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DISCUSSION 

OPPENHEIMER : I think that this reminds one of Oehme's analysis of the structure singularities. 
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It is well known that the S-wave scattering 2 ' 3 ) 

S(K) by a cut potential of radius a leads to a scattering 
function that is an analytic function of K in the upper 
half I + of the complex plane of the wave number K, 
except possibly, for poles on the positive imaginary 
axis that corresponds to bound states. Besides, 
an elementary discussion of the square well potential 
of range a, shows that 
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where c is the contour of Fig. 1, and r>r0>a. The 
proof of Eq. (2) is immediate if we complete the con
tour c by the dotted contour of Fig. 1, and use Eq. (1) 

Fig. 1 Contour for the K integration. 

when K is in I + and | T C | - ^ O O . A general proof of this 
property for an arbitrary cut potential of range can be 
given using the Born approximation. 

As a consequence of the properties of S(K) given 
in the previous paragraph, we see that in the absence 
of bound states, the following integral vanishes 
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and the Cauchy theorem. In particular, if r = r0 = a 
we get from Eq. (2) the dispersion relations 

where Im and Re stand for imaginary and real part, 
respectively, and P indicates the principal value. 

For non-cut potentials, Martin 3 ) and others have 
shown that the properties of S(K) of the first paragraph 
no longer hold. For example, it is possible to con
struct potentials 3 ) with poles of S(K) in I + outside the 
imaginary axis, and also to have poles on the imaginary 
axis that do not correspond to bound states. It 
follows, therefore, that for non-cut potentials, S(K) 
no longer has the analytic properties that make it 
satisfy Eq. (2) or the dispersion relations (3). 

We could ask ourselves what would be the generaliza
tion of Eq. (2) to arbitrary potentials, so as to obtain 
a new function, which we will denote by the name 
of dispersion function, that satisfies dispersion 
relations. 

We obtain the dispersion function using essentially 
a causality principle formulated as follows: the time 
dependent Green function for the scattering by an 
arbitrary potential should be bounded for all times. 

As a consequence of this causality principle we can 
see that the dispersion function is the Laplace trans
form of the time dependent Green function and that 
it satisfies an equation which reduces to Eq. (2) in the 
particular case of cut potentials of radius a. 

We can show directly from the Schrodinger equation 
that the dispersion function is analytic in I + except 
possibly for poles on the imaginary axis associated 
with bound states. Furthermore, using the Born 
approximation, we can show that the dispersion 
function tends to zero as a function of K, when K 
is in I + and K | - > | O O . From these properties of the 
dispersion function, an equation that is a generaliza
tion of Eq. (2) follows immediately. 

We discuss the particular case of scattering by the 
Eckart po t en t i a l 4 ' 5 ) which gives a very simple S(K). 
We obtain explicitly the dispersion function and the 
time dependent Green function of this problem, and 
express the latter in terms of basic interaction Green 
(BIG) functions associated with the poles and zeros of 
S(k). We can show that the BIG functions of physical 
significance are those associated with the poles of 
S(K) that are also poles of the dispersion function. 
From the asymptotic form of the BIG functions, when 
/->oo we obtain restrictions on the analytic behavior 
of the dispersion functions that are similar to those 
obtained from the causality principle. Using the 
properties of the BIG functions, we briefly discuss the 
significance of the complex poles and zeros of S(K) 
comparing it with the results of our previous papers 6 ' 7 ) 

and with the recent analysis of Beck and Nussen-
zweig 8 ) . 
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