit nondeterminism. The results of

some operations, such as reading from a hardware device,

are not fully determined by the current state of the IOC, so the

semantics allows multiple behaviors. For example, because

the semantics does not require a particular outcome for a

hardware read, the space of allowed behaviors will include

one where the read produces 2.0, one where it produces 3.0,

and so on for each possible reading of the hardware device.

VALIDATING THE FORMAL SEMANTICS

The EPICS runtime is correct if it behaves as specified in

the RRM. Establishing this property would be valuable to

the EPICS community.

Our formal semantics is correct if it accurately models

the EPICS runtime. Any discrepancies would compromise

its usefulness in identifying bugs in EPICS programs. Our

formal semantics is based on our reading of the RRM.

Ideally, the RRM, our formal semantics, and the EPICS

runtime would be consistent. We have not proved these cor-

respondences, but we have used testing to identify discrepan-

cies between the EPICS runtime and our formal semantics.

Our testing identified a number of errors in early versions

of our semantics, where we had incorrectly interpreted the

RRM; we have since corrected these errors. More seriously,

our testing identified several omissions and ambiguities in

the RRM.

We built a Trace Validator that compares one IOC ex-

ecution to our semantics. The trace validator takes as in-

put a trace of events, such as record processing steps and

changes to PVs, captured from an instrumented IOC, and

checks that the given trace is consistent with the seman-

tics. We ran the trace validator on traces from millions of

randomly-generated programs to ensure that our semantics

accurately describes the behaviors of real EPICS programs.

This process of comparing two independent implementations

is called “differential testing”.

We performed this testing process because we were con-

cerned about the complexity of the EPICS framework,

toolchain, and runtime. This might lead either the EPICS

maintainers, or EPICS programmers like us, to make errors.

In particular, EPICS seems more complicated and harder

to understand than previous platforms used by CNTS. We

were also mindful of the warning that the EPICS “code is

not rigorously audited” [7]. Validating our formal semantics

constitutes an audit that the behavior of the EPICS database

processing engine conforms to our understanding of how it

is supposed to work, based on our reading of the RRM.

Coding the Trace Validator

The trace validator checks that each state transition ob-

served in a trace matches an operation defined in our formal

semantics.

We coded the trace validator in Coq. This makes it possi-

ble to verify the validator—i.e. use Coq to write and check

a proof of correctness of the trace validator. Specifically, we

proved in Coq that if the validator accepts a trace, then that

trace is actually possible under our semantics. Put another

way: if a trace is impossible under our semantics, then the

validator will reject it.

Differential Testing

We randomly generated over 20 million small test cases.

Each test case is a database of five records, where the trace

is started by an EPICS IOC shell dbtr command. We used

the trace validator to empirically check that our EPICS se-

mantics is consistent with behavior of the EPICS runtime.

No test case caused the EPICS runtime to crash, but we

discovered dozens of discrepancies. Most discrepancies

were due to our misreading of the RRM and EPICS run-

time code; we revised our semantics. Other discrepancies

revealed ambiguities and omissions in the documentation.

Here are some examples:

• The RRM does not document the default value for OMSL

on dfanout records and others. We assumed the de-

fault was closed_loop, but the EPICS runtime sets it to

supervisory.

• calcout records with OOPT = On Change consider inf ,

inf for the purposes of determining when to execute

their output link, contrary to IEEE 754 [20].

• seq uses callbacks even if all delays are zero. The call-

backs are chained, not scheduled simultaneously, which

allows them to interleave with other records processing.
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• Records with several input links will store the value

read from the link into a local field before proceeding to

the next link. A calc record, for instance, will write to

its A field before fetching the value pointed to by INPB.

This is observable if later input links refer to earlier

fields or if an input link processes a record that reads

from an earlier field.

There might be other omissions in the RRM, which we

did not notice because we made an assumption that is the

same as the EPICS runtime behavior. An advantage of our

formal semantics is that it makes every decision explicit, so

all assumptions are clear to anyone who reads the formal

semantics.

None of the discrepancies above affected the therapy con-

trol program. They yield differences in behavior only in

configurations that do not occur in our code. The testing

increases our confidence that the records we use, when used

in our restricted style, behave as described in the EPICS

RRM and as implemented in the EPICS runtime.

FUTURE WORK: VERIFIED EPICS

TOOLCHAIN

We plan to use our formal semantics to produce verified

tools for EPICS programs. We have already created two

proof-of-concept verified tools: a range analysis and an

interpreter. An ambitious goal is a verified compiler, that

would compile an EPICS database to a verified standalone

program that could replace an EPICS IOC, while dispensing

with much of the unverified EPICS toolchain and runtime.

Verified Analysis

Our semantics allows us to verify that analyses we write

for EPICS programs are correct. For example, the Symbolic

Interpreter is a powerful but unverified analysis. Future work

is to verify it with respect to our semantics.

We have already built one verified analysis, which finds

PVs that can only take on a finite set of values (e.g. zero

or one). Its proof of correctness states that if the analysis

reports a given PV can only be zero or one, then no matter

what happens to the IOC, that guarantee will hold. We hope

to use this analysis to help check some of our preconditions

for symbolic interpreter properties.

Verified Compiler

We have already built a verified interpreter, which runs

EPICS programs much like EPICS would, but without de-

vice support or channel access. We defined an opcode for

each operation in our formal semantics, then coded (in Coq)

an interpreter that processes each opcode by assigning PVs

to update the IOC state and (where required) by consuming

inputs and producing outputs. We then used the Coq theo-

rem prover to check that the behavior of this interpreter is

consistent with the assertions in the formal semantics. The

proof confirms the interpreter does not make any updates

that violate the assertions in our semantics.

We hope to use a similar approach to produce a re-

implementation of EPICS with sufficiently good perfor-

mance to build IOCs that could be used in production. This

would provide an alternative to the complicated EPICS

toolchain and much of the large, unverified EPICS runtime.

We plan to use the same formal semantics and opcodes,

but then perform a verified transformation to a program in

C. We would then generate machine code via a C compiler

that was proved correct, such as CompCert [21].

CONCLUSIONS

It is possible to use EPICS with confidence in safety-

critical applications, by using the programming style and

the tools described here.

We have demonstrated:

1. successful use of restricted EPICS in a safety critical

application,

2. a tool that finds errors in EPICS databases using ex-

haustive analysis,

3. testing of the EPICS runtime against the RRM finds

ambiguities and omissions, but no crashes or outright

errors.

Those interested in obtaining the toolset can contact the

first author at jon@uw.edu.
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