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Abstract. We discuss the emergence of discrete Painlevé system in the context of irregular
conformal block which is also a SU(2) N' = 2 Ny = 2 supersymmetric gauge theory. We develop
a framework of orthogonal polynomials in unitary matrix model.

1. Introduction
In this paper, we consider the generic following type of the [-deformed “matrix model”
depending on two integration contours Cr, and Cg:

Ny, Np+Npgr
Z(NL,NR):CQ:[l/CL dwz> / dwny, +; | A% (w) exp (f Z Ww;) (1.1)

where C is a normalization constant and A(w) is the Vandermonde determinant:

Aw) = 11 (w; —wy). (1.2)
1<I<J<Np+Ng
Following [1], we introduce their generating function

NR

uy
Z(N;pr,pr)= Y. ]\f i N 2N Nr)
Ny vy Nt Ng!

]f/‘l/dN A (w) exp( BZWU)[)

/C:ML/CLJFMR/CR' (1.4)

As we recall from [2] (see, [3, 4, 5, 6, 7, 8] for earlier references), in the case of 8 = 1 which we
consider in the body of this paper, the Ny = 2 matrix model of the above form with a2 € Z
in fact reduces to the unitary matrix model with cosine + log potential in section 3.

(1.3)

where C = u;Cr, + urChr, i.e.,
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2. Unitary matrix model
In this section, we briefly review the unitary matrix model, the method of orthogonal polynomials
and the string equations to explain our notation.

The partition function of the unitary matrix model is defined by

Zyvy = Vol(Ul(N)) /[dU] eXp(Tr WU(U)), (2.1)

where U is an N x N unitary matrix and Wy (U) is a potential. We define a unitary Haar
measure [dU] from the metric

ds® = Tr(dUt dU) = —Txr(U~'aU)*. (2.2)

With this normalization of the measure, the volume of the unitary group U(N) is given by

(U(N ap) = BN 2.3
vol(U(N) = [1a0) = B (23)
where Go(z) is the Barnes function. Explicitly, Go(N + 1) is given by
N-1
o(N +1) H jr=T[ " (2.4)
k=1
If we diagonalize the unitary matrix U as
UZV_lUDV, UD :diag(zl,zg,--- ,ZN), ’Zz‘ = 1, (2.5)
we have
dz;
: 2)A 2.
ZU(N) = (H]g%l%) (27 exp (;WU 2z>, (2.6)
where
A = ] Gi—2) (2.7)
1<i<j<N
Let d
z
du(z) = iz exp(WU(z)). (2.8)
Then

Ty = /Hwa JA(=Y). (2.9)

The partition function (2.6) expressed in eigenvalue integrals may be generalized to the form
of the two contour model (1.1). A natural choice of the two contours C, and Cg is take them
as circles of radius r; and rg respectively. Suppose, r;, < rgr and there is no singularity in
the region r7, < |w| < rr. Then the contours can be smoothly defomed to circles of the same
radius, i.e., to the same contour: C; = Cgi. Then, for the two contour unitary matrix model,
Zy(ny (N, Ng) depends only on N = N, + N, and the generating function Z(y) is essentially
Zyny(N,0). Because Zyny = (pr + ,LLR)NZU(N), we can set uy + pr = 1 without loss of
generality. Hence Zy(n) = Zy(n)-
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2.1. Orthogonal polynomials

The unitary matrix model can be solved [9, 10, 11] by the method of orthogonal polynomials
[12, 13]. Let us use the monic orthogonal polynomials [9, 10] (In [11], orthogonal polynomials

of different type have been introduced to solve the unitary matrix model).

Let p,, and p, (n > 0) be monic polynomials satisfying orthogonality conditions with respect

to the measure (2.8)
[ W@ 1/2) =
where
n—1 n—1
pn(z) = 2" + Z A](Cn)zk, pn(l/z)=2""+ Z B,in)z_k.
k=0 k=0
Let us introduce the moments p,, for the measure (2.8) by
JUREES /d,u(z)z”, (neZ).
For later convenience, we define IC,(:) by
IC,(;L) = det (“j—i+k)1§i,j§n’ (n>0,keZ).
From the definition, the orthogonal polynomials have the following properties:
/du(z)pn(z)zk =0, /d,u(z) 2Fpa(1/2) =0, (k=0,1,---,n—1),

Using these and the monic properties, the orthogonal polynomials are determined as

Ho H1 w2 o Hn
-1 Mo H1 o Pn—1
UL
Pn ™ : : : ,
H—n+1 H—n+2 H—n43 - M1
1 z 22 cee 2"
Ho H-1  p-2 -n
251 Mo h—1 H—n+1
pn(l/2) = — : : e
Tn
HUn—-1 Hn—2 Hn-3 H—1
1 271 2 z "

where )
n
T =Ky = det (’u’j_i)lgi,jgn'
(We set 70 = 1). We can easily see that these polynomials obey (2.14).
The normalization constants h,, defined by (2.10) are given by

Tnit Kén-i—l)

hyp = = .
Tn ]C(()”)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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The constant terms of these polynomials will play important roles.

" nlc(”) ~ n n]C(_”)
A= pa(0) = AJY = (1)" ==, By i=pa(0) = B{" = (-1)" .
K K
0 0
Note that
I, _ Tn4+1Tn—1 1— b, o Tn2 — Tn+1Tn—1
hnfl - 7‘,,% ’ hnfl - 7’% '

Using an identity
= s = (K57~ KK < KOk,

we can show that (1) oot
L _ Kk = A, B,.
Rop—1 (,Cl()”))z

Thus we have the following relations:

Note that N
A(Z) = det (pj—l(zi))lgiJéN = Z (_1)5(0) Hpo(k)fl(zk)ﬂ
k=1

gESN

A(z_l) = det (ﬁj—l(l/zi))lgajgj\[ = Z () Hpa(k l/zk

oESN

Using these relations, the partition function (2.6) is evaluated as

ZU N'/Hd,uz, Hhk—HM:TN.

k=0 K

Also, it can be written as
N-—
H (1—A;B))

The orthogonal polynomials p,(z) obey the following relations:

an( pn+1 + Z Ck pk

where Dok
LKTURE

— 0 = — 7 Ant1 B, (0<k<n).
K 0D I

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

If we use py, only, all lower degree polynomials appear in the expansion of z p,(z). Similarly, py,

behave as follows:

e n(1/2) = Puga(1/2) + Y CLVpr(1/2),
k=0

(2.30)
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where (B) oe(nt 1)
= Y R R O

C — (—qynk L ol ApBoaa, 0<k<n). 2.31
k ( ) IC(()IH_D/C(()”) hk k +1 ( =N = ) ( )

The above recursion relations (2.28) and (2.30) can be rewritten as three-term relations:

Prt1(2) = 2pn(2) + Any1 2" Pu(1/2), (2.32)
Prs1(1/2) = 27 pn(1/2) + Bpyp1 2 " p(2). (2.33)
2.2. String equations
Recall that d
z
du(z) = 515 OXP (WU(Z)) (2.34)

Using the following constraints for £ € Z and ¢, m > 0,

0= [ a2 | 2 e (W) )teim(1/2)]

) (2.35)
= [ W (1) + [ i) 2 ()2 (1),

we can obtain various polynomial equations for A4, and B,.
In particular, let us consider the following three cases of (2.35): (i) (k,¢,m) = (—1,n,n—1),
(ii) (k,¢,m) = (0,n,n) and (iii) (k,¢,m) = (1,n — 1,n). They lead to the “string equations”

[ AW Ipa(2n-1(1/2) = il o), (2.36)
[ ) =W @n)pa(1/2) = 0 (2.37)
[ ) 2 W@ ()a(1/2) = il — B, (2.38)

3. Unitary matrix model with logarithmic potential
Let us consider the unitary matrix model with the following potential

Wy(z) = —

1
- M1 . 3.1
2g: (z—i— z> + og z (3.1)

In the gauge theory parameters, gs = gs/A2 and M = ai42 + N = (m2 —m1)/gs. We assume
that M is an integer. Note that 1/(2g,) = A2/(29s) = qo2.

3.1. Moments and related quantities
The moments for this potential are given by

d 1 1
Mn:%  exp(— 24 =) ) M
2miz 29s z

1\ [Mtnl & 1 1\ M
=(- ) = (=)M (1),
(“22) 2 G 07+ ) (3g) = 0"t/

(3.2)
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where I,,(z) is the modified Bessel function of the first kind:

2\ Y — 1 z\ 2k
L(z) = <§> T+ k+1) (5) ' (3:3)
Note that
ICI(cn) = det(pj—itk)1<ij<n
_ M+j—i+k
= det((~ )M gy (1/0)) (3.4)
= ()RR
where )
K0 = det( i l+y(1/gs))1§i’j§n, (veCin=0,1,2,---). (3.5)

For an integer k, it holds that I_j(z) = Ix(z). Therefore, for j —i + M + k € Z, we have
Liivnrk(1/gs) = Ljj—ipnr+k)(1/gs). Also, we have K(_nk) = K,gn) (k € Z). For later convenience,

we have defined K\ (3.5) as a determinant of I;_;1,(1/gs) such that the index M in K](\:[Lzrk
can be analytically continued from an integer to any complex number.

Note that
o= K = (~1)"MEK . (3.6)
The normalization constants of the orthogonal polynomials are given by
(n+1) K1)
hy = Ko (—)yM=M___ (3.7)
0 M

In particular, hg = (—1)MIM(1/Qs)-
(n)

The constant term of the orthogonal polynomials are written in terms of K, as follows:
SR
An=pa(0) = (-1)" 5 = 0, (3.8)
Ko Ky
~ KK
By = pn(0) = (-1)" 5 = — 5. (3.9)
Ko Ky
The partition function (2.27) can be written in terms of these objects:
. e N—
Zyoy = (DMVES) = T e = H (1- 4;B;) (3.10)
k=0 j=1

This partition function is essentially the tau function of the Painlevé I1I equation.

3.2. String equations
Let us write the string equations (2.36), (2.37) and (2.38) explicitly for the case of the potential

(3.1). Since
Wh(z) = - (1 —~ 1) M (3.11)
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we have 1
[ @ Woepa(@noa(1/2) = 5 (0 + C5Y Y+ M, (3.12)
[ () 2 Wi @oue)5u(1/2) = =5 (€L = )+ M, (313)
1 o
/du(z) 2 W (2)pn1(2)pn(1/2) = Y (Cr(l") + C’fl_ll))hn + Mh,. (3.14)

Here we have used (2.28) and (2.30).
Then the string equations (2.36), (2.37), (2.38) for this potential become

L@ ey car=n (1B,

Qgs hn
1 n ~(n
—2—&8(0}1)—0}1 ) +M =0, (3.15)
1 _ hp—
L (n) (n—1) _ _ Nn-1
2g8(0n +Cn—1 )+M n<1 hn>7
Using )
- " —1-—A,By,, CW = —A, 1By, C™ = — A, Bny1, (3.16)
n—1

the string equations lead to the following recursion relations for A, and B,:

A =—A,_ —= B =—-B,_ —= 3.17
n+1 n1+1_Aana n+1 n1+1_Aan7 ( )
Aan+1 — An+1Bn = 2MQS (318)
With the initial conditions Ag = By = 1, and
1 1 Iy (1
ol henls) L Dea(Ug) 10)
In(1/gs) In(1/gs)

the remaining constants A, and B, are characterized by the recursion relations (3.17), (3.18).
We remark that one of recursion relations (3.17) can be obtained by combining the other of
(3.17) with (3.18).

Recall that the modified Bessel function satisfies the following recursion relation:

I1(2) — Ips1(2) = (20/2)1,(2). (3.20)

By examining (3.18) for n = 0, we can see that the range of the parameter M in the initial
conditions (3.19) can be extended from the integers to any complex numbers. Furthermore,

Ap(M) = A@j)l Bn(M) = A{;)l, (M e C) (3.21)
KM KM

indeed solve the string equations (3.17) and (3.18). Here K is defined by (3.5).
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Note that the partition function (3.10) depends on A; and Bj; only through their product
A;Bj. Let A, = R, D,, and B, = R,,/D,,. Then the partition function (3.10) becomes

N-1
Zyy=h JJ1-RHY (3.22)
j=1

The equation (3.18) turns into

l)n 1)n+1

1)n+1 l)n

RyRoi1 ( ) =2 M g (3.23)

This leads to

D, Mgs+\/R%R%+1+M2g§

= —, 3.24
Dn+1 R, Rn—i—l ( )
b _ Mo+ 0 -

ljn B }%n}%n+1 . ‘

By substituting these relations into the remaining relations (3.17), we find
(1= R2)(\/ B2 Ry + M2 g2+ \JRE RS + M2 g2) = 2n g, R2. (3.26)
This is equivalent to
0= [€2(1 = &)? =2 €2 + (1 — &)

(3.27)

1 1
+ 9 77r2L &n (1 - §n>2(§n+1 =28 +&p-1) — E(l - fn) (fn+1 - fn—l)Qv
where &, = R, 1jp = ngs, ( = M gs.

When M = 0 (i.e., with no logarithmic potential), (3.26) reduces to the string equation

considered in [9]
(1= R2) Ry(Ryps1 + Ry1) =2ngs R2. (3.28)

Let us introduce variables x,, and ¥, by

A B
ntl Yy = ot (n=0,1,2,---). (3.29)
A,

Ty =

They respectively obey the alternate discrete Painlevé II equation [14, 15] with different values
of the parameter fi. With the initial conditions Ap = 1 and By = 1, A,, and B,, can be expressed

by these variables:
n—1 n—1
A =[] 2, B =[] v (3.30)
k=0 k=0
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