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CHAPTER 1

Overview and Discussion

Within the last forty years, the most persistent concept in the realm of theoretical physics
has been that of duality. String theory dawned itself as a dual resonance model [1] [2] after
that the celebrated Veneziano amplitude [3] was obtained under the constraint of being
crossing-symmetric in the s and t channels, or in today’s words, self-dual. Duality is a pro-
found statement about two apparently different theories manifesting the same behaviour in
some region of their respective parameters spaces, a statement about the circumstance that,
somehow, the different formulation of the two theories overshadows the fact that they are,
indeed, the same theory. Often, the reason why this occurs is fathomless, but nonetheless
it offers the chance to engage the same problem from different sides, and this is always an
advantage. The reader may just think to the huge improvement in the understanding of
N = 2 theories at strong coupling brought by the work of Seiberg and Witten [4] [5]; or the
relation between string theories and superconformal gauge theories with the AdS/CFT cor-
respondence of Maldacena [6]; or again, more recently, the dualities between two-dimensional
conformal field theories and four-dimensional N = 2 theories introduced by Alday, Gaiotto
and Tachikawa [7] [8].

A striking duality turns out to exist between two classes of objects which own a fun-
damental relevance in the study of gauge and string theories - Wilson loops and scattering
amplitudes. Wilson loop operators were first introduced in the context of QCD [9], almost
forty years ago, to investigate the dynamics of massive quarks subject to the interaction
with gluon fields. Probably the most interesting observable of this kind is constituted by
a couple of infinite, time-like and parallel Wilson lines, representing the trajectories of two
heavy quarks, interacting between each other via the exchange of infinitely many gluon
fields. This observable is known to compute the quark-antiquark potential, and thus both
weak and strong coupling analysis of such loops are of primary interest. Perturbatively,
the computation of QCD Wilson loops after the first few orders is a discouraging task; on
the other hand non-perturbative methods based on the lattice formulation of the theory
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exist, but they unavoidably imply numerical evaluation of observables. The story is some-
what different if one adds supersymmetry to the gauge theory. In the case of N = 4 super
Yang-Mills theory in four dimensions, the high amount of supersymmetry, which is indeed
maximal, puts several constraints onto the theory, making its resolution easier. We do not
want to argue about the meaning of the statement "to solve a theory" here. However, huge
developments have been achieved in the last, say ten, years in understanding the pertur-
bative structure of SU(N) N = 4 SYM, leading to the statement that this theory is an
integrable system at the planar limit N →∞, and that beyond the Lagrangean formulation
there lies an hidden infinite-dimensional symmetry known as Yangian symmetry, which best
manifests itself in the properties of on-shell observables like scattering amplitudes and Wil-
son loops [10] [11] [12] [13] [14] [15]. Yangian symmetry, or better superconformal symmetry
which is its level-one realisation, was identified as being responsible of the equivalence (up to
a scheme-matching) between maximally helicity violating gluon amplitudes and polygonal
Wilson loops with light-like edges in N = 4 super Yang-Mills [16] [17] [13] and more recently
in N = 6 super Cherns-Simons theories [18] [19] [20] [21], for which indeed the first hints
of integrability came from the analysis of the Bethe ansatz [22] [23] [24] [25] and Yanghian
symmetry [26] of scattering amplitudes.

Scattering amplitudes cover the remarkable role of being the medium between our for-
mulation of fundamental interactions and nature itself. Indeed, our experimental knowledge
of high energy physics necessarily goes through scattering processes, whose degree of com-
plexity grows at mind-blowing speed as the energy involved increases. Thus the need of
developing powerful methods for computing scattering amplitudes of gauge theories accu-
rately, since the discovery of possibly new physics through beams collision implies the ability
of discerning previously unobserved events shaded by a rather chaotic background and to a
high level of accuracy [27]. As for the case of Wilson loops, scattering amplitudes of highly
supersymmetric gauge theories embody a deep structure that makes their evaluation at least
viable. And quite interestingly, they can teach us a lot about non-supersymmetric theories;
gluon amplitudes in QCD at tree-level are the same as in N = 4 SYM amplitudes, and at
one-loop level they can be decomposed into a sum of N = 4 and N = 1 gluon amplitudes.

Since Witten’s twistor string proposal [28], a lot of developments in understanding the
perturbative structure of N = 4 SYM gluon amplitudes have been made following the the
same "analytic S-matrix" type approach which originally led to the birth of string theory [3].
On-shell recursion relations for maximally helicity violating (MHV) gluon amplitudes of
N = 4 SYM were proposed in [29] by Britto, Cachazo and Feng and proved in [30], then
further generalised to loop-level amplitudes [31] [32] [33]. This recursive structure can be
shown to hold also for string scattering amplitudes [34] [35] where it has a nice geometrical
interpretation. The last fact is reminiscent of the conformal bootstrap properties of CFT’s,
at least by a hand-waving argument, and opens to the concrete possibility that on-shell
amplitudes in supersymmetric theories inherit such recursive structure from the conformal
symmetry of the string worldsheet.

Since its first formulation [6], the conjectured correspondence of superconformal field
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theories in d dimensions and supersymmetric strings on anti-de Sitter spaces in d + 1 di-
mensions has been an exceptionally fertile ground on which to grow our knowledge of both
theories. The best known example of this duality holds between supersymmetric N = 4
Yang-Mills theory in four dimension and type IIB superstrings on the ten dimensional
AdS5 × S5 space. In more recent years other examples of such a correspondence emerged
and rapidly gained more and more interest, one over all are three-dimensional Chern-Simons
theories with N = 6 supersymmetry which are conjectured to capture the low-energy be-
haviour of a certain class of eleven-dimensional M-Theories [36] [37]. The proposal of [6]
was mainly based on the observation that both N = 4 SYM in four flat dimensions and
type IIB strings on AdS5 × S5 have the same symmetry group, and in its weak formulation
states that semiclassical strings solutions for gS → 0 correspond to gauge theory solutions
at strong coupling gYM >> 1 and in the planar limit N → ∞ with the ’t Hooft coupling
λ = g2

YMN >> 1 held fixed. In its stronger version it states the exact equivalence between
N = 4 SYM and type IIB strings on AdS5 × S5.

The AdS/CFT correspondence provided the tool to compute gauge theoretical quanti-
ties at strong coupling by means of semiclassical computations of the corresponding strings
configurations. In particular it lead to a strong coupling formulation for Wilson loops of
N = 4 SYM [38] [39], stating that the expectation value 〈W (C)〉 of a Wilson loop defined on
a contour C on the field theory side is given by the semiclassical area of the string worldsheet
that extremises the AdS5 × S5 string action and ends on C on the boundary of AdS5. Soon
after it was shown that for a particular class of Wilson loops, that are not haunted by UV
divergences, a loop equation can be written and it is solved at strong coupling by the corre-
sponding minimal area [40]. Such loops can be interpreted as “phase factors” associated with
stable supersymmetric charged particles that saturate the Bogomol’nyi-Prasad-Sommerfeld
bound M = Q, being M the mass and Q the charge of the particle in some plausible units.
BPS Wilson loops then are left invariant by a certain amount of the supercharges of the
theory, thing that usually makes them easier to compute. Furthermore, a stingy picture
motivated the observed duality between light-like loops and scattering amplitudes [41]. The
motivation relies on the self-duality properties of the space AdS5 × S5 under a T−duality
operation which maps the string computation of a gluon scattering amplitude into the com-
putation of a polygonal null Wilson loop, thus enforcing the perturbative evidence. With
some caveat being in order, what said above is strongly believed to hold also in the more re-
cent example of gauge/gravity duality that relatesN = 6 SCS theories to eleven-dimensional
M−theory [36] [37].

Supersymmetric gauge theories in three dimensions have been the subject of a renewed
interest in light of their connection to the low-energy world-volume dynamics of membranes,
of which very little is known. A first attempt on this side was done in [42] but such
theories shown not to have enough supersymmetries. A few years ago, Bagger and Lambert
proposed a model for multiple M2-branes with SO(8) R−symmetry, which was subsequently
conjectured to be dual to a certain N = 8, 3D super Chern-Simons-matter gauge theory
[43]. As it turned out, that theory is always strongly coupled, forbidding any consistent
’t Hooft limit. This motivated the work of Aharony, Bergmann, Jafferis and Maldacena
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who proposed a new example of AdS/CFT correspondence between N = 6 super Chern-
Simons-matter U(N) × U(N) theory and type IIA superstrings on AdS4 × CP 3 [36]. The
first side of the correspondence emerges as the low energy effective theory of N M2 branes
probing a C4/Zk orbifold singularity at the intersection of two KK monopoles in AdS4×S7.
In the large k limit an M-theory circle in C4/Zk shrinks and type IIA superstrings on
AdS4×CP 3 appear (note that S7 can be viewed as a S1 fibration over CP 3), giving rise to
the second side of the correspondence. The U(N)×U(N) theory was soon after generalised
to U(N)×U(M) theory, which still preserve N = 6 supersymmetries of the free M2 theory
(the Zk orbifold always breaks two of them) and is thought to be dual to type IIA on
C4/Zk with a B−field flux proportional to N −M [37]. This novel example of string/gauge
duality is vastly unexplored and puts itself forward as a natural candidate for further studies.
Quite interestingly the gauge theory side does not have maximal supersymmetry in three
dimensions for k other than 1, 2, but still possesses conformal symmetry, and this makes it
a natural candidate for massive tests of AdS/CFT outside the N = 4 SYM wonderland.

The study of Wilson loops in N = 6 SCS theories is naturally addressed to the inves-
tigation of BPS quantities and of its stringy duals. Wilson loop operators invariant under
1
6

and 1
2

of the supercharges have been constructed in [44] in parallel with [45] and in [46].
An interpretation of the latter in terms of “phase factor” of a half BPS particle was given
in [47]. This naturally arises a question about the interaction potential between a pair of
such BPS particles, which is the straightforward generalisation of the quark-antiquark po-
tential of QCD. Quite interestingly it turns out that in the weak coupling expansion, the
one-loop expectation value of such operator receives contributions only from fermions [48].
This fact is new and unobserved in N = 4 SYM, where fermions do not even couple directly
to the loop. Also it deviates from the observation of [18] [19] [20] [21] [26] that one loop
SCS polygonal loops and their dual scattering amplitudes vanish at one-loop, and that the
two loop result reproduces the SYM one, up to a scheme-matching. On the other hand, the
two-loop SCS computation of [48] differs from the SYM result of [49] out of the light-cone
limit, but reproduces it on the light-cone, thus confining the conjecture, if any, to the realm
of light-like objects.

This document is organised according to pedagogical criteria. In Chapter 2 we review
general facts about scattering amplitudes in gauge theory, sketching where needed compu-
tations that will turn out to be useful, such as the one-loop IR divergence of the four-gluons
maximally helicity violating amplitude. We also linger on BCFW on-shell recursion rela-
tions in field and string theory, partially reviewing the work of R.Boels, N.Obers and the
author.

Chapter 3 is a review of the light-like Wilson loops/gluon amplitudes duality at both
strong and weak coupling. The string computation of the minimal area governing the leading
order asymptotic of the four-gluon amplitude is given in some detail for future use. The last
Section is devoted to the most recent advances in the case of N = 6 SCS theories.

Supersymmetric Wilson loop operators for SCS cited above are presented in Chapter 4,
together with the derivation of the 1

2
BPS operator from the low-energy theory of massive

BPS particles in the broken phase of the theory.
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Some important known string solutions which admit gauge duals are reviewed in Chap-
ter 5. We also introduce the so-called cusp, or soft, anomalous dimension and its strong
implications in both gauge and string theory. As we will explain, this observable is somehow
related to the computation in [48]. In this Chapter we also introduce interpolating functions
in SCS theories and elaborate on the fundamental role they cover, being the only known
observables for any value of the coupling constant. These are partially a motivation for the
work in [48].

Finally, Chapter 6 is devoted to the presentation of the results of L.Griguolo, G.Martelloni,
D.Semiara and the author about the pair potential of SCS [48]. Particular emphasis is put
on the geometrical and supersymmetrical deformations that make it a suitable observable
for heavy tests of AdS4/CFT3 correspondence.

All the details about the computations and our conventions are in Appendix.
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CHAPTER 2

Scattering Amplitudes at Weak Coupling

Some say scattering amplitudes are the most perfect microscopic structures in the uni-
verse [50]. Beyond subjectiveness, the past decades research has shown that a certain
amount of information about the gauge theory is hidden in the deep structure of the scat-
tering matrix and is not accessible elsewhere, at least not as easily. Moreover amplitudes
provide a prime tool for testing suitability of physical models, being at present the only
link between the theory of nature and nature itself, which we know through experiments.
The short term interest in scattering amplitudes is mainly focused on gluon scattering. Any
high-energy event, such as beam collision in a storage ring like LHC, involves a huge amount
of background processes, mostly gluon-scatterings, that shade possibly new physical events
behind them [27]. A great knowledge of such processes together with powerful tools for com-
puting them to a high level of accuracy are not an option once the signatures of new physics
are to be discerned and a plausible explanation is to be discriminated among hundreds of
proposals. In this direction supersymmetric gauge theory amplitudes, being in some sense
much easier than their QCD counterparts, offer the opportunity to study the perturbative
structure of gauge theory at high loop orders and to test always newer and more effective
computational methods. But quite importantly, they are not a mere toy for speculation, but
indeed they offer a seriously powerful computational tool for real physics. Let us consider
gluon amplitudes as a starting point. At tree-level they are the same in both QCD and in
N = 4 SYM in four dimensions, and at one-loop pure Yang-Mills gluon amplitudes can be
written as

AYMg = (Ag + 4As + 3Af)
N=4 − 4(Af + As)

N=1 + As (2.1)

where g, f and s mean gluons, fermions and scalars and are related to the particles circu-
lating in loop diagrams. Evaluation of supersymmetric amplitudes is a much easier task,
made so by the many advances and computational techniques; it converts hopeless tasks in
back-of-an-envelope computations!
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Unexpected simplicity of supersymmetric scattering amplitudes is mainly due to the large
symmetry group they exhibit, which is larger than the symmetry group of the Lagrangean.
For example it has been shown that tree-level scattering amplitudes in N = 4 SYM in four
dimensions and in N = 6 Super-Chern-Simons (SCS) theory in three dimensions are invari-
ant under the Yangian symmetry of the relative superconformal groups, which is strongly
related to integrable properties of the two theories [11] [26], and part of this structure was
indeed observed in high-loop scattering amplitudes [51]. The presence of hidden structures
into scattering amplitudes and the relation they have with integrable models are important
topics to investigate, as a they might be of great help in shedding light onto the theory and
in developing better computational methods.

2.1 Stripping colour off of amplitudes

It turns out that the structure of gauge theory amplitudes can be highly simplified when
they are written in a suitable form. In the following we will mostly deal with scattering of
massless particles with light-like momenta p2

i = 0 and helicities hi = ±1 in four-dimensional
(S)YM theories, moreover all particles are chosen to be ingoing. External momenta can be
written as

pαα̇ = λαλα̇ (2.2)

for some spinors λα, λα̇ where the meaning of the double index is

pµ = (γµ)αα̇p
αα̇ (2.3)

and γµ are the usual gamma matrices. The above property comes from the fact that massless
solutions to the chiral Dirac equation

(pµσ
µ)α̇αu−α(p) = 0, u−u− = 6p (2.4)

allow for a parametrization of physical polarization vectors without imposing a non-covariant
gauge (like any axial gauge). Such solutions are usually denoted by λα = uα−(p) and λα̇ =
uα̇−(p) as above. In Minkowski signature they are related by complex conjugation, for which
reason pαα̇ is invariant under a U(1) phase acting on λ’s. Note that the bar over glα̇ is
omitted. Though, usually momenta are promoted to complex variables and the Lorentz
group in four dimensions, for example, becomes SL(2,C)×SL(2,C). In this case λα and λα̇

become independent variables and the phase symmetry becomes a rescaling by an arbitrary
complex number. Amplitudes have definite scaling properties under this transformation.
Let us introduce a shorthand for multiplication of spinors

〈ij〉 = ǫαβλiαλjβ, [ij] = −ǫα̇β̇λiα̇λjβ̇ (2.5)

With these conventions it is easy to write gauge invariant quantities for null momenta
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(pµ + qµ)2 = 2p · q = 2 〈ij〉 [ij] (2.6)

Gauge invariance also constrains polarization vectors of physical particles. Being external
states light-like, polarization vectors must be transverse and, in a certain Lorentz frame,
simply circular. This can be accomplished by choosing arbitrarily two reference spinors ξα
and ξα̇ and building the two objects

ε−αα̇(p, ξ) = −
√

2
λαξα̇
[ξp]

, ε+
αα̇(p, ξ) = −

√
2
ξαλα̇
〈pξ〉 (2.7)

Polarization vectors with different reference spinors differ by a gauge transformation, so
observable quantities do not depend on this choice at all.

So, once we have organized external states according to their helicities, we would like to
organize colour indices as well. It is convenient to define partial amplitudes An for a SU(N)
gauge theory with gauge group generators T a as a function of kinematical data only [52]

An =
∑

{σi}∈Sn/Zn

Tr [T σ1T σ2 · · ·T σn ]An(pσ1 , pσ2 , . . . , pσn
) + multi traces (2.8)

where σi is a shorthand for a set of collective indices that include group, momentum
and helicity indices and the sum is extended to non-cyclic permutations. The coefficients
An(pσ1 , pσ2 , . . . , pσn

) are color-ordered amplitudes and are the relevant objects in the large N
expansion where the single-trace dominates, for which reason they are also known as planar

partial amplitudes. According to the polarization projectors defined above, partial ampli-
tude can be labelled by their helicity states Ah1,h2,...,hn

n (p1, p2, . . . , pn). There are (n− 1)! of
these objects but not all of them are independent, indeed there exists a complete basis of
rank (n − 3)! as was shown in [53] and [54]. In particular note that tree level partial am-
plitudes for n < 4 vanish, and for n = 4, 5 there exists just one independent color-ordered
amplitude.

Planar partial amplitudes also have other nice features. Under a cyclic permutation
of a subset of the external legs they transform in a definite way (under a complete cyclic
permutation they are simply invariant). Moreover there exist useful factorization identities
relating tree level amplitudes in certain singular limits, such as whenever two adjacent
external momenta, say k1 and kn for simplicity, become collinear [55] [56]

Atreen (ph1
1 , . . . , p

hn

n )→
∑

h

Atreen−1(p
h
1 , . . . , p

hn−1

n−1 )Streeh (ph1 , p
hn

n ) (2.9)

where Stree is known as the tree level splitting amplitude and is a universal function in
N = 4 SYM. Another useful factorization property emerges in the multi-particle limit
where p2

1,j → 0

Atreen (ph1
1 , . . . , p

hn

n )→
∑

h

Atreej+1(p
h1
1 , . . . , p

hj

j , p
h
1,j)

i

p2
1,j

Atreen+1−j(p
−h
1,j , p

hj+1

j+1 , . . . , p
hn

n ) (2.10)
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These properties tightly constrain the structure of supersymmetric scattering amplitudes
and have been successfully exploited in the past to actually compute a certain class of
N = 4 gluon amplitudes at one-loop order [57] and even QCD amplitudes [58] [59] (and
many others). Moreover they offer direct tests for the reliability of higher-points and higher-
loops amplitudes computed through other techniques, and thus also a test-bed for new
computational methods.

2.2 Maximally helicity violating amplitudes

The arbitrariness in choosing reference spinors for labelling helicities of external particles
(2.7) can be used to show that tree-level scattering amplitudes with less than two external
states in the same helicity configuration vanish identically. In particular, in N = 4 SYM
all the three-point functions are zero at tree-level. The first non-vanishing amplitude would
then be A++−−

4 . This is indeed a very special object!

Following [60] one can show that the action of the supersymmetry generators Qi relates
amplitudes with different external states to all orders of perturbation theory. Moreover
relations between tree-level gluon amplitudes hold in any supersymmetric gauge theory,
regardless of the amount of supersymmetry. Let us denote gluons, fermions and scalars
respectively with g±, f±

i and sij where ± is the helicity and i, j are R−indices. Let us also
use the shorthand g±(1) for the the external gluon of momentum p1 and so on. In N = 4
SYM the action of the superconformal group gives for example

Qi(q, θ) 〈0| f+
j (1)g+(2) . . . g+(n) |0〉 =

= δij 〈q1〉 〈0| g+(1)g+(2) . . . g+(n) |0〉+ [q1] 〈0| sij(1)g+(2) . . . g+(n) |0〉 =

= 0

(2.11)

The terms above vanish separately, in particular we are interested in the all-plus gluon
amplitude

A++...+
n 〈0| g+(1)g+(2) . . . g+(n) |0〉 = 0 (2.12)

Acting in a similar way on 〈0| g−(1)f+
j (2)g+(3) . . . g+(n) |0〉 one finds that also all-plus-but-

one gluon amplitudes vanish identically

A−+...+
n = 〈0| g−(1)g+(2) . . . g+(n) |0〉 = 0 (2.13)

It turns then out the the first non-vanishing n−points gluon amplitude has at least two
particles with one helicity and n − 2 with the other helicity. They are known as MHV,
maximally helicity violating amplitudes

AMHV = A−−+..+, A−+−+..+, A−+..+−+... (2.14)
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Note that the four-gluon amplitude encountered above A++−−
4 is precisely the first, lower-

points MHV amplitude.

As remarked above not all n−points MHV amplitudes are independent. For four- and
five-points gluon amplitude only one independent object exists A−−++

4 and A−−+++
5 . Note

in particular that A++−−−
5 is maximally helicity violating, more precisely is MHV in our

conventions, but there is nothing physical in choosing which amplitude is MHV and which
MHV. Moreover all-gluon amplitudes are either MHV amplitudes or NkMHV which means
that k more helicities are flipped (k times next-to-MHV), and different helicity orderings
are related through cyclicity properties so that only (n− 3)! of them are independent.

The fact that only one helicity structure is allowed at tree-level for MHV amplitudes
reflects itself into the neat formula for the general n−gluon amplitude

Atree
n (1+, ..i−, (i+ 1)+, ..j−, ..n+) = i

〈ij〉4
〈12〉 〈23〉 · · · 〈n1〉 (2.15)

This simplicity is not lost at loop level, indeed all loop corrections are proportional to the
tree-level result. So all-loop MHV gluon amplitudes can be factorized in the form

An = An
[
1 +M (1)

n +M (2)
n + . . .

]
(2.16)

where the functions M
(l)
n depend only on gauge invariant quantities made out from exter-

nal momenta and on the regularization parameter introduced when regulating divergent
integrals. MHV gluon amplitudes are of particular interest in view of their duality with
light-like Wilson loops. As we will discuss in the next sections, it seems that this duality
does not properly hold for NkMHV amplitudes, even though some attempt of extending it
has been put forward [61].

2.2.1 IR divergences of the four-points MHV amplitude

It is known from long ago that on-shell gauge theory amplitudes are IR divergent at loop
level. If we regulate integrals by means of dimensional regularization in D = 4 − 2ǫ, di-
vergences appear as poles in ǫ, and obey a quite general structure that depends only on
certain universal quantities of the theory. As the easiest example, let us consider the four
gluons scattering amplitude at one loop which were first computed up to two loops in [62].
The tree-level contribution can be factored and loop corrections can be recast in a unique
scalar-like integral

A
(1−loop)
4 = A

(tree)
4

[
1− λ

16π4
stI(s, t, ǫ) +O(ǫ2)

]
(2.17)

where λ = g2N is the ’t Hooft coupling, s = (p1 +p2)
2, t = (p1 +p4)

2 the usual Mandelstam
variables and the dimensionally regularised scalar box integral I(s, t, ǫ) reads
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I(s, t, ǫ) =
µ2ǫeǫγE

(4π)2−ǫ

∫
d4−2ǫk

k2(k − p1)2(k − p1 − p2)2(k + p4)2
(2.18)

For MHV amplitudes the only dependence on the helicities of external particles are factored
in the tree-level term, indeed there is just one allowed helicity configuration in this case,
which is −−++. From the last expression one can easly identify the regions responsible of
the infrared divergences of the amplitude. Indeed I has both soft divergences for k2 ∼ 0, due
to the emission of soft gluons, and collinear divergences kµ ∼ pµ arising whenever k becomes
parallel to any of the on-shell momenta involved in the scattering process. Computing the
integral in (2.18) one has

A
(1−loop)
4 = A

(tree)
4

[
1− 1

ǫ2
λ

8π2

(
µ2

−s

)ǫ] [
1− 1

ǫ2
λ

8π

(
µ2

−t

)ǫ]

[
1 +

λ

8π

(
1

2
log2 s

t
+ 4ζ2

)ǫ]
+O(λ2) (2.19)

We see that divergent contributions factorise in a term which depends on s only and a
one which depends on t only, and a finite contribution. For non MHV amplitudes this last
term also depends on the helicity structure of the external particles, but the factorization of
divergences continues to hold, even at higher loop level. The singular part of the amplitude
is governed by a renormalisation group evolution equation (3.27) [63] [64] [65], which says
that for conformal field theories, for which the β−function vanishes identically, at every
loop level

div(s) = exp

{
−1

2

∞∑

l=1

(λ/8π2)lslǫ

[
Γ

(l)
cusp

(lǫ)2
+

Γ(l)

lǫ

]}
(2.20)

where

Γcusp(λ) =
∑

l

λlΓ(l)
cusp, Γ(λ) =

∑

l

λlΓ(l) (2.21)

are the so-called cusp and collinear anomalous dimensions. The former is a universal quan-
tity that naturally appears as the coefficient of the UV divergent part of cusped Wilson
loops (from which the name), it covers a fundamental role in the duality between scattering
amplitudes and light-like Wilson loops. More about this topic will be said in Sections 3.2
and 5.1. The collinear anomalous dimension is, on the other hand, a scheme-dependent
quantity. The fact that Γcusp enters the IR divergent part of scattering amplitude is a man-
ifestation of the duality relation that will be reviewd in the next chapter. Note that the
renormalisation group equation mentioned above was already known from the Eighties for
the divergent part of Wilson loops [66] [67]. At present the cusp anomalous dimension is
known up to four-loops in N = 4 SYM [68] [69] and the integrands that contribute to the
five-loop correction where presented in [70]. At strong coupling it can be derived using the
AdS/CFT correspondence [71] [72] [73].
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2.3 Higher-points, higher-loops: the BDS ansatz

In the previous section we reviewed the structure of IR divergences of the four-point MHV
gluon amplitude in N = 4 SYM. This function has been known for a while up to the second
order of perturbation theory [62], until it was observed that a certain iterative structure
underlaid this two-loop result [74]. Based on this observation and on an explicit three-loops
computation, the authors of [75] conjectured that the finite part of the scattering amplitude
exponentiates at all orders of perturbation theory. Note that the same was already known
to hold for the divergent part (2.20). In particular the conjecture, known as BDS ansatz,
implies that the finite part of the n-points amplitude reads

FBDS
n =

1

2
Γcusp(λ)F (1)

n + constant (2.22)

where F
(1)
n is the one-loop finite contribution and Γcusp(λ) the cusp anomalous dimension.

Defining An = Afull
n /Atree

n the ratio of the full n−gluons MHV amplitude over its tree-level
value, the BDS ansatz states that

AMHV
n = eZn+FBDS

n +Cn (2.23)

where the divergent part is

Zn = −1

4

n∑

l=1

(
λ

8π2

)l [
Γ

(l)
cusp

(lǫ)2
+

Γ(l)

lǫ

]
n∑

i=1

[
− si
µ2

]−lǫ
(2.24)

and generalises the divergence structure of the four-gluon aplitude (2.20) to n−gluons, Fn
is the finite part conjectured above and Cn are constants. Also, the si’s are the usual Man-
delstam variables si = x2

i,i+1 = (pi + pi+1)
2. The conjecture (2.23) is mostrly a statement

about the finite part of the amplitude, which is supposed to exponentiate in the same way
the divergent part does.

At the origin of this apparent simplicity is the observation of [51] that the dimensionally
regularised scalar box integral of (2.18) can be written in dual coordinates

p1 = x1 − x2 = x12, p2 = x23, p3 = x34, p4 = x41 (2.25)

I(s, t, ǫ) = c

∫
d4−2ǫk

k2(k − p1)2(k − p1 − p2)2(k + p4)2
= c

∫
d4−2ǫx5

x15x25x35x45
(2.26)

that manifest a dual conformal structure of the integrand. Indeed in the dual coordinate
frame, due to dimensional regularisation, the integral I has a broken conformal symme-
try. This duality was shown to hold for two-loop integrals and a dual picture was pro-
posed [76] [77] in which the dual integral is represented as a light-like Wilson loop integral
in the dual space with edges xij ’s (note that x2

ij = 0 because momenta are light-like). Indeed
the conjecture received full interest and a strong coupling motivativation for the duality was
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given in [41].

On the Wilson loop side, broken conformal Ward identities was also derived [16]; basing
on the conformal properties of loop space integrals they constrain the structure of the
expectation value of the Wilson loop so as to fully determine its value for the 4 and 5 edges
cases, thus the recursive simple structure of 4 and 5-gluons MHV amplitudes observed
by [75]. The uncovering of such a powerful symmetry together with explicit computations
for the tree-level, all-points amplitudes [78] were a seemingly strong support to the BDS
ansatz. On the other hand a deviation from this conjecture was soon observed in [79],
where the six-edges light-like Wilson loop was computed at two loops, and further in a
strong coupling computation of n-gluon amplitudes with n very large [80]. Soon after a
direct evaluation of the six-gluons MHV scattering amplitude [17] stated the validity of
the Wilson loop computation and the incompleteness of the BDS ansatz, which was then
modified to account for a deviation from the original conjecture

AMHV
n = eZn+FBDS

n +fn+Cn (2.27)

This deviation fn in turn was attributed to so-called reminder functions appearing in the
solution to the conformal Ward identities from six-points onwards. In fact, conformal sym-
metry restricts these finite contributions to be arbitrary functions of conformal ratios

x2
ijx

2
kl

x2
ikx

2
jl

which are evidently trivial for the 4,5 points cases but are no more when the number of
external legs increases, for example at six edges one finds

u1 =
x2

13x
2
46

x2
14x

2
36

, u2 =
x2

24x
2
15

x2
25x

2
14

, u3 =
x2

35x
2
26

x2
25x

2
36

However note that the BDS ansatz (2.23) is still a particular solution to the conformal
Ward identites, as was shown in [77], though definitely it is not the most general solution.
On the other hand, these developments strongly pushed forward the duality between MHV
amplitudes and light-like Wilson loops, which is the main topic of the next Chapter 3.

2.4 BCFW on-shell recursion relations

The collinear and multiparticle relations sketched in the previous section are hand-waving
arguments to the existence of much tighter relations among scattering amplitudes with a
different number of external particles. As much of the recent developments in understanding
the S-matrix of field theories was inspired by Witten’s twistor string [28], on-shell recursion
relations for scattering amplitudes were proposed in [29] by Britto, Cachazo and Feng and
then prooved in [30]. These are commonly know as BCFW recursion relations. In field
theory these useful relations relate tree level amplitudes to a sum over amplitudes with a
smaller number of particles, evaluated at complex values of the momenta. The elementary
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and elegant derivation of the relations [30] involves a complex momentum shift on two par-
ticles. Crucially, an absence of certain residues at infinite momentum shifts needs to be
shown to make the relations work. Residues at infinite complex momentum are at the least
by hand waving related to the UV behavior of the theory under study. This reasoning can
be made more precise in field theory [81]. Absence of residues at infinity has been proven
in (super)Yang-Mills and Einstein (super)gravity in any dimension from four onwards, see
for example [82] and references therein.

The key observation for deriving the on-shell recursion relations is that any tree level
scattering amplitude can easily be turned into a rational function of a single complex variable
by deforming the momenta [30], requiring that these deformed momenta remain on-shell and
obey momentum conservation. The simplest example of this is to take two particles i and
j and shift their momenta by a vector qµ

pµi → p̂µi = pµi + zqµ ,

pµj → p̂µj = pµj − zqµ , (2.28)

which preserves momentum conservation. More complicated shifts are though possible. For
two particle shifts linear in z as in eq. (2.28), the on-shell constraint is satisfied iff the vector
q obeys

pµi qµ = pµj qµ = qµqµ = 0 . (2.29)

These equations do not have a solution for real qµ, but do for complex momenta, as can easily
be verified by going to the common light-cone frame. After the shift any n-point amplitude
An becomes a function of a complex variable An(z), where the amplitude of interest is of
course An(z = 0). This can be obtained by an elementary contour integration around a
contour which only encompasses the pole at z = 0,

An(0) =

∮

z=0

An(z)

z
dz (2.30)

If the contour is now pulled to the other side of the Riemann sphere one encounters various
poles at finite values of z and a possible residue at infinity,

An(0) =

∮

z=0

An(z)

z
dz = −

{∑
Resz=finite + Resz=∞

}
. (2.31)

The poles at finite values of z correspond to the exchange of physical particles. By tree
level unitarity, the residues at these poles must be the product of two tree level amplitudes
with each one leg containing the particle being exchanged, summed over all particles at this
particular mass level. The residue at infinity does not have a similar physical interpretation.
If therefore this residue vanishes then all terms on the right hand side of (2.31) are known
and consist of lower point amplitudes. Therefore in this case a recursion relation is obtained
between amplitudes
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An(1, 2, 3 . . . , n) =
∑

r,h(r)

n−2∑

k=2

Ak+1(1, 2, . . . , î, . . . , k, P̂r)An−k+1(P̂r, k + 1, . . . , ĵ, . . . , n)

(p1 + p2 + . . .+ pk)
2 +m2

r

,

(2.32)
where the sum is over all different mass levels r and over all polarization states at that
level, denoted h(r). The momentum P̂r for the ‘extra’ particle and its anti-particle in the
amplitude is such that the particle is on-shell.

Example: pure Yang-Mills vs N = 4 amplitudes

As the large z behaviour is crucial in determining whether or not scattering amplitudes
obey recursion relation, direct inspection of Feynman diagrams is often misleading, pre-
dicting a much worse scaling than the actual one. This is a strong hint of the fact that
symmetries play an imporant role, indeed theories with larger Lorentz symmetry groups
have a nicer behaviour under infinite complex shifts.

Consider to this purpose pure Yang-Mills theory for a gauge field fluctuating around
some soft background Aµ = Aµ0 + aµ. The gauge-fixed YM Lagrangean for the dynamical
field becomes

LYM = −1

4
D[µaν]D[µa

ν] +
i

2
tr[aµ, aν]F

µν + (Dµaν)2

= −1

4
DµaνDµaν +

i

2
tr[aµ, aν]F

µν (2.33)

Now a Feynman diagram reasoning in momentum space would suggest that the first term can
potentially have vertices which behave like O(z) under (2.28), but it also have an enhanced
spin symmetry acting on a’s but not on A0’s. So the general form of the amplitude would
be

Mab = (c1z + c0 + c−1
1

z
+ ...)ηab + Aab +

1

z
Bab + ... (2.34)

where Aab is anti-symmetric and a, b are some polarization indices (it is evidently convenient
to change notation and use a different letter to indicate amplitudes). But this is not quite
true. To get on-shell amplitudes, one actually needs to contract Mab with polarization
vectors εa(pi), ε

b(pj) in (2.7), and using Ward identities

(pi + zq)aM
abεjb = 0 =⇒ qaM

ab =
−1

z
piaM

abεjb (2.35)

one gets much better behaved amplitudes
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M−+ = ε−iaM
abε+

jb = qaM
abqb

=
−1

z
pia

[
(c1z + c0 + c−1

1

z
+ ...)ηab + Aab +

1

z
Bab + ...

]
qb

=
−1

z
piaA

abqb →
1

z

(2.36)

Here the orthogonality condition pi · q = 0 is crucial for lowering the degree of divergence.
Not all amplitudes of standard YM theory have good properties, hence not all of them can
be recursively computed. More precisely one can show [82] that, upon choosing axial gauge
to remove O(z)−vertices from all but a finite number of diagrams, pure YM amplitudes
behave like M−+,M−−,M++ → z−2 and M+− → z2 under BCFW shift. Things get better
if one considers supersymmetric scattering amplitudes.

The challenge in deriving BCFW relation is the proof of absence of the residue at infinity.
It was shown in [35] that a proof along these lines holds for all open string theory amplitudes
in a flat background, subject to a kinematic constraint. As the derivation of the BCFW
recursion relation involves a limit, the field theory limit of the resulting equations has to be
treated with care [34] to avoid ‘order of limits’ problems. Note that any symmetry of the
three-point amplitude will imply through the recursion relations a corresponding symmetry
of n-point amplitudes, but this will be next section’s topic.

2.4.1 Three-dimensional recursion

It is not hard to convince oneself that solutions to (2.28) subject to the constraints of
momentum conservation (2.29) exist only in dimensions D ≥ 4, therefore on-shell recursion
relations in 3 dimensions must involve a non-linear shift. The spinor decomposition of
external momenta

pαβ = pµ(σµ)
αβ (2.37)

involves a single spinor λ, in contrast to what happens in four or grater dimensions where
two spinors are needed. We preserve conventions of the previous sections

pαβ = λαλβ , 2pi · pj = −〈i|j〉2 (2.38)

for light-like momenta. From the equation above, which is quadratic in λ, one could hint
that a suitable transformation that preservers momentum conservation of on-shell particles
might be achieved by a rotation of the two spinors

(
λi(z)
λj(z)

)
= R(z)

(
λi
λj

)
(2.39)

by a rank-two matrix depending on z. Being R a rotation, on-shellness is automatically
preserved, while conservation of shifted momenta boils down to
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(λi(z) λj(z))

(
λi(z)
λj(z)

)
= (λi λj)

(
λi
λj

)
(2.40)

which gives the following constraint on R

tR(z)R(z) = I (2.41)

which is the simple statement that R is a matrix of SO(2,C). To see that this is actually a
vector rotation in two dimension it is enough to change variable to z = eiθ, then from the
general parametrisation of SO(2,C)

R(z) =

(
z+z−1

2
−z−z−1

2i
z−z−1

2i

z+z−1

2

)
=

(
cos θ − sin θ
sin θ cos θ

)
(2.42)

The main difference one can readily see between four and three-dimensional shifts is
that in the latter case intermediate propagators in (2.32) become highly non-linear in z. For
example, let us shift spinors relative to leg 1 and leg m, accordingly the momentum of the
intermediate particle propagating between subamplitudes will be

P̂r(z) = pi + ... + pm(z) + ... + pj, 1 < i < m < j (2.43)

which gives the on-shell condition

0 = P̂ 2
r (z) = c−2z

−2 + c0 + c2z
2 (2.44)

where

c−2 = −2q̃ · (Pr − pm), c0 = (Pr + p1) · (Pr − pm), c−2 = −2q · (Pr − pm)

qαβ =
1

4
(λ1 + iλm)α(λ1 + iλm)β , q̃αβ =

1

4
(λ1 − iλm)α(λ1 − iλm)β

(2.45)

This non-linear equation has four solutions for z, that we denote ±zr±, and the corre-
sponding contour integral must pick up the contributions of all of the four poles

An(z = 1) =

∮

z=1

Az(z)

z − 1
dz (2.46)

where the contour encloses the four singularities. It follows that the analogue of the four-
dimensional recursion formula (2.32) receives more than one contribution from each on-shell
intermediate particle

An = B +
∑

r,h(r)

n−2∑

k=2

H(zr+, z
r
−)Ak+1(1, ...k, r

h)
1

P 2
r

An−k+1(r
h, k + 1, ...n) + {zr+ ↔ zr−} (2.47)
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limP
2 → − k

α′

i P

i

i
∗

Figure 2.1: Conformal symmetry elucidates a certain kinematical limit with k a non-negative
integer. The sum runs over all string states at this particular mass level.

where the sums are extended over all possible intermediate states with momentum Pr and
helicity h(r). Although the above expression has more than one term contributing to the re-
cursive expansion for each on-shell propagator, the main difference with the four dimensional
counterpart is in the appearance of the function

H(z1, z2) =

{
z21(z22−1)

z21−z22
r = odd

z1 (z22−1)

z21−z22
r = even

(2.48)

which counts the number of solutions. At last, any boundary contributions must be taken
into account. In three-dimensional theories the behaviour at large z is generally nicer since
any propagator contributes a 1

z2
to the amplitude. For example note that in ABJM theory,

which will shortly be the main focus of our interest, all boundary term vanish [83].

2.5 Recursion in string theory

On-shell recursion relations have a nice and intuitive interpretation in string theory. Scat-
tering amplitudes in string theory are computed inserting vertex operators at the boundary
of of the string worldsheet. For open strings this is simply a disk, as dipicted in Figure 2.5.
Conformal symmetry than allows to stretch the disk along some direction until it develops
a long narrow strip. When this strip is infinitely long, only on-shell string states can propa-
gate from side to side of the worldsheet, and each half of the latter constitute by themselves
a lower-point scattering amplitude. This gives a intuitive interpretation of the recursion
formula (2.32) presented before.

The behavior of string theory tree-level amplitudes under a BCFW shift of two external
momenta was analysed in [34] and in more details in [35]. The key idea is to apply the
complex shift directly to the integral form of the string amplitude. A parallel derivation
based on the study of OPE between vertex operator was also given and will be reviewed at
the end of this section. For may useful reminds about old-school string theory we advice
the beautiful review [84].
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Let us then introduce the open string tachyon scattering amplitude for all multiplicities
which is given by the well-known Koba-Nielsen formula

[85],

An =

∫

0≤yn−1≤...≤y3≤1

∏

2<i<j<n

(yi − yj)2α′pipj . (2.49)

In deriving this expression from the path integral the positions of 3 vertex operators have
been fixed: particles 1, 2 and n at ∞, 1 and 0 respectively. Despite appearances, this
expression can be shown to be cyclically symmetric in the external legs. We can therefore
shift any two adjacent particles to cover all adjacent shifts and for the above expression it
is convenient to choose n and 1. Through a coordinate transformation

ui =
yi+1

yi
, 2 ≤ i ≤ n− 2 , (2.50)

this expression can be transformed to

An =

(
n−2∏

i=2

∫ 1

0

duiu
α′si−2
i

)

n−2∏

k=2

n−1∏

j=k+1

(
1−

j−1∏

l=k

ul

)2α′pkpj

 , (2.51)

with si = (
∑i

k=1 pi)
2. From this expression it is easy to see that when particles 1 and n

are shifted one can apply the integral argument given above for the Veneziano amplitude
several times to obtain the limiting behavior for z →∞. Concretely, the chosen shift shifts

si → ŝi = si + 2zqµ

(
i∑

k=2

pµi

)
≡ si +

γi
α′ z . (2.52)

In line with the analysis above, change coordinates to

ui = exp

(
− βiwi
α′si − 2 + γiz

)
≡ e−w̃i , (2.53)

which turns (2.51) into

An(z) =

(
n−2∏

i=2

∫ ∞

0

dwi

( −βie−w̃i

α′si + γiz − 2

)
e−βiwi

)(
n−2∏

k=2

n−1∏

j=k+1

(1− e−
Pj−1

l=k
w̃l)2α′pkpj

)
,

(2.54)
accompanied by the reality conditions

Re

(
βiwi

α′si − 2 + γiz

)
> 0 , Re (βi) > 0 . (2.55)

From eq. (2.54) the large z behavior of the bosonic string tachyon amplitude follows as

An(z) ∼
(

1

z

)α′(p1+pn)2−1
(
G0 +

G1

z
+O

(
1

z

)2
)

, (2.56)
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which is the result from a Laurent expansion around z = ∞. In this expression Gi denote
certain (n− 3)-fold exponential integrals that do not depend on z. This completely isolates
the large z behavior of the amplitude and we conclude that for adjacent shifts the Koba-
Nielsen amplitude obeys BCFW recursion if

Re
(
α′(pi + pi+1)

2
)
> 1 , (2.57)

with i and i+1 the labels of the shifted particles. More precisely, n−3 points on the contour
integral must be excised. It can then be argued that their contribution vanishes because of
analyticity of the integrand on the contour. In principle G0 could integrate to zero, so the
above analysis establishes a bound only, which could be better if some hidden symmetry is
at work.

A similar analysis can be carried out for gluon amplitudes in both bosonic and super-
strings. The main difference of the tachyon amplitudes and amplitudes involving other
modes of the string are the complications caused by polarization vectors as these must be
transverse to the shifted momenta. As a concrete and important example of this, adjacent
shifts of the general n-point gluon amplitudes in the bosonic and superstring will be con-
sidered in this subsection. To solve the complication and obtain concrete expressions it is
instructive as was done in [86] to consider the lightcone frame of the two shifted momenta,

p1 =
1√
2
(1, 1, 0, 0; . . .0) , pn =

1√
2
(1,−1, 0, 0; . . .0) , (2.58)

where we have set the energy scale by one of the momenta to avoid cluttering formulas later.
In this frame the shift vector obeying (2.29) can be chosen to be

q =
1√
2
(0, 0, 1, i; . . .0) . (2.59)

With this shift choice it is convenient to choose the polarization vectors for unshifted mo-
menta as

ζ−1 = ζ+
n = q , ζ+

1 = ζ−n = q∗ , ζT = (0, 0, 0, 0; . . . , 1, . . . , 0) . (2.60)

These vectors are given in a lightcone gauge in which the lightcone gauge vector of one leg
is the momentum of the other leg. Under a momentum shift

p1 → p1 + qz , pn → pn − qz , (2.61)

the set of transformations that leaves the transversality constraint ζi · pi = 0 invariant reads

ζ−1 = ζ+
n = q → q
ζ+
1 = q∗ → q∗ + zpn
ζ−n = q∗ → q∗ − zp1

ζT → ζT

. (2.62)
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ζ1 \ ζn − + T
− +1 +1 +1
+ −3 +1 −1
T −1 +1 −1
T2 −1 +1 0

Table 2.1: The leading power in z−κ for large z limit of the BCFW shift of an all gluon
amplitude in field theory for all possible polarizations.

The large z behaviour of D dimensional field theory amplitude [86] generalizes the result
of the previous section (2.36). It is instructive to list field theory and SYM results and
compare them with data extracted from string amplitudes, for this purpose see Table 2.1.

ζ1 \ ζn − + T
− −1 +1 +1
+ −3 −1 −1
T −1 +1 −1
T2 −1 +1 0

ζ1 \ ζn − + T
− +1 +1 +1
+ −3 +1 −1
T −1 +1 −1
T2 −1 +1 0

Table 2.2: The leading power in z−α
′(p1+pn)2−κ for large z limit of the adjacent shift of an

all gluon amplitude in the bosonic string on the left and superstring on the right for all
possible polarizations. For transverse polarization states TT means same polarization while
TT2 means different polarizations, both transverse.

Without specifying the effect of the shifts of the polarization vectors ζ1, ζn the large
z-dependence of bosonic string gluon amplitudes can be written as

Abosonic
n ∼
(

1

z

)α′(p1+p2)2

ζ̂µ1

[
z
(
gµν +B3

µν

)
h1

(
1

z

)
+
(
B1
µν +B2

µν

)
h2

(
1

z

)
+O

(
1

z

)]
ζ̂n
ν
, (2.63)

Here the hatted quantities have been shifted and hi are as before polynomial functions of 1
z

with a non-trivial constant term. Furthermore, B2 is the anti-symmetric matrix

B2
µν =

√
2α′

n−1∑

j, k=2

((ζj)ν(pk)µ − (ζj)µ(pk)ν) , (2.64)

and B3 is the symmetric matrix
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B3
µν = −2α′

n−1∑

j, k=2

((pj)µ(pk)ν) = −2α′(p1 + pn)µ(p1 + pn)ν , (2.65)

which is the main difference compared to the field theory behaviour in (2.36). In the same
way the behaviour of superstring amplitudes can be extracted and reads

Asuper
n ∼

(
1

z

)2α′(p1·pn)

ζ̂µ1

(
z h1(1 + 2α′p1 · pn)gµν +

(
h2B

1
µν + h3B

2
µν

)
+O

(
1

z

))
ζ̂νn . (2.66)

The function hi are as before polynomial functions of
(

1
z

)
with non-trivial constant term.

Importantly, the matrix B2
µν is antisymmetric as is shown in [35]. By the same analogy

to [86] as noted above this leads immediately to Table 2.2 for the large z-behavior of the
superstring gluon amplitude. Note that one has to use Ward identities as in the YM case
to soften the behaviour at infinity. It is instructive to compare field theory resuts to string
theory results through Tables 2.1, 2.2. Note that somehow superstrings amplitudes have
worse divergences for some combinations of external helicities. This is imputable to the fact
that a non-supersymmetric shift has been performed on supersymmetric amplitudes.
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CHAPTER 3

Duality between Wilson Loops and Scattering Amplitudes

3.1 Scattering amplitudes and Wilson loops at strong

coupling

One of the main reasons of interest in scattering amplitudes of maximally supersymmetric
theories is the hope that they could tell us something about less supersymmetric theories or
theories with no supersymmetry at all, like QCD. And the reason why they have been elected
to recipient of such a hope is that they are easier to compute. Indeed, MHV amplitudes in
N = 4 super Yang-Mills can be recursively computed for any number of external particles
up to one-loop, which is a great deal of information about the perturbative structure of the
theory. On the other hand one of the main open questions of QCD entails the behaviour of
the theory in the region where it is strongly coupled, and again, supersymmetric theories
could be of some help. Supersymmetric theories at strong coupling can be studied through
the AdS/CFT correspondence, by means of which a strictly non-perturbative computation
on the field theory side is mapped to a semiclassical computation on the string side. In
particular the idea of Alday and Maldacena to relate strongly coupled gluon amplitudes
to certain Wilson loops [41] [80] has been of great success in the past five years and also
motivated the belief that the duality actually holds for any value of the coupling constants.
Originally, this duality related a scattering amplitude in four-dimensional strongly coupled
N = 4 SYM to the minimal area of the string worldsheet ending on a light-like Wilson
loop on the boundary of AdS5. This duality is achieved by means of a symmetry of the
string sigma model known as T-duality, which in turn is responsible of the observed dual
superconformal symmetry of scattering amplitudes at strong coupling. Dual superconformal
symmetry is also present at weak coupling and it appears to be the lower level realization
of an even more hidden symmetry related to the underling integrability of the theory and
known as Yangian symmetry [10] [11] [12] [13] [14] [15]. In the fist part of this chapter we
will review the derivation of the aforementioned strong coupling duality for N = 4 SYM and
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z = zIR r = R2/zIR

T − duality

Figure 3.1: Pictorial view of the T-duality that maps the string scattering amplitude’s
worldsheet into the dual worldsheet ending on a null polygonal Wilson loop. The duality
also maps AdS into itself and maps a D3-brane in the far infrared to a point near the dual
boundary r = 0, where the Wilson loop is located.

type IIB superstring theory on AdS5× S5. Then we will focus on the weak coupling side of
the amplitudes/Wilson loops duality, in particular for what concerns a more recent example
of AdS/CFT which is the duality between N = 6 supersymmetric Chern-Simons-matter
theories in three dimensions and type IIA on AdS4 × CP 3.

3.1.1 T-selfduality of AdS5 × S5

Basing on the AdS/CFT correspondence [6]1, it was proposed to describe gluon scattering
amplitudes in N = 4 SYM at strong coupling by the scattering of open strings in AdS5×S5

[41] [80], as depicted in Figure 3.1.1. As on the gauge theory side, scattering amplitudes os
string states must be properly defined, and an infrared regulator is needed. For this purpose
consider the metric of AdS5

ds2 = R2 dx2
3+1 + dz2

z2
(3.1)

and place a D3-brane extending over the coordinates x3+1 and localized at a large infrared
point z = zIR. The asymptotic states that we are about to scatter are open strings ending
on this D3-brane. In the large N limit these strings can be considered as gluons of the
SU(N) SYM theory [87]. Moreover they carry proper momentum in AdS5

1The author does not really understand way this paper is still being cited, though defers to the common
sense.
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kpr =
k zIR
R

(3.2)

where k is four-dimensional momentum, which will be considered fixed in the limit where we
send the regulator zIR to infinity. At the end of the day we are scattering strings with very
large momentum, and it turns out [88] [89] that in this limit the amplitude is dominated by
the saddle point of the classical action, which means the minimal surface of the worldsheet
subject to the boundary conditions in AdS5. The worldsheet itself has the topology of a
disk with vertex operators inserted at its boundary at z = zIR. The crucial abservation
of [41] was that, after T−dualising xµ coordinates to

ds2 = w2(z)dxµdxµ + ... ←→ ∂αy
µ = iw2(z)ǫαβ∂βx

µ (3.3)

and redefining r = R2/z, the metric of af AdS goes into itself

ds2 = R2 dy2
3+1 + dr2

r2
(3.4)

The boundary of the worldsheet are T−dualised to a point located near the origin r =
R2/zIR ∼ 0 and boundary conditions due to the insertion of vertex operators assume the
rather simple form

∆yµ = 2πkµ (3.5)

Since gluons are massless, the momenta ki are light-like. Thus, at every insertion of a
vertex operator the dual coordinates get shifted by a light-like segments that equals 2πkµi .
This defines a polygonal loop with null edges located near the boundary of the T−dual metric
at r = 0 as zIR →∞, hence the computation is formally identical to the computation of the
expectation value of such Wilson loop at strong coupling [38] [39]. The saddle point that
dominates the string action in this regime is actually the minimal area A(k1, .., kn) of the
worldsheet ending on the segments k1, .., kn in the dual space, hence the leading exponential
behaviour of both the light-like Wilson loop and the scattering amplitude reads

An ∼ e−
√

λ
2π

A(k1,..,kn) (3.6)

Note that kinematical information other then momenta of the external particles are not
taken into account by this procedure. Although such information cannot alter the leading
exponential, it can contribute to a prefactor depending, for instance, on the external polar-
isations. How to include such data in the string picture is still an open problem, which can
be hopefully solved by including quantum corrections to the classical area.

3.1.2 Minimal surfaces and cusped Wilson loops

Though a semiclassical one, finding the solution to the minimal area problem is a hard task
and is currently viable by analytical methods for the sole case of a four-edges loop [41].
For other cases a solution can be found in the form a set of integral equations derived
by means of integrability. These equations are formally identical to the thermodynamic
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Bethe equations and can be solved at least numerically through the Thermodynamic Bethe
Ansatz (TBA) and the so-called Y−system (or T−system). Being integrability beyond our
current purposes, we will not dip into it and we refer the reader to [90] [91] for the TBA
equations, [92] [93] for the Y−system and other many references therein.

Let us introduce the minimal area solution for a cusped Wilson loop, which means a
couple of semi-infinite null Wilson lines on a light-cone and joining in a point. The solution
to this problem was first presented in [94]. It is sufficient to restrict to a AdS3 subspace of
AdS5 where the boundary conditions imposed by the loop contour are

y0 > 0, y1 = ±y0, r = 0 (3.7)

so that the metric becomes

ds2
AdS3

=
−dy2

0 + dy2
1 + dr2

r2
(3.8)

The classical (Nambu-Goto) action reads

S =
R

2π

∫
d2σ
√

det(gµνηab∂aXµ∂bXν) (3.9)

writing r = r(y0, y1) the string action can be written in an explicit form

S =
R

2π

∫
dy0dy1

1

r2

√
1 + (∂0r)2 + (∂1r)2 (3.10)

The minimal area that extremises the classical action subject to the boundary conditions
(3.7) above is readily computed

r(y0, y1) =
√

2(y2
0 + y2

1) (3.11)

This is simply the are of a section of a cone ending on the two lines. Note that this area
is actually unregularised, fact reflecting itself in the divergence of the classical action (3.10)
computed on this solution. To overcome this issue it was argued in [41] to extend the AdS
metric out of dimension in the following way

ds2
√
λDcD

[
dy2 + dr2

r2+ǫ

]
(3.12)

where ǫ is a negative, small, dimensional regulator,

λD = λ
µ2ǫ

(4πe−γE)ǫ
(3.13)

is the regularised coupling constant and

cD = 24ǫπ3ǫΓ(2 + ǫ) (3.14)

is a normalization constant. Using these conventions the infrared regularised action becomes
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S =

√
λDcD
2π

∫ Lǫ
rǫ

(3.15)

Such a procedure is strongly reminiscent of dimensional regularization of Feynman inte-
grals, indeed it can be thought of as dimensional regularization at strong coupling. Though,
integrals are non-isotropically taken off-dimensions, since only the internal dimensionality
of AdS is modified. Moreover, solutions of the unregularised classical action (3.10) are,
strictly speaking, no longer solutions of (3.15). On the other hand they are still useful in
extracting the first few orders of the ǫ → 0 expansion of the regularised minimal area. To
this aim it was argued in [41] that a somewhat accurate value of the minimal area can be
extracted by plugging the solution of the unregularised problem into the regularised action
and neglecting terms of order O(ǫ) as ǫ→ 0.

Getting back to our main concern, the four-cusps Wilson loop can be parametrised by a
square on the boundary for s = t

r(±1, y2) = r(y1,±1) = 0, y0(±1, y2) = ±y2, y0(y1,±1) = ±y1 (3.16)

being s = (k1 + k2)
2 and t = (k1 + k4)

2 ordinary Mandelstam variables for the four gluon
scattering. Knowing the solution for a single cusp the generalization to four-cusps is not a
big deal

y0(y1, y2) = y1y2. r(y1, y2) =
√

(1− y2
1)(1− y2

2) (3.17)

At the level of the classical action (3.10), the solution for general s and t can be extracted
from this particular solution by means of a conformal transformation. On the other hand,
once the action has been regularised, the regulator breaks conformal invariance of the theory
this argument cannot be used any more. At leading order in the ’t Hooft coupling the
regularised minimal area reads

−
√
λ

2π
Amin = −

√
λ

2π

[
Adiv +

1

2
log2 s

t
+ const

]
(3.18)

where the constant term is scheme dependent and the divergent term for small ǫ reads

Adiv =

[
− 2

ǫ2
− 1− log 2

ǫ

][(−s
µ2

)−ǫ/2
−
(−t
µ2

)−ǫ/2
]

(3.19)

Note that also the subleading divergence is scheme dependent, and that, as was shown
in [95], the regularisation procedure of [41] must be modified at subleading orders in 1/

√
λ.
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3.2 Scattering amplitudes and Wilson loops at weak

coupling

3.2.1 Perturbative expansion of cusped Wilson loops

Since their first introduction in the contest of QCD quark confinement [9], Wilson loops have
been the subject of massive study in field theory. There they carry information about the
interaction between a massive quark moving along a certain contour C and interacting with
the gluon field Aµ. The Wilson loop is constructed by taking the path-ordered exponential
of the holonomy of the gluon field along the contour

W (C) =
1

N

〈
0|TrPeig

H
C Aµdxµ|0

〉
(3.20)

where the trace is over the generators of the gauge group, P is the path-ordering opera-
tion which arranges group indices of SU(N) along the integration contour C and 1/N is
a normalization constant for the loop in the fundamental representation. Expanding the
expectation value above for small values of the coupling constant g one recovers the full
perturbative series

W (C) ∼ 1 + ig

∮

C
Aµdx

µ + (ig)2

∮

C
dxµ

∫

xj>xi

dxνAµ(xi)Aν(xj) + . . . (3.21)

Note that the path-ordering prescription precisely cancels the combinatoric factor coming
from the expansion of the exponential in (3.20). Such Wilson loops, when computed on
smooth contours, are perfectly well defined object whose only potential divergence is linear
in the length L of the contour

W (C) = e−K L(C) × finite (3.22)

and can be interpreted as the mass renormalisation of the heavy particle moving along C [96]
[97]. This renormalisation does not depend on potential multiplicative renormalisations of
the fields in the theory due to UV divergences which do not depend on the contour but are
a global features of the theory itself [67], we therefore assume in the following that global
renormalisation of fields have already been carried out. For example, the one loop correction
to (3.21) corresponding to the exchange of a single gluon reads

W (1)(C) =∼ (ig)2

∮

C
dxµi

∫

xj>xi

dxνj
ηµν

(xi − xj)2 + a2

= (ig)2

∮

C

∮

C

ẋ(s) · ẋ(s+ t)dsdt

[x(s + t)− x(s)]2 + a2
(3.23)

where x(s) parametrises the contour and a cutoff a2 has been introduced to regularised
contact divergences emerging when the two ends of the propagator pinch over each other.
There is better defined way of regulating such divergences and which is known as framing,
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we will be back on that in the following. Here the divergence comes entirely from the region
where t ∼ 0, then we can write

W (1)(C) ∼
∮

ds ẋ2(s)

∫ Λ

0

dt
1

ẋ2(t) + a2
+ finite

=
π

a

∫
ds
√
ẋ2(s) + finite = π

L(C)
a

+ finite (3.24)

which is in agreement with (3.22).

We are mostly interested in loops which are not smooth, which have cusps indeed. In
such case additional UV divergences appear, localised at each cusp point and which depend
in a non trivial way on the local details of the contour. Analogous arguments hold for loops
having self-intersections [98]. For a Wilson loop operator in the fundamental representation
of SU(N) along a contour with a cusp angle θ the one loop correction reads

W (C) = 1− 2g2CF [θcotθ − 1] log
L

a
(3.25)

where L is the length of the loop, a the contact divergence regulator and CF the quadratic
Casimir operator in the fundamental representation [99]. At any order of perturbation
theory such divergences can be removed by multiplicative renormalisation of the Wilson
loop

WR(C) = Z(θ)W (C) (3.26)

and the new divergences depend only locally on the geometrical data of the loop (like θ)
through Z(θ). This property can be rephrased in the statement that for such Wilson loops
there is no anomalous divergence depending non-locally on the contour.

For Wilson loops with cusp a renormalization group equation can be derived [67]

[
µ
∂

∂µ
+ β(gR)

∂

∂gR
+ Γcusp(θ, gR)

]
WR = 0 (3.27)

where gR is the renormalised coupling constant, µ is a scheme dependent mass scale and

Γcusp(θ, gR)) = lim
ǫ→0

Z µ
∂

∂µ
Z−1 (3.28)

From the two equations above one can derive a renormalization group equation for Z itself

[
β(gR, ǫ)

∂

∂gR
− Γ(θ, gR, ǫ)

]
Z−1(θ, gR, ǫ) = 0 (3.29)

whose solution is
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Z−1(θ, gR, ǫ) = exp

[∫ gR

0

dg′
Γ(θ, g′, ǫ)

β(g′, ǫ)

]
(3.30)

This integral can be done explicitly in some cases. As an example, in N = 4 SYM in
D = 4 − 2ǫ dimensions and with the beta function β(gR, ǫ) = gRǫ one can show that its
value takes the form

Z(θ, gR, ǫ) =

[ ∞∑

n=1

g2n

2n

Γ(n)(θ, ǫ)

ǫ

]
(3.31)

which is a manifestation of the fact that the renormalisation group equation (3.27) implies
the exponentiation of the divergent part of the Wilson loop.

3.2.2 Polygonal null Wilson loops

(a) (b) (c)

Figure 3.2: One loop graphs contributing to the expectation value of the four-edges Wilson
loop in N = 4 SYM. The divergent contribution is solely imputable to the cusp diagrams
of type (a), whereas propagators ectending between more than two edges give a finite term.
The last class of diagrams vanish.

Note that additional divergences can emerge in (3.25) for infinite cusp angle θ. Although
this is not possible in Euclidean spacetime, it is precisely what happens in Minkowski sig-
nature to polygonal Wilson loops with light-like edges, where the hyperbolic angle between
two null segments is infinite. These are indeed the kind of operators that are related to
gluon scattering amplitudes by the strong coupling argument reviewed in Section 3.1, and
thus we will examine them in some details in the following.

In the context of the AdS/CFT correspondence the objects that arise naturally are su-
persymmetric extensions of the purely gluonic Wilson loop introduced in (3.20). In analogy
to the interpretation given in [9], one can construct these objects through a Higgsing of
the vacuum that generates certain supersymmetric particles, the W-bosons of the theory,
and extract the structure of the loop operator from the dynamics of these test particles in
the limit where their mass is much bigger then the energy scale of all processes. This is
outlined in Section 4.2.1 for the supersymmetric Chern-Simons-matter theory with N = 6
supersymmetry in three dimensions.
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Supersymmetric Wilson loops also involve coupling of the countour to scalars and some-
times fermions. The simplest among these objects is the Maldacena-Wilson loop of N = 4
SYM [39]

W (C) =
1

N
〈0|TrP exp

(
ig

∮

C
ds
[
ẋµAµ + |ẋ|θIφI

])
|0〉 (3.32)

where the θI coordinates parametrise the internal S5 of AdS5 × S5 and are normalised
according to θIθI = 1. Depending on the shape of the contour these operators can preserve
a certain amount of the supersymmetry of the vacuum, therefore are called BPS operators.
For example, if the contour is an infinite straight line or a circle it was shown [100] [101]
that loop corrections to the weak coupling expansion of (3.32) vanish at any order

W (straight line) = 1 (3.33)

and the VEV of such operators preserved half of the supersymmetry of the vacuum, so that
they are 1

2
BPS Wilson loops. Also 1/4 BPS operators are known, see [102] [103] [104].

Supersymmetric Wilson loops are also known in other theories. In particular we will
extensively use the 1/6 and 1/2 BPS operators of N = 6 super Chern-Simons theories in-
troduced respectively in [44] and [46].

Polygonal contours with null edges have been first considered in [105]. Since |ẋ| = 0
holds in such cases, scalars (and eventually fermions) decouple from the loop (3.32) making
it completely equivalent to the purely bosonic operator. We parametrise null contours Cn
by a set of n segments pi = xi+1 − xi joining at cusp points xi

Cn =

n⋃

i=1

pi , xµ(si) = xµi + (xi+1 − xi)µsi , si ∈ [0, 1] (3.34)

where all the pi are obviously light-like p2
i = 0. Cusps cause Wilson loops to develop UV

singularities, as was shown in the previous section. The fact that the contour approaches
the light-cone in the neighbourhood of the cusp makes these divergences even more severe
[105] [106]. Let us start from the first nontrivial term in the perturbative expansion of a
light-like Wilson loop

W (1)(Cn) = (ig)2CF

∮

Cn

dxµi dxνjDµν(xi − xj) (3.35)

where Dµν(x) is the gluon propagator in coordinate space, dimensionally regularised in
d = 4− 2ǫ, with ǫ > 0; in Feynman gauge it reads

Dµν(x) = −(µ2e−γE)ǫ
Γ(1− ǫ)

4π2

ηµν
(−x2)1−ǫ (3.36)

When the gluon propagator approaches the cusp, the integrand in equation (3.35) becomes
singular. Diagrams contributing to the divergent part of the integral are depicted in Figure
3.2.2 (a), while other kinds of diagrams either vanish (c) or give a finite contribution (b).
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Note that the latter is regularization dependent. The contribution of a single cusp diagram
is given by

W (pi, pi + 1) = −g
2CF
4π2

(µ2e−γE)ǫΓ(1− ǫ)
∫ 1

0

dsi

∫ 1

0

dsi+1
pi · pi+1

(pisi + pi+1si+1)2

= −g
2CF
4π2

(µ2e−γEx2
i,i+2)

ǫΓ(1− ǫ)
2ǫ2

(3.37)

where xi,j = xj − xi = pi + pi+1 + ... + pj−1 = si,j−1 is a Mandelstam kinematical invari-
ant rephrased. Adding al cusps of a n−edges polygon amounts to the following divergent
contribution to the one-loop correction

W (Cn) = 1 +
g2CF
4π2

[
− 1

2ǫ2

n∑

i=1

(−x2
i−1,i+1µ

2)ǫ + finite

]
+O(g4) (3.38)

The structure of divergences is somehow similar to the space-like case reviewed before
(3.25), but the divergence is a double pole in ǫ rather than a single pole. This fact is due to
the light-like condition which worsen the behaviour of the propagator near the cusp point.
At higher loop level it is known that singularities appear as poles of order less or equal to
the number of loops [107] [105]. This is a consequence of exponentiation of divergences at
any loop order. Thus the expectation value of the Wilson loop can be split in a singular
plus a finite contribution

logW (Cn) = Zn + Fn (3.39)

and from exponentiation it follows the structure of the divergent part

Zn = −1

4

∑

l≥1

λ′l
n∑

i=1

(−x2
i−1,i+1µ

2)lǫ

[
Γ

(l)
cusp

(lǫ)2
+

Γ(l)

lǫ

]
(3.40)

where gl′ = g2N
8π2 is the (scaled) ’t Hooft coupling while Γcusp and Γ respectively are the

so-called cusp anomalous and collinear anomalous dimensions already encountered in the
evaluation of the four-gluon MHV amplitude (2.20) in Section 2.2.1

Γcusp(λ
′) =

∑

l≥1

λ′lΓ(l)
cusp = 2λ′ − π2

3
λ′2 +O(λ′3)

Γ(λ′) =
∑

l≥1

λ′lΓ(l) = −7ζ3λ
′2 +O(λ′3)

(3.41)

The first few orders of their expansion in N = 4 SYM have been listed for completeness.
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3.2.3 Loops/amplitudes duality

The string construction of [41] motivated the investigation of a possible weak coupling rela-

tion between gluon MHV scattering amplitudes M
(MHV )
n and light-like Wilson loops W (Cn).

From the strong coupling picture one would expect that 1/
√
λ corrections would spoil the

duality relation at weak coupling. Nevertheless it was first found [76] to be true at one-
loop in N = 4 SYM for the four-points Wilson loop and the four-gluon amplitudes, and
soon after a confirmation arrived from the one-loop, six-points MHV amplitude and the
hexagon loop [17]. More recently it was also shown to hold in three-dimensional N = 6
super Chern-Simons theory, where an intriguing similarity with the SYM result was also
observed [18] [21] [20], we will get back to this point later on.

It was already known that divergences of scattering amplitudes in non-Abelian theories
can be rephrased in terms of Wilson loops [108] [109] [110], more precisely they factorise in
products of form factors which are in correspondence with Wilson lines at an angle [111].
This factorisation is also responsible for the exponentiation of double and single poles at
each order of perturbation theory [112].

The duality relation that was observed up to two loops in N = 4 SYM goes deeper.
It associates to a scattering amplitude with null external momenta pi a polygonal contour
defined by the points

xµi+1 = xµi + pµi (3.42)

in a dual spacetime, and where the x1 is chosen freely, and conjectures an equivalence
between the finite part of the gluon amplitude and the finite part of the corresponding
Wilson loop

F (MHV )
n = F (WL)

n + constant (3.43)

up to an irrelevant additive constant. Note that this relation is made much more precise by
the absence of any regulator or cutoff since it entails really finite objects. This is in contrast
with the duality between divergent parts in that the these explicitly depend on some regu-
lator. More precisely, scattering amplitudes are IR divergent while loops are UV divergent.
They are defined in different regularisation schemes. Though, leading divergent terms on
the two sides coincide when defined in dimensional regularisation, since both are dominated
by the cusp anomalous dimension Γcusp. Subleading singularities are scheme dependent and
carry non-universal coefficients which are the collinear anomalous dimensions. Matching of
these coefficients is a subtle matter [17].

Before proceeding with a more accurate analysis of the implications of this duality, let us
show how N = 4 SYM rectangular Wilson loop with null edges reproduces the four-points
MHV scattering amplitude of (2.19). This particular loop has also been computed at two-
loops [105] [107] in the kinematical region where x2

13 = x2
24 known as the forward limit (in this

limit the loop reduces to a square). It is quite interesting to note that it explicitly emerges
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from the computation a guide-principle known as maximal trascendentality principle [113].
Let us go back to one-loop example. Following [76], the rectangular Wilson loop reads to
the lowest non-trivial order

W (C4) = 1 +
1

2
(ig)2CF

∮
dxµi dxνjDµν(xi − xj) (3.44)

where Dµν is the gluon propagator that was written in Feynman gauge in (3.35), CF = N2−1
2N

is again the quadratic Casimir of SU(N) and the contour C4 is defined by light-like vectors
xi+1−xi = pi, p

2
i = 0 (upon which an evident cyclicity condition is imposed). For this simple

case the kinematical invariants x2
13 and x2

24 defined in the previous section correspond to the
Mandelstam variable s, t respectively

s = (p1 + p2)
2 = (p3 + p4)

2 = x2
13 t = (p2 + p3)

2 = (p1 + p4)
2 = x2

24 (3.45)

There are three types of diagrams contributing to this order as depicted in Figure 3.2.2.
Diagrams (c) with both ends attached to the same edge of the contour vanish due to the light-
likeness of the edge itself. Cusp diagrams (a), which means diagrams where the propagator
extends across a cusp, were computed in (3.35), and applied to this specific case they give

W (cusps) = −g
2CF
4π2

Γ(1− ǫ)
ǫ2

[
(−e−γEµ2s)ǫ + (−e−γEµ2t)ǫ

]
(3.46)

which is the divergent part Zn introduced in (3.39). The remaining diagrams (b) give a
contribution amounting to

I(p2, p4) = −g
2CF
4π2

∫ 1

0

ds2ds4 (p2 · p4)

(p2s2 + p4s4 + p3)2
=
g2CF
8π2

∫ 1

0

ds2ds4 (s+ t)

ts2 + ss4 − (s+ t)s2s4

= −g
2CF
8π2

∫ 1

0

ds2

s2 − s
s+t

[
log

s

t
+ log

1− s2

s2

]
=
g2CF
16π2

[
log2 s

t
+ π2

] (3.47)

The other integral I(p1, p3) gives the same contribution once momentum conservation is
taken into account. The sum of the two is the first order contribution to the finite part Fn
of (3.39) including the additive constant. Note that the last integral above is well defined
in D = 4 dimensions and therefore the dimensional regulator ǫ has been removed. Putting
finite and divergent parts together and multiplicatively redefining µ one finds

W (C4) = 1 +
g2CF
4π2

{
− 1

ǫ2
[
(−µ2x2

13)
ǫ + (−µ2x2

24)
ǫ
]
+

1

2
log2 x

2
13

x2
24

+
π2

3

}
(3.48)

We can rewrite the finite contribution to the logarithm of the four-edges Wilson loop in the
planar limit where N →∞ with λ = g2N is held fixed

log W (C4) = F
(WL)
4 =

λ

4π2

{
1

2
log2 x

2
13

x2
24

+
π2

3

}
+O(λ2) (3.49)
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and compare it with the finite part of the four-point MHV gluon amplitude (2.19) and the
divergent term Z4 above with the cusp anomalous dimension (3.41). We see that there is a
neat agreement with the duality conjecture.

3.3 Loops/amplitudes duality in N = 6 SCS

The duality between light-like Wilson loops and MHV scattering amplitudes seems not to
be a peculiar feature of N = 4 SYM. Indeed it has also been observed in the context of the
three dimensional N = 6 super Chern-Simons-matter theory introduced in [36] and which
is conjectured to be dual to type IIA superstrings on AdS4×CP 3. This quiver theory with
gauge group U(N)×U(N), commonly referred to as ABJM theory, includes two adjoint CS

fields A and Â, four fermions ψIα and four complex scalars CI respectively in the bifunda-
mental and anti-bifundamental of U(N)×U(N). All the details about the Lagrangean can
be found in Appendix A.2.

The Yangian symmetry related to the planar integrability of N = 4 SYM was also shown
to be responsible for the striking duality between null Wilson loops and MHV scattering
amplitudes [13]. In the ABJM case, first hints of integrability came from the formulation of
the Bethe equations for the ABJM spin chain [22] [23] [24] [25]; then the associated Yangian
symmetry was identified [26], which at level one generates the three-dimensional supercon-
formal symmetry of three-level scattering amplitudes [83].

Soon after, it was shown that the one-loop four and six-cusps light-like Wilson loops in
ABJM vanish, whereas the two-loop expression for the four-cusps Wilson loop reads [18]

〈W4〉(2) = λ2

[
−(−µ2

UV x
2
13)

2ǫ

(2ǫ)2
− (−µ2

UV x
2
24)

2ǫ

(2ǫ)2
+

1

2
log2

(
x2

13

x2
24

)
+ C +O(ǫ)

]
(3.50)

remakably reproducing the one-loop N = 4 SYM result up to an identification of the
coupling constants. The duality was then shown to hold at least at two-loops for the four-
cusps loop; in [19] it was shown that the all n−points scattering amplitudes vanish at
one-loop and subsequently it was computed the four-point amplitude at two-loops in N = 2
superspace formulation [20] and independently in [21] using generalized unitarity methods

M(2) ≡ A
(2 loops)
4

Atree4

= λ2

[
−(s/µ2

IR)−2ǫ

(2 ǫ)2
− (t/µ2

IR)−2ǫ

(2 ǫ)2
+

1

2
ln2
(s
t

)
+ const +O(ǫ)

]
(3.51)

Note that as pointed out in [20], the closest three-dimensional thing to a four-dimensional
gluon MHV amplitude is the superamplitude with two bifundamental and two anti-bifundamental
legs. Then, expressing momenta of external particles in the dual coordinate frame pi =
xi+1 − xi, the duality relation

lnM4 = ln〈W4〉+ const. (3.52)
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is verified up to the identification of the UV and IR regulator and up to an irrelevant
additive constant. Note the intriguing similarity with the one-loop N = 4 SYM counterpart
in equations (3.48) and (2.19), which also implies that the ABJM two-loop amplitude is
proportional to the tree-level times a function depending on kinematical invariants. This
similarity also inspired the authors of [20] to formulate a BDS-like ansatz for the four-points
amplitude in ABJM

A4

Atree4

= eDiv+
ΓCS
cusp(λ)

8 (ln2( s
t )+const)+ΓCS(λ) (3.53)

In analogy with the four-dimensional case (2.23) [75], Div ≡ Z4 is the divergent part of
the scattering amplitude, which is governed by the cusp anomalous dimension and is known
to exponentiate at all orders, ΓCScusp is the three-dimensional cusp anomalous dimension
(scaling function) as obtained from asymptotic Bethe equations [24] up to λ4, and ΓCS is
the (scheme-dependent) three-dimensional equivalent of the collinear anomalous dimension.
From the previous discussion about the BDS ansatz in four dimensions, it is also clear that
this expression should not receive corrections from any possible reminder function, and if
so, is perturbatively exact.



CHAPTER 4

BPS Wilson Loop Operators in N = 6 SCS Theories

Wilson loop operators preserving some supersymmetry of the vacuum are fundamental ob-
jects in any supersymmetric gauge theory. As remarked in the previous sections, the great
interest they hold is partially due to the fact that they represent non-local and gauge in-
variant degrees of freedom, by means of which the gauge theory can be conveniently re-
formulated. But a more intriguing role is that they cover in the context of the AdS/CFT
correspondence. On the one hand they are conjectured to be the gauge theory dual objects
to supersymmetric string solutions, and on the other hand, through this strong/weak cou-
pling duality, Wilson loops with light-like edges (formulated in a dual space) are believed
to share the same structure of gluon scattering amplitudes, both perturbatively and non-
perturbatively.

The search of such protected quantities in the context of supersymmetric Chern-Simons
theories has been a puzzling topic for sometime. Inspired by the four-dimensional N = 4
SYM half BPS operator of [39] [38], two parallel and equivalent proposals where made in [44]
and [45] for a one-sixth BPS operator in N = 6 SCS, and both are closely related to half
BPS operator of N = 2 SCS [114]. When calculated over an infinite straight line or a circle
these operators were shown to preserve 4 out of the 24 supercharges of the theory. Quite
remarkably, and in a certain sense oppositely to the SYM case, it turns out that the most
supersymmetric Wilson loop operator has the structure of a superconnection which also
needs to be coupled to the fermions on the contour to preserver half of the supercharges of
the theory [46]. This previously unobserved feature can be understood from the low-energy
dynamics of massive BPS W-bosons in the Higgsed phase of the theory, which uncovers the
underlying supergroup structure. This last fact indeed admits a nice derivation in the dual
M-theoretic picture [47].

Superconformal symmetry ofN = 6 SCS theories plays an important role in constraining
the structure of supersymmetric loops. It was already observed in [101] that the 1

2
BPD
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Wilson line of four-dimensional N = 4 SYM does not receive loop corrections, as one would
expect from the notion of supersymmetry-protected operators. On the other hand this is
not the case for the circular Wilson loop, which is conformally equivalent to the infinite
straight line. This misunderstanding arises from a mixing of the Poincare and conformal
supercharges. To this aim notice that the infinite Wilson line preserves separately half of
the Poicare supercharges and half of the conformal ones, whereas the circular loop preserves
a mixing of them. In this sense the loop still is a half BPS operator, but finite contributions
arise from the conformal mapping of boundary conditions. Explicit examples are given in
the context of ABJ(M) theory.

4.1 Gauge theory construction of the one-sixth BPS

operator

Superconformal three-dimensional Chern-Simons-matter theory with N = 6 supersymme-
try and U(N)k × U(N)−k gauge group was proposed to be dual to the theory of type IIA
superstrings on the ten-dimensional background AdS4 × CP 3 [36] (Appendix A.1). We
will refer to this theory as ABJM theory, as is commonly done. The Chern-Simons level
k takes only integer values and the quiver construction puts two different CS fields in the
adjoint representation of the two gauge groups and at opposite levels k and −k. The the-
ory includes scalars CI and fermions ψI which transform respectively in the bifundamental,
anti-bifundamental of U(N)k × U(N)−k, and carry a R−index I = 1, 2, 3, 4 of the SU(4)R
symmetry group (please see Appendix A.2 for all the details). In the planar limit where N
is large, the t’ Hooft coupling λ = N

k
interpolates between weakly coupled ABJM theory for

large k, λ≪ 1 and AdS4×CP 3 strings for λ >> 1. Remind that, as mentioned in Appendix
A.1, strings are a good description of strongly coupled ABJM theory for k ≪ N ≪ k5, while
beyond this region one has to consider the theory of M2 branes on AdS4×C4/Zk [36] [115].

Inspired by the four-dimensional Maldacena-Wilson loop [39] (3.32)

W (C) =
1

N
〈0|TrP exp

(
ig

∮

C
ds
[
ẋµAµ + |ẋ|θIφI

])
|0〉 (4.1)

where φI are the N = 4 scalars and the θI coordinates parametrise the internal S5 of
AdS5 × S5, it was proposed [44] [45] to consider the following loop operator in ABJM

W (C) =
1

N
〈0|TrP exp

(
i

∮

C
ds

[
ẋµAµ +

2π

k
|ẋ|M I

JCIC
J
])
|0〉 (4.2)

Differently from the four-dimensional counterpart, gauge fields are in the adjoint represen-
tation Aµ = Aaµt

a, where ta are the generators of the U(N) algebra in the adjoint representa-
tion. Consequently the scalar term must also transform in the adjoint, which is acheived by

the quadratic coupling M I
JCIC

J
of bifundamental and one anti-bifundamental scalar fields

CI = (CI)ijT
iT

j
and C

J
= (C

J
)klT

k
T l. The matrix M I

J essentially determines the super-
symmetric properties of (4.2) and in principle may depend on the contour C parametrised
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by x(s). Finally lower-case Greek indices are R2,1 Lorentz indices and I, J = 1, 2, 3, 4 are
the R−indices.

The functional form of the scalar matrix coupling M I
J is determined by the requirements

that the operator (4.2), together with a suitable choice of contour x(s), preserve some of the
N = 6 supersymmetries of the ABJM theory. These in turn are generated by 12 Poicare
supercharges (QIJ)α with spinor index α = 1, 2, antisymmetric in I, J = 1, 2, 3, 4, and 12
Conformal supercharges (SIJ)α. The supersymmetry variation of the Wilson loop, according
to the superconformal transformation of [116] (reviewed in Appendix A.3) reads [44] [45]

δW =2θIJα
[
−ẋµ(σµ)αβδPI + |ẋ|δαβMP

I

]
CPψJβ

+ 2ǫIJKLθ
IJ
α

[
ẋµ(σ

µ)αβδ
K
P + |ẋ|δαβMK

P

]
ψ
L

βC
P (4.3)

where the two-component spinors θIJα parametrise the supercharges (QIJ)α above. Note that
this is a pointwise relation! The simplest case in which (4.3) can be seen to vanish is for an
infinite straight contour and a contour-independent matrix MJ

I . In this case the spinors θ
can be decomposed into eigenvectors of the chirality projector along the line

P± =
1

2
(1 + ẋ · σ), θ± = P±θ (4.4)

where xµ(s) = ẋµ s, and accordingly the condition δW = 0 generates the two separate
conditions

θIJ+ (−δPI +MP
I ) + θIJ− (δPI +MP

I ) = 0

ǫIJKLθ
IJ
+ (δKP +MK

P ) + ǫIJKLθ
IJ
− (−δKP +MK

P ) = 0
(4.5)

These in turn can be solved [44] for two independent supercharges parametrized by θ12
+

and θ34
− by choosing the following diagonal matrix, which can always be done thanks to

unitarity

M I
J =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 (4.6)

A totally analogous reasoning can be repeated for the variation of the Wilson loop under
the action of the conformal supercharges SIJ parametrized by spinors ηIJ that were con-
structed in [117], indeed the computation boils down to the replacement θIJ → ẋ · σηIJ .
This shows that the Wilson loop operator (4.2) coupled to an infinite straight line preserves
4 out of the 24 supercharges of ABJM theory and hence is 1

6
BPS.

Several points deserve at least a brief discussion at this stage. As emerged from the
analysis above, the structure of the scalar coupling M I

J is determined by the choice of super-
charges one wishes to preserve. This matrix breaks the SU(4)R symmetry of the vacuum to
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SU(2)×SU(2), there is then an additional rotation acting on C1, C2 and C3, C4 which does
not alter the Wilson loop operator. The supercharges are in an anti-symmetric representa-
tion of SU(4)R and are therefore neutral under this purely bosonic symmetry. Analysing
the pattern of symmetry breaking from the string side [45], one can convince oneself that a
fundamental string solution preserving one-sixth of the supersymmetry would be smeared
along a CP 1 ∈ CP 3, thus braking the R−symmetry to SU(2) × SU(2), which is in agree-
ment with what said above.

Conformally mapping the infinite straight line to a circle preserves the same amount
of supersymmetry of (4.3), but the mapping would mix super-Poicare and superconformal
charges, therefore the circular Wilson loop is invariant under some linear combination of
QIJ and SIJ . A possibly confusing fact arises here. The 1

6
BPS Wilson line does not receive

loop corrections, which fact is in agreement with the common interpretation of BPS objects
as supersymmetry protected ones. Though, the same is not true for the circle Wilson loop;
indeed a direct perturbative computation [44] shows that, at two-loops, it receives a purely
topological term from the Chern-Simons vertex plus the contribution of scalar and gluon
exchange diagrams

W (circle) = 1− π2N2

6k2

(top)

+
π2N2

k2

(exch)

(4.7)

In this case, finite loop corrections are due to the conformal mapping of a whole class of
diagrams that vanish in the infinite line case to non-vanishing ones in the circle case [101].

Note that another suitable supersymmetric Wilson loop would be

W (C) =
1

N
〈0|TrRP exp

(
i

∮

C
ds

[
ẋµÂµ +

2π

k
|ẋ|M̂ I

JC
J
CI

])
|0〉 (4.8)

where Âµ = ÂaµT
a

is the second CS field in some representation R of its own gauge group

U(N). Under a suitable choice of M̂ this operator will preserve the same supercharges of
(4.2), therefore the most general 1

6
BPS Wilson loop is a linear combination of the two

WR bR ∼ TrRPe
i
H
C ds

h
ẋµAµ+ 2π

k
|ẋ|MI

J
CIC

J
i
± Tr bRPe

i
H
C ds

h
ẋµ bAµ+ 2π

k
|ẋ|cMI

J
C

J
CI

i
(4.9)

labelled by two Young tableu for any two representations R and R̂ of U(N). Generalising
the last expression to ABJ theory, where the two gauge groups have different rank, is
straightforward.

4.2 The one-half BPS operator

A supersymmetric Wilson loop operator that preserves half of the N = 6 supercharges
of ABJ(M) theory was proposed a few time ago by Drukker ad Trancanelli in [46]. The
1
2

BPS character of this loop operator relies on the extention of the ABJ gauge group
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U(N)×U(M) to the supergroup U(N |M), and on the subsequent introduction of the gauge
superconnection

L =


 Aµẋ

µ + 2π
k
|ẋ|M I

JCIC
J
√

2π
k
ψ
α

I η
I
α√

2π
k
ηβJψ

J
β Âν ẋ

ν + 2π
k
|ẋ|M̂K

L C
L
CK


 (4.10)

The structure of the superconnection is that of a supermatrix - diagonal blocks are N ×N
and M ×M bosonic operators while off-diagonal ones are N ×M and M × N fermionic
operators. In the ABJM case, where N and M coincide, the bosonic blocks of L become
two copies of the 1

6
BPS operator (4.3) introduced in [44] but with a different choice of the

scalar couplings. Note that indeed the choice of M I
J determines the amount of supercharges

that are left invariant by the single block. Our conventions are as follows (all the details are

in Appendix A.2). Chern-Simons gauge fields A and Â are in the adjoint represententation

of U(N) and U(M) respectively, while the complex scalars CI (C
J
) and bi-spinors ψ

α

I (ψJβ )
are in the bi-fundamental (N ,M) ((M ,N)) of U(N)×U(M). Latin uppercase indices are
SU(4) R−indices and thus range from 1 to 4. With these conventions, the scalar bilinear

M I
JCIC

J
is in the adjoint of U(N) and has dimension 1, so it naturally appears on-diagonal

in (4.10), next to the gauge field A. A similar reasoning holds for the bilinear M̂K
L C

L
CK ,

which is in the adjoint of U(M). The latter matrix coupling is “hatted”, meaning that, in

principle, it may differ from the former. However the authors of [46] chose M̂ I
J to be the

same matrix as M I
J , for reasons that we will explore later. We will adopt the same choice,

letting in general both M I
J and M̂ I

J be the same function of the position. Fermion fields are
coupled to the spinors ηIα, η

β
J which act like projectors of the flavour index. Also, fermions

have dimension 1 by their own and carry bi-fundamental indices, so they are naturally placed
off-diagonal in (4.10). The structure of the superconnection L is thus strongly constrained
by the index structure of the fields, while scalars and fermion couplings are dictated by the
requirements of supersymmetry.

The associated Wilson loop opearator is defined, quite expectedly, as the trace of the
holonomy of L in some super-representation R of U(N |M) 1

WR =
1

dimRTrRP ei
R
Γ

dsL(s) (4.11)

along some contour Γ.

The N = 6 Chern-Simons-matter theory of ABJ(M) has 12 Poincaré superchargers Qα
IJ ,

parametrized by θ
IJ

α , and 12 conformal supercharges SαIJ parametrized by ϑ
IJ

. The su-
persymmetry parameters are two-component, antisymmetric spinors which obey the reality

1There might seem to be an abiguity here caused by the choice between the standard trace and the
supertrace. In the original work [46] it is shown that supersymmetry of the Wilson loop itself requires to
take the trace, instead of the supertrace, unlike intuition would have perhaps suggested. This in turn is
related to the choice of boundary conditions for fermions as pointed out in [47]; the antiperiodic conditions
imposed in [46] imply to take the trace.
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condition θ
IJ

= θ ∗
IJ , and similar for ϑ’s. When the contour is a straight line or a circle, the

Wilson loop (4.11) is 1/2 BPS and conserves the 6 supercharges parametrised by

θ
1I

+ , θ
IJ+

, I, J = 2, 3, 4 (4.12)

together with 6 conformal supercharges. The same set of θ’s is also conserved by known
stringy solutions, like the brane constructions dual to vortex opeartors of [118], and it is
likely to be the same of the half BPS string solution on in AdS4 × CP 3 [119], see Section
5.2.

To make a comparison, the supersymmetric Wilson loop operator of N = 4 SYM [39]
carries a SO(6)R-index which, in the strong coupling regime, represents the internal S5

position of the dual type IIB solution on AdS5 × S5. For Wilson loop operators in the
fundamental representation, the dual solution is described by a fundamental string ending
on the contour of the loop on the boundary of AdS5 and localized at a single point in
S5 [38] [39]. The analouge of this solution on AdS4 × CP 3 would be localized at a point
in CP 3, and would break the SU(4)R of ABJ(M) to a U(3) subgroup. This fact originally
motivated the autors of [46] to consider scalar matrix coupling M I

J that preserve a U(3) of
the R−symmetry group and will be a guide-line throughout this paper. Note further that,
were the scalar couplings constant along the loop, the internal CP 3 portion of σ-model con-
struction could be neglected. So, quite remarkably, embedding a string solution of the AdS5

problem into AdS4, would give in the planar limit a solution of the corresponding N = 6
problem (when such an embedding is possible), up to the identification of the CS and SYM
’t Hooft couplings. Examples exhibiting this property are given by the anti-parallel Wilson
lines, describing the quark-antiquark potential [38], [39], and by the light-like cusp [94] (and
also [36] for the cusp anomaluos dimension).

To prove that the loop operator (4.11) actually preserves the 12 supercharges parametrised
by (4.12), the way is somewhat similar to the case of the one-sixth operator of Section 4.1.
Fermions do play an important role in compensating the supersymmetry variation of scalars
and hence enhancing the supersymmetric character of (4.11); a sketch of the derivation
presented in [46] is given in Section 4.2.4.

Quite interestingly the half BPS operator of ABJM theory can be derived from more
physical consideration. Wilson loops were first introduced in the context of QCD, where
they carry the interpretation of the average interaction to which a heavy particle moving
on the contour is subject. A similar fact holds in the present case too. Indeed, once the
heavy particles of Higgsed theory are identified, the loop operator (4.11) emerges naturarally
from their low-energy action [47]. This fact in turn has a nice interpretation in terms of a
deformation of the dual M-theoretic background.

4.2.1 Heavy particles in M2 theory

The 1
2
-BPS loop operator has a neat physical interpretation in terms of the low energy

dynamics of infinitely massive particles obtained by Higgsing a single M2 brane, as pointed
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out in [47]. We will refer to such particles as the W bosons of the theory as they preserve
half of the supersymmetries. Let us then start for convenience from the theory of N + 1
M2-branes described in Section A.1. The vacuum moduli space can be described by giving
scalars the expectation value

〈CI〉 = diag(X1
I , X

2
I , . . . , X

N+1
I ) (4.13)

where X i
I denote the positions of the N+1 M2’s in the orbifold space C4/Zk and I = 1, 2, 3, 4

is the R−index. In the low energy approximation all the M2’s sit at the orbifold point and
strings extending between them give rise to massless fields - this theory is dual to ABJM
theory with U(N + 1)× U(N + 1) gauge group. As one or more M2 get separated, strings
stretching between distant branes give rise to massive vector multiplets coupled to the
massless theory that still leaves on the M2 near the orbifold singularity. To be more precise,
let us give a vacuum expectation value to a single M2 along direction 4 in C4 braking the
gauge group to (N)× U(N)

〈CI〉 = 0, I = 2, 3, 4 〈C1〉 = diag(0, 0, . . . , v) (4.14)

Note that this particular Higgsing preserves a SU(3) ∈ SU(4) subgroup of the R−symmetry
group, which in turn is the same of the half BPS string solution in AdS4 × CP 3 [45]. The
perturbative mass-formula arising from membrane dynamics predicts a mass term for off-
diagonal modes which for large separation v >> X i

I
reads [120]

µ =
2π

|k|
(
−|X1|2 + |X2|2 + |X3|2 + |X4|2

)
+

2π

|k| |v|
2 ∼ 2π

|k| |v|
2 (4.15)

Considering the Lagrangean B.2 we see that off-diagonal massive modes can be racast
in a couple of massive vector multiplets

W =
{
(Aµ)n,N+1, (CI)n,N+1, (ψI)n,N+1

}

Ŵ =
{

(Âµ)N+1,n, (CI)N+1,n, (ψI)N+1,n

} (4.16)

where n = 1, . . . , N , which respectively transform in representations (N, 1) and (1,N) of the
unbroken gauge group. One should expect Goldstone bosons to arise as usual, indeed off-
diagonal (C1)n,N+1 and (C1)N+1,n stay massless. There is an intuitive interpretation of the
perturbative mass emerging from separating M2 branes. Remember the brane construction
reviewed in Section A.1, D3 branes share three directions with NS5 and are wrapped around
their third direction, which is orthogonal to fivebranes. Uplifting the construction to M-
theory and upon Higgsing, one gets a M2 brane interpolating between two separated M2’s
and which also wraps around a projective circle of size 2π

k
times the distance between the

two M2’s. The mass formula then is telling us that, near the the intresection of the two
KK monopoles, the size of the interpolating brane gets bigger along directions X2, X3, X4

of C4/Zk, while gets smaller along X1.
From what said above is it clear that massive modes behave like external particles car-

rying a U(N) × (N) charge. In the low-energy approximation the initial Lagrangean can
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be decomposed into that of such charged particles coupled to the massless fields plus the
unbroken Lagrangean

LU(N+1) → LU(N)(unbroken) + L̂(heavy W and massless fields) (4.17)

The unbroken piece is simply the ABJM Lagrangean with U(N) × (N) gauge group; to
get the effective dynamics of heavy particles one has to expand the original Lagrangean for
large v, which thing we are doing in the next section.

4.2.2 Low-energy dynamics of massive modes

The aim of the low-energy analysis is to get a clue on the interaction between W bosons
and massless fields that generate the Wilson loop operator. It is customary to think of the
worldline of a heavy quark as a Wilson loop in QCD. In our case, taking the limit where
the mass scale v → ∞, and is much bigger than the energy, amounts to consider strictly
non-relativistic (static) W bosons. In other words, these become external charged particles
whose pair creation exceedes the energy bound. In these settings W bosons play the role
of heavy quarks and their effective interaction determines how massless fields couple to
loop contour, or otherwise stated, it determins the structure of the loop opearator. This
analysis was carried out in [47] along the lines of the non-relativistic reduction of M2-branes
dynamics [121] [122].

One important fact worth noting before proceeding is the choice of a gauge in which the
broken Lagrangean preserves unitarity. This point is achieved turning off goldston boson
(C1)n,N+1 and (C1)N+1,n imposing the vanishing of the supersymmetry trasformation

δC1 = θ1Iαψ1I
α = 0 (4.18)

for components (N + 1, n) and transpose. As was already pointed out in [46], the half
BPS Wilson loop operator should preserve the same supercharges of the macroscopic string
solution in AdS4 ×CP 3 [45] and shared by other supersymmetric brane constructions dual
to the vortex operator of [118]. These supercharges are parametrized by two-component
spinors 2

θ
1I+

θ
I J

+ , I, J = 2, 3, 4 (4.19)

obeying the reality condition θ
IJ

= (θIJ )
∗ and the antisymmetry condition in R−indices

θ
IJ

= −θJI . Note that this implies a choice of some helicity basis. To actually conserve this
N = 3 supersymmetry one then requires that negative helicity components are projected
out toghether with their complex conjugate

(ψI)N+1,n = (ψI)n,N+1 = 0 (4.20)

The free-field equations of motion arising from the kinetic part of the Lagrangean for massive
particles determines the decomposition of the latter in term of non-relativistic modes, where

2Note that our notation for spinor indices is opposed to that of [46].
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the time dependence of the wave function is purely a plane wave. These free equations
can be solved under the constraint that such modes transform nicely under the N = 3
supersymmetry we want to preserve. Indeed, the mode decomposition for upper modes

(A)n,N+1 =

√
π

k
e−a+n(x)e

−iµt, (CI)n,N+1 =
1√
2µ
φIn(x)e

−iµt

(ψI)n,N+1 = u−w
I
+n(x)e

−iµt, (ψ1)n,N+1 = u+w
1
−n(x)e

−iµt

(4.21)

and for lower modes

(Â)N+1,n =

√
π

k
e−â+n(x)e

+iµt, (CI)N+1,n =
1√
2µ
φ̂In(x)e

+iµt

(ψI)N+1,n = u−ŵ
I
+n(x)e

+iµt, (ψ1)N+1,n = u+ŵ
1
−n(x)e

+iµt

(4.22)

explicitly show the emergence of twoN = 3 vector multiplets {a+, w
I
+, φI , w

1
−} and {â+, ŵ

I
+, φ̂I , ŵ

1
−}

transforming respectively in a (N, 1) and (1,N) of the unbroken gauge group U(N)×U(N).
Here e± = (1 ± i) is the gauge field polarization vector of definite helicity and u± are two
orthonormal two-component constant spinors acting like helicity projectors. Also, upper
case latin R−indices in massive fileds run from 2 to 4, as the index 1 denotes Goldstone
bosons, while they run from 1 to 4 in massless fields. This may seem to generate confusion
but it does not as they never appear in the same expression.

To actually reach the low-energy Lagrangean L̂ for massive fields one has to insert the
mode decompositions 4.21 and 4.21 into the oringinal U(N + 1) × U(N + 1) Lagrangean
and expand to leading order in µ. In doing so quantum corrections could in principle
afflict free-field eigenstates obtained above, and indeed they do. The result is, generally
speaking, a rotation into the Hilbert space which can be reabsorbed with a ridefinition of
the non-relativistic fields in the two vector multiplets. Abusing notation a bit while using
the symbols A, C and ψ for the fields in the unbroken sector, the bottom line of this analysis
is that the interaction between massive and massless fields can be spelled in the Lagrangean

L̂ =ia−D0a+ + iâ+D̂0â− + iwαD0wα + iŵ
αD0ŵα + iφID0φ

I
+ iφ̂ID0φ̂

I

+

√
4π

k

[
â+ψ1−w

1
− + ŵ1

−ψ1−a+ + w1+ψ
1
+â− + aψ1

+ŵ1+

]

+

√
4π

k

[
φ
I
ψ1

+ŵI− + wI−ψ
1
+φ̂

I

+ φ̂Iψ1−w
I
+ + ŵI+ψ1−φI

]
(4.23)

where the covariant derivatives Dµ = ∂µ − iAµ and D̂µ = ∂µ − iÂµ are defined with respect
to the two connections

A0 = A0 −
2π

k
M I

JCIC
J Â0 = Â0 −

2π

k
M I

JC
J
CI (4.24)
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and the scalar bilinear term entering the equation above is just the scalar source for the W
boson mass generated by the Higgsing procedure of (4.14)

M I
JCIC

J
= −|C1|2 + |C2|2 + |C3|2 + |C4|2 (4.25)

Note that only the time derivative appears in the effective Lagrangean of W bosons as they
are really treated as infinitely massive, static particles.

4.2.3 The 1
2 BPS Wilson loop operator of ABJM theory

In turns out that the Lagrangean above has a deeper and nicer structure than what it might
seem at a first look. Let us the collect all the massive degrees of freedom into the super-
matrices W I transforming in a adjoint representation of the gauge super-group U(N |N)

W 1 =

(
a+ w1

−
ŵ1+ â−

)
W I =

(
φI+ wI+

ŵI− φ̂
I

)
(4.26)

still being I = 2, 3, 4. The super-covariant derivative is readly constructed

D0 = ∂0 − iL0 (4.27)

and the super-connection L can be read from (4.23)

L0 =


 A0

√
4π
k
ψ1

+√
4π
k
ψ1− Â0


 (4.28)

Then, the low-energy Lagrangean for W bosons takes the simple, rather fulfilling form

L̂ = Tr
[
iW

I
D0WI

]
(4.29)

Given a super-matrix g ∈ U(N |N), the action of the gauge supergroup on the fields is a
gauge symmetry of the low-energy theory

L0 → g†L0g + ig†∂0g, W → g†W (4.30)

From (4.29) one can read the equation of motion for massive W bosons

D0WI = 0 (4.31)

from which follows that the time evolution of the wavefunction is encoded in the time-like
Wilson line

W(t1, t2) = P exp

{
i

∫ t2

t1

dτL0(τ)

}
(4.32)

This result can be understood as the interaction of single, massive and static W boson
evolving in time while interacting with the fields of U(N) × U(N) ABJM theory. Since W
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is a 1/2 BPS particle, its time evolution preserves the same supercharges, hence this Wilson
loop is a half BPS. This is indeed the Wilson loop operator firstly introduced in [46] on
the basis of a totally different argument. The derivation of this section shows that there
is a precise physical meaning behind the structure of the super-connection L and that the
emergence of the super-group structure is driven by the low-energy effective dynamics of
the Higgsed theory.

Under the supergauge transformation L0 → g†L0g + ig†∂0g the Wilson loop transforms
covariantly

W(t1, t2)→ U(t1)
†W(t1, t2)U(t2) (4.33)

To have a gauge invariant operator one has to choose whether to take the trace or the
supertrace of the latter. It turns out that boundary conditions impose to take the trace. To
this aim note that a supersymmetry transformation under one of the conserved supercharges
acts on the superconnection as

δL0 = ∂0Λ− i [L0,Λ] (4.34)

which remarkably is just a gauge transformation, being Λ in the Lie superalgebra u(N |N)

Λ =

√
2π

k

(
0 iCIθ

1I
+

−iC
I
θ+
1I 0

)
(4.35)

For a closed loop one can pick either poriodic or anti-periodic boundary consitions for
fermions in the loop. As suggested by [46] the former are playing the game, and are the
ones naturally chosen in any quantum-mechanical problem. In this case, supersymmetry
of the loop operator requires the trace, so that the gauge invariant, half BPS Wilson loop
reads

W = TrP exp

{
i

∮
dsL(s)

}
(4.36)

Lastly, three comments are in order here. The first is about the off-diagonal terms
entering in (4.28). In the infinite mass limit these can be seen as projections onto the helicitiy
of massive particles. Then they can be replaced by two-component spinor projectors ηIα and
ηαI which in general will be functions of the integration path and whose role nothing is but
projecting fermions onto states of definite helicity. For the sake of this, remember that the
helicity eigenstates are determined by the elicity of the supercharges one wants to preserve,
and only one state survives once the unitary gauge is imposed.

The second comment is about Lorentz covariance. Going to the non-relativistic theory
we have lost Lorentz-covariance, which fact is evident for only time derivatives and time
components of the connection compare in (4.32). On the other hand, covariance of the loop
operator can be strikingly restored setting [46]

L =


 Aµẋ

µ + 2π
k
|ẋ|M I

JCIC
J
√

2π
k
ψ
α

I η
I
α√

2π
k
ηβJψ

J
β Âν ẋ

ν + 2π
k
|ẋ|M̂K

L C
L
CK


 (4.37)
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and

W = TrP exp

{∮

xµ(s)

dsL(s)

}
(4.38)

where now the contour is an arbitrary curve parametrized by xµ(s). As a matter of fact,
such operator has been shown to be 1

2
BPS on a single straight line and on a circle [46] by

a direct analysis of it supersymmetries. The computation is indeed particularly instructive
and highlights a certain structure hidden in the perturbative expansion of the loop operator.
Because of that and of the future usefulness of such computation, we will review it in the
next section.

Finally the last remark. In the low energy theory a supergroup structure emerges. The
heavy particles Lagrangean is symmetric under the supergauge transformations (4.34) of
the gauge supergroup U(N |N), of which L is a connection. So far a natural question
arises - what about other Chern-Simons-matter theories? Although the general question
is pretty hard to answer, the genaralisation of the previous results to ABJ theory is, at
least formally, straigthforward. Indeed, starting from this N = 6 theory with gauge group
U(N+1)×U(M+1) and upon Higgsings, one will end up very likely with a superconnection
of the supergroup U(N |M). To make this reasoning more persuasive, note that the gauge
field and scalar bilinear in the upper corner of (4.37) will transform in the adjoint of U(N)
and those in the lower corner in the adjoint of U(M). Hence are N ×N and M ×M square
matrices. Fermions, besides, are in a bifundamental or anti-bifundamental of U(N)×U(M)
and thus will be rectangular matrices, indeed they lie off-diagonal, precisely in the position
we would expect them to be.

4.2.4 Lines and circles

Infinite straight line

As already mentioned at the beginning of this chapter, the half BPS Wilson loop operator
is dual to a fundamental string extending in AdS3 ∈ AdS4 and localised to a point in CP 3.
This solution thus breakes the SU(4) R−symmetry of the vacuum to U(1)× SU(3), which
would suggest to choose scalar couplings for (4.10) of the form [46]

M I
J = M̂ I

J = m1 δ
I
J − 2m2 δ

I
1δ

1
J (4.39)

which is precisely what one gets upon Higgsing of M2−branes (4.25) up to the choice
m1 = m2 = 1. Moreover the fermionic couplings in (4.28), in the limit of infinite W-bosons
mass, act like projectors on the helicity of the probe-particles and can be replaced by the
fermionc couplings η of (4.10) [47]. We first consider a Wilson loop along an infinite straight
line in the x0 (time) direction, fermions must be projected according to P± = 1

2
(1 ± σ0),

hence we choose fermionic projectors

ηαI = η δ1
Iδ
α
+ , η̄Iα = η̄ δI1δ

+
α (4.40)
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Let us remind that the fundamental string solution (5.2) [119] preserves the twelve super-
charges (4.12) parametrised by

θ̄1I
+ , θ̄IJ+ , I, J = 2, 3, 4 (4.41)

so also the chirality of η’s agrees which what is suggested by the chirality of the supercharges.
Following [46], the modified gauge connections in (4.28) now take the form

A0 ≡ A0 +
2π

k
M I

JCIC̄
J , Â0 ≡ Â0 +

2π

k
M̂ I

J C̄
JCI (4.42)

and using the superconformal transformation in Appendix A.3, the total variation of the
superconnection on an infinite straight line reads

δL =
8π

k
θ̄1I
+

(
CI ψ

+
1

√
k
8π
ηD0CI

0 ψ+
1 CI

)
− 4π

k
ε1IJK θ̄

IJ+

(
ψ̄1

+ C̄
K 0√

k
8π
η̄D0C̄

K C̄K ψ̄1
+

)
(4.43)

where the modified covariant derivative is D0CI = ∂0CI + i(A0CI −CI Â0) and analogously
for D0C̄

I . Opposedly to the 1
6

BPS case, the first order variation of the super Wilson loop
does not vanish on its own, but it cancels with term coming from the second order. Indeed
expanding the loop operator

WR = TrR

[
1 + i

∫ ∞

−∞
dτ L(τ)−

∫ ∞

−∞
dτ1

∫ ∞

τ1

dτ2 L(τ1)L(τ2) + . . .

]
(4.44)

the off-diagonal bit of the linear (in L) term is a total derivative and can be integrated away,
while the off-diagonal fermionic terms in the quadratic piece can be integrated by parts

δWR =
8π

k
θ̄1I
+ TrR

[
i

∫ ∞

−∞
dτ

(
CI ψ

+
1

ψ+
1 CI

)

− 1

2
ηη̄

∫ ∞

−∞
dτ1

∫ ∞

τ1

dτ2

(
∂τ1CI(τ1)ψ

+
1 (τ2)

−ψ+
1 (τ1)∂τ2CI(τ2)

)
+ . . .

]

=
8π

k
θ̄1I
+

[
i

∫ ∞

−∞
dτ

(
CI ψ

+
1

ψ+
1 CI

)
− 1

2
ηη̄

∫ ∞

−∞
dτ

(
CIψ

+
1

ψ+
1 CI

)]
(4.45)

and cancel the diagonal pieces in the linear term if the normalisation condition ηη = 2i is
satisfied.

Note that the appearance of the modified covariant derivative acting on off-diagonal
fermions in L is necessary condition for the cancellation of the susy variation. It is remark-
able that the Higgsing procedure reproduces precisely this structure. Also note that in (4.45)
above we have explicitly written the variation w.r.t. a specific supercharge to show that the
variation of fermions is actually a total derivative acting on scalars. This mechanism can
be recursively repeated to prove that the variation of the Wilson loop operator vanishes at
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any order of the weak coupling expansion for the 12 supercharges above, hence the infinite
Wilson line with superconnection (4.28) is a 1

2
BPS operator.

Spacelike circle

ABJM theory is a superconformal theory in three dimensions - it is left untouched by
conformal transformations. We mentioned in Section 4.1 that a conformal transformation
that maps an infinite straight line to a circle changes the topology of certain classes of
Feynman diagrams which may therefore give a finite contribution to the expectation value
of the Wilson loop. In the case of the 1

6
BPS Wilson loop we indeed saw that while the

expectation value of the Wilson line is trivial, that of the circle receives quatum corrections
(4.7) [44] , and the same is also true in the case of N = 4 SYM [101].

So consider a Wilson loop defined on a spacelike circle parametrised by the two coordi-
nates

x1 = cos τ , x2 = sin τ . (4.46)

and a parameter τ ∈ [0, 2π]. Rotating the superconnection from timelike to spacelike config-
uration amounts to replace |ẋ| → −i|ẋ| and is equivalent to Wick rotate from Minkowskian
to Euclidean signature; it affects trivially the superconnection

L→ LE =


 Aµẋ

µ − i2π
k
|ẋ|M I

JCIC
J −i

√
2π
k
ψ
α

I η
I
α

−i
√

2π
k
ηβJψ

J
β Âν ẋ

ν − i2π
k
|ẋ|M̂K

L C
L
CK


 (4.47)

The modified connection can be defined as above

A ≡ Aµẋ
µ − i2π

k
M I

JCIC̄
J , Â ≡ Âµẋ

µ − i2π
k
M̂ I

J C̄
JCI . (4.48)

where the scalar couplings are determined by the same matrix M I
J as before. The right way

to define spinor coupling ηIα and ηαI is again to pick up eigenvectors of the helicity projector
along the loop. In the present case the prejector reads

1 + ẋµ(γµ)
β
α =

(
1 −ie−iτ
ieiτ 1

)
, (4.49)

which has eigenstates

ηIα(τ) =
(
1 −ie−iτ

)
η(τ) δI1 , η̄αI (τ) = i

(
1
ieiτ

)
η̄(τ) δ1

I (4.50)

and now η(τ) is a function of the position along the contour. Note that at this stage it is
also an arbitrary function, but will be determined by the constraints of supersymmetry. As
shown in [46], the conformal transformation mapping the infinite straight line to a circle
mixes the Poicare and superconformal supercharges QIJ and SIJ . The variation of W under
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the action of the superconformal charges is the same as the variation under the action of

the Poincare ones, up to the replacement of θ
IJ → ϑ

IJ
x · σ, where θ

IJ
parametrize QIJ as

before and ϑ
IJ

do the same job for SIJ . Using some identities for sigma matrices and the
explicit parametrisation of the contour, one can show that the variation of the bosonic and
fermionic terms, due to te mixed charges parametrised by

θ̄1I + ϑ̄1Ixµγµ = θ̄1I(1− ẋµγµ)
θ̄IJ + ϑ̄IJxµγµ = θ̄IJ(1 + ẋµγµ) , I, J 6= 1 .

(4.51)

reads for the circular loop

δA =
8πi

k
θ̄1I(1− ẋµγµ)CIψ1 +

4πi

k
ε1IJK θ̄

IJ(1 + ẋµγµ)ψ̄
1C̄K

δÂ =
8πi

k
θ̄1I(1− ẋµγµ)ψ1CI +

4πi

k
ε1IJK θ̄

IJ(1 + ẋµγµ)C̄
Kψ̄1

δ(ηα1 (τ)ψ̄1
α) = 4iη1θ̄

1I ẋµDµCI − 2η1σ
3θ̄1ICI

δ(ψα1 η̄
1(τ)α) = −ε1IJK θ̄

IJ
[
2iη̄1ẋµDµC̄K + σ3η̄1C̄K)

]

(4.52)

The requirement that the variation of fermions is again a total derivative as in the previous
case implies that the following two equations are satisfied

∂τη1 =
i

2
η1σ

3 , ∂τ η̄
1 = − i

2
σ3η̄1 (4.53)

which fixes the up-to-now arbitrary function η(τ). Now, expanding the loop operator and
repeating the trick of partial integration, bosonic and fermioni terms cancel mutually, and
only a boundary term survive arising at τ = 0 from integrating over the first variation
δLF (τ1) and at τ = 2π from the last variation δLF (τp)

δWR ∝ iTrR

∫ 2π

0

dτ

(
CI ψ1(1 + ẋµγµ)θ̄

1I

ψ1CI(1 + ẋµγµ)θ̄
1I

)

− TrR

∫ 2π

0

dτ1

∫ 2π

τ1

dτ2

(
−(∂τ1η1CI θ̄

1I)(1)(ψ1η̄
1)(2)

−(ψ1η̄
1)(1)(∂τ2η1CI θ̄

1I)(2)

)

(4.54)

= −TrR

∫ 2π

0

dτ

((
η1CI θ̄

1I
)
(0) (ψ1η̄

1)(τ)
−(ψ1η̄

1)(τ)
(
η1CI θ̄

1I
)
(2π)

)

As mentioned before, imposing the antiperiodicity condition η1(2π) = −η1(0) on fermions,
implies to take the regular trace of the last expression in order to make δW vanish. The
reasoning can be repeated order by order, being the mechanism totally analogous to the
Wilson line case, the only difference being in boundary contributions, which indeed cancel
when taking the trace. This proves that the circular Wilson loop operator is invariant under
12 mixed Poicare-superconformal supercharges and is hence 1

2
BPS.
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CHAPTER 5

Non-perturbative Results for Wilson Loops

5.1 The cusp anomalous dimension

The cusp anomalous dimension Γcusp(λ) naturally appears in the weak coupling expantion of
light-like Wilson loops with cusps and of gluon scattering amplitudes. The all-loop structure
of field theory is such that divergent contributions exponentiate at all orders and Γcusp(λ)
itlesf is the coefficient of the leading singularity. At strong coupling, the large λ behaviour
of the cusp anomalous dimention can be extracted from the energy of a rigid folded string
rotating in AdS. On the gauge theory side, this string solution corresponds to a twist-two
operator with large Lorentz spin M, for which the difference between the scaling dimension
and spin scales logarithmically with the spin with a coefficient which is indeed Γcusp(λ).

Twist operators hold main relevance in diverse fields ranging from integrability in the
context of the AdS/CFT correspondence to supersymmetric gauge theories and QCD. The
twist of an operator is defined as the difference between its scaling dimension and its Lorentz
spin, thus any local operator having a definite value of this quantity is a twist operator in the
broad sense. It is customary to focus on certain twist operators, also known as Wilson oper-
ators, belonging to a closed subsector of the theory, as they are in one-to-one correspondence
with definite objects in the spin-chain picture of integrability. In the context of QCD, twist
operators are involved in deep inelastic scattering processes, and their anomalous scaling
dimension can be computed by considerations of Wilson loops and scattering amplitudes. A
deep knowledge of such operators surely is a powerfull tool for a better understanding of field
theories. Not just, because they are the natural candidate objects one would like to investi-
gate using AdS/CFT . Indeed, the many advances achieved in understanding integrability
of planar N = 4 SYM relied on heavy tests of several conjectures, for which reason having
as many quantities as possible that can be computed on different sides of the conjecture, is
a necessary asset. The most evident example of this is the major role twist operators had
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in the developement of asymptotic Bethe equations and in revealing and understanding its
inadequacies. Moreover, all-loop expressions for twist operators would not just be a notable
advance, though confined to the realm of AdS/CFT and integrability, but also would give
new insight in the strongly coupled region of QCD.

The quantization of rigid string solutions has been proved to be a useful tool in the in-
vestigation of quantum integrable features in the context of AdS5/CFT4 [123] [124] , [125].
In this case, summing up the energy of fluctuations around a classical string configuration
gives the loop corrections to the classical energy of the spinning string which can be then
compared to the value predicted by the Bethe ansatz. This program was successfully carried
out in AdS5 × S5 [126].

The dynamics of the AdS4 × CP 3 superstring has been investigated from the point of
view of integrability, indeed the coset sigma-model has been shown to be classically inte-
grable [127] [128]. In [129] an algebrai curve formulation encoding the solution of classical
AdS4 × CP 3 sigma-model was given and other semiclassical features of the model where
further investigated [130] [131] [132] and [133]. On the gauge thoery side, superconformal
N = 6 Chern-Simons theory was shown to be one-loop integrable [23] [116] [22], these re-
sults help an all-loop formulation of the Bethe ansatz [24] along the lines of the N = 4
case [134] [135] [136]. Solving the all-loop Bethe equations would be an important step as it
encodes the anomalous dimensions of gauge theory operators for any value of the ’t Hooft
coupling constant. Higher-loop tests where performed in [25] [137] and [138] and agreement
with the Bethe ansatz was found. Lastly, let us mention the extention of the integrable spin
chain results to super Chern-Simons theorym with U(N)× U(M) guage group of [139].

On the other hand, after those first perturbative checks, direct string theory computa-
tions [140] [141] of the one loop energy shift of the spinning folded string gave an answer
which was not in complete agreement with the conjectured Bethe equations of [24]. Let us
note that the string computation is direct field-teoretic computation which does not rely on
the knowledgr of the algebraic curve, it is the real test-brake for testing Bethe equations’
toughness, and it gives at present a trustable value for the cusp anomalous dimension.

5.1.1 Twist operators in AdS/CFT

In the context of N = 4 SYM twist operators in the sl(2) subalgebra are usually considered
because they can be simply constructed applying M covariant light-cone derivatives to a set
of L complex scalar fieds

O(x) = Tr(DMZL) + . . . (5.1)

where all possible permutations of derivatives and scalars are taken into account. These
are single trace operators of length L and Lorentz spin M . In the large spin limit, twist
operators are related to Sudakov form factors of QCD and have been shown [142] that their
dimension scales at most logarithmically with the spin. This behaviour is a universal feature
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of gauge theories and can be traced back to one common feature, the existence in the theory
of a massless spin one field (the gauge field indeed). The simplest case is that of twist-two
operators in the large spin limit [63] [64], for which the anomalous dimension behaves as

γ(λ) = ∆−M = 2Γcusp(λ) logM +O(M0) (5.2)

where λ = g2N is the ’t Hooft coupling and Γcusp(λ) is the cusp anomalous dimension that
we first presented in (3.41) of Section 3.2; in the context of integrability it also known as
universal scaling function. This is a non-universal function and depends on the theory un-
der consideration. As was reviewed in Section 3.2, it governs the structure of divergences of
cusped Wilson loops at every order of the perturbation theory, and hence the divergences
of gluon scattering amplitudes.

The all-order knowledge of Γcusp(λ) is one of the long-standing problems of gauge the-
ory. Up-to-date, the cusp anomalous dimension of cN = 4 SYM is known at weak coupling
by direct Feynman diagram computations up to the fourth order [68] [69] (see Sections
2.2.1 and 3.2.1) and there are predictions for its strong coupling asymptotics based on the
AdS/CFT correspondence [94] [143] [72] [73] [144], besides the break-through of [41]. Re-
markably, the Bethe ansatz predicts it in a closed integral form that can be expanded at
arbitrary order [126] and which is in agreement with the direct perturbative and nonpertur-
bative computations. For operators carrying large quantum numbers (Lorentz spin, isotopic
R−charge,...) their scaling dimension at strong coupling can be found as the energy of dual
(semi)classical string configurations propagating on the curved space [145]. In particular,
the strong coupling asymptotics of twist-two operators carring large Lorents spin M can
be extracted from the energy of a folded string rotating in a AdS3 ∈ AdS5 with angular
momentum M and reads

Γcusp(λ) =

√
λ

4π2
+ const (5.3)

Furthermore a brave attempt to reproduce the strong coupling behaviour of the cusp
anomalous dimension by means of ressummation of Feynman diagrams contributing to a
cusped Wilson loop was performed in [106]. There it was shown that ladder diagrams
are not enough for reproducing the correct exponent of Γcusp(λ) because vertices do play
an important role. A nice way to get around the issue of an all-order expression is that
of [49]. There the authors deform both the loop operator and the contour and are able
to obtain a strong coupling expression in terms of elliptic integrals and depending on the
two deformation parameters. This expression, which was computed up to orderd 1/

√
λ

corrections, reproduces in certain limit the expected cusp anomalous dimension of N = 4
SYM. It is also related to meson-pair potential as we will discuss in Section 6.1.1.

5.1.2 Spinning strings in AdS4 × CP 3

The AdS4 × CP 3 correspondence is somewhat peculiar. The AdS5 × S5 duality involves
maximally supersymmetric theories with 32 supercharges and that are invariant under the
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superconformal group PSU(2, 2|4), whereas the relevant theory in the AdS4 × CP 3 case
is symmetric under the subgroup OSP (2, 2|6) bringing 24 supercharges and therefore is
non-maximal. Partially fixing the κ−symmetry of the Green-Schwarz action for type IIA
superstrings on AdS4 ×CP 3 is equivalent to add a suitable Wess-Zumino term to the coset
sigma-model on the same space [127] [128]. Indeed, the GS action for type IIA involves two
Majorana-Weyl fermions in ten dimension, amounting to 32 degrees of freedom; fixing the
κ−symmetry gauges half of them away and one is left with 16 phisical d.o.f. On the other
hand the sigma-model based on the coset space OSP (2,2|6)

SO(3,1)×U(3)
contains 24 fermions, of which 8

are gauged away by κ−symmetry. The remaining 16 fermionic degreed of freedom together
with their bosonic partners constitute the physical spectrum of the AdS4×CP 3 superstring.

It was observed in [127] that string configurations which carry only AdS spin are singular
due to the fact that the rank of the corresponding κ−symmetry gets enhanced from 8 to
12. To regularize such behaviour it was suggested in [140] to consider strings which also
carry a CP 3 angular momentum J . The same operation was performed in the AdS5 × S5

case [146] and the first energy correction to the string configuration provided the leading
strong coupling correction to the generalized scaling function Γ(J, logM). The computation
in [140] is rather technical and we will not enter into the details, and there is no reason for
doing so. The spinning (M,J)-string ansatz lives in a subspace AdS3 × S1 of AdS4 ×CP 3,
therefore the solution must coincide with that of [123]. The energy of the long rotating
string reads

E = M + J
√

1 + x2 (5.4)

where

x =

√
λ

πJ
log

M

J
(5.5)

and
√
λ = R2

α′ is related to the AdS radius. This can be further expanded according to
either the fast limit x >> 1 or the slow limit x ≪ 1. This expression as a smooth J → 0
limit which in turn gives back the anomalous dimension of twist-two operators.

From the fluctuation analysis around the classical configuration it emerged that the leading
energy shift in the limit of slow rotation J ≪ logM is

δE = −5 log 2

2π
logM (5.6)

and the coefficient of the logarith should be interpreted as the first sub-leading correction
to cusp anomalous dimension. Note that this expression is in contrast with the conjecture
of [129] which would predict −3 log 2

2π
logM instead. Two proposals have been made for

correcting this result. Though they are mutually exclusive [147] [148], they both claim to
reproduce the correct answer.
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5.2 BPS string solutions

On the strongly coupled side of the AdS/CFT correspondence, supersymmetric string so-
lutions dual to gauge theory objects are of primary importance in the understanding of
the non-perturbative features of the theory and for gaining some clue about the high loop
structure. Indeed, the most powerful arguments in support of the correspondence would
be all-loop, interpolating functions, whose value is exact in the ’t Hoof coupling constant λ
both at weak and strong coupling.

It was reviews in Section 3.1 that the strong coupling behaviour of Wilson loops lying
on the boundary of AdS is dominated by the area of the worldsheet of the classical string
solution ending on the contour and extending to the origin of AdS. In the context of N = 6
super Chern-Simons matter theories, the fundamental string solution ending on circular loop
and preserving half of the supersymmetries of the vacuum was actually found in [119] before
the formulation of the half BPS Wilson loop operator of [46] (4.10), for whom constituted
hopeful inspiration.

The strong coupling flow of ABJM theory with gauge group U(N) × U(N) depends
on how the planar limit N → ∞ is taken with respect to the Chern-Simons level k. For
k ≪ N ≪ k5 the correct description is in terms of type IIA superstrings on AdS4 × Cp3

with two-form and four-form fluxes turned on, while for higher values of N the theory is
better described by the world-volume theory of N M2−branes probing the orbifold sin-
gularity of AdS4 × C4/Zk. The gravitational dual object to a supersymmetric Wilson
loop in the fundamental representation is therefore the fundamental string solution in the
AdS4 × Cp3 backgroud. It is known that for Wilson loops in higher rank representation
the fundamental string description fails and the loop operator should be described by probe
D2, D6−branes [149]. The situation is totally analogous to the four-dimensional case where
D3, D5-branes probe loops in symmetric, respectively antisymmetric, high rank represen-
tation [150] [151] [152] [103] [153] [154] [155].

In the α′ → 0 limit the type IIA background can be written as

ds2
string =

R3

k

(
1

4
ds2

AdS4
+ ds2

CP 3

)

e2φ =
R3

k3

F2 = kJ

F4 =
3

8
R3ǫAdS4

(5.7)

where F2, F4 are the two and four-form fluxes from the Ramond-Ramond sector, ǫAdS4 is
the volume-form of unit AdS4 and J is the Käler form of CP 3. Moreover the radius of AdS
satisfies the relation
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R3 = 25/2π
√
Nk (5.8)

It is more convenient to use Poincare coordinates and rewrite the metric as

ds2 =
R3

4k

1

y2

(
dy2 + dx2

1 + dx2
2 + dx2

3

)
+
R3

k
ds2

CP 3 (5.9)

where the conformal boundary of AdS is mapped in y = 0. Now let us turn to the boundary
conditions. The string solution should end on a circular loop at the boundary and extend
itelf into AdS4, just as in the AdS5 case [38] [39]. This is achieved by letting a circular
contour parametrized by x2

1 + x2
2 = R2 lie at x3 = 0 on the boundary. Then, let ∗g be the

induced metric on the string worldsheet, the classical Nambu-Goto action reads

S =
1

2π

∫
d2σ
√∗g (5.10)

Again the AdS5 case [156] [40] is a guide-line in the search for the solution, which in turn
reads

x2
1 + x2

2 + x2
3 = R2 (5.11)

and carries total action

− R3

4π
= −π

√
2λ (5.12)

The leading exponential behaviour of the string solution then reads

〈Wrmstring〉 ∼ eπ
√

2λ (5.13)

Again, as in the SYM counterpart this is the half BPS solution dual to the circular Wil-
son loop in (4.10): it preserves the same half of the N = 6 supersymmetry ABJM theory.
Quite remarkably this solution is the same as the one in the AdS5 case, and was found just
by embedding the latter into AdS4. Note however that this picture does not hold beyond
the classical limit, where it gets spoiled by quantum fluctuations around the saddle point of
the string action.

A comment is in order here. On the weakly coupled side of the conjecture, each scalar
fields carry an R−index of SU(4) which represent a coordinate inside the CP 3 part of the
dual string background. As in the N = 4 case, the most supersymmetric Wilson loop
operator would be dual to a fundamental string solution localized at one point inside CP 3.

Both the 1
2

and the 1
6

BPS operators are coupled to two scalars CI , C
J

in the fundamental,
respectively antifundamental, representation of SU(4) through the matrix M I

J . In the first
case, a localized scalar source in CP 3 would break the R−symmetry SU(4)→ U(1)×SU(3)
and in this case the Zk orbifold would leave half of the Killing spinors invariant, which is
consistent with the loop operator being half BPS. On the other hand, in the second case
the scalar coupling breaks SU(4) → SU(2) × SU(2), which corresponds on the string side
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to a scalar source term smeared on a circle, or better a CP 1 ∈ CP 3. In this latter case only
one sixth of the supercharges survive the orbifolding [44]. Even if the leading exponential
beahviour of the two solutions is substantially the same, being dictated essentially by the
AdS4 part, a smeared scalar source can in principle generate a backreaction on the Käler
potential [157] and therefore on F2, which in turn could account on a correction of (5.13).
Such a difference between the two solutions is indeed evident in the matrix model derivation
presented in the next section.

5.3 Localization and matrix models

The perturbative analysis of field theoretic quantities is hardly constrained by the pestering
rapidity with which Feynman diagrams become more and more cumbersome increasing the
order of perturbation theory. Several attempts to reorganize the perturbation series into
more tractable entities have been done in the past, among others let us cite the Bethe-
Salpeter equation1. This method is based on the partial resummation of certain classes of
diagrams, usually ladder diagrams, through a recursive integral equation. It was successfully
emplyed in [101] to compute the exact contribution to a circular Wilson loop in N = 4 SYM
at any value of the coupling constant of the ladder diagrams

〈W (C)〉ladd =
2√
g2N

I1(
√
g2N) (5.14)

where I1 is the Bessel function. Quite interesting the strong coupling expansion of this
partial contribution

〈W (C)〉ladd ∼
e
√
g2N

(π/2)1/2(g2N)3/4
(5.15)

is in remarkable agreement with the AdS/CFT prediction of [40] [156] [160]

〈W (C)〉AdS = e
√
g2N (5.16)

In more recent years, [161] shew how to localize infinite dimensional field theorypath-
integrals of certain supersymmetric observables to ordinary matrix integrals, thus opening
the way to the application of every known bit of matrix model technology to the computation
of proper gauge theory objects. Promptly, the technique of localization was applied to the
computation of BPS observables in N = 4 SYM [162] [163] [164], and also in the evaluation
of the partition function [165] and correlatoras [166] of Wilson loops in N = 2 theories
and N = 6 super Chern-Simons-matter [167]. In particular [167] proposed a matrix model
description for the partition function of N = 6 super Chern-Simons-matter theory on the
three-sphere which was then identified with the matrix model on a certain lens space derived
in [168] [169]. This in turn allowed for the application of large N matrix model technique to
the evaluation of all-order expressions for the partition function and the circular Wilson loop

1The interested reader is referred to [158] and [159] for complete and self-consistent reviews.
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of ABJM theory [170] [171] [172], which constituted the first examples of exact interpolating
functions between the weakly and the strongly coupled regimes of this theory.

5.3.1 Planar limit of the ABJM matrix model

The matrix model of ABJ theory with gauge group U(N1)× U(N2) on the three-sphere S3

was derived in [167] using localization with respect to a specific supercharge and reads

ZABJM(N1, N2, gs) =

i−
1
2
(N2

1−N2
2 )

N1!N2!

∫ N1∏

i=1

dµi
2π

N2∏

j=1

dνj
2π

∏
i<j

(
2 sinh

(µi−µj

2

))2 (
2 sinh

(νi−νj

2

))2
∏

i,j

(
2 cosh

(µi−νj

2

))2 e−
1

2gs
(

P
i µ

2
i −

P
j ν

2
j )

(5.17)

being the coupling gs = 2πi

k
. This is the relevant starting point for the evaluation of the

partition function or expectation value of supersymmetric Wilson loops, indeed (5.17) was
localized with respect to the same supercharge under which the 1

6
BPS Wilson loop of [44]

is left invariant. Note that the correct normalization of the integral above was introduced
in [172]. In [170] it was noted that the latter matrix integral is closely related to the L(2, 1)
lens space matrix model [168] [169]

ZL(2,1)(N1, N2, gs) =
i−

1
2
(N2

1 +N2
2 )

N1!N2!

∫ N1∏

i=1

dµi
2π

N2∏

j=1

dνj
2π

∏

i<j

(
2 sinh

(
µi − µj

2

))2

×
(

2 sinh

(
νi − νj

2

))2

×
∏

i,j

(
2 cosh

(
µi − νj

2

))2

e−
1

2gs
(

P
i µ

2
i +

P
j ν

2
j ). (5.18)

by a simple analytic continuation

ZABJM(N1, N2, gs) = ZL(2,1)(N1,−N2, gs). (5.19)

Since the large N expansion of the free energy gives a sequence of analytic functions of N1,
N2, once these functions are known in one model, they can be obtained in the other by
the trivial change of sign N2 → −N2. In the large N limit the matrix potential in (5.18)
developes two cuts, Ca and Cb, and the two sets of eigenvalues µi and νi condense around
these singularities. The solution to the large N expansion is encoded in the resolvent of the
matric integral, which in the planar limit reads [173]

ω0(z) = 2 log
(e−λ/2

2

[√
(Z + b)(Z + 1/b)−

√
(Z − a)(Z − 1/a)

])
, (5.20)

where Z = ez, λ = λ1 + λ2 is the total ’t Hooft coupling and a, 1
a
, b, 1

b
are related to the

endpoints of the two cuts where eigenvalues sit in the complex z−plane
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Ca =

[
1

a
, a

]
, Cb =

[
−b,−1

b

]
(5.21)

Using standard model techniques, the relevant quantities can noe be computed in terms
of period integrals of ω0(z)dz, for example the planar free energy F0 reads

I ≡ ∂F0

∂t1
− ∂F0

∂t2
− πit

2
= −1

2

∮

D
ω0(z)dz, (5.22)

where D is cycle in the complex plane that goes through the cuts. This tool can now be
used for the computation of observables in ABJ, in particular we are interested in circular
Wilson loops.

5.3.2 All-orders circular Wilson loops

The vacuum expectation value of the 1
6

BPS circular Wilson loop of [44] can be computed
through localization using the matrix model (5.17), as was shown in [167]

〈
W

1/6
R

〉
= gs 〈TrR (eµi)〉MM (5.23)

where R is a representation of the gauge group U(N1). It was further argued in [46] that
the 1

2
BPS Wilson loop constructed there also localizes to the same matrix model

〈
W

1/2
R

〉
= gs 〈STrR U〉MM (5.24)

with the matrix

U =

(
eµi 0
0 −eνi

)
(5.25)

in a representation R of the supergroup U(N1|N2). This remarkable feature is related to the
fact that the two operators belong to the same cohomology class of the commonly conserved
supercharge Q12+, and fermionic contributions to the half BPS loop operator are Q−exact
w.r.t. this supercharge [46]. Therefore, since Q12+ is also the localizing supercharge, they
do not contribute to the matrix model.

The information needed to solve the matrix model is totally encoded in the resolvent
ω(Z), indeed defining the eigenvalue distributions for the two cuts Ca and Cb

ρ(1)(Z)dZ = − 1

4πiλ1

dZ

Z
(ω(Z + iǫ)− ω(Z − iǫ)), Z ∈ C1

ρ(2)(Z)dZ = − 1

4πiλ2

dZ

Z
(ω(Z + iǫ)− ω(Z − iǫ)), Z ∈ C2

(5.26)

the expectation value of the loop operators in the fundamental representation of the corre-
sponding gauge (super)groups is expressed in terms of period integrals
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〈
W

1/6
�

〉
= λ1

∫

C1

ρ(1)(Z)ZdZ =
1

4πi

∮

C1

ω(Z)dZ (5.27)

〈
W

1/2
�

〉
= λ1

∫

C1

ρ(1)(Z)ZdZ − λ2

∫

C2

ρ(2)(Z)ZdZ =
1

4πi

∮

∞
ω(Z)dZ (5.28)

Nothe that the second period integral is to be taken over a contour encircling both cuts,
which for the analyticity properties of the resolvent is equivalent to a contour encircling the
point at infinity. This last case is therefore simpler because of the fact that the leading
contribution to the integral can be obtained expanding around Z ∼ ∞. At this stage the
solution yet appears quite implicit. It is convenient to define the two variables

ζ =

(
a+

1

a
− b− 1

b

)
, β =

(
a+

1

a
+ b+

1

b

)
(5.29)

then the dirivatives of (5.27) w.r.t. ζ, β admit an explicit expression in terms of elliptic
integral functions2

∂ζ

〈
W

1/6
�

〉
= − 1

π
√
ab(1 + ab)

[aK(k)− (a+ b)Π(n|k)]

∂β

〈
W

1/6
�

〉
= − 2

√
ab

π(a + b)
E(k)

(5.30)

whereas the expression for the half BPS operator reduces to a much simpler form in the
planar limit

〈
W

1/2
�

〉
planar

=
ζ

2
(5.31)

These expression hold at any order of perturbation theory, they are interpolating func-
tions from the weakly coupled regime to the strongly coupled one and thus constitute
primary importance checks for the AdS4/CFT3 correspondence. To this aim, following
again [172], we can expand the latter expression in both regions and make contact with
perturbative of Section 4.2.4 and non-perturbative results of Section 5.2. To expand (5.30)
and (5.31), [172] relates the different regions of the guage theory to the expantion around
different singularities of the mirror geometry dual to the matrix model. This is a standard
technique in matrix models/topological strings computation and we do not want to get into
details nor to introduce the needed background in special geometry. Indeed, we are just
pleased by recalling the results.

In the ’t Hooft limit the 1
2

BPS Wilson loop obeys the perturbative expansion

2See [174] for a general discussion about how to derive this result.
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〈
W

1/2
�

〉
= eiπ(λ1−λ2)2πi(λ1 + λ2)

[
1− π2

6
(λ2

1 − 4λ1λ2 + λ1
2)+

+
π4

120
(λ4

1 − 6λ3
1λ2 − 4λ2

1λ
2
2 − 6λ1λ

3
2 + λ4

2) +O(λ6)

]
(5.32)

First note a phase factor appearing in front of (5.32); it is a framing dependent factor
and emerges from the fact that the matrix model always reproduces the Wilson loop with
framing one. Note also the discussion about this topic at the end of [46]. Secondly, there
is an overall factor in (5.32) which depends upon normalization, it is an inessential factor.
Reproducing this expansion from a direct field theory computation is a subtle task in that
the framing should preserve the half BPS character of the Wilson loop. This can be achieved
considering a couple of Hopf fibers intersecting once, but the number of graphs involved at
two-loops is discouraging. the weak coupling expantion of the 1

6
BPS loop in turn reads

〈
W

1/6
�

〉
=

eiπλ12πiλ1

[
1− π2

6
(λ2

1 − 6λ1λ2)− i
π3

2
λ1λ

2
2 +

π4

120
(λ4

1 − 10λ3
1λ2 − 20λ1λ

3
2) +O(λ5)

]
(5.33)

Again, there is a framing dependent phase and a normalization dependent overall factor.
More importantly note that this results holds for a generic gauge group U(N1)×U(N2) and
is not confined to ABJM case. The expression above is consistent with the two-loops results
of [44] [119] [45]. However the three-loops computation of [45] was done in the ABJM slice
and is insensitive of odd-order terms in the perturbation theory.

At strong coupling, the exact result (5.31) reproduces the expected exponential behaviour
together with a full perturbative series of 1√

λ
corrections

〈
W

1/2
�

〉
=

1

2
eiπBκ(λ̂, B) (5.34)

where λ̂ is the ’t Hooft parameter shifted by the presence of a non-zero B−field in the
background and the function κ is defined as

κ(λ̂, B) = eπ
√

2bλ

[
1 +

∑

j≥1

ci(1/π
√

2λ̂, β)e−2jπ
√

2bλ

]

cj(α, β) =

2j−1∑

k=0

c
(j)
k (β)αk

(5.35)

being c
(j)
k Laurent polynomials of degree j in β. The shift of λ̂ has a notable geometrical

meaning. Indeed ABJ theory with gauge group U(N1) × U(N2) is conjectured to be dual
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to a type IIA background where N1 is the number of D2 branes and N1 − N2 the number
of D4 branes (set N1 > N2). It was shown in [175] that the actual charge of D2’s is
Q = N1− k

2
(B2−1/4)− 1

24
(k−1/k), where B = −N1−N2

k
− 1

2
is the value of the B−field flux

in the background. At the end of the day, the ’t Hooft coupling gets a shift proportional to
the flux of B

λ̂ =
Q

k
(5.36)

The same analysis can be carried for the less BPS Wilson loop and it gives

〈
W

1/6
�

〉
= −
√

2λ

4
eiπλ1eπ

√
2λ (5.37)

Note that in both expressions (5.34) and (5.37) a framing factor under the appearance of
an overall phase is present, and is precisely due to the presence of a non-vanishing value of
the antisymmetric B−field. This feature has also been observed in [173] [176] [177].

Comparing the strong coupling expansion of W
1/2
�

and W
1/6
�

with the expressions de-
rived in the Section 5.2, one can observe a perfect agreement for the leading term in the
exponential, which is the action of the classical string configuration. Furthermore the 1

6
BPS

operator captures a
√
λ dependent multiplicative factor which is absent in the 1

2
BPS case

and is possibly due to the different scalar sources that enter the string solution. As was al-
ready observed in [44], while the most supersymmetric string solution is localized to a point
in CP 3, which fact is responsible of the R−symmetry breaking from SU(4)→ U(1)×SU(3)
in the corresponding loop operator, the less supersymmetric operator break this symmetry
to SU(2) × SU(2) and therefore it is expected to be dual to a smeared scalar source on a
CP 1 inside CP 3.



CHAPTER 6

Deformed Quark-Antiquark Potential

6.1 Interpolating functions for non-BPS observables

6.1.1 Quark-antiquark potential in N = 4 SYM

The supersymmetric analogue of QCD’s quark-antiquark potential is the interaction between
a copy of BPS particles in the broken phase of the theory. Such states, protected by
supersymmetry and thus perturbatively stable, are obtained via Higgsing some scalars by
giving them a non-vanishing vacuum expectation value in the way shown in Section 4.2.1
(there the computation is referred to the particular case of N = 6 SCS theories but the way
of proceeding is rather general). We preserve the notation of W−bosons for those particles.

In the QCD case, the effective interaction of a qq pair is given by the expectation value of
a rectangular Wilson loop of sides T and L extending in the time and one spatial directions

V (T, L, gQCD) ∼ log 〈W�(T, L, gQCD)〉 (6.1)

In the limit where the time-like side becomes infinitely long T >> L, the Wilson loop can
be approximated by a pair of anti-parallel lines representing the worldlines of the particle-
antiparticle bound state. The supersymmetric case is rather similar. In N = 4 SYM the
relevant Wilson loop is given by the 1

2
BPS operator of [39] (3.32) along a pair of anti-parallel

lines

W (C) =
1

N
〈0|TrP exp

(
ig

∮

C
ds
[
ẋµAµ + |ẋ|θIφI

])
|0〉 (6.2)

and the superconformal symmetry of the theory constrains the potential to be of the
Coulomb type

〈WSYM〉 ∝ exp {−TV (L, λ)} (6.3)
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where λ = g2
YMN is the ’t Hooft coupling constant and

V (L, λ) =
f(λ)

L
(6.4)

being f(λ) some function that does not depend on the geometrical data of the Wilson loop.
This operator was studied at both the perturbative and non-perturbative level in [101]. By
a resummation of all planar diagrams without internal vertices, it was shown that at the
second order of perturbation theory its expectation value reads

〈
W ladders

SYM

〉
= exp

{[
λ

4π
+

λ2

4π3
log λ+O(λ3)

]
T

L

}
(6.5)

The appearance of a strictly non-perturbative term already at two-loops level can be un-
derstood as an IR divergence due to resummation of ultra-soft gluons emitted at a scale
O(λ/L) which in the weak coupling approximation is much smaller than the soft, or IR, scale
of order O(1/L) [178], see also [179]. Note that the exponent of (6.5) depends only multi-
plicatively on the dimensions of the contour, which dependence gives rise to a multiplicative
and regularization-dependent linear divergence, in agreement with the considerations made
above. Indeed, a more accurate computation shows that ultra-soft corrections to theW−pair
potential of N = 4 SYM can be resummed by means of a RG equation giving [179]

V (L, λ) = −λ
1+λ 2

π

L
(6.6)

This result is perturbatively correct up to terms λn+1 logn λ at the nth order, in agreement
with (6.5).

6.1.2 Deforming observables

On the other hand, on the strong coupling side AdS/CFT predicts that the behaviour of
the anti-parallel Wilson lines for large values of the ’t Hooft coupling is essentially regu-
lated by the string tension [39] [38]. Stringy corrections seems hard to compute. This task
was first addressed in [180] [181], where the determinants of fluctuations around the semi-
classical solution were derived. At present, still, there is no analytical evaluation of these
determinants; a numeric result exists [182] and a one-dimensional integral reformulation was
proposed [183]. The bottom line is

〈
WAdS/CFT

SYM

〉
= exp

{[
4π2
√
λ

Γ4(1/4)
+O(1/

√
λ)

]
T

L

}
(6.7)

where O(1/
√
λ) = (−1.3359 . . . )/

√
λ is the numerical result of [182]. This result is not

reproduced by resumming all planar non-interacting diagrams [101]

〈
W ladders

SYM

〉
= exp

{[√
λ

π
− 1 +O(1/

√
λ)

]
T

L

}
(6.8)
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but nonetheless planar ladders capture the leading exponential behaviour. Evidently (6.6)
neither reproduces (6.7).

Let us recall the discussion at the beginning of Section 5.3. There we saw that that the
same resummation of ladder diagrams gave in the case of the circular loop an all-order exact
answer (5.14) [101]

〈W (C)〉ladd =
2√
λ
I1(
√
λ) (6.9)

which correctly reproduces the strong coupling behaviour. This particular Wilson loop pre-
serves half of the N = 4 supersymmetry, it is 1

2
BPS, and its expectation value on the

four-sphere S4 was shown to localize to a matrix integral [161].

A rather different behaviour emerges in the perturbative expansion of the circular loop
with respect to the anti-parallel Wilson lines, and possibly it is entirely due to supersym-
metry. Recently, the problem of relating the two quite different expressions (6.5) and (6.7)
has been faced with a different perspective in [49]. The crucial point is that one can take
advantage of the BPS character of the circular loop by determining an interpolating observ-
able that sweeps from the anti-parallel lines on one side to the circle itself on the other side.
This observable was indeed determined by applying two deformations to the Wilson loop
operator governed by a geometrical parameter φ and a coupling parameter θ. Note that the
second was already introduced in [39], more on this point is said in the next section. The
fact of being 1

2
BPS in a certain limit of the two parameters makes this observable easier

to compute, even at strong coupling. The generalized WW -potential that derive therein
depends on the deformations through θ and φ, and on the ’t Hooft coupling constant λ.
As already stated, superconformal symmetry bounds it to have the Coulomb form; at weak
coupling it will admit the expansion

V (φ, θ, λ) =
∑

n>0

(√
λ

4π

)2n

V (n)(φ, θ), λ≪ 1 (6.10)

that we have conveniently written to make contact with the strong coupling expansion,
which reads

V (φ, θ, λ) =

√
λ

4π

∑

n≥0

(
4π√
λ

)n
V

(n)
AdS(φ, θ), λ >> 1 (6.11)

The first few perturbative orders have been computed in [49] for arbitrary values of φ, θ
and read
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V (1)(φ, θ) = −2
cos φ− cos θ

sinφ
φ

V (2)(φ, θ) = V
(2)
ladders(φ, θ) + V

(2)
vertices(φ, θ)

V
(2)
vertices(φ, θ) = −2

3
(π2 − φ2)V (1)(φ, θ)

V
(2)
ladders(φ, θ) = − 1

φ2
V (1)(φ, θ)2

[
Li3(e

2iφ)− ζ(3)− iφ

(
Li2(e

2iφ) +
π2

6

)
+ i

φ3

3

]

(6.12)

On the strong coupling side, again one is forced to face functional determinants. An integral
expression was given in [49] that can be computed numerically to arbitrary precision. But

remarkably the first correction V
(0)
AdS was obtained in closed form. In the limit where φ →

π, θ→ 0, or otherwise stated, where the generalised potential approaches the true potential,
it reads

V
(0)
AdS(φ, θ) =

16π3

(π − φ)Γ(1/4)4
, for φ→ π, θ→ 0 (6.13)

that precisely matches the result of [39] [38].

The aim of the next section is to study such a deformation in the case the three-
dimensional N = 6 superconformal Chern-Simons theories of [36] [37] that seem to have
many common features with N = 4 SYM, and that we reviewed in the previous sections.

6.2 Deforming the loop operator

6.2.1 The wedge contour

Following the authors of [49], let us consider a wedge1 contour in Euclidean 3−dimensional
spacetime

C(s) = P1 θ(−s) s ∪ P2 θ(s) s = {s cos
φ

2
, |s| sin φ

2
, 0}, s ∈ (−∞,+∞) (6.14)

parametrized by the two momenta P1 and P2 chosen to conveniently lie in the x1x2−plane

P µ
1 = {cos

φ

2
,− sin

φ

2
, 0}

P µ
2 = {cos

φ

2
, sin

φ

2
, 0}

(6.15)

1We opt to preserve the word "cusp" for the Lorentzian light-like cusp, which subtends an infinite hyper-
bolic angle, whereas here the angle is circular and finite.
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COMPACTIFY

SQUASH

TEAR

Figure 6.1: On the left side the euclidean cusp contour or wedge. Compactifing the point at infinity the
wedge gets mapped to a couple of intersecting circular arcs. Mapping the centers of these arcs away leads
to the cicle on the upper-right corner, whereas mapping them closer and focusing on a neighbourhood of
the origin they look as the parallel straight lines on the lower-right corner.

The angle φ ranges in the interval 0 < φ < π and the two semi-infinite edges of C(s) form an
angle π− φ so that for φ = 0 the contour is a straigth line. The wedge contour interpolates
between a circle, a pair of anti-parallel lines in S2×R with Lorenzian signature and a proper
cusp in Minkowski spacetime as sketched in Figure 6.2.1. This can be shown considering the
following maps of Euclidean spacetime. In Euclidean signature, conformally mapping the
point at infinity to a finite distance turns the two edges into symmetric arcs (with respect
to the x2−axis) of radius r = 1/(1−sin φ

2
) passing through the points {x(1) = ±1, x(2) = 0}.

In the limit were the angle φ approaches zero, the two arcs join to form a circle centered at
the origin and of radius r = 1; while in the opposite limit φ →∞ the arcs stretch towards
infinity in both directions appearing as a couple of parallel infinite lines. Wick rotating to
Minkowsky signature, compactifying the transverse directions and applying the logaritmic
map one gets S2 × R. The two edges get mapped to infinite parallel lines in the time (R)
direction, lying on the border of S

2 and separated by an angle π − φ. Again, letting φ→ 0
these lines become antipodal on S2 and the contour such obtaind is half BPS.

6.2.2 Minimal deformation

A natural question arises so far. It concerns the possibility of coupling the loop operator
(4.10) to the wedge contour in such a way that the so-formed Wilson loop preserves, at
least locally, a certain ammount of the N = 6 supersymmetries of ABJ(M) theory. The
Wilson loop operator of [46] was shown to preserve half of the supersymmetries of ABJM
theory when coupled to line or circular contours, see also Section 4.2.4. For φ → 0 the
wedge contour appraoches a single straight line in Euclidean space, that can be conformally
mapped to a circle, thus we do expect this limit to reproduce a 1

2
BPS quantity. The
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keypoint in the recursive proof of [46] that half of the supersymmetry generators and half
of the conformal generators are preserved at any order if the relation

M I
J = δIJ + iηαJη

I
α (6.16)

between scalar and fermion couplings holds. We will refer to it as the key relation. This
ensures that, at any order, the supersymmetric variation of Chern-Simons and scalars fields
is cancelled by the variation of fermions at the next order. We want to deform both the scalar
and fermionic couplings, under the constraint of (6.16), to some functions of an additional
parameter, and study the supersymmetry properties of such deformed loop operator as the
parameter varies.

The minimal deformation of the scalar couplings consists in rotating two of them.
Consider that the matrix M I

J breaks the SU(4)R symmetry of the ABJ Lagrangean to
SU(3)R×U(1)R. Any rotation of the scalar fields CI that preserves SU(4)R is allowed, but
rotations inside the SU(3)R are trivial and uneffective. Note in fact that, conversely to the
4-dimensional couterpart, the 3-dimensional scalar coupling of (4.10) is a quadratic form,
hence any SU(3)R rotation of the CI ’s is compensated by the relative, opposite rotation of
the CI ’s.

Starting from the scalar coupling to the infinite straight line

M I
J =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (6.17)

we rotate the scalars

CI →




cos θ
2
− sin θ

2
0 0

sin θ
2

cos θ
2

0 0
0 0 1 0
0 0 0 1







C1

C2

C3

C4


 =




C1 cos θ
2
− C2 sin θ

2

C2 cos θ
2

+ C1 sin θ
2

C3

C4


 = U I

JC
J (6.18)

and CI → tUJ
I CJ of an angle 0 < θ < π. Equivalently we can rotate the matrix M by

means of

M̃ I
J = tU I

KM
K
L U

L
J =




sin2 θ
2
− cos2 θ

2
2 sin θ

2
cos θ

2
0 0

2 sin θ
2
cos θ

2
cos2 θ

2
− sin2 θ

2
0 0

0 0 1 0
0 0 0 1




(6.19)

The idea now is to couple the loop operator to the two sides of the wedge contour using
two different scalar couplings, say M I

J for s < 0 and M̃K
L for s > 0. The deformation above

does not preserve the SU(3)R × U(1)R symmetry of the original M I
J and the Wilson loop

will clearly not be 1
2

BPS away from θ = 0, π, although it will stil be locally 1
2

BPS. More
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precisely, for θ = 0 the two sides of the loop are coupled to same scalars and in the limit
where φ→ π this should reproduce correctly the W−pair potential

〈W(φ→ π, θ → 0)〉 ∝ e−LV (λ,ǫ) (6.20)

where L is the length of the loop and is necessary to treat IR divergences, whereas ǫ is an
UV regulator such as a dimensional regularization parameter. Opposedly to the SYM case,
at this stage it is hard in infer on what happens to the configuration with θ = π. In the
N = 4 analogue this would be a pair of parallel lines, which is a half BPS configuration,
but the scalar couplings in (6.19) apparently do not suggest anything alike.

But one has to consider fermionic couplings also. In the case of the infinite straight line,
say along x1, the chirality of the conserved supercharges suggests that the loop operator

of [46] should couple the fermionic fields ψIα and ψ
β

J to a single bi-spinor

ηαI = ηδ1
I δ

α
+ ηJβ = ηδJ1 δ

+
β (6.21)

The c−number η is a global phase determined by supersymmetry, and the condition (6.16)
gives the constraints ηη = i. The chirality of (6.21) is relative to the projector along the line

(1± σ1)βαηβ = ±η(±)
α (6.22)

and the + chirality has been chosen according to what stated above. This is by no means the
most general coupling one can write consistently with the requirements of supersymmetry,
but it is by far the simplest. On the two sides of the contour the projector (6.22) gets
rotated of an angle ±φ

2
around the x3-axis, consistently the spinor couplings rotate as2

ηIα → ηIα(s) = e∓
s i

2
σ3 φ

2

(
1
1

)
δI1η

ηαI → ηαI (s) = e±
s i

2
σ3 φ

2 (1 1) δ1
Iη

(6.23)

where the sign of the exponent is dictated by the sign of s, in the sense that for s > 0 the
line is rotated counter-clockwise while for s < 0 it is rotated clockwise. This procedure gives
the right chirality for coupling spinors to the two edges of the wedge contour (6.14) and can
be put into the rather useful pointwise relation

ηIα(s)η
β
I (s) = i

(
|ẋ(s)|+ σµxµ(s)

)β
α

(6.24)

where the prefactor of i is required by the normalization of η’s. Finally we have to rotate
R−indices to ensure the key relation (6.16), which in the present case reads

2There might seem to be an ambiguity in the sign of the exponent, reflecting itself on the handedness of
the rotation. On the other hand, if we choose to rotate the projector counterclockwise as (R†)β

α(1+σ ·x)γ
βR

δ
γ ,

then the rotation matrix must have a minus sign R = e−iσ3 φ

4 . The requirement that the rotated coupling is
still an eigenvector with the same eigenvalue unambiguously states that η rotates as R†η.
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M̃ I
J = δIJ + iηαJη

I
α = δIJ +



−2 cos2 θ

2
2 sin θ

2
cos θ

2

2 sin θ
2
cos θ

2
−2 sin2 θ

2


 (6.25)

We conveniently restricted ourselves to the upper block I, J = 1, 2. This is readily solved
rotating the R−index of the bi-spinor to

δI1 → ζI =

(
cos θ

2

− sin θ
2

)

δ1
I → ζI =

(
cos

θ

2
− sin

θ

2

) (6.26)

while keeping ηαI η
I
α = 2i untouched. Arranging the various bits we find the rotated fermionic

couplings

ηIα(s) =

(
e∓

s φ
4

e±
s φ

4

)(
δI1 cos

θ

2
− δI2 sin

θ

2

)
η

ηαI (s) =
(

e∓
s φ

4 e∓
s φ

4

) (
δ1
I cos

θ

2
− δ2

I sin
θ

2

)
η

(6.27)

Note that the choice of rotating C1 and C2 in (6.19) is totally equivalent to the choice of
rotating any of C3 or C4 together with C1. In fact this only ammounts to a permutation of
the indices I = 2, 3, 4 and won’t affect the SU(3)R invariant subgroup of M̃ . Indeed, any
element of SU(4) is allowed in line of principle, though more complicated deformation of M
will give rise to a larger number of fermionic couplings to be included in order to preserve
the local 1

2
BPS character of the loop operator. This is the bottom line that makes this

particular choice "minimal".

6.3 Weak coupling expansion

In Euclidean signature the expectation value of a Wilson loop operator 4.11 with the super-
connection being in a representation R of the supergroup U(N |M) is by definition

〈WR〉 =
1

dimR

∫
D[A, Â, C, C, ψ, ψ] e−SABJ TrR

[
P exp

(
i

∫

Γ

ds L(s)

)]
(6.28)

It proves useful to rescale the gauge field A→
√

2π
k
A, and the same for Â, so that the CS

acition in (B.2) assumes a more suitable form for a weak-coupling expansion in g = 2π
k

SCS → −
i

2

∫
d3xǫµνρ Tr(Aµ∂νAρ +

2

3

√
g AµAνAρ) (6.29)
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The superconnection gets rescaled too, and the first few orders of the path-ordered expo-
nential read

P exp

(
i

∫

Γ

ds L(s)

)
= I + ig

∫

Γ

dsi L(si) + (ig)2

∫

Γ

dsi

∫

sj<si

dsj L(si)L(sj) + . . . (6.30)

The latter are to be Wick contracted with powers of the ABJ action (B.2) in Appendix and
produce effectively an expansion in integer powers of g (actually off-diagonal terms have a
semi-integer power of the coupling constant, by they do not contribute to the trace). Note
that for pure Chern-Simons theory the sign of the exponent of the path-exponential and
the sign of the interaction term in S are related through gauge symmetry as emphasized in
(B.9). In our conventions the expectation value of W at weak coupling becomes

〈WR〉 = 1 +
1

N +M

{
− (igµ2ǫ)Tr

(∫

Γ

dsi L(si)

)
Tr

(∫
ddxLkin

)
+

+ (igµ2ǫ)2Tr

(∫

Γ

dsidsj L(si)L(sj)

)
1

2
Tr

(∫
ddxLkin

)2

+

− (igµ2ǫ)2Tr

(∫

Γ

dsidsjdsk L(si)L(sj)L(sk)

)
Tr

(∫
ddxLmatter

)
+ . . .

}
(6.31)

where we used the dimensionally-regularized action in d = 3− 2ǫ Euclidean dimensions and
µ is a mass scale that makes gµ2ǫ massless. Also note extra minus signs at odd orders of
the expansion of the Euclidean action and the fact the superconnection is the one in (4.47),
where |ẋ| → −i|ẋ| is the effect of Wick-rotating to Euclidean signature

L→ LE =


 Aµẋ

µ − i2π
k
|ẋ|M I

JCIC
J −i

√
2π
k
ψ
α

I η
I
α

−i
√

2π
k
ηβJψ

J
β Âν ẋ

ν − i2π
k
|ẋ|M̂K

L C
L
CK


 (6.32)

6.3.1 One-loop

From the discussion in Section 4.2 about the local 1
2

BPS character of the Wilson loop
operator, it follows that diagrams attached with both ends on the same side of the wedge
contour should not contribute at any order to the weak coupling expansion. It is therefore
convenient to deal with them separately, also in view of the two-loops computation, and it
turns out that there is a rather definite physical reason for which they do not contribute
indeed. We will extensively use dimensional regularization throughout our computations.
Regularizing Chern-Simons-matter theories going off-dimensions places some matter of con-
cern because of the presence of the anti-symmetric ǫµνρ tensor. We will follow the DRED
scheme, shifting the dimension to d = 3 − 2ǫ while keeping the σ algebra and ǫµνρ tensor
in strictly 3 dimensions. Note that this brakes the conformal invariance introducing a mass
scale µ2lǫ, where l is the number of loops, that keeps the action dimensionless.
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(a) (b) (c) (d) (e)

Figure 6.2: At one-loop order there are only two classes of diagrams: single-edge diagrams
and and exchange diagrams. Note that scalar fild enters the loop operator through the

composite bilinear M I
JCIC

J
, and its conjugate M̂ I

JC
J
CI , hence the exchange of a single

scalar is not permitted. Only CS and fermions propagator can contribute to the interaction
at one-loop. As it turns out that CS propagators vanish on any planar contour, only fermions
contribute.

At 1-loop order single-edge diagrams are either rainbow or buble diagrams. The most
subtle ones are the scalar boubles of Figure 6.3.1 (c). The first order expansion of the super-
connection (6.32) contracted with the kinetic term of the ABJ Lagrangean (B.2) generates
a scalar bouble inserted at a single point on the cusp contour

〈
S

(1)
bouble

〉
=

1

(N +M)

〈(
2π

k
|ẋ|M I

JCIC
J

+
2π

k
|ẋ|M̂K

L C
L
CK

)〉
= 0 ? (6.33)

This nasty diagram involves the contact divergence of the scalar propagator relative to two
scalar fields inserted at the same point and contracted together. However this contribu-
tion is usually considered to be zero in dimensional regularization for the simple reasoning
that, whatever it could be, it should be proportional to some mass scale, but no mass scale
is allowed by means of the conformal invariance of the theory. Alternatively, it was ar-
gued in [44] that assuming all fields are normal ordered removes the issue ab initio. One
should also notice that in the 1

6
BPS loop case, scalar bouble diagrams are proportional to

TrM I
J = 0, which removes them anyway. This is no longer the case for the 1

2
BPS loop and

as the reasoning above may not appear totally fulfilling, we will be back on it soon.

No other relevant term can come from the first order expansion of the loop operator,
but others arise expanding it twice. From now on, group indices will be suppressed not to
uselessly weigh the notation too much; they will be restored when needed. At the second
order one explicitly has
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i2Tr

∫

s2>s1

ds1ds2L(s1)L(s2) = i2Tr

∫

s2>s1

ds1ds2

{
Aµ(s1)Aν(s2)ẋ

µ
1 ẋ

ν
2

− i
2π

k
Aµ(s1)[MCC ](s2)ẋ

µ
1 |ẋ2| − i

2π

k
[MCC ](s1)Aµ(s2)|ẋ1|ẋµ2

−
(

2π

k

)2

|ẋ1||ẋ2|[MCC](s1)[MCC](s2)−
2π

k
[ψ

β
ηβ ](s1)[η

αψα](s2)

+ Âµ(s1)Âν(s2)ẋ
µ
1 ẋ

ν
2 − i

2π

k
Âµ(s1)[MCC](s2)ẋ

µ
1 |ẋ2|

− i
2π

k
[MCC](s1)Âµ(s2)|ẋ1|ẋµ2 −

(
2π

k

)2

|ẋ1||ẋ2|[MCC](s1)[MCC](s2)

− 2π

k
[ηαψα](s1)[ψ

β
ηβ](s2)

}

(6.34)

Of these whole bunch of terms, only four admit 1-loop relevant contractions, while the other
contribute at higher orders. Contracting gluons in the first and fourth lines of the above
equation gives the gluon rainbow for both A and Â depicted in Figure 6.3.1 (a) and the
single-gluon exchange in (d). They can be rearranged in a single integral

〈
G(1)

〉
= i2Tr

∫

s2>s1

ds1ds2

[
Aµ(s1)Aν(s2)ẋ

µ
1 ẋ

ν
2 + Âµ(s1)Âν(s2)ẋ

µ
1 ẋ

ν
2

]
(6.35)

using the tree-level gluon propagator (B.13) all of the terms above can be recast together
as a sum over all the possible attachments

〈
G(1)

〉
= iN2µ

2ǫ

k

Γ(d
2
)

π
d
2
−1

2∑

i,j=1

∫

s2>s1

ds1ds2 ẋ
µ
i ẋ

ν
j ǫµνρ

(ẋis1 − ẋjs2)
ρ

|xi(s1)− xj(s2)|d
= 0 (6.36)

which is zero on any planar loop for the antisymmetry of the epsilon tensor. One should
also take into account the contribution of the Â field, which differs only by a trace factor
of M2 instead of N2 in front of the integral. Note however that there will be a minus sign
between the two summands of 6.35 because of an extra minus sign between the ÂÂ and
AA propagators, hence tree-level gluons will always cancel for any loop in the ABJM case.
In the more general case of ABJ theory they give a term proportional to i(N −M)/k (all
integrals are real) which can be interpreted quite naturally as a framing contribution. See
(5.32) for comparision, where the matrix model computes the circular loop at framing one
and the dependence on the framing is purely immaginary and proportional to the flux of
the B field B = (N −M)/k − 1/2 in the dual geometry.

From 6.34 also fermionic rainbow and exchange diagrams arise (Figure 6.3.1 (b) and (e))

〈
F (1)

〉
= −i2

2π

k
Tr

∫

s2>s1

ds1ds2

[
[ηαψα](s1)[ψ

β
ηβ](s2) + [ηαψ

α
](s1)[ψβη

β](s2)
]

(6.37)
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It is sufficient to consider one of the two contributions, say the first, for the second is
analogous. Dimensionally regularised in d = 3− 2ǫ dimensions it reads

Tr
〈
[ηαI ψα](s2)[ψ

β
ηIβ ](s1)

〉
= iMN

Γ
(

1
2
− ǫ
)

4π3/2−ǫ (ηαI (s2)σ
µηIα(s1))

∂

∂xµ12

1

[(x1 − x2)2]
1
2
−ǫ (6.38)

being obviously xi = x(si). Using (6.24) one can compute the trace of any number of sigma
matrices sandwitched between two fermionic couplings

ηα1 (σµ . . . σλ)βαη2β = −Tr
[
(1 + ẋ1 · σ)(σµ . . . σλ)(1 + ẋ2 · σ)

]

ηγ2η1γ

(6.39)

where we have simply multiplied and divided the left hand side with ηγ2η
δ
1ǫγδ, moreover

according to (6.27) the dependence on the R−index can be factorised, so we have

ηαI (s2)σ
µηIα(s1) = −ζI(s2)ζ

I(s1)
ẋµ(s2) + ẋµ(s1) + iǫαµβ ẋβ(s1)ẋα(s2)

η(s1)αη(s2)α
(6.40)

We will refer to terms like this as the R−charges of the diagrams. The term proportional
to the ǫ tensor can be dropped on any planar contour where ẋ1, ẋ2 and x12 lie on the same
plane, so the relevant integral reads

− iMN
Γ
(

1
2
− ǫ
)

4π3/2−ǫ

∫

s2>s1

ds1 ds2
ζI(s2)ζ

I(s1)

η(s1)αη(s2)α

∂

∂xµ12

ẋµ1 + ẋµ2

[(x1 − x2)2]
1
2
−ǫ (6.41)

Note from (6.27) that the fermion couplings depend only piecewise on the contour so the

factor ζI(x2)ζI(x1)
η(x1)αη(x2)α

is actually a constant depending only on which side of the wedge the
propagator is attached to. It is now straightforward to see that for our parametrisation
of the contour the integrand can be always recast in the difference of two total derivatives
w.r.t. either s1 or s2, so the integral in (6.37) becomes

− iMN
Γ
(

1
2
− ǫ
)

4π3/2−ǫ

∫

s2>s1

ds1 ds2
ζI(s2)ζ

I(s1)

η(s1)αη(s2)α

[
d

ds1

− d

ds2

]
1

[(x(s1)− x(s2))2]
1
2
−ǫ (6.42)

Specialising the above to the case of single-edge diagrams we see that non-vanishing
contributions arise. Introducing a regulator L for IR divergences, behold - this breakes
gauge invariance, it is easy to prove that the sum of diagrams of type (b) for both (N,M)
and (M,N) propagators in (6.37) is proportional to

∫ L

0

ds1

∫ L

s1

ds2

[
d

ds1

− d

ds2

]
1

[(s1 − s2)2]
1
2
−ǫ ∼

L2ǫ

2ǫ
(6.43)

where the R−charge on the same leg is simply the normalisation of spinor couplings ζIζ
I

ηαηα
=

1/2i. Only one term is left, the one-fermion exchange of Figure 6.3.1 (d) relevant for the
deformed potential at one-loop. The integral can be computed easly
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〈
F

(1)
exch

〉
∼
∫ 0

−L
ds1

∫ L

0

ds2

[
d

ds1

− d

ds2

]
1

[(x(s1)− x(s2))2]
1
2
−ǫ

=

∫ L

0

ds1

∫ L

0

ds2

[
d

ds1

+
d

ds2

]
1

[s2
1 + s2

2 + 2s1s2 cosφ]
1
2
−ǫ

= 2

∫ L

0

ds

[
1

(s2 + L2 + 2Ls cosφ)
1
2
−ǫ −

1

s
1
2
−ǫ

]
(6.44)

where the explicit parametrisation has been used and |ẋi| = 1. It is convenient to change
variables such that all integrals range from 0 to 1

= 2L2ǫ2

∫ 1

0

ds

[
1

(s2 + 1 + 2s cosφ)
1
2
−ǫ −

1

s
1
2
−ǫ

]

= −L
2ǫ

ǫ
+ 2L2ǫ

∫ 1

0

ds
1

(s2 + 1 + 2s cosφ)
1
2
−ǫ

(6.45)

the last integral can be done exactly in terms of hypergeometric functions, the finite part
as ǫ→ 0 reads

lim
ǫ→0

∫ 1

0

ds
1

(s2 + 1 + 2s cosφ)
1
2
−ǫ = log

(
sec

φ

2
+ 1

)
(6.46)

Putting all bits together, accounting for the R−charge term and for the totally equal con-
tribution coming from the second propagator in (6.37) we have

〈
F

(1)
exch

〉
=

(
2π

k

)
2MN

Γ
(

1
2
− ǫ
)

4π3/2−ǫ
cos θ

2

cos φ
2

(µL)2ǫ

[
1

ǫ
+ 2 log

(
sec

φ

2
+ 1

)
+O(ǫ)

]
(6.47)

(a) (b) (c)

Figure 6.3: Graphs contributing to the renormalization of the Wilson loop. The wavy lines represent
the propagation of a general field. In QCD propagators of external probe-particles receive self-energy
contributions from (a) and (b). The renormalization of the vertex operator is given by (c). Here they
represent scheme-dependent boundary terms due to the broken gauge invariance, and hence supersymmetry,
of the Wilson line.

A comment is in order at this stage. Let us go back to the rainbow diagrams in (6.43). We
found divergences in the IR regulator L, but since the theory is conformal, the appearance of
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this term may look puzzling. On the other hand there is no need to indtroduce a regulator,
for the following reason that was pointed out in [67]. The term above is clearly regularisation
dependent, and would also contribution to VEV of a single Wilson line, which we know from
Section 4.2.4 is 1

2
BPS and should not recieve quantum corrections. If we perform a simple

one-loop computation in the same regularization scheme adopted above we would find

〈W (inf line)〉 =

∫ L

−L
ds1

∫ L

s1

ds2

[
d

ds1

− d

ds2

]
1

[(s1 − s2)2]
1
2
−ǫ (6.48)

that can be split into three pieces

[∫ 0

−L
ds1

∫ 0

s1

ds2 +

∫ L

0

ds1

∫ L

s1

ds2 +

∫ 0

−L
ds1

∫ L

0

ds2

] [
d

ds1
− d

ds2

]
1

[(s1 − s2)2]
1
2
−ǫ (6.49)

Now, the first and second contributions above are exactly the same as (6.43) and its
counterpart. A neat physical interpretation of these term exsists and actually prescribes
how to deal with them as [67] pointed out. Consider in QCD an infinite Wilson line as in
Figure 6.3.1 where one propagator is entering the vertex in s = 0 and one is going out. The
first two terms in (6.49) are the equivalent of the mass renormalization of external probe
particles moving along the loop, or, stated differently, the self-energies of their propagators
due to the interaction with fields of the unbroken theory. The third piece in (6.49) is the
renormalization of the vertex operator. These terms do not contribute to the interaction! In
our supersymmetric theory we cannot interpret them in terms of corrected two and three-
point functions, because probe particles moving along the loop are BPS protected, i.e.

they do not renormalize. However the introduction of the IR regulator L breaks the gauge
invariance of the infinite straight line, and hence from what we know from Section 4.2.3, also
its supersymmetry. We then expect boundary terms depending on the regularisation scheme
to survive for finite L. To correctly renormalise the deformed Wilson loop at one-loop we
then have to subtract its undeformed value computed in the same regularisation scheme,
which is the BPS Wilson line (6.49) and is far from being trivial

〈W(φ, θ)renorm〉 ≡ 〈W(φ, θ)〉 − 〈W(0, 0)〉 (6.50)

Note that the same argument holds for scalar boubles described at the beginning of this Sec-
tion, which can be also accounted for as “renormalisation” contributions. The prescription
(6.50) removes self-energy corrections to the external lines coming from (6.43) and (6.33),
whatever they might be and subtracts from (6.47) the renormalisation of the vertex opera-
tor, which is the third bit of (6.49). Remarkably the final result for the wedge Wilson loop
at one-loop reads

〈
W(1)

〉
renorm

=

(
2π

k

)
2MN(µL)2ǫ

M +N

Γ
(

1
2
− ǫ
)

4π3/2−ǫ

×
[

1

ǫ

(
cos θ

2

cos φ
2

− 1

)
+

cos θ
2

cos φ
2

2 log

(
sec

φ

2
+ 1

)
− 2 log 2 +O(ǫ)

]
(6.51)
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and receives only fermionic contributions in this gauge. A final comment about the renor-
malization procedure. It seems that the IR regularised Wilson line receives contributions
that are regularisation dependent, despite being BPS proteted and despite the computation
of [46] fixes its value at 1. However, in that derivation boudary contributions to the integral
of the supersymmetry variation of the Lagrangean (4.45) have been flushed, being total
derivatives. Actually the value of boudary terms is fixed by gauge invariance, and only for
a truely gauge invariant Wilson operator, total derivatives might be reabsorbed by means
of a gauge transformation. In our case, being L large but finite, the contour is, strictly
speaking, no more gauge invariant, and boundary term must be treated carefully.

6.3.2 Two-loops

The perturbative two-loop expansion of the half BPS loop operator involves a respectable
amount of diagrams on non-null contours. Henceforth we present in the following relevant
contributions to the expectation value of the deformed potential and refer the reader to
Appendix A for all the details about computations. Looking back at (6.34) we see that
order 1

k2 , corrections to the Wilson loop can come already from the second order expansions
of the loop operator contracted with either the kinetic part of the Lagrangean (B.2) or the
interaction vertices (B.15), (B.16) and (B.17). Moreover, there are other relevant terms in
the third and fourth order expansion of the loop operator. Substantially, we observe that
there are three main classes of graphs contributing at order 1

k2 – double exchange graphs,
corrected propagators and interaction 3-vertices, let us examine them in some details.

Double Exchange Diagrams

(a) (b) (c) (d)

Figure 6.4: Double exchange diagrams at order 1
k2 of the VEV of the wedge Wilson loop.

Only (b) and (c) contribute whereas (a) vanishes for kinematical reasons and (d) is a renor-
malization and scheme-dependent term.

Double gluon exchange

At any order of perturbation theory, double exchanges share the same kinematics of the one-
loop single propagator exchange and the same structure of couplings to the loop contour.
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Therefore gluon ladder diagrams of Figure 6.3.2 (a) vanish identically on any planar contour

and independently for both gluon fields A and Â because of antisymmetry of the gluon
propagator. The same holds for gluon rainbows and mixed graphs with one rainbow and
one exchange propagator.

Double scalar exchange

There is a particular ladder graph generated by the BPS Wilson loops of ABJ(M) theories
which does not have a SYM counterpart, it is the composite scalar exchange of Figure 6.3.2
(b). Interestingly enough, it emerges from the second order expansion of the loop operator
(6.34)

〈
Tr [MCC ](x1) [M̃CC](x2)

〉
=

〈
TrM I

JCIC
J
M̂K

L C
L
CK

〉
+
〈

TrM I
JCIC

J
M̂K

L C
L
CK

〉

(6.52)
while ladder graphs typically start from the fourth order, once more highlighting the etero-
geneus interplay of scalar and fermionic matter in these theories. Due to quadratic cou-
pling of scalars in (6.32), diagrams emerging from the first summand in (6.52) represent
the propagation of composite scalar bilinears. The kinematics of these diagrams is of the
single-exchange type, in that they have only two insertion points despite appearing at two
loops. Rainbow-like insertion of the composite scalars are regularization-dependent terms
contributing to the renormalization of the Wilson loop, as explained in the previous section,
which do not caputure the global structure of the loop and do not give any relevant contri-
bution to the deformed potential. The renormalization prescription of [67] in (6.50) safely
removes them. The same subtraction also eliminates double-boubles originating from the
contraction of scalars within each composite insertion arising from the second summand in
(6.52). Only the true exchange diagrams which capture the global structure of the Wilson
loop contribute. From the expansion (6.34) we see that there are two such contributions,
relative to the composite fields [MCC ] and [MCC], they are computed in Section A.1.1.
The first composite field is in the adjoint of U(N) while the second is in the adjoint of
U(M), they carry trace factors N2M and NM2 respectively. Since the kinematical part is
the same, trace factors combine and cancell the 1/(N + M) normalization of the Wilson
loop

〈
W(2)

S

〉
= i4NM

(
2πµ2ǫ

k

)2 Γ
(
d
2
− 1
)2

16πd

∫
ds1ds2

1

|x1 − x2|2d−4
Tr[M(s1)M̃(s2)] (6.53)

In the ABJM case, where N = M , this reproduces the
(
N
k

)2
dependence which is expected in

the planar limit. If we regard this as the contribution of a single adjoint field, it reproduces
in d = 3 dimensions the contribution of an adjoint scalar in d = 4 at one-loop with the
identification of the ’t Hooft couplings λ2

ABJ = λSYM . Also, we left a tilde over M̃(s2) to
underline the fact that the two matrices come from different blocks of the superconnection
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and are inserted at different points on opposite sides of the wedge. Using the explicit form
of the deformed scalar matrix (6.19) it follows

Tr[M(s1)M̃(s2)] = 4 cos2 θ

2
(6.54)

Double fermion exchange

Inserting the superconnection four times along the contour

(i)4L(s1)L(s2)L(s3)L(s4) =
(

2π

k

)2(
ηI1ψ̄

I
1ψL2η̄

L
2 ηR3ψ̄

R
3 ψS4η̄

S
4

ψI1η̄
I
1ηL2ψ̄

L
2 ψR3η̄

R
3 ηS4ψ̄

S
4

)
(6.55)

and contracting with the kinetic Lagrangean for fermions (B.2) one has diagrams with two
fermionic lines. Here we avoided writing other terms in the matrix product which do not
contribute to the class of diagrams under discussion. It sufficient to consider either the
upper or lower terms above

〈Tr(ηI1ψ̄
I
1ψL2η̄

L
2 ηR3ψ̄

R
3 ψS4η̄

S
4 )〉0 =〈(ηI1ψ̄I1)īi(ψL2η̄

L
2 )̄ij(ηR3ψ̄

R
3 )jl̄(ψS4η̄

S
4 )l̄i〉 =

=− 〈(ψL2η̄
L
2 )̄ij(ηR3ψ̄

R
3 )jl̄(ψS4η̄

S
4 )l̄i (ηI1ψ̄

I
1)īi〉,

(6.56)

explicitly written with group indices, it is clear that the only difference is a trace factor

− 〈(ψL2ν̄
L
2 )̄ij(νR3ψ̄

R
3 )jl̄(ψS4ν̄

S
4 )l̄i (νI1ψ̄

I
1)īi〉 ∝ (ζ̄2ζ3)(ζ̄4ζ1)δīl̄δjjδiiδl̄̄i = MN2(ζ̄2ζ3)(ζ̄4ζ1)

(6.57)
where we also factoriesed the dependence on the R−index. Overall, ten Feynman diagrams
for each block contribute to (6.56) once all the possible insertions on the contour have been
taken into account. Diagrams with no propagator going from one side of the wedge to the
other are renormalisation terms and do not contribute as already explained. Here we focus
on diagrams with at least one propagator going from side to side. All the details about the
computations are in Appendix A.2.

Consider the configuration in Figure 6.3.2 (c). Using the same trick as in (6.39) for
managing spinorial couplings and the fermion propagator in (B.13), the relevant integral is
readly written

− 〈(ψ2ν̄2)(ν3ψ̄3)(ψ4ν̄4)(ν1ψ̄1)〉 ∼
Γ2(1/2− ǫ)

4π3−2ǫ(η3η̄2)(η1η̄4)
×

× [ẋ2
µ + ẋ3

µ] ∂xµ
2

(
1

(x2
23)

1/2−ǫ

)
[ẋ4

µ|ẋ1|+ ẋ1
µ|ẋ4|] ∂xµ

4

(
1

(x2
41)

1/2−ǫ

)
, (6.58)
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As already noted, two-loops double exchange diagrams have the same kinematical structure
as one-loop diagrams, hence the integral above can be factorized

Γ2(1/2− ǫ)
4π3−2ǫ(η3η̄2)(η1η̄4)

G(s2, s3)G(s4, s1) (6.59)

where the antisymmetric function G(si, sj) is the same as in (6.42)

G(si, sj) =

[
d

dsi
− d

dsj

]
1

[(x(si)− x(sj))2]
1
2
−ǫ

=

[
d

dsi
− d

dsj

]
1

[s2
i + s2

j − 2sisj cos φ]
1
2
−ǫ

=

[
d

dsi
− d

dsj

]
∆

1
2 (s1, s2)

(6.60)

and ∆(s1, s2) is the scalar Feynman propagator in d = 3 − 2ǫ dimensions. At this stage it
is convenient to split the integrand (6.58) in a totally symmetric part plus a pure-exchange
part

G(s2, s3)G(s4, s1) = [G(s2, s3)G(s4, s1) +G(s2, s4)G(s3, s1)]
(A)

−G(s2, s4)G(s3, s1)
(B)

(6.61)

The first piece (A) is symmetric under s1 ↔ s2 and s3 ↔ s4, then the path integral along
the contour simply gives minus a half of the square of the one loop result (6.47), divided by
a factor of M

F
(2)
A =

1

2M

(
iMNΓ(1/2− ǫ)
2π3/2−ǫ(η1η̄2)

(nL2n̄
L
1 )

∫ L

0

ds1

∫ 0

−L
ds2G(s1, s2)

)2

=
1

2M

(
F

(1)
exchange

)2
(6.62)

This is a noteworthy result. From the discussion about the massive W−bosons in the
broken phase of the theory (4.21) (4.22) it is straightforward to show that in U(N)×U(M)
SCS theories two kinds of particles arise and which transform respectively in the (1,N and
(1,M) bifundamental representations and their conjugate, that we will call WN and WM

bosons. It is clear that a pair of WN and WM cannot form a singlet of the color indices and
there is no generalization of the quark-antiquark potential in this case. On the other hand
a pair of WNW n or WMWM do form color indices, hence there are two potentials in this
theory! The equivalent of (6.3) in U(N)× U(M) SCS theories then reads

〈W(θ, φ)〉 =
1

M
TrPe−VN (φ,θ,ǫ) +

1

N
TrPe−VM (φ,θ,ǫ) (6.63)
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The normalization are chose so that (6.63) is perturbatively identical to the definition of [46]
when M = N . Let us concentrate on the first term on the r.h.s., applying the subtractive
renormalization procedure its perturbative expansion schematically reads

〈W(θ, φ)〉 = 1− 1

M
g(V

(1)
N (θ, φ, ǫ)− V (1)

N (0, 0, ǫ))−
1

M
g2

[
V

(2)
N (θ, φ, ǫ)− V (2)

N (0, 0, ǫ) +
1

2
(V

(1)
N (θ, φ, ǫ)− V (1)

N (0, 0, ǫ))2

]
+O(λ3) (6.64)

where powers of the coupling constant g = 2π
k

have been conveniently factored out. There-
fore the fact that 1

ǫ2
divergences of the Wilson loopW at two loops equal the square of the 1

ǫ

terms in the one-loop, means that one-loop divergences of the potential VN exponentiate in
the Wilson loop and consequently there is no real 1

ǫ2
divergence in the two-loop expansion

of VN itself. The absence of higer order divergences in the deformed potential is dictated by
superconformal symmetry of the full theory (6.3), and the only global divergence must be
interpreted as a divergence of the integration region Lǫ/ǫ ∝ T (with the T defined in (6.3)).
A totally analogous reasoning holds for the corresponding term in the lower block of (6.55).

Let us go back to the contribution of the purely-exchange pieces (B) in (6.61). The
computation in Appendix A.2 shows that the sum of the two purely-exchange pieces coming
from (6.55) can be recast in the rather compact form

F
(2)
(B) = −

(
2π

k

)2
Γ2(1/2− ǫ)MN(N +M)

4π3−2ǫ

L4ǫ

4ǫ
cos2 θ

2

∫ 1

0

dz
1

2(1− z)z cosϕ+ z2 + (1− z)2

(6.65)
Different Wick contractions of (6.56) generrate diagrams with one propagator going from

side to side and one propagator with both ends on the same side, these graphs are depicted
in Figure A.2 (f) trhough (i) in Appendix A.2 for the upper block and an equal amount
comes from the lower block (6.55). The two blocks share the same integrals and differ only
in trace factors, the sum of all these contributions can be simplified to two master intergals

(after a lot of algebra), we will call it F
(2)
(C)

F
(2)
(C) = − 1

2ǫ

(
2π

k

)2
MN(M+N)Γ2(1/2− ǫ)

4π3−2ǫ

cos θ
2

cos ϕ
2

∫ L

0

ds1

∫ 0

−L
ds2[(L+s2)

2ǫ+(−s2)
2ǫ]G(s2, s1)

(6.66)
After rescaling and flipping some integration region, the integrals above yield

L2ǫ

∫ 1

0

ds1

∫ 1

0

ds2 (1− s2)
2ǫG(s1,−s2) =

L2ǫ

[
−1

ǫ
+ 2 log

(
sec

φ

2
+ 1

)
+ 2ζ(2) +O(ǫ)

]
(6.67)
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L2ǫ

∫ 1

0

ds1

∫ 1

0

ds2 (s2)
2ǫG(s1,−s2) =

L2ǫ

[
−1

ǫ
+

5

2
log

(
sec

φ

2
+ 1

)
+ log cos2 φ

2
− 1

4
log 2 +O(ǫ)

]
(6.68)

where only the divergent and finite contributions are needed for our purposes.

Self-energy diagrams

(a) (b)

Figure 6.5:

Contracting the < AA > pieces of (6.3.2) with a double copy of the interaction vertices
(B.16) and (B.17)

〈
Aµ(s1)Aν(s2)VψψA(w1)VψψA(w2)

〉
+ 〈Aµ(s1)Aν(s2)VCCA(w1)VCCA(w2)〉 (6.69)

produces the gluon self energy of Figure 6.3.2(a). The gluon-ghost and gluon-gluon 3-vertices
do not play any role in the gluon self energy becuse their contributions mutually cancell, as
is well known from [184]. Indeed they always cancell at any loop order so we can neglect
them from now on. A short comment on this fact is present in Section A.2.2. The gluon
self-energy was computed in [44] and reads

G(1)
µν (x− y) = −δilδjk

(µd−3)2

8πd

(
2π

k

)2
Γ(1− d/2)Γ(d/2)2

Γ(d− 1)
×

×
[

Γ(d− 2)

Γ(2− d/2)

δµν
[−(x− y)2]d−2

− ∂µ∂ν
(

1

4

Γ(d− 3)

Γ(3− d/2)

1

[−(x − y)2]d−3

)]
(6.70)

There is of course an analouge of this formula for the self-enrgy of the Â gluon field. As
for the case of the composite scalar the only difference between the two is in the group
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index structure. Indeed, from the point of view of group factors, one diagram represents
the exchange of an U(N) adjoint field with a nested U(M) fundamental loop inside and has
a δilδjk factor in front, whereas the other is the exchange of a U(M) adjoint with a U(N)
loop nested within, therefore its index factor is δbiblδbjbk. As already noticed in [44], when

coupled to the loop contour and integrated over the insertion points, the A and Â gluons
self-energies (6.70) combine with the sum of the two composite scalar diagrams (6.53) to
form the effective interaction

−NM
(

2π

k

)2 ∫
ds1ds2

Γ
(
d
2
− 1
)2

16πd

[2(d− 1)(d− 2)(ẋ1 · ẋ2)− |ẋ1||ẋ2|Tr[MM̃ ]

|x1 − x2|2(d−2)
−

− (ẋ1 · ẋ2)
∂

∂s1

∂

∂s2

(
2

(d− 3)(d− 4)

1

[−(x − y)2]d−3

)]
(6.71)

Taking the d→ 3 limit one has the rather simple formula

−
(
NM

k2

)∫
ds1ds2

[(ẋ1 · ẋ2)− |ẋ1||ẋ2|14Tr[MM̃ ]

|x1 − x2|2
− (ẋ1 · ẋ2)

∂

∂s1

∂

∂s2
ln(|x1 − x2|)

]
(6.72)

Since Tr[M2] = 4 for any SU(4) deformation of the matrix couplings, the first term in the
integral above cancels identically when the composite propagator is attached with both ends
to the same side of the wedge contour. This is again a manifestation of the local 1

2
BPS

character of the Wilson loop, which prevents it from getting correction from single-edge
graphs. The second term in parenthesis is a total derivative and can be removed by means
of a gauge trasformation, for this reason it will be neglected in the following.

Fermion self-energy

The one loop fermion exchange in (6.36) can receive contributions from the emission and

absorption of both gluon fields A and Â, Figure 6.3.2 (b). On the other hand these graphs
do not contribute to the expectation value of the Wilson loop. As can be seen from the
contraction of the second-order expanded loop operator with the interaction Lagrangean

2π

k

〈
Tr
[
ηIαψ

α

I (s1)ψ
J
β (s2)η

β
J + ψLγ (s1)η

γ
Lη

K
δ ψ

δ

K(s2)
] (

Tr
[
VψψAVψψA

]
+ Tr

[
VψAψVψAψ

])〉

(6.73)
and paying particular attention to signs arising from the ordering of fermions, there is an
overall minus sign between terms coming from the upper block and term coming from the
lower block.

Nonetheless it is instructive to see what kind of contribution can arise from diagrams of
this kind, as they become relevant subdiagrams at higher orders. As shown in Appendix
A.1, each fermion line receives two contributions from the two gauge fields A and Â which
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have same kinematics but different group factors and fermionic couplings. The sum of the
two contributions is

I
(2)
fermion = I

(2)
F (A) + I

(2)
F (Â) =

=
i

2π
NM(N −M)

(
4πµ2ǫ

k

)2

|ẋ1||ẋ2|
∫

ds1 ds2
ηαI (s2)η

I
α(s1)

(x1 − x2)2−2ǫ
(6.74)

and vanishes when N = M , so the fermion self-energy does not contribute to the 2-loops
expectation value of the ABJM Wilson loop in any case. In the general case, note that
coupling both ends of (6.74) to the same edge of the wedge loop produces, up to a prefactor

∫ 0

−∞
ds1

∫ 0

s1

ds2
ηαI η

I
α

(x1 − x2)2(d−2)
=

∫ 0

−∞
ds1

∫ 0

s1

ds2
2i

(x1 − x2)2(d−2)
=

−
∫ ∞

0

ds1

∫ s1

0

ds2
ηαI η

I
α

(x1 − x2)2(d−2)
(6.75)

so their contribution to the renormalization of the infinite line vanishes as well. Here we
have used the key relation for which ηαI η

I
α = 2i on both sides of the loop. Inserting the

corrected propagator on different edges and accounting for the two possible orderings of
insertion points allowed by the Wick contractions we have

〈
W

(2)
F

〉
=

i

2π
NM

N −M
N +M

(
4πµ2ǫ

k

)2 ∫ 0

−L
ds1

∫ L

0

ds2
2 cos(φ/2)

(x1 − x2)2−2ǫ
(6.76)

where we have used the fermion couplings in (6.27). The integral above is the same 4d−like
scalar integral that appears widely throughout the computations of this Section. From a
purely speculative point of view, the i(N −M) factor in front of the integral suggests that
(6.76) is related to parity violating contributions that may appear at higher orders and in
non-planar terms as observed in [185].

Interaction 3-Vertices

Now let us consired interaction vertices. In Figure 6.3.2(a) the Chern-Simons vertex is
depicted, it comes from the third-order expansion of the loop operator contracted with the
3-vertex (B.15)

〈VG〉 = i3
∫

ds1ds2ds3L(s1)L(s2)L(s3)

∫
d3wVAAA(w) (6.77)

Of course there is an analouge of it for the Â gluon 3-vertex. Let examine one of them,
explicitly disregarding the ordering of the insertion points and an inessential prefactor it
reads
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(a) (b) (c)

Figure 6.6:

〈VG〉 =
∫

dsidsjdskẋ
µ
i ẋ

ν
j ẋ

ρ
kǫµασǫνβλǫργτ ǫ

αβγ

∫
ddw

(xi − w)σ(xj − w)λ(xk − w)τ

|xi − w|d|xj − w|d|xk − w|d
= 0 (6.78)

As ẋi = Pi are constants and only two of them are evidently linearly independent, it is easy
to see that this term vanishes for antisymmetry. As pointed out in [18] the contribution
of the CS vertex to polygonal Wilson loops is non vanishing only when attached to three
linearly independent edges.

The second graph in Figure 6.3.2 (b) is due to the scalar gluon interaction and arises
from the contraction of the < A(s1)[MCC ](s2) > term in (6.34) and the scalar-gluon vertex
(B.17). Performing the contractions one finds

〈VS〉 = NM
(µ3−d)2

k2

Γ(d/2)Γ(d/2− 1)

4πd−1
×

ẋµi |ẋj |ǫµνρ
∫

dsidsj

∫
ddw

(xi − w)ρ

|xi − w|d|xj − w|
∂

∂wν
1

|xj − w|
(6.79)

As outlined in [44], for any planar contour the derivative of the integrand w.r.t the compo-
nent of w orthogonal to the loop is anti-symmetric in w⊥ → −w⊥, whereas the integration
ranges from −∞ to +∞. Then

〈VS〉 = 0 (6.80)

for any Wilson loop lying on a plane.

Finally the fermion-gauge vertex diagrams of Figure 6.3.2 (c). These are the most subtle
bits of the computation and a detailed derivation is presented in Appendix A.3. Such
diagrams emerge from the coupling of the CS gluon fields to the fermions in the theory
through the covariant derivative. Inserting three copies of the superconnection L along the
contour and performing contractions one has
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Tr[(iL(τ1))(iL(τ2))(iL(τ3))] =

=
2πi

k

[
ψI1ν̄

I
1A2νL3ψ̄

L
3 + νI1ψ̄

I
1ψL2ν̄

L
2A3 +A1νL2ψ̄

I
2ψL3ν̄

L
3

]
+

+
2πi

k

[
Â1ψL2ν̄

L
2 νL3ψ̄

L
3 + ψI1ν̄

I
1νL2ψ̄

L
2 Â3 + νI1ψ̄

I
1Â2ψL3ν̄

L
3

]
+ · · ·

(6.81)

plus other terms that do not contribute to the interaction, and we preserve the definition

A = Aµẋ
µ − i2π

k
|ẋ|M I

J CIC̄
J and Â = Âµẋ

µ − i2π
k
|ẋ|M̂ I

J C̄JCI . (6.82)

Once taking into account al the possible insertions of the fields in (6.81) one has the
twelve diagrams of Figure A.3 for each gluon field. Single edge diagrams do not contribute
the VEV as they are subtracted by the renormalization prescription (6.50), whereas exchange
diagrams (Figure A.3 (b) (f) (m) and (n)) coming from the first line of (6.81) can be
rearranged in

V 1
F exch =−

(
2π

k

)2

MN2

∮

s3<s2<s1

ds1ds2ds3 Γρλσ(x1, x2, x3)×

×
[
ν̄L1 γ

ργµγ
σνL3ǫ

νµλẋ2ν − ν̄I2γλγµγρνI1ǫνµσẋ3ν − ν̄I3γσγµγλνI2ǫνµρẋ1ν

] (6.83)

where Γ is a shorthand for the integral over the position of the interaction vertex

Γρλσ(x1, x2, x3) =

(
Γ(1/2− ǫ)

4π3/2−ǫ

)3

∂xρ
1
∂xλ

2
∂xσ

3

∫
d3−2ǫw

(x2
1w)1/2−ǫ(x2

2w)1/2−ǫ(x2
3w)1/2−ǫ (6.84)

and the terms in square brackets account for the different insertion of the spinorial couplings
along the contour. The computation of the integrals in (6.83) is rather cumbersome and
left to the Appendix A.3. A central observation is that (6.83) can be cooked up in terms
which are total derivatives and terms which apparently are not. For the latter however it is
convenient to use the symmetries of the wedge contour to give them a total derivative look.
As many terms vanish because of the planarity of the contour one is left with the following
four contributions

〈
V exch
F

〉
=

(
2π

k

)2 MNΓ2(1
2
− ǫ)

4π3−2ǫ
[I1 + I2 + I3 + I4] (6.85)

where the relevant integrals are
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I1 = − iµ4ǫ
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(6.86)

All these integrals are strongly reminiscent of those in (6.66).

Mixed Diagrams

(a) (b) (c)

Figure 6.7: Mixed diagrams arising from the exponentiation of the one-loop single-exchange
and rainbow diagrams with the scalar bouble.

Non-interacting mixed diagrams also emerge at order 1
k2 . These can be divided into the

three categories schematically dipicted in Figure 6.3.2. Graphs with internal scalar bouble
insertions can be regarded as vanishing for the same reasons discussed in the one-loop case
for the bouble alone. Besides these, mixed double exchange with one fermion and one gluon
propagators annihilate on planar contours for the antisymmetry of the latter, they indeed
have the same kinematical structure of the one-loop. We conclude that mixed diagrams do
not contribute to the renormalised expectation value of the Wilson loop.

6.4 WW pair potential - the φ→ π limit

The WW pair potential is recovered from our wedge contour in the limit φ→ π where the
the two edges aproach each other and are mapped by a conformal transformation to a pair
of infinite anti-parallel lines. Indeed we have shown in (6.63) that the U(N +1)×U(M +1)
quiver group structure of SCS theories in the unbroken phase implies the existence of two
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potentials for the two possible color singlets states made up of bifundamental (1,N) and
(1,M) W−bosons with their conjugate

〈W(θ, φ)〉 =
1

M
TrPe−VN (φ,θ,ǫ) +

1

N
TrPe−VM (φ,θ,ǫ) (6.87)

From the one-loop renormalised value of the wedge loop (6.51) we can estract the one-loop
renormalized potential

lim
φ→π
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(
cos θ

2

cos φ
2

− 1

)
+

cos θ
2

cos φ
2

2 log

(
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− 2 log 2 +O(ǫ)

]
=

(µL)2ǫ

2ǫ

[
cos θ

2

π − φ − 1 +
4ǫ cos θ

2

π − φ log
π − φ

2
+O(π − φ)

]
(6.88)

So up the identification of π − φ with the L (6.3) and 1/ǫ with T in the same equation,
in the ǫ → 0 limit we have a contribution consistent with the requirements of conformal
symmetry

V
(1)
N (L, λN) = λN

cos θ
2

π − φ (6.89)

and analogously for the other kind of particles

V
(1)
M (L, λM) = λM

cos θ
2

π − φ (6.90)

where λN = N/k, λM = M/k are the two ’t Hooft couplings. Note that all other terms in
(6.88) are subleading and scheme-dependent. Finally, note that the potential is, up to this
order, of the Coulomb type, and in the case θ = π it vanishes and somehow the parallel line
result of N = 4 SYM is recovered.



APPENDIX A

Two-loops contributions to the Wilson loop

A.1 One-loop corrected gauge and fermion propaga-

tors

Contracting the 1-loop expansion of the Wilson loop with the interaction 3-vertices of the
kinetic term of the matter action yields suitable 2-loops contributions. Higher order inter-
action vertices in (B.2) do not contribute at this order as fermion-gluon 4-vertices enter at
3-loops, while Yukawa couplings and the sexstic scalar interaction enter at 4-loops. So the
relevant contributions are just the 1-loop corrected gauge and fermion propagators depicted
in Figure 6.3.2(a) and (b).

Gluon self energy

For the gluon propagator only fermion and scalar boubles contribute to the self energy
at this order, once the cancellation of gluon and ghost loops are taken into account. The
computation of the gluon self energy terms due to fermion and scalar running in the loop
was carried out in dimensional reduction (i.e. keeping tensors on-dimension) in [44]. It
involves standard field-theory techniques and we don’t review it here. The final result for
the 1-loop correction in d−dimensional euclidean space reads

G(1)
µν (x− y) = −δilδjkδII

µd−3

πd

(
2π

k

)2
Γ(1− d/2)Γ(d/2)2

Γ(d− 1)
×

×
[

Γ(d− 2)

Γ(2− d/2)

δµν
[−(x− y)2]d−2

− ∂µ∂ν
(

Γ(d− 3)

Γ(3− d/2)

1

4

1

[−(x− y)2]d−3

)]
(A.1)
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Taking the limit d → 3, accounting for four-flavours of fields running in the loop and
summing to the tree-level propagator G

(0)
µν one has

〈
(Aµ)ij(x) (Aν)kl(y)

〉
= −δilδjk

1

k

[
ǫµνρ(x− y)ρ

2|x− y|3 +
N

k

(
δµν
|x− y|2 − ∂µ∂ν ln(|x− y|)

)]

(A.2)

being |x− y| a shothand for [−(x− y)2]
1
2 . There is an analogue of the latter expression for

the corrected propagator of hatted gluons

〈
(Âµ)bibj(x) (Âν)bkbl(y)

〉
= −δbiblδbjbk

1

k

[
−ǫµνρ(x− y)

ρ

2|x− y|3 +
M

k

(
δµν
|x− y|2 − ∂µ∂ν ln(|x− y|)

)]

(A.3)

In the ABJ case remember that gauge groups are different, thus the bouble contributions
have different trace factors. Also note that while the tree-level pieces have opposite signs,
the loop corrected ones share the same sign, meaning the two contributions to the 2-loops
Wilson loop operator coming from the two gluon fields sum up even in the M = N case.

Fermion self energy

The second graph in Figure 6.3.2 comes from the contraction of the 2-fermion piece in
the diagonal of the loop operator (4.10) contracted with the fermion-gluon vertices

2π

k
|ẋ1||ẋ2|Tr

[
ηIαψ

α

I ψ
J
βη

β
J

] 1

2

(
Tr
[
VψψAVψψA

]
+ Tr

[
VψAψVψAψ

])
(A.4)

with an extra 1
2

factor coming from the second order expansion of the V ’s. For each of the
two fermionic contributions to the loop operator there are two possible contractions with
the two species of gauge fields. Note from (B.10) and (B.16) that vertices and propagators

of A and Â have opposite signs and different trace factors, the full self-energy will be then
the sum of the two terms I

(2)
fermion = I

(2)
F (A) + I

(2)
F (Â). Let us then compute the one relative

to A, the full integral is

I
(2)
F (A) =

1

2
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)2
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∫

ds1 ds2 η
α
J (s2)δ
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I

{∫ ddp

(2π)d
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ddk

(2π)d(
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)
σµ
(
− 6k
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σν
(
− 6p
p2

)
ǫµνρ

(p− k)ρ
(p− k)2

e−p·(x1−x2)
}β
α
ηIβ(s2) (A.5)

We proceede in the standard way introducing Feynman parameters (D.30) fot the ddk inte-
gral and shifting integration variable
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∫
ddk

(2π)d
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ddk
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(A.6)

where α = (1− α) and ∆ = ααp2. Then using (D.32) we find (parity of the integral drops
linear terms)
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(A.7)

This is to be contracted with the the bunch of σ’s in (A.5) and after some algebra with the
help of (D.34) and followings, only a diagonal piece in the spinor indices survives

i

(4π)
d
2

Γ(1− d
2
)Γ(d/2)2

Γ(2)Γ(d)

δβα

(−p2)2− d
2

(A.8)

Putting things altogether and Fourier-transforming with respect of p one has the 1-loop
correction to the fermion propagator from a single A gluon

1

2
N2M

(
4π

k

)2

|ẋ1||ẋ2|
i
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d
2
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(A.9)

that assumes a quite simple form in d = 3 dimensions

I
(2)
F (A) =

i

2π
N2M

(
4π

k

)2

|ẋ1||ẋ2|
∫
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α(s1)
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(A.10)

There is a second contributions coming from the emission-absorption of an Â field. The
relevant vertices carry a minus sign in this case, as does the propagator. Moreover the trace
factor is NM2, being the Â field in the adjoint of SU(M). What remains of the computation
is left untouched, hence the full correction reads

I
(2)
fermion = I

(2)
F (A) + I

(2)
F (Â) =

=
i

2π
NM(N −M)

(
4π

k

)2

|ẋ1||ẋ2|
∫

ds1 ds2
ηαI (s2)η

I
α(s1)

|x1 − x2|
d
2
−1

(A.11)

and vanishes identically in ABJM where N = M .



96 Two-loops contributions to the Wilson loop

A.1.1 Double Scalar Exchange

In the expansion of the Wilson loop operator to second order there appears a double scalar
insertion which can be contracted with the kinetic term of the scalar Lagrangean

(
2π

k

)2 〈
|ẋ1||ẋ2|[M I

JCIC
J
](s1)[M̂

K
L C

L
CK ](s2)

〉
(A.12)

where the shorthand [M I
JCIC

J
](s) means that the scalar fieds and the matrix coupling are

inserted at the same point s. As for the gluon and fermion self energies there are two terms
of this kind corresponding to the two different orderings of the insertion points. The only
difference between the two is the trace factor, more precisely the ordering x1(s1) < x2(s2)
corresponds to the traces (over R−indices and matrix indices)

M I
J (CI)ibi(C

J
)bjjM̂

K
L (C

L
)bll(CK)kbkδ

L
I δ

J
Kδilδbiblδjkδbjbk = N2MTr[MM̂ ] (A.13)

while the opposite ordering yelds NM2Tr[MM̂ ]. The sum of the two contributions (A.12)
reads

NM

(
2π

k

)2

|ẋ1||ẋ2|
Γ
(
d
2
− 1
)2

4πd

∫
ds1ds2

1

|x1 − x2|2d−4
Tr[M(s1)M̂(s2)] (A.14)

A.2 Double Fermion Exchange

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure A.1: Two-loops diagrams involving fermion lines only. They inhere a group factor of N2M , but a
completely analogous set of diagrams with a NM2 factor and flipped propagators arise from the expansion
and gives, on planar contours, the same contribution. In the first row, diagrams where no line is exchanged
between the two sides are dipicted, these have R−charge = 1. On the second row lie single exchanges (f),
(g), (h), (i) and double exchange (j). They carry respectively R−charge cos(θ/2) and cos2(θ/2). It turns
out that only the last digram gives contributes to the Wilson loop as all other graphs cancel with each other.

In a first instance one could ask whether one loop fermion diagrams exponentiate, simply
yealding the two loop also to vanish. The answer is simple - No, they don’t. And the
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reason is likely as simple - Because there are no cross-ladders. Since fermion fields are in a
bifundamental representation, the trace of a correlator of any number of such fields requires
a an operator with indices îi to be followed by an opearator with indices îj and so forth.
Otherwise stated, the keen structure of the loop operator always places a ψ after a ψ and
viceversa, meaning that at two loops cross-ladder diagrams are not permitted. They arise
starting from three loops, which is however beyond our current interest.

Let us consider the so-called fermionic double exchange diagrams depicted in Figure A.2
(j) . They appear when considering the Wick contractions of the terms which are quartic
in the super-connection L. These terms are given by

(i)4L(τ1)L(τ2)L(τ3)L(τ4) =

=
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 A1A2 − 2π

k
νI1ψ̄

I
1ψL2ν̄

L
2 −i

√
2π
k
A1νL2ψ̄
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√
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√
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√
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=
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)2 (
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3
ψS4ν̄
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4
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1
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R
3
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)
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(A.15)

In the last line we have neglected all the contributions which are irrelevant for the
fermionic double exchange diagram. To begin with, we will evaluate the upper term only

〈Tr(νI1ψ̄
I
1ψL2ν̄

L
2 νR3ψ̄

R
3 ψS4ν̄

S
4 )〉0 =〈(νI1ψ̄I1)īi(ψL2ν̄

L
2 )̄ij(νR3ψ̄

R
3 )jl̄(ψS4ν̄

S
4 )l̄i〉 =

=− 〈(ψL2ν̄
L
2 )̄ij(νR3ψ̄

R
3 )jl̄(ψS4ν̄

S
4 )l̄i (νI1ψ̄

I
1)īi〉0,

(A.16)

and moreover we will only consider the Wick-contractions in (A.16) which yield propagators
connecting different edges. One has

− 〈(ψL2ν̄
L
2 )̄ij(νR3ψ̄

R
3 )jl̄(ψS4ν̄

S
4 )l̄i (νI1ψ̄

I
1)īi〉0. (A.17)

Then, we first determine the R−symmentry and color factor for these contraction. Since
all propagators are diagonal one immediately gets

(n̄2n3)(n̄4n1)δīl̄δjjδiiδl̄̄i = MN2(n̄2n3)(n̄4n1) (A.18)

The integrand is instead given by

− 〈(ψ2ν̄2)(ν3ψ̄3)(ψ4ν̄4)(ν1ψ̄1)〉0 =
Γ2(1/2− ǫ)

4π3−2ǫ(η3η̄2)(η1η̄4)
×

× [ẋ2
µ + ẋ3

µ] ∂xµ
2

(
1

(x2
23)

1/2−ǫ

)
[ẋ4

µ|ẋ1|+ ẋ1
µ|ẋ4|] ∂xµ

4

(
1

(x2
41)

1/2−ǫ

)
,

(A.19)

where we used the following rule for the Wick-contraction
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(ψ1ν̄1)(ν2ψ̄2) = − iΓ(1/2− ǫ)
2π3/2−ǫ(η1η̄2)

[ẋ1
µ + ẋ2

µ|ẋ1|] ∂xµ
1

(
1

(x2
12)

1/2−ǫ

)
. (A.20)

The integrand as a function of si with i = 1, . . . , 4 possesses factorized structure and it
can be organized as follows

Γ2(1/2− ǫ)
4π3−2ǫ(η3η̄2)(η1η̄4)

G(s2, s3)G(s4, s1) (A.21)

where G(si, sj) is a function which is antisymmetric in the exchange si ↔ sj and whose
explicit form is

G(si, sj) =

(
d

dsi
− d

dsj

)[
1

(s2
i + s2

j − 2sisj cosϕ)1/2−ǫ

]
≡
(
d

dsi
− d

dsj

)
H(si, sj), (A.22)

Next we shall split the integrand (A.21) in two pieces, by using the decomposition

G(s2, s3)G(s4, s1) = [G(s2, s3)G(s4, s1) +G(s2, s4)G(s3, s1)]
(A)

−G(s2, s4)G(s3, s1)
(B)

(A.23)

The contribution (A) is trivially symmetric when exchanging s3 and s4, but it also
symmetric when s1 ↔ s2. In fact

[G(s2, s3)G(s4, s1) +G(s2, s4)G(s3, s1)] = [G(s3, s2)G(s1, s4)+

+ G(s4, s2)G(s1, s3)] = [G(s1, s3)G(s4, s2) +G(s1, s4)G(s3, s2)] .
(A.24)

Then the path-ordered integral of (A) over the contour simply yields minus one half of
the square of the one-loop integral, namely

∫ L

0

ds1

∫ s1

0

ds2

∫ 0

−L
ds3

∫ s3

−L
ds4(A) = −1

2

(∫ L

0

ds1

∫ 0

−L
ds4G(s1, s4)

)2

(A.25)

Restoring all the R−symmetry and color factors, the contribution (A) to the double
exchange diagram can be rearranged as follows

− 1

2
MN2(n̄2n3)(n̄4n1)

Γ2(1/2− ǫ)
4π3−2ǫ(η3η̄2)(η1η̄4)
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=

=
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M

(
−N iΓ(1/2− ǫ)

2π3/2−ǫ(η1η̄4)
(n̄4n1)

∫ L

0

ds1

∫ 0

−L
ds4G(s1, s4)

)2

,

(A.26)
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where we used that (n̄2n3) = (n̄4n1) and (η3η̄2) = (η1η̄4). We can easily recognize that
this result is M/2 times the square of the loop result.

Iu = −iMNΓ(1/2− ǫ)
2π3/2−ǫ(η1η̄2)

(nL2n̄
L
1 )

∫ L

0

ds1

∫ 0

−L
ds2G(s1, s2). (A.27)

This is the first sign of exponentiation in our Wilson loop. We come now to discuss the
contribution (B). A part from an overall constant pre-factor we have to compute

−
∫ L

0

ds1

∫ s1

0

ds2

∫ 0

−L
ds3

∫ s3

−L
ds4G(s2, s4)G(s3, s1) =

=−
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∫ s1

0

ds2
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0

ds4

∫ s4

0

ds3G(s2,−s4)G(−s3, s1).

(A.28)

The singular behavior of the above integral can be extracted if we perform the following
sequence of changes of variables in the integrals: (a) s3 → s4x, (b) s2 → s1y, (c) s1 →
Lλz, s4 → Lλ(1− z). We end up with the following integral

(1− 2ǫ)24 cos4 ϕ

2
L4ǫ

∫

S

dλdz

λ1−4ǫ

∫ 1

0

dx

∫ 1

0

dy
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(x2(z − 1)2 − 2xz(z − 1) cosϕ+ z2)
3
2
−ǫ (y2z2 − 2yz(z − 1) cosϕ+ (z − 1)2)

3
2
−ǫ .

(A.29)

where the region of integration S is defined by the inequalities 0 ≤ λz ≤ 1 and 0 ≤
λ(1− z) ≤ 1 and it is displayed in fig. A.2. The region is clear symmetric around z = 1/2
and the two curved borders are respectively given by λ = 1/(1 − z) [0 ≤ z ≤ 1/2] and
λ = 1/z [1/2 ≤ z ≤ 1].

Figure A.2: Region of integration for λ and ζ

Then, using the symmetry of the integrand around z = 1/2, the integral (A.29) splits
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into two contributions
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(A.30)

The above procedure has allowed us to factor out the divergent contribution. We recognize
immediately that only the integral (A) possesses a divergence 1/ǫ, while the integral (B) is
finite as ǫ → 0. Since the deformed potential is the coefficient of the single pole in ǫ, we
focus our attention only on (A) and we set ǫ = 0 in the integrand

(A) = cos4 ϕ

2

L4ǫ

ǫ

∫ 1

0

dz

∫ 1

0

dx

∫ 1

0

dy×
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3
2 (y2z2 − 2yz(z − 1) cosϕ+ (z − 1)2)

3
2

(A.31)

Since the divergence is factorized out, the integral over x, y and z are finite and so we can
set ǫ = 0 in the integrand and we can perform the integration over x and y. We obtain

L4ǫ

ǫ
cos2 ϕ

2

∫ 1

0

dz
1

2(1− z)z cosϕ+ z2 + (1− z)2
(A.32)

This integral is reminiscent of the typical integral which appears in four dimension when
computing the cusp at one loop. In fact the single exchange diagram in 4 dimensions is
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given by
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ds1
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(A.33)
Thus the integral which yields the pole in ǫ takes the same form of (A.32) with ǫ′ = 2ǫ.

If we restore the color and R−symmetry factors, the fermionic double exchange diagram
possesses a 1/ǫ term given by

(
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(A.34)

The contribution coming from the lower diagonal block of (A.15) is now obtained by per-
forming exchange M ↔ N in (A.34). Therefore the total result for this diagram is

−
(

2π

k

)2
Γ2(1/2− ǫ)MN(N +M)

4π3−2ǫ

L4ǫ

4ǫ
cos2 θ
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2(1− z)z cosϕ+ z2 + (1− z)2
(A.35)

The above diagram is the only contribution whose R−symmetry factor is cos2 θ
2
. Next

we consider all the fermionic double exchange diagrams which are linear in cos θ
2
. They are

given in Figure A.2 (f) (g) (h) (i) and they simply correspond to different Wick contractions
of (A.15)

First we consider the contractions of (A.16) that yields the diagram (a):
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(A.36)

A part from an overall constant factor, the diagram (a) is equivalent compute the path-
ordered integral

∫ L

0

ds1

∫ 0

−L
ds2

∫ s2

−L
ds3

∫ s3

−L
ds4

(
d

ds4
− d

ds3
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1

(s3 − s4)1−2ǫ

]
×G(s2, s1), (A.37)
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where G(s2, s1) is defined through eq (A.22). We can now easily perform the integration
over s3 and s4 if ǫ > 1/2 and we obtain

− 1

ǫ

∫ L

0

ds1

∫ 0

−L
ds2(L+ s2)

2ǫ ×G(s2, s1). (A.38)

Notice that the digram (d) originates from the same contractions, but the region of integra-
tion is different
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]
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(A.39)

In this case the specific form of the integrand suggests to perform first the integration over
s1 and s2 . We get

− 1

ǫ

∫ L

0

ds3

∫ 0
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ds4(L− s3)

2ǫ ×G(s4, s3). (A.40)

If we now perform the change of variable s3 7→ −s2 and s4 7→ −s1, we can recast the integral
as follows

− 1

ǫ
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ds1
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∫ 0

−L
ds2(L+ s2)

2ǫ ×G(s2, s1), (A.41)

i.e. it doubles the contribution (a). If we restore the constant factor in front of the integral
we get

(a) + (d) = − 1

2ǫ

(
2π

k

)2
NM2Γ2(1/2− ǫ)

4π3−2ǫ

cos θ
2

cos ϕ
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Next we consider the Wick-contractions which give origin to the diagrams (b) and (c)
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As usual we can get rid of two integrations and we are left with
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(A.44)
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The digram (c) simply doubles the previous results. Restoring all the constant coefficient
we find

(b) + (c) = − 1

2ǫ

(
2π
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)2
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4π3−2ǫ
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The lower diagonal block is again obtained by exchanging M ↔ N in the previous results.
Therefore the total results is

− 1
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(
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)2
MN(M+N)Γ2(1/2− ǫ)

4π3−2ǫ

cos θ
2

cos ϕ
2
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−L
ds2[(L+ s2)

2ǫ + (−s2)
2ǫ]G(s2, s1)

(A.46)

A.3 Fermion-Fermion-Gauge Field vertex

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (l) (m) (n)

Figure A.3: There are a total of 12 graphs for each gluon field contributing to the expectation
value of the fermion-gluon vertex. Above, graphs relative to the gluon A are dipicted
and organized according to their integration ranges and orientation of the fermionic lines.
Contributions coming from the Â field are obtained reversing all fermionic lines.

Finally we consider the diagrams which are due to the minimal coupling between the
fermions and the gauge fields present in the Lagrangian. They appear when considering the
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cubic term in the super-connection L:
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2 Â2


×

×


 A3 −i

√
2π
k νL3ψ̄

L
3

−i
√

2π
k ψL3ν̄

L
3 Â3
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k A1νL2ψ̄

I
2 − i

√
2π
k νI1ψ̄

I
1Â2

−i
√

2π
k ψI1ν̄

I
1A2 − i

√
2π
k Â1ψL2ν̄

L
2 Â1Â2 − 2π

k ψI1ν̄
I
1νL2ψ̄

L
2


×

×


 A3 −i

√
2π
k νL3ψ̄

L
3

−i
√

2π
k ψL3ν̄

L
3 Â3




 =

=
2πi

k

[
νI1ψ̄

I
1ψL2ν̄

L
2 A3 +A1νL2ψ̄

I
2ψL3ν̄

L
3 + νI1ψ̄

I
1Â2ψL3ν̄

L
3

]
+

+
2πi

k

[
ψI1ν̄

I
1A2νL3ψ̄

L
3 + Â1ψL2ν̄

L
2 νL3ψ̄

L
3 + ψI1ν̄

I
1νL2ψ̄

L
2 Â3

]
+ · · ·

=
2πi

k

[
ψI1ν̄

I
1A2νL3ψ̄

L
3 + νI1ψ̄

I
1ψL2ν̄

L
2 A3 +A1νL2ψ̄

I
2ψL3ν̄

L
3

]

(S1)

+

+
2πi

k

[
Â1ψL2ν̄

L
2 νL3ψ̄

L
3 + ψI1ν̄

I
1νL2ψ̄

L
2 Â3 + νI1ψ̄

I
1Â2ψL3ν̄

L
3

]

(S2)

+ · · ·

(A.47)

where we have defined

A = Aµẋ
µ − i2π

k
|ẋ|M I

J CIC̄
J and Â = Âµẋ

µ − i2π
k
|ẋ|M̂ I

J C̄JCI . (A.48)

The dots in (A.47) stand for the terms which do not contribute to this family of diagrams.
Again the relevant contributions splits into the sum of two different terms: S1 and S2. We
focus our attention on the evaluation of S1. Since the ABJM Lagrangian contain a minimal
coupling of the form

− Sint =

∫
d3wTr

(
ψ̄LγµÂψL − ψ̄LγµψLAµ

)
, (A.49)

the value of S1 is provided by the following correlator in the free theory

−2πi

k

∫
d3w〈Tr

[
ψI1ν̄

I
1A2νL3ψ̄

L
3

(a)

+ νI1ψ̄
I
1ψL2ν̄

L
2 A3

(b)

+A1νL2ψ̄
I
2ψL3ν̄

L
3

(c)

]
Tr[ψ̄Mw γ

µψMwAµw]〉0

(A.50)
For convenience we separate the evaluation of (A.50) in three steps. The monomial (a)
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yields the following Wick-contractions

(a) =

∫
d3−2ǫw〈Tr[ψI1ν̄

I
1A2νL3ψ̄

L
3 ]Tr[ψ̄Mw γ

µψMwAµw]〉0 =

=

∫
d3−2ǫw〈(ψI1ν̄I1 )̄ii(A2)il(νL3ψ̄

L
3 )l̄i(ψ̄

M
w )rs̄γ

µ(ψMw)s̄m(Aµw)mr〉0 =

=(γ) β
α

∫
d3−2ǫw〈(ψI1ν̄I1 )̄ii(ψ̄

M
w )αrs̄〉0〈(A2)il(Aµw)mr〉0〈(νL3ψ̄

L
3 )l̄i(ψMw)s̄mβ〉0 =

=(γµ) β
α δir δ̄is̄δirδlmδlmδ̄is̄

∫
d3−2ǫw〈(ψ1ν̄

L
1 )(ψ̄w)α〉0〈(A2)(Aµw)〉0〈(ψw)β(νL3ψ̄3)〉0 =

=MN2(γµ) β
α

∫
d3−2ǫw〈(ν̄L1 ψ1)(ψ̄w)α〉0〈(A2)(Aµw)〉0〈(ψw)β(ψ̄3νL3)〉0 =

=− 2πi

k
MN2ν̄L1 γ

ργµγ
σνL3ǫ

νµλẋ2νΓρλσ(x1, x2, x3),

(A.51)

where we have introduced the short-hand notation

Γρλσ(x1, x2, x3) =

(
Γ(1/2− ǫ)

4π3/2−ǫ

)3

∂xρ
1
∂xλ

2
∂xσ

3

∫
d3−2ǫw

(x2
1w)1/2−ǫ(x2

2w)1/2−ǫ(x2
3w)1/2−ǫ (A.52)

and we have used the explicit form of the gauge-field propagator

〈Aµ(x1)Aν(x2)〉0 =
2π

k
ǫµνρ

∫
d2ωp

(2π)2ω
eip(x1−x2) p

ρ

p2
= −2πi

k
ǫµνρ∂

xρ
1

(
Γ(1/2− ǫ)
4π3/2−ǫ

1

(x2
12)

1/2−ǫ

)
.

(A.53)
Next we consider the other two contributions [(b) and (c)]. Their expansion in terms of
Wick-contractions is similar and one obtains the following results

(b) =

∫
d3−2ǫw〈Tr

[
νI1ψ̄

I
1ψL2ν̄

L
2A3

]
Tr[ψ̄Mw γ

µψMwAµw]〉0 =

=(γµ) β
α

∫
d3−2ǫw〈(νI1ψ̄I1)il̄(ψL2ν̄

L
2 )l̄m(A3)mi(ψ̄

M
w )αrs̄(ψMw)s̄nβ(Aµw)nr〉0 =

=− (γµ) β
α

∫
d3−2ǫw〈(ψMw)s̄nβ(νI1ψ̄

I
1)il̄〉0〈(ψL2ν̄

L
2 )l̄m(ψ̄Mw )αrs̄〉0〈(A3)mi(Aµw)nr〉0 =

=− (γµ) β
α δs̄l̄δniδl̄s̄δmrδinδmr

∫
d3−2ǫw〈(ψw)β(ψ̄1νI1)〉0〈(ν̄I2ψ2)(ψ̄w)α〉0〈(A3)(Aµw)〉0 =

=
2πi

k
MN2ν̄I2γ

ργµγ
σνI1Γρλσ(x2, x3, x1)ǫ

νµλẋ3ν =

=
2πi

k
MN2ν̄I2γ

λγµγ
ρνI1Γρλσ(x1, x2, x3)ǫ

νµσẋ3ν (A.54)



106 Two-loops contributions to the Wilson loop

(c) =

∫
d3−2ǫw〈Tr

[
A1νL2ψ̄

I
2ψL3ν̄

L
3

]
Tr[ψ̄Mw γ

µψMwAµw]〉0 =

=(γµ) β
α

∫
d3−2ǫw〈(A1)il(νL2ψ̄

I
2)lm̄(ψL3ν̄

L
3 )m̄i(ψ̄

M
w )αns̄(ψMw)βs̄j(Aµw)jn〉0 =

=− (γµ) β
α

∫
d3−2ǫw〈(ψMw)βs̄j(ψ̄

I
2νL2)lm̄〉0〈(ν̄L3 ψL3)m̄i(ψ̄

M
w )αns̄〉0〈(A1)il(Aµw)jn〉0 =

=− (γµ) β
α δjlδs̄m̄δm̄s̄δinδljδin

∫
d3−2ǫw〈(ψw)β(ψ̄2νI2)〉0〈(ν̄I3ψ3)(ψ̄w)α〉0〈(A1)(Aµw)〉0 =

=
2πi

k
MN2ν̄I3γ

ργµγ
σνI2ǫ

νµλẋ1νΓρλσ(x3, x1, x2) =

=
2πi

k
MN2ν̄I3γ

σγµγ
λνI2ǫ

νµρẋ1νΓρλσ(x1, x2, x3) (A.55)

Summing up the different contributions, we obtain the following compact expression for S1

S1 =−
(

2π

k

)2

MN2

∮

s3<s2<s1

ds1ds2ds3 Γρλσ(x1, x2, x3)×

×
[
ν̄L1 γ

ργµγ
σνL3ǫ

νµλẋ2ν − ν̄I2γλγµγρνI1ǫνµσẋ3ν − ν̄I3γσγµγλνI2ǫνµρẋ1ν

] (A.56)

In the following we shall focus on the diagrams which are proportional to cos θ
2
, namely

those where the fermions are attached to different edges. They are represented in Figure
A.3 (b) (f) (m) (n) and they correspond to the following integrals

(a) =

(
2π

k

)2

MN2

∫ L

0

ds1

∫ 0

−L
ds2

∫ s2

−L
ds3 ν̄

I
2γ

λγµγ
ρνI1ǫ

νµσẋ3νΓρλσ(x1, x2, x3)

(b) =−
(

2π

k

)2

MN2

∫ L

0

ds1

∫ 0

−L
ds2

∫ s2

−L
ds3 ν̄

L
1 γ

ργµγ
σνL3ǫ

νµλẋ2νΓρλσ(x1, x2, x3)

(c) =−
(

2π

k

)2

MN2

∫ L

0

ds1

∫ s1

0

ds2

∫ 0

−L
ds3 ν̄

L
1 γ

ργµγ
σνL3ǫ

νµλẋ2νΓρλσ(x1, x2, x3)

(d) =

(
2π

k

)2

MN2

∫ L

0

ds1

∫ s1

0

ds2

∫ 0

−L
ds3 ν̄

I
3γ

σγµγ
λνI2ǫ

νµρẋ1νΓρλσ(x1, x2, x3)

(A.57)

Notice that if we perform the change of variable s2 7→ s3 and s3 7→ s2 in the integral (a)
and we recall that η̄2 = η̄3 and ẋ2 = ẋ3 in this case, we find

ν̄I2γ
λγµγ

ρνI1ǫ
νµσẋ3νΓρλσ(x1, x2, x3) 7→ ν̄I3γ

λγµγ
ρνI1ǫ

νµσẋ2νΓρλσ(x1, x3, x2) =

= ν̄I3γ
λγµγ

ρνI1ǫ
νµσẋ2νΓρσλ(x1, x2, x3) = ν̄I3γ

σγµγ
ρνI1ǫ

νµλẋ2νΓρλσ(x1, x2, x3)
(A.58)

Let us now compare
T1 = ν̄I3γ

σγµγ
ρνI1ǫ

νµλẋ2νΓρλσ(x1, x2, x3)

with the integrand
T2 = ν̄L1 γ

ργµγ
σνL3ǫ

νµλẋ2νΓρλσ(x1, x2, x3)
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which instead appear in (b). Exploiting the identity

γργµγσ = δρµγσ + γρµγσ = δρµγσ + δµσγρ − δρσγµ + γρµσ, (A.59)

we can rewrite T1 as follows

T1 =ν̄I3γ
σγµγ

ρνI1ǫ
νµλẋ2νΓρλσ(x1, x2, x3) =

=[ν̄I3γ
ρνI1δ

µσ + ν̄I3γ
σνI1δ

µρ − ν̄I3γµνI1δρσ + ν̄I3γ
σµρνI1]ǫ

νµλẋ2νΓρλσ(x1, x2, x3) =

=[ν̄I3γ
σµρνI1 − ν̄I3γµνI1δρσ]ǫνµλẋ2νΓρλσ(x1, x2, x3) (A.60)

In the final result we have dropped all the terms which vanishes since the loop is planar.
We consider now T2

T2 =ν̄L1 γ
ργµγ

σνL3ǫ
νµλẋ2νΓρλσ(x1, x2, x3) =

=[ν̄L1 γ
σνL3δ

µρ + ν̄L1 γ
ρνL3δ

µσ − ν̄L1 γµνL3δ
ρσ + ν̄L1 γ

ρµσνL3]ǫ
νµλẋ2νΓρλσ(x1, x2, x3)

=[ν̄L1 γ
ρµσνL3 − ν̄L1 γµνL3δ

ρσ]ǫνµλẋ2νΓρλσ(x1, x2, x3) (A.61)

For our contour ν̄I3γ
σµρνI1 = −ν̄L1 γσµρνL3 and

ν̄I3γµνI1δ
ρσǫνµλẋ2νΓρλσ(x1, x2, x3) = −ν̄L1 γµνL3δ

ρσǫνµλẋ2νΓρλσ(x1, x2, x3).

The origin of the last identity can be easily understood if we recall that the component of
orthogonal to plane1 of the vector ν̄Ii γ

λνIj is anti-symmetric in the exchange (i, j). Therefore
T1 = −T2, which in turn implies

(a) + (b) = −
(

2π

k

)2

MN2

∫ L

0

ds1

∫ 0

−L
ds2

∫ 0

−L
ds3 ν̄

L
1 γ

ργµγ
σνL3ǫ

νµλẋ2νΓρλσ(x1, x2, x3). (A.62)

The same analysis can be applied to the diagrams (c) and (d) and we find that

(c) + (d) = −
(

2π

k

)2

MN2

∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3 ν̄

L
1 γ

ργµγ
σνL3ǫ

νµλẋ2νΓρλσ(x1, x2, x3). (A.63)

Now we focus our attention on the formally identical integrand2

ν̄L1 γ
ργµγ

σνL3ǫ
νµλẋ2νΓρλσ(x1, x2, x3) = [ν̄L1 γ

ρµσνL3 − ν̄L1 γµνL3δ
ρσ]ǫνµλẋ2νΓρλσ(x1, x2, x3)

(A.64)
First we separate the R−symmetry factor and perform some Diracology

(n̄1 · n3)[ν̄1γ
ρµσν3 − ν̄1γµν3δ

ρσ]ǫνµλẋ2νΓρλσ(x1, x2, x3) =

=ζ(n̄1 · n3)

[
ν̄1ν3ǫ

ρµσ +
2

(η1η̄3)
ǫαµβ ẋ3

αẋ1
βδρσ

]
ǫνµλẋ2νΓρλσ(x1, x2, x3) =

=ζ(n̄1 · n3)

[
(ν̄1ν3)ẋ

ν
2(Γνλλ − Γλλν) +

2

(η1η̄3)
[(ẋ3 · ẋ2)ẋ

ν
1 − (ẋ1 · ẋ2)ẋ

ν
3]Γλνλ

] (A.65)

1This is the only relevant component in the above contraction.
2Recall that x2 is different in the two integrals: in the former it is parallel to x3, while in the latter it is

collinear with x1.
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where we used γρµσ = ζǫρµσI and

(ν3γµν̄1) =− 2

(η1η̄3)

[
˙x1µ|ẋ3|+ ˙x3µ|ẋ1|+ ζǫλµν ẋ3

λẋ1
ν
]
. (A.66)

Exploiting these result the integrals (a) + (b) and (c) + (d) can be written as

(a) + (b) =−
(

2π

k

)2

MN2ζ(n̄1 · n3)

∫ L

0

ds1

∫ 0

−L
ds2

∫ 0

−L
ds3

[
(ν̄1ν3)ẋ

ν
3(Γνλλ − Γλλν) +

2

(η1η̄3)
[ẋν1 − (ẋ1 · ẋ3)ẋ

ν
3]Γλνλ

]
;

(c) + (d) =−
(

2π

k

)2

MN2ζ(n̄1 · n3)

∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3

[
(ν̄1ν3)ẋ

ν
1(Γνλλ − Γλλν) +

2

(η1η̄3)
[(ẋ3 · ẋ1)ẋ

ν
1 − ẋν3]Γλνλ

]

(A.67)

Actually one can also relate the integral (c) + (d) to (a) + (b) through a finite chain of
transformations. In fact if we explicitly perform the transformation si 7→ −si [xi 7→ −xi
and ẋi 7→ ẋi] and subsequently we exchange s1 ↔ s3, we find that

(a) + (b) = (c) + (d). (A.68)

We are left with the following global integral to compute

(a) + (b) + (c) + (d) =− 2

(
2π

k

)2

MN2ζ(n̄1 · n3)

∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3

[
(ν̄1ν3)ẋ

ν
1(Γνλλ − Γλλν) +

2

(η1η̄3)
[(ẋ3 · ẋ1)ẋ

ν
1 − ẋν3]Γλνλ

] (A.69)

We shall now reorganize the integrand in a more convenient way

[
(ν̄1ν3)ẋ

ν
1

(
Γνλλ − Γλλν +

2(1 + (ẋ1 · ẋ3))

(ν̄1ν3)(η1η̄3)
Γλνλ

)
− 2

(η1η̄3)
(ẋν1 + ẋν3)Γλνλ

]
=

=

[
(ν̄1ν3)ẋ

ν
1(Γνλλ − Γλλν + Γλνλ)

(R)

− 2

(η1η̄3)
(ẋν1 + ẋν3)Γλνλ

(S)

] (A.70)

where we used that four our contour

2(1 + (ẋ1 · ẋ3))

(ν̄1ν3)(η1η̄3)
=

2(1 + (ẋ1 · ẋ3))

(ν̄1ν3)(ν1ν̄3)
= −2(1 + (ẋ1 · ẋ3))

(η3η̄1)(η1η̄3)
= 1. (A.71)

Exploiting the representation of the contractions of the 3-point function as a derivate of a
scalar function Φi,jk discussed in appendix A, the combination ẋν1(Γνλλ − Γλλν + Γλνλ) can
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be rewritten as a sum of total derivatives

(R) =ẋν1(Γνλλ − Γλλν + Γλνλ) = ẋν1(∂xν
1
Φ1,23 − ∂xν

3
Φ3,12 + ∂xν

2
Φ2,13) =

=ẋν1[∂xν
1
(Φ1,23 + Φ3,12) + ∂xν

2
(Φ2,13 + Φ3,12)] =

=
d

ds1
(Φ1,23 + Φ3,12) +

d

ds2
(Φ2,13 + Φ3,12) =

=

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2 [
d

ds1

(
1

(x2
12)

1/2−ǫ(x2
23)

1/2−ǫ

)
+ 1↔ 2

]
=

=

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2 [
d

ds1

(
1

((s1 − s2)2)1/2−ǫH(s2, s3)

)
+ 1↔ 2

]
.

(A.72)

Since the region of integration is symmetric in the exchange s1 ↔ s2, the two terms in
(A.72) gives the same result once integrated

− 2

(
2π

k

)2

MN2ζ(n̄1 · n3)(ν̄1ν3)

∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3(R) =

= −4

(
2π

k

)2

MN2ζ(n̄1 · n3)(ν̄1ν3)

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2 ∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3

d

ds1

(
1

((s1 − s2)2)1/2−ǫH(s2, s3)

)
=

= −4

(
2π

k

)2

MN2ζ(n̄1 · n3)(ν̄1ν3)

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2 ∫ L

0

ds2

∫ 0

−L
ds3

(
1

(L− s2)1−2ǫ
− 1

s1−2ǫ
2

)
H(s2, s3) =

= −4

(
2π

k

)2

MN2ζ(n̄1 · n3)(ν̄1ν3)

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2 ∫ L

0

ds1

∫ 0

−L
ds2

(
1

(L+ s2)1−2ǫ
− 1

(−s2)1−2ǫ

)
H(s2, s1) =

= − i

2ǫ

(
2π

k

)2

MN2ζ cos
θ

2
cos

ϕ

2

Γ2(1/2− ǫ)
4π3−2ǫ

∫ L

0

ds1

∫ 0

−L
ds2

d

ds2

(
(L+ s2)

2ǫ + (−s2)
2ǫ
)
H(s2, s1)

(A.73)

Now we add the similar contribution coming from the trace S2 in (A.47) and summarize the
whole result as follows

− iζ
2ǫ

(
2π

k

)2

cos
θ

2
cos

ϕ

2

MN(M +N)Γ2(1
2
− ǫ)

4π3−2ǫ

∫ L

0

ds1

∫ 0

−L
ds2H(s2, s1)

d

ds2

[
(L+ s2)

2ǫ + (−s2)
2ǫ
]

(A.74)
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We analyze the contribution (S) which contains a contribution which is not, at least
apparently, a sum of total derivative. We can rearrange this term as follows

ẋρ3Γλρλ =− 1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2

ẋ3 · ∂x2

[
1

(x2
12)

1/2−ǫ(x2
23)

1/2−ǫ −
1

(x2
13)

1/2−ǫ(x2
12)

1/2−ǫ −
1

(x2
13)

1/2−ǫ(x2
23)

1/2−ǫ

]
=

=− 1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2

×

×
[
− 1

(x2
12)

1/2−ǫ
d

ds3

(
1

(x2
23)

1/2−ǫ

)
− (ẋ3 · ẋ1)

d

ds1

(
1

(x2
12)

1/2−ǫ

)
1

(x2
23)

1/2−ǫ−

− (ẋ3 · ẋ1)
1

(x2
13)

1/2−ǫ
d

ds2

(
1

(x2
12)

1/2−ǫ

)
+

1

(x2
13)

1/2−ǫ
d

ds3

(
1

(x2
23)

1/2−ǫ

)]
(A.75)

where we have used the following identity

ẋ3 · ∂x2

(
1

(x2
12)

1/2−ǫ

)
=(1− 2ǫ)

ẋ3 · (x1 − x2)

(x2
12)

3/2−ǫ = (1− 2ǫ)(ẋ3 · ẋ1)
(s1 − s2)

(x2
12)

3/2−ǫ =

=(ẋ3 · ẋ1)
d

ds2

(
1

(x2
12)

1/2−ǫ

)
= −(ẋ3 · ẋ1)

d

ds1

(
1

(x2
12)

1/2−ǫ

)
,

(A.76)

which is a consequence of the fact that x1 and x2 lays ion the same edge in (A.69). Next we
consider the combination ẋλ1Γρλρ. Since ẋ1 = ẋ2 in (A.69), this combination can be rewritten
as total derivative of Φ2,13 with respect to s2. After a small manipulation, it takes the form

ẋρ1Γλρλ =− 1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2

×

×
[

1

(x2
12)

1/2−ǫ
d

ds2

(
1

(x2
23)

1/2−ǫ

)
+

d

ds2

(
1

(x2
12)

1/2−ǫ

)
1

(x2
23)

1/2−ǫ−

− 1

(x2
13)

1/2−ǫ
d

ds2

(
1

(x2
12)

1/2−ǫ

)
− 1

(x2
13)

1/2−ǫ
d

ds2

(
1

(x2
23)

1/2−ǫ

)]
=

=− 1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2

×

×
[

1

(x2
12)

1/2−ǫ
d

ds2

(
1

(x2
23)

1/2−ǫ

)
− d

ds1

(
1

(x2
12)

1/2−ǫ

)
1

(x2
23)

1/2−ǫ−

− 1

(x2
13)

1/2−ǫ
d

ds2

(
1

(x2
12)

1/2−ǫ

)
− 1

(x2
13)

1/2−ǫ
d

ds2

(
1

(x2
23)

1/2−ǫ

)]
. (A.77)
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Combining the two contributions we get

(ẋρ1 + ẋρ3)Γλρλ =− 1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2

×

×
[
G(s2, s3)

(x2
12)

1/2−ǫ − [1 + (ẋ3 · ẋ1)]

[
d

ds1

(
1

(x2
12)

1/2−ǫ

)
1

(x2
23)

1/2−ǫ+

+
1

(x2
13)

1/2−ǫ
d

ds2

(
1

(x2
12)

1/2−ǫ

)]
+
G(s3, s2)

(x2
13)

1/2−ǫ

]
. (A.78)

We first examine the integral of the term proportional to [1 + (ẋ3 · ẋ1)]

−2[1 + (ẋ3 · ẋ1)]

(η1η̄3)

1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2 [
d

ds1

(
1

(x2
12)

1/2−ǫ

)
1

(x2
23)

1/2−ǫ + 1↔ 2

]

The overall coefficient dependent on the circuit is

− 2
[1 + (ẋ3 · ẋ1)]

η1η̄3
=
η1η̄3η3η̄1

η1η̄3
= η3η̄1 = −ν̄1ν3 (A.79)

Then the integrand contains two terms which yields the same result, once integrated, because
of the symmetry 1↔ 2. We are left with the following quantity to compute

− (ν̄1ν3)

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2 ∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3

d

ds1

(
1

(x2
12)

1/2−ǫ

)
1

(x2
23)

1/2−ǫ =

=− (ν̄1ν3)

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2 ∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3

d

ds1

[
1

((s1 − s2)2)1/2−ǫH(s2, s3)

]
,

(A.80)

which is the same integral which appear in the (R) contribution (A.72).
The remaining quantity to compute is

− 1

η1η̄3

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2 ∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3

[
1

(x2
12)

1/2−ǫ −
1

(x2
13)

1/2−ǫ

]
G(s2, s3) (A.81)

The three integral above are given by:
(I)

∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3H(s1, s3)

d

ds3
H(s2, s3) =

1

2

∫ 0

−L
ds3

d

ds3

(∫ L

0

dsH(s, s3)

)2

=

=
1

2

[(∫ L

0

dsH(s, 0)

)2

−
(∫ L

0

dsH(s,−L)

)2
]

=
1

2

[
L4ǫ

4ǫ2
−
(∫ L

0

dsH(s,−L)

)2
]
.

(A.82)

(II)

−
∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3H(s1, s3)

d

ds2
H(s2, s3) =

=−
∫ L

0

ds1

∫ 0

−L
ds3H(s1, s3)[H(L, s3)−H(0, s3)]

(A.83)
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(III)

∫ L

0

ds1

∫ L

0

ds2

∫ 0

−L
ds3

1

((s1 − s2)2)1/2−ǫG(s2, s3) =

=
1

2ǫ

∫ L

0

ds2

∫ 0

−L
ds3[(L− s2)

2ǫ + s2
2ǫ]G(s2, s3)

(A.84)
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In the following we shall prove some useful identities for manipulating an integrand which
contain the three point function. To begin with, we shall notice that the scalar Green
function can be cast as follows

G(x1, x2) =

(
Γ(1/2− ǫ)

4π3/2−ǫ
1

(x2
12)

1/2−ǫ

)
=

∫
d3−2ǫp

(2π)3−2ǫ

eip(x1−x2)

p2
. (A.1)

Then we can easily evaluate the d’Alembertian of G(x1, x2),

�x1

(
Γ(1/2− ǫ)

4π3/2−ǫ
1

(x2
12)

1/2−ǫ

)
= −

∫
d3−2ǫp

(2π)3−2ǫ
eip(x1−x2) = −δ3−2ǫ(x1 − x2). (A.2)

Next consider the 3−point function Γλµν(x1, x2, x2). It can be written as a multiple gradient
of a scalar function, namely Γλµν(x1, x2, x2) = ∂xλ

1
∂xµ

2
∂xν

3
Φ where

Φ =

(
Γ(1/2− ǫ)

4π3/2−ǫ

)3 ∫
d3−2ǫw

(x2
1w)1/2−ǫ(x2

2w)1/2−ǫ(x2
3w)1/2−ǫ . (A.3)

Moreover Φ is a translational invariant function, i.e. (∂xλ
1
+ ∂xλ

2
+ ∂xλ

3
)Φ = 0. With the help

of this representation we can determine the different contractions of the vertex function Γ,
which appear in (A.65), in terms of the derivatives of scalar propagators

Γλλρ =∂xρ
3
(∂x1 · ∂x2)Φ =

1

2
∂xρ

3
[(∂x1 + ∂x2) · (∂x1 + ∂x2)− ∂x1 · ∂x1 − ∂x2 · ∂x2 ]Φ =

=
1

2
∂xρ

3
[�x3 −�x1 −�x2 ]Φ = −1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2

∂xρ
3
×

×
[

1

(x2
13)

1/2−ǫ(x2
23)

1/2−ǫ −
1

(x2
13)

1/2−ǫ(x2
12)

1/2−ǫ −
1

(x2
12)

1/2−ǫ(x2
23)

1/2−ǫ

]
=

=∂xρ
3
Φ3,12, (A.4)

Γλρλ =
1

2
∂xρ

2
[�x2 −�x1 −�x3 ]Φ = −1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2

∂xρ
2
×

×
[

1

(x2
12)

1/2−ǫ(x2
23)

1/2−ǫ −
1

(x2
13)

1/2−ǫ(x2
12)

1/2−ǫ −
1

(x2
13)

1/2−ǫ(x2
23)

1/2−ǫ

]
=

=∂xρ
2
Φ2,13, (A.5)

Γρλλ =
1

2
∂xρ

1
[�x1 −�x2 −�x3 ]Φ = −1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2

∂xρ
1
×

×
[

1

(x2
12)

1/2−ǫ(x2
13)

1/2−ǫ −
1

(x2
23)

1/2−ǫ(x2
12)

1/2−ǫ −
1

(x2
13)

1/2−ǫ(x2
23)

1/2−ǫ

]
=

=∂xρ
1
Φ1,23, (A.6)
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where we found convenient to introduce a short-hand notation

Φi,jk =− 1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2
[

1

(x2
ij)

1/2−ǫ(x2
ik)

1/2−ǫ −
1

(x2
ij)

1/2−ǫ(x2
kj)

1/2−ǫ−

− 1

(x2
ik)

1/2−ǫ(x2
jk)

1/2−ǫ

]
.

(A.7)

It will be also useful to consider the coincidence limit of Φi,jk. For ǫ > 1/2 they are finite
and they are given by

Φi,ik =
1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2
1

(x2
ik)

1−2ǫ
,

Φi,jj =− 1

2

(
Γ(1/2− ǫ)

4π3/2−ǫ

)2
1

(x2
ij)

1−2ǫ
.

(A.8)



APPENDIX A

M2−branes/Type IIA/N = 6 SCS for Dummies

A.1 Effective action for M2-branes in AdS4 × C
4/Zk

Recently, a super Chern-Simons theory with N = 8 supersymmetry [186] [43] and a three-
algebra structure [187] was related to the world-volume theory of M2−branes when the CS
level k equated 1, 2. [188] [189]. On the gauge theory side there is no viable ’t Hooft limit
and this theory, known as BL(G)1, turns out to be always strongly coupled. This motivated
the work of [36], that provided a class of brane constructions which in the IR are thought
to flow to superconformal N = 6 SCS theory at level k. Moreover for k = 1, 2 the super-
symmetry of these theories get enhanced and the N = 8 BLG is recovered.

Type IIB D3/NS5−brane constructions that produce three-dimensional theories with
U(N) CS terms were already known since [190] [191], but they have at most N = 3 super-
symmetry. The construction of [36] generalises the latter, introducing a mass deformation,
to Yang-Mills-Chern-Simons quiver theories with gauge group U(N)k ×U(N)−k, where k is
the CS level. Uplifting to M−theory through a T−duality, one ends up with N M2−branes
extending in AdS4 and probing the C4/Zk orbifold singularity at the intersection of two
Kaluza-Klein monopoles, where the supersymmetry gets enhanced to N = 6. A careful
analysis of the moduli space of this this theory hints to a low-energy RG flow to the su-
perconformal N = 6 CS-matter theory (A.2) with gauge group U(N)k × U(N)−k. This is
actually a class of theories labelled by two integers N and k. They admit a large N (planar)
limit in which they are strongly coupled for λ = N

k
>> 1 and weakly coupled for λ ≪ 1.

Moreover, for k →∞, the Zk orbifold shrinks a cicle in C4 ∼ S1×CP 3, and one is left with
type IIA superstrings on AdS4 × CP 3. The string coupling constant and tension are given

1Some authors prefer the caption BL, stating that the three-algebra formulation of the N = 8 SCS
Lagrangean does not play a key role in the theory. However, the acronym BLG is more frequent in the
litterature.
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by

gs ∼
(
N

k5

)1/4

=
λ5/4

N
,

R2

α′ = 4π
√

2λ (A.1)

where R is the radius of CP 3, which equals twice as much the radius of AdS4, so that
these backgrounds do not really look four-dimensional. The M−theory/ABJM duality
holds for any value of the coupling; the string theory picture becomes effective only in the
k5 >> N regime where M2 branes wrapping S1 become well approximated by weakly coupled
strings. In the opposite case N >> k5 one has strongly coupled string theory, which is indeed
M−theory. So, the N = 6 SCS theory in the weakly coupled regime and in the ’t Hooft
limit is also conjectured to be dual to strongly coupled type IIA strings on AdS4 × CP 3.
This constitutes a further example of AdS/CFT duality.

The relation above can be generalised to SCS theory with gauge group U(N)k×U(M)−k
and N = 6 supersymmetry [37] and the theory of N M2−branes plus N −M fractional
M2’s and a nonvanishing B−field flux. Also, orbifold projection of the (U(N)×U(N))n kind
have been studied and conjectured to be dual to certain AdS4 × C

4/(Zn × Zk) M−theory
backgrounds [115].

A.2 Chern-Simons-matter theories in three dimensions

A.2.1 Lagrangean of N = 6 ABJ(M)

The Lagrangean of N = 6 superconformal Chern-Simons-matter theory in 3 dimensions
[37] describes two CS gauge fields (Aµ)ij and (Âµ)bibj in the adjoint of U(N) and U(M)

gauge groups respectively, coupled to bifundamental scalars (CI)ibi, (C
I
)bii and fermions

(ψIα)bii, (ψ
α

I )ibi in a supersymmetric fashion. In euclidean spacetime it reads:

SABJ = SCS(k) + SCS(−k) + Sgfix + Smatter (B.2)

where

SCS(k) = −i
k

4π

∫
d3x ǫµνρTr(Aµ∂νAρ +

2

3
AµAνAρ)

Sgfix =
k

4π

∫
d3x

[
1

α
Tr(∂µA

µ)2 + Tr(∂µcD
µc)− 1

α
Tr(∂µÂ

µ)2 − Tr(∂µĉD
µĉ)

]

Smatter =

∫
d3x

[
Tr(DµCID

µC
I
) + iTr(ψI 6DψI)

]
+ Sint

The covariant gauge fixing action involves two sets of ghosts (c, c) and (ĉ, ĉ), they have a
crucial role in the cancellation of gauge field loops [184]. The interacting Lagrangean in Sint

is a sextic-order scalar potential plus scalar-fermion Yukawa couplings. It is better written
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in terms of N = 2 superspace variables while it assumes a quite cumbersome appearence in
components (see [36] or [115] for the more general case). On the other hand these couplings
do not enter before four loops in the weak-coupling expansion of the Wilson loop, so we skip
them on the easy street.

Some remarks are worth once and for all. Lower case latin indices belong to a vector
N representation of the gauge group U(N) or SU(N), analogously lower case hatted latin
indices belong to a M of U(M) or SU(M). Throughout the paper we avoid using indices in

the adjoint and keep the double index notation for clarity. Thus (Aµ)ij and (Âµ)bibj transform

in the adjoint of their respective gauge groups, (CI)ibi, (ψ
α

I )ibi transform in the bifundamental

(N ,M) and lastly (C
I
)bii, (ψIα)bii are in (M ,N). Note that the CS levels may differ in the

most general case [115], though the gauge invariance of the CS action constraints them to
be two integers. The symmetry group of this general class of theories is however smaller.
Setting kN = −kM the global symmetry has an enhancement to the SU(4)R symmetry
of (B.2) and one recovers the N = 6 ABJ action. Further setting M = N the ABJM
action is obtained [36]. In these settings latin (hatted) indices i, j, . . . (̂i, ĵ, . . . ) belong to
the fundamental N (anti-fundamental N) of U(N) or SU(N), upper case latin letters are
SU(4) R−symmetry indices spanning I = 1, 2, 3, 4 and greek lower case letters are Weyl
spinor indices α = +,− and are chosen such that ψIα are columns and ψ

α

I are rows. The
3-dimensional Clifford algebra

[σµ, σν ] = 2iǫµνρσρ

{σµ, σν} = 2δµν
(B.3)

is represented by ordinary euclidean Pauli matrices

(σµ)βα = {σ1, σ2, σ3}βα (B.4)

Spinor indices are rised and lowerd with the antisymmetric tensor

ψα = ǫαβψβ , ǫ+− = −ǫ−+ = 1 (B.5)

so lowering the upper index, σ matrices become symmetric

(σµ)αβ = {−σ3, 1, σ1}αβ (B.6)

Spinor indices are always contracted from the upper right to lower left corner

χσµψ = χα(σµ)βαψβ = −ψσµχ (B.7)

for any two spinors χ and ψ. This rule is assumed to hold when spinor indices are not
written explicitly.

The two gauge fields A and Â act from opposite sides on scalars and fermions, as an
example the covariant derivatives read
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Dµψbii = ∂µψbii + i
(
(Âµ)bibjψbji − ψbij(Aµ)ji

)

Dµψibi = ∂µψibi − i
(
ψibj(Âµ)bjbi − (Aµ)ijψjbi

) (B.8)

and the same for scalars.
Finally note that the sign of the interaction 3-form in the CS Lagrangean is related to

the sign of the exponent in the Wilson loop operator through gauge symmetry. It is well
known that the CS action

SCS(k) = −i
k

4π

∫
d3x ǫµνρTr(Aµ∂νAρ +

2

3
σAµAνAρ)

with σ = ±1 receives, under a gauge transformation g(x) ∈ SU(N) acting as

Aµ → g(x)(Aµ + iσ ∂µ)g
−1(x)

a shift S → S + 2kπ δS, being

δS = − 1

24π2

∫
d3xǫµνρTr

[
(∂µg

−1)g(∂νg
−1)g(∂ρg

−1)g
]
∈ N

Thus the path integral is left invariant if k itself is an integer. Correspondingly the Wilson
loop operator is invariant under the same g ∈ SU(N) if the sign of the exponent is σ

W =
1

N
TrP exp

(
iσ

∮
Aµ dxµ

)
(B.9)

A.2.2 Feynman rules

From the Lagrangean in (B.2) we can read the momentum space propagators in Landau
gauge (α→∞)

〈
(Aµ)ij(p) (Aν)kl(−p)

〉
=

2π

k
δilδjk ǫµνρ

pρ

p2

〈
(Âµ)bibj(p) (Âν)bkbl(−p)

〉
= −2π

k
δbiblδbjbk ǫµνρ

pρ

p2

〈
(ψIα)bii(p) (ψ

β

J)jbj(−p)
〉

= −δJI δβαδijδbibj
6p
p2

〈
(CI)ibi(p) (C

J
)bjj(−p)

〉
= δJI δijδbibj

1

p2

(B.10)

〈
cij(p) ckl(−p)

〉
=

2π

k
δilδjk

1

p2

〈
ĉbibj(p) ĉbkbl(−p)

〉
= −2π

k
δbiblδbjbk

1

p2

(B.11)
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Using the d−dimensional Fourier transform

∫
ddp

(2π)d
e−ip·x

(p2)k
= i

Γ(d
2
− k)

Γ(k)

1

22kπ
d
2

1

(x2)
d
2
−k (B.12)

we obtain the coordinate space propagators, relevant for the evaluation of the coordinate
(euclidean) space Wilson loop operator

〈
(Aµ)ij(x) (Aν)kl(y)

〉
= iδilδjk

µ3−d

2k

Γ(d
2
− 1)

π
d
2
−1

ǫµνρ∂
ρ 1

[(x− y)2]
d
2
−1

= −iδilδjk
µ3−d

k

Γ(d
2
)

π
d
2
−1
ǫµνρ

(x− y)ρ
[(x− y)2]

d
2

〈
(Âµ)ij(x) (Âν)kl(y)

〉
= −iδilδjk

µ3−d

2k

Γ(d
2
− 1)

π
d
2
−1

ǫµνρ∂
ρ 1

[(x− y)2]
d
2
−1

= iδilδjk
µ3−d

k

Γ(d
2
)

π
d
2
−1
ǫµνρ

(x− y)ρ
[(x− y)2]

d
2

〈
(ψIα)bii(x) (ψ

β

J)jbj(y)
〉

= iδJI δ
β
αδijδbibj

Γ(d
2
− 1)

4π
d
2

6∂ 1

[(x − y)2]
d
2
−1

= −iδJI δ
β
αδijδbibj

Γ(d
2
)

2π
d
2

σµ(x− y)µ
[(x− y)2]

d
2

〈
(CI)ibi(x) (C

J
)bjj(y)

〉
= δJI δijδbibj

Γ(d
2
− 1)

4π
d
2

1

[(x− y)2]
d
2
−1

(B.13)

For the ghost field propagator the following relation holds

〈
(Aµ)ij(x) (Aν)kl(y)

〉
=

1

2
ǫµνρ∂

ρ
〈
cij(x) ckl(y)

〉
(B.14)

which is the key point in demonstrating the cancellation, mentioned above, of the gauge
field and ghost loops [184]. An analogous relation holds between the < ÂÂ > and < ĉĉ >
propagators. Finally, let us consciously omit the mass scale µ throughout the computations
and restore it at the end, when needed.

Expecially in the ABJM case there’s a subtle interplay of cancellations between 2-loops
Feynman diagrams, for this reason we highlight the different signs in front of different
interaction 3-vertices:

A.2.3 Trace rules

The computations below involve possibly four kinds of indices and thus four kinds of traces
that arise from the definition of the expectation value of the Wilson loop operator. Consider
as an example the 2-loops double scalar excange of Section A.1.1; it arises from the second
order expansion of the loop operator
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= VAAA =
2π

3
√
k
ǫµνρ

Aµ
Aν

Aρ

= VÂÂÂ = − 2π
3
√
k
ǫµνρ

Âµ
Âν

Âρ

(B.15)

= VψψA = +σµ

ψ

ψ

Aµ

= VψÂψ = −σµ

ψ

ψ

Âµ

(B.16)

= VCCA = −i∂µ

C

C

Aµ

= VCÂC = i∂µ

C

C

Âµ

(B.17)

(
2π

k

)2 〈
|ẋ1||ẋ2|[M I

JCIC
J
][M̂K

L C
L
CK ]

〉
(B.18)

Contracting fields inserted at the same point

TrM I
JCIC

J
M̂K

L C
L
CK (B.19)

gives the double-bouble graph, which vanishes for the same reasons pointed out in Section
6.3.1 and that make the single bouble graph vanishing. On the other hand contracting fields
inserted at different points

TrM I
JCIC

J
M̂K

L C
L
CK (B.20)

returns the composite exchange of Figure 6.3.2 (b). Inserting the propagators between
scalar fields as indicated by the Wick contraction above, and flushing all but the tensorial
structure, the traces over U(N)× U(M) and SU(4)R idices become

M I
J (CI)ibi(C

J
)bjjM̂

K
L (C

L
)bll(CK)kbkδ

L
I δ

J
Kδilδbiblδjkδbjbk = N2MTr[MM̂ ] (B.21)

This is in our opinion the best way for keeping track of trace factors.
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A.3 Superconformal symmetry in three dimensions

Chern-Simons-matter theories described in Section A.1 are invariant under the supercon-
formal group in three-dimensions OSp(6|4) containing 24 supercharges instead of the 32
of PSU(2, 2|4) of N = 4 SYM. Therefore they are not maximally supersymmetric. The
osp(6|4) algebra is generated by the sp(4) translations P αβ, α, β = 1, 2, rotations Jα,
Lorentz transformation Lαβ , special conformal transformation Kαβ and dilatation D, so(6)
R−symmetries RAB, A,B = 1, 2, 3, and 24 supercharges QαA, Qα

A, SαA, S
A
α . We use so(6)

indices for convenience in writing the commutators. The Lorentz and internal rotations
algebra reads

[Lαβ, J
γ ] = +δγβJ

α − 1

2
δαβJ

γ , [Lαβ, Jγ] = −δαγ Jβ +
1

2
δαβJγ ,

[RA
B, J

C ] = +δCBJ
A , [RA

B, JC] = −δACJB , (C.22)

[RAB, J
C ] = δCBJA − δCAJB , [RAB, JC] = δBCJ

A − δACJB

Commutators of special conformal tranformations and translations give a Lorentz transfor-
mation and a dilation

[Kαβ , P
γδ] = δδβL

γ
α + δγβL

δ
α + δδαL

γ
β + δγαL

δ
β + 2δδβδ

γ
αD + 2δγβδ

δ
αD , (C.23)

Commutators including a supercharge are again a supercharge

[P αβ, SAγ ] = −δαγQβA − δβγQαA , [Kαβ , Q
γA] = δγβS

A
α + δγαS

A
β , (C.24)

[P αβ, SγA] = −δαγQβ
A − δβγQα

A , [Kαβ , Q
γ
A] = δγαSβA + δγβSαA

and two supercharges commute into translations and rotations

{QαA, Qβ
B} = δABP

αβ , {SαA, SBβ } = δBAKαβ , (C.25)

{QαA, SβB} = δABL
α
β − δαβRA

B + δABδ
α
βD , {QαA, SBβ } = −δαβRAB , (C.26)

{Qα
A, S

B
β } = δBAL

α
β + δαβR

B
A + δABδ

α
βD , {Qα

A, SβB} = −δαβRAB

The superconformal transformations of SCS theories of the ABJM kind are generated by
the twelve Poicare supercharges QIJ

α , parametrised by two-component spinors θIJα , and the
twelve superconformal ones SIJα , parametrised by ϑIJα . These parameters are antisymmetric,
θ̄IJ = −θ̄JI , and obey the reality condition

θ̄IJ = (θIJ)
∗ (C.27)

moreover

θIJ =
1

2
εIJKLθ̄

KL . (C.28)
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The supersymmetry trasformations act on the fields of the theory in the following way

δAµ =
4πi

k
θ̄IJα(γµ)

β
α

(
CIψJβ +

1

2
εIJKLψ̄

K
β C̄

L

)
,

δÂµ =
4πi

k
θ̄IJα(γµ)

β
α

(
ψJβCI +

1

2
εIJKLC̄

Lψ̄Kβ

)
,

δCK = θ̄IJαεIJKLψ̄
L
α , (C.29)

δC̄K = 2θ̄KLαψLα ,

δψβK = −iθ̄IJαεIJKL(γµ) β
α DµC̄

L

+
2πi

k
θ̄IJβεIJKL(C̄

LCP C̄
P − C̄PCP C̄

L) +
4πi

k
θ̄IJβεIJMLC̄

MCKC̄
L,

δψ̄Kβ = −2iθ̄KLα(γµ)αβDµCL −
4πi

k
θ̄KLβ (CLC̄

MCM − CM C̄MCL)−
8πi

k
θ̄IJβ CIC̄

KCJ ,

and analogous expressions for the superconformal transformation up to θ → ϑ. Nothe that
here su(4) R−indices have been used instead.

A.4 Toolbox

Momentum integrals in d−dimensions

Momentum space integrals are conveniently managed using Feynman paramerization

1

Am1
1 Am2

2 . . . Amn
n

=

∫ 1

0

dαiδ
(∑

αi − 1
) ∏

αmi−1
i

[
∑
αiAi]

P
mi

Γ(
∑
mi)∏

Γ(mi)
(D.30)

then momentum integrals are performed in dimensional regularization when possible, or
eventually are dimensional reduced, meaning that tensors are kept on-dimension while kine-
matics is taken off-dimension. The general d-dimensional integral rotated reduced to the
form

∫
ddl

(2π)d
l2n

(l2 −∆)m
= i(−1)m
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dΩd
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d|lE|
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(
1

−∆

)n−m+ d
2

(D.31)

of which two common examples are

∫
ddl

(2π)d
1

(l2 −∆)2
=

i

(4π)d/2
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(∆)2− d
2
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1
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(D.32)
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Fourier transform in d-dimensions is carried out by means of the standard formula

∫
ddk

(2π)d
e−ik·x

(−k2)n
=

i

4nπ
d
2

Γ
(
d
2
− n

)

Γ(n)

1

(−x2)
d
2
−n (D.33)

Traces of σ matrices and tensor identities

In the following we list some useful identities between σ matrices and Levi-Civita tensors.

σµσν =
1

2
[σµ, σν ] +

1

2
{σµ, σν} = δµν + iǫµνρσ

ρ

σµσασν = −δµνσα + δµασν + δνασµ + iǫµαν

σµσασνσβ = δµαδνβ + δµβδνα − δµνδαβ + iǫανβσµ+

+ i(δνβǫµαγ + δανǫµβγ − δαβǫµνγ)σγ

(D.34)

and so on acting repeatidly with the first identity. From these one can easily compute the
traces

Tr[σµσν ] = 2δµν

Tr[σµσασν ] = 2iǫµαν

Tr[σµσασνσβ] = 2(δµαδνβ − δαβδµν + δναδµβ)

(D.35)

Contractions of antisymmetric Levi-Civita ǫ tensors are also useful ...sometimes ...

ǫijkǫ
jkl = 2δlk

ǫijkǫ
ihl = δhj δ

l
k − δljδhk

ǫijkǫlmn = δil(δjmσkn − δjnδkm)− δim(δjlσkn − δjnδkm)

+ δin(δjlσkm − δjmδkl)

(D.36)
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