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Abstract. We have made an attempt to briefly address the issue of texture zero fermion
mass matrices from the ‘bottom-up’ perspective. Essentials pertaining to texture zero mass
matrices have been summarized and using the facility of Weak Basis transformations, the
implications of the texture zero mass matrices so obtained have been examined for the
quark as well as the lepton sector.

Povzetek. Avtorica obravnava masne matrike za kvarke in leptone, ki imajo ničelne ele-
mente razporejene po določenih vzorcih. Povzame bistvene značilnosti takih masnih matrik,
ki jih transformira v šibko bazo ter določi proste parametre iz eksperimentalnih podatkov.
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1.1 Introduction

Understanding fermion masses and mixings is of paramount importance in the
field of High Energy Physics. Regarding the quark case, at present one has a
fairly good idea of the masses as well as the mixing angles [1]. In particular, one
finds that both the quark masses as well as the mixing angles exhibit a clear cut
hierarchy. For the case of neutrinos, although, recently refinements of the reactor
mixing angle s13 [2,3], the solar mixing angle s12 and the atmospheric mixing
angle s23 have been carried out, however, regarding the neutrino masses, in the
absence of their absolute measurements, one has their interpretation only in terms
of the neutrino mass-squared differences [4].

In order to understand the underlying pattern of fermion masses and flavor
mixings, experimental efforts in the form of continuous refinements of the fermion
mixing data are being carried out regularly. Along with these attempts, large
amounts of efforts at the phenomenological end are also being made. In the
present context, we have followed the “bottom-up” approach which involves
phenomenological formulation of mass matrices which may eventually provide
clues for the efforts carried out through the “top-down” approach. In this context,
an interesting idea being investigated in the quark as well as leptonic sector is
that of the texture zero mass matrices [5]-[8]. In the present paper, after presenting
a brief outline of the essentials pertaining to the texture zero mass matrices in
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2 G. Ahuja

Section 2, the details of the analyses corresponding to the quark and leptonic
sectors have been presented in Sections 3.1 and 3.2 respectively. Finally, Section 4,
summarizes our conclusions.

1.2 Essentials pertaining to texture zero mass matrices

Fermion masses, along with fermion mixings, provide a good opportunity to
hunt for physics beyond the SM. In view of the relationship of fermion mixing
phenomenon with that of the fermion mass matrices, understanding flavor physics
essentially implies formulating fermion mass matrices. The lack of a viable ap-
proach from the top-down perspective brings up the need for formulating fermion
mass matrices from a bottom-up approach. In this context, initially, incorporating
the texture zero approach, several ansatze were suggested for quark mass matrices.

1.2.1 Quark mass matrices

In the Standard Model (SM), the fermion mass matrices, having their origin in
the Higgs fermion couplings, are completely arbitrary, therefore, the number of
free parameters available with a general mass matrix is larger than the physical
observables. For example, if no restrictions are imposed, there are 36 real free
parameters in the two 3× 3 general complex mass matrices,MU andMD, which
in the quark sector need to describe 10 physical observables, i.e., 6 quark masses, 3
mixing angles and 1 CP violating phase. Similarly, in the leptonic sector, physical
observables described by lepton mass matrices are 6 lepton masses, 3 mixing
angles and 1 CP violating phase for Dirac neutrinos (2 additional phases in case
neutrinos are Majorana particles). Therefore, to develop viable phenomenological
fermion mass matrices, as a first step, one needs to constrain the number of free
parameters associated with the mass matrices so as to obtain valuable clues for
developing an understanding of fermion mixing phenomenology.

In the SM and its extensions in which righthanded quarks are singlets, the
above mentioned task is accomplished by considering the fermion mass matrices
to be Hermitian. This brings down the number of real free parameters from 36 to
18, which however, is still a large number compared to the number of observables.
To this end, Weinberg implicitly and Fritzsch [9,10] explicitly proposed the idea
of texture zero mass matrices which imparted considerable predictability to the
fermion mass matrices. This approach involves assuming certain elements of the
Hermitian quark mass matrices to be zero, e.g., the typical Fritzsch texture zero
Hermitian quark mass matrices are given by

MU =

 0 AU 0

A∗U 0 BU
0 B∗U CU

 , MD =

 0 AD 0

A∗D 0 BD
0 B∗D CD

 , (1.1)

whereMU andMD refer to the mass matrices in the up and down sector respec-
tively. Such matrices were named as texture zero mass matrices with a particular
matrix defined as texture ‘n’ zero if the sum of the number of diagonal zeros and



i
i

“proc17” — 2017/12/11 — 19:44 — page 3 — #17 i
i

i
i

i
i

1 Texture Zero Mass Matrices and Their Implications 3

half the number of the symmetrically placed off diagonal zeros is ‘n’. Each of
the above matrix is texture three zero type, together these are known as texture
six zero Fritzsch mass matrices. On lines of these ansatze, by considering lesser
number of texture zeros, several possible Fritzsch like texture zero mass matrices
can be formulated. Also, one can get non Fritzsch like mass matrices by shifting
the position of Ci(i = U,D) on the diagonal as well as by shifting the position of
zeros among the non diagonal elements. One can thus obtain a very large number
of possible texture zero mass matrices.

An analysis of these mass matrices involves firstly diagonalizing them using
bi-unitary orthogonal transformations and then obtaining the fermion mixing
matrix using the relationship between the mass matrices and the mixing matrices.
The corresponding mixing matrix is compared with the experimentally available
mixing matrix which then determines the viability of a given texture zero mass
matrix. As an example, we present here essentials pertaining to the diagonalization
of texture 4 zero mass matrices. A general Fritzsch-like texture 2 zero mass matrix
can be expressed as

Mk =

 0 Ak 0

A∗k Dk Bk
0 B∗k Ck

 , (1.2)

where k = l, νD, for neutrino case and k = U,D, for quark case. Considering
both the matrices of either the up and the down sector for quarks or the charged
lepton or neutrino sector for leptons to be the texture 2 zero type, one essentially
obtains the case of texture 4 zero mass matrices. Texture 6 zero mass matrices
can be obtained from the above mentioned matrices by taking both Dk to be zero
in both sets of mass matrices. Texture 5 zero matrices can be obtained by taking
Dk = 0 in one of the two mass matrices.

To fix the notations and conventions, we detail the formalism connecting the
mass matrix to the mixing matrix. The mass matrices, for Hermitian as well as
symmetric case, can be exactly diagonalized. To facilitate diagonalization, the mass
matrixMk can be expressed as

Mk = QkM
r
kPk, (1.3)

or
Mr
k = Q†kMkP

†
k, (1.4)

where Mr
k is a real symmetric matrix with real eigenvalues and Qk and Pk are

diagonal phase matrices. For the Hermitian case Q†k = Pk, whereas for the sym-
metric case under certain conditions Qk = Pk. In general, the real matrix Mr

k is
diagonalized by the orthogonal transformation Ok, e.g.,

Mdiag
k = OTkM

r
kOk, (1.5)

which on using equation (4) can be written as

Mdiag
k = OTkQ

†
kMkP

†
kOk. (1.6)



i
i

“proc17” — 2017/12/11 — 19:44 — page 4 — #18 i
i

i
i

i
i

4 G. Ahuja

Using the method, mentioned above, we reproduce the general diagonalizing
transformation Ok, e.g.,±Ok(11) ±Ok(12) ±Ok(13)±Ok(21) ∓Ok(22) ±Ok(23)

∓Ok(31) ±Ok(32) ±Ok(33)

 , (1.7)

where

Ok(11) =

√
m2m3(m3 −m2 −Dk)

(m1 −m2 +m3 −Dk)(m3 −m1)(m1 +m2)
,

Ok(12) =

√
m1m3(m1 +m3 −Dk)

(m1 −m2 +m3 −Dk)(m3 +m2)(m1 +m2)
,

Ok(13) =

√
m1m2(m2 −m1 +Dk)

(m1 −m2 +m3 −Dk)(m3 +m2)(m3 −m1)
,

Ok(21) =

√
m1(m3 −m2 −Dk)

(m3 −m1)(m1 +m2)
,

Ok(22) =

√
m2(m3 +m1 −Dk)

(m2 +m3)(m1 +m2)
,

Ok(23) =

√
m3(m2 −m1 +Dk)

(m3 +m2)(m1 +m2)
,

Ok(31) =

√
m1(m2 −m1 +Dk)(m1 +m3 −Dk)

(m1 −m2 +m3 −Dk)(m3 −m1)(m1 +m2)
,

Ok(32) =

√
m2(m2 −m1 +Dk)(m3 −m2 −Dk)

(m1 −m2 +m3 −Dk)(m3 +m2)(m1 +m2)
,

Ok(33) =

√
m3(m3 −m2 −Dk)(m1 +m3 −Dk)

(m1 −m2 +m3 −Dk)(m3 −m1)(m3 +m2)
, (1.8)

m1,−m2,m3 being the eigenvalues ofMk.
While carrying out the analysis of texture zero mass matrices, the viability

of the formulated mass matrices is ensured by checking the compatibility of the
mixing matrices so obtained from these with the low energy data. In order to
obtain the mixing matrix, we note that in the SM, the quark mass terms for three
generations of quarks can be expressed as

qU
L
MUqUR + qD

L
MDqDR , (1.9)
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1 Texture Zero Mass Matrices and Their Implications 5

where qUL(R)
and qDL(R)

are the left (right) handed quark fields for the up sector
(u, c, t) and down sector (d, s, b) respectively.MU andMD are the mass matrices
for the up and the down sector of quarks. In order to re-express above equation in
terms of the physical quark fields, one can diagonalize the mass matrices by the
following bi-unitary transformations

V†U
L
MUVUR =Mdiag

U ≡ Diag(mu,mc,mt), (1.10)

V†D
L
MDVDR =Mdiag

D ≡ Diag(md,ms,mb), (1.11)

whereMdiag
U,D are real and diagonal, while VU

L
, VU

R
etc. denote the eigenvalues

of the mass matrices, i.e., the physical quark masses. Using the above equations,
one can rewrite equation (9) as

qU
L
VU

L
Mdiag
U V†U

R
qUR + qD

L
VD

L
Mdiag
D V†D

R
qDR (1.12)

which can be re-expressed in terms of physical quark fields as

qphysU
L
Mdiag
U qphysU

R
+ qphysD

L
Mdiag
D qphysD

R
, (1.13)

where qphysU
L

= V†U
L
qUL and qphysD

L
= V†D

L
qDR and so on. The mismatch of

diagonalizations of up and down quark mass matrices leads to the quark mixing
matrix VCKM, referred to as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [11]
given as

VCKM = V†U
L
VU

R
. (1.14)

Over the past few years, both in the quark as well as lepton sector, a large
number of analyses [5]-[8] have been carried out which establish the texture zero
approach as a viable one for explaining the fermion mixing data. However, as
mentioned earlier, since the number of possible texture zero mass matrices is very
large, one has to carry out an exhaustive analysis of all possible texture zero mass
matrices. To account for this limitation, therefore, Branco et al. [12,13] and Fritzsch
and Xing [14,15] have proposed the concept of ‘Weak Basis (WB) transformations’.

Within the SM and some of its extensions, one has the facility of making
Weak Basis (WB) transformations W on the quark fields, e.g., qL →WqL, qR →
WqR, q′L → Wq′L, q

′
R → Wq′R. These are unitary transformations which leave

the gauge currents real and diagonal but transform the mass matrices as

MU →W†MUW, MD →W†MDW. (1.15)

Without loss of generality, this approach introduces zeros in the quark mass
matrices leading to a reduction in the number of parameters defining the mass
matrices. Following this, one can arrive at two kinds of structures of the mass
matrices, e.g., Branco et al. [12,13] give

Mq =

 0 ∗ 0∗ ∗ ∗
0 ∗ ∗

 , Mq
′ =

 0 ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 , q, q
′
= U,D, (1.16)
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whereas Fritzsch and Xing [14,15] give

Mq =

 ∗ ∗ 0∗ ∗ ∗
0 ∗ ∗

 , q = U,D. (1.17)

The mass matrices so obtained can thereafter be considered texture zero mass
matrices and same methodology can be used to analyze these. Interestingly, one
now has an additional advantage that the large number of possible structures are
not all independent. Several of these are related through WB transformations and
therefore yield the same structure of the diagonalizing transformations leading
to similar mixing matrices, making the number of matrices to be analyzed much
less than before. However, there is a limitation too, i.e, this idea does not result
in constraining the parameter space of the elements of the mass matrices. To
overcome this, one can further impose a condition on the elements of the mass
matrices by considering the following hierarchy for these [8]

(1, i) . (2, j) . (3, 3); i = 1, 2, 3, j = 2, 3. (1.18)

1.2.2 Lepton mass matrices

Keeping in mind the quark lepton universality [16], similar to the case of texture
zero quark mass matrices discussed in the previous section, it becomes desirable
to carry out a corresponding analysis in the lepton sector also. In the case of
leptons, several attempts have been made to formulate the phenomenological
mass matrices considering charged leptons to be diagonal, usually referred to as
the flavor basis case [17]. However, in the present work, we have considered the
non flavor basis [18], wherein, texture is imposed on both the charged lepton mass
matrix as well as on the neutrino mass matrix. The ‘smallness’ of the neutrino
masses is best described in terms of ‘seesaw mechanism’ [19] given by

Mν = −MT
νDM

−1
R MνD, (1.19)

withMν,MνD andMR corresponding to the light Majorana neutrino mass matrix,
the Dirac neutrino mass matrix and the heavy right handed Majorana neutrino
mass matrix respectively.

The methodology of analyzing the texture zero lepton mass matrices remains
essentially the same as that for the case of quarks. One can impose texture on
the charged lepton mass matrixMl and on the Dirac neutrino mass matrixMνD.
Equation (1.19) can then be used to obtain the Majorana neutrino matrix Mν

which along with the matrixMl allows the construction of the Pontecorvo Maki
Nakagawa Sakata (PMNS) matrix [20] for examining the viability of the mass
matrices. Using these ideas, in the following we have briefly summarized the
results of the analyses in the case of quarks [21] as well as leptons [22].
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1.3 Results and discussion

1.3.1 Texture zero quark mass matrices

We begin with the the most general Hermitian mass matrices, given by

Mq =

 Eq Aq FqA∗q Dq Bq
F∗q B

∗
q Cq

 (q = U,D). (1.20)

Invoking WB transformations, zeros can be introduced in these matrices using a
unitary matrix W, leading to

MU =

 EU AU 0

A∗U DU BU
0 B∗U CU

 , MD =

 ED AD 0

A∗D DD BD
0 B∗D CD

 . (1.21)

One may note that these matrices are, in fact, texture one zero each, together these
are referred as texture two zero mass matrices.

To check the viability of these mass matrices, one needs to examine the com-
patibility of the CKM matrix reproduced through these with the recent quark
mixing data. Results of a detailed analysis of these matrices, carried out in Ref.
[21], reveal that using the following quark masses and the mass ratios at theMZ

scale as inputs [23]

mu = 1.38+0.42−0.41MeV, md = 2.82±0.48MeV, ms = 57
+18
−12MeV,

mc = 0.638
+0.043
−0.084GeV, mb = 2.86+0.16−0.06GeV, mt = 172.1±1.2GeV, (1.22)

mu/md = 0.553±0.043,ms/md = 18.9±0.8

and imposing the latest values [1] of the three mixing angles as constraints for the
construction of the CKM matrix, one arrives at

VCKM =

 0.9739− 0.9745 0.2246− 0.2259 0.00337− 0.003650.2224− 0.2259 0.9730− 0.9990 0.0408− 0.0422

0.0076− 0.0101 0.0408− 0.0422 0.9990− 0.9999

 , (1.23)

this being fully compatible with the one given by Particle Data Group (PDG) [1].
In order to examine whether these mass matrices can accommodate CP violation
in the quark sector, in the present work we have made an attempt to reproduce the
CP violating Jarlskog’s rephasing invariant parameter J. One obtains a range of J
= (2.494− 3.365)× 10−5, this again being compatible with its latest experimental
value (3.04+0.21−0.20)× 10−5 [1].

1.3.2 Texture zero lepton mass matrices

Similar to the quark case, using the facility of WB transformations, wherein it is
possible to make a unitary transformation, one can reduce the general lepton mass
matrices to

Ml =

 El Al 0

A∗l Dl Bl
0 B∗l Cl

 , MνD =

 EνD AνD 0

A∗νD DνD BνD
0 B∗νD CνD

 . (1.24)
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A detailed analysis of these mass matrices has been carried out in Ref. [22]. In the
present work, for the normal and inverted ordering of neutrino masses, we have
first examined the viability of these mass matrices and then we have investigated
their implications for CP violation in the leptonic sector.

The latest situation regarding neutrinos masses and mixing angles at 3σ C.L.
is summarized as follows [24]

∆m221 = (7.02− 8.09)× 10−5eV2; ∆m223 = (2.325− 2.599)× 10−3eV2; (1.25)

sin2 θ12 = 0.270− 0.344; sin2 θ23 = 0.385− 0.644; sin2 θ13 = 0.0188− 0.0251.
(1.26)

The 3σ C.L. ranges of the PMNS matrix elements recently constructed by Garcia et
al.[24] are as follows

UPMNS =

0.801− 0.845 0.514− 0.580 0.137− 0.1580.225− 0.517 0.441− 0.699 0.164− 0.793

0.246− 0.529 0.464− 0.713 0.590− 0.776

 . (1.27)

For the inverted and normal neutrino mass orderings, the mass matrices men-
tioned in equation (1.24) yield the following magnitudes of the corresponding
PMNS matrix elements [22] respectively

UIOPMNS =

 0.034− 0.859 0.0867− 0.593 0.135− 0.9960.250− 0.971 0.068− 0.812 0.043− 0.808

0.103− 0.621 0.395− 0.822 0.088− 0.810

 . (1.28)

UNOPMNS =

 0.444− 0.993 0.123− 0.837 0.004− 0.2880.061− 0.816 0.410− 0.941 0.047− 0.872

0.012− 0.848 0.049− 0.779 0.460− 0.992

 . (1.29)

For both the mass orderings, one finds that the 3σ C.L. ranges of the PMNS
matrix elements given by Garcia et al. are inclusive in the ranges of the PMNS
matrix elements found here, thereby ensuring the viability of texture two zero
mass matrices considered here. Further, analogous to the case of quarks, we have
made an attempt to find constraints for the CP violating Jarlskog’s rephasing
invariant parameter in the leptonic sector also. For the inverted mass ordering, one
obtains a range of J from −0.05− 0.05, whereas, for the normal mass ordering the,
parameter J is obtained in the range −0.03− 0.03. These observations, therefore,
lead one to conclude that the texture two zero leptonic mass matrices are not
only compatible with the recent leptonic mixing data but also provide interesting
bounds for the Jarlskog’s rephasing invariant parameter.

1.4 Summary and Conclusions

To summarize, in the present work, we have made an attempt to provide an
overview of texture zero fermion mass matrices. For the case of both quarks and
leptons, incorporating the texture zero approach as well as using the WB transfor-
mations, analyses of the “general” fermion mass matrices have been discussed.
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After examining the viability of these mass matrices, we have obtained interesting
bounds on the Jarlskog’s rephasing invariant parameter in the quark and leptonic
sector.
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