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Under the influence of gravity, light scalar fields can form bound compact objects called boson stars. We
use the semianalytic approach of matching asymptotic expansions to obtain the profile for boson stars
where the constituent particles have self-interactions. We obtain parametric representations of these profiles
as a function of the self-interactions, including the case of very strong self-interactions. We show that our
methods agree with solutions obtained by purely numerical methods. Significant distortions are found as
compared to the noninteracting case.
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I. INTRODUCTION

The increasingly strong constraints on weakly interact-
ing massive particles have made axions more attractive as a
dark matter candidate (for reviews see [1,2]). Many
searches are ongoing to find axion-like particles [3–15].
It has been noted by many authors that the axions might

bind into compact spatial structures (e.g. see the review
[16]). These are more generally referred to as boson stars
[17–19]). Such objects, if they exist, would produce
distinctive signatures in axion search experiments, and
understanding these signatures requires a description of the
profile of the boson stars, which could produce unique time
and spatial dependencies of the signal which can distin-
guish it from backgrounds [20]. It is also important to know
how these profiles are distorted by the presence of self-
interactions, and also by the gravitational effects of matter.
For all these reasons, it is timely to have a precise
description of the profiles of boson stars.
In a previous communication [21], we analyzed the

profile of such objects in the special case when the bosons
had no self-interactions. These objects are solutions to a
coupled set of equations called the Gross-Pitaevskii-
Poisson equations. In that paper, we showed that one could
find approximate solutions to these equations, by using a
combination of analytical and numerical methods. We
showed that our methods were numerically stable, and
that they converged uniformly far away from the core of the
star, and furthermore were much less computationally

expensive compared to other purely numerical methods
[18,22–35].
In this paper, we extend our previous methods to the case

of interacting bosons. This is a more difficult situation,
because the self-interactions can be much stronger than the
gravitational binding. Nevertheless, we show that our
methods continue to provide excellent agreement with a
fully numerical solution.
Our results show that self-interactions can produce

significant distortions of the profile of the star, as compared
to the noninteracting star. We parametrize these deforma-
tions by finding a parametrization for the star in terms of
two matching asymptotic expansions, where the expan-
sions are taken far away from the core and close to the core
respectively. The parameters of the solution can be found
systematically by matching the expansions in an overlap
region. We find these parameters as a function of the
interaction strength, which also allows us to find any
desired physical quantity (mass, central density etc.) in
terms of the coupling. We do this both for weak couplings,
where we can perturb around the noninteracting star, as
well as for strong couplings, where we can perturb around
the Thomas-Fermi limit of the solution. We note that these
expansions provide a solution to the axion stars which have
an accuracy of at least 10−3, and can hence be used in lieu
of complicated numerical calculations.
Our results improve on other semianalytic approaches

(e.g. [33,36,37]), which have used variational and other
techniques to find approximations to the boson star profile.
Our methods are particularly suited to accurate evaluations
of the profile away from the center, where the falloff is well
described by a Whittaker function.
In the following sections, we rederive the Gross-

Pitaevskii-Poisson equations satisfied by the boson star.
We also describe various limiting cases, including the
Thomas-Fermi limit of strong coupling. We then present
a series expansion in the two asymptotic regimes and find
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the solutions separately for weakly coupled systems and for
strongly coupled systems. We show how our solutions
apply to the special case of axion stars. We end with
conclusions and directions for future work.

II. GROSS-PITAEVSKII-POISSON EQUATIONS

A. The real scalar field

In [21] we have derived the structure equations for the
ground state of a self-gravitating complex scalar field in the
nonrelativistic limit. Following the procedure described in
[38], we now show that the same set of equations also apply
for a real scalar field.
Let us consider the real scalar field ϕðr⃗; tÞ described by

the Lagrangian

L ¼ 1

2
gμνð∂μϕÞð∂νϕÞ −

1

2
m2ϕ2 −

1

12
λϕ4: ð1Þ

In the presence of gravity, the scalar field can form
gravitational bound states, which are called boson stars.
A simple solution can be obtained assuming that only the
ground state is populated. In this case, the field can be
expressed in terms of a single real function ψðrÞ, some-
times called the wave function of the boson star, describing
the radial profile of the boson star. We can write

ϕðt; rÞ ¼
ffiffiffiffiffiffi
N
2E

r
ψðrÞðe−iEt þ eiEtÞ; ð2Þ

where E is the ground state energy and N is number of
bosons in the ground state. Note that properly shifting the
time coordinate allows us to absorb a possible phase of the
wave function and therefore to choose ψ to be real. We have
chosen a wave function normalization

R
ψ2dV ¼ 1 which

allows us to identify ψ2 with as the probability density.
The equation of motion of the scalar field is the Klein-

Gordon equation□ϕþm2ϕþ λ
3
ϕ3 ¼ 0. Assuming that the

field couples onlyweakly to gravity,we can use aNewtonian
approximation. This allows us to introduce the Newtonian
potential Φ in the metric gμν ¼ diagð1þ 2Φ;−1;−1;−1Þ.
We can then rewrite the Klein-Gordon equation as

∂2
tϕ

1þ 2Φ
−∇2ϕþm2ϕþ λ

3
ϕ3 ¼ 0: ð3Þ

Let us further assume that the ground state is non-
relativistic. In this case, we can write E ¼ mþ e with
binding energy e ≪ m. This implies eψ ;Φψ ;∇ψ ≪ mψ .
Using ∂2

tϕ ¼ −E2ϕ and E ¼ mþ e, we can rewrite the
Klein-Gordon equation in the nonrelativistic limit as

−eϕ −
1

2m
∇2ϕþmΦϕþ λ

6m
ϕ3 ¼ 0: ð4Þ

Inserting the explicit form of the field given in Eq. (2)
and rephasing by eiEt, we obtain the Schrödinger-type
equation

eψ ¼ −
1

2m
∇2ψ þmΦψ þ Nλ

4m2
ψ3: ð5Þ

Here, we have dropped additional terms with rapidly
oscillating phase factor e−inEt where n is a nonzero integer.
For the nonrelativistic approximation to be consistent, the
last term should be sufficiently small, i.e. Nλ

4m2 ≪ m.
The Newtonian potential is related to the energy density

via the Poisson equation∇2Φ ¼ 4πGρ. The energy density
ρ of the real scalar field is

ρ ¼ 1

2
ð∂tϕÞ2 þ

1

2
ð∇ϕÞ2 þ 1

2
m2ϕ2 þ λ

12
ϕ4 ≈ Nmψ2; ð6Þ

where we used the nonrelativistic approximation in the last
step. Newton’s equation therefore takes the simple form

∇2Φ ¼ 4πGNmψ2: ð7Þ

Comparing with the results of [21], we find that both
ground states of a boson star for both a complex scalar field
and a real scalar field are described by the same set of
equations given in Eqs. (5) and (7). These are often referred
to as Gross-Pitaevskii-Poisson equations. Note that the
Gross-Pitaevskii-Poisson equations for a real scalar field
have also been obtained by the authors of [29], which follow
a semiclassical approach considering a quantized scalar
field ϕ.

B. Limits and validity

The terms on the right-hand side of Eq. (5) represent the
contribution to the energy of a scalar particle due to the
quantum pressure, gravity and classical pressure respec-
tively. The quantum pressure is a consequence of
Heisenberg’s uncertainty principle and is always repulsive,
preventing the star from gravitational collapse. Gravity on
the other hand is always attractive. The classical pressure
arises from he contact interaction term and can either be
attractive or repulsive, depending on the sign of the self-
coupling λ. It is illustrative to consider the limits in which
one of the three contributions is negligible.
Using scaling relations between the coupling λ, the star’s

mass M and the star’s radius R, we qualitatively discuss
both physical properties of the star and the validity of the
solution. Without providing a formal definition of the star’s
radius R, we know that the probability density inside the
star scales like ψ2 ∼ 1

R3. Similarly, a field derivative will
scale as ∇ψ ¼ ψ

R. For a more rigorous discussion of the
mass-radius relations of boson stars, see [36].

1. Noninteracting limit λ= 0

In the noninteracting case, λ ¼ 0, the quantum pressure
balances gravity. We have obtained a semianalytical sol-
ution for this case in [21]. Note that for non-negligible
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couplings λ ≠ 0, the boson star becomes effectively non-
interacting at large radius due to low densities.
We can rewrite Eqs. (5) and (7) as

4πGMψ2 ¼ ∇2Φ ¼ 1

2m2
∇2

�∇2ψ

ψ

�
: ð8Þ

Using the scaling behavior discussed above, we see that
the radius of a nonself-interacting boson star scales as
R ∼ ðGMm2Þ−1. This is an remarkable result: the star’s
radius decreases when its mass increases. The binding
energy of a scalar particle is

e ∼mΦ ∼
GMm
R

∼G2M2m3: ð9Þ

The nonrelativistic approximation requires e ≪ m which

implies M ≪ Mmax
λ¼0 ¼

M2
pl

m .

2. Thomas-Fermi limit

For strong repulsive self-interactions λ > λc, the quan-
tum pressure becomes negligible and the classical pressure
balances gravity. Here, λc is the critical coupling at which
the quantum pressure and classical pressure are equally
important:

1

2m
∇2ψ ¼ Mλc

4m3
ψ3: ð10Þ

We can use the scaling behavior introduced earlier to solve
for the coupling and obtain λc ∼ Rm2

M . At the critical coupling,
hydrostatic equilibrium requires R ∼ ðGMm2Þ−1 which

implies λc ∼
M2

pl

M2 . Already a very small coupling is sufficient
for the Thomas-Fermi limit to apply.
For λ ≫ λc we can rewrite Eqs. (5) and (7) as

4πGMψ2 ¼ ∇2Φ ¼ M
4m4

∇2ψ2: ð11Þ

Using that the gradient scales as ∇ψ ∼ ψ
R, we obtain that the

radius of a strongly self-interacting boson star scales as
R ∼ Mpl

m2

ffiffiffi
λ

p
. The radius is independent of the star’s mass.

This is not surprising, since both gravity and the repulsive
self-interaction are proportional to the number of particles
and therefore the star’s mass. The binding energy of a scalar
particle is

e ∼mΦ ∼
GMm
R

∼
Mffiffiffi
λ

p m3

M3
pl

: ð12Þ

The nonrelativistic approximation requires e ≪ m which

implies M ≪ Mmax
λ>0 ¼

ffiffiffi
λ

p M3
pl

m2 ¼ ffiffiffi
λ

p Mpl

m Mmax
λ¼0. Larger cou-

pling increases the validity range of the nonrelativistic
approximation to higher masses M.

An analytic solution for the Thomas-Fermi limit has
been obtained in [23] and is discussed in Sec. IV.

3. Nongravitational limit

For sufficiently strong attractive self-interactions, λ < λ�,
quantum pressure balances the attractive self-interaction
while the effect of gravity becomes negligible. Gravity and
the classical pressure become equally important at λ� when

mΦ ¼ Mjλ�j
4m3

ψ2: ð13Þ

Using Φ ∼ GM
R and the radial size R ∼ ðGMm2Þ−1, this

implies a critical coupling of λ� ∼ −Gm4R2 ∼ −
M2

pl

M2 . For a
given coupling λ, the nongravitational limit applies for stars

with R < R� where the critical radius is R� ¼ Mpl

ffiffiffiffi
jλj

p
m2 with a

corresponding critical mass M� ¼ ðGm2R�Þ−1 ¼ Mpljλj−1
2.

For λ < λ�, we can rewrite Eq. (5) as

1

2m
∇2

�∇2ψ

ψ

�
¼ Mjλj

4m3
∇2ψ2: ð14Þ

Using the scaling behavior, we see that the radial size of the
star in the nongravitational limit is R ∼ Mjλj

m2 . The radius
increases linearly with the mass of the star. Since at larger
radius R > R� we approach the noninteracting limit in
which the mass decreases for increasing radius, we find
that there is a maximum possible mass for boson stars
Mmax ¼ M� ∼Mpljλj−1

2. However, it has be shown in [36]
that the solutions for R < R� are unstable with respect to
perturbations. Therefore, boson stars in the nongravita-
tional limit cannot be realized in nature, at least for this
simple class of interactions. For more complicated inter-
actions, such stars can exist, and fall under the general class
of Q-balls [39–42].

C. Scaling invariance

Following the terminology of [21], we introduce the
dimensionless variables

V ¼ e
2m

−
Φ
2
; S ¼

ffiffiffiffiffiffiffiffiffiffi
πGN
2m

r
ψ ;

x ¼ 2rm; Λ ¼ λ

4πGm2
: ð15Þ

We can then rewrite the Gross-Pitaevskii-Poisson equations
given in Eqs. (5) and (7) as

∇2V ¼ −S2 and ∇2S ¼ −VSþ ΛS3: ð16Þ

The wave function normalization condition
R
ψ2dV ¼ 1

becomes
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Z
∞

0

x2S2dx ¼ GMm; ð17Þ

where M ¼ Nm is the mass of the boson star.
Let us note that Eqs. (16) and (17) are invariant under the

scaling

x →
x
f
; S → f2S; V → f2V;

M → fM; Λ →
Λ
f2

; ð18Þ

where f is a scaling factor. This implies that we can relate
different solutions of the Gross-Pitaevskii-Poisson equa-
tions corresponding to different boson star masses M and
couplings Λ through rescaling. We make use of this scale
invariance and solve for the Gross-Pitaevskii-Poisson
equations at a fixed reference scale k. A particularly useful
choice for our discussion is to set −k2 ¼ Vð∞Þ ¼ e

2m which
transforms as k → fk. We can then introduce the scale
invariant coordinate z, wave function s, potential v, mass β
and coupling γ via

z ¼ kx; S ¼ k2s; V ¼ k2v;

γ ¼ k2Λ; GMm ¼ 2kβ: ð19Þ

Using the scale independent variables, we can write the
Gross-Pitaevskii-Poisson equations as

∇2s ¼ −svþ γs3 and ∇2v ¼ −s2: ð20Þ

The scale choice implies the boundary condition
vð∞Þ ¼ −1. The solution corresponding to a boson star
with mass M can be obtained by performing the rescaling
given in Eq. (19) with k ¼ GMm

2β . In the following section,
we obtain an approximate analytical form for s, v.

III. WEAKLY COUPLED SYSTEMS AND
SERIES EXPANSION

A. Series expansion

We have seen in the discussion of the nonself-interacting
case that we can describe the profile of the boson star
through an infinite series for the wave function and
potential.
Following the sameapproach as for the nonself-interacting

case [21], we describe the profile at both small and large radii
through a series expansion of the wave function and
potential. At small radii, the profile can be described via
an (even) polynomial around the center if the boson star
z ¼ 0,

s ¼
X∞
n¼0

snzn and v ¼
X∞
n¼0

vnzn: ð21Þ

Equation (20) then leads to the recursion relations

−
Xn
m¼0

smvn−m þ γ
Xn
m¼0

Xm
l¼0

slsm−lsn−m

¼ ðnþ 2Þðnþ 3Þsnþ2

−
Xn
m¼0

smsn−m ¼ ðnþ 2Þðnþ 3Þvnþ2: ð22Þ

The smoothness of the profile at the origin implies
s1 ¼ v1 ¼ 0, and therefore, also all odd coefficients
s2nþ1; v2nþ1 vanish. The profile at small radius z can there-
fore be fully parametrized in terms of the wave function and
potential at the origin: s0 and v0.
At large radius, we can expand the profile using the

series expansion

s¼
X∞;∞

n;m¼0;0

snm

�
e−z

zσ

�
n
z−m; v¼

X∞;∞

n;m¼0;0

vnm

�
e−z

zσ

�
n
z−m:

ð23Þ

By matching the coefficients, Eq. (20), we obtain the
recursion relations

Xn;m
p;q¼0;0

spqv
n−p
m−q þ n2snm þ 2nðnσ þm − 2Þsnm−1

þ ðnσ þm − 2Þðnσ þm − 3Þsnm−2

¼ γ
Xn;m

p;q¼0;0

Xp;q
r;t¼0;0

srt s
p−r
q−t s

n−p
m−q ð24Þ

Xn;m
p;q¼0;0

spqs
n−p
m−q þ n2vnm þ 2nðnσ þm − 2Þvnm−1

þ ðnσ þm − 2Þðnσ þm − 3Þvnm−2 ¼ 0: ð25Þ

Let us note the following properties of the solution:
i) Normalizability requires s00 ¼ 0. Equation (24) then
implies that all coefficients s0m vanish as well. This means
that the wave function decays at least exponentially.
ii) Equation (25) then implies that all v0m ¼ 0 for m > 1.
This means that at large radius, the potential is described

by the Newtonian potential vð0Þ¼v00þv0
1

z ¼−1þ2β
z . Here,

we both used the boundary condition imposed by our
scale choice, v00 ¼ −1, and used the notation introduced
in Eq. (19), v01 ¼ 2β. All other terms in the expansion of
v are at least exponentially suppressed. iii) Setting
n ¼ m ¼ 1, Eq. (25) can be written as 2β ¼ v01 ¼
2ð1 − σÞ. This is a remarkable result: the exponent σ
in the series expansion is related to the total mass of the
system σ ¼ 1 − β. iv) As derived in [21], the leading

FELIX KLING and ARVIND RAJARAMAN PHYS. REV. D 97, 063012 (2018)

063012-4



order, n ¼ 1, solution for the wave function at large
radius is given by the Whittaker function

sð1Þ ¼ α

2βz
Wβ;−1

2
ð2zÞ: ð26Þ

Here, we have introduced the normalization parameter
α ¼ s10. v) The large radius solution can be fully
parametrized by the expansion parameters α ¼ s10 and
β ¼ v01. The remaining coefficients can then be com-
puted using Eqs. (24) and (25). Note however, that the
series expansion in Eq. (23) does only converge for
m < M, where M is finite. vi) Equations (24) and (25)
further imply that the potential contains only non-
vanishing components vnm for even n while the wave
function only has nonvanishing components snm for
odd n.
For practical purposes, we truncate the infinite series in

Eqs. (21) and (23) and only take into account the leading
terms with n ≤ N and m ≤ M. Let us define the truncated
series expansion at small and large radius z as

sðNÞ ¼
XN
n¼0

snzn and sðNÞ
ðMÞ ¼

XN;M

n;m¼0;0

snm

�
e−z

zσ

�
n
z−m: ð27Þ

B. Expansion parameters

As we have seen in the previous section, the series
expansion for s and v at small and large radius can be fully
parametrized by the four expansion parameters α; β; s0; v0.
In the noninteracting case γ ¼ 0, these were just numbers,
while in the general case they will be functions of the
coupling γ

αðγÞ; βðγÞ; s0ðγÞ; v0ðγÞ: ð28Þ

Following the strategy from [21], we first obtain the
expansion parameters from numerical simulations. In a
second step, we provide an analytic form for the expansion
parameter.
To obtain a numerical solution of the boson star’s profile,

it is convenient to solve the Gross-Pitaevskii-Poisson
equations as given in Eq. (16) using the boundary condition
Vð0Þ ¼ 1. The authors of [43] have shown that the
solutions of Eq. (16) can then be parametrized by the
central value of the wave function, S0 ¼ Sð0Þ and catego-
rized into three distinct classes: for S0 > S�0 the wave
function diverges for at large radius towards positive
infinity, for S0 ¼ S�0 the wave function converges to zero,
is positive definite and square integrable, while for S0 < S�0
the wave function diverges for a large radius towards
negative infinity.

Using a Runge-Kutta 4 method with constant step size
Δx, we perform the numerical integration until the wave
function starts to diverge and iteratively optimize the
central value of the wave function S0 to find S�0. The
precision of the wave function needed for the numerical
solution to stay finite until a large value of x, which is
needed to fit the large range solution, increases exponen-
tially with the radial coordinate x. The accuracy of the
numerical solution is limited by the step size Δx. In this
study, we use a precision of up to 150 significant figures
and Δx ¼ 10−3, providing an accuracy of the solution of
order OðΔ4

xÞ ≈ 10−12.
The Whittaker solution parametrization given in

Eq. (26) always describes the wave function profile at
large radius when the density is small enough that the
self-interaction becomes negligible. However, the central
mass parameter β and the normalization α depend on
the central profile of the star and therefore the coupling
parameter γ.
To obtain the expansion parameters α, β as well as the

scaling parameter k in Eq. (19), we fit the leading order
profiles, the Whittaker solution SðxÞ ¼ kα

2βx
Wβ;−1

2
ð2kxÞ and

the Newtonian potential VðxÞ ¼ −k2 þ 2kβ
x to the numerical

solution for V and S at large x. To avoid systematic effects
due to the truncation of subleading terms n > 1 of the
series expansion in Eq. (23), we restrict the fitting range
to x > x�, where the fraction of mass outside radius x�

contributed less than 10−12 to the total mass of the boson
star. The expansion parameters at small radius and the
coupling are obtained via s0 ¼ k−2S0, v0 ¼ k−2

and γ ¼ k2Λ.
In Fig. 1, we show the dependence of the expansion

parameters α (upper left), β (upper right), s0 (lower left) and
v0 (lower right) as a function the coupling parameter γ as
red dots. Note that the horizontal axis switches from a
linear scale to a logarithmic scale at γ ¼ 1 as indicated by
the dashed black line. This indicated the transition between
the weakly coupled regime γ < 1 and the strongly coupled
regime γ > 1.

C. Fit for weak couplings: − 1 < γ < 1

A vanishing self-coupling γ ¼ 0 indicates the noninter-
acting limit. The corresponding results for the expansion
parameters are presented in [21]. If the self-coupling is
weak, jγj < 1, we can treat the classical pressure as
perturbation. In this case, we can write the expansion
parameters as a series expansion in the coupling γ around
the noninteracting solution. To obtain the coefficients of
this expansion, we fit a 6th-degree polynomial to the
numerical solutions. We can write the result in an analytic
form as
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αðγÞ ¼ 3.495059 − 0.117682γ − 0.391600γ2 þ 0.191882γ3 − 0.041828γ4 − 0.041507γ5 þ 0.033020γ6

βðγÞ ¼ 1.752717þ 0.703934γ − 0.109101γ2 þ 0.013436γ3 þ 0.017778γ4 − 0.018281γ5 þ 0.005129γ6

s0ðγÞ ¼ 1.021494 − 0.390946γ þ 0.171489γ2 − 0.064820γ3 þ 0.004328γ4 þ 0.028849γ5 − 0.017732γ6

v0ðγÞ ¼ 0.938204þ 0.102743γ − 0.080310γ2 þ 0.058708γ3 − 0.037703γ4 − 0.002557γ5 þ 0.013512γ6: ð29Þ

The result is shown in Fig. 1 as a green line. The lower
panels indicate the accuracy of the analytic form with
respect to the numerical solution. We can see that for all

four expansion parameters the solution from Eq. (29)
reproduces the numerical results with accuracy better of
Oð10−4Þ in the range −1 < γ < 1.
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FIG. 1. The upper panels show the expansion parameters α (upper left), β (upper right), s0 (lower left) and v0 (lower right) as
function of the coupling parameter γ. The numerical solution is shown as red dots in the upper panels. The analytic fits to the numerical
results are shown in green for the noninteracting regime as discussed in Sec. III C and in blue for the Thomas-Fermi regime as discussed
in Sec. IV B. The results corresponding to the Thomas-Fermi limit discussed in Sec. IVA are shown in cyan for comparison. The lower
panels show the accuracy of the analytic solutions with respect to the numerical solution.
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As mentioned before, boson stars with attractive self-
coupling and small radius R, or equivalently large negative
coupling γ, become unstable with respect to perturbations.
We show in Sec. VA, that this happens at γmin ¼ −0.722.
The solutions for γ < γmin are unphysical.

IV. STRONGLY COUPLED SYSTEMS

A. Thomas Fermi limit

In the previous section, we have discussed the weakly
coupled scalar field. Let us now consider the case of a large
repulsive self-coupling γ ≫ 1. In this case, the quantum
pressure becomes negligible and the classical pressure
balances gravity. This scenario is known as Thomas-
Fermi limit and has been examined in [23,44] We can
write the Gross-Pitaevskii-Poisson equations as

γ∇2vþ v ¼ 0 and v ¼ γs2: ð30Þ

The (normalizable) solution for the profile is given by

v ¼ v0sincðz= ffiffiffi
γ

p Þ and s ¼ s0½sincðz= ffiffiffi
γ

p Þ�12; ð31Þ

where sincðxÞ ¼ sinðxÞ=x. The wave function becomes
zero at Z ¼ π

ffiffiffi
γ

p
, implying that the boson star is compact

and has a radius Z. At z > Z the wave function remains
zero, and the potential is described by the Newtonian
potential vðzÞ ¼ −1þ 2β

z .
Using that exterior and interior solution for the potential

of the star to match at surface, vðZÞ ¼ 0, we can solve for
the mass parameter β ¼ 1

2
Z ¼ π

2

ffiffiffi
γ

p
. We can further use the

normalization condition [see Eq. (17)]

2β¼
Z

s2z2dz¼ s20

Z
π
ffiffi
γ

p

0

sincðz= ffiffiffi
γ

p Þz2dz¼ s20πγ
3
2 ð32Þ

to obtain the central density s0 ¼ γ−
1
2. Using Eq. (30), this

implies that the central value for the potential is v0 ¼ 1.
So far, we have ignored the effects of quantum pressure

to the boson star’s profile. However, close to the star’s
radius Z, the density drops until eventually the self-
interaction becomes negligible. The outer part of the
star can therefore be described by the noninteracting
solution, which at leading order can be written in terms
of the Whittaker function. In the following, we estimate the
remaining expansion parameter α by matching the Thomas-
Fermi solution for the interior of the star with the Whittaker
solution for the exterior part.
We define the matching point z� as the radius where the

quantum and classical pressure terms become equal,
∇2sðz�Þ ¼ γsðz�Þ3. Using the Thomas-Fermi profile from
Eq. (31), we can write this condition as

γs40
8z4s3

�
1þ 3

z�2

γ
−
�
1þ z�2

γ

�
cos

�
2z�ffiffiffi
γ

p
�
−
2z�ffiffiffi
γ

p sin

�
2z�ffiffiffi
γ

p
��

¼ s30γ
3
2

z�3
sin

�
z�ffiffiffi
γ

p
�

3

: ð33Þ

We can write the matching point as z� ¼ ðπ − δÞ ffiffiffi
γ

p
and

expand the matching condition in δ. Keeping only the linear
terms and using s0 ¼ γ−

1
2, we can solve for δ and obtain

δ ¼ ð4γ=πÞ−1
3. The wave function at z� has a value

sðz�Þ ¼ s0sincðπ − δÞ12 ≈ s0

�
δ

π

�1
2 ¼ ð2πγ2Þ−1

3: ð34Þ

Following [45] [see Sec. 8, Eq. (18)] we can write the
Whittaker function Wβ;−1

2
ð2zÞ for z ¼ 2β ¼ π

ffiffiffi
γ

p
as

Wβ;−1
2
ð2zÞ ≈ Γ

�
1

3

��
2z
6π3

�1
6

exp

�
β log

�
β

e

�
þ 1

12β

�
: ð35Þ

Using the form of the exterior profile as given in Eq. (26)
and matching it to the Thomas-Fermi solution at z� in
Eq. (34) allows us to extract the expansion parameter α.
We find

α ¼ 2βz�sðz�Þ
Wβ;−1

2
ð2z�Þ ≈

ð3
4
Þ16Γð1

3
Þ−1πγ−1

4

exp½π
2
γ
1
2 logð π

4e γ
1
2Þ þ 1

6π γ
−1
2�: ð36Þ

We have already seen that in the Thomas-Fermi limit the
remaining expansion parameters are given by

β ¼ π

2
γ
1
2; s0 ¼ γ−

1
2; v0 ¼ 1: ð37Þ

We have therefore obtained a simple analytic form for all
expansion parameters in the limit of large self-couplings.
The results from Eqs. (36) and (37) are shown in Fig. 1 as
dashed cyan lines.
Note that for increasing self-coupling γ, the expansion

parameter α exponentially decreases leading to a sharp drop
of the wave function profile at z ¼ Z. The bosons become
more and more confined in the inner part while the large
radius tails of the wave function vanish.

B. Fit for strong couplings: γ > 1

In the above discussion of the Thomas-Fermi limit, we
have neglected the effect of the quantum pressure on the
structure of the star. For large but finite self-couplings γ, we
can consider the quantum pressure as a perturbation to the
Thomas-Fermi limit. We include this perturbation as a
correction factor to the Thomas-Fermi solution, which we
can express a series expansion in the (inverse) coupling
parameter. The coefficients of this expansion are obtained
from a fit to the numerical solution. We can write the result
in an analytic form as
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αðγÞ ¼ αTF½0.603380þ 0.485970γ−
1
6 − 4.422475γ−

2
6 þ 8.719758γ−

3
6 − 8.363927γ−

4
6 þ 4.397913γ−

5
6 − 1.001027γ−1�

βðγÞ ¼ βTF½1 − 0.001478γ−
1
3 þ 0.045642γ−

2
3 þ 0.823049γ−1 − 0.590994γ−

4
3 þ 0.347840γ−

5
3 − 0.118132γ−2�

s0ðγÞ ¼ sTF0 ½1þ 0.003712γ−
1
2 − 0.067139γ−1 − 0.436976γ−

3
2 − 0.107433γ−2 þ 0.687868γ−

5
2 − 0.327405γ−3�

v0ðγÞ ¼ vTF0 ½1þ 0.008062γ−
1
2 þ 0.388054γ−1 − 1.245466γ−

3
2 þ 1.486280γ−2 − 0.823199γ−

5
2 þ 0.178605γ−3� ð38Þ

with the leading order Thomas-Fermi solutions

αTF¼
�
3

4

�1
6

Γ
�
1

3

�
−1
πγ−

1
4 exp

�
−
π

2
γ
1
2 log

�
π

4e
γ
1
2

�
−

1

6π
γ−

1
2

�
;

βTF¼ π

2
γ
1
2; sTF0 ¼ γ−

1
2; vTF0 ¼ 1: ð39Þ

Note that the correction factor for the expansion param-
eter α contains a nonunity constant term. This should not be
surprising, considering that we obtained α in the Thomas-
Fermi limit by matching the Thomas-Fermi solution and
the Whittaker solution at a matching point z�, even though
both solutions describe the profile only poorly at this point.
The results are shown in Fig. 1 as a blue line. We can see

that for all four expansion parameters the solution from
Eq. (38) reproduces the numerical results with accuracy of
Oð10−5Þ for self-couplings γ > 1.
Using the analytic expression for the expansion param-

eters, we can now obtain the profile of the boson star for a
given value of the self-coupling γ. For very large self-
couplings, γ ≳ 10, we can directly use the Thomas-Fermi
and Whittaker solution to describe the central and outer
profile of the star. This is shown in Fig. 2 for γ ¼ 10 (red),
100 (blue) and 1000 (green). The upper panel shows the
wave function profile sðzÞ normalized by its central value
s0. The numerical solution is shown in gray, the Thomas-
Fermi solution for the central profile given by Eq. (31) as
dashed lines and the Whittaker solution given by Eq. (26)
as solid lines. The lower panel shows the accuracy of the
approximate solutions with respect to the numerical
solutions.
We can see that for large couplings, a combination of the

Thomas-Fermi and Whittaker solutions describes a profile
with an accuracy of Oð10−6Þ in the center and outside the
star, corresponding to the accuracy of the expansion
parameters. However, even for large couplings, there
remains a surface region around z ≈ Z that is poorly
described by both the Thomas-Fermi and Whittaker sol-
utions. Even though the wave function, and therefore the
mass density, is small in the surface region, the fraction of
the star’s mass contained in it can still be sizeable.
To obtain a better description, in particular, for the

surface region, we can use the series expansion derived
in Sec. III A. This is shown in Fig. 3 for an intermediate
sized self-coupling γ ¼ 10. The upper panel shows the

wave function profile sðzÞ. Besides the numerical solution
(gray), the Thomas-Fermi solution (magenta) and the
Whittaker solution (red), we show the truncated series
expansion as given in Eq. (27) with N ¼ 20 for the inner
solution (cyan) and N ¼ 3, M ¼ 8 for the outer solution
(blue). The corresponding accuracy of the solution is shown
in the lower panel. We can see that including higher order
terms in the truncated series expansion increases the accuracy
of the solution by one order of magnitude in the surface
region and up to four orders of magnitude in the center and
outside star. For comparison, we also show the truncated
series expansion with N ¼ 50 for the inner part and N ¼ 5,
M ¼ 10 in the outer part in green. The corresponding
accuracy in the surface region is better than 10−3.
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FIG. 2. The upper panel shows the wave function profile sðzÞ
for the couplings γ ¼ 10 (left), 100 (center) and 1000 (right). We
show the numerical solution (gray), the Thomas-Fermi approxi-
mation (dashed) for the central profile [see Eq. (31)] and the
Whittaker approximation (solid) for the outer profile [see
Eq. (26)]. The lower panel shows the accuracy of the approximate
solutions with respect to the numerical solution, ðs − snumÞ=snum,
as indicated by the colored dashed lines. We use the expansion
parameters according to Eq. (38).
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V. APPLICATIONS

A. Using the solution

In the above discussion, we have solved the Gross-
Pitaevskii-Poisson equations in Eq. (20), expressed in terms
of the dimensionless variable s and v. We have seen that the
solution of these equations is fully parametrized by the
dimensionless coupling parameter γ and then obtained
an analytic form for profile of boson stars. To use the
solution to describe a boson star with mass M made of
boson with mass m and self-coupling λ, we therefore need
to obtain the corresponding value of the dimensionless
coupling parameter γ.
Combining our scale choice k ¼ GMm

2β with Eqs. (15) and
(19), we can see that

γ ¼ k2Λ ¼ GM2λ

16πβ2
: ð40Þ

Note that the value of the self-coupling parameter γ is
independent of the boson mass m and only depends on the
star’s mass M and the quartic self-coupling λ. We can
obtain the coupling parameter γ by solving

16πγβðγÞ2 ¼ λGM2 ≡ ξ ð41Þ

for γ as a function of ξ where we have introduced the short-
hand notation ξ ¼ λGM2. Alternatively, we can follow our
previous approach used to obtain the expansion coefficients
and obtain an expression for γ by finding a suitable fit to the
numerical solution. This is shown in Fig. 4. The red dots
correspond to the numerical solution using the same data
set as Fig. 1.
In the Thomas-Fermi limit, the expansion parameter β is

given by β ¼ π
2

ffiffiffi
γ

p
. We can solve Eq. (41) and obtain

γTF ¼
ffiffiffiffiffiffiffi
ξ

4π3

r
ð42Þ

as shown in Fig. 4 as dashed cyan curve. To obtain a more
accurate result, we follow our approach used to obtain the
expansion parameters and fit the numerical solution with a
suitable series expansion. For large values of ξ > 100, we
expand around the Thomas-Fermi limit and obtain

γðξÞ¼ γTF½1−0.035941ξ−
1
4−9.569558ξ−

1
2þ31.89268ξ−

3
4

−120.9668ξ−1þ316.0673ξ−
5
4−308.2427ξ−

3
2�: ð43Þ

For small ξ < 100, we find
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FIG. 3. The upper panel shows the numerical solution (gray),
the Thomas-Fermi approximation as given in Eq. (31) (magenta
dashed), the Whittaker approximation as given in Eq. (26) (red
dashed), the truncated series expansion of the wave function at
small radius with N ¼ 20 (cyan dotted) and with at large radius
with N ¼ 3, M ¼ 8 (blue dotted) as given in Eq. (27). The lower
panel shows the accuracy of the approximate solutions with
respect to the numerical solution, ðs − snumÞ=snum. We use the
expansion parameters according to Eq. (38).
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FIG. 4. The upper panels show the coupling parameter γ as
function of ξ ¼ λGM2. The numerical solution is shown as red
dots in the upper panels. The analytic fit to the numerical results
is shown in green for the weak coupling regime [see Eq. (44)], in
blue for the strong coupling regime [see Eq. (43)] and in cyan for
the Thomas-Fermi limit. The lower panel shows the accuracy of
the analytic solutions with respect to the numerical solution.
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γðξÞ ¼ −0.720960þ 1.157002

�
ξ − ξmin

100

�1
2

− 0.400828
�
ξ − ξmin

100

�
þ 0.420862

�
ξ − ξmin

100

�3
2

− 0.299337

�
ξ − ξmin

100

�
2

þ 0.125788

�
ξ − ξmin

100

�5
2

− 0.023160

�
ξ − ξmin

100

�
3

; ð44Þ

with ξmin ¼ −51.523602. Note that domain of ξ is
restricted to ξ > ξmin, and therefore, the coupling parameter
γ is bound from below γ > γmin ¼ −0.722. Physical boson
stars therefore need to fulfill the condition λGM2 > ξmin.
This implies that the maximal mass of a boson star with
attractive self-interaction, λ < 0, is given by

Mλ<0
max ¼ Mpl

ffiffiffiffiffiffiffiffi
ξmin

λ

r
: ð45Þ

There exists a second branch of the solution corresponding
γ < γmin. However, the corresponding boson star would
have a higher total energy than the solution for γ > γmin.
Such configuration is unstable with respect to perturbations
and therefore unphysical [36].
The accuracy of the expressions given in Eqs. (44) and

(43) with respect to the numerical solution is shown in the
lower panel of Fig. 4. We can see that the analytic
expressions reproduce the numerical results with accuracy
better of Oð10−4Þ for all physical values of ξ.
Knowing the value of γ for a given boson star, we can

obtain the profile for physical wave function ψ and gravi-
tational potentialΦ by rescaling the dimensionless solution s
and v according to Eqs. (15) and (19). We can write

ψðrÞ ¼
ffiffiffiffiffiffi
1

8π

r
G

3
2M

3
2m3

β2
s

�
GMm2

β
r

�

ΦðrÞ ¼ −
G2M2m2

2β2

�
1þ v

�
GMm2

β
r

��
: ð46Þ

Furthermore, we can simply read off the binding energy

e ¼ −2mk2 ¼ −
G2M2m3

2β2
ð47Þ

and the central density

ρ0 ¼ Mψð0Þ2 ¼ 1

8πβ4
G3M4m6s20: ð48Þ

B. Axion stars

In the following, we illustrate the use of the obtained
solution on one particularly well-motivated scenario:
axion stars. The axion is a real pseudoscalar field, which
was initially introduced to solve the strong-CP problem.
Furthermore it also provides a natural dark matter candidate
if its mass in the range between m ¼ 10−5 and 10−2 eV.
The axion potential can heuristically be described by the
instanton potential

VðaÞ ¼ m2
πf2π

�
1 − cos

�
a
f

��
≈
1

2
m2a2 þ λ

12
a4; ð49Þ

where a denotes the axion field,mπ ¼ 135 MeV is the pion
mass, fπ ¼ 92 MeV is the pion decay constant and f is the
axion decay constant. After expanding the potential and
matching it to the form of Eq. (1), we find that the axion
mass and decay constant are related by mf ¼ mπfπ. The
quartic coupling is given by λ ¼ − m2

2f2 where the negative

sign indicates that the self-interaction is attractive. Note that
there exist higher terms in the expansion. However, those
terms will not contribute in the nonrelativistic approxima-
tion and have been shown to be insignificant for dilute
axions stars even in the relativistic limit [22].
In the previous section, we have seen that a boson star

with attractive self-interaction has an upper mass. Using the
axion parameters this implies

M < 10.14
mπfπ
G

1
2m2

¼ 2.74 × 10−12 M⊙

�
10−5 eV

m

�
2

: ð50Þ

We have seen in Sec. II B that the nonrelativistic approxi-
mation is valid for axion stars with mass

M ≪
1

Gm
¼ 5 × 10−7 M⊙

�
10−5 eV

m

�
: ð51Þ

For axions in the dark matter axion window of masses
between m ¼ 10−5 and 10−2 eV, the upper bound on the
axion star’s mass is well below this limit, and therefore,
the axion star is well described by the nonrelativistic
approximation.
In Fig. 5, we show the binding energy e given in Eq. (47)

as a function of the axion star’s mass M for a axion mass
m ¼ 10−5 eV. The green line shows the result for a non-
interacting axion field, λ ¼ 0. In this case, the binding
energy is given by e ¼ −0.1627 ·G2M2m3, which increases
quadratically with the star’smass. The red lines indicates the
axion field including the attractive self-interaction,
λ ¼ − m2

2f2 ¼ −3.2 × 10−53. For small axion star masses

M ≲ 10−12 M⊙, it approaches the noninteracting limit. In
this case, the classical pressure due to the self-interaction is
negligible since the axion density is small even in the center
of the star. For masses M > 10−12 M⊙, the self-interaction
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term becomes important and the binding energy increases
relative to the noninteracting case. The upper bound on the
axion mass star mass, Mmax ¼ 2.74 × 10−12 M⊙, is indi-
cated by the gray dashed line. The authors of [46] have
shown that axions with massm ¼ 10−5 eV will form axion
miniclusters with masses aroundM ∼ 10−12 M⊙ and there-
fore in the regime in which self-interactions are important.
For comparison, we also show the results for a wrong-

sign axion star, in which the self-coupling has the
same magnitude as the axion field but is repulsive,
λ ¼ þ m2

2f2 ¼ þ3.2 × 10−53, as a blue line. At high masses,

the binding energy approaches the Thomas-Fermi limit,
shown as a dashed cyan line. In this case the binding energy
is given by e ¼ − 4ffiffiffiffi

λπ
p G

3
2Mm3.

In the upper panel of Fig. 6, we show the density profile,
ρðrÞ ¼ Mψ2ðrÞ. For illustration, we choose an axion mass
m ¼ 10−5 eV and axion star mass M ¼ 2.5 × 1012 M⊙
which is slightly below the maximal massMmax. Following
the previous discussion, we consider an axion-star without
self-interaction (green), including the attractive self-inter-
action (red) and a wrong-sign axion-star with a repulsive
self-interaction (blue). To calculate the density profile, we
use the truncated series expansion as given in Eq. (27) with
N ¼ 20 at small radius, as indicated by the dashed lines,
and N ¼ 3, M ¼ 2 at large radius as indicated by the solid
lines. We can see that the two series expansions match well
at intermediate values of the radius. Note that the attractive

self-interaction of the axion field leads to a significant
deformation of the density profile with respect to the a
noninteraction axion star of same mass. This indicates
the importance of including the axion self-interaction
when considering axions stars close to their maximal mass
M ∼Mmax.
The lower panel of Fig. 6 shows the differential mass

distribution dM=dr ¼ 4πr2ρ for the three considered stars.
We can see that the mass distribution peaks at intermediate
radii and approximately half of the star’s mass is described
by both the small and large radius expansion of the wave
function as given in Eq. (27). This once again shows
the importance of an accurate descriptions of the tails of the
wave function profile in order to correctly describe the
axion star.

VI. CONCLUSION

Light scalar fields can form gravitationally bound
compact objects, called boson stars. In the Newtonian
limit, the profiles of boson stars are described by the Gross-
Pitaevskii-Poisson equations. In a previous study [21], we
presented a semianalytic solution to these equations
describing the profile of boson stars formed by a
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FIG. 5. Binding energy e as a function of the axion star’s mass
M for an axion mass m ¼ 10−5 eV. We show the results for
axion-star without self-interaction (green), with attractive self-
interaction (red) and a wrong-sign axion-star with a repulsive
self-interaction (blue). The cyan line indicates the Thomas-Fermi
limit. The vertical line indicates the upper bound on the star’s
mass Mmax in the case of an attractive self-interaction.
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FIG. 6. The upper panel shows the energy density profile ρ for
an axion star with mass M ¼ 2.5 × 10−12 M⊙ and axion mass
m ¼ 10−5 eV. We show the results for an axion-star without self-
interaction (green), with attractive self-interaction (red) and a
wrong-sign axion-star with a repulsive self-interaction (blue). We
use the truncated series expansion of the wave function at small
radius with N ¼ 20 (dashed) and with at large radius with N ¼ 3,
M ¼ 2 (solid) as given in Eq. (27). The lower panels shows the
corresponding differential mass distributions dM=dr.
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noninteracting scalar field. The solution is based on a series
expansion which is parametrized by four expansion param-
eters that have been obtained from numerical simulation at
high accuracy.
In this study, we have generalized our semianalytic

approach to boson stars where the constituent particles
have self-interactions. In this case, the expansion param-
eters are functions of the quartic self-coupling. Based on
results from numerical simulations, we found a correspond-
ing analytic expression for all expansion parameters.
This allows to simply obtain profiles of boson stars in an

analytic form for arbitrary self-couplings at high precision
directly from the series expansion. In particular, no further
time consuming and computational expansive numerical
integration is needed.
We have also applied our methods to axion stars

and shown how themass and density profiles can be obtained
for both weak and strong interactions. The profiles are

significantlymodified fromthecaseofnoninteractingbosons.
The methods developed in this paper allows for systematic
studies of the properties of boson stars in an analytic way
without further relying on numerical simulations.
Finally, we note that there are several possible general-

izations of these results. In particular, we can extend our
results to rotating boson stars. It would also be interesting
to see how the profiles are modified in the presence of other
astrophysical objects like planets. We leave these and other
questions to future work.
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