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Abstract. We discuss the emergence of discrete Painlevé system in the context of irregular
conformal block which is also a SU(2) N = 2 Nf = 2 supersymmetric gauge theory. We develop
a framework of orthogonal polynomials in unitary matrix model.

1. Introduction
In this paper, we consider the generic following type of the β-deformed “matrix model”
depending on two integration contours CL and CR:

Z(NL, NR) = C

(
NL∏
i=1

∫
CL

dwi

)NR∏
j=1

∫
CR

dwNL+j

∆2β(w) exp

(√
β

NL+NR∑
I=1

W (wI)

)
, (1.1)

where C is a normalization constant and ∆(w) is the Vandermonde determinant:

∆(w) =
∏

1≤I<J≤NL+NR

(wI − wJ). (1.2)

Following [1], we introduce their generating function

Z(N ;µL, µR) =
∑

NL+NR=N

µNL
L

NL!

µNR
R

NR!
Z(NL, NR)

=
C
N !

∫
C
dNw∆2β(w) exp

(√
β

N∑
I=1

W (wI)

)
,

(1.3)

where C = µLCL + µRCR, i.e., ∫
C
= µL

∫
CL

+µR

∫
CR

. (1.4)

As we recall from [2] (see, [3, 4, 5, 6, 7, 8] for earlier references), in the case of β = 1 which we
consider in the body of this paper, the Nf = 2 matrix model of the above form with α1+2 ∈ Z
in fact reduces to the unitary matrix model with cosine + log potential in section 3.
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2. Unitary matrix model
In this section, we briefly review the unitary matrix model, the method of orthogonal polynomials
and the string equations to explain our notation.

The partition function of the unitary matrix model is defined by

ZU(N) :=
1

vol(U(N))

∫
[dU ] exp

(
TrWU (U)

)
, (2.1)

where U is an N × N unitary matrix and WU (U) is a potential. We define a unitary Haar
measure [dU ] from the metric

ds2 = Tr
(
dU † dU

)
= −Tr

(
U−1dU

)2
. (2.2)

With this normalization of the measure, the volume of the unitary group U(N) is given by

vol(U(N)) =

∫
[dU ] =

(2π)(1/2)N(N+1)

G2(N + 1)
, (2.3)

where G2(z) is the Barnes function. Explicitly, G2(N + 1) is given by

G2(N + 1) =

N−1∏
j=1

j! =

N−1∏
k=1

kN−k. (2.4)

If we diagonalize the unitary matrix U as

U = V −1UDV, UD = diag(z1, z2, · · · , zN ), |zi| = 1, (2.5)

we have

ZU(N) =
1

N !

(
N∏
i=1

∮
dzi
2πi zi

)
∆(z)∆(z−1) exp

(
N∑
i=1

WU (zi)

)
, (2.6)

where
∆(z) =

∏
1≤i<j≤N

(zi − zj). (2.7)

Let

dµ(z) :=
dz

2πi z
exp
(
WU (z)

)
. (2.8)

Then

ZU(N) =
1

N !

∫ N∏
i=1

dµ(zi)∆(z)∆(z−1). (2.9)

The partition function (2.6) expressed in eigenvalue integrals may be generalized to the form
of the two contour model (1.1). A natural choice of the two contours CL and CR is take them
as circles of radius rL and rR respectively. Suppose, rL < rR and there is no singularity in
the region rL ≤ |w| ≤ rR. Then the contours can be smoothly defomed to circles of the same
radius, i.e., to the same contour: CL = CR. Then, for the two contour unitary matrix model,
ZU(N)(NL, NR) depends only on N = NL+NR, and the generating function ZU(N) is essentially

ZU(N)(N, 0). Because ZU(N) = (µL + µR)
NZU(N), we can set µL + µR = 1 without loss of

generality. Hence ZU(N) = ZU(N).
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2.1. Orthogonal polynomials
The unitary matrix model can be solved [9, 10, 11] by the method of orthogonal polynomials
[12, 13]. Let us use the monic orthogonal polynomials [9, 10] (In [11], orthogonal polynomials
of different type have been introduced to solve the unitary matrix model).

Let pn and p̃n (n ≥ 0) be monic polynomials satisfying orthogonality conditions with respect
to the measure (2.8) ∫

dµ(z)pn(z)p̃m(1/z) = hnδn,m, (2.10)

where

pn(z) = zn +
n−1∑
k=0

A
(n)
k zk, p̃n(1/z) = z−n +

n−1∑
k=0

B
(n)
k z−k. (2.11)

Let us introduce the moments µn for the measure (2.8) by

µn :=

∫
dµ(z)zn, (n ∈ Z). (2.12)

For later convenience, we define K(n)
k by

K(n)
k := det

(
µj−i+k

)
1≤i,j≤n

, (n ≥ 0, k ∈ Z). (2.13)

From the definition, the orthogonal polynomials have the following properties:∫
dµ(z) pn(z)z

−k = 0,

∫
dµ(z) zkp̃n(1/z) = 0, (k = 0, 1, · · · , n− 1), (2.14)

Using these and the monic properties, the orthogonal polynomials are determined as

pn(z) =
1

τn

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µn

µ−1 µ0 µ1 · · · µn−1
...

...
...

. . .
...

µ−n+1 µ−n+2 µ−n+3 · · · µ1

1 z z2 · · · zn

∣∣∣∣∣∣∣∣∣∣∣
, (2.15)

p̃n(1/z) =
1

τn

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ−1 µ−2 · · · µ−n

µ1 µ0 µ−1 · · · µ−n+1
...

...
...

. . .
...

µn−1 µn−2 µn−3 · · · µ−1

1 z−1 z−2 · · · z−n

∣∣∣∣∣∣∣∣∣∣∣
, (2.16)

where
τn := K(n)

0 = det
(
µj−i

)
1≤i,j≤n

. (2.17)

(We set τ0 = 1). We can easily see that these polynomials obey (2.14).
The normalization constants hn defined by (2.10) are given by

hn =
τn+1

τn
=

K(n+1)
0

K(n)
0

. (2.18)
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The constant terms of these polynomials will play important roles.

An := pn(0) = A
(n)
0 = (−1)n

K(n)
1

K(n)
0

, Bn := p̃n(0) = B
(n)
0 = (−1)n

K(n)
−1

K(n)
0

. (2.19)

Note that
hn
hn−1

=
τn+1τn−1

τ2n
, 1− hn

hn−1
=

τ2n − τn+1τn−1

τ2n
. (2.20)

Using an identity

τ2n − τn+1τn−1 =
(
K(n)

0

)2 −K(n+1)
0 K(n−1)

0 = K(n)
1 K(n)

−1 , (2.21)

we can show that

1− hn
hn−1

=
K(n)

1 K(n)
−1

(K(n)
0 )2

= AnBn. (2.22)

Thus we have the following relations:

hn
hn−1

= 1−AnBn. (2.23)

Note that

∆(z) = det
(
pj−1(zi)

)
1≤i,j≤N

=
∑
σ∈SN

(−1)ε(σ)
N∏
k=1

pσ(k)−1(zk), (2.24)

∆(z−1) = det
(
p̃j−1(1/zi)

)
1≤i,j≤N

=
∑
σ∈SN

(−1)ε(σ)
N∏
k=1

p̃σ(k)−1(1/zk), (2.25)

Using these relations, the partition function (2.6) is evaluated as

ZU(N) =
1

N !

∫ N∏
i=1

dµ(zi)∆(z)∆(z−1) =

N−1∏
k=0

hk =

N−1∏
k=0

τk+1

τk
= τN . (2.26)

Also, it can be written as

ZU(N) = hN0

N−1∏
j=1

(
1−AjBj

)N−j
. (2.27)

The orthogonal polynomials pn(z) obey the following relations:

z pn(z) = pn+1(z) +
n∑

k=0

C
(n)
k pk(z), (2.28)

where

C
(n)
k = (−1)n−kK

(n+1)
1 K(k)

−1

K(n)
0 K(k+1)

0

= −hn
hk

An+1Bk, (0 ≤ k ≤ n). (2.29)

If we use pk only, all lower degree polynomials appear in the expansion of z pn(z). Similarly, p̃n
behave as follows:

z−1p̃n(1/z) = p̃n+1(1/z) +

n∑
k=0

C̃
(n)
k p̃k(1/z), (2.30)
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where

C̃
(n)
k = (−1)n−kK

(k)
1 K(n+1)

−1

K(k+1)
0 K(n)

0

= −hn
hk

AkBn+1, (0 ≤ k ≤ n). (2.31)

The above recursion relations (2.28) and (2.30) can be rewritten as three-term relations:

pn+1(z) = z pn(z) +An+1 z
n p̃n(1/z), (2.32)

p̃n+1(1/z) = z−1 p̃n(1/z) +Bn+1 z
−n pn(z). (2.33)

2.2. String equations
Recall that

dµ(z) =
dz

2πi z
exp
(
WU (z)

)
. (2.34)

Using the following constraints for k ∈ Z and ℓ,m ≥ 0,

0 =

∫
dz

∂

∂z

[
zk

2πi
exp
(
WU (z)

)
pℓ(z)p̃m(1/z)

]
=

∫
dµ(z) zk+1W ′

U (z)pℓ(z)p̃m(1/z) +

∫
dµ(z) z

∂

∂z

(
pℓ(z)z

kp̃m(1/z)
)
,

(2.35)

we can obtain various polynomial equations for An and Bn.
In particular, let us consider the following three cases of (2.35): (i) (k, ℓ,m) = (−1, n, n− 1),

(ii) (k, ℓ,m) = (0, n, n) and (iii) (k, ℓ,m) = (1, n− 1, n). They lead to the “string equations”∫
dµ(z)W ′

U (z)pn(z)p̃n−1(1/z) = n(hn − hn−1), (2.36)∫
dµ(z) zW ′

U (z)pn(z)p̃n(1/z) = 0, (2.37)∫
dµ(z) z2W ′

U (z)pn−1(z)p̃n(1/z) = −n(hn − hn−1). (2.38)

3. Unitary matrix model with logarithmic potential
Let us consider the unitary matrix model with the following potential

WU (z) = − 1

2 gs

(
z +

1

z

)
+M log z. (3.1)

In the gauge theory parameters, gs = gs/Λ2 and M = α1+2 +N = (m2 −m1)/gs. We assume
that M is an integer. Note that 1/(2gs) = Λ2/(2gs) = q02.

3.1. Moments and related quantities
The moments for this potential are given by

µn =

∮
dz

2πiz
exp

(
− 1

2 gs

(
z +

1

z

))
zM+n

=

(
− 1

2 gs

)|M+n| ∞∑
k=0

1

k! (k + |M + n|)!

(
1

2 gs

)2k

= (−1)M+nI|M+n|(1/gs),

(3.2)
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where Iν(z) is the modified Bessel function of the first kind:

Iν(z) =
(z
2

)ν ∞∑
k=0

1

k! Γ(ν + k + 1)

(z
2

)2k
. (3.3)

Note that

K(n)
k = det(µj−i+k)1≤i,j≤n

= det
(
(−1)M+j−i+kI|M+j−i+k|(1/gs)

)
1≤i,j≤n

= (−1)n(M+k)K
(n)
M+k,

(3.4)

where
K(n)

ν := det
(
Ij−i+ν(1/gs)

)
1≤i,j≤n

, (ν ∈ C;n = 0, 1, 2, · · · ). (3.5)

For an integer k, it holds that I−k(z) = Ik(z). Therefore, for j − i + M + k ∈ Z, we have

Ij−i+M+k(1/gs) = I|j−i+M+k|(1/gs). Also, we have K
(n)
−k = K

(n)
k (k ∈ Z). For later convenience,

we have defined K
(n)
ν (3.5) as a determinant of Ij−i+ν(1/gs) such that the index M in K

(n)
M+k

can be analytically continued from an integer to any complex number.
Note that

τn = K(n)
0 = (−1)nMK

(n)
M . (3.6)

The normalization constants of the orthogonal polynomials are given by

hn =
K(n+1)

0

K(n)
0

= (−1)M
K

(n+1)
M

K
(n)
M

. (3.7)

In particular, h0 = (−1)M IM (1/gs).

The constant term of the orthogonal polynomials are written in terms of K
(n)
k as follows:

An = pn(0) = (−1)n
K(n)

1

K(n)
0

=
K

(n)
M+1

K
(n)
M

, (3.8)

Bn = p̃n(0) = (−1)n
K(n)

−1

K(n)
0

=
K

(n)
M−1

K
(n)
M

. (3.9)

The partition function (2.27) can be written in terms of these objects:

ZU(N) = (−1)MNK
(N)
M =

N−1∏
k=0

hk = hN0

N−1∏
j=1

(
1−AjBj

)N−j
. (3.10)

This partition function is essentially the tau function of the Painlevé III equation.

3.2. String equations
Let us write the string equations (2.36), (2.37) and (2.38) explicitly for the case of the potential
(3.1). Since

W ′
U (z) = − 1

2 gs

(
1− 1

z2

)
+

M

z
, (3.11)
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we have ∫
dµ(z)W ′

U (z)pn(z)p̃n−1(1/z) =
1

2 gs

(
C̃(n)
n + C̃

(n−1)
n−1

)
hn +Mhn, (3.12)∫

dµ(z) zW ′
U (z)pn(z)p̃n(1/z) = − 1

2 gs

(
C(n)
n − C̃(n)

n

)
hn +Mhn, (3.13)∫

dµ(z) z2W ′
U (z)pn−1(z)p̃n(1/z) = − 1

2 gs

(
C(n)
n + C

(n−1)
n−1

)
hn +Mhn. (3.14)

Here we have used (2.28) and (2.30).
Then the string equations (2.36), (2.37), (2.38) for this potential become

1

2 gs

(
C̃(n)
n + C̃

(n−1)
n−1

)
+M = n

(
1− hn−1

hn

)
,

− 1

2 gs

(
C(n)
n − C̃(n)

n

)
+M = 0,

− 1

2 gs

(
C(n)
n + C

(n−1)
n−1

)
+M = −n

(
1− hn−1

hn

)
,

(3.15)

Using
hn
hn−1

= 1−AnBn, C(n)
n = −An+1Bn, C̃(n)

n = −AnBn+1, (3.16)

the string equations lead to the following recursion relations for An and Bn:

An+1 = −An−1 +
2ngsAn

1−AnBn
, Bn+1 = −Bn−1 +

2ngsBn

1−AnBn
, (3.17)

AnBn+1 −An+1Bn = 2M gs. (3.18)

With the initial conditions A0 = B0 = 1, and

A1 =
IM+1(1/gs)

IM (1/gs)
, B1 =

IM−1(1/gs)

IM (1/gs)
, (3.19)

the remaining constants An and Bn are characterized by the recursion relations (3.17), (3.18).
We remark that one of recursion relations (3.17) can be obtained by combining the other of
(3.17) with (3.18).

Recall that the modified Bessel function satisfies the following recursion relation:

Iν−1(z)− Iν+1(z) = (2ν/z)Iν(z). (3.20)

By examining (3.18) for n = 0, we can see that the range of the parameter M in the initial
conditions (3.19) can be extended from the integers to any complex numbers. Furthermore,

An(M) =
K

(n)
M+1

K
(n)
M

, Bn(M) =
K

(n)
M−1

K
(n)
M

, (M ∈ C) (3.21)

indeed solve the string equations (3.17) and (3.18). Here K
(n)
ν is defined by (3.5).



Group32

IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012050

IOP Publishing

doi:10.1088/1742-6596/1194/1/012050

8

Note that the partition function (3.10) depends on Aj and Bj only through their product
AjBj . Let An = RnDn and Bn = Rn/Dn. Then the partition function (3.10) becomes

ZU(N) = hN0

N−1∏
j=1

(1−R2
j )

N−j . (3.22)

The equation (3.18) turns into

RnRn+1

(
Dn

Dn+1
− Dn+1

Dn

)
= 2M gs. (3.23)

This leads to

Dn

Dn+1
=

M gs +
√
R2

nR
2
n+1 +M2 g2s

RnRn+1
, (3.24)

Dn+1

Dn
=

−M gs +
√
R2

nR
2
n+1 +M2 g2s

RnRn+1
. (3.25)

By substituting these relations into the remaining relations (3.17), we find

(1−R2
n)
(√

R2
nR

2
n+1 +M2 g2s +

√
R2

nR
2
n−1 +M2 g2s

)
= 2n gsR

2
n. (3.26)

This is equivalent to

0 =η2n

[
ξ2n(1− ξn)

2 − η2n ξ
2
n + ζ2(1− ξn)

2
]

+
1

2
η2n ξn (1− ξn)

2(ξn+1 − 2 ξn + ξn−1)−
1

16
(1− ξn)

4(ξn+1 − ξn−1)
2,

(3.27)

where ξn ≡ R2
n, ηn ≡ n gs, ζ ≡ M gs.

When M = 0 (i.e., with no logarithmic potential), (3.26) reduces to the string equation
considered in [9]

(1−R2
n)Rn(Rn+1 +Rn−1) = 2n gsR

2
n. (3.28)

Let us introduce variables xn and yn by

xn :=
An+1

An
, yn :=

Bn+1

Bn
, (n = 0, 1, 2, · · · ). (3.29)

They respectively obey the alternate discrete Painlevé II equation [14, 15] with different values
of the parameter µ̃. With the initial conditions A0 = 1 and B0 = 1, An and Bn can be expressed
by these variables:

An =
n−1∏
k=0

xk, Bn =
n−1∏
k=0

yk. (3.30)
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